i7core_edac.c 64.1 KB
Newer Older
1 2
/* Intel i7 core/Nehalem Memory Controller kernel module
 *
D
David Sterba 已提交
3
 * This driver supports the memory controllers found on the Intel
4 5 6
 * processor families i7core, i7core 7xx/8xx, i5core, Xeon 35xx,
 * Xeon 55xx and Xeon 56xx also known as Nehalem, Nehalem-EP, Lynnfield
 * and Westmere-EP.
7 8 9 10
 *
 * This file may be distributed under the terms of the
 * GNU General Public License version 2 only.
 *
11
 * Copyright (c) 2009-2010 by:
12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32
 *	 Mauro Carvalho Chehab <mchehab@redhat.com>
 *
 * Red Hat Inc. http://www.redhat.com
 *
 * Forked and adapted from the i5400_edac driver
 *
 * Based on the following public Intel datasheets:
 * Intel Core i7 Processor Extreme Edition and Intel Core i7 Processor
 * Datasheet, Volume 2:
 *	http://download.intel.com/design/processor/datashts/320835.pdf
 * Intel Xeon Processor 5500 Series Datasheet Volume 2
 *	http://www.intel.com/Assets/PDF/datasheet/321322.pdf
 * also available at:
 * 	http://www.arrownac.com/manufacturers/intel/s/nehalem/5500-datasheet-v2.pdf
 */

#include <linux/module.h>
#include <linux/init.h>
#include <linux/pci.h>
#include <linux/pci_ids.h>
#include <linux/slab.h>
R
Randy Dunlap 已提交
33
#include <linux/delay.h>
N
Nils Carlson 已提交
34
#include <linux/dmi.h>
35 36
#include <linux/edac.h>
#include <linux/mmzone.h>
37
#include <linux/smp.h>
38
#include <asm/mce.h>
39
#include <asm/processor.h>
40
#include <asm/div64.h>
41 42 43

#include "edac_core.h"

44 45 46 47 48
/* Static vars */
static LIST_HEAD(i7core_edac_list);
static DEFINE_MUTEX(i7core_edac_lock);
static int probed;

49 50 51
static int use_pci_fixup;
module_param(use_pci_fixup, int, 0444);
MODULE_PARM_DESC(use_pci_fixup, "Enable PCI fixup to seek for hidden devices");
52 53 54 55 56 57 58 59 60
/*
 * This is used for Nehalem-EP and Nehalem-EX devices, where the non-core
 * registers start at bus 255, and are not reported by BIOS.
 * We currently find devices with only 2 sockets. In order to support more QPI
 * Quick Path Interconnect, just increment this number.
 */
#define MAX_SOCKET_BUSES	2


61 62 63
/*
 * Alter this version for the module when modifications are made
 */
M
Michal Marek 已提交
64
#define I7CORE_REVISION    " Ver: 1.0.0"
65 66 67 68 69 70 71 72 73 74 75 76 77 78 79
#define EDAC_MOD_STR      "i7core_edac"

/*
 * Debug macros
 */
#define i7core_printk(level, fmt, arg...)			\
	edac_printk(level, "i7core", fmt, ##arg)

#define i7core_mc_printk(mci, level, fmt, arg...)		\
	edac_mc_chipset_printk(mci, level, "i7core", fmt, ##arg)

/*
 * i7core Memory Controller Registers
 */

80 81 82
	/* OFFSETS for Device 0 Function 0 */

#define MC_CFG_CONTROL	0x90
83 84
  #define MC_CFG_UNLOCK		0x02
  #define MC_CFG_LOCK		0x00
85

86 87 88 89 90 91
	/* OFFSETS for Device 3 Function 0 */

#define MC_CONTROL	0x48
#define MC_STATUS	0x4c
#define MC_MAX_DOD	0x64

92 93 94 95 96 97 98 99 100 101 102 103
/*
 * OFFSETS for Device 3 Function 4, as inicated on Xeon 5500 datasheet:
 * http://www.arrownac.com/manufacturers/intel/s/nehalem/5500-datasheet-v2.pdf
 */

#define MC_TEST_ERR_RCV1	0x60
  #define DIMM2_COR_ERR(r)			((r) & 0x7fff)

#define MC_TEST_ERR_RCV0	0x64
  #define DIMM1_COR_ERR(r)			(((r) >> 16) & 0x7fff)
  #define DIMM0_COR_ERR(r)			((r) & 0x7fff)

104
/* OFFSETS for Device 3 Function 2, as inicated on Xeon 5500 datasheet */
105 106 107 108 109 110 111
#define MC_SSRCONTROL		0x48
  #define SSR_MODE_DISABLE	0x00
  #define SSR_MODE_ENABLE	0x01
  #define SSR_MODE_MASK		0x03

#define MC_SCRUB_CONTROL	0x4c
  #define STARTSCRUB		(1 << 24)
N
Nils Carlson 已提交
112
  #define SCRUBINTERVAL_MASK    0xffffff
113

114 115 116 117 118 119 120 121 122 123 124
#define MC_COR_ECC_CNT_0	0x80
#define MC_COR_ECC_CNT_1	0x84
#define MC_COR_ECC_CNT_2	0x88
#define MC_COR_ECC_CNT_3	0x8c
#define MC_COR_ECC_CNT_4	0x90
#define MC_COR_ECC_CNT_5	0x94

#define DIMM_TOP_COR_ERR(r)			(((r) >> 16) & 0x7fff)
#define DIMM_BOT_COR_ERR(r)			((r) & 0x7fff)


125 126
	/* OFFSETS for Devices 4,5 and 6 Function 0 */

127 128 129 130 131 132
#define MC_CHANNEL_DIMM_INIT_PARAMS 0x58
  #define THREE_DIMMS_PRESENT		(1 << 24)
  #define SINGLE_QUAD_RANK_PRESENT	(1 << 23)
  #define QUAD_RANK_PRESENT		(1 << 22)
  #define REGISTERED_DIMM		(1 << 15)

133 134 135 136
#define MC_CHANNEL_MAPPER	0x60
  #define RDLCH(r, ch)		((((r) >> (3 + (ch * 6))) & 0x07) - 1)
  #define WRLCH(r, ch)		((((r) >> (ch * 6)) & 0x07) - 1)

137 138 139
#define MC_CHANNEL_RANK_PRESENT 0x7c
  #define RANK_PRESENT_MASK		0xffff

140
#define MC_CHANNEL_ADDR_MATCH	0xf0
141 142 143 144 145 146 147 148 149 150
#define MC_CHANNEL_ERROR_MASK	0xf8
#define MC_CHANNEL_ERROR_INJECT	0xfc
  #define INJECT_ADDR_PARITY	0x10
  #define INJECT_ECC		0x08
  #define MASK_CACHELINE	0x06
  #define MASK_FULL_CACHELINE	0x06
  #define MASK_MSB32_CACHELINE	0x04
  #define MASK_LSB32_CACHELINE	0x02
  #define NO_MASK_CACHELINE	0x00
  #define REPEAT_EN		0x01
151

152
	/* OFFSETS for Devices 4,5 and 6 Function 1 */
153

154 155 156 157 158 159 160
#define MC_DOD_CH_DIMM0		0x48
#define MC_DOD_CH_DIMM1		0x4c
#define MC_DOD_CH_DIMM2		0x50
  #define RANKOFFSET_MASK	((1 << 12) | (1 << 11) | (1 << 10))
  #define RANKOFFSET(x)		((x & RANKOFFSET_MASK) >> 10)
  #define DIMM_PRESENT_MASK	(1 << 9)
  #define DIMM_PRESENT(x)	(((x) & DIMM_PRESENT_MASK) >> 9)
161 162 163 164
  #define MC_DOD_NUMBANK_MASK		((1 << 8) | (1 << 7))
  #define MC_DOD_NUMBANK(x)		(((x) & MC_DOD_NUMBANK_MASK) >> 7)
  #define MC_DOD_NUMRANK_MASK		((1 << 6) | (1 << 5))
  #define MC_DOD_NUMRANK(x)		(((x) & MC_DOD_NUMRANK_MASK) >> 5)
165
  #define MC_DOD_NUMROW_MASK		((1 << 4) | (1 << 3) | (1 << 2))
166
  #define MC_DOD_NUMROW(x)		(((x) & MC_DOD_NUMROW_MASK) >> 2)
167 168
  #define MC_DOD_NUMCOL_MASK		3
  #define MC_DOD_NUMCOL(x)		((x) & MC_DOD_NUMCOL_MASK)
169

170 171
#define MC_RANK_PRESENT		0x7c

172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194
#define MC_SAG_CH_0	0x80
#define MC_SAG_CH_1	0x84
#define MC_SAG_CH_2	0x88
#define MC_SAG_CH_3	0x8c
#define MC_SAG_CH_4	0x90
#define MC_SAG_CH_5	0x94
#define MC_SAG_CH_6	0x98
#define MC_SAG_CH_7	0x9c

#define MC_RIR_LIMIT_CH_0	0x40
#define MC_RIR_LIMIT_CH_1	0x44
#define MC_RIR_LIMIT_CH_2	0x48
#define MC_RIR_LIMIT_CH_3	0x4C
#define MC_RIR_LIMIT_CH_4	0x50
#define MC_RIR_LIMIT_CH_5	0x54
#define MC_RIR_LIMIT_CH_6	0x58
#define MC_RIR_LIMIT_CH_7	0x5C
#define MC_RIR_LIMIT_MASK	((1 << 10) - 1)

#define MC_RIR_WAY_CH		0x80
  #define MC_RIR_WAY_OFFSET_MASK	(((1 << 14) - 1) & ~0x7)
  #define MC_RIR_WAY_RANK_MASK		0x7

195 196 197 198 199
/*
 * i7core structs
 */

#define NUM_CHANS 3
200 201 202
#define MAX_DIMMS 3		/* Max DIMMS per channel */
#define MAX_MCR_FUNC  4
#define MAX_CHAN_FUNC 3
203 204 205 206 207

struct i7core_info {
	u32	mc_control;
	u32	mc_status;
	u32	max_dod;
208
	u32	ch_map;
209 210
};

211 212 213 214 215 216 217 218 219 220 221 222

struct i7core_inject {
	int	enable;

	u32	section;
	u32	type;
	u32	eccmask;

	/* Error address mask */
	int channel, dimm, rank, bank, page, col;
};

223
struct i7core_channel {
224 225
	u32		ranks;
	u32		dimms;
226 227
};

228
struct pci_id_descr {
229 230 231
	int			dev;
	int			func;
	int 			dev_id;
232
	int			optional;
233 234
};

235
struct pci_id_table {
236 237
	const struct pci_id_descr	*descr;
	int				n_devs;
238 239
};

240 241 242 243
struct i7core_dev {
	struct list_head	list;
	u8			socket;
	struct pci_dev		**pdev;
244
	int			n_devs;
245 246 247
	struct mem_ctl_info	*mci;
};

248
struct i7core_pvt {
249 250 251 252 253
	struct pci_dev	*pci_noncore;
	struct pci_dev	*pci_mcr[MAX_MCR_FUNC + 1];
	struct pci_dev	*pci_ch[NUM_CHANS][MAX_CHAN_FUNC + 1];

	struct i7core_dev *i7core_dev;
254

255
	struct i7core_info	info;
256
	struct i7core_inject	inject;
257
	struct i7core_channel	channel[NUM_CHANS];
258

259 260
	int		ce_count_available;
	int 		csrow_map[NUM_CHANS][MAX_DIMMS];
261 262

			/* ECC corrected errors counts per udimm */
263 264
	unsigned long	udimm_ce_count[MAX_DIMMS];
	int		udimm_last_ce_count[MAX_DIMMS];
265
			/* ECC corrected errors counts per rdimm */
266 267
	unsigned long	rdimm_ce_count[NUM_CHANS][MAX_DIMMS];
	int		rdimm_last_ce_count[NUM_CHANS][MAX_DIMMS];
268

269
	bool		is_registered, enable_scrub;
270

271
	/* Fifo double buffers */
272
	struct mce		mce_entry[MCE_LOG_LEN];
273 274 275 276 277 278 279
	struct mce		mce_outentry[MCE_LOG_LEN];

	/* Fifo in/out counters */
	unsigned		mce_in, mce_out;

	/* Count indicator to show errors not got */
	unsigned		mce_overrun;
280

N
Nils Carlson 已提交
281 282 283
	/* DCLK Frequency used for computing scrub rate */
	int			dclk_freq;

284 285
	/* Struct to control EDAC polling */
	struct edac_pci_ctl_info *i7core_pci;
286 287
};

288 289 290 291 292
#define PCI_DESCR(device, function, device_id)	\
	.dev = (device),			\
	.func = (function),			\
	.dev_id = (device_id)

293
static const struct pci_id_descr pci_dev_descr_i7core_nehalem[] = {
294 295 296
		/* Memory controller */
	{ PCI_DESCR(3, 0, PCI_DEVICE_ID_INTEL_I7_MCR)     },
	{ PCI_DESCR(3, 1, PCI_DEVICE_ID_INTEL_I7_MC_TAD)  },
297
			/* Exists only for RDIMM */
298
	{ PCI_DESCR(3, 2, PCI_DEVICE_ID_INTEL_I7_MC_RAS), .optional = 1  },
299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317
	{ PCI_DESCR(3, 4, PCI_DEVICE_ID_INTEL_I7_MC_TEST) },

		/* Channel 0 */
	{ PCI_DESCR(4, 0, PCI_DEVICE_ID_INTEL_I7_MC_CH0_CTRL) },
	{ PCI_DESCR(4, 1, PCI_DEVICE_ID_INTEL_I7_MC_CH0_ADDR) },
	{ PCI_DESCR(4, 2, PCI_DEVICE_ID_INTEL_I7_MC_CH0_RANK) },
	{ PCI_DESCR(4, 3, PCI_DEVICE_ID_INTEL_I7_MC_CH0_TC)   },

		/* Channel 1 */
	{ PCI_DESCR(5, 0, PCI_DEVICE_ID_INTEL_I7_MC_CH1_CTRL) },
	{ PCI_DESCR(5, 1, PCI_DEVICE_ID_INTEL_I7_MC_CH1_ADDR) },
	{ PCI_DESCR(5, 2, PCI_DEVICE_ID_INTEL_I7_MC_CH1_RANK) },
	{ PCI_DESCR(5, 3, PCI_DEVICE_ID_INTEL_I7_MC_CH1_TC)   },

		/* Channel 2 */
	{ PCI_DESCR(6, 0, PCI_DEVICE_ID_INTEL_I7_MC_CH2_CTRL) },
	{ PCI_DESCR(6, 1, PCI_DEVICE_ID_INTEL_I7_MC_CH2_ADDR) },
	{ PCI_DESCR(6, 2, PCI_DEVICE_ID_INTEL_I7_MC_CH2_RANK) },
	{ PCI_DESCR(6, 3, PCI_DEVICE_ID_INTEL_I7_MC_CH2_TC)   },
318 319 320 321 322 323 324 325 326 327

		/* Generic Non-core registers */
	/*
	 * This is the PCI device on i7core and on Xeon 35xx (8086:2c41)
	 * On Xeon 55xx, however, it has a different id (8086:2c40). So,
	 * the probing code needs to test for the other address in case of
	 * failure of this one
	 */
	{ PCI_DESCR(0, 0, PCI_DEVICE_ID_INTEL_I7_NONCORE)  },

328
};
329

330
static const struct pci_id_descr pci_dev_descr_lynnfield[] = {
331 332 333 334 335 336 337 338 339
	{ PCI_DESCR( 3, 0, PCI_DEVICE_ID_INTEL_LYNNFIELD_MCR)         },
	{ PCI_DESCR( 3, 1, PCI_DEVICE_ID_INTEL_LYNNFIELD_MC_TAD)      },
	{ PCI_DESCR( 3, 4, PCI_DEVICE_ID_INTEL_LYNNFIELD_MC_TEST)     },

	{ PCI_DESCR( 4, 0, PCI_DEVICE_ID_INTEL_LYNNFIELD_MC_CH0_CTRL) },
	{ PCI_DESCR( 4, 1, PCI_DEVICE_ID_INTEL_LYNNFIELD_MC_CH0_ADDR) },
	{ PCI_DESCR( 4, 2, PCI_DEVICE_ID_INTEL_LYNNFIELD_MC_CH0_RANK) },
	{ PCI_DESCR( 4, 3, PCI_DEVICE_ID_INTEL_LYNNFIELD_MC_CH0_TC)   },

340 341 342 343
	{ PCI_DESCR( 5, 0, PCI_DEVICE_ID_INTEL_LYNNFIELD_MC_CH1_CTRL) },
	{ PCI_DESCR( 5, 1, PCI_DEVICE_ID_INTEL_LYNNFIELD_MC_CH1_ADDR) },
	{ PCI_DESCR( 5, 2, PCI_DEVICE_ID_INTEL_LYNNFIELD_MC_CH1_RANK) },
	{ PCI_DESCR( 5, 3, PCI_DEVICE_ID_INTEL_LYNNFIELD_MC_CH1_TC)   },
344 345 346 347 348 349

	/*
	 * This is the PCI device has an alternate address on some
	 * processors like Core i7 860
	 */
	{ PCI_DESCR( 0, 0, PCI_DEVICE_ID_INTEL_LYNNFIELD_NONCORE)     },
350 351
};

352
static const struct pci_id_descr pci_dev_descr_i7core_westmere[] = {
353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376
		/* Memory controller */
	{ PCI_DESCR(3, 0, PCI_DEVICE_ID_INTEL_LYNNFIELD_MCR_REV2)     },
	{ PCI_DESCR(3, 1, PCI_DEVICE_ID_INTEL_LYNNFIELD_MC_TAD_REV2)  },
			/* Exists only for RDIMM */
	{ PCI_DESCR(3, 2, PCI_DEVICE_ID_INTEL_LYNNFIELD_MC_RAS_REV2), .optional = 1  },
	{ PCI_DESCR(3, 4, PCI_DEVICE_ID_INTEL_LYNNFIELD_MC_TEST_REV2) },

		/* Channel 0 */
	{ PCI_DESCR(4, 0, PCI_DEVICE_ID_INTEL_LYNNFIELD_MC_CH0_CTRL_REV2) },
	{ PCI_DESCR(4, 1, PCI_DEVICE_ID_INTEL_LYNNFIELD_MC_CH0_ADDR_REV2) },
	{ PCI_DESCR(4, 2, PCI_DEVICE_ID_INTEL_LYNNFIELD_MC_CH0_RANK_REV2) },
	{ PCI_DESCR(4, 3, PCI_DEVICE_ID_INTEL_LYNNFIELD_MC_CH0_TC_REV2)   },

		/* Channel 1 */
	{ PCI_DESCR(5, 0, PCI_DEVICE_ID_INTEL_LYNNFIELD_MC_CH1_CTRL_REV2) },
	{ PCI_DESCR(5, 1, PCI_DEVICE_ID_INTEL_LYNNFIELD_MC_CH1_ADDR_REV2) },
	{ PCI_DESCR(5, 2, PCI_DEVICE_ID_INTEL_LYNNFIELD_MC_CH1_RANK_REV2) },
	{ PCI_DESCR(5, 3, PCI_DEVICE_ID_INTEL_LYNNFIELD_MC_CH1_TC_REV2)   },

		/* Channel 2 */
	{ PCI_DESCR(6, 0, PCI_DEVICE_ID_INTEL_LYNNFIELD_MC_CH2_CTRL_REV2) },
	{ PCI_DESCR(6, 1, PCI_DEVICE_ID_INTEL_LYNNFIELD_MC_CH2_ADDR_REV2) },
	{ PCI_DESCR(6, 2, PCI_DEVICE_ID_INTEL_LYNNFIELD_MC_CH2_RANK_REV2) },
	{ PCI_DESCR(6, 3, PCI_DEVICE_ID_INTEL_LYNNFIELD_MC_CH2_TC_REV2)   },
377 378 379 380

		/* Generic Non-core registers */
	{ PCI_DESCR(0, 0, PCI_DEVICE_ID_INTEL_LYNNFIELD_NONCORE_REV2)  },

381 382
};

383 384
#define PCI_ID_TABLE_ENTRY(A) { .descr=A, .n_devs = ARRAY_SIZE(A) }
static const struct pci_id_table pci_dev_table[] = {
385 386 387
	PCI_ID_TABLE_ENTRY(pci_dev_descr_i7core_nehalem),
	PCI_ID_TABLE_ENTRY(pci_dev_descr_lynnfield),
	PCI_ID_TABLE_ENTRY(pci_dev_descr_i7core_westmere),
388
	{0,}			/* 0 terminated list. */
389 390
};

391 392 393
/*
 *	pci_device_id	table for which devices we are looking for
 */
394
static DEFINE_PCI_DEVICE_TABLE(i7core_pci_tbl) = {
395
	{PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_X58_HUB_MGMT)},
396
	{PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_LYNNFIELD_QPI_LINK0)},
397 398 399
	{0,}			/* 0 terminated list. */
};

400 401 402 403 404
/****************************************************************************
			Anciliary status routines
 ****************************************************************************/

	/* MC_CONTROL bits */
405 406
#define CH_ACTIVE(pvt, ch)	((pvt)->info.mc_control & (1 << (8 + ch)))
#define ECCx8(pvt)		((pvt)->info.mc_control & (1 << 1))
407 408

	/* MC_STATUS bits */
409
#define ECC_ENABLED(pvt)	((pvt)->info.mc_status & (1 << 4))
410
#define CH_DISABLED(pvt, ch)	((pvt)->info.mc_status & (1 << ch))
411 412

	/* MC_MAX_DOD read functions */
413
static inline int numdimms(u32 dimms)
414
{
415
	return (dimms & 0x3) + 1;
416 417
}

418
static inline int numrank(u32 rank)
419 420 421
{
	static int ranks[4] = { 1, 2, 4, -EINVAL };

422
	return ranks[rank & 0x3];
423 424
}

425
static inline int numbank(u32 bank)
426 427 428
{
	static int banks[4] = { 4, 8, 16, -EINVAL };

429
	return banks[bank & 0x3];
430 431
}

432
static inline int numrow(u32 row)
433 434 435 436 437 438
{
	static int rows[8] = {
		1 << 12, 1 << 13, 1 << 14, 1 << 15,
		1 << 16, -EINVAL, -EINVAL, -EINVAL,
	};

439
	return rows[row & 0x7];
440 441
}

442
static inline int numcol(u32 col)
443 444 445 446
{
	static int cols[8] = {
		1 << 10, 1 << 11, 1 << 12, -EINVAL,
	};
447
	return cols[col & 0x3];
448 449
}

450
static struct i7core_dev *get_i7core_dev(u8 socket)
451 452 453 454 455 456 457 458 459 460 461
{
	struct i7core_dev *i7core_dev;

	list_for_each_entry(i7core_dev, &i7core_edac_list, list) {
		if (i7core_dev->socket == socket)
			return i7core_dev;
	}

	return NULL;
}

462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484
static struct i7core_dev *alloc_i7core_dev(u8 socket,
					   const struct pci_id_table *table)
{
	struct i7core_dev *i7core_dev;

	i7core_dev = kzalloc(sizeof(*i7core_dev), GFP_KERNEL);
	if (!i7core_dev)
		return NULL;

	i7core_dev->pdev = kzalloc(sizeof(*i7core_dev->pdev) * table->n_devs,
				   GFP_KERNEL);
	if (!i7core_dev->pdev) {
		kfree(i7core_dev);
		return NULL;
	}

	i7core_dev->socket = socket;
	i7core_dev->n_devs = table->n_devs;
	list_add_tail(&i7core_dev->list, &i7core_edac_list);

	return i7core_dev;
}

485 486 487 488 489 490 491
static void free_i7core_dev(struct i7core_dev *i7core_dev)
{
	list_del(&i7core_dev->list);
	kfree(i7core_dev->pdev);
	kfree(i7core_dev);
}

492 493 494
/****************************************************************************
			Memory check routines
 ****************************************************************************/
495 496
static struct pci_dev *get_pdev_slot_func(u8 socket, unsigned slot,
					  unsigned func)
497
{
498
	struct i7core_dev *i7core_dev = get_i7core_dev(socket);
499 500
	int i;

501 502 503
	if (!i7core_dev)
		return NULL;

504
	for (i = 0; i < i7core_dev->n_devs; i++) {
505
		if (!i7core_dev->pdev[i])
506 507
			continue;

508 509 510
		if (PCI_SLOT(i7core_dev->pdev[i]->devfn) == slot &&
		    PCI_FUNC(i7core_dev->pdev[i]->devfn) == func) {
			return i7core_dev->pdev[i];
511 512 513
		}
	}

514 515 516
	return NULL;
}

517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533
/**
 * i7core_get_active_channels() - gets the number of channels and csrows
 * @socket:	Quick Path Interconnect socket
 * @channels:	Number of channels that will be returned
 * @csrows:	Number of csrows found
 *
 * Since EDAC core needs to know in advance the number of available channels
 * and csrows, in order to allocate memory for csrows/channels, it is needed
 * to run two similar steps. At the first step, implemented on this function,
 * it checks the number of csrows/channels present at one socket.
 * this is used in order to properly allocate the size of mci components.
 *
 * It should be noticed that none of the current available datasheets explain
 * or even mention how csrows are seen by the memory controller. So, we need
 * to add a fake description for csrows.
 * So, this driver is attributing one DIMM memory for one csrow.
 */
534
static int i7core_get_active_channels(const u8 socket, unsigned *channels,
535
				      unsigned *csrows)
536 537 538 539 540 541 542 543
{
	struct pci_dev *pdev = NULL;
	int i, j;
	u32 status, control;

	*channels = 0;
	*csrows = 0;

544
	pdev = get_pdev_slot_func(socket, 3, 0);
545
	if (!pdev) {
546 547
		i7core_printk(KERN_ERR, "Couldn't find socket %d fn 3.0!!!\n",
			      socket);
548
		return -ENODEV;
549
	}
550 551 552 553 554 555

	/* Device 3 function 0 reads */
	pci_read_config_dword(pdev, MC_STATUS, &status);
	pci_read_config_dword(pdev, MC_CONTROL, &control);

	for (i = 0; i < NUM_CHANS; i++) {
556
		u32 dimm_dod[3];
557 558 559 560 561
		/* Check if the channel is active */
		if (!(control & (1 << (8 + i))))
			continue;

		/* Check if the channel is disabled */
562
		if (status & (1 << i))
563 564
			continue;

565
		pdev = get_pdev_slot_func(socket, i + 4, 1);
566
		if (!pdev) {
567 568 569
			i7core_printk(KERN_ERR, "Couldn't find socket %d "
						"fn %d.%d!!!\n",
						socket, i + 4, 1);
570 571 572 573 574 575 576 577 578 579
			return -ENODEV;
		}
		/* Devices 4-6 function 1 */
		pci_read_config_dword(pdev,
				MC_DOD_CH_DIMM0, &dimm_dod[0]);
		pci_read_config_dword(pdev,
				MC_DOD_CH_DIMM1, &dimm_dod[1]);
		pci_read_config_dword(pdev,
				MC_DOD_CH_DIMM2, &dimm_dod[2]);

580
		(*channels)++;
581 582 583 584 585 586

		for (j = 0; j < 3; j++) {
			if (!DIMM_PRESENT(dimm_dod[j]))
				continue;
			(*csrows)++;
		}
587 588
	}

589
	debugf0("Number of active channels on socket %d: %d\n",
590
		socket, *channels);
591

592 593 594
	return 0;
}

595
static int get_dimm_config(const struct mem_ctl_info *mci)
596 597
{
	struct i7core_pvt *pvt = mci->pvt_info;
598
	struct csrow_info *csr;
599
	struct pci_dev *pdev;
600
	int i, j;
601
	int csrow = 0;
602
	unsigned long last_page = 0;
603
	enum edac_type mode;
604
	enum mem_type mtype;
605

606
	/* Get data from the MC register, function 0 */
607
	pdev = pvt->pci_mcr[0];
608
	if (!pdev)
609 610
		return -ENODEV;

611
	/* Device 3 function 0 reads */
612 613 614 615
	pci_read_config_dword(pdev, MC_CONTROL, &pvt->info.mc_control);
	pci_read_config_dword(pdev, MC_STATUS, &pvt->info.mc_status);
	pci_read_config_dword(pdev, MC_MAX_DOD, &pvt->info.max_dod);
	pci_read_config_dword(pdev, MC_CHANNEL_MAPPER, &pvt->info.ch_map);
616

617
	debugf0("QPI %d control=0x%08x status=0x%08x dod=0x%08x map=0x%08x\n",
618
		pvt->i7core_dev->socket, pvt->info.mc_control, pvt->info.mc_status,
619
		pvt->info.max_dod, pvt->info.ch_map);
620

621
	if (ECC_ENABLED(pvt)) {
622
		debugf0("ECC enabled with x%d SDCC\n", ECCx8(pvt) ? 8 : 4);
623 624 625 626 627
		if (ECCx8(pvt))
			mode = EDAC_S8ECD8ED;
		else
			mode = EDAC_S4ECD4ED;
	} else {
628
		debugf0("ECC disabled\n");
629 630
		mode = EDAC_NONE;
	}
631 632

	/* FIXME: need to handle the error codes */
633 634
	debugf0("DOD Max limits: DIMMS: %d, %d-ranked, %d-banked "
		"x%x x 0x%x\n",
635 636
		numdimms(pvt->info.max_dod),
		numrank(pvt->info.max_dod >> 2),
637
		numbank(pvt->info.max_dod >> 4),
638 639
		numrow(pvt->info.max_dod >> 6),
		numcol(pvt->info.max_dod >> 9));
640

641
	for (i = 0; i < NUM_CHANS; i++) {
642
		u32 data, dimm_dod[3], value[8];
643

644 645 646
		if (!pvt->pci_ch[i][0])
			continue;

647 648 649 650 651 652 653 654 655
		if (!CH_ACTIVE(pvt, i)) {
			debugf0("Channel %i is not active\n", i);
			continue;
		}
		if (CH_DISABLED(pvt, i)) {
			debugf0("Channel %i is disabled\n", i);
			continue;
		}

656
		/* Devices 4-6 function 0 */
657
		pci_read_config_dword(pvt->pci_ch[i][0],
658 659
				MC_CHANNEL_DIMM_INIT_PARAMS, &data);

660
		pvt->channel[i].ranks = (data & QUAD_RANK_PRESENT) ?
661
						4 : 2;
662

663 664
		if (data & REGISTERED_DIMM)
			mtype = MEM_RDDR3;
665
		else
666 667
			mtype = MEM_DDR3;
#if 0
668 669 670 671 672 673
		if (data & THREE_DIMMS_PRESENT)
			pvt->channel[i].dimms = 3;
		else if (data & SINGLE_QUAD_RANK_PRESENT)
			pvt->channel[i].dimms = 1;
		else
			pvt->channel[i].dimms = 2;
674 675 676
#endif

		/* Devices 4-6 function 1 */
677
		pci_read_config_dword(pvt->pci_ch[i][1],
678
				MC_DOD_CH_DIMM0, &dimm_dod[0]);
679
		pci_read_config_dword(pvt->pci_ch[i][1],
680
				MC_DOD_CH_DIMM1, &dimm_dod[1]);
681
		pci_read_config_dword(pvt->pci_ch[i][1],
682
				MC_DOD_CH_DIMM2, &dimm_dod[2]);
683

684
		debugf0("Ch%d phy rd%d, wr%d (0x%08x): "
685
			"%d ranks, %cDIMMs\n",
686 687 688
			i,
			RDLCH(pvt->info.ch_map, i), WRLCH(pvt->info.ch_map, i),
			data,
689
			pvt->channel[i].ranks,
690
			(data & REGISTERED_DIMM) ? 'R' : 'U');
691 692 693

		for (j = 0; j < 3; j++) {
			u32 banks, ranks, rows, cols;
694
			u32 size, npages;
695 696 697 698 699 700 701 702 703

			if (!DIMM_PRESENT(dimm_dod[j]))
				continue;

			banks = numbank(MC_DOD_NUMBANK(dimm_dod[j]));
			ranks = numrank(MC_DOD_NUMRANK(dimm_dod[j]));
			rows = numrow(MC_DOD_NUMROW(dimm_dod[j]));
			cols = numcol(MC_DOD_NUMCOL(dimm_dod[j]));

704 705 706
			/* DDR3 has 8 I/O banks */
			size = (rows * cols * banks * ranks) >> (20 - 3);

707
			pvt->channel[i].dimms++;
708

709 710 711
			debugf0("\tdimm %d %d Mb offset: %x, "
				"bank: %d, rank: %d, row: %#x, col: %#x\n",
				j, size,
712 713 714
				RANKOFFSET(dimm_dod[j]),
				banks, ranks, rows, cols);

715
			npages = MiB_TO_PAGES(size);
716

717
			csr = &mci->csrows[csrow];
718 719 720 721 722
			csr->first_page = last_page + 1;
			last_page += npages;
			csr->last_page = last_page;
			csr->nr_pages = npages;

723
			csr->page_mask = 0;
724
			csr->grain = 8;
725
			csr->csrow_idx = csrow;
726 727 728 729
			csr->nr_channels = 1;

			csr->channels[0].chan_idx = i;
			csr->channels[0].ce_count = 0;
730

731
			pvt->csrow_map[i][j] = csrow;
732

733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748
			switch (banks) {
			case 4:
				csr->dtype = DEV_X4;
				break;
			case 8:
				csr->dtype = DEV_X8;
				break;
			case 16:
				csr->dtype = DEV_X16;
				break;
			default:
				csr->dtype = DEV_UNKNOWN;
			}

			csr->edac_mode = mode;
			csr->mtype = mtype;
749 750
			snprintf(csr->channels[0].dimm->label,
					sizeof(csr->channels[0].dimm->label),
751 752
					"CPU#%uChannel#%u_DIMM#%u",
					pvt->i7core_dev->socket, i, j);
753

754
			csrow++;
755
		}
756

757 758 759 760 761 762 763 764
		pci_read_config_dword(pdev, MC_SAG_CH_0, &value[0]);
		pci_read_config_dword(pdev, MC_SAG_CH_1, &value[1]);
		pci_read_config_dword(pdev, MC_SAG_CH_2, &value[2]);
		pci_read_config_dword(pdev, MC_SAG_CH_3, &value[3]);
		pci_read_config_dword(pdev, MC_SAG_CH_4, &value[4]);
		pci_read_config_dword(pdev, MC_SAG_CH_5, &value[5]);
		pci_read_config_dword(pdev, MC_SAG_CH_6, &value[6]);
		pci_read_config_dword(pdev, MC_SAG_CH_7, &value[7]);
765
		debugf1("\t[%i] DIVBY3\tREMOVED\tOFFSET\n", i);
766
		for (j = 0; j < 8; j++)
767
			debugf1("\t\t%#x\t%#x\t%#x\n",
768 769
				(value[j] >> 27) & 0x1,
				(value[j] >> 24) & 0x7,
770
				(value[j] & ((1 << 24) - 1)));
771 772
	}

773 774 775
	return 0;
}

776 777 778 779 780 781 782 783 784 785 786
/****************************************************************************
			Error insertion routines
 ****************************************************************************/

/* The i7core has independent error injection features per channel.
   However, to have a simpler code, we don't allow enabling error injection
   on more than one channel.
   Also, since a change at an inject parameter will be applied only at enable,
   we're disabling error injection on all write calls to the sysfs nodes that
   controls the error code injection.
 */
787
static int disable_inject(const struct mem_ctl_info *mci)
788 789 790 791 792
{
	struct i7core_pvt *pvt = mci->pvt_info;

	pvt->inject.enable = 0;

793
	if (!pvt->pci_ch[pvt->inject.channel][0])
794 795
		return -ENODEV;

796
	pci_write_config_dword(pvt->pci_ch[pvt->inject.channel][0],
797
				MC_CHANNEL_ERROR_INJECT, 0);
798 799

	return 0;
800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816
}

/*
 * i7core inject inject.section
 *
 *	accept and store error injection inject.section value
 *	bit 0 - refers to the lower 32-byte half cacheline
 *	bit 1 - refers to the upper 32-byte half cacheline
 */
static ssize_t i7core_inject_section_store(struct mem_ctl_info *mci,
					   const char *data, size_t count)
{
	struct i7core_pvt *pvt = mci->pvt_info;
	unsigned long value;
	int rc;

	if (pvt->inject.enable)
817
		disable_inject(mci);
818 819 820

	rc = strict_strtoul(data, 10, &value);
	if ((rc < 0) || (value > 3))
821
		return -EIO;
822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849

	pvt->inject.section = (u32) value;
	return count;
}

static ssize_t i7core_inject_section_show(struct mem_ctl_info *mci,
					      char *data)
{
	struct i7core_pvt *pvt = mci->pvt_info;
	return sprintf(data, "0x%08x\n", pvt->inject.section);
}

/*
 * i7core inject.type
 *
 *	accept and store error injection inject.section value
 *	bit 0 - repeat enable - Enable error repetition
 *	bit 1 - inject ECC error
 *	bit 2 - inject parity error
 */
static ssize_t i7core_inject_type_store(struct mem_ctl_info *mci,
					const char *data, size_t count)
{
	struct i7core_pvt *pvt = mci->pvt_info;
	unsigned long value;
	int rc;

	if (pvt->inject.enable)
850
		disable_inject(mci);
851 852 853

	rc = strict_strtoul(data, 10, &value);
	if ((rc < 0) || (value > 7))
854
		return -EIO;
855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884

	pvt->inject.type = (u32) value;
	return count;
}

static ssize_t i7core_inject_type_show(struct mem_ctl_info *mci,
					      char *data)
{
	struct i7core_pvt *pvt = mci->pvt_info;
	return sprintf(data, "0x%08x\n", pvt->inject.type);
}

/*
 * i7core_inject_inject.eccmask_store
 *
 * The type of error (UE/CE) will depend on the inject.eccmask value:
 *   Any bits set to a 1 will flip the corresponding ECC bit
 *   Correctable errors can be injected by flipping 1 bit or the bits within
 *   a symbol pair (2 consecutive aligned 8-bit pairs - i.e. 7:0 and 15:8 or
 *   23:16 and 31:24). Flipping bits in two symbol pairs will cause an
 *   uncorrectable error to be injected.
 */
static ssize_t i7core_inject_eccmask_store(struct mem_ctl_info *mci,
					const char *data, size_t count)
{
	struct i7core_pvt *pvt = mci->pvt_info;
	unsigned long value;
	int rc;

	if (pvt->inject.enable)
885
		disable_inject(mci);
886 887 888

	rc = strict_strtoul(data, 10, &value);
	if (rc < 0)
889
		return -EIO;
890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912

	pvt->inject.eccmask = (u32) value;
	return count;
}

static ssize_t i7core_inject_eccmask_show(struct mem_ctl_info *mci,
					      char *data)
{
	struct i7core_pvt *pvt = mci->pvt_info;
	return sprintf(data, "0x%08x\n", pvt->inject.eccmask);
}

/*
 * i7core_addrmatch
 *
 * The type of error (UE/CE) will depend on the inject.eccmask value:
 *   Any bits set to a 1 will flip the corresponding ECC bit
 *   Correctable errors can be injected by flipping 1 bit or the bits within
 *   a symbol pair (2 consecutive aligned 8-bit pairs - i.e. 7:0 and 15:8 or
 *   23:16 and 31:24). Flipping bits in two symbol pairs will cause an
 *   uncorrectable error to be injected.
 */

913 914 915 916 917
#define DECLARE_ADDR_MATCH(param, limit)			\
static ssize_t i7core_inject_store_##param(			\
		struct mem_ctl_info *mci,			\
		const char *data, size_t count)			\
{								\
918
	struct i7core_pvt *pvt;					\
919 920 921
	long value;						\
	int rc;							\
								\
922 923 924
	debugf1("%s()\n", __func__);				\
	pvt = mci->pvt_info;					\
								\
925 926 927
	if (pvt->inject.enable)					\
		disable_inject(mci);				\
								\
928
	if (!strcasecmp(data, "any") || !strcasecmp(data, "any\n"))\
929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944
		value = -1;					\
	else {							\
		rc = strict_strtoul(data, 10, &value);		\
		if ((rc < 0) || (value >= limit))		\
			return -EIO;				\
	}							\
								\
	pvt->inject.param = value;				\
								\
	return count;						\
}								\
								\
static ssize_t i7core_inject_show_##param(			\
		struct mem_ctl_info *mci,			\
		char *data)					\
{								\
945 946 947 948
	struct i7core_pvt *pvt;					\
								\
	pvt = mci->pvt_info;					\
	debugf1("%s() pvt=%p\n", __func__, pvt);		\
949 950 951 952
	if (pvt->inject.param < 0)				\
		return sprintf(data, "any\n");			\
	else							\
		return sprintf(data, "%d\n", pvt->inject.param);\
953 954
}

955 956 957 958 959 960 961 962 963
#define ATTR_ADDR_MATCH(param)					\
	{							\
		.attr = {					\
			.name = #param,				\
			.mode = (S_IRUGO | S_IWUSR)		\
		},						\
		.show  = i7core_inject_show_##param,		\
		.store = i7core_inject_store_##param,		\
	}
964

965 966 967 968 969 970
DECLARE_ADDR_MATCH(channel, 3);
DECLARE_ADDR_MATCH(dimm, 3);
DECLARE_ADDR_MATCH(rank, 4);
DECLARE_ADDR_MATCH(bank, 32);
DECLARE_ADDR_MATCH(page, 0x10000);
DECLARE_ADDR_MATCH(col, 0x4000);
971

972
static int write_and_test(struct pci_dev *dev, const int where, const u32 val)
973 974 975 976
{
	u32 read;
	int count;

977 978 979 980
	debugf0("setting pci %02x:%02x.%x reg=%02x value=%08x\n",
		dev->bus->number, PCI_SLOT(dev->devfn), PCI_FUNC(dev->devfn),
		where, val);

981 982
	for (count = 0; count < 10; count++) {
		if (count)
983
			msleep(100);
984 985 986 987 988 989 990
		pci_write_config_dword(dev, where, val);
		pci_read_config_dword(dev, where, &read);

		if (read == val)
			return 0;
	}

991 992 993 994
	i7core_printk(KERN_ERR, "Error during set pci %02x:%02x.%x reg=%02x "
		"write=%08x. Read=%08x\n",
		dev->bus->number, PCI_SLOT(dev->devfn), PCI_FUNC(dev->devfn),
		where, val, read);
995 996 997 998

	return -EINVAL;
}

999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025
/*
 * This routine prepares the Memory Controller for error injection.
 * The error will be injected when some process tries to write to the
 * memory that matches the given criteria.
 * The criteria can be set in terms of a mask where dimm, rank, bank, page
 * and col can be specified.
 * A -1 value for any of the mask items will make the MCU to ignore
 * that matching criteria for error injection.
 *
 * It should be noticed that the error will only happen after a write operation
 * on a memory that matches the condition. if REPEAT_EN is not enabled at
 * inject mask, then it will produce just one error. Otherwise, it will repeat
 * until the injectmask would be cleaned.
 *
 * FIXME: This routine assumes that MAXNUMDIMMS value of MC_MAX_DOD
 *    is reliable enough to check if the MC is using the
 *    three channels. However, this is not clear at the datasheet.
 */
static ssize_t i7core_inject_enable_store(struct mem_ctl_info *mci,
				       const char *data, size_t count)
{
	struct i7core_pvt *pvt = mci->pvt_info;
	u32 injectmask;
	u64 mask = 0;
	int  rc;
	long enable;

1026
	if (!pvt->pci_ch[pvt->inject.channel][0])
1027 1028
		return 0;

1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041
	rc = strict_strtoul(data, 10, &enable);
	if ((rc < 0))
		return 0;

	if (enable) {
		pvt->inject.enable = 1;
	} else {
		disable_inject(mci);
		return count;
	}

	/* Sets pvt->inject.dimm mask */
	if (pvt->inject.dimm < 0)
1042
		mask |= 1LL << 41;
1043
	else {
1044
		if (pvt->channel[pvt->inject.channel].dimms > 2)
1045
			mask |= (pvt->inject.dimm & 0x3LL) << 35;
1046
		else
1047
			mask |= (pvt->inject.dimm & 0x1LL) << 36;
1048 1049 1050 1051
	}

	/* Sets pvt->inject.rank mask */
	if (pvt->inject.rank < 0)
1052
		mask |= 1LL << 40;
1053
	else {
1054
		if (pvt->channel[pvt->inject.channel].dimms > 2)
1055
			mask |= (pvt->inject.rank & 0x1LL) << 34;
1056
		else
1057
			mask |= (pvt->inject.rank & 0x3LL) << 34;
1058 1059 1060 1061
	}

	/* Sets pvt->inject.bank mask */
	if (pvt->inject.bank < 0)
1062
		mask |= 1LL << 39;
1063
	else
1064
		mask |= (pvt->inject.bank & 0x15LL) << 30;
1065 1066 1067

	/* Sets pvt->inject.page mask */
	if (pvt->inject.page < 0)
1068
		mask |= 1LL << 38;
1069
	else
1070
		mask |= (pvt->inject.page & 0xffff) << 14;
1071 1072 1073

	/* Sets pvt->inject.column mask */
	if (pvt->inject.col < 0)
1074
		mask |= 1LL << 37;
1075
	else
1076
		mask |= (pvt->inject.col & 0x3fff);
1077

1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089
	/*
	 * bit    0: REPEAT_EN
	 * bits 1-2: MASK_HALF_CACHELINE
	 * bit    3: INJECT_ECC
	 * bit    4: INJECT_ADDR_PARITY
	 */

	injectmask = (pvt->inject.type & 1) |
		     (pvt->inject.section & 0x3) << 1 |
		     (pvt->inject.type & 0x6) << (3 - 1);

	/* Unlock writes to registers - this register is write only */
1090
	pci_write_config_dword(pvt->pci_noncore,
1091
			       MC_CFG_CONTROL, 0x2);
1092

1093
	write_and_test(pvt->pci_ch[pvt->inject.channel][0],
1094
			       MC_CHANNEL_ADDR_MATCH, mask);
1095
	write_and_test(pvt->pci_ch[pvt->inject.channel][0],
1096 1097
			       MC_CHANNEL_ADDR_MATCH + 4, mask >> 32L);

1098
	write_and_test(pvt->pci_ch[pvt->inject.channel][0],
1099 1100
			       MC_CHANNEL_ERROR_MASK, pvt->inject.eccmask);

1101
	write_and_test(pvt->pci_ch[pvt->inject.channel][0],
1102
			       MC_CHANNEL_ERROR_INJECT, injectmask);
1103

1104
	/*
1105 1106 1107
	 * This is something undocumented, based on my tests
	 * Without writing 8 to this register, errors aren't injected. Not sure
	 * why.
1108
	 */
1109
	pci_write_config_dword(pvt->pci_noncore,
1110
			       MC_CFG_CONTROL, 8);
1111

1112 1113
	debugf0("Error inject addr match 0x%016llx, ecc 0x%08x,"
		" inject 0x%08x\n",
1114 1115
		mask, pvt->inject.eccmask, injectmask);

1116

1117 1118 1119 1120 1121 1122 1123
	return count;
}

static ssize_t i7core_inject_enable_show(struct mem_ctl_info *mci,
					char *data)
{
	struct i7core_pvt *pvt = mci->pvt_info;
1124 1125
	u32 injectmask;

1126 1127 1128
	if (!pvt->pci_ch[pvt->inject.channel][0])
		return 0;

1129
	pci_read_config_dword(pvt->pci_ch[pvt->inject.channel][0],
1130
			       MC_CHANNEL_ERROR_INJECT, &injectmask);
1131 1132 1133 1134 1135 1136

	debugf0("Inject error read: 0x%018x\n", injectmask);

	if (injectmask & 0x0c)
		pvt->inject.enable = 1;

1137 1138 1139
	return sprintf(data, "%d\n", pvt->inject.enable);
}

1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152
#define DECLARE_COUNTER(param)					\
static ssize_t i7core_show_counter_##param(			\
		struct mem_ctl_info *mci,			\
		char *data)					\
{								\
	struct i7core_pvt *pvt = mci->pvt_info;			\
								\
	debugf1("%s() \n", __func__);				\
	if (!pvt->ce_count_available || (pvt->is_registered))	\
		return sprintf(data, "data unavailable\n");	\
	return sprintf(data, "%lu\n",				\
			pvt->udimm_ce_count[param]);		\
}
1153

1154 1155 1156 1157 1158 1159 1160
#define ATTR_COUNTER(param)					\
	{							\
		.attr = {					\
			.name = __stringify(udimm##param),	\
			.mode = (S_IRUGO | S_IWUSR)		\
		},						\
		.show  = i7core_show_counter_##param		\
1161
	}
1162

1163 1164 1165
DECLARE_COUNTER(0);
DECLARE_COUNTER(1);
DECLARE_COUNTER(2);
1166

1167 1168 1169
/*
 * Sysfs struct
 */
1170

1171
static const struct mcidev_sysfs_attribute i7core_addrmatch_attrs[] = {
1172 1173 1174 1175 1176 1177
	ATTR_ADDR_MATCH(channel),
	ATTR_ADDR_MATCH(dimm),
	ATTR_ADDR_MATCH(rank),
	ATTR_ADDR_MATCH(bank),
	ATTR_ADDR_MATCH(page),
	ATTR_ADDR_MATCH(col),
1178
	{ } /* End of list */
1179 1180
};

1181
static const struct mcidev_sysfs_group i7core_inject_addrmatch = {
1182 1183 1184 1185
	.name  = "inject_addrmatch",
	.mcidev_attr = i7core_addrmatch_attrs,
};

1186
static const struct mcidev_sysfs_attribute i7core_udimm_counters_attrs[] = {
1187 1188 1189
	ATTR_COUNTER(0),
	ATTR_COUNTER(1),
	ATTR_COUNTER(2),
1190
	{ .attr = { .name = NULL } }
1191 1192
};

1193
static const struct mcidev_sysfs_group i7core_udimm_counters = {
1194 1195 1196 1197
	.name  = "all_channel_counts",
	.mcidev_attr = i7core_udimm_counters_attrs,
};

1198
static const struct mcidev_sysfs_attribute i7core_sysfs_rdimm_attrs[] = {
1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220
	{
		.attr = {
			.name = "inject_section",
			.mode = (S_IRUGO | S_IWUSR)
		},
		.show  = i7core_inject_section_show,
		.store = i7core_inject_section_store,
	}, {
		.attr = {
			.name = "inject_type",
			.mode = (S_IRUGO | S_IWUSR)
		},
		.show  = i7core_inject_type_show,
		.store = i7core_inject_type_store,
	}, {
		.attr = {
			.name = "inject_eccmask",
			.mode = (S_IRUGO | S_IWUSR)
		},
		.show  = i7core_inject_eccmask_show,
		.store = i7core_inject_eccmask_store,
	}, {
1221
		.grp = &i7core_inject_addrmatch,
1222 1223 1224 1225 1226 1227 1228 1229
	}, {
		.attr = {
			.name = "inject_enable",
			.mode = (S_IRUGO | S_IWUSR)
		},
		.show  = i7core_inject_enable_show,
		.store = i7core_inject_enable_store,
	},
1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267
	{ }	/* End of list */
};

static const struct mcidev_sysfs_attribute i7core_sysfs_udimm_attrs[] = {
	{
		.attr = {
			.name = "inject_section",
			.mode = (S_IRUGO | S_IWUSR)
		},
		.show  = i7core_inject_section_show,
		.store = i7core_inject_section_store,
	}, {
		.attr = {
			.name = "inject_type",
			.mode = (S_IRUGO | S_IWUSR)
		},
		.show  = i7core_inject_type_show,
		.store = i7core_inject_type_store,
	}, {
		.attr = {
			.name = "inject_eccmask",
			.mode = (S_IRUGO | S_IWUSR)
		},
		.show  = i7core_inject_eccmask_show,
		.store = i7core_inject_eccmask_store,
	}, {
		.grp = &i7core_inject_addrmatch,
	}, {
		.attr = {
			.name = "inject_enable",
			.mode = (S_IRUGO | S_IWUSR)
		},
		.show  = i7core_inject_enable_show,
		.store = i7core_inject_enable_store,
	}, {
		.grp = &i7core_udimm_counters,
	},
	{ }	/* End of list */
1268 1269
};

1270 1271 1272 1273 1274
/****************************************************************************
	Device initialization routines: put/get, init/exit
 ****************************************************************************/

/*
1275
 *	i7core_put_all_devices	'put' all the devices that we have
1276 1277
 *				reserved via 'get'
 */
1278
static void i7core_put_devices(struct i7core_dev *i7core_dev)
1279
{
1280
	int i;
1281

1282
	debugf0(__FILE__ ": %s()\n", __func__);
1283
	for (i = 0; i < i7core_dev->n_devs; i++) {
1284 1285 1286 1287 1288 1289 1290 1291
		struct pci_dev *pdev = i7core_dev->pdev[i];
		if (!pdev)
			continue;
		debugf0("Removing dev %02x:%02x.%d\n",
			pdev->bus->number,
			PCI_SLOT(pdev->devfn), PCI_FUNC(pdev->devfn));
		pci_dev_put(pdev);
	}
1292
}
1293

1294 1295
static void i7core_put_all_devices(void)
{
1296
	struct i7core_dev *i7core_dev, *tmp;
1297

1298
	list_for_each_entry_safe(i7core_dev, tmp, &i7core_edac_list, list) {
1299
		i7core_put_devices(i7core_dev);
1300
		free_i7core_dev(i7core_dev);
1301
	}
1302 1303
}

1304
static void __init i7core_xeon_pci_fixup(const struct pci_id_table *table)
1305 1306 1307
{
	struct pci_dev *pdev = NULL;
	int i;
1308

1309
	/*
D
David Sterba 已提交
1310
	 * On Xeon 55xx, the Intel Quick Path Arch Generic Non-core pci buses
1311 1312 1313
	 * aren't announced by acpi. So, we need to use a legacy scan probing
	 * to detect them
	 */
1314 1315 1316 1317 1318 1319
	while (table && table->descr) {
		pdev = pci_get_device(PCI_VENDOR_ID_INTEL, table->descr[0].dev_id, NULL);
		if (unlikely(!pdev)) {
			for (i = 0; i < MAX_SOCKET_BUSES; i++)
				pcibios_scan_specific_bus(255-i);
		}
1320
		pci_dev_put(pdev);
1321
		table++;
1322 1323 1324
	}
}

1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341
static unsigned i7core_pci_lastbus(void)
{
	int last_bus = 0, bus;
	struct pci_bus *b = NULL;

	while ((b = pci_find_next_bus(b)) != NULL) {
		bus = b->number;
		debugf0("Found bus %d\n", bus);
		if (bus > last_bus)
			last_bus = bus;
	}

	debugf0("Last bus %d\n", last_bus);

	return last_bus;
}

1342
/*
1343
 *	i7core_get_all_devices	Find and perform 'get' operation on the MCH's
1344 1345 1346 1347
 *			device/functions we want to reference for this driver
 *
 *			Need to 'get' device 16 func 1 and func 2
 */
1348 1349 1350 1351
static int i7core_get_onedevice(struct pci_dev **prev,
				const struct pci_id_table *table,
				const unsigned devno,
				const unsigned last_bus)
1352
{
1353
	struct i7core_dev *i7core_dev;
1354
	const struct pci_id_descr *dev_descr = &table->descr[devno];
1355

1356
	struct pci_dev *pdev = NULL;
1357 1358
	u8 bus = 0;
	u8 socket = 0;
1359

1360
	pdev = pci_get_device(PCI_VENDOR_ID_INTEL,
1361
			      dev_descr->dev_id, *prev);
1362

1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376
	/*
	 * On Xeon 55xx, the Intel Quckpath Arch Generic Non-core regs
	 * is at addr 8086:2c40, instead of 8086:2c41. So, we need
	 * to probe for the alternate address in case of failure
	 */
	if (dev_descr->dev_id == PCI_DEVICE_ID_INTEL_I7_NONCORE && !pdev)
		pdev = pci_get_device(PCI_VENDOR_ID_INTEL,
				      PCI_DEVICE_ID_INTEL_I7_NONCORE_ALT, *prev);

	if (dev_descr->dev_id == PCI_DEVICE_ID_INTEL_LYNNFIELD_NONCORE && !pdev)
		pdev = pci_get_device(PCI_VENDOR_ID_INTEL,
				      PCI_DEVICE_ID_INTEL_LYNNFIELD_NONCORE_ALT,
				      *prev);

1377 1378 1379 1380
	if (!pdev) {
		if (*prev) {
			*prev = pdev;
			return 0;
1381 1382
		}

1383
		if (dev_descr->optional)
1384
			return 0;
1385

1386 1387 1388
		if (devno == 0)
			return -ENODEV;

1389
		i7core_printk(KERN_INFO,
1390
			"Device not found: dev %02x.%d PCI ID %04x:%04x\n",
1391 1392
			dev_descr->dev, dev_descr->func,
			PCI_VENDOR_ID_INTEL, dev_descr->dev_id);
1393

1394 1395 1396 1397
		/* End of list, leave */
		return -ENODEV;
	}
	bus = pdev->bus->number;
1398

1399
	socket = last_bus - bus;
1400

1401 1402
	i7core_dev = get_i7core_dev(socket);
	if (!i7core_dev) {
1403
		i7core_dev = alloc_i7core_dev(socket, table);
1404 1405
		if (!i7core_dev) {
			pci_dev_put(pdev);
1406
			return -ENOMEM;
1407
		}
1408
	}
1409

1410
	if (i7core_dev->pdev[devno]) {
1411 1412 1413
		i7core_printk(KERN_ERR,
			"Duplicated device for "
			"dev %02x:%02x.%d PCI ID %04x:%04x\n",
1414 1415
			bus, dev_descr->dev, dev_descr->func,
			PCI_VENDOR_ID_INTEL, dev_descr->dev_id);
1416 1417 1418
		pci_dev_put(pdev);
		return -ENODEV;
	}
1419

1420
	i7core_dev->pdev[devno] = pdev;
1421 1422

	/* Sanity check */
1423 1424
	if (unlikely(PCI_SLOT(pdev->devfn) != dev_descr->dev ||
			PCI_FUNC(pdev->devfn) != dev_descr->func)) {
1425 1426 1427
		i7core_printk(KERN_ERR,
			"Device PCI ID %04x:%04x "
			"has dev %02x:%02x.%d instead of dev %02x:%02x.%d\n",
1428
			PCI_VENDOR_ID_INTEL, dev_descr->dev_id,
1429
			bus, PCI_SLOT(pdev->devfn), PCI_FUNC(pdev->devfn),
1430
			bus, dev_descr->dev, dev_descr->func);
1431 1432
		return -ENODEV;
	}
1433

1434 1435 1436 1437 1438
	/* Be sure that the device is enabled */
	if (unlikely(pci_enable_device(pdev) < 0)) {
		i7core_printk(KERN_ERR,
			"Couldn't enable "
			"dev %02x:%02x.%d PCI ID %04x:%04x\n",
1439 1440
			bus, dev_descr->dev, dev_descr->func,
			PCI_VENDOR_ID_INTEL, dev_descr->dev_id);
1441 1442
		return -ENODEV;
	}
1443

1444
	debugf0("Detected socket %d dev %02x:%02x.%d PCI ID %04x:%04x\n",
1445 1446 1447
		socket, bus, dev_descr->dev,
		dev_descr->func,
		PCI_VENDOR_ID_INTEL, dev_descr->dev_id);
1448

1449 1450 1451 1452 1453 1454 1455
	/*
	 * As stated on drivers/pci/search.c, the reference count for
	 * @from is always decremented if it is not %NULL. So, as we need
	 * to get all devices up to null, we need to do a get for the device
	 */
	pci_dev_get(pdev);

1456
	*prev = pdev;
1457

1458 1459
	return 0;
}
1460

1461
static int i7core_get_all_devices(void)
1462
{
1463
	int i, rc, last_bus;
1464
	struct pci_dev *pdev = NULL;
1465
	const struct pci_id_table *table = pci_dev_table;
1466

1467 1468
	last_bus = i7core_pci_lastbus();

1469
	while (table && table->descr) {
1470 1471 1472
		for (i = 0; i < table->n_devs; i++) {
			pdev = NULL;
			do {
1473
				rc = i7core_get_onedevice(&pdev, table, i,
1474
							  last_bus);
1475 1476 1477 1478 1479 1480 1481 1482 1483 1484
				if (rc < 0) {
					if (i == 0) {
						i = table->n_devs;
						break;
					}
					i7core_put_all_devices();
					return -ENODEV;
				}
			} while (pdev);
		}
1485
		table++;
1486
	}
1487

1488 1489 1490
	return 0;
}

1491 1492
static int mci_bind_devs(struct mem_ctl_info *mci,
			 struct i7core_dev *i7core_dev)
1493 1494 1495
{
	struct i7core_pvt *pvt = mci->pvt_info;
	struct pci_dev *pdev;
1496
	int i, func, slot;
1497
	char *family;
1498

1499 1500
	pvt->is_registered = false;
	pvt->enable_scrub  = false;
1501
	for (i = 0; i < i7core_dev->n_devs; i++) {
1502 1503
		pdev = i7core_dev->pdev[i];
		if (!pdev)
1504 1505
			continue;

1506 1507 1508 1509 1510 1511 1512 1513
		func = PCI_FUNC(pdev->devfn);
		slot = PCI_SLOT(pdev->devfn);
		if (slot == 3) {
			if (unlikely(func > MAX_MCR_FUNC))
				goto error;
			pvt->pci_mcr[func] = pdev;
		} else if (likely(slot >= 4 && slot < 4 + NUM_CHANS)) {
			if (unlikely(func > MAX_CHAN_FUNC))
1514
				goto error;
1515
			pvt->pci_ch[slot - 4][func] = pdev;
1516
		} else if (!slot && !func) {
1517
			pvt->pci_noncore = pdev;
1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546

			/* Detect the processor family */
			switch (pdev->device) {
			case PCI_DEVICE_ID_INTEL_I7_NONCORE:
				family = "Xeon 35xx/ i7core";
				pvt->enable_scrub = false;
				break;
			case PCI_DEVICE_ID_INTEL_LYNNFIELD_NONCORE_ALT:
				family = "i7-800/i5-700";
				pvt->enable_scrub = false;
				break;
			case PCI_DEVICE_ID_INTEL_LYNNFIELD_NONCORE:
				family = "Xeon 34xx";
				pvt->enable_scrub = false;
				break;
			case PCI_DEVICE_ID_INTEL_I7_NONCORE_ALT:
				family = "Xeon 55xx";
				pvt->enable_scrub = true;
				break;
			case PCI_DEVICE_ID_INTEL_LYNNFIELD_NONCORE_REV2:
				family = "Xeon 56xx / i7-900";
				pvt->enable_scrub = true;
				break;
			default:
				family = "unknown";
				pvt->enable_scrub = false;
			}
			debugf0("Detected a processor type %s\n", family);
		} else
1547
			goto error;
1548

1549 1550 1551
		debugf0("Associated fn %d.%d, dev = %p, socket %d\n",
			PCI_SLOT(pdev->devfn), PCI_FUNC(pdev->devfn),
			pdev, i7core_dev->socket);
1552

1553 1554
		if (PCI_SLOT(pdev->devfn) == 3 &&
			PCI_FUNC(pdev->devfn) == 2)
1555
			pvt->is_registered = true;
1556
	}
1557

1558
	return 0;
1559 1560 1561 1562 1563 1564

error:
	i7core_printk(KERN_ERR, "Device %d, function %d "
		      "is out of the expected range\n",
		      slot, func);
	return -EINVAL;
1565 1566
}

1567 1568 1569
/****************************************************************************
			Error check routines
 ****************************************************************************/
1570
static void i7core_rdimm_update_csrow(struct mem_ctl_info *mci,
1571 1572 1573
				      const int chan,
				      const int dimm,
				      const int add)
1574 1575 1576
{
	char *msg;
	struct i7core_pvt *pvt = mci->pvt_info;
1577
	int row = pvt->csrow_map[chan][dimm], i;
1578 1579 1580

	for (i = 0; i < add; i++) {
		msg = kasprintf(GFP_KERNEL, "Corrected error "
1581 1582
				"(Socket=%d channel=%d dimm=%d)",
				pvt->i7core_dev->socket, chan, dimm);
1583 1584 1585 1586 1587 1588 1589

		edac_mc_handle_fbd_ce(mci, row, 0, msg);
		kfree (msg);
	}
}

static void i7core_rdimm_update_ce_count(struct mem_ctl_info *mci,
1590 1591 1592 1593
					 const int chan,
					 const int new0,
					 const int new1,
					 const int new2)
1594 1595 1596 1597
{
	struct i7core_pvt *pvt = mci->pvt_info;
	int add0 = 0, add1 = 0, add2 = 0;
	/* Updates CE counters if it is not the first time here */
1598
	if (pvt->ce_count_available) {
1599 1600
		/* Updates CE counters */

1601 1602 1603
		add2 = new2 - pvt->rdimm_last_ce_count[chan][2];
		add1 = new1 - pvt->rdimm_last_ce_count[chan][1];
		add0 = new0 - pvt->rdimm_last_ce_count[chan][0];
1604 1605 1606

		if (add2 < 0)
			add2 += 0x7fff;
1607
		pvt->rdimm_ce_count[chan][2] += add2;
1608 1609 1610

		if (add1 < 0)
			add1 += 0x7fff;
1611
		pvt->rdimm_ce_count[chan][1] += add1;
1612 1613 1614

		if (add0 < 0)
			add0 += 0x7fff;
1615
		pvt->rdimm_ce_count[chan][0] += add0;
1616
	} else
1617
		pvt->ce_count_available = 1;
1618 1619

	/* Store the new values */
1620 1621 1622
	pvt->rdimm_last_ce_count[chan][2] = new2;
	pvt->rdimm_last_ce_count[chan][1] = new1;
	pvt->rdimm_last_ce_count[chan][0] = new0;
1623 1624 1625

	/*updated the edac core */
	if (add0 != 0)
1626
		i7core_rdimm_update_csrow(mci, chan, 0, add0);
1627
	if (add1 != 0)
1628
		i7core_rdimm_update_csrow(mci, chan, 1, add1);
1629
	if (add2 != 0)
1630
		i7core_rdimm_update_csrow(mci, chan, 2, add2);
1631 1632 1633

}

1634
static void i7core_rdimm_check_mc_ecc_err(struct mem_ctl_info *mci)
1635 1636 1637 1638 1639 1640
{
	struct i7core_pvt *pvt = mci->pvt_info;
	u32 rcv[3][2];
	int i, new0, new1, new2;

	/*Read DEV 3: FUN 2:  MC_COR_ECC_CNT regs directly*/
1641
	pci_read_config_dword(pvt->pci_mcr[2], MC_COR_ECC_CNT_0,
1642
								&rcv[0][0]);
1643
	pci_read_config_dword(pvt->pci_mcr[2], MC_COR_ECC_CNT_1,
1644
								&rcv[0][1]);
1645
	pci_read_config_dword(pvt->pci_mcr[2], MC_COR_ECC_CNT_2,
1646
								&rcv[1][0]);
1647
	pci_read_config_dword(pvt->pci_mcr[2], MC_COR_ECC_CNT_3,
1648
								&rcv[1][1]);
1649
	pci_read_config_dword(pvt->pci_mcr[2], MC_COR_ECC_CNT_4,
1650
								&rcv[2][0]);
1651
	pci_read_config_dword(pvt->pci_mcr[2], MC_COR_ECC_CNT_5,
1652 1653 1654 1655 1656
								&rcv[2][1]);
	for (i = 0 ; i < 3; i++) {
		debugf3("MC_COR_ECC_CNT%d = 0x%x; MC_COR_ECC_CNT%d = 0x%x\n",
			(i * 2), rcv[i][0], (i * 2) + 1, rcv[i][1]);
		/*if the channel has 3 dimms*/
1657
		if (pvt->channel[i].dimms > 2) {
1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668
			new0 = DIMM_BOT_COR_ERR(rcv[i][0]);
			new1 = DIMM_TOP_COR_ERR(rcv[i][0]);
			new2 = DIMM_BOT_COR_ERR(rcv[i][1]);
		} else {
			new0 = DIMM_TOP_COR_ERR(rcv[i][0]) +
					DIMM_BOT_COR_ERR(rcv[i][0]);
			new1 = DIMM_TOP_COR_ERR(rcv[i][1]) +
					DIMM_BOT_COR_ERR(rcv[i][1]);
			new2 = 0;
		}

1669
		i7core_rdimm_update_ce_count(mci, i, new0, new1, new2);
1670 1671
	}
}
1672 1673 1674 1675 1676 1677 1678

/* This function is based on the device 3 function 4 registers as described on:
 * Intel Xeon Processor 5500 Series Datasheet Volume 2
 *	http://www.intel.com/Assets/PDF/datasheet/321322.pdf
 * also available at:
 * 	http://www.arrownac.com/manufacturers/intel/s/nehalem/5500-datasheet-v2.pdf
 */
1679
static void i7core_udimm_check_mc_ecc_err(struct mem_ctl_info *mci)
1680 1681 1682 1683 1684
{
	struct i7core_pvt *pvt = mci->pvt_info;
	u32 rcv1, rcv0;
	int new0, new1, new2;

1685
	if (!pvt->pci_mcr[4]) {
1686
		debugf0("%s MCR registers not found\n", __func__);
1687 1688 1689
		return;
	}

1690
	/* Corrected test errors */
1691 1692
	pci_read_config_dword(pvt->pci_mcr[4], MC_TEST_ERR_RCV1, &rcv1);
	pci_read_config_dword(pvt->pci_mcr[4], MC_TEST_ERR_RCV0, &rcv0);
1693 1694 1695 1696 1697 1698 1699

	/* Store the new values */
	new2 = DIMM2_COR_ERR(rcv1);
	new1 = DIMM1_COR_ERR(rcv0);
	new0 = DIMM0_COR_ERR(rcv0);

	/* Updates CE counters if it is not the first time here */
1700
	if (pvt->ce_count_available) {
1701 1702 1703
		/* Updates CE counters */
		int add0, add1, add2;

1704 1705 1706
		add2 = new2 - pvt->udimm_last_ce_count[2];
		add1 = new1 - pvt->udimm_last_ce_count[1];
		add0 = new0 - pvt->udimm_last_ce_count[0];
1707 1708 1709

		if (add2 < 0)
			add2 += 0x7fff;
1710
		pvt->udimm_ce_count[2] += add2;
1711 1712 1713

		if (add1 < 0)
			add1 += 0x7fff;
1714
		pvt->udimm_ce_count[1] += add1;
1715 1716 1717

		if (add0 < 0)
			add0 += 0x7fff;
1718
		pvt->udimm_ce_count[0] += add0;
1719 1720 1721 1722 1723

		if (add0 | add1 | add2)
			i7core_printk(KERN_ERR, "New Corrected error(s): "
				      "dimm0: +%d, dimm1: +%d, dimm2 +%d\n",
				      add0, add1, add2);
1724
	} else
1725
		pvt->ce_count_available = 1;
1726 1727

	/* Store the new values */
1728 1729 1730
	pvt->udimm_last_ce_count[2] = new2;
	pvt->udimm_last_ce_count[1] = new1;
	pvt->udimm_last_ce_count[0] = new0;
1731 1732
}

1733 1734 1735
/*
 * According with tables E-11 and E-12 of chapter E.3.3 of Intel 64 and IA-32
 * Architectures Software Developer’s Manual Volume 3B.
1736 1737 1738
 * Nehalem are defined as family 0x06, model 0x1a
 *
 * The MCA registers used here are the following ones:
1739
 *     struct mce field	MCA Register
1740 1741 1742
 *     m->status	MSR_IA32_MC8_STATUS
 *     m->addr		MSR_IA32_MC8_ADDR
 *     m->misc		MSR_IA32_MC8_MISC
1743 1744 1745
 * In the case of Nehalem, the error information is masked at .status and .misc
 * fields
 */
1746
static void i7core_mce_output_error(struct mem_ctl_info *mci,
1747
				    const struct mce *m)
1748
{
1749
	struct i7core_pvt *pvt = mci->pvt_info;
1750
	char *type, *optype, *err, *msg;
1751
	unsigned long error = m->status & 0x1ff0000l;
1752
	u32 optypenum = (m->status >> 4) & 0x07;
1753
	u32 core_err_cnt = (m->status >> 38) & 0x7fff;
1754 1755 1756 1757
	u32 dimm = (m->misc >> 16) & 0x3;
	u32 channel = (m->misc >> 18) & 0x3;
	u32 syndrome = m->misc >> 32;
	u32 errnum = find_first_bit(&error, 32);
1758
	int csrow;
1759

1760 1761 1762 1763 1764
	if (m->mcgstatus & 1)
		type = "FATAL";
	else
		type = "NON_FATAL";

1765
	switch (optypenum) {
1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783
	case 0:
		optype = "generic undef request";
		break;
	case 1:
		optype = "read error";
		break;
	case 2:
		optype = "write error";
		break;
	case 3:
		optype = "addr/cmd error";
		break;
	case 4:
		optype = "scrubbing error";
		break;
	default:
		optype = "reserved";
		break;
1784 1785
	}

1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815
	switch (errnum) {
	case 16:
		err = "read ECC error";
		break;
	case 17:
		err = "RAS ECC error";
		break;
	case 18:
		err = "write parity error";
		break;
	case 19:
		err = "redundacy loss";
		break;
	case 20:
		err = "reserved";
		break;
	case 21:
		err = "memory range error";
		break;
	case 22:
		err = "RTID out of range";
		break;
	case 23:
		err = "address parity error";
		break;
	case 24:
		err = "byte enable parity error";
		break;
	default:
		err = "unknown";
1816 1817
	}

1818
	/* FIXME: should convert addr into bank and rank information */
1819
	msg = kasprintf(GFP_ATOMIC,
1820
		"%s (addr = 0x%08llx, cpu=%d, Dimm=%d, Channel=%d, "
1821
		"syndrome=0x%08x, count=%d, Err=%08llx:%08llx (%s: %s))\n",
1822
		type, (long long) m->addr, m->cpu, dimm, channel,
1823 1824
		syndrome, core_err_cnt, (long long)m->status,
		(long long)m->misc, optype, err);
1825 1826

	debugf0("%s", msg);
1827

1828
	csrow = pvt->csrow_map[channel][dimm];
1829

1830
	/* Call the helper to output message */
1831 1832 1833
	if (m->mcgstatus & 1)
		edac_mc_handle_fbd_ue(mci, csrow, 0,
				0 /* FIXME: should be channel here */, msg);
1834
	else if (!pvt->is_registered)
1835 1836
		edac_mc_handle_fbd_ce(mci, csrow,
				0 /* FIXME: should be channel here */, msg);
1837 1838

	kfree(msg);
1839 1840
}

1841 1842 1843 1844 1845 1846
/*
 *	i7core_check_error	Retrieve and process errors reported by the
 *				hardware. Called by the Core module.
 */
static void i7core_check_error(struct mem_ctl_info *mci)
{
1847 1848 1849
	struct i7core_pvt *pvt = mci->pvt_info;
	int i;
	unsigned count = 0;
1850
	struct mce *m;
1851

1852 1853 1854
	/*
	 * MCE first step: Copy all mce errors into a temporary buffer
	 * We use a double buffering here, to reduce the risk of
L
Lucas De Marchi 已提交
1855
	 * losing an error.
1856 1857
	 */
	smp_rmb();
1858 1859
	count = (pvt->mce_out + MCE_LOG_LEN - pvt->mce_in)
		% MCE_LOG_LEN;
1860
	if (!count)
1861
		goto check_ce_error;
1862

1863
	m = pvt->mce_outentry;
1864 1865
	if (pvt->mce_in + count > MCE_LOG_LEN) {
		unsigned l = MCE_LOG_LEN - pvt->mce_in;
1866

1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883
		memcpy(m, &pvt->mce_entry[pvt->mce_in], sizeof(*m) * l);
		smp_wmb();
		pvt->mce_in = 0;
		count -= l;
		m += l;
	}
	memcpy(m, &pvt->mce_entry[pvt->mce_in], sizeof(*m) * count);
	smp_wmb();
	pvt->mce_in += count;

	smp_rmb();
	if (pvt->mce_overrun) {
		i7core_printk(KERN_ERR, "Lost %d memory errors\n",
			      pvt->mce_overrun);
		smp_wmb();
		pvt->mce_overrun = 0;
	}
1884

1885 1886 1887
	/*
	 * MCE second step: parse errors and display
	 */
1888
	for (i = 0; i < count; i++)
1889
		i7core_mce_output_error(mci, &pvt->mce_outentry[i]);
1890

1891 1892 1893
	/*
	 * Now, let's increment CE error counts
	 */
1894
check_ce_error:
1895 1896 1897 1898
	if (!pvt->is_registered)
		i7core_udimm_check_mc_ecc_err(mci);
	else
		i7core_rdimm_check_mc_ecc_err(mci);
1899 1900
}

1901 1902 1903 1904 1905
/*
 * i7core_mce_check_error	Replicates mcelog routine to get errors
 *				This routine simply queues mcelog errors, and
 *				return. The error itself should be handled later
 *				by i7core_check_error.
1906 1907
 * WARNING: As this routine should be called at NMI time, extra care should
 * be taken to avoid deadlocks, and to be as fast as possible.
1908
 */
1909 1910
static int i7core_mce_check_error(struct notifier_block *nb, unsigned long val,
				  void *data)
1911
{
1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922
	struct mce *mce = (struct mce *)data;
	struct i7core_dev *i7_dev;
	struct mem_ctl_info *mci;
	struct i7core_pvt *pvt;

	i7_dev = get_i7core_dev(mce->socketid);
	if (!i7_dev)
		return NOTIFY_BAD;

	mci = i7_dev->mci;
	pvt = mci->pvt_info;
1923

1924 1925 1926 1927 1928
	/*
	 * Just let mcelog handle it if the error is
	 * outside the memory controller
	 */
	if (((mce->status & 0xffff) >> 7) != 1)
1929
		return NOTIFY_DONE;
1930

1931 1932
	/* Bank 8 registers are the only ones that we know how to handle */
	if (mce->bank != 8)
1933
		return NOTIFY_DONE;
1934

R
Randy Dunlap 已提交
1935
#ifdef CONFIG_SMP
1936
	/* Only handle if it is the right mc controller */
1937
	if (mce->socketid != pvt->i7core_dev->socket)
1938
		return NOTIFY_DONE;
R
Randy Dunlap 已提交
1939
#endif
1940

1941
	smp_rmb();
1942
	if ((pvt->mce_out + 1) % MCE_LOG_LEN == pvt->mce_in) {
1943 1944
		smp_wmb();
		pvt->mce_overrun++;
1945
		return NOTIFY_DONE;
1946
	}
1947 1948 1949

	/* Copy memory error at the ringbuffer */
	memcpy(&pvt->mce_entry[pvt->mce_out], mce, sizeof(*mce));
1950
	smp_wmb();
1951
	pvt->mce_out = (pvt->mce_out + 1) % MCE_LOG_LEN;
1952

1953 1954 1955 1956
	/* Handle fatal errors immediately */
	if (mce->mcgstatus & 1)
		i7core_check_error(mci);

D
David Sterba 已提交
1957
	/* Advise mcelog that the errors were handled */
1958
	return NOTIFY_STOP;
1959 1960
}

1961 1962 1963 1964
static struct notifier_block i7_mce_dec = {
	.notifier_call	= i7core_mce_check_error,
};

N
Nils Carlson 已提交
1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070
struct memdev_dmi_entry {
	u8 type;
	u8 length;
	u16 handle;
	u16 phys_mem_array_handle;
	u16 mem_err_info_handle;
	u16 total_width;
	u16 data_width;
	u16 size;
	u8 form;
	u8 device_set;
	u8 device_locator;
	u8 bank_locator;
	u8 memory_type;
	u16 type_detail;
	u16 speed;
	u8 manufacturer;
	u8 serial_number;
	u8 asset_tag;
	u8 part_number;
	u8 attributes;
	u32 extended_size;
	u16 conf_mem_clk_speed;
} __attribute__((__packed__));


/*
 * Decode the DRAM Clock Frequency, be paranoid, make sure that all
 * memory devices show the same speed, and if they don't then consider
 * all speeds to be invalid.
 */
static void decode_dclk(const struct dmi_header *dh, void *_dclk_freq)
{
	int *dclk_freq = _dclk_freq;
	u16 dmi_mem_clk_speed;

	if (*dclk_freq == -1)
		return;

	if (dh->type == DMI_ENTRY_MEM_DEVICE) {
		struct memdev_dmi_entry *memdev_dmi_entry =
			(struct memdev_dmi_entry *)dh;
		unsigned long conf_mem_clk_speed_offset =
			(unsigned long)&memdev_dmi_entry->conf_mem_clk_speed -
			(unsigned long)&memdev_dmi_entry->type;
		unsigned long speed_offset =
			(unsigned long)&memdev_dmi_entry->speed -
			(unsigned long)&memdev_dmi_entry->type;

		/* Check that a DIMM is present */
		if (memdev_dmi_entry->size == 0)
			return;

		/*
		 * Pick the configured speed if it's available, otherwise
		 * pick the DIMM speed, or we don't have a speed.
		 */
		if (memdev_dmi_entry->length > conf_mem_clk_speed_offset) {
			dmi_mem_clk_speed =
				memdev_dmi_entry->conf_mem_clk_speed;
		} else if (memdev_dmi_entry->length > speed_offset) {
			dmi_mem_clk_speed = memdev_dmi_entry->speed;
		} else {
			*dclk_freq = -1;
			return;
		}

		if (*dclk_freq == 0) {
			/* First pass, speed was 0 */
			if (dmi_mem_clk_speed > 0) {
				/* Set speed if a valid speed is read */
				*dclk_freq = dmi_mem_clk_speed;
			} else {
				/* Otherwise we don't have a valid speed */
				*dclk_freq = -1;
			}
		} else if (*dclk_freq > 0 &&
			   *dclk_freq != dmi_mem_clk_speed) {
			/*
			 * If we have a speed, check that all DIMMS are the same
			 * speed, otherwise set the speed as invalid.
			 */
			*dclk_freq = -1;
		}
	}
}

/*
 * The default DCLK frequency is used as a fallback if we
 * fail to find anything reliable in the DMI. The value
 * is taken straight from the datasheet.
 */
#define DEFAULT_DCLK_FREQ 800

static int get_dclk_freq(void)
{
	int dclk_freq = 0;

	dmi_walk(decode_dclk, (void *)&dclk_freq);

	if (dclk_freq < 1)
		return DEFAULT_DCLK_FREQ;

	return dclk_freq;
}

2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093
/*
 * set_sdram_scrub_rate		This routine sets byte/sec bandwidth scrub rate
 *				to hardware according to SCRUBINTERVAL formula
 *				found in datasheet.
 */
static int set_sdram_scrub_rate(struct mem_ctl_info *mci, u32 new_bw)
{
	struct i7core_pvt *pvt = mci->pvt_info;
	struct pci_dev *pdev;
	u32 dw_scrub;
	u32 dw_ssr;

	/* Get data from the MC register, function 2 */
	pdev = pvt->pci_mcr[2];
	if (!pdev)
		return -ENODEV;

	pci_read_config_dword(pdev, MC_SCRUB_CONTROL, &dw_scrub);

	if (new_bw == 0) {
		/* Prepare to disable petrol scrub */
		dw_scrub &= ~STARTSCRUB;
		/* Stop the patrol scrub engine */
N
Nils Carlson 已提交
2094 2095
		write_and_test(pdev, MC_SCRUB_CONTROL,
			       dw_scrub & ~SCRUBINTERVAL_MASK);
2096 2097 2098 2099 2100 2101

		/* Get current status of scrub rate and set bit to disable */
		pci_read_config_dword(pdev, MC_SSRCONTROL, &dw_ssr);
		dw_ssr &= ~SSR_MODE_MASK;
		dw_ssr |= SSR_MODE_DISABLE;
	} else {
N
Nils Carlson 已提交
2102 2103 2104
		const int cache_line_size = 64;
		const u32 freq_dclk_mhz = pvt->dclk_freq;
		unsigned long long scrub_interval;
2105 2106
		/*
		 * Translate the desired scrub rate to a register value and
N
Nils Carlson 已提交
2107
		 * program the corresponding register value.
2108
		 */
N
Nils Carlson 已提交
2109
		scrub_interval = (unsigned long long)freq_dclk_mhz *
2110 2111
			cache_line_size * 1000000;
		do_div(scrub_interval, new_bw);
N
Nils Carlson 已提交
2112 2113 2114 2115 2116

		if (!scrub_interval || scrub_interval > SCRUBINTERVAL_MASK)
			return -EINVAL;

		dw_scrub = SCRUBINTERVAL_MASK & scrub_interval;
2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142

		/* Start the patrol scrub engine */
		pci_write_config_dword(pdev, MC_SCRUB_CONTROL,
				       STARTSCRUB | dw_scrub);

		/* Get current status of scrub rate and set bit to enable */
		pci_read_config_dword(pdev, MC_SSRCONTROL, &dw_ssr);
		dw_ssr &= ~SSR_MODE_MASK;
		dw_ssr |= SSR_MODE_ENABLE;
	}
	/* Disable or enable scrubbing */
	pci_write_config_dword(pdev, MC_SSRCONTROL, dw_ssr);

	return new_bw;
}

/*
 * get_sdram_scrub_rate		This routine convert current scrub rate value
 *				into byte/sec bandwidth accourding to
 *				SCRUBINTERVAL formula found in datasheet.
 */
static int get_sdram_scrub_rate(struct mem_ctl_info *mci)
{
	struct i7core_pvt *pvt = mci->pvt_info;
	struct pci_dev *pdev;
	const u32 cache_line_size = 64;
N
Nils Carlson 已提交
2143 2144
	const u32 freq_dclk_mhz = pvt->dclk_freq;
	unsigned long long scrub_rate;
2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155
	u32 scrubval;

	/* Get data from the MC register, function 2 */
	pdev = pvt->pci_mcr[2];
	if (!pdev)
		return -ENODEV;

	/* Get current scrub control data */
	pci_read_config_dword(pdev, MC_SCRUB_CONTROL, &scrubval);

	/* Mask highest 8-bits to 0 */
N
Nils Carlson 已提交
2156
	scrubval &=  SCRUBINTERVAL_MASK;
2157 2158 2159 2160
	if (!scrubval)
		return 0;

	/* Calculate scrub rate value into byte/sec bandwidth */
N
Nils Carlson 已提交
2161
	scrub_rate =  (unsigned long long)freq_dclk_mhz *
2162 2163
		1000000 * cache_line_size;
	do_div(scrub_rate, scrubval);
N
Nils Carlson 已提交
2164
	return (int)scrub_rate;
2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193
}

static void enable_sdram_scrub_setting(struct mem_ctl_info *mci)
{
	struct i7core_pvt *pvt = mci->pvt_info;
	u32 pci_lock;

	/* Unlock writes to pci registers */
	pci_read_config_dword(pvt->pci_noncore, MC_CFG_CONTROL, &pci_lock);
	pci_lock &= ~0x3;
	pci_write_config_dword(pvt->pci_noncore, MC_CFG_CONTROL,
			       pci_lock | MC_CFG_UNLOCK);

	mci->set_sdram_scrub_rate = set_sdram_scrub_rate;
	mci->get_sdram_scrub_rate = get_sdram_scrub_rate;
}

static void disable_sdram_scrub_setting(struct mem_ctl_info *mci)
{
	struct i7core_pvt *pvt = mci->pvt_info;
	u32 pci_lock;

	/* Lock writes to pci registers */
	pci_read_config_dword(pvt->pci_noncore, MC_CFG_CONTROL, &pci_lock);
	pci_lock &= ~0x3;
	pci_write_config_dword(pvt->pci_noncore, MC_CFG_CONTROL,
			       pci_lock | MC_CFG_LOCK);
}

2194 2195 2196 2197 2198 2199
static void i7core_pci_ctl_create(struct i7core_pvt *pvt)
{
	pvt->i7core_pci = edac_pci_create_generic_ctl(
						&pvt->i7core_dev->pdev[0]->dev,
						EDAC_MOD_STR);
	if (unlikely(!pvt->i7core_pci))
2200 2201
		i7core_printk(KERN_WARNING,
			      "Unable to setup PCI error report via EDAC\n");
2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214
}

static void i7core_pci_ctl_release(struct i7core_pvt *pvt)
{
	if (likely(pvt->i7core_pci))
		edac_pci_release_generic_ctl(pvt->i7core_pci);
	else
		i7core_printk(KERN_ERR,
				"Couldn't find mem_ctl_info for socket %d\n",
				pvt->i7core_dev->socket);
	pvt->i7core_pci = NULL;
}

2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232
static void i7core_unregister_mci(struct i7core_dev *i7core_dev)
{
	struct mem_ctl_info *mci = i7core_dev->mci;
	struct i7core_pvt *pvt;

	if (unlikely(!mci || !mci->pvt_info)) {
		debugf0("MC: " __FILE__ ": %s(): dev = %p\n",
			__func__, &i7core_dev->pdev[0]->dev);

		i7core_printk(KERN_ERR, "Couldn't find mci handler\n");
		return;
	}

	pvt = mci->pvt_info;

	debugf0("MC: " __FILE__ ": %s(): mci = %p, dev = %p\n",
		__func__, mci, &i7core_dev->pdev[0]->dev);

2233
	/* Disable scrubrate setting */
2234 2235
	if (pvt->enable_scrub)
		disable_sdram_scrub_setting(mci);
2236

2237
	mce_unregister_decode_chain(&i7_mce_dec);
2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250

	/* Disable EDAC polling */
	i7core_pci_ctl_release(pvt);

	/* Remove MC sysfs nodes */
	edac_mc_del_mc(mci->dev);

	debugf1("%s: free mci struct\n", mci->ctl_name);
	kfree(mci->ctl_name);
	edac_mc_free(mci);
	i7core_dev->mci = NULL;
}

2251
static int i7core_register_mci(struct i7core_dev *i7core_dev)
2252 2253 2254
{
	struct mem_ctl_info *mci;
	struct i7core_pvt *pvt;
2255 2256 2257 2258 2259 2260
	int rc, channels, csrows;

	/* Check the number of active and not disabled channels */
	rc = i7core_get_active_channels(i7core_dev->socket, &channels, &csrows);
	if (unlikely(rc < 0))
		return rc;
2261 2262

	/* allocate a new MC control structure */
2263
	mci = edac_mc_alloc(sizeof(*pvt), csrows, channels, i7core_dev->socket);
2264 2265
	if (unlikely(!mci))
		return -ENOMEM;
2266

2267 2268
	debugf0("MC: " __FILE__ ": %s(): mci = %p, dev = %p\n",
		__func__, mci, &i7core_dev->pdev[0]->dev);
2269 2270

	pvt = mci->pvt_info;
2271
	memset(pvt, 0, sizeof(*pvt));
2272

2273 2274 2275 2276
	/* Associates i7core_dev and mci for future usage */
	pvt->i7core_dev = i7core_dev;
	i7core_dev->mci = mci;

2277 2278 2279 2280 2281 2282
	/*
	 * FIXME: how to handle RDDR3 at MCI level? It is possible to have
	 * Mixed RDDR3/UDDR3 with Nehalem, provided that they are on different
	 * memory channels
	 */
	mci->mtype_cap = MEM_FLAG_DDR3;
2283 2284 2285 2286
	mci->edac_ctl_cap = EDAC_FLAG_NONE;
	mci->edac_cap = EDAC_FLAG_NONE;
	mci->mod_name = "i7core_edac.c";
	mci->mod_ver = I7CORE_REVISION;
2287 2288 2289
	mci->ctl_name = kasprintf(GFP_KERNEL, "i7 core #%d",
				  i7core_dev->socket);
	mci->dev_name = pci_name(i7core_dev->pdev[0]);
2290
	mci->ctl_page_to_phys = NULL;
2291

2292
	/* Store pci devices at mci for faster access */
2293
	rc = mci_bind_devs(mci, i7core_dev);
2294
	if (unlikely(rc < 0))
2295
		goto fail0;
2296

2297 2298 2299 2300 2301
	if (pvt->is_registered)
		mci->mc_driver_sysfs_attributes = i7core_sysfs_rdimm_attrs;
	else
		mci->mc_driver_sysfs_attributes = i7core_sysfs_udimm_attrs;

2302
	/* Get dimm basic config */
2303
	get_dimm_config(mci);
2304 2305 2306 2307
	/* record ptr to the generic device */
	mci->dev = &i7core_dev->pdev[0]->dev;
	/* Set the function pointer to an actual operation function */
	mci->edac_check = i7core_check_error;
2308

2309
	/* Enable scrubrate setting */
2310 2311
	if (pvt->enable_scrub)
		enable_sdram_scrub_setting(mci);
2312

2313
	/* add this new MC control structure to EDAC's list of MCs */
2314
	if (unlikely(edac_mc_add_mc(mci))) {
2315 2316 2317 2318 2319
		debugf0("MC: " __FILE__
			": %s(): failed edac_mc_add_mc()\n", __func__);
		/* FIXME: perhaps some code should go here that disables error
		 * reporting if we just enabled it
		 */
2320 2321

		rc = -EINVAL;
2322
		goto fail0;
2323 2324
	}

2325
	/* Default error mask is any memory */
2326
	pvt->inject.channel = 0;
2327 2328 2329 2330 2331 2332
	pvt->inject.dimm = -1;
	pvt->inject.rank = -1;
	pvt->inject.bank = -1;
	pvt->inject.page = -1;
	pvt->inject.col = -1;

2333 2334 2335
	/* allocating generic PCI control info */
	i7core_pci_ctl_create(pvt);

N
Nils Carlson 已提交
2336 2337 2338
	/* DCLK for scrub rate setting */
	pvt->dclk_freq = get_dclk_freq();

2339
	mce_register_decode_chain(&i7_mce_dec);
2340

2341 2342 2343 2344 2345
	return 0;

fail0:
	kfree(mci->ctl_name);
	edac_mc_free(mci);
2346
	i7core_dev->mci = NULL;
2347 2348 2349 2350 2351 2352 2353 2354 2355 2356
	return rc;
}

/*
 *	i7core_probe	Probe for ONE instance of device to see if it is
 *			present.
 *	return:
 *		0 for FOUND a device
 *		< 0 for error code
 */
2357

2358 2359 2360
static int __devinit i7core_probe(struct pci_dev *pdev,
				  const struct pci_device_id *id)
{
2361
	int rc, count = 0;
2362 2363
	struct i7core_dev *i7core_dev;

2364 2365 2366
	/* get the pci devices we want to reserve for our use */
	mutex_lock(&i7core_edac_lock);

2367
	/*
2368
	 * All memory controllers are allocated at the first pass.
2369
	 */
2370 2371
	if (unlikely(probed >= 1)) {
		mutex_unlock(&i7core_edac_lock);
2372
		return -ENODEV;
2373 2374
	}
	probed++;
2375

2376
	rc = i7core_get_all_devices();
2377 2378 2379 2380
	if (unlikely(rc < 0))
		goto fail0;

	list_for_each_entry(i7core_dev, &i7core_edac_list, list) {
2381
		count++;
2382
		rc = i7core_register_mci(i7core_dev);
2383 2384
		if (unlikely(rc < 0))
			goto fail1;
2385 2386
	}

2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402
	/*
	 * Nehalem-EX uses a different memory controller. However, as the
	 * memory controller is not visible on some Nehalem/Nehalem-EP, we
	 * need to indirectly probe via a X58 PCI device. The same devices
	 * are found on (some) Nehalem-EX. So, on those machines, the
	 * probe routine needs to return -ENODEV, as the actual Memory
	 * Controller registers won't be detected.
	 */
	if (!count) {
		rc = -ENODEV;
		goto fail1;
	}

	i7core_printk(KERN_INFO,
		      "Driver loaded, %d memory controller(s) found.\n",
		      count);
2403

2404
	mutex_unlock(&i7core_edac_lock);
2405 2406
	return 0;

2407
fail1:
2408 2409 2410
	list_for_each_entry(i7core_dev, &i7core_edac_list, list)
		i7core_unregister_mci(i7core_dev);

2411
	i7core_put_all_devices();
2412 2413
fail0:
	mutex_unlock(&i7core_edac_lock);
2414
	return rc;
2415 2416 2417 2418 2419 2420 2421 2422
}

/*
 *	i7core_remove	destructor for one instance of device
 *
 */
static void __devexit i7core_remove(struct pci_dev *pdev)
{
2423
	struct i7core_dev *i7core_dev;
2424 2425 2426

	debugf0(__FILE__ ": %s()\n", __func__);

2427 2428 2429 2430 2431 2432 2433
	/*
	 * we have a trouble here: pdev value for removal will be wrong, since
	 * it will point to the X58 register used to detect that the machine
	 * is a Nehalem or upper design. However, due to the way several PCI
	 * devices are grouped together to provide MC functionality, we need
	 * to use a different method for releasing the devices
	 */
2434

2435
	mutex_lock(&i7core_edac_lock);
2436 2437 2438 2439 2440 2441

	if (unlikely(!probed)) {
		mutex_unlock(&i7core_edac_lock);
		return;
	}

2442 2443
	list_for_each_entry(i7core_dev, &i7core_edac_list, list)
		i7core_unregister_mci(i7core_dev);
2444 2445 2446 2447

	/* Release PCI resources */
	i7core_put_all_devices();

2448 2449
	probed--;

2450
	mutex_unlock(&i7core_edac_lock);
2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478
}

MODULE_DEVICE_TABLE(pci, i7core_pci_tbl);

/*
 *	i7core_driver	pci_driver structure for this module
 *
 */
static struct pci_driver i7core_driver = {
	.name     = "i7core_edac",
	.probe    = i7core_probe,
	.remove   = __devexit_p(i7core_remove),
	.id_table = i7core_pci_tbl,
};

/*
 *	i7core_init		Module entry function
 *			Try to initialize this module for its devices
 */
static int __init i7core_init(void)
{
	int pci_rc;

	debugf2("MC: " __FILE__ ": %s()\n", __func__);

	/* Ensure that the OPSTATE is set correctly for POLL or NMI */
	opstate_init();

2479 2480
	if (use_pci_fixup)
		i7core_xeon_pci_fixup(pci_dev_table);
2481

2482 2483
	pci_rc = pci_register_driver(&i7core_driver);

2484 2485 2486 2487 2488 2489 2490
	if (pci_rc >= 0)
		return 0;

	i7core_printk(KERN_ERR, "Failed to register device with error %d.\n",
		      pci_rc);

	return pci_rc;
2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513
}

/*
 *	i7core_exit()	Module exit function
 *			Unregister the driver
 */
static void __exit i7core_exit(void)
{
	debugf2("MC: " __FILE__ ": %s()\n", __func__);
	pci_unregister_driver(&i7core_driver);
}

module_init(i7core_init);
module_exit(i7core_exit);

MODULE_LICENSE("GPL");
MODULE_AUTHOR("Mauro Carvalho Chehab <mchehab@redhat.com>");
MODULE_AUTHOR("Red Hat Inc. (http://www.redhat.com)");
MODULE_DESCRIPTION("MC Driver for Intel i7 Core memory controllers - "
		   I7CORE_REVISION);

module_param(edac_op_state, int, 0444);
MODULE_PARM_DESC(edac_op_state, "EDAC Error Reporting state: 0=Poll,1=NMI");