i7core_edac.c 51.8 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27
/* Intel 7 core  Memory Controller kernel module (Nehalem)
 *
 * This file may be distributed under the terms of the
 * GNU General Public License version 2 only.
 *
 * Copyright (c) 2009 by:
 *	 Mauro Carvalho Chehab <mchehab@redhat.com>
 *
 * Red Hat Inc. http://www.redhat.com
 *
 * Forked and adapted from the i5400_edac driver
 *
 * Based on the following public Intel datasheets:
 * Intel Core i7 Processor Extreme Edition and Intel Core i7 Processor
 * Datasheet, Volume 2:
 *	http://download.intel.com/design/processor/datashts/320835.pdf
 * Intel Xeon Processor 5500 Series Datasheet Volume 2
 *	http://www.intel.com/Assets/PDF/datasheet/321322.pdf
 * also available at:
 * 	http://www.arrownac.com/manufacturers/intel/s/nehalem/5500-datasheet-v2.pdf
 */

#include <linux/module.h>
#include <linux/init.h>
#include <linux/pci.h>
#include <linux/pci_ids.h>
#include <linux/slab.h>
R
Randy Dunlap 已提交
28
#include <linux/delay.h>
29 30
#include <linux/edac.h>
#include <linux/mmzone.h>
31
#include <linux/edac_mce.h>
32
#include <linux/smp.h>
33
#include <asm/processor.h>
34 35 36

#include "edac_core.h"

37 38 39 40 41 42 43 44 45
/*
 * This is used for Nehalem-EP and Nehalem-EX devices, where the non-core
 * registers start at bus 255, and are not reported by BIOS.
 * We currently find devices with only 2 sockets. In order to support more QPI
 * Quick Path Interconnect, just increment this number.
 */
#define MAX_SOCKET_BUSES	2


46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64
/*
 * Alter this version for the module when modifications are made
 */
#define I7CORE_REVISION    " Ver: 1.0.0 " __DATE__
#define EDAC_MOD_STR      "i7core_edac"

/*
 * Debug macros
 */
#define i7core_printk(level, fmt, arg...)			\
	edac_printk(level, "i7core", fmt, ##arg)

#define i7core_mc_printk(mci, level, fmt, arg...)		\
	edac_mc_chipset_printk(mci, level, "i7core", fmt, ##arg)

/*
 * i7core Memory Controller Registers
 */

65 66 67 68
	/* OFFSETS for Device 0 Function 0 */

#define MC_CFG_CONTROL	0x90

69 70 71 72 73 74
	/* OFFSETS for Device 3 Function 0 */

#define MC_CONTROL	0x48
#define MC_STATUS	0x4c
#define MC_MAX_DOD	0x64

75 76 77 78 79 80 81 82 83 84 85 86
/*
 * OFFSETS for Device 3 Function 4, as inicated on Xeon 5500 datasheet:
 * http://www.arrownac.com/manufacturers/intel/s/nehalem/5500-datasheet-v2.pdf
 */

#define MC_TEST_ERR_RCV1	0x60
  #define DIMM2_COR_ERR(r)			((r) & 0x7fff)

#define MC_TEST_ERR_RCV0	0x64
  #define DIMM1_COR_ERR(r)			(((r) >> 16) & 0x7fff)
  #define DIMM0_COR_ERR(r)			((r) & 0x7fff)

87 88 89 90 91 92 93 94 95 96 97 98
/* OFFSETS for Device 3 Function 2, as inicated on Xeon 5500 datasheet */
#define MC_COR_ECC_CNT_0	0x80
#define MC_COR_ECC_CNT_1	0x84
#define MC_COR_ECC_CNT_2	0x88
#define MC_COR_ECC_CNT_3	0x8c
#define MC_COR_ECC_CNT_4	0x90
#define MC_COR_ECC_CNT_5	0x94

#define DIMM_TOP_COR_ERR(r)			(((r) >> 16) & 0x7fff)
#define DIMM_BOT_COR_ERR(r)			((r) & 0x7fff)


99 100
	/* OFFSETS for Devices 4,5 and 6 Function 0 */

101 102 103 104 105 106
#define MC_CHANNEL_DIMM_INIT_PARAMS 0x58
  #define THREE_DIMMS_PRESENT		(1 << 24)
  #define SINGLE_QUAD_RANK_PRESENT	(1 << 23)
  #define QUAD_RANK_PRESENT		(1 << 22)
  #define REGISTERED_DIMM		(1 << 15)

107 108 109 110
#define MC_CHANNEL_MAPPER	0x60
  #define RDLCH(r, ch)		((((r) >> (3 + (ch * 6))) & 0x07) - 1)
  #define WRLCH(r, ch)		((((r) >> (ch * 6)) & 0x07) - 1)

111 112 113
#define MC_CHANNEL_RANK_PRESENT 0x7c
  #define RANK_PRESENT_MASK		0xffff

114
#define MC_CHANNEL_ADDR_MATCH	0xf0
115 116 117 118 119 120 121 122 123 124
#define MC_CHANNEL_ERROR_MASK	0xf8
#define MC_CHANNEL_ERROR_INJECT	0xfc
  #define INJECT_ADDR_PARITY	0x10
  #define INJECT_ECC		0x08
  #define MASK_CACHELINE	0x06
  #define MASK_FULL_CACHELINE	0x06
  #define MASK_MSB32_CACHELINE	0x04
  #define MASK_LSB32_CACHELINE	0x02
  #define NO_MASK_CACHELINE	0x00
  #define REPEAT_EN		0x01
125

126
	/* OFFSETS for Devices 4,5 and 6 Function 1 */
127

128 129 130 131 132 133 134
#define MC_DOD_CH_DIMM0		0x48
#define MC_DOD_CH_DIMM1		0x4c
#define MC_DOD_CH_DIMM2		0x50
  #define RANKOFFSET_MASK	((1 << 12) | (1 << 11) | (1 << 10))
  #define RANKOFFSET(x)		((x & RANKOFFSET_MASK) >> 10)
  #define DIMM_PRESENT_MASK	(1 << 9)
  #define DIMM_PRESENT(x)	(((x) & DIMM_PRESENT_MASK) >> 9)
135 136 137 138
  #define MC_DOD_NUMBANK_MASK		((1 << 8) | (1 << 7))
  #define MC_DOD_NUMBANK(x)		(((x) & MC_DOD_NUMBANK_MASK) >> 7)
  #define MC_DOD_NUMRANK_MASK		((1 << 6) | (1 << 5))
  #define MC_DOD_NUMRANK(x)		(((x) & MC_DOD_NUMRANK_MASK) >> 5)
139
  #define MC_DOD_NUMROW_MASK		((1 << 4) | (1 << 3) | (1 << 2))
140
  #define MC_DOD_NUMROW(x)		(((x) & MC_DOD_NUMROW_MASK) >> 2)
141 142
  #define MC_DOD_NUMCOL_MASK		3
  #define MC_DOD_NUMCOL(x)		((x) & MC_DOD_NUMCOL_MASK)
143

144 145
#define MC_RANK_PRESENT		0x7c

146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168
#define MC_SAG_CH_0	0x80
#define MC_SAG_CH_1	0x84
#define MC_SAG_CH_2	0x88
#define MC_SAG_CH_3	0x8c
#define MC_SAG_CH_4	0x90
#define MC_SAG_CH_5	0x94
#define MC_SAG_CH_6	0x98
#define MC_SAG_CH_7	0x9c

#define MC_RIR_LIMIT_CH_0	0x40
#define MC_RIR_LIMIT_CH_1	0x44
#define MC_RIR_LIMIT_CH_2	0x48
#define MC_RIR_LIMIT_CH_3	0x4C
#define MC_RIR_LIMIT_CH_4	0x50
#define MC_RIR_LIMIT_CH_5	0x54
#define MC_RIR_LIMIT_CH_6	0x58
#define MC_RIR_LIMIT_CH_7	0x5C
#define MC_RIR_LIMIT_MASK	((1 << 10) - 1)

#define MC_RIR_WAY_CH		0x80
  #define MC_RIR_WAY_OFFSET_MASK	(((1 << 14) - 1) & ~0x7)
  #define MC_RIR_WAY_RANK_MASK		0x7

169 170 171 172 173
/*
 * i7core structs
 */

#define NUM_CHANS 3
174 175 176
#define MAX_DIMMS 3		/* Max DIMMS per channel */
#define MAX_MCR_FUNC  4
#define MAX_CHAN_FUNC 3
177 178 179 180 181

struct i7core_info {
	u32	mc_control;
	u32	mc_status;
	u32	max_dod;
182
	u32	ch_map;
183 184
};

185 186 187 188 189 190 191 192 193 194 195 196

struct i7core_inject {
	int	enable;

	u32	section;
	u32	type;
	u32	eccmask;

	/* Error address mask */
	int channel, dimm, rank, bank, page, col;
};

197
struct i7core_channel {
198 199
	u32		ranks;
	u32		dimms;
200 201
};

202
struct pci_id_descr {
203 204 205
	int			dev;
	int			func;
	int 			dev_id;
206
	int			optional;
207 208
};

209 210 211 212
struct i7core_dev {
	struct list_head	list;
	u8			socket;
	struct pci_dev		**pdev;
213
	int			n_devs;
214 215 216
	struct mem_ctl_info	*mci;
};

217
struct i7core_pvt {
218 219 220 221 222
	struct pci_dev	*pci_noncore;
	struct pci_dev	*pci_mcr[MAX_MCR_FUNC + 1];
	struct pci_dev	*pci_ch[NUM_CHANS][MAX_CHAN_FUNC + 1];

	struct i7core_dev *i7core_dev;
223

224
	struct i7core_info	info;
225
	struct i7core_inject	inject;
226
	struct i7core_channel	channel[NUM_CHANS];
227

228
	int		channels; /* Number of active channels */
229

230 231
	int		ce_count_available;
	int 		csrow_map[NUM_CHANS][MAX_DIMMS];
232 233

			/* ECC corrected errors counts per udimm */
234 235
	unsigned long	udimm_ce_count[MAX_DIMMS];
	int		udimm_last_ce_count[MAX_DIMMS];
236
			/* ECC corrected errors counts per rdimm */
237 238
	unsigned long	rdimm_ce_count[NUM_CHANS][MAX_DIMMS];
	int		rdimm_last_ce_count[NUM_CHANS][MAX_DIMMS];
239

240
	unsigned int	is_registered;
241

242 243
	/* mcelog glue */
	struct edac_mce		edac_mce;
244 245

	/* Fifo double buffers */
246
	struct mce		mce_entry[MCE_LOG_LEN];
247 248 249 250 251 252 253
	struct mce		mce_outentry[MCE_LOG_LEN];

	/* Fifo in/out counters */
	unsigned		mce_in, mce_out;

	/* Count indicator to show errors not got */
	unsigned		mce_overrun;
254 255
};

256 257 258
/* Static vars */
static LIST_HEAD(i7core_edac_list);
static DEFINE_MUTEX(i7core_edac_lock);
259

260 261 262 263 264
#define PCI_DESCR(device, function, device_id)	\
	.dev = (device),			\
	.func = (function),			\
	.dev_id = (device_id)

265
struct pci_id_descr pci_dev_descr_i7core[] = {
266 267 268
		/* Memory controller */
	{ PCI_DESCR(3, 0, PCI_DEVICE_ID_INTEL_I7_MCR)     },
	{ PCI_DESCR(3, 1, PCI_DEVICE_ID_INTEL_I7_MC_TAD)  },
269 270
			/* Exists only for RDIMM */
	{ PCI_DESCR(3, 2, PCI_DEVICE_ID_INTEL_I7_MC_RAS), .optional = 1  },
271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289
	{ PCI_DESCR(3, 4, PCI_DEVICE_ID_INTEL_I7_MC_TEST) },

		/* Channel 0 */
	{ PCI_DESCR(4, 0, PCI_DEVICE_ID_INTEL_I7_MC_CH0_CTRL) },
	{ PCI_DESCR(4, 1, PCI_DEVICE_ID_INTEL_I7_MC_CH0_ADDR) },
	{ PCI_DESCR(4, 2, PCI_DEVICE_ID_INTEL_I7_MC_CH0_RANK) },
	{ PCI_DESCR(4, 3, PCI_DEVICE_ID_INTEL_I7_MC_CH0_TC)   },

		/* Channel 1 */
	{ PCI_DESCR(5, 0, PCI_DEVICE_ID_INTEL_I7_MC_CH1_CTRL) },
	{ PCI_DESCR(5, 1, PCI_DEVICE_ID_INTEL_I7_MC_CH1_ADDR) },
	{ PCI_DESCR(5, 2, PCI_DEVICE_ID_INTEL_I7_MC_CH1_RANK) },
	{ PCI_DESCR(5, 3, PCI_DEVICE_ID_INTEL_I7_MC_CH1_TC)   },

		/* Channel 2 */
	{ PCI_DESCR(6, 0, PCI_DEVICE_ID_INTEL_I7_MC_CH2_CTRL) },
	{ PCI_DESCR(6, 1, PCI_DEVICE_ID_INTEL_I7_MC_CH2_ADDR) },
	{ PCI_DESCR(6, 2, PCI_DEVICE_ID_INTEL_I7_MC_CH2_RANK) },
	{ PCI_DESCR(6, 3, PCI_DEVICE_ID_INTEL_I7_MC_CH2_TC)   },
290 291 292 293 294 295 296 297

		/* Generic Non-core registers */
	/*
	 * This is the PCI device on i7core and on Xeon 35xx (8086:2c41)
	 * On Xeon 55xx, however, it has a different id (8086:2c40). So,
	 * the probing code needs to test for the other address in case of
	 * failure of this one
	 */
298
	{ PCI_DESCR(0, 0, PCI_DEVICE_ID_INTEL_I7_NONCORE)  },
299

300
};
301

302 303 304 305 306 307 308 309 310 311
struct pci_id_descr pci_dev_descr_lynnfield[] = {
	{ PCI_DESCR( 3, 0, PCI_DEVICE_ID_INTEL_LYNNFIELD_MCR)         },
	{ PCI_DESCR( 3, 1, PCI_DEVICE_ID_INTEL_LYNNFIELD_MC_TAD)      },
	{ PCI_DESCR( 3, 4, PCI_DEVICE_ID_INTEL_LYNNFIELD_MC_TEST)     },

	{ PCI_DESCR( 4, 0, PCI_DEVICE_ID_INTEL_LYNNFIELD_MC_CH0_CTRL) },
	{ PCI_DESCR( 4, 1, PCI_DEVICE_ID_INTEL_LYNNFIELD_MC_CH0_ADDR) },
	{ PCI_DESCR( 4, 2, PCI_DEVICE_ID_INTEL_LYNNFIELD_MC_CH0_RANK) },
	{ PCI_DESCR( 4, 3, PCI_DEVICE_ID_INTEL_LYNNFIELD_MC_CH0_TC)   },

312 313 314 315
	{ PCI_DESCR( 5, 0, PCI_DEVICE_ID_INTEL_LYNNFIELD_MC_CH1_CTRL) },
	{ PCI_DESCR( 5, 1, PCI_DEVICE_ID_INTEL_LYNNFIELD_MC_CH1_ADDR) },
	{ PCI_DESCR( 5, 2, PCI_DEVICE_ID_INTEL_LYNNFIELD_MC_CH1_RANK) },
	{ PCI_DESCR( 5, 3, PCI_DEVICE_ID_INTEL_LYNNFIELD_MC_CH1_TC)   },
316

317 318 319 320
	/*
	 * This is the PCI device has an alternate address on some
	 * processors like Core i7 860
	 */
321 322 323
	{ PCI_DESCR( 0, 0, PCI_DEVICE_ID_INTEL_LYNNFIELD_NONCORE)     },
};

324 325 326 327
/*
 *	pci_device_id	table for which devices we are looking for
 */
static const struct pci_device_id i7core_pci_tbl[] __devinitdata = {
328
	{PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_X58_HUB_MGMT)},
329
	{PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_LYNNFIELD_QPI_LINK0)},
330 331 332
	{0,}			/* 0 terminated list. */
};

333 334 335 336 337 338 339
static struct edac_pci_ctl_info *i7core_pci;

/****************************************************************************
			Anciliary status routines
 ****************************************************************************/

	/* MC_CONTROL bits */
340 341
#define CH_ACTIVE(pvt, ch)	((pvt)->info.mc_control & (1 << (8 + ch)))
#define ECCx8(pvt)		((pvt)->info.mc_control & (1 << 1))
342 343

	/* MC_STATUS bits */
344
#define ECC_ENABLED(pvt)	((pvt)->info.mc_status & (1 << 4))
345
#define CH_DISABLED(pvt, ch)	((pvt)->info.mc_status & (1 << ch))
346 347

	/* MC_MAX_DOD read functions */
348
static inline int numdimms(u32 dimms)
349
{
350
	return (dimms & 0x3) + 1;
351 352
}

353
static inline int numrank(u32 rank)
354 355 356
{
	static int ranks[4] = { 1, 2, 4, -EINVAL };

357
	return ranks[rank & 0x3];
358 359
}

360
static inline int numbank(u32 bank)
361 362 363
{
	static int banks[4] = { 4, 8, 16, -EINVAL };

364
	return banks[bank & 0x3];
365 366
}

367
static inline int numrow(u32 row)
368 369 370 371 372 373
{
	static int rows[8] = {
		1 << 12, 1 << 13, 1 << 14, 1 << 15,
		1 << 16, -EINVAL, -EINVAL, -EINVAL,
	};

374
	return rows[row & 0x7];
375 376
}

377
static inline int numcol(u32 col)
378 379 380 381
{
	static int cols[8] = {
		1 << 10, 1 << 11, 1 << 12, -EINVAL,
	};
382
	return cols[col & 0x3];
383 384
}

385
static struct i7core_dev *get_i7core_dev(u8 socket)
386 387 388 389 390 391 392 393 394 395 396
{
	struct i7core_dev *i7core_dev;

	list_for_each_entry(i7core_dev, &i7core_edac_list, list) {
		if (i7core_dev->socket == socket)
			return i7core_dev;
	}

	return NULL;
}

397 398 399
/****************************************************************************
			Memory check routines
 ****************************************************************************/
400 401
static struct pci_dev *get_pdev_slot_func(u8 socket, unsigned slot,
					  unsigned func)
402
{
403
	struct i7core_dev *i7core_dev = get_i7core_dev(socket);
404 405
	int i;

406 407 408
	if (!i7core_dev)
		return NULL;

409
	for (i = 0; i < i7core_dev->n_devs; i++) {
410
		if (!i7core_dev->pdev[i])
411 412
			continue;

413 414 415
		if (PCI_SLOT(i7core_dev->pdev[i]->devfn) == slot &&
		    PCI_FUNC(i7core_dev->pdev[i]->devfn) == func) {
			return i7core_dev->pdev[i];
416 417 418
		}
	}

419 420 421
	return NULL;
}

422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438
/**
 * i7core_get_active_channels() - gets the number of channels and csrows
 * @socket:	Quick Path Interconnect socket
 * @channels:	Number of channels that will be returned
 * @csrows:	Number of csrows found
 *
 * Since EDAC core needs to know in advance the number of available channels
 * and csrows, in order to allocate memory for csrows/channels, it is needed
 * to run two similar steps. At the first step, implemented on this function,
 * it checks the number of csrows/channels present at one socket.
 * this is used in order to properly allocate the size of mci components.
 *
 * It should be noticed that none of the current available datasheets explain
 * or even mention how csrows are seen by the memory controller. So, we need
 * to add a fake description for csrows.
 * So, this driver is attributing one DIMM memory for one csrow.
 */
439 440
static int i7core_get_active_channels(u8 socket, unsigned *channels,
				      unsigned *csrows)
441 442 443 444 445 446 447 448
{
	struct pci_dev *pdev = NULL;
	int i, j;
	u32 status, control;

	*channels = 0;
	*csrows = 0;

449
	pdev = get_pdev_slot_func(socket, 3, 0);
450
	if (!pdev) {
451 452
		i7core_printk(KERN_ERR, "Couldn't find socket %d fn 3.0!!!\n",
			      socket);
453
		return -ENODEV;
454
	}
455 456 457 458 459 460

	/* Device 3 function 0 reads */
	pci_read_config_dword(pdev, MC_STATUS, &status);
	pci_read_config_dword(pdev, MC_CONTROL, &control);

	for (i = 0; i < NUM_CHANS; i++) {
461
		u32 dimm_dod[3];
462 463 464 465 466
		/* Check if the channel is active */
		if (!(control & (1 << (8 + i))))
			continue;

		/* Check if the channel is disabled */
467
		if (status & (1 << i))
468 469
			continue;

470
		pdev = get_pdev_slot_func(socket, i + 4, 1);
471
		if (!pdev) {
472 473 474
			i7core_printk(KERN_ERR, "Couldn't find socket %d "
						"fn %d.%d!!!\n",
						socket, i + 4, 1);
475 476 477 478 479 480 481 482 483 484
			return -ENODEV;
		}
		/* Devices 4-6 function 1 */
		pci_read_config_dword(pdev,
				MC_DOD_CH_DIMM0, &dimm_dod[0]);
		pci_read_config_dword(pdev,
				MC_DOD_CH_DIMM1, &dimm_dod[1]);
		pci_read_config_dword(pdev,
				MC_DOD_CH_DIMM2, &dimm_dod[2]);

485
		(*channels)++;
486 487 488 489 490 491

		for (j = 0; j < 3; j++) {
			if (!DIMM_PRESENT(dimm_dod[j]))
				continue;
			(*csrows)++;
		}
492 493
	}

494
	debugf0("Number of active channels on socket %d: %d\n",
495
		socket, *channels);
496

497 498 499
	return 0;
}

500
static int get_dimm_config(struct mem_ctl_info *mci, int *csrow)
501 502
{
	struct i7core_pvt *pvt = mci->pvt_info;
503
	struct csrow_info *csr;
504
	struct pci_dev *pdev;
505
	int i, j;
506
	unsigned long last_page = 0;
507
	enum edac_type mode;
508
	enum mem_type mtype;
509

510
	/* Get data from the MC register, function 0 */
511
	pdev = pvt->pci_mcr[0];
512
	if (!pdev)
513 514
		return -ENODEV;

515
	/* Device 3 function 0 reads */
516 517 518 519
	pci_read_config_dword(pdev, MC_CONTROL, &pvt->info.mc_control);
	pci_read_config_dword(pdev, MC_STATUS, &pvt->info.mc_status);
	pci_read_config_dword(pdev, MC_MAX_DOD, &pvt->info.max_dod);
	pci_read_config_dword(pdev, MC_CHANNEL_MAPPER, &pvt->info.ch_map);
520

521
	debugf0("QPI %d control=0x%08x status=0x%08x dod=0x%08x map=0x%08x\n",
522
		pvt->i7core_dev->socket, pvt->info.mc_control, pvt->info.mc_status,
523
		pvt->info.max_dod, pvt->info.ch_map);
524

525
	if (ECC_ENABLED(pvt)) {
526
		debugf0("ECC enabled with x%d SDCC\n", ECCx8(pvt) ? 8 : 4);
527 528 529 530 531
		if (ECCx8(pvt))
			mode = EDAC_S8ECD8ED;
		else
			mode = EDAC_S4ECD4ED;
	} else {
532
		debugf0("ECC disabled\n");
533 534
		mode = EDAC_NONE;
	}
535 536

	/* FIXME: need to handle the error codes */
537 538
	debugf0("DOD Max limits: DIMMS: %d, %d-ranked, %d-banked "
		"x%x x 0x%x\n",
539 540
		numdimms(pvt->info.max_dod),
		numrank(pvt->info.max_dod >> 2),
541
		numbank(pvt->info.max_dod >> 4),
542 543
		numrow(pvt->info.max_dod >> 6),
		numcol(pvt->info.max_dod >> 9));
544

545
	for (i = 0; i < NUM_CHANS; i++) {
546
		u32 data, dimm_dod[3], value[8];
547

548 549 550
		if (!pvt->pci_ch[i][0])
			continue;

551 552 553 554 555 556 557 558 559
		if (!CH_ACTIVE(pvt, i)) {
			debugf0("Channel %i is not active\n", i);
			continue;
		}
		if (CH_DISABLED(pvt, i)) {
			debugf0("Channel %i is disabled\n", i);
			continue;
		}

560
		/* Devices 4-6 function 0 */
561
		pci_read_config_dword(pvt->pci_ch[i][0],
562 563
				MC_CHANNEL_DIMM_INIT_PARAMS, &data);

564
		pvt->channel[i].ranks = (data & QUAD_RANK_PRESENT) ?
565
						4 : 2;
566

567 568
		if (data & REGISTERED_DIMM)
			mtype = MEM_RDDR3;
569
		else
570 571
			mtype = MEM_DDR3;
#if 0
572 573 574 575 576 577
		if (data & THREE_DIMMS_PRESENT)
			pvt->channel[i].dimms = 3;
		else if (data & SINGLE_QUAD_RANK_PRESENT)
			pvt->channel[i].dimms = 1;
		else
			pvt->channel[i].dimms = 2;
578 579 580
#endif

		/* Devices 4-6 function 1 */
581
		pci_read_config_dword(pvt->pci_ch[i][1],
582
				MC_DOD_CH_DIMM0, &dimm_dod[0]);
583
		pci_read_config_dword(pvt->pci_ch[i][1],
584
				MC_DOD_CH_DIMM1, &dimm_dod[1]);
585
		pci_read_config_dword(pvt->pci_ch[i][1],
586
				MC_DOD_CH_DIMM2, &dimm_dod[2]);
587

588
		debugf0("Ch%d phy rd%d, wr%d (0x%08x): "
589
			"%d ranks, %cDIMMs\n",
590 591 592
			i,
			RDLCH(pvt->info.ch_map, i), WRLCH(pvt->info.ch_map, i),
			data,
593
			pvt->channel[i].ranks,
594
			(data & REGISTERED_DIMM) ? 'R' : 'U');
595 596 597

		for (j = 0; j < 3; j++) {
			u32 banks, ranks, rows, cols;
598
			u32 size, npages;
599 600 601 602 603 604 605 606 607

			if (!DIMM_PRESENT(dimm_dod[j]))
				continue;

			banks = numbank(MC_DOD_NUMBANK(dimm_dod[j]));
			ranks = numrank(MC_DOD_NUMRANK(dimm_dod[j]));
			rows = numrow(MC_DOD_NUMROW(dimm_dod[j]));
			cols = numcol(MC_DOD_NUMCOL(dimm_dod[j]));

608 609 610
			/* DDR3 has 8 I/O banks */
			size = (rows * cols * banks * ranks) >> (20 - 3);

611
			pvt->channel[i].dimms++;
612

613 614 615
			debugf0("\tdimm %d %d Mb offset: %x, "
				"bank: %d, rank: %d, row: %#x, col: %#x\n",
				j, size,
616 617 618
				RANKOFFSET(dimm_dod[j]),
				banks, ranks, rows, cols);

619 620 621 622 623
#if PAGE_SHIFT > 20
			npages = size >> (PAGE_SHIFT - 20);
#else
			npages = size << (20 - PAGE_SHIFT);
#endif
624

625
			csr = &mci->csrows[*csrow];
626 627 628 629 630
			csr->first_page = last_page + 1;
			last_page += npages;
			csr->last_page = last_page;
			csr->nr_pages = npages;

631
			csr->page_mask = 0;
632
			csr->grain = 8;
633
			csr->csrow_idx = *csrow;
634 635 636 637
			csr->nr_channels = 1;

			csr->channels[0].chan_idx = i;
			csr->channels[0].ce_count = 0;
638

639
			pvt->csrow_map[i][j] = *csrow;
640

641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657
			switch (banks) {
			case 4:
				csr->dtype = DEV_X4;
				break;
			case 8:
				csr->dtype = DEV_X8;
				break;
			case 16:
				csr->dtype = DEV_X16;
				break;
			default:
				csr->dtype = DEV_UNKNOWN;
			}

			csr->edac_mode = mode;
			csr->mtype = mtype;

658
			(*csrow)++;
659
		}
660

661 662 663 664 665 666 667 668
		pci_read_config_dword(pdev, MC_SAG_CH_0, &value[0]);
		pci_read_config_dword(pdev, MC_SAG_CH_1, &value[1]);
		pci_read_config_dword(pdev, MC_SAG_CH_2, &value[2]);
		pci_read_config_dword(pdev, MC_SAG_CH_3, &value[3]);
		pci_read_config_dword(pdev, MC_SAG_CH_4, &value[4]);
		pci_read_config_dword(pdev, MC_SAG_CH_5, &value[5]);
		pci_read_config_dword(pdev, MC_SAG_CH_6, &value[6]);
		pci_read_config_dword(pdev, MC_SAG_CH_7, &value[7]);
669
		debugf1("\t[%i] DIVBY3\tREMOVED\tOFFSET\n", i);
670
		for (j = 0; j < 8; j++)
671
			debugf1("\t\t%#x\t%#x\t%#x\n",
672 673 674
				(value[j] >> 27) & 0x1,
				(value[j] >> 24) & 0x7,
				(value[j] && ((1 << 24) - 1)));
675 676
	}

677 678 679
	return 0;
}

680 681 682 683 684 685 686 687 688 689 690
/****************************************************************************
			Error insertion routines
 ****************************************************************************/

/* The i7core has independent error injection features per channel.
   However, to have a simpler code, we don't allow enabling error injection
   on more than one channel.
   Also, since a change at an inject parameter will be applied only at enable,
   we're disabling error injection on all write calls to the sysfs nodes that
   controls the error code injection.
 */
691
static int disable_inject(struct mem_ctl_info *mci)
692 693 694 695 696
{
	struct i7core_pvt *pvt = mci->pvt_info;

	pvt->inject.enable = 0;

697
	if (!pvt->pci_ch[pvt->inject.channel][0])
698 699
		return -ENODEV;

700
	pci_write_config_dword(pvt->pci_ch[pvt->inject.channel][0],
701
				MC_CHANNEL_ERROR_INJECT, 0);
702 703

	return 0;
704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720
}

/*
 * i7core inject inject.section
 *
 *	accept and store error injection inject.section value
 *	bit 0 - refers to the lower 32-byte half cacheline
 *	bit 1 - refers to the upper 32-byte half cacheline
 */
static ssize_t i7core_inject_section_store(struct mem_ctl_info *mci,
					   const char *data, size_t count)
{
	struct i7core_pvt *pvt = mci->pvt_info;
	unsigned long value;
	int rc;

	if (pvt->inject.enable)
721
		disable_inject(mci);
722 723 724

	rc = strict_strtoul(data, 10, &value);
	if ((rc < 0) || (value > 3))
725
		return -EIO;
726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753

	pvt->inject.section = (u32) value;
	return count;
}

static ssize_t i7core_inject_section_show(struct mem_ctl_info *mci,
					      char *data)
{
	struct i7core_pvt *pvt = mci->pvt_info;
	return sprintf(data, "0x%08x\n", pvt->inject.section);
}

/*
 * i7core inject.type
 *
 *	accept and store error injection inject.section value
 *	bit 0 - repeat enable - Enable error repetition
 *	bit 1 - inject ECC error
 *	bit 2 - inject parity error
 */
static ssize_t i7core_inject_type_store(struct mem_ctl_info *mci,
					const char *data, size_t count)
{
	struct i7core_pvt *pvt = mci->pvt_info;
	unsigned long value;
	int rc;

	if (pvt->inject.enable)
754
		disable_inject(mci);
755 756 757

	rc = strict_strtoul(data, 10, &value);
	if ((rc < 0) || (value > 7))
758
		return -EIO;
759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788

	pvt->inject.type = (u32) value;
	return count;
}

static ssize_t i7core_inject_type_show(struct mem_ctl_info *mci,
					      char *data)
{
	struct i7core_pvt *pvt = mci->pvt_info;
	return sprintf(data, "0x%08x\n", pvt->inject.type);
}

/*
 * i7core_inject_inject.eccmask_store
 *
 * The type of error (UE/CE) will depend on the inject.eccmask value:
 *   Any bits set to a 1 will flip the corresponding ECC bit
 *   Correctable errors can be injected by flipping 1 bit or the bits within
 *   a symbol pair (2 consecutive aligned 8-bit pairs - i.e. 7:0 and 15:8 or
 *   23:16 and 31:24). Flipping bits in two symbol pairs will cause an
 *   uncorrectable error to be injected.
 */
static ssize_t i7core_inject_eccmask_store(struct mem_ctl_info *mci,
					const char *data, size_t count)
{
	struct i7core_pvt *pvt = mci->pvt_info;
	unsigned long value;
	int rc;

	if (pvt->inject.enable)
789
		disable_inject(mci);
790 791 792

	rc = strict_strtoul(data, 10, &value);
	if (rc < 0)
793
		return -EIO;
794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816

	pvt->inject.eccmask = (u32) value;
	return count;
}

static ssize_t i7core_inject_eccmask_show(struct mem_ctl_info *mci,
					      char *data)
{
	struct i7core_pvt *pvt = mci->pvt_info;
	return sprintf(data, "0x%08x\n", pvt->inject.eccmask);
}

/*
 * i7core_addrmatch
 *
 * The type of error (UE/CE) will depend on the inject.eccmask value:
 *   Any bits set to a 1 will flip the corresponding ECC bit
 *   Correctable errors can be injected by flipping 1 bit or the bits within
 *   a symbol pair (2 consecutive aligned 8-bit pairs - i.e. 7:0 and 15:8 or
 *   23:16 and 31:24). Flipping bits in two symbol pairs will cause an
 *   uncorrectable error to be injected.
 */

817 818 819 820 821
#define DECLARE_ADDR_MATCH(param, limit)			\
static ssize_t i7core_inject_store_##param(			\
		struct mem_ctl_info *mci,			\
		const char *data, size_t count)			\
{								\
822
	struct i7core_pvt *pvt;					\
823 824 825
	long value;						\
	int rc;							\
								\
826 827 828
	debugf1("%s()\n", __func__);				\
	pvt = mci->pvt_info;					\
								\
829 830 831
	if (pvt->inject.enable)					\
		disable_inject(mci);				\
								\
832
	if (!strcasecmp(data, "any") || !strcasecmp(data, "any\n"))\
833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848
		value = -1;					\
	else {							\
		rc = strict_strtoul(data, 10, &value);		\
		if ((rc < 0) || (value >= limit))		\
			return -EIO;				\
	}							\
								\
	pvt->inject.param = value;				\
								\
	return count;						\
}								\
								\
static ssize_t i7core_inject_show_##param(			\
		struct mem_ctl_info *mci,			\
		char *data)					\
{								\
849 850 851 852
	struct i7core_pvt *pvt;					\
								\
	pvt = mci->pvt_info;					\
	debugf1("%s() pvt=%p\n", __func__, pvt);		\
853 854 855 856
	if (pvt->inject.param < 0)				\
		return sprintf(data, "any\n");			\
	else							\
		return sprintf(data, "%d\n", pvt->inject.param);\
857 858
}

859 860 861 862 863 864 865 866 867
#define ATTR_ADDR_MATCH(param)					\
	{							\
		.attr = {					\
			.name = #param,				\
			.mode = (S_IRUGO | S_IWUSR)		\
		},						\
		.show  = i7core_inject_show_##param,		\
		.store = i7core_inject_store_##param,		\
	}
868

869 870 871 872 873 874
DECLARE_ADDR_MATCH(channel, 3);
DECLARE_ADDR_MATCH(dimm, 3);
DECLARE_ADDR_MATCH(rank, 4);
DECLARE_ADDR_MATCH(bank, 32);
DECLARE_ADDR_MATCH(page, 0x10000);
DECLARE_ADDR_MATCH(col, 0x4000);
875

876 877 878 879 880
static int write_and_test(struct pci_dev *dev, int where, u32 val)
{
	u32 read;
	int count;

881 882 883 884
	debugf0("setting pci %02x:%02x.%x reg=%02x value=%08x\n",
		dev->bus->number, PCI_SLOT(dev->devfn), PCI_FUNC(dev->devfn),
		where, val);

885 886
	for (count = 0; count < 10; count++) {
		if (count)
887
			msleep(100);
888 889 890 891 892 893 894
		pci_write_config_dword(dev, where, val);
		pci_read_config_dword(dev, where, &read);

		if (read == val)
			return 0;
	}

895 896 897 898
	i7core_printk(KERN_ERR, "Error during set pci %02x:%02x.%x reg=%02x "
		"write=%08x. Read=%08x\n",
		dev->bus->number, PCI_SLOT(dev->devfn), PCI_FUNC(dev->devfn),
		where, val, read);
899 900 901 902

	return -EINVAL;
}

903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929
/*
 * This routine prepares the Memory Controller for error injection.
 * The error will be injected when some process tries to write to the
 * memory that matches the given criteria.
 * The criteria can be set in terms of a mask where dimm, rank, bank, page
 * and col can be specified.
 * A -1 value for any of the mask items will make the MCU to ignore
 * that matching criteria for error injection.
 *
 * It should be noticed that the error will only happen after a write operation
 * on a memory that matches the condition. if REPEAT_EN is not enabled at
 * inject mask, then it will produce just one error. Otherwise, it will repeat
 * until the injectmask would be cleaned.
 *
 * FIXME: This routine assumes that MAXNUMDIMMS value of MC_MAX_DOD
 *    is reliable enough to check if the MC is using the
 *    three channels. However, this is not clear at the datasheet.
 */
static ssize_t i7core_inject_enable_store(struct mem_ctl_info *mci,
				       const char *data, size_t count)
{
	struct i7core_pvt *pvt = mci->pvt_info;
	u32 injectmask;
	u64 mask = 0;
	int  rc;
	long enable;

930
	if (!pvt->pci_ch[pvt->inject.channel][0])
931 932
		return 0;

933 934 935 936 937 938 939 940 941 942 943 944 945
	rc = strict_strtoul(data, 10, &enable);
	if ((rc < 0))
		return 0;

	if (enable) {
		pvt->inject.enable = 1;
	} else {
		disable_inject(mci);
		return count;
	}

	/* Sets pvt->inject.dimm mask */
	if (pvt->inject.dimm < 0)
946
		mask |= 1LL << 41;
947
	else {
948
		if (pvt->channel[pvt->inject.channel].dimms > 2)
949
			mask |= (pvt->inject.dimm & 0x3LL) << 35;
950
		else
951
			mask |= (pvt->inject.dimm & 0x1LL) << 36;
952 953 954 955
	}

	/* Sets pvt->inject.rank mask */
	if (pvt->inject.rank < 0)
956
		mask |= 1LL << 40;
957
	else {
958
		if (pvt->channel[pvt->inject.channel].dimms > 2)
959
			mask |= (pvt->inject.rank & 0x1LL) << 34;
960
		else
961
			mask |= (pvt->inject.rank & 0x3LL) << 34;
962 963 964 965
	}

	/* Sets pvt->inject.bank mask */
	if (pvt->inject.bank < 0)
966
		mask |= 1LL << 39;
967
	else
968
		mask |= (pvt->inject.bank & 0x15LL) << 30;
969 970 971

	/* Sets pvt->inject.page mask */
	if (pvt->inject.page < 0)
972
		mask |= 1LL << 38;
973
	else
974
		mask |= (pvt->inject.page & 0xffff) << 14;
975 976 977

	/* Sets pvt->inject.column mask */
	if (pvt->inject.col < 0)
978
		mask |= 1LL << 37;
979
	else
980
		mask |= (pvt->inject.col & 0x3fff);
981

982 983 984 985 986 987 988 989 990 991 992 993
	/*
	 * bit    0: REPEAT_EN
	 * bits 1-2: MASK_HALF_CACHELINE
	 * bit    3: INJECT_ECC
	 * bit    4: INJECT_ADDR_PARITY
	 */

	injectmask = (pvt->inject.type & 1) |
		     (pvt->inject.section & 0x3) << 1 |
		     (pvt->inject.type & 0x6) << (3 - 1);

	/* Unlock writes to registers - this register is write only */
994
	pci_write_config_dword(pvt->pci_noncore,
995
			       MC_CFG_CONTROL, 0x2);
996

997
	write_and_test(pvt->pci_ch[pvt->inject.channel][0],
998
			       MC_CHANNEL_ADDR_MATCH, mask);
999
	write_and_test(pvt->pci_ch[pvt->inject.channel][0],
1000 1001
			       MC_CHANNEL_ADDR_MATCH + 4, mask >> 32L);

1002
	write_and_test(pvt->pci_ch[pvt->inject.channel][0],
1003 1004
			       MC_CHANNEL_ERROR_MASK, pvt->inject.eccmask);

1005
	write_and_test(pvt->pci_ch[pvt->inject.channel][0],
1006
			       MC_CHANNEL_ERROR_INJECT, injectmask);
1007

1008
	/*
1009 1010 1011
	 * This is something undocumented, based on my tests
	 * Without writing 8 to this register, errors aren't injected. Not sure
	 * why.
1012
	 */
1013
	pci_write_config_dword(pvt->pci_noncore,
1014
			       MC_CFG_CONTROL, 8);
1015

1016 1017
	debugf0("Error inject addr match 0x%016llx, ecc 0x%08x,"
		" inject 0x%08x\n",
1018 1019
		mask, pvt->inject.eccmask, injectmask);

1020

1021 1022 1023 1024 1025 1026 1027
	return count;
}

static ssize_t i7core_inject_enable_show(struct mem_ctl_info *mci,
					char *data)
{
	struct i7core_pvt *pvt = mci->pvt_info;
1028 1029
	u32 injectmask;

1030 1031 1032
	if (!pvt->pci_ch[pvt->inject.channel][0])
		return 0;

1033
	pci_read_config_dword(pvt->pci_ch[pvt->inject.channel][0],
1034
			       MC_CHANNEL_ERROR_INJECT, &injectmask);
1035 1036 1037 1038 1039 1040

	debugf0("Inject error read: 0x%018x\n", injectmask);

	if (injectmask & 0x0c)
		pvt->inject.enable = 1;

1041 1042 1043
	return sprintf(data, "%d\n", pvt->inject.enable);
}

1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056
#define DECLARE_COUNTER(param)					\
static ssize_t i7core_show_counter_##param(			\
		struct mem_ctl_info *mci,			\
		char *data)					\
{								\
	struct i7core_pvt *pvt = mci->pvt_info;			\
								\
	debugf1("%s() \n", __func__);				\
	if (!pvt->ce_count_available || (pvt->is_registered))	\
		return sprintf(data, "data unavailable\n");	\
	return sprintf(data, "%lu\n",				\
			pvt->udimm_ce_count[param]);		\
}
1057

1058 1059 1060 1061 1062 1063 1064
#define ATTR_COUNTER(param)					\
	{							\
		.attr = {					\
			.name = __stringify(udimm##param),	\
			.mode = (S_IRUGO | S_IWUSR)		\
		},						\
		.show  = i7core_show_counter_##param		\
1065
	}
1066

1067 1068 1069
DECLARE_COUNTER(0);
DECLARE_COUNTER(1);
DECLARE_COUNTER(2);
1070

1071 1072 1073
/*
 * Sysfs struct
 */
1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090


static struct mcidev_sysfs_attribute i7core_addrmatch_attrs[] = {
	ATTR_ADDR_MATCH(channel),
	ATTR_ADDR_MATCH(dimm),
	ATTR_ADDR_MATCH(rank),
	ATTR_ADDR_MATCH(bank),
	ATTR_ADDR_MATCH(page),
	ATTR_ADDR_MATCH(col),
	{ .attr = { .name = NULL } }
};

static struct mcidev_sysfs_group i7core_inject_addrmatch = {
	.name  = "inject_addrmatch",
	.mcidev_attr = i7core_addrmatch_attrs,
};

1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101
static struct mcidev_sysfs_attribute i7core_udimm_counters_attrs[] = {
	ATTR_COUNTER(0),
	ATTR_COUNTER(1),
	ATTR_COUNTER(2),
};

static struct mcidev_sysfs_group i7core_udimm_counters = {
	.name  = "all_channel_counts",
	.mcidev_attr = i7core_udimm_counters_attrs,
};

1102
static struct mcidev_sysfs_attribute i7core_sysfs_attrs[] = {
1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124
	{
		.attr = {
			.name = "inject_section",
			.mode = (S_IRUGO | S_IWUSR)
		},
		.show  = i7core_inject_section_show,
		.store = i7core_inject_section_store,
	}, {
		.attr = {
			.name = "inject_type",
			.mode = (S_IRUGO | S_IWUSR)
		},
		.show  = i7core_inject_type_show,
		.store = i7core_inject_type_store,
	}, {
		.attr = {
			.name = "inject_eccmask",
			.mode = (S_IRUGO | S_IWUSR)
		},
		.show  = i7core_inject_eccmask_show,
		.store = i7core_inject_eccmask_store,
	}, {
1125
		.grp = &i7core_inject_addrmatch,
1126 1127 1128 1129 1130 1131 1132 1133
	}, {
		.attr = {
			.name = "inject_enable",
			.mode = (S_IRUGO | S_IWUSR)
		},
		.show  = i7core_inject_enable_show,
		.store = i7core_inject_enable_store,
	},
1134
	{ .attr = { .name = NULL } },	/* Reserved for udimm counters */
1135
	{ .attr = { .name = NULL } }
1136 1137
};

1138 1139 1140 1141 1142 1143 1144 1145
/****************************************************************************
	Device initialization routines: put/get, init/exit
 ****************************************************************************/

/*
 *	i7core_put_devices	'put' all the devices that we have
 *				reserved via 'get'
 */
1146
static void i7core_put_devices(struct i7core_dev *i7core_dev)
1147
{
1148
	int i;
1149

1150
	debugf0(__FILE__ ": %s()\n", __func__);
1151
	for (i = 0; i < i7core_dev->n_devs; i++) {
1152 1153 1154 1155 1156 1157 1158 1159
		struct pci_dev *pdev = i7core_dev->pdev[i];
		if (!pdev)
			continue;
		debugf0("Removing dev %02x:%02x.%d\n",
			pdev->bus->number,
			PCI_SLOT(pdev->devfn), PCI_FUNC(pdev->devfn));
		pci_dev_put(pdev);
	}
1160
	kfree(i7core_dev->pdev);
1161
	list_del(&i7core_dev->list);
1162 1163
	kfree(i7core_dev);
}
1164

1165 1166
static void i7core_put_all_devices(void)
{
1167
	struct i7core_dev *i7core_dev, *tmp;
1168

1169
	list_for_each_entry_safe(i7core_dev, tmp, &i7core_edac_list, list)
1170
		i7core_put_devices(i7core_dev);
1171 1172
}

1173
static void __init i7core_xeon_pci_fixup(int dev_id)
1174 1175 1176 1177 1178 1179 1180 1181
{
	struct pci_dev *pdev = NULL;
	int i;
	/*
	 * On Xeon 55xx, the Intel Quckpath Arch Generic Non-core pci buses
	 * aren't announced by acpi. So, we need to use a legacy scan probing
	 * to detect them
	 */
1182
	pdev = pci_get_device(PCI_VENDOR_ID_INTEL, dev_id, NULL);
1183
	if (unlikely(!pdev)) {
1184
		for (i = 0; i < MAX_SOCKET_BUSES; i++)
1185 1186 1187 1188
			pcibios_scan_specific_bus(255-i);
	}
}

1189 1190 1191 1192 1193 1194
/*
 *	i7core_get_devices	Find and perform 'get' operation on the MCH's
 *			device/functions we want to reference for this driver
 *
 *			Need to 'get' device 16 func 1 and func 2
 */
1195 1196
int i7core_get_onedevice(struct pci_dev **prev, int devno,
			 struct pci_id_descr *dev_descr, unsigned n_devs)
1197
{
1198 1199
	struct i7core_dev *i7core_dev;

1200
	struct pci_dev *pdev = NULL;
1201 1202
	u8 bus = 0;
	u8 socket = 0;
1203

1204
	pdev = pci_get_device(PCI_VENDOR_ID_INTEL,
1205
			      dev_descr->dev_id, *prev);
1206 1207 1208 1209 1210 1211

	/*
	 * On Xeon 55xx, the Intel Quckpath Arch Generic Non-core regs
	 * is at addr 8086:2c40, instead of 8086:2c41. So, we need
	 * to probe for the alternate address in case of failure
	 */
1212
	if (dev_descr->dev_id == PCI_DEVICE_ID_INTEL_I7_NONCORE && !pdev)
1213
		pdev = pci_get_device(PCI_VENDOR_ID_INTEL,
1214
				      PCI_DEVICE_ID_INTEL_I7_NONCORE_ALT, *prev);
1215

1216
	if (dev_descr->dev_id == PCI_DEVICE_ID_INTEL_LYNNFIELD_NONCORE && !pdev) {
1217 1218 1219
		pdev = pci_get_device(PCI_VENDOR_ID_INTEL,
				      PCI_DEVICE_ID_INTEL_LYNNFIELD_NONCORE_ALT,
				      *prev);
1220 1221 1222 1223 1224
		if (!pdev)
			pdev = pci_get_device(PCI_VENDOR_ID_INTEL,
					      PCI_DEVICE_ID_INTEL_LYNNFIELD_NONCORE_REV2,
					      *prev);
	}
1225

1226 1227 1228 1229
	if (!pdev) {
		if (*prev) {
			*prev = pdev;
			return 0;
1230 1231
		}

1232
		if (dev_descr->optional)
1233
			return 0;
1234

1235 1236
		i7core_printk(KERN_ERR,
			"Device not found: dev %02x.%d PCI ID %04x:%04x\n",
1237 1238
			dev_descr->dev, dev_descr->func,
			PCI_VENDOR_ID_INTEL, dev_descr->dev_id);
1239

1240 1241 1242 1243
		/* End of list, leave */
		return -ENODEV;
	}
	bus = pdev->bus->number;
1244

1245 1246 1247 1248 1249
	if (bus == 0x3f)
		socket = 0;
	else
		socket = 255 - bus;

1250 1251 1252 1253 1254
	i7core_dev = get_i7core_dev(socket);
	if (!i7core_dev) {
		i7core_dev = kzalloc(sizeof(*i7core_dev), GFP_KERNEL);
		if (!i7core_dev)
			return -ENOMEM;
1255
		i7core_dev->pdev = kzalloc(sizeof(*i7core_dev->pdev) * n_devs,
1256
					   GFP_KERNEL);
1257 1258
		if (!i7core_dev->pdev) {
			kfree(i7core_dev);
1259
			return -ENOMEM;
1260
		}
1261
		i7core_dev->socket = socket;
1262
		i7core_dev->n_devs = n_devs;
1263
		list_add_tail(&i7core_dev->list, &i7core_edac_list);
1264
	}
1265

1266
	if (i7core_dev->pdev[devno]) {
1267 1268 1269
		i7core_printk(KERN_ERR,
			"Duplicated device for "
			"dev %02x:%02x.%d PCI ID %04x:%04x\n",
1270 1271
			bus, dev_descr->dev, dev_descr->func,
			PCI_VENDOR_ID_INTEL, dev_descr->dev_id);
1272 1273 1274
		pci_dev_put(pdev);
		return -ENODEV;
	}
1275

1276
	i7core_dev->pdev[devno] = pdev;
1277 1278

	/* Sanity check */
1279 1280
	if (unlikely(PCI_SLOT(pdev->devfn) != dev_descr->dev ||
			PCI_FUNC(pdev->devfn) != dev_descr->func)) {
1281 1282 1283
		i7core_printk(KERN_ERR,
			"Device PCI ID %04x:%04x "
			"has dev %02x:%02x.%d instead of dev %02x:%02x.%d\n",
1284
			PCI_VENDOR_ID_INTEL, dev_descr->dev_id,
1285
			bus, PCI_SLOT(pdev->devfn), PCI_FUNC(pdev->devfn),
1286
			bus, dev_descr->dev, dev_descr->func);
1287 1288
		return -ENODEV;
	}
1289

1290 1291 1292 1293 1294
	/* Be sure that the device is enabled */
	if (unlikely(pci_enable_device(pdev) < 0)) {
		i7core_printk(KERN_ERR,
			"Couldn't enable "
			"dev %02x:%02x.%d PCI ID %04x:%04x\n",
1295 1296
			bus, dev_descr->dev, dev_descr->func,
			PCI_VENDOR_ID_INTEL, dev_descr->dev_id);
1297 1298
		return -ENODEV;
	}
1299

1300
	debugf0("Detected socket %d dev %02x:%02x.%d PCI ID %04x:%04x\n",
1301 1302 1303
		socket, bus, dev_descr->dev,
		dev_descr->func,
		PCI_VENDOR_ID_INTEL, dev_descr->dev_id);
1304

1305
	*prev = pdev;
1306

1307 1308
	return 0;
}
1309

1310
static int i7core_get_devices(struct pci_id_descr dev_descr[], unsigned n_devs)
1311
{
1312
	int i, rc;
1313
	struct pci_dev *pdev = NULL;
1314

1315
	for (i = 0; i < n_devs; i++) {
1316 1317
		pdev = NULL;
		do {
1318 1319 1320
			rc = i7core_get_onedevice(&pdev, i, &dev_descr[i],
						  n_devs);
			if (rc < 0) {
1321
				i7core_put_all_devices();
1322 1323 1324 1325
				return -ENODEV;
			}
		} while (pdev);
	}
1326

1327 1328 1329
	return 0;
}

1330 1331
static int mci_bind_devs(struct mem_ctl_info *mci,
			 struct i7core_dev *i7core_dev)
1332 1333 1334
{
	struct i7core_pvt *pvt = mci->pvt_info;
	struct pci_dev *pdev;
1335
	int i, func, slot;
1336

1337 1338 1339
	/* Associates i7core_dev and mci for future usage */
	pvt->i7core_dev = i7core_dev;
	i7core_dev->mci = mci;
1340

1341
	pvt->is_registered = 0;
1342
	for (i = 0; i < i7core_dev->n_devs; i++) {
1343 1344
		pdev = i7core_dev->pdev[i];
		if (!pdev)
1345 1346
			continue;

1347 1348 1349 1350 1351 1352 1353 1354
		func = PCI_FUNC(pdev->devfn);
		slot = PCI_SLOT(pdev->devfn);
		if (slot == 3) {
			if (unlikely(func > MAX_MCR_FUNC))
				goto error;
			pvt->pci_mcr[func] = pdev;
		} else if (likely(slot >= 4 && slot < 4 + NUM_CHANS)) {
			if (unlikely(func > MAX_CHAN_FUNC))
1355
				goto error;
1356 1357 1358 1359 1360
			pvt->pci_ch[slot - 4][func] = pdev;
		} else if (!slot && !func)
			pvt->pci_noncore = pdev;
		else
			goto error;
1361

1362 1363 1364
		debugf0("Associated fn %d.%d, dev = %p, socket %d\n",
			PCI_SLOT(pdev->devfn), PCI_FUNC(pdev->devfn),
			pdev, i7core_dev->socket);
1365

1366 1367 1368
		if (PCI_SLOT(pdev->devfn) == 3 &&
			PCI_FUNC(pdev->devfn) == 2)
			pvt->is_registered = 1;
1369
	}
1370

1371 1372 1373 1374 1375 1376 1377 1378 1379
	/*
	 * Add extra nodes to count errors on udimm
	 * For registered memory, this is not needed, since the counters
	 * are already displayed at the standard locations
	 */
	if (!pvt->is_registered)
		i7core_sysfs_attrs[ARRAY_SIZE(i7core_sysfs_attrs)-2].grp =
			&i7core_udimm_counters;

1380
	return 0;
1381 1382 1383 1384 1385 1386

error:
	i7core_printk(KERN_ERR, "Device %d, function %d "
		      "is out of the expected range\n",
		      slot, func);
	return -EINVAL;
1387 1388
}

1389 1390 1391
/****************************************************************************
			Error check routines
 ****************************************************************************/
1392
static void i7core_rdimm_update_csrow(struct mem_ctl_info *mci,
1393 1394 1395 1396
					 int chan, int dimm, int add)
{
	char *msg;
	struct i7core_pvt *pvt = mci->pvt_info;
1397
	int row = pvt->csrow_map[chan][dimm], i;
1398 1399 1400

	for (i = 0; i < add; i++) {
		msg = kasprintf(GFP_KERNEL, "Corrected error "
1401 1402
				"(Socket=%d channel=%d dimm=%d)",
				pvt->i7core_dev->socket, chan, dimm);
1403 1404 1405 1406 1407 1408 1409

		edac_mc_handle_fbd_ce(mci, row, 0, msg);
		kfree (msg);
	}
}

static void i7core_rdimm_update_ce_count(struct mem_ctl_info *mci,
1410
			int chan, int new0, int new1, int new2)
1411 1412 1413 1414
{
	struct i7core_pvt *pvt = mci->pvt_info;
	int add0 = 0, add1 = 0, add2 = 0;
	/* Updates CE counters if it is not the first time here */
1415
	if (pvt->ce_count_available) {
1416 1417
		/* Updates CE counters */

1418 1419 1420
		add2 = new2 - pvt->rdimm_last_ce_count[chan][2];
		add1 = new1 - pvt->rdimm_last_ce_count[chan][1];
		add0 = new0 - pvt->rdimm_last_ce_count[chan][0];
1421 1422 1423

		if (add2 < 0)
			add2 += 0x7fff;
1424
		pvt->rdimm_ce_count[chan][2] += add2;
1425 1426 1427

		if (add1 < 0)
			add1 += 0x7fff;
1428
		pvt->rdimm_ce_count[chan][1] += add1;
1429 1430 1431

		if (add0 < 0)
			add0 += 0x7fff;
1432
		pvt->rdimm_ce_count[chan][0] += add0;
1433
	} else
1434
		pvt->ce_count_available = 1;
1435 1436

	/* Store the new values */
1437 1438 1439
	pvt->rdimm_last_ce_count[chan][2] = new2;
	pvt->rdimm_last_ce_count[chan][1] = new1;
	pvt->rdimm_last_ce_count[chan][0] = new0;
1440 1441 1442

	/*updated the edac core */
	if (add0 != 0)
1443
		i7core_rdimm_update_csrow(mci, chan, 0, add0);
1444
	if (add1 != 0)
1445
		i7core_rdimm_update_csrow(mci, chan, 1, add1);
1446
	if (add2 != 0)
1447
		i7core_rdimm_update_csrow(mci, chan, 2, add2);
1448 1449 1450

}

1451
static void i7core_rdimm_check_mc_ecc_err(struct mem_ctl_info *mci)
1452 1453 1454 1455 1456 1457
{
	struct i7core_pvt *pvt = mci->pvt_info;
	u32 rcv[3][2];
	int i, new0, new1, new2;

	/*Read DEV 3: FUN 2:  MC_COR_ECC_CNT regs directly*/
1458
	pci_read_config_dword(pvt->pci_mcr[2], MC_COR_ECC_CNT_0,
1459
								&rcv[0][0]);
1460
	pci_read_config_dword(pvt->pci_mcr[2], MC_COR_ECC_CNT_1,
1461
								&rcv[0][1]);
1462
	pci_read_config_dword(pvt->pci_mcr[2], MC_COR_ECC_CNT_2,
1463
								&rcv[1][0]);
1464
	pci_read_config_dword(pvt->pci_mcr[2], MC_COR_ECC_CNT_3,
1465
								&rcv[1][1]);
1466
	pci_read_config_dword(pvt->pci_mcr[2], MC_COR_ECC_CNT_4,
1467
								&rcv[2][0]);
1468
	pci_read_config_dword(pvt->pci_mcr[2], MC_COR_ECC_CNT_5,
1469 1470 1471 1472 1473
								&rcv[2][1]);
	for (i = 0 ; i < 3; i++) {
		debugf3("MC_COR_ECC_CNT%d = 0x%x; MC_COR_ECC_CNT%d = 0x%x\n",
			(i * 2), rcv[i][0], (i * 2) + 1, rcv[i][1]);
		/*if the channel has 3 dimms*/
1474
		if (pvt->channel[i].dimms > 2) {
1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485
			new0 = DIMM_BOT_COR_ERR(rcv[i][0]);
			new1 = DIMM_TOP_COR_ERR(rcv[i][0]);
			new2 = DIMM_BOT_COR_ERR(rcv[i][1]);
		} else {
			new0 = DIMM_TOP_COR_ERR(rcv[i][0]) +
					DIMM_BOT_COR_ERR(rcv[i][0]);
			new1 = DIMM_TOP_COR_ERR(rcv[i][1]) +
					DIMM_BOT_COR_ERR(rcv[i][1]);
			new2 = 0;
		}

1486
		i7core_rdimm_update_ce_count(mci, i, new0, new1, new2);
1487 1488
	}
}
1489 1490 1491 1492 1493 1494 1495

/* This function is based on the device 3 function 4 registers as described on:
 * Intel Xeon Processor 5500 Series Datasheet Volume 2
 *	http://www.intel.com/Assets/PDF/datasheet/321322.pdf
 * also available at:
 * 	http://www.arrownac.com/manufacturers/intel/s/nehalem/5500-datasheet-v2.pdf
 */
1496
static void i7core_udimm_check_mc_ecc_err(struct mem_ctl_info *mci)
1497 1498 1499 1500 1501
{
	struct i7core_pvt *pvt = mci->pvt_info;
	u32 rcv1, rcv0;
	int new0, new1, new2;

1502
	if (!pvt->pci_mcr[4]) {
1503
		debugf0("%s MCR registers not found\n", __func__);
1504 1505 1506
		return;
	}

1507
	/* Corrected test errors */
1508 1509
	pci_read_config_dword(pvt->pci_mcr[4], MC_TEST_ERR_RCV1, &rcv1);
	pci_read_config_dword(pvt->pci_mcr[4], MC_TEST_ERR_RCV0, &rcv0);
1510 1511 1512 1513 1514 1515 1516

	/* Store the new values */
	new2 = DIMM2_COR_ERR(rcv1);
	new1 = DIMM1_COR_ERR(rcv0);
	new0 = DIMM0_COR_ERR(rcv0);

	/* Updates CE counters if it is not the first time here */
1517
	if (pvt->ce_count_available) {
1518 1519 1520
		/* Updates CE counters */
		int add0, add1, add2;

1521 1522 1523
		add2 = new2 - pvt->udimm_last_ce_count[2];
		add1 = new1 - pvt->udimm_last_ce_count[1];
		add0 = new0 - pvt->udimm_last_ce_count[0];
1524 1525 1526

		if (add2 < 0)
			add2 += 0x7fff;
1527
		pvt->udimm_ce_count[2] += add2;
1528 1529 1530

		if (add1 < 0)
			add1 += 0x7fff;
1531
		pvt->udimm_ce_count[1] += add1;
1532 1533 1534

		if (add0 < 0)
			add0 += 0x7fff;
1535
		pvt->udimm_ce_count[0] += add0;
1536 1537 1538 1539 1540

		if (add0 | add1 | add2)
			i7core_printk(KERN_ERR, "New Corrected error(s): "
				      "dimm0: +%d, dimm1: +%d, dimm2 +%d\n",
				      add0, add1, add2);
1541
	} else
1542
		pvt->ce_count_available = 1;
1543 1544

	/* Store the new values */
1545 1546 1547
	pvt->udimm_last_ce_count[2] = new2;
	pvt->udimm_last_ce_count[1] = new1;
	pvt->udimm_last_ce_count[0] = new0;
1548 1549
}

1550 1551 1552
/*
 * According with tables E-11 and E-12 of chapter E.3.3 of Intel 64 and IA-32
 * Architectures Software Developer’s Manual Volume 3B.
1553 1554 1555
 * Nehalem are defined as family 0x06, model 0x1a
 *
 * The MCA registers used here are the following ones:
1556
 *     struct mce field	MCA Register
1557 1558 1559
 *     m->status	MSR_IA32_MC8_STATUS
 *     m->addr		MSR_IA32_MC8_ADDR
 *     m->misc		MSR_IA32_MC8_MISC
1560 1561 1562
 * In the case of Nehalem, the error information is masked at .status and .misc
 * fields
 */
1563 1564 1565
static void i7core_mce_output_error(struct mem_ctl_info *mci,
				    struct mce *m)
{
1566
	struct i7core_pvt *pvt = mci->pvt_info;
1567
	char *type, *optype, *err, *msg;
1568
	unsigned long error = m->status & 0x1ff0000l;
1569
	u32 optypenum = (m->status >> 4) & 0x07;
1570 1571 1572 1573 1574
	u32 core_err_cnt = (m->status >> 38) && 0x7fff;
	u32 dimm = (m->misc >> 16) & 0x3;
	u32 channel = (m->misc >> 18) & 0x3;
	u32 syndrome = m->misc >> 32;
	u32 errnum = find_first_bit(&error, 32);
1575
	int csrow;
1576

1577 1578 1579 1580 1581
	if (m->mcgstatus & 1)
		type = "FATAL";
	else
		type = "NON_FATAL";

1582
	switch (optypenum) {
1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600
	case 0:
		optype = "generic undef request";
		break;
	case 1:
		optype = "read error";
		break;
	case 2:
		optype = "write error";
		break;
	case 3:
		optype = "addr/cmd error";
		break;
	case 4:
		optype = "scrubbing error";
		break;
	default:
		optype = "reserved";
		break;
1601 1602
	}

1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632
	switch (errnum) {
	case 16:
		err = "read ECC error";
		break;
	case 17:
		err = "RAS ECC error";
		break;
	case 18:
		err = "write parity error";
		break;
	case 19:
		err = "redundacy loss";
		break;
	case 20:
		err = "reserved";
		break;
	case 21:
		err = "memory range error";
		break;
	case 22:
		err = "RTID out of range";
		break;
	case 23:
		err = "address parity error";
		break;
	case 24:
		err = "byte enable parity error";
		break;
	default:
		err = "unknown";
1633 1634
	}

1635
	/* FIXME: should convert addr into bank and rank information */
1636
	msg = kasprintf(GFP_ATOMIC,
1637
		"%s (addr = 0x%08llx, cpu=%d, Dimm=%d, Channel=%d, "
1638
		"syndrome=0x%08x, count=%d, Err=%08llx:%08llx (%s: %s))\n",
1639
		type, (long long) m->addr, m->cpu, dimm, channel,
1640 1641
		syndrome, core_err_cnt, (long long)m->status,
		(long long)m->misc, optype, err);
1642 1643

	debugf0("%s", msg);
1644

1645
	csrow = pvt->csrow_map[channel][dimm];
1646

1647
	/* Call the helper to output message */
1648 1649 1650
	if (m->mcgstatus & 1)
		edac_mc_handle_fbd_ue(mci, csrow, 0,
				0 /* FIXME: should be channel here */, msg);
1651
	else if (!pvt->is_registered)
1652 1653
		edac_mc_handle_fbd_ce(mci, csrow,
				0 /* FIXME: should be channel here */, msg);
1654 1655

	kfree(msg);
1656 1657
}

1658 1659 1660 1661 1662 1663
/*
 *	i7core_check_error	Retrieve and process errors reported by the
 *				hardware. Called by the Core module.
 */
static void i7core_check_error(struct mem_ctl_info *mci)
{
1664 1665 1666
	struct i7core_pvt *pvt = mci->pvt_info;
	int i;
	unsigned count = 0;
1667
	struct mce *m;
1668

1669 1670 1671 1672 1673 1674
	/*
	 * MCE first step: Copy all mce errors into a temporary buffer
	 * We use a double buffering here, to reduce the risk of
	 * loosing an error.
	 */
	smp_rmb();
1675 1676
	count = (pvt->mce_out + MCE_LOG_LEN - pvt->mce_in)
		% MCE_LOG_LEN;
1677
	if (!count)
1678
		goto check_ce_error;
1679

1680
	m = pvt->mce_outentry;
1681 1682
	if (pvt->mce_in + count > MCE_LOG_LEN) {
		unsigned l = MCE_LOG_LEN - pvt->mce_in;
1683

1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700
		memcpy(m, &pvt->mce_entry[pvt->mce_in], sizeof(*m) * l);
		smp_wmb();
		pvt->mce_in = 0;
		count -= l;
		m += l;
	}
	memcpy(m, &pvt->mce_entry[pvt->mce_in], sizeof(*m) * count);
	smp_wmb();
	pvt->mce_in += count;

	smp_rmb();
	if (pvt->mce_overrun) {
		i7core_printk(KERN_ERR, "Lost %d memory errors\n",
			      pvt->mce_overrun);
		smp_wmb();
		pvt->mce_overrun = 0;
	}
1701

1702 1703 1704
	/*
	 * MCE second step: parse errors and display
	 */
1705
	for (i = 0; i < count; i++)
1706
		i7core_mce_output_error(mci, &pvt->mce_outentry[i]);
1707

1708 1709 1710
	/*
	 * Now, let's increment CE error counts
	 */
1711
check_ce_error:
1712 1713 1714 1715
	if (!pvt->is_registered)
		i7core_udimm_check_mc_ecc_err(mci);
	else
		i7core_rdimm_check_mc_ecc_err(mci);
1716 1717
}

1718 1719 1720 1721 1722
/*
 * i7core_mce_check_error	Replicates mcelog routine to get errors
 *				This routine simply queues mcelog errors, and
 *				return. The error itself should be handled later
 *				by i7core_check_error.
1723 1724
 * WARNING: As this routine should be called at NMI time, extra care should
 * be taken to avoid deadlocks, and to be as fast as possible.
1725 1726 1727
 */
static int i7core_mce_check_error(void *priv, struct mce *mce)
{
1728 1729
	struct mem_ctl_info *mci = priv;
	struct i7core_pvt *pvt = mci->pvt_info;
1730

1731 1732 1733 1734 1735 1736 1737
	/*
	 * Just let mcelog handle it if the error is
	 * outside the memory controller
	 */
	if (((mce->status & 0xffff) >> 7) != 1)
		return 0;

1738 1739 1740 1741
	/* Bank 8 registers are the only ones that we know how to handle */
	if (mce->bank != 8)
		return 0;

R
Randy Dunlap 已提交
1742
#ifdef CONFIG_SMP
1743
	/* Only handle if it is the right mc controller */
1744
	if (cpu_data(mce->cpu).phys_proc_id != pvt->i7core_dev->socket)
1745
		return 0;
R
Randy Dunlap 已提交
1746
#endif
1747

1748
	smp_rmb();
1749
	if ((pvt->mce_out + 1) % MCE_LOG_LEN == pvt->mce_in) {
1750 1751 1752
		smp_wmb();
		pvt->mce_overrun++;
		return 0;
1753
	}
1754 1755 1756

	/* Copy memory error at the ringbuffer */
	memcpy(&pvt->mce_entry[pvt->mce_out], mce, sizeof(*mce));
1757
	smp_wmb();
1758
	pvt->mce_out = (pvt->mce_out + 1) % MCE_LOG_LEN;
1759

1760 1761 1762 1763
	/* Handle fatal errors immediately */
	if (mce->mcgstatus & 1)
		i7core_check_error(mci);

1764
	/* Advice mcelog that the error were handled */
1765
	return 1;
1766 1767
}

1768 1769
static int i7core_register_mci(struct i7core_dev *i7core_dev,
			       int num_channels, int num_csrows)
1770 1771 1772
{
	struct mem_ctl_info *mci;
	struct i7core_pvt *pvt;
1773
	int csrow = 0;
1774
	int rc;
1775 1776

	/* allocate a new MC control structure */
1777 1778
	mci = edac_mc_alloc(sizeof(*pvt), num_csrows, num_channels,
			    i7core_dev->socket);
1779 1780
	if (unlikely(!mci))
		return -ENOMEM;
1781 1782 1783

	debugf0("MC: " __FILE__ ": %s(): mci = %p\n", __func__, mci);

1784 1785 1786
	/* record ptr to the generic device */
	mci->dev = &i7core_dev->pdev[0]->dev;

1787
	pvt = mci->pvt_info;
1788
	memset(pvt, 0, sizeof(*pvt));
1789

1790 1791 1792 1793 1794 1795
	/*
	 * FIXME: how to handle RDDR3 at MCI level? It is possible to have
	 * Mixed RDDR3/UDDR3 with Nehalem, provided that they are on different
	 * memory channels
	 */
	mci->mtype_cap = MEM_FLAG_DDR3;
1796 1797 1798 1799
	mci->edac_ctl_cap = EDAC_FLAG_NONE;
	mci->edac_cap = EDAC_FLAG_NONE;
	mci->mod_name = "i7core_edac.c";
	mci->mod_ver = I7CORE_REVISION;
1800 1801 1802
	mci->ctl_name = kasprintf(GFP_KERNEL, "i7 core #%d",
				  i7core_dev->socket);
	mci->dev_name = pci_name(i7core_dev->pdev[0]);
1803
	mci->ctl_page_to_phys = NULL;
1804
	mci->mc_driver_sysfs_attributes = i7core_sysfs_attrs;
1805 1806
	/* Set the function pointer to an actual operation function */
	mci->edac_check = i7core_check_error;
1807

1808
	/* Store pci devices at mci for faster access */
1809
	rc = mci_bind_devs(mci, i7core_dev);
1810
	if (unlikely(rc < 0))
1811
		goto fail;
1812 1813

	/* Get dimm basic config */
1814
	get_dimm_config(mci, &csrow);
1815

1816
	/* add this new MC control structure to EDAC's list of MCs */
1817
	if (unlikely(edac_mc_add_mc(mci))) {
1818 1819 1820 1821 1822
		debugf0("MC: " __FILE__
			": %s(): failed edac_mc_add_mc()\n", __func__);
		/* FIXME: perhaps some code should go here that disables error
		 * reporting if we just enabled it
		 */
1823 1824

		rc = -EINVAL;
1825
		goto fail;
1826 1827 1828
	}

	/* allocating generic PCI control info */
1829 1830
	i7core_pci = edac_pci_create_generic_ctl(&i7core_dev->pdev[0]->dev,
						 EDAC_MOD_STR);
1831
	if (unlikely(!i7core_pci)) {
1832 1833 1834 1835 1836 1837 1838 1839
		printk(KERN_WARNING
			"%s(): Unable to create PCI control\n",
			__func__);
		printk(KERN_WARNING
			"%s(): PCI error report via EDAC not setup\n",
			__func__);
	}

1840
	/* Default error mask is any memory */
1841
	pvt->inject.channel = 0;
1842 1843 1844 1845 1846 1847
	pvt->inject.dimm = -1;
	pvt->inject.rank = -1;
	pvt->inject.bank = -1;
	pvt->inject.page = -1;
	pvt->inject.col = -1;

1848
	/* Registers on edac_mce in order to receive memory errors */
1849
	pvt->edac_mce.priv = mci;
1850 1851 1852
	pvt->edac_mce.check_error = i7core_mce_check_error;

	rc = edac_mce_register(&pvt->edac_mce);
1853
	if (unlikely(rc < 0)) {
1854 1855
		debugf0("MC: " __FILE__
			": %s(): failed edac_mce_register()\n", __func__);
1856 1857 1858
	}

fail:
T
Tony Luck 已提交
1859 1860
	if (rc < 0)
		edac_mc_free(mci);
1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878
	return rc;
}

/*
 *	i7core_probe	Probe for ONE instance of device to see if it is
 *			present.
 *	return:
 *		0 for FOUND a device
 *		< 0 for error code
 */
static int __devinit i7core_probe(struct pci_dev *pdev,
				  const struct pci_device_id *id)
{
	int dev_idx = id->driver_data;
	int rc;
	struct i7core_dev *i7core_dev;

	/*
1879
	 * All memory controllers are allocated at the first pass.
1880 1881 1882 1883 1884 1885
	 */
	if (unlikely(dev_idx >= 1))
		return -EINVAL;

	/* get the pci devices we want to reserve for our use */
	mutex_lock(&i7core_edac_lock);
1886

1887
	if (pdev->device == PCI_DEVICE_ID_INTEL_LYNNFIELD_QPI_LINK0) {
1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898
		printk(KERN_INFO "i7core_edac: detected a "
				 "Lynnfield processor\n");
		rc = i7core_get_devices(pci_dev_descr_lynnfield,
					ARRAY_SIZE(pci_dev_descr_lynnfield));
	} else {
		printk(KERN_INFO "i7core_edac: detected a "
				 "Nehalem/Nehalem-EP processor\n");
		rc = i7core_get_devices(pci_dev_descr_i7core,
					ARRAY_SIZE(pci_dev_descr_i7core));
	}

1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911
	if (unlikely(rc < 0))
		goto fail0;

	list_for_each_entry(i7core_dev, &i7core_edac_list, list) {
		int channels;
		int csrows;

		/* Check the number of active and not disabled channels */
		rc = i7core_get_active_channels(i7core_dev->socket,
						&channels, &csrows);
		if (unlikely(rc < 0))
			goto fail1;

1912 1913 1914
		rc = i7core_register_mci(i7core_dev, channels, csrows);
		if (unlikely(rc < 0))
			goto fail1;
1915 1916
	}

1917
	i7core_printk(KERN_INFO, "Driver loaded.\n");
1918

1919
	mutex_unlock(&i7core_edac_lock);
1920 1921
	return 0;

1922
fail1:
1923
	i7core_put_all_devices();
1924 1925
fail0:
	mutex_unlock(&i7core_edac_lock);
1926
	return rc;
1927 1928 1929 1930 1931 1932 1933 1934 1935
}

/*
 *	i7core_remove	destructor for one instance of device
 *
 */
static void __devexit i7core_remove(struct pci_dev *pdev)
{
	struct mem_ctl_info *mci;
1936
	struct i7core_dev *i7core_dev, *tmp;
1937 1938 1939 1940 1941 1942

	debugf0(__FILE__ ": %s()\n", __func__);

	if (i7core_pci)
		edac_pci_release_generic_ctl(i7core_pci);

1943 1944 1945 1946 1947 1948 1949
	/*
	 * we have a trouble here: pdev value for removal will be wrong, since
	 * it will point to the X58 register used to detect that the machine
	 * is a Nehalem or upper design. However, due to the way several PCI
	 * devices are grouped together to provide MC functionality, we need
	 * to use a different method for releasing the devices
	 */
1950

1951
	mutex_lock(&i7core_edac_lock);
1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967
	list_for_each_entry_safe(i7core_dev, tmp, &i7core_edac_list, list) {
		mci = edac_mc_del_mc(&i7core_dev->pdev[0]->dev);
		if (mci) {
			struct i7core_pvt *pvt = mci->pvt_info;

			i7core_dev = pvt->i7core_dev;
			edac_mce_unregister(&pvt->edac_mce);
			kfree(mci->ctl_name);
			edac_mc_free(mci);
			i7core_put_devices(i7core_dev);
		} else {
			i7core_printk(KERN_ERR,
				      "Couldn't find mci for socket %d\n",
				      i7core_dev->socket);
		}
	}
1968
	mutex_unlock(&i7core_edac_lock);
1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996
}

MODULE_DEVICE_TABLE(pci, i7core_pci_tbl);

/*
 *	i7core_driver	pci_driver structure for this module
 *
 */
static struct pci_driver i7core_driver = {
	.name     = "i7core_edac",
	.probe    = i7core_probe,
	.remove   = __devexit_p(i7core_remove),
	.id_table = i7core_pci_tbl,
};

/*
 *	i7core_init		Module entry function
 *			Try to initialize this module for its devices
 */
static int __init i7core_init(void)
{
	int pci_rc;

	debugf2("MC: " __FILE__ ": %s()\n", __func__);

	/* Ensure that the OPSTATE is set correctly for POLL or NMI */
	opstate_init();

1997
	i7core_xeon_pci_fixup(pci_dev_descr_i7core[0].dev_id);
1998

1999 2000
	pci_rc = pci_register_driver(&i7core_driver);

2001 2002 2003 2004 2005 2006 2007
	if (pci_rc >= 0)
		return 0;

	i7core_printk(KERN_ERR, "Failed to register device with error %d.\n",
		      pci_rc);

	return pci_rc;
2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030
}

/*
 *	i7core_exit()	Module exit function
 *			Unregister the driver
 */
static void __exit i7core_exit(void)
{
	debugf2("MC: " __FILE__ ": %s()\n", __func__);
	pci_unregister_driver(&i7core_driver);
}

module_init(i7core_init);
module_exit(i7core_exit);

MODULE_LICENSE("GPL");
MODULE_AUTHOR("Mauro Carvalho Chehab <mchehab@redhat.com>");
MODULE_AUTHOR("Red Hat Inc. (http://www.redhat.com)");
MODULE_DESCRIPTION("MC Driver for Intel i7 Core memory controllers - "
		   I7CORE_REVISION);

module_param(edac_op_state, int, 0444);
MODULE_PARM_DESC(edac_op_state, "EDAC Error Reporting state: 0=Poll,1=NMI");