i7core_edac.c 61.0 KB
Newer Older
1 2
/* Intel i7 core/Nehalem Memory Controller kernel module
 *
D
David Sterba 已提交
3
 * This driver supports the memory controllers found on the Intel
4 5 6
 * processor families i7core, i7core 7xx/8xx, i5core, Xeon 35xx,
 * Xeon 55xx and Xeon 56xx also known as Nehalem, Nehalem-EP, Lynnfield
 * and Westmere-EP.
7 8 9 10
 *
 * This file may be distributed under the terms of the
 * GNU General Public License version 2 only.
 *
11
 * Copyright (c) 2009-2010 by:
12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32
 *	 Mauro Carvalho Chehab <mchehab@redhat.com>
 *
 * Red Hat Inc. http://www.redhat.com
 *
 * Forked and adapted from the i5400_edac driver
 *
 * Based on the following public Intel datasheets:
 * Intel Core i7 Processor Extreme Edition and Intel Core i7 Processor
 * Datasheet, Volume 2:
 *	http://download.intel.com/design/processor/datashts/320835.pdf
 * Intel Xeon Processor 5500 Series Datasheet Volume 2
 *	http://www.intel.com/Assets/PDF/datasheet/321322.pdf
 * also available at:
 * 	http://www.arrownac.com/manufacturers/intel/s/nehalem/5500-datasheet-v2.pdf
 */

#include <linux/module.h>
#include <linux/init.h>
#include <linux/pci.h>
#include <linux/pci_ids.h>
#include <linux/slab.h>
R
Randy Dunlap 已提交
33
#include <linux/delay.h>
34 35
#include <linux/edac.h>
#include <linux/mmzone.h>
36
#include <linux/smp.h>
37
#include <asm/mce.h>
38
#include <asm/processor.h>
39 40 41

#include "edac_core.h"

42 43 44 45 46
/* Static vars */
static LIST_HEAD(i7core_edac_list);
static DEFINE_MUTEX(i7core_edac_lock);
static int probed;

47 48 49
static int use_pci_fixup;
module_param(use_pci_fixup, int, 0444);
MODULE_PARM_DESC(use_pci_fixup, "Enable PCI fixup to seek for hidden devices");
50 51 52 53 54 55 56 57 58
/*
 * This is used for Nehalem-EP and Nehalem-EX devices, where the non-core
 * registers start at bus 255, and are not reported by BIOS.
 * We currently find devices with only 2 sockets. In order to support more QPI
 * Quick Path Interconnect, just increment this number.
 */
#define MAX_SOCKET_BUSES	2


59 60 61
/*
 * Alter this version for the module when modifications are made
 */
M
Michal Marek 已提交
62
#define I7CORE_REVISION    " Ver: 1.0.0"
63 64 65 66 67 68 69 70 71 72 73 74 75 76 77
#define EDAC_MOD_STR      "i7core_edac"

/*
 * Debug macros
 */
#define i7core_printk(level, fmt, arg...)			\
	edac_printk(level, "i7core", fmt, ##arg)

#define i7core_mc_printk(mci, level, fmt, arg...)		\
	edac_mc_chipset_printk(mci, level, "i7core", fmt, ##arg)

/*
 * i7core Memory Controller Registers
 */

78 79 80
	/* OFFSETS for Device 0 Function 0 */

#define MC_CFG_CONTROL	0x90
81 82
  #define MC_CFG_UNLOCK		0x02
  #define MC_CFG_LOCK		0x00
83

84 85 86 87 88 89
	/* OFFSETS for Device 3 Function 0 */

#define MC_CONTROL	0x48
#define MC_STATUS	0x4c
#define MC_MAX_DOD	0x64

90 91 92 93 94 95 96 97 98 99 100 101
/*
 * OFFSETS for Device 3 Function 4, as inicated on Xeon 5500 datasheet:
 * http://www.arrownac.com/manufacturers/intel/s/nehalem/5500-datasheet-v2.pdf
 */

#define MC_TEST_ERR_RCV1	0x60
  #define DIMM2_COR_ERR(r)			((r) & 0x7fff)

#define MC_TEST_ERR_RCV0	0x64
  #define DIMM1_COR_ERR(r)			(((r) >> 16) & 0x7fff)
  #define DIMM0_COR_ERR(r)			((r) & 0x7fff)

102
/* OFFSETS for Device 3 Function 2, as inicated on Xeon 5500 datasheet */
103 104 105 106 107 108 109 110
#define MC_SSRCONTROL		0x48
  #define SSR_MODE_DISABLE	0x00
  #define SSR_MODE_ENABLE	0x01
  #define SSR_MODE_MASK		0x03

#define MC_SCRUB_CONTROL	0x4c
  #define STARTSCRUB		(1 << 24)

111 112 113 114 115 116 117 118 119 120 121
#define MC_COR_ECC_CNT_0	0x80
#define MC_COR_ECC_CNT_1	0x84
#define MC_COR_ECC_CNT_2	0x88
#define MC_COR_ECC_CNT_3	0x8c
#define MC_COR_ECC_CNT_4	0x90
#define MC_COR_ECC_CNT_5	0x94

#define DIMM_TOP_COR_ERR(r)			(((r) >> 16) & 0x7fff)
#define DIMM_BOT_COR_ERR(r)			((r) & 0x7fff)


122 123
	/* OFFSETS for Devices 4,5 and 6 Function 0 */

124 125 126 127 128 129
#define MC_CHANNEL_DIMM_INIT_PARAMS 0x58
  #define THREE_DIMMS_PRESENT		(1 << 24)
  #define SINGLE_QUAD_RANK_PRESENT	(1 << 23)
  #define QUAD_RANK_PRESENT		(1 << 22)
  #define REGISTERED_DIMM		(1 << 15)

130 131 132 133
#define MC_CHANNEL_MAPPER	0x60
  #define RDLCH(r, ch)		((((r) >> (3 + (ch * 6))) & 0x07) - 1)
  #define WRLCH(r, ch)		((((r) >> (ch * 6)) & 0x07) - 1)

134 135 136
#define MC_CHANNEL_RANK_PRESENT 0x7c
  #define RANK_PRESENT_MASK		0xffff

137
#define MC_CHANNEL_ADDR_MATCH	0xf0
138 139 140 141 142 143 144 145 146 147
#define MC_CHANNEL_ERROR_MASK	0xf8
#define MC_CHANNEL_ERROR_INJECT	0xfc
  #define INJECT_ADDR_PARITY	0x10
  #define INJECT_ECC		0x08
  #define MASK_CACHELINE	0x06
  #define MASK_FULL_CACHELINE	0x06
  #define MASK_MSB32_CACHELINE	0x04
  #define MASK_LSB32_CACHELINE	0x02
  #define NO_MASK_CACHELINE	0x00
  #define REPEAT_EN		0x01
148

149
	/* OFFSETS for Devices 4,5 and 6 Function 1 */
150

151 152 153 154 155 156 157
#define MC_DOD_CH_DIMM0		0x48
#define MC_DOD_CH_DIMM1		0x4c
#define MC_DOD_CH_DIMM2		0x50
  #define RANKOFFSET_MASK	((1 << 12) | (1 << 11) | (1 << 10))
  #define RANKOFFSET(x)		((x & RANKOFFSET_MASK) >> 10)
  #define DIMM_PRESENT_MASK	(1 << 9)
  #define DIMM_PRESENT(x)	(((x) & DIMM_PRESENT_MASK) >> 9)
158 159 160 161
  #define MC_DOD_NUMBANK_MASK		((1 << 8) | (1 << 7))
  #define MC_DOD_NUMBANK(x)		(((x) & MC_DOD_NUMBANK_MASK) >> 7)
  #define MC_DOD_NUMRANK_MASK		((1 << 6) | (1 << 5))
  #define MC_DOD_NUMRANK(x)		(((x) & MC_DOD_NUMRANK_MASK) >> 5)
162
  #define MC_DOD_NUMROW_MASK		((1 << 4) | (1 << 3) | (1 << 2))
163
  #define MC_DOD_NUMROW(x)		(((x) & MC_DOD_NUMROW_MASK) >> 2)
164 165
  #define MC_DOD_NUMCOL_MASK		3
  #define MC_DOD_NUMCOL(x)		((x) & MC_DOD_NUMCOL_MASK)
166

167 168
#define MC_RANK_PRESENT		0x7c

169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191
#define MC_SAG_CH_0	0x80
#define MC_SAG_CH_1	0x84
#define MC_SAG_CH_2	0x88
#define MC_SAG_CH_3	0x8c
#define MC_SAG_CH_4	0x90
#define MC_SAG_CH_5	0x94
#define MC_SAG_CH_6	0x98
#define MC_SAG_CH_7	0x9c

#define MC_RIR_LIMIT_CH_0	0x40
#define MC_RIR_LIMIT_CH_1	0x44
#define MC_RIR_LIMIT_CH_2	0x48
#define MC_RIR_LIMIT_CH_3	0x4C
#define MC_RIR_LIMIT_CH_4	0x50
#define MC_RIR_LIMIT_CH_5	0x54
#define MC_RIR_LIMIT_CH_6	0x58
#define MC_RIR_LIMIT_CH_7	0x5C
#define MC_RIR_LIMIT_MASK	((1 << 10) - 1)

#define MC_RIR_WAY_CH		0x80
  #define MC_RIR_WAY_OFFSET_MASK	(((1 << 14) - 1) & ~0x7)
  #define MC_RIR_WAY_RANK_MASK		0x7

192 193 194 195 196
/*
 * i7core structs
 */

#define NUM_CHANS 3
197 198 199
#define MAX_DIMMS 3		/* Max DIMMS per channel */
#define MAX_MCR_FUNC  4
#define MAX_CHAN_FUNC 3
200 201 202 203 204

struct i7core_info {
	u32	mc_control;
	u32	mc_status;
	u32	max_dod;
205
	u32	ch_map;
206 207
};

208 209 210 211 212 213 214 215 216 217 218 219

struct i7core_inject {
	int	enable;

	u32	section;
	u32	type;
	u32	eccmask;

	/* Error address mask */
	int channel, dimm, rank, bank, page, col;
};

220
struct i7core_channel {
221 222
	u32		ranks;
	u32		dimms;
223 224
};

225
struct pci_id_descr {
226 227 228
	int			dev;
	int			func;
	int 			dev_id;
229
	int			optional;
230 231
};

232
struct pci_id_table {
233 234
	const struct pci_id_descr	*descr;
	int				n_devs;
235 236
};

237 238 239 240
struct i7core_dev {
	struct list_head	list;
	u8			socket;
	struct pci_dev		**pdev;
241
	int			n_devs;
242 243 244
	struct mem_ctl_info	*mci;
};

245
struct i7core_pvt {
246 247 248 249 250
	struct pci_dev	*pci_noncore;
	struct pci_dev	*pci_mcr[MAX_MCR_FUNC + 1];
	struct pci_dev	*pci_ch[NUM_CHANS][MAX_CHAN_FUNC + 1];

	struct i7core_dev *i7core_dev;
251

252
	struct i7core_info	info;
253
	struct i7core_inject	inject;
254
	struct i7core_channel	channel[NUM_CHANS];
255

256 257
	int		ce_count_available;
	int 		csrow_map[NUM_CHANS][MAX_DIMMS];
258 259

			/* ECC corrected errors counts per udimm */
260 261
	unsigned long	udimm_ce_count[MAX_DIMMS];
	int		udimm_last_ce_count[MAX_DIMMS];
262
			/* ECC corrected errors counts per rdimm */
263 264
	unsigned long	rdimm_ce_count[NUM_CHANS][MAX_DIMMS];
	int		rdimm_last_ce_count[NUM_CHANS][MAX_DIMMS];
265

266
	bool		is_registered, enable_scrub;
267

268
	/* Fifo double buffers */
269
	struct mce		mce_entry[MCE_LOG_LEN];
270 271 272 273 274 275 276
	struct mce		mce_outentry[MCE_LOG_LEN];

	/* Fifo in/out counters */
	unsigned		mce_in, mce_out;

	/* Count indicator to show errors not got */
	unsigned		mce_overrun;
277 278 279

	/* Struct to control EDAC polling */
	struct edac_pci_ctl_info *i7core_pci;
280 281
};

282 283 284 285 286
#define PCI_DESCR(device, function, device_id)	\
	.dev = (device),			\
	.func = (function),			\
	.dev_id = (device_id)

287
static const struct pci_id_descr pci_dev_descr_i7core_nehalem[] = {
288 289 290
		/* Memory controller */
	{ PCI_DESCR(3, 0, PCI_DEVICE_ID_INTEL_I7_MCR)     },
	{ PCI_DESCR(3, 1, PCI_DEVICE_ID_INTEL_I7_MC_TAD)  },
291
			/* Exists only for RDIMM */
292
	{ PCI_DESCR(3, 2, PCI_DEVICE_ID_INTEL_I7_MC_RAS), .optional = 1  },
293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311
	{ PCI_DESCR(3, 4, PCI_DEVICE_ID_INTEL_I7_MC_TEST) },

		/* Channel 0 */
	{ PCI_DESCR(4, 0, PCI_DEVICE_ID_INTEL_I7_MC_CH0_CTRL) },
	{ PCI_DESCR(4, 1, PCI_DEVICE_ID_INTEL_I7_MC_CH0_ADDR) },
	{ PCI_DESCR(4, 2, PCI_DEVICE_ID_INTEL_I7_MC_CH0_RANK) },
	{ PCI_DESCR(4, 3, PCI_DEVICE_ID_INTEL_I7_MC_CH0_TC)   },

		/* Channel 1 */
	{ PCI_DESCR(5, 0, PCI_DEVICE_ID_INTEL_I7_MC_CH1_CTRL) },
	{ PCI_DESCR(5, 1, PCI_DEVICE_ID_INTEL_I7_MC_CH1_ADDR) },
	{ PCI_DESCR(5, 2, PCI_DEVICE_ID_INTEL_I7_MC_CH1_RANK) },
	{ PCI_DESCR(5, 3, PCI_DEVICE_ID_INTEL_I7_MC_CH1_TC)   },

		/* Channel 2 */
	{ PCI_DESCR(6, 0, PCI_DEVICE_ID_INTEL_I7_MC_CH2_CTRL) },
	{ PCI_DESCR(6, 1, PCI_DEVICE_ID_INTEL_I7_MC_CH2_ADDR) },
	{ PCI_DESCR(6, 2, PCI_DEVICE_ID_INTEL_I7_MC_CH2_RANK) },
	{ PCI_DESCR(6, 3, PCI_DEVICE_ID_INTEL_I7_MC_CH2_TC)   },
312 313 314 315 316 317 318 319 320 321

		/* Generic Non-core registers */
	/*
	 * This is the PCI device on i7core and on Xeon 35xx (8086:2c41)
	 * On Xeon 55xx, however, it has a different id (8086:2c40). So,
	 * the probing code needs to test for the other address in case of
	 * failure of this one
	 */
	{ PCI_DESCR(0, 0, PCI_DEVICE_ID_INTEL_I7_NONCORE)  },

322
};
323

324
static const struct pci_id_descr pci_dev_descr_lynnfield[] = {
325 326 327 328 329 330 331 332 333
	{ PCI_DESCR( 3, 0, PCI_DEVICE_ID_INTEL_LYNNFIELD_MCR)         },
	{ PCI_DESCR( 3, 1, PCI_DEVICE_ID_INTEL_LYNNFIELD_MC_TAD)      },
	{ PCI_DESCR( 3, 4, PCI_DEVICE_ID_INTEL_LYNNFIELD_MC_TEST)     },

	{ PCI_DESCR( 4, 0, PCI_DEVICE_ID_INTEL_LYNNFIELD_MC_CH0_CTRL) },
	{ PCI_DESCR( 4, 1, PCI_DEVICE_ID_INTEL_LYNNFIELD_MC_CH0_ADDR) },
	{ PCI_DESCR( 4, 2, PCI_DEVICE_ID_INTEL_LYNNFIELD_MC_CH0_RANK) },
	{ PCI_DESCR( 4, 3, PCI_DEVICE_ID_INTEL_LYNNFIELD_MC_CH0_TC)   },

334 335 336 337
	{ PCI_DESCR( 5, 0, PCI_DEVICE_ID_INTEL_LYNNFIELD_MC_CH1_CTRL) },
	{ PCI_DESCR( 5, 1, PCI_DEVICE_ID_INTEL_LYNNFIELD_MC_CH1_ADDR) },
	{ PCI_DESCR( 5, 2, PCI_DEVICE_ID_INTEL_LYNNFIELD_MC_CH1_RANK) },
	{ PCI_DESCR( 5, 3, PCI_DEVICE_ID_INTEL_LYNNFIELD_MC_CH1_TC)   },
338 339 340 341 342 343

	/*
	 * This is the PCI device has an alternate address on some
	 * processors like Core i7 860
	 */
	{ PCI_DESCR( 0, 0, PCI_DEVICE_ID_INTEL_LYNNFIELD_NONCORE)     },
344 345
};

346
static const struct pci_id_descr pci_dev_descr_i7core_westmere[] = {
347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370
		/* Memory controller */
	{ PCI_DESCR(3, 0, PCI_DEVICE_ID_INTEL_LYNNFIELD_MCR_REV2)     },
	{ PCI_DESCR(3, 1, PCI_DEVICE_ID_INTEL_LYNNFIELD_MC_TAD_REV2)  },
			/* Exists only for RDIMM */
	{ PCI_DESCR(3, 2, PCI_DEVICE_ID_INTEL_LYNNFIELD_MC_RAS_REV2), .optional = 1  },
	{ PCI_DESCR(3, 4, PCI_DEVICE_ID_INTEL_LYNNFIELD_MC_TEST_REV2) },

		/* Channel 0 */
	{ PCI_DESCR(4, 0, PCI_DEVICE_ID_INTEL_LYNNFIELD_MC_CH0_CTRL_REV2) },
	{ PCI_DESCR(4, 1, PCI_DEVICE_ID_INTEL_LYNNFIELD_MC_CH0_ADDR_REV2) },
	{ PCI_DESCR(4, 2, PCI_DEVICE_ID_INTEL_LYNNFIELD_MC_CH0_RANK_REV2) },
	{ PCI_DESCR(4, 3, PCI_DEVICE_ID_INTEL_LYNNFIELD_MC_CH0_TC_REV2)   },

		/* Channel 1 */
	{ PCI_DESCR(5, 0, PCI_DEVICE_ID_INTEL_LYNNFIELD_MC_CH1_CTRL_REV2) },
	{ PCI_DESCR(5, 1, PCI_DEVICE_ID_INTEL_LYNNFIELD_MC_CH1_ADDR_REV2) },
	{ PCI_DESCR(5, 2, PCI_DEVICE_ID_INTEL_LYNNFIELD_MC_CH1_RANK_REV2) },
	{ PCI_DESCR(5, 3, PCI_DEVICE_ID_INTEL_LYNNFIELD_MC_CH1_TC_REV2)   },

		/* Channel 2 */
	{ PCI_DESCR(6, 0, PCI_DEVICE_ID_INTEL_LYNNFIELD_MC_CH2_CTRL_REV2) },
	{ PCI_DESCR(6, 1, PCI_DEVICE_ID_INTEL_LYNNFIELD_MC_CH2_ADDR_REV2) },
	{ PCI_DESCR(6, 2, PCI_DEVICE_ID_INTEL_LYNNFIELD_MC_CH2_RANK_REV2) },
	{ PCI_DESCR(6, 3, PCI_DEVICE_ID_INTEL_LYNNFIELD_MC_CH2_TC_REV2)   },
371 372 373 374

		/* Generic Non-core registers */
	{ PCI_DESCR(0, 0, PCI_DEVICE_ID_INTEL_LYNNFIELD_NONCORE_REV2)  },

375 376
};

377 378
#define PCI_ID_TABLE_ENTRY(A) { .descr=A, .n_devs = ARRAY_SIZE(A) }
static const struct pci_id_table pci_dev_table[] = {
379 380 381
	PCI_ID_TABLE_ENTRY(pci_dev_descr_i7core_nehalem),
	PCI_ID_TABLE_ENTRY(pci_dev_descr_lynnfield),
	PCI_ID_TABLE_ENTRY(pci_dev_descr_i7core_westmere),
382
	{0,}			/* 0 terminated list. */
383 384
};

385 386 387 388
/*
 *	pci_device_id	table for which devices we are looking for
 */
static const struct pci_device_id i7core_pci_tbl[] __devinitdata = {
389
	{PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_X58_HUB_MGMT)},
390
	{PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_LYNNFIELD_QPI_LINK0)},
391 392 393
	{0,}			/* 0 terminated list. */
};

394 395 396 397 398
/****************************************************************************
			Anciliary status routines
 ****************************************************************************/

	/* MC_CONTROL bits */
399 400
#define CH_ACTIVE(pvt, ch)	((pvt)->info.mc_control & (1 << (8 + ch)))
#define ECCx8(pvt)		((pvt)->info.mc_control & (1 << 1))
401 402

	/* MC_STATUS bits */
403
#define ECC_ENABLED(pvt)	((pvt)->info.mc_status & (1 << 4))
404
#define CH_DISABLED(pvt, ch)	((pvt)->info.mc_status & (1 << ch))
405 406

	/* MC_MAX_DOD read functions */
407
static inline int numdimms(u32 dimms)
408
{
409
	return (dimms & 0x3) + 1;
410 411
}

412
static inline int numrank(u32 rank)
413 414 415
{
	static int ranks[4] = { 1, 2, 4, -EINVAL };

416
	return ranks[rank & 0x3];
417 418
}

419
static inline int numbank(u32 bank)
420 421 422
{
	static int banks[4] = { 4, 8, 16, -EINVAL };

423
	return banks[bank & 0x3];
424 425
}

426
static inline int numrow(u32 row)
427 428 429 430 431 432
{
	static int rows[8] = {
		1 << 12, 1 << 13, 1 << 14, 1 << 15,
		1 << 16, -EINVAL, -EINVAL, -EINVAL,
	};

433
	return rows[row & 0x7];
434 435
}

436
static inline int numcol(u32 col)
437 438 439 440
{
	static int cols[8] = {
		1 << 10, 1 << 11, 1 << 12, -EINVAL,
	};
441
	return cols[col & 0x3];
442 443
}

444
static struct i7core_dev *get_i7core_dev(u8 socket)
445 446 447 448 449 450 451 452 453 454 455
{
	struct i7core_dev *i7core_dev;

	list_for_each_entry(i7core_dev, &i7core_edac_list, list) {
		if (i7core_dev->socket == socket)
			return i7core_dev;
	}

	return NULL;
}

456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478
static struct i7core_dev *alloc_i7core_dev(u8 socket,
					   const struct pci_id_table *table)
{
	struct i7core_dev *i7core_dev;

	i7core_dev = kzalloc(sizeof(*i7core_dev), GFP_KERNEL);
	if (!i7core_dev)
		return NULL;

	i7core_dev->pdev = kzalloc(sizeof(*i7core_dev->pdev) * table->n_devs,
				   GFP_KERNEL);
	if (!i7core_dev->pdev) {
		kfree(i7core_dev);
		return NULL;
	}

	i7core_dev->socket = socket;
	i7core_dev->n_devs = table->n_devs;
	list_add_tail(&i7core_dev->list, &i7core_edac_list);

	return i7core_dev;
}

479 480 481 482 483 484 485
static void free_i7core_dev(struct i7core_dev *i7core_dev)
{
	list_del(&i7core_dev->list);
	kfree(i7core_dev->pdev);
	kfree(i7core_dev);
}

486 487 488
/****************************************************************************
			Memory check routines
 ****************************************************************************/
489 490
static struct pci_dev *get_pdev_slot_func(u8 socket, unsigned slot,
					  unsigned func)
491
{
492
	struct i7core_dev *i7core_dev = get_i7core_dev(socket);
493 494
	int i;

495 496 497
	if (!i7core_dev)
		return NULL;

498
	for (i = 0; i < i7core_dev->n_devs; i++) {
499
		if (!i7core_dev->pdev[i])
500 501
			continue;

502 503 504
		if (PCI_SLOT(i7core_dev->pdev[i]->devfn) == slot &&
		    PCI_FUNC(i7core_dev->pdev[i]->devfn) == func) {
			return i7core_dev->pdev[i];
505 506 507
		}
	}

508 509 510
	return NULL;
}

511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527
/**
 * i7core_get_active_channels() - gets the number of channels and csrows
 * @socket:	Quick Path Interconnect socket
 * @channels:	Number of channels that will be returned
 * @csrows:	Number of csrows found
 *
 * Since EDAC core needs to know in advance the number of available channels
 * and csrows, in order to allocate memory for csrows/channels, it is needed
 * to run two similar steps. At the first step, implemented on this function,
 * it checks the number of csrows/channels present at one socket.
 * this is used in order to properly allocate the size of mci components.
 *
 * It should be noticed that none of the current available datasheets explain
 * or even mention how csrows are seen by the memory controller. So, we need
 * to add a fake description for csrows.
 * So, this driver is attributing one DIMM memory for one csrow.
 */
528
static int i7core_get_active_channels(const u8 socket, unsigned *channels,
529
				      unsigned *csrows)
530 531 532 533 534 535 536 537
{
	struct pci_dev *pdev = NULL;
	int i, j;
	u32 status, control;

	*channels = 0;
	*csrows = 0;

538
	pdev = get_pdev_slot_func(socket, 3, 0);
539
	if (!pdev) {
540 541
		i7core_printk(KERN_ERR, "Couldn't find socket %d fn 3.0!!!\n",
			      socket);
542
		return -ENODEV;
543
	}
544 545 546 547 548 549

	/* Device 3 function 0 reads */
	pci_read_config_dword(pdev, MC_STATUS, &status);
	pci_read_config_dword(pdev, MC_CONTROL, &control);

	for (i = 0; i < NUM_CHANS; i++) {
550
		u32 dimm_dod[3];
551 552 553 554 555
		/* Check if the channel is active */
		if (!(control & (1 << (8 + i))))
			continue;

		/* Check if the channel is disabled */
556
		if (status & (1 << i))
557 558
			continue;

559
		pdev = get_pdev_slot_func(socket, i + 4, 1);
560
		if (!pdev) {
561 562 563
			i7core_printk(KERN_ERR, "Couldn't find socket %d "
						"fn %d.%d!!!\n",
						socket, i + 4, 1);
564 565 566 567 568 569 570 571 572 573
			return -ENODEV;
		}
		/* Devices 4-6 function 1 */
		pci_read_config_dword(pdev,
				MC_DOD_CH_DIMM0, &dimm_dod[0]);
		pci_read_config_dword(pdev,
				MC_DOD_CH_DIMM1, &dimm_dod[1]);
		pci_read_config_dword(pdev,
				MC_DOD_CH_DIMM2, &dimm_dod[2]);

574
		(*channels)++;
575 576 577 578 579 580

		for (j = 0; j < 3; j++) {
			if (!DIMM_PRESENT(dimm_dod[j]))
				continue;
			(*csrows)++;
		}
581 582
	}

583
	debugf0("Number of active channels on socket %d: %d\n",
584
		socket, *channels);
585

586 587 588
	return 0;
}

589
static int get_dimm_config(const struct mem_ctl_info *mci)
590 591
{
	struct i7core_pvt *pvt = mci->pvt_info;
592
	struct csrow_info *csr;
593
	struct pci_dev *pdev;
594
	int i, j;
595
	int csrow = 0;
596
	unsigned long last_page = 0;
597
	enum edac_type mode;
598
	enum mem_type mtype;
599

600
	/* Get data from the MC register, function 0 */
601
	pdev = pvt->pci_mcr[0];
602
	if (!pdev)
603 604
		return -ENODEV;

605
	/* Device 3 function 0 reads */
606 607 608 609
	pci_read_config_dword(pdev, MC_CONTROL, &pvt->info.mc_control);
	pci_read_config_dword(pdev, MC_STATUS, &pvt->info.mc_status);
	pci_read_config_dword(pdev, MC_MAX_DOD, &pvt->info.max_dod);
	pci_read_config_dword(pdev, MC_CHANNEL_MAPPER, &pvt->info.ch_map);
610

611
	debugf0("QPI %d control=0x%08x status=0x%08x dod=0x%08x map=0x%08x\n",
612
		pvt->i7core_dev->socket, pvt->info.mc_control, pvt->info.mc_status,
613
		pvt->info.max_dod, pvt->info.ch_map);
614

615
	if (ECC_ENABLED(pvt)) {
616
		debugf0("ECC enabled with x%d SDCC\n", ECCx8(pvt) ? 8 : 4);
617 618 619 620 621
		if (ECCx8(pvt))
			mode = EDAC_S8ECD8ED;
		else
			mode = EDAC_S4ECD4ED;
	} else {
622
		debugf0("ECC disabled\n");
623 624
		mode = EDAC_NONE;
	}
625 626

	/* FIXME: need to handle the error codes */
627 628
	debugf0("DOD Max limits: DIMMS: %d, %d-ranked, %d-banked "
		"x%x x 0x%x\n",
629 630
		numdimms(pvt->info.max_dod),
		numrank(pvt->info.max_dod >> 2),
631
		numbank(pvt->info.max_dod >> 4),
632 633
		numrow(pvt->info.max_dod >> 6),
		numcol(pvt->info.max_dod >> 9));
634

635
	for (i = 0; i < NUM_CHANS; i++) {
636
		u32 data, dimm_dod[3], value[8];
637

638 639 640
		if (!pvt->pci_ch[i][0])
			continue;

641 642 643 644 645 646 647 648 649
		if (!CH_ACTIVE(pvt, i)) {
			debugf0("Channel %i is not active\n", i);
			continue;
		}
		if (CH_DISABLED(pvt, i)) {
			debugf0("Channel %i is disabled\n", i);
			continue;
		}

650
		/* Devices 4-6 function 0 */
651
		pci_read_config_dword(pvt->pci_ch[i][0],
652 653
				MC_CHANNEL_DIMM_INIT_PARAMS, &data);

654
		pvt->channel[i].ranks = (data & QUAD_RANK_PRESENT) ?
655
						4 : 2;
656

657 658
		if (data & REGISTERED_DIMM)
			mtype = MEM_RDDR3;
659
		else
660 661
			mtype = MEM_DDR3;
#if 0
662 663 664 665 666 667
		if (data & THREE_DIMMS_PRESENT)
			pvt->channel[i].dimms = 3;
		else if (data & SINGLE_QUAD_RANK_PRESENT)
			pvt->channel[i].dimms = 1;
		else
			pvt->channel[i].dimms = 2;
668 669 670
#endif

		/* Devices 4-6 function 1 */
671
		pci_read_config_dword(pvt->pci_ch[i][1],
672
				MC_DOD_CH_DIMM0, &dimm_dod[0]);
673
		pci_read_config_dword(pvt->pci_ch[i][1],
674
				MC_DOD_CH_DIMM1, &dimm_dod[1]);
675
		pci_read_config_dword(pvt->pci_ch[i][1],
676
				MC_DOD_CH_DIMM2, &dimm_dod[2]);
677

678
		debugf0("Ch%d phy rd%d, wr%d (0x%08x): "
679
			"%d ranks, %cDIMMs\n",
680 681 682
			i,
			RDLCH(pvt->info.ch_map, i), WRLCH(pvt->info.ch_map, i),
			data,
683
			pvt->channel[i].ranks,
684
			(data & REGISTERED_DIMM) ? 'R' : 'U');
685 686 687

		for (j = 0; j < 3; j++) {
			u32 banks, ranks, rows, cols;
688
			u32 size, npages;
689 690 691 692 693 694 695 696 697

			if (!DIMM_PRESENT(dimm_dod[j]))
				continue;

			banks = numbank(MC_DOD_NUMBANK(dimm_dod[j]));
			ranks = numrank(MC_DOD_NUMRANK(dimm_dod[j]));
			rows = numrow(MC_DOD_NUMROW(dimm_dod[j]));
			cols = numcol(MC_DOD_NUMCOL(dimm_dod[j]));

698 699 700
			/* DDR3 has 8 I/O banks */
			size = (rows * cols * banks * ranks) >> (20 - 3);

701
			pvt->channel[i].dimms++;
702

703 704 705
			debugf0("\tdimm %d %d Mb offset: %x, "
				"bank: %d, rank: %d, row: %#x, col: %#x\n",
				j, size,
706 707 708
				RANKOFFSET(dimm_dod[j]),
				banks, ranks, rows, cols);

709
			npages = MiB_TO_PAGES(size);
710

711
			csr = &mci->csrows[csrow];
712 713 714 715 716
			csr->first_page = last_page + 1;
			last_page += npages;
			csr->last_page = last_page;
			csr->nr_pages = npages;

717
			csr->page_mask = 0;
718
			csr->grain = 8;
719
			csr->csrow_idx = csrow;
720 721 722 723
			csr->nr_channels = 1;

			csr->channels[0].chan_idx = i;
			csr->channels[0].ce_count = 0;
724

725
			pvt->csrow_map[i][j] = csrow;
726

727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743
			switch (banks) {
			case 4:
				csr->dtype = DEV_X4;
				break;
			case 8:
				csr->dtype = DEV_X8;
				break;
			case 16:
				csr->dtype = DEV_X16;
				break;
			default:
				csr->dtype = DEV_UNKNOWN;
			}

			csr->edac_mode = mode;
			csr->mtype = mtype;

744
			csrow++;
745
		}
746

747 748 749 750 751 752 753 754
		pci_read_config_dword(pdev, MC_SAG_CH_0, &value[0]);
		pci_read_config_dword(pdev, MC_SAG_CH_1, &value[1]);
		pci_read_config_dword(pdev, MC_SAG_CH_2, &value[2]);
		pci_read_config_dword(pdev, MC_SAG_CH_3, &value[3]);
		pci_read_config_dword(pdev, MC_SAG_CH_4, &value[4]);
		pci_read_config_dword(pdev, MC_SAG_CH_5, &value[5]);
		pci_read_config_dword(pdev, MC_SAG_CH_6, &value[6]);
		pci_read_config_dword(pdev, MC_SAG_CH_7, &value[7]);
755
		debugf1("\t[%i] DIVBY3\tREMOVED\tOFFSET\n", i);
756
		for (j = 0; j < 8; j++)
757
			debugf1("\t\t%#x\t%#x\t%#x\n",
758 759
				(value[j] >> 27) & 0x1,
				(value[j] >> 24) & 0x7,
760
				(value[j] & ((1 << 24) - 1)));
761 762
	}

763 764 765
	return 0;
}

766 767 768 769 770 771 772 773 774 775 776
/****************************************************************************
			Error insertion routines
 ****************************************************************************/

/* The i7core has independent error injection features per channel.
   However, to have a simpler code, we don't allow enabling error injection
   on more than one channel.
   Also, since a change at an inject parameter will be applied only at enable,
   we're disabling error injection on all write calls to the sysfs nodes that
   controls the error code injection.
 */
777
static int disable_inject(const struct mem_ctl_info *mci)
778 779 780 781 782
{
	struct i7core_pvt *pvt = mci->pvt_info;

	pvt->inject.enable = 0;

783
	if (!pvt->pci_ch[pvt->inject.channel][0])
784 785
		return -ENODEV;

786
	pci_write_config_dword(pvt->pci_ch[pvt->inject.channel][0],
787
				MC_CHANNEL_ERROR_INJECT, 0);
788 789

	return 0;
790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806
}

/*
 * i7core inject inject.section
 *
 *	accept and store error injection inject.section value
 *	bit 0 - refers to the lower 32-byte half cacheline
 *	bit 1 - refers to the upper 32-byte half cacheline
 */
static ssize_t i7core_inject_section_store(struct mem_ctl_info *mci,
					   const char *data, size_t count)
{
	struct i7core_pvt *pvt = mci->pvt_info;
	unsigned long value;
	int rc;

	if (pvt->inject.enable)
807
		disable_inject(mci);
808 809 810

	rc = strict_strtoul(data, 10, &value);
	if ((rc < 0) || (value > 3))
811
		return -EIO;
812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839

	pvt->inject.section = (u32) value;
	return count;
}

static ssize_t i7core_inject_section_show(struct mem_ctl_info *mci,
					      char *data)
{
	struct i7core_pvt *pvt = mci->pvt_info;
	return sprintf(data, "0x%08x\n", pvt->inject.section);
}

/*
 * i7core inject.type
 *
 *	accept and store error injection inject.section value
 *	bit 0 - repeat enable - Enable error repetition
 *	bit 1 - inject ECC error
 *	bit 2 - inject parity error
 */
static ssize_t i7core_inject_type_store(struct mem_ctl_info *mci,
					const char *data, size_t count)
{
	struct i7core_pvt *pvt = mci->pvt_info;
	unsigned long value;
	int rc;

	if (pvt->inject.enable)
840
		disable_inject(mci);
841 842 843

	rc = strict_strtoul(data, 10, &value);
	if ((rc < 0) || (value > 7))
844
		return -EIO;
845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874

	pvt->inject.type = (u32) value;
	return count;
}

static ssize_t i7core_inject_type_show(struct mem_ctl_info *mci,
					      char *data)
{
	struct i7core_pvt *pvt = mci->pvt_info;
	return sprintf(data, "0x%08x\n", pvt->inject.type);
}

/*
 * i7core_inject_inject.eccmask_store
 *
 * The type of error (UE/CE) will depend on the inject.eccmask value:
 *   Any bits set to a 1 will flip the corresponding ECC bit
 *   Correctable errors can be injected by flipping 1 bit or the bits within
 *   a symbol pair (2 consecutive aligned 8-bit pairs - i.e. 7:0 and 15:8 or
 *   23:16 and 31:24). Flipping bits in two symbol pairs will cause an
 *   uncorrectable error to be injected.
 */
static ssize_t i7core_inject_eccmask_store(struct mem_ctl_info *mci,
					const char *data, size_t count)
{
	struct i7core_pvt *pvt = mci->pvt_info;
	unsigned long value;
	int rc;

	if (pvt->inject.enable)
875
		disable_inject(mci);
876 877 878

	rc = strict_strtoul(data, 10, &value);
	if (rc < 0)
879
		return -EIO;
880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902

	pvt->inject.eccmask = (u32) value;
	return count;
}

static ssize_t i7core_inject_eccmask_show(struct mem_ctl_info *mci,
					      char *data)
{
	struct i7core_pvt *pvt = mci->pvt_info;
	return sprintf(data, "0x%08x\n", pvt->inject.eccmask);
}

/*
 * i7core_addrmatch
 *
 * The type of error (UE/CE) will depend on the inject.eccmask value:
 *   Any bits set to a 1 will flip the corresponding ECC bit
 *   Correctable errors can be injected by flipping 1 bit or the bits within
 *   a symbol pair (2 consecutive aligned 8-bit pairs - i.e. 7:0 and 15:8 or
 *   23:16 and 31:24). Flipping bits in two symbol pairs will cause an
 *   uncorrectable error to be injected.
 */

903 904 905 906 907
#define DECLARE_ADDR_MATCH(param, limit)			\
static ssize_t i7core_inject_store_##param(			\
		struct mem_ctl_info *mci,			\
		const char *data, size_t count)			\
{								\
908
	struct i7core_pvt *pvt;					\
909 910 911
	long value;						\
	int rc;							\
								\
912 913 914
	debugf1("%s()\n", __func__);				\
	pvt = mci->pvt_info;					\
								\
915 916 917
	if (pvt->inject.enable)					\
		disable_inject(mci);				\
								\
918
	if (!strcasecmp(data, "any") || !strcasecmp(data, "any\n"))\
919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934
		value = -1;					\
	else {							\
		rc = strict_strtoul(data, 10, &value);		\
		if ((rc < 0) || (value >= limit))		\
			return -EIO;				\
	}							\
								\
	pvt->inject.param = value;				\
								\
	return count;						\
}								\
								\
static ssize_t i7core_inject_show_##param(			\
		struct mem_ctl_info *mci,			\
		char *data)					\
{								\
935 936 937 938
	struct i7core_pvt *pvt;					\
								\
	pvt = mci->pvt_info;					\
	debugf1("%s() pvt=%p\n", __func__, pvt);		\
939 940 941 942
	if (pvt->inject.param < 0)				\
		return sprintf(data, "any\n");			\
	else							\
		return sprintf(data, "%d\n", pvt->inject.param);\
943 944
}

945 946 947 948 949 950 951 952 953
#define ATTR_ADDR_MATCH(param)					\
	{							\
		.attr = {					\
			.name = #param,				\
			.mode = (S_IRUGO | S_IWUSR)		\
		},						\
		.show  = i7core_inject_show_##param,		\
		.store = i7core_inject_store_##param,		\
	}
954

955 956 957 958 959 960
DECLARE_ADDR_MATCH(channel, 3);
DECLARE_ADDR_MATCH(dimm, 3);
DECLARE_ADDR_MATCH(rank, 4);
DECLARE_ADDR_MATCH(bank, 32);
DECLARE_ADDR_MATCH(page, 0x10000);
DECLARE_ADDR_MATCH(col, 0x4000);
961

962
static int write_and_test(struct pci_dev *dev, const int where, const u32 val)
963 964 965 966
{
	u32 read;
	int count;

967 968 969 970
	debugf0("setting pci %02x:%02x.%x reg=%02x value=%08x\n",
		dev->bus->number, PCI_SLOT(dev->devfn), PCI_FUNC(dev->devfn),
		where, val);

971 972
	for (count = 0; count < 10; count++) {
		if (count)
973
			msleep(100);
974 975 976 977 978 979 980
		pci_write_config_dword(dev, where, val);
		pci_read_config_dword(dev, where, &read);

		if (read == val)
			return 0;
	}

981 982 983 984
	i7core_printk(KERN_ERR, "Error during set pci %02x:%02x.%x reg=%02x "
		"write=%08x. Read=%08x\n",
		dev->bus->number, PCI_SLOT(dev->devfn), PCI_FUNC(dev->devfn),
		where, val, read);
985 986 987 988

	return -EINVAL;
}

989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015
/*
 * This routine prepares the Memory Controller for error injection.
 * The error will be injected when some process tries to write to the
 * memory that matches the given criteria.
 * The criteria can be set in terms of a mask where dimm, rank, bank, page
 * and col can be specified.
 * A -1 value for any of the mask items will make the MCU to ignore
 * that matching criteria for error injection.
 *
 * It should be noticed that the error will only happen after a write operation
 * on a memory that matches the condition. if REPEAT_EN is not enabled at
 * inject mask, then it will produce just one error. Otherwise, it will repeat
 * until the injectmask would be cleaned.
 *
 * FIXME: This routine assumes that MAXNUMDIMMS value of MC_MAX_DOD
 *    is reliable enough to check if the MC is using the
 *    three channels. However, this is not clear at the datasheet.
 */
static ssize_t i7core_inject_enable_store(struct mem_ctl_info *mci,
				       const char *data, size_t count)
{
	struct i7core_pvt *pvt = mci->pvt_info;
	u32 injectmask;
	u64 mask = 0;
	int  rc;
	long enable;

1016
	if (!pvt->pci_ch[pvt->inject.channel][0])
1017 1018
		return 0;

1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031
	rc = strict_strtoul(data, 10, &enable);
	if ((rc < 0))
		return 0;

	if (enable) {
		pvt->inject.enable = 1;
	} else {
		disable_inject(mci);
		return count;
	}

	/* Sets pvt->inject.dimm mask */
	if (pvt->inject.dimm < 0)
1032
		mask |= 1LL << 41;
1033
	else {
1034
		if (pvt->channel[pvt->inject.channel].dimms > 2)
1035
			mask |= (pvt->inject.dimm & 0x3LL) << 35;
1036
		else
1037
			mask |= (pvt->inject.dimm & 0x1LL) << 36;
1038 1039 1040 1041
	}

	/* Sets pvt->inject.rank mask */
	if (pvt->inject.rank < 0)
1042
		mask |= 1LL << 40;
1043
	else {
1044
		if (pvt->channel[pvt->inject.channel].dimms > 2)
1045
			mask |= (pvt->inject.rank & 0x1LL) << 34;
1046
		else
1047
			mask |= (pvt->inject.rank & 0x3LL) << 34;
1048 1049 1050 1051
	}

	/* Sets pvt->inject.bank mask */
	if (pvt->inject.bank < 0)
1052
		mask |= 1LL << 39;
1053
	else
1054
		mask |= (pvt->inject.bank & 0x15LL) << 30;
1055 1056 1057

	/* Sets pvt->inject.page mask */
	if (pvt->inject.page < 0)
1058
		mask |= 1LL << 38;
1059
	else
1060
		mask |= (pvt->inject.page & 0xffff) << 14;
1061 1062 1063

	/* Sets pvt->inject.column mask */
	if (pvt->inject.col < 0)
1064
		mask |= 1LL << 37;
1065
	else
1066
		mask |= (pvt->inject.col & 0x3fff);
1067

1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079
	/*
	 * bit    0: REPEAT_EN
	 * bits 1-2: MASK_HALF_CACHELINE
	 * bit    3: INJECT_ECC
	 * bit    4: INJECT_ADDR_PARITY
	 */

	injectmask = (pvt->inject.type & 1) |
		     (pvt->inject.section & 0x3) << 1 |
		     (pvt->inject.type & 0x6) << (3 - 1);

	/* Unlock writes to registers - this register is write only */
1080
	pci_write_config_dword(pvt->pci_noncore,
1081
			       MC_CFG_CONTROL, 0x2);
1082

1083
	write_and_test(pvt->pci_ch[pvt->inject.channel][0],
1084
			       MC_CHANNEL_ADDR_MATCH, mask);
1085
	write_and_test(pvt->pci_ch[pvt->inject.channel][0],
1086 1087
			       MC_CHANNEL_ADDR_MATCH + 4, mask >> 32L);

1088
	write_and_test(pvt->pci_ch[pvt->inject.channel][0],
1089 1090
			       MC_CHANNEL_ERROR_MASK, pvt->inject.eccmask);

1091
	write_and_test(pvt->pci_ch[pvt->inject.channel][0],
1092
			       MC_CHANNEL_ERROR_INJECT, injectmask);
1093

1094
	/*
1095 1096 1097
	 * This is something undocumented, based on my tests
	 * Without writing 8 to this register, errors aren't injected. Not sure
	 * why.
1098
	 */
1099
	pci_write_config_dword(pvt->pci_noncore,
1100
			       MC_CFG_CONTROL, 8);
1101

1102 1103
	debugf0("Error inject addr match 0x%016llx, ecc 0x%08x,"
		" inject 0x%08x\n",
1104 1105
		mask, pvt->inject.eccmask, injectmask);

1106

1107 1108 1109 1110 1111 1112 1113
	return count;
}

static ssize_t i7core_inject_enable_show(struct mem_ctl_info *mci,
					char *data)
{
	struct i7core_pvt *pvt = mci->pvt_info;
1114 1115
	u32 injectmask;

1116 1117 1118
	if (!pvt->pci_ch[pvt->inject.channel][0])
		return 0;

1119
	pci_read_config_dword(pvt->pci_ch[pvt->inject.channel][0],
1120
			       MC_CHANNEL_ERROR_INJECT, &injectmask);
1121 1122 1123 1124 1125 1126

	debugf0("Inject error read: 0x%018x\n", injectmask);

	if (injectmask & 0x0c)
		pvt->inject.enable = 1;

1127 1128 1129
	return sprintf(data, "%d\n", pvt->inject.enable);
}

1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142
#define DECLARE_COUNTER(param)					\
static ssize_t i7core_show_counter_##param(			\
		struct mem_ctl_info *mci,			\
		char *data)					\
{								\
	struct i7core_pvt *pvt = mci->pvt_info;			\
								\
	debugf1("%s() \n", __func__);				\
	if (!pvt->ce_count_available || (pvt->is_registered))	\
		return sprintf(data, "data unavailable\n");	\
	return sprintf(data, "%lu\n",				\
			pvt->udimm_ce_count[param]);		\
}
1143

1144 1145 1146 1147 1148 1149 1150
#define ATTR_COUNTER(param)					\
	{							\
		.attr = {					\
			.name = __stringify(udimm##param),	\
			.mode = (S_IRUGO | S_IWUSR)		\
		},						\
		.show  = i7core_show_counter_##param		\
1151
	}
1152

1153 1154 1155
DECLARE_COUNTER(0);
DECLARE_COUNTER(1);
DECLARE_COUNTER(2);
1156

1157 1158 1159
/*
 * Sysfs struct
 */
1160

1161
static const struct mcidev_sysfs_attribute i7core_addrmatch_attrs[] = {
1162 1163 1164 1165 1166 1167
	ATTR_ADDR_MATCH(channel),
	ATTR_ADDR_MATCH(dimm),
	ATTR_ADDR_MATCH(rank),
	ATTR_ADDR_MATCH(bank),
	ATTR_ADDR_MATCH(page),
	ATTR_ADDR_MATCH(col),
1168
	{ } /* End of list */
1169 1170
};

1171
static const struct mcidev_sysfs_group i7core_inject_addrmatch = {
1172 1173 1174 1175
	.name  = "inject_addrmatch",
	.mcidev_attr = i7core_addrmatch_attrs,
};

1176
static const struct mcidev_sysfs_attribute i7core_udimm_counters_attrs[] = {
1177 1178 1179
	ATTR_COUNTER(0),
	ATTR_COUNTER(1),
	ATTR_COUNTER(2),
1180
	{ .attr = { .name = NULL } }
1181 1182
};

1183
static const struct mcidev_sysfs_group i7core_udimm_counters = {
1184 1185 1186 1187
	.name  = "all_channel_counts",
	.mcidev_attr = i7core_udimm_counters_attrs,
};

1188
static const struct mcidev_sysfs_attribute i7core_sysfs_rdimm_attrs[] = {
1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210
	{
		.attr = {
			.name = "inject_section",
			.mode = (S_IRUGO | S_IWUSR)
		},
		.show  = i7core_inject_section_show,
		.store = i7core_inject_section_store,
	}, {
		.attr = {
			.name = "inject_type",
			.mode = (S_IRUGO | S_IWUSR)
		},
		.show  = i7core_inject_type_show,
		.store = i7core_inject_type_store,
	}, {
		.attr = {
			.name = "inject_eccmask",
			.mode = (S_IRUGO | S_IWUSR)
		},
		.show  = i7core_inject_eccmask_show,
		.store = i7core_inject_eccmask_store,
	}, {
1211
		.grp = &i7core_inject_addrmatch,
1212 1213 1214 1215 1216 1217 1218 1219
	}, {
		.attr = {
			.name = "inject_enable",
			.mode = (S_IRUGO | S_IWUSR)
		},
		.show  = i7core_inject_enable_show,
		.store = i7core_inject_enable_store,
	},
1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257
	{ }	/* End of list */
};

static const struct mcidev_sysfs_attribute i7core_sysfs_udimm_attrs[] = {
	{
		.attr = {
			.name = "inject_section",
			.mode = (S_IRUGO | S_IWUSR)
		},
		.show  = i7core_inject_section_show,
		.store = i7core_inject_section_store,
	}, {
		.attr = {
			.name = "inject_type",
			.mode = (S_IRUGO | S_IWUSR)
		},
		.show  = i7core_inject_type_show,
		.store = i7core_inject_type_store,
	}, {
		.attr = {
			.name = "inject_eccmask",
			.mode = (S_IRUGO | S_IWUSR)
		},
		.show  = i7core_inject_eccmask_show,
		.store = i7core_inject_eccmask_store,
	}, {
		.grp = &i7core_inject_addrmatch,
	}, {
		.attr = {
			.name = "inject_enable",
			.mode = (S_IRUGO | S_IWUSR)
		},
		.show  = i7core_inject_enable_show,
		.store = i7core_inject_enable_store,
	}, {
		.grp = &i7core_udimm_counters,
	},
	{ }	/* End of list */
1258 1259
};

1260 1261 1262 1263 1264
/****************************************************************************
	Device initialization routines: put/get, init/exit
 ****************************************************************************/

/*
1265
 *	i7core_put_all_devices	'put' all the devices that we have
1266 1267
 *				reserved via 'get'
 */
1268
static void i7core_put_devices(struct i7core_dev *i7core_dev)
1269
{
1270
	int i;
1271

1272
	debugf0(__FILE__ ": %s()\n", __func__);
1273
	for (i = 0; i < i7core_dev->n_devs; i++) {
1274 1275 1276 1277 1278 1279 1280 1281
		struct pci_dev *pdev = i7core_dev->pdev[i];
		if (!pdev)
			continue;
		debugf0("Removing dev %02x:%02x.%d\n",
			pdev->bus->number,
			PCI_SLOT(pdev->devfn), PCI_FUNC(pdev->devfn));
		pci_dev_put(pdev);
	}
1282
}
1283

1284 1285
static void i7core_put_all_devices(void)
{
1286
	struct i7core_dev *i7core_dev, *tmp;
1287

1288
	list_for_each_entry_safe(i7core_dev, tmp, &i7core_edac_list, list) {
1289
		i7core_put_devices(i7core_dev);
1290
		free_i7core_dev(i7core_dev);
1291
	}
1292 1293
}

1294
static void __init i7core_xeon_pci_fixup(const struct pci_id_table *table)
1295 1296 1297
{
	struct pci_dev *pdev = NULL;
	int i;
1298

1299
	/*
D
David Sterba 已提交
1300
	 * On Xeon 55xx, the Intel Quick Path Arch Generic Non-core pci buses
1301 1302 1303
	 * aren't announced by acpi. So, we need to use a legacy scan probing
	 * to detect them
	 */
1304 1305 1306 1307 1308 1309
	while (table && table->descr) {
		pdev = pci_get_device(PCI_VENDOR_ID_INTEL, table->descr[0].dev_id, NULL);
		if (unlikely(!pdev)) {
			for (i = 0; i < MAX_SOCKET_BUSES; i++)
				pcibios_scan_specific_bus(255-i);
		}
1310
		pci_dev_put(pdev);
1311
		table++;
1312 1313 1314
	}
}

1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331
static unsigned i7core_pci_lastbus(void)
{
	int last_bus = 0, bus;
	struct pci_bus *b = NULL;

	while ((b = pci_find_next_bus(b)) != NULL) {
		bus = b->number;
		debugf0("Found bus %d\n", bus);
		if (bus > last_bus)
			last_bus = bus;
	}

	debugf0("Last bus %d\n", last_bus);

	return last_bus;
}

1332
/*
1333
 *	i7core_get_all_devices	Find and perform 'get' operation on the MCH's
1334 1335 1336 1337
 *			device/functions we want to reference for this driver
 *
 *			Need to 'get' device 16 func 1 and func 2
 */
1338 1339 1340 1341
static int i7core_get_onedevice(struct pci_dev **prev,
				const struct pci_id_table *table,
				const unsigned devno,
				const unsigned last_bus)
1342
{
1343
	struct i7core_dev *i7core_dev;
1344
	const struct pci_id_descr *dev_descr = &table->descr[devno];
1345

1346
	struct pci_dev *pdev = NULL;
1347 1348
	u8 bus = 0;
	u8 socket = 0;
1349

1350
	pdev = pci_get_device(PCI_VENDOR_ID_INTEL,
1351
			      dev_descr->dev_id, *prev);
1352

1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366
	/*
	 * On Xeon 55xx, the Intel Quckpath Arch Generic Non-core regs
	 * is at addr 8086:2c40, instead of 8086:2c41. So, we need
	 * to probe for the alternate address in case of failure
	 */
	if (dev_descr->dev_id == PCI_DEVICE_ID_INTEL_I7_NONCORE && !pdev)
		pdev = pci_get_device(PCI_VENDOR_ID_INTEL,
				      PCI_DEVICE_ID_INTEL_I7_NONCORE_ALT, *prev);

	if (dev_descr->dev_id == PCI_DEVICE_ID_INTEL_LYNNFIELD_NONCORE && !pdev)
		pdev = pci_get_device(PCI_VENDOR_ID_INTEL,
				      PCI_DEVICE_ID_INTEL_LYNNFIELD_NONCORE_ALT,
				      *prev);

1367 1368 1369 1370
	if (!pdev) {
		if (*prev) {
			*prev = pdev;
			return 0;
1371 1372
		}

1373
		if (dev_descr->optional)
1374
			return 0;
1375

1376 1377 1378
		if (devno == 0)
			return -ENODEV;

1379
		i7core_printk(KERN_INFO,
1380
			"Device not found: dev %02x.%d PCI ID %04x:%04x\n",
1381 1382
			dev_descr->dev, dev_descr->func,
			PCI_VENDOR_ID_INTEL, dev_descr->dev_id);
1383

1384 1385 1386 1387
		/* End of list, leave */
		return -ENODEV;
	}
	bus = pdev->bus->number;
1388

1389
	socket = last_bus - bus;
1390

1391 1392
	i7core_dev = get_i7core_dev(socket);
	if (!i7core_dev) {
1393
		i7core_dev = alloc_i7core_dev(socket, table);
1394 1395
		if (!i7core_dev) {
			pci_dev_put(pdev);
1396
			return -ENOMEM;
1397
		}
1398
	}
1399

1400
	if (i7core_dev->pdev[devno]) {
1401 1402 1403
		i7core_printk(KERN_ERR,
			"Duplicated device for "
			"dev %02x:%02x.%d PCI ID %04x:%04x\n",
1404 1405
			bus, dev_descr->dev, dev_descr->func,
			PCI_VENDOR_ID_INTEL, dev_descr->dev_id);
1406 1407 1408
		pci_dev_put(pdev);
		return -ENODEV;
	}
1409

1410
	i7core_dev->pdev[devno] = pdev;
1411 1412

	/* Sanity check */
1413 1414
	if (unlikely(PCI_SLOT(pdev->devfn) != dev_descr->dev ||
			PCI_FUNC(pdev->devfn) != dev_descr->func)) {
1415 1416 1417
		i7core_printk(KERN_ERR,
			"Device PCI ID %04x:%04x "
			"has dev %02x:%02x.%d instead of dev %02x:%02x.%d\n",
1418
			PCI_VENDOR_ID_INTEL, dev_descr->dev_id,
1419
			bus, PCI_SLOT(pdev->devfn), PCI_FUNC(pdev->devfn),
1420
			bus, dev_descr->dev, dev_descr->func);
1421 1422
		return -ENODEV;
	}
1423

1424 1425 1426 1427 1428
	/* Be sure that the device is enabled */
	if (unlikely(pci_enable_device(pdev) < 0)) {
		i7core_printk(KERN_ERR,
			"Couldn't enable "
			"dev %02x:%02x.%d PCI ID %04x:%04x\n",
1429 1430
			bus, dev_descr->dev, dev_descr->func,
			PCI_VENDOR_ID_INTEL, dev_descr->dev_id);
1431 1432
		return -ENODEV;
	}
1433

1434
	debugf0("Detected socket %d dev %02x:%02x.%d PCI ID %04x:%04x\n",
1435 1436 1437
		socket, bus, dev_descr->dev,
		dev_descr->func,
		PCI_VENDOR_ID_INTEL, dev_descr->dev_id);
1438

1439 1440 1441 1442 1443 1444 1445
	/*
	 * As stated on drivers/pci/search.c, the reference count for
	 * @from is always decremented if it is not %NULL. So, as we need
	 * to get all devices up to null, we need to do a get for the device
	 */
	pci_dev_get(pdev);

1446
	*prev = pdev;
1447

1448 1449
	return 0;
}
1450

1451
static int i7core_get_all_devices(void)
1452
{
1453
	int i, rc, last_bus;
1454
	struct pci_dev *pdev = NULL;
1455
	const struct pci_id_table *table = pci_dev_table;
1456

1457 1458
	last_bus = i7core_pci_lastbus();

1459
	while (table && table->descr) {
1460 1461 1462
		for (i = 0; i < table->n_devs; i++) {
			pdev = NULL;
			do {
1463
				rc = i7core_get_onedevice(&pdev, table, i,
1464
							  last_bus);
1465 1466 1467 1468 1469 1470 1471 1472 1473 1474
				if (rc < 0) {
					if (i == 0) {
						i = table->n_devs;
						break;
					}
					i7core_put_all_devices();
					return -ENODEV;
				}
			} while (pdev);
		}
1475
		table++;
1476
	}
1477

1478 1479 1480
	return 0;
}

1481 1482
static int mci_bind_devs(struct mem_ctl_info *mci,
			 struct i7core_dev *i7core_dev)
1483 1484 1485
{
	struct i7core_pvt *pvt = mci->pvt_info;
	struct pci_dev *pdev;
1486
	int i, func, slot;
1487
	char *family;
1488

1489 1490
	pvt->is_registered = false;
	pvt->enable_scrub  = false;
1491
	for (i = 0; i < i7core_dev->n_devs; i++) {
1492 1493
		pdev = i7core_dev->pdev[i];
		if (!pdev)
1494 1495
			continue;

1496 1497 1498 1499 1500 1501 1502 1503
		func = PCI_FUNC(pdev->devfn);
		slot = PCI_SLOT(pdev->devfn);
		if (slot == 3) {
			if (unlikely(func > MAX_MCR_FUNC))
				goto error;
			pvt->pci_mcr[func] = pdev;
		} else if (likely(slot >= 4 && slot < 4 + NUM_CHANS)) {
			if (unlikely(func > MAX_CHAN_FUNC))
1504
				goto error;
1505
			pvt->pci_ch[slot - 4][func] = pdev;
1506
		} else if (!slot && !func) {
1507
			pvt->pci_noncore = pdev;
1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536

			/* Detect the processor family */
			switch (pdev->device) {
			case PCI_DEVICE_ID_INTEL_I7_NONCORE:
				family = "Xeon 35xx/ i7core";
				pvt->enable_scrub = false;
				break;
			case PCI_DEVICE_ID_INTEL_LYNNFIELD_NONCORE_ALT:
				family = "i7-800/i5-700";
				pvt->enable_scrub = false;
				break;
			case PCI_DEVICE_ID_INTEL_LYNNFIELD_NONCORE:
				family = "Xeon 34xx";
				pvt->enable_scrub = false;
				break;
			case PCI_DEVICE_ID_INTEL_I7_NONCORE_ALT:
				family = "Xeon 55xx";
				pvt->enable_scrub = true;
				break;
			case PCI_DEVICE_ID_INTEL_LYNNFIELD_NONCORE_REV2:
				family = "Xeon 56xx / i7-900";
				pvt->enable_scrub = true;
				break;
			default:
				family = "unknown";
				pvt->enable_scrub = false;
			}
			debugf0("Detected a processor type %s\n", family);
		} else
1537
			goto error;
1538

1539 1540 1541
		debugf0("Associated fn %d.%d, dev = %p, socket %d\n",
			PCI_SLOT(pdev->devfn), PCI_FUNC(pdev->devfn),
			pdev, i7core_dev->socket);
1542

1543 1544
		if (PCI_SLOT(pdev->devfn) == 3 &&
			PCI_FUNC(pdev->devfn) == 2)
1545
			pvt->is_registered = true;
1546
	}
1547

1548
	return 0;
1549 1550 1551 1552 1553 1554

error:
	i7core_printk(KERN_ERR, "Device %d, function %d "
		      "is out of the expected range\n",
		      slot, func);
	return -EINVAL;
1555 1556
}

1557 1558 1559
/****************************************************************************
			Error check routines
 ****************************************************************************/
1560
static void i7core_rdimm_update_csrow(struct mem_ctl_info *mci,
1561 1562 1563
				      const int chan,
				      const int dimm,
				      const int add)
1564 1565 1566
{
	char *msg;
	struct i7core_pvt *pvt = mci->pvt_info;
1567
	int row = pvt->csrow_map[chan][dimm], i;
1568 1569 1570

	for (i = 0; i < add; i++) {
		msg = kasprintf(GFP_KERNEL, "Corrected error "
1571 1572
				"(Socket=%d channel=%d dimm=%d)",
				pvt->i7core_dev->socket, chan, dimm);
1573 1574 1575 1576 1577 1578 1579

		edac_mc_handle_fbd_ce(mci, row, 0, msg);
		kfree (msg);
	}
}

static void i7core_rdimm_update_ce_count(struct mem_ctl_info *mci,
1580 1581 1582 1583
					 const int chan,
					 const int new0,
					 const int new1,
					 const int new2)
1584 1585 1586 1587
{
	struct i7core_pvt *pvt = mci->pvt_info;
	int add0 = 0, add1 = 0, add2 = 0;
	/* Updates CE counters if it is not the first time here */
1588
	if (pvt->ce_count_available) {
1589 1590
		/* Updates CE counters */

1591 1592 1593
		add2 = new2 - pvt->rdimm_last_ce_count[chan][2];
		add1 = new1 - pvt->rdimm_last_ce_count[chan][1];
		add0 = new0 - pvt->rdimm_last_ce_count[chan][0];
1594 1595 1596

		if (add2 < 0)
			add2 += 0x7fff;
1597
		pvt->rdimm_ce_count[chan][2] += add2;
1598 1599 1600

		if (add1 < 0)
			add1 += 0x7fff;
1601
		pvt->rdimm_ce_count[chan][1] += add1;
1602 1603 1604

		if (add0 < 0)
			add0 += 0x7fff;
1605
		pvt->rdimm_ce_count[chan][0] += add0;
1606
	} else
1607
		pvt->ce_count_available = 1;
1608 1609

	/* Store the new values */
1610 1611 1612
	pvt->rdimm_last_ce_count[chan][2] = new2;
	pvt->rdimm_last_ce_count[chan][1] = new1;
	pvt->rdimm_last_ce_count[chan][0] = new0;
1613 1614 1615

	/*updated the edac core */
	if (add0 != 0)
1616
		i7core_rdimm_update_csrow(mci, chan, 0, add0);
1617
	if (add1 != 0)
1618
		i7core_rdimm_update_csrow(mci, chan, 1, add1);
1619
	if (add2 != 0)
1620
		i7core_rdimm_update_csrow(mci, chan, 2, add2);
1621 1622 1623

}

1624
static void i7core_rdimm_check_mc_ecc_err(struct mem_ctl_info *mci)
1625 1626 1627 1628 1629 1630
{
	struct i7core_pvt *pvt = mci->pvt_info;
	u32 rcv[3][2];
	int i, new0, new1, new2;

	/*Read DEV 3: FUN 2:  MC_COR_ECC_CNT regs directly*/
1631
	pci_read_config_dword(pvt->pci_mcr[2], MC_COR_ECC_CNT_0,
1632
								&rcv[0][0]);
1633
	pci_read_config_dword(pvt->pci_mcr[2], MC_COR_ECC_CNT_1,
1634
								&rcv[0][1]);
1635
	pci_read_config_dword(pvt->pci_mcr[2], MC_COR_ECC_CNT_2,
1636
								&rcv[1][0]);
1637
	pci_read_config_dword(pvt->pci_mcr[2], MC_COR_ECC_CNT_3,
1638
								&rcv[1][1]);
1639
	pci_read_config_dword(pvt->pci_mcr[2], MC_COR_ECC_CNT_4,
1640
								&rcv[2][0]);
1641
	pci_read_config_dword(pvt->pci_mcr[2], MC_COR_ECC_CNT_5,
1642 1643 1644 1645 1646
								&rcv[2][1]);
	for (i = 0 ; i < 3; i++) {
		debugf3("MC_COR_ECC_CNT%d = 0x%x; MC_COR_ECC_CNT%d = 0x%x\n",
			(i * 2), rcv[i][0], (i * 2) + 1, rcv[i][1]);
		/*if the channel has 3 dimms*/
1647
		if (pvt->channel[i].dimms > 2) {
1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658
			new0 = DIMM_BOT_COR_ERR(rcv[i][0]);
			new1 = DIMM_TOP_COR_ERR(rcv[i][0]);
			new2 = DIMM_BOT_COR_ERR(rcv[i][1]);
		} else {
			new0 = DIMM_TOP_COR_ERR(rcv[i][0]) +
					DIMM_BOT_COR_ERR(rcv[i][0]);
			new1 = DIMM_TOP_COR_ERR(rcv[i][1]) +
					DIMM_BOT_COR_ERR(rcv[i][1]);
			new2 = 0;
		}

1659
		i7core_rdimm_update_ce_count(mci, i, new0, new1, new2);
1660 1661
	}
}
1662 1663 1664 1665 1666 1667 1668

/* This function is based on the device 3 function 4 registers as described on:
 * Intel Xeon Processor 5500 Series Datasheet Volume 2
 *	http://www.intel.com/Assets/PDF/datasheet/321322.pdf
 * also available at:
 * 	http://www.arrownac.com/manufacturers/intel/s/nehalem/5500-datasheet-v2.pdf
 */
1669
static void i7core_udimm_check_mc_ecc_err(struct mem_ctl_info *mci)
1670 1671 1672 1673 1674
{
	struct i7core_pvt *pvt = mci->pvt_info;
	u32 rcv1, rcv0;
	int new0, new1, new2;

1675
	if (!pvt->pci_mcr[4]) {
1676
		debugf0("%s MCR registers not found\n", __func__);
1677 1678 1679
		return;
	}

1680
	/* Corrected test errors */
1681 1682
	pci_read_config_dword(pvt->pci_mcr[4], MC_TEST_ERR_RCV1, &rcv1);
	pci_read_config_dword(pvt->pci_mcr[4], MC_TEST_ERR_RCV0, &rcv0);
1683 1684 1685 1686 1687 1688 1689

	/* Store the new values */
	new2 = DIMM2_COR_ERR(rcv1);
	new1 = DIMM1_COR_ERR(rcv0);
	new0 = DIMM0_COR_ERR(rcv0);

	/* Updates CE counters if it is not the first time here */
1690
	if (pvt->ce_count_available) {
1691 1692 1693
		/* Updates CE counters */
		int add0, add1, add2;

1694 1695 1696
		add2 = new2 - pvt->udimm_last_ce_count[2];
		add1 = new1 - pvt->udimm_last_ce_count[1];
		add0 = new0 - pvt->udimm_last_ce_count[0];
1697 1698 1699

		if (add2 < 0)
			add2 += 0x7fff;
1700
		pvt->udimm_ce_count[2] += add2;
1701 1702 1703

		if (add1 < 0)
			add1 += 0x7fff;
1704
		pvt->udimm_ce_count[1] += add1;
1705 1706 1707

		if (add0 < 0)
			add0 += 0x7fff;
1708
		pvt->udimm_ce_count[0] += add0;
1709 1710 1711 1712 1713

		if (add0 | add1 | add2)
			i7core_printk(KERN_ERR, "New Corrected error(s): "
				      "dimm0: +%d, dimm1: +%d, dimm2 +%d\n",
				      add0, add1, add2);
1714
	} else
1715
		pvt->ce_count_available = 1;
1716 1717

	/* Store the new values */
1718 1719 1720
	pvt->udimm_last_ce_count[2] = new2;
	pvt->udimm_last_ce_count[1] = new1;
	pvt->udimm_last_ce_count[0] = new0;
1721 1722
}

1723 1724 1725
/*
 * According with tables E-11 and E-12 of chapter E.3.3 of Intel 64 and IA-32
 * Architectures Software Developer’s Manual Volume 3B.
1726 1727 1728
 * Nehalem are defined as family 0x06, model 0x1a
 *
 * The MCA registers used here are the following ones:
1729
 *     struct mce field	MCA Register
1730 1731 1732
 *     m->status	MSR_IA32_MC8_STATUS
 *     m->addr		MSR_IA32_MC8_ADDR
 *     m->misc		MSR_IA32_MC8_MISC
1733 1734 1735
 * In the case of Nehalem, the error information is masked at .status and .misc
 * fields
 */
1736
static void i7core_mce_output_error(struct mem_ctl_info *mci,
1737
				    const struct mce *m)
1738
{
1739
	struct i7core_pvt *pvt = mci->pvt_info;
1740
	char *type, *optype, *err, *msg;
1741
	unsigned long error = m->status & 0x1ff0000l;
1742
	u32 optypenum = (m->status >> 4) & 0x07;
1743
	u32 core_err_cnt = (m->status >> 38) & 0x7fff;
1744 1745 1746 1747
	u32 dimm = (m->misc >> 16) & 0x3;
	u32 channel = (m->misc >> 18) & 0x3;
	u32 syndrome = m->misc >> 32;
	u32 errnum = find_first_bit(&error, 32);
1748
	int csrow;
1749

1750 1751 1752 1753 1754
	if (m->mcgstatus & 1)
		type = "FATAL";
	else
		type = "NON_FATAL";

1755
	switch (optypenum) {
1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773
	case 0:
		optype = "generic undef request";
		break;
	case 1:
		optype = "read error";
		break;
	case 2:
		optype = "write error";
		break;
	case 3:
		optype = "addr/cmd error";
		break;
	case 4:
		optype = "scrubbing error";
		break;
	default:
		optype = "reserved";
		break;
1774 1775
	}

1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805
	switch (errnum) {
	case 16:
		err = "read ECC error";
		break;
	case 17:
		err = "RAS ECC error";
		break;
	case 18:
		err = "write parity error";
		break;
	case 19:
		err = "redundacy loss";
		break;
	case 20:
		err = "reserved";
		break;
	case 21:
		err = "memory range error";
		break;
	case 22:
		err = "RTID out of range";
		break;
	case 23:
		err = "address parity error";
		break;
	case 24:
		err = "byte enable parity error";
		break;
	default:
		err = "unknown";
1806 1807
	}

1808
	/* FIXME: should convert addr into bank and rank information */
1809
	msg = kasprintf(GFP_ATOMIC,
1810
		"%s (addr = 0x%08llx, cpu=%d, Dimm=%d, Channel=%d, "
1811
		"syndrome=0x%08x, count=%d, Err=%08llx:%08llx (%s: %s))\n",
1812
		type, (long long) m->addr, m->cpu, dimm, channel,
1813 1814
		syndrome, core_err_cnt, (long long)m->status,
		(long long)m->misc, optype, err);
1815 1816

	debugf0("%s", msg);
1817

1818
	csrow = pvt->csrow_map[channel][dimm];
1819

1820
	/* Call the helper to output message */
1821 1822 1823
	if (m->mcgstatus & 1)
		edac_mc_handle_fbd_ue(mci, csrow, 0,
				0 /* FIXME: should be channel here */, msg);
1824
	else if (!pvt->is_registered)
1825 1826
		edac_mc_handle_fbd_ce(mci, csrow,
				0 /* FIXME: should be channel here */, msg);
1827 1828

	kfree(msg);
1829 1830
}

1831 1832 1833 1834 1835 1836
/*
 *	i7core_check_error	Retrieve and process errors reported by the
 *				hardware. Called by the Core module.
 */
static void i7core_check_error(struct mem_ctl_info *mci)
{
1837 1838 1839
	struct i7core_pvt *pvt = mci->pvt_info;
	int i;
	unsigned count = 0;
1840
	struct mce *m;
1841

1842 1843 1844
	/*
	 * MCE first step: Copy all mce errors into a temporary buffer
	 * We use a double buffering here, to reduce the risk of
L
Lucas De Marchi 已提交
1845
	 * losing an error.
1846 1847
	 */
	smp_rmb();
1848 1849
	count = (pvt->mce_out + MCE_LOG_LEN - pvt->mce_in)
		% MCE_LOG_LEN;
1850
	if (!count)
1851
		goto check_ce_error;
1852

1853
	m = pvt->mce_outentry;
1854 1855
	if (pvt->mce_in + count > MCE_LOG_LEN) {
		unsigned l = MCE_LOG_LEN - pvt->mce_in;
1856

1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873
		memcpy(m, &pvt->mce_entry[pvt->mce_in], sizeof(*m) * l);
		smp_wmb();
		pvt->mce_in = 0;
		count -= l;
		m += l;
	}
	memcpy(m, &pvt->mce_entry[pvt->mce_in], sizeof(*m) * count);
	smp_wmb();
	pvt->mce_in += count;

	smp_rmb();
	if (pvt->mce_overrun) {
		i7core_printk(KERN_ERR, "Lost %d memory errors\n",
			      pvt->mce_overrun);
		smp_wmb();
		pvt->mce_overrun = 0;
	}
1874

1875 1876 1877
	/*
	 * MCE second step: parse errors and display
	 */
1878
	for (i = 0; i < count; i++)
1879
		i7core_mce_output_error(mci, &pvt->mce_outentry[i]);
1880

1881 1882 1883
	/*
	 * Now, let's increment CE error counts
	 */
1884
check_ce_error:
1885 1886 1887 1888
	if (!pvt->is_registered)
		i7core_udimm_check_mc_ecc_err(mci);
	else
		i7core_rdimm_check_mc_ecc_err(mci);
1889 1890
}

1891 1892 1893 1894 1895
/*
 * i7core_mce_check_error	Replicates mcelog routine to get errors
 *				This routine simply queues mcelog errors, and
 *				return. The error itself should be handled later
 *				by i7core_check_error.
1896 1897
 * WARNING: As this routine should be called at NMI time, extra care should
 * be taken to avoid deadlocks, and to be as fast as possible.
1898
 */
1899 1900
static int i7core_mce_check_error(struct notifier_block *nb, unsigned long val,
				  void *data)
1901
{
1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912
	struct mce *mce = (struct mce *)data;
	struct i7core_dev *i7_dev;
	struct mem_ctl_info *mci;
	struct i7core_pvt *pvt;

	i7_dev = get_i7core_dev(mce->socketid);
	if (!i7_dev)
		return NOTIFY_BAD;

	mci = i7_dev->mci;
	pvt = mci->pvt_info;
1913

1914 1915 1916 1917 1918
	/*
	 * Just let mcelog handle it if the error is
	 * outside the memory controller
	 */
	if (((mce->status & 0xffff) >> 7) != 1)
1919
		return NOTIFY_DONE;
1920

1921 1922
	/* Bank 8 registers are the only ones that we know how to handle */
	if (mce->bank != 8)
1923
		return NOTIFY_DONE;
1924

R
Randy Dunlap 已提交
1925
#ifdef CONFIG_SMP
1926
	/* Only handle if it is the right mc controller */
1927
	if (mce->socketid != pvt->i7core_dev->socket)
1928
		return NOTIFY_DONE;
R
Randy Dunlap 已提交
1929
#endif
1930

1931
	smp_rmb();
1932
	if ((pvt->mce_out + 1) % MCE_LOG_LEN == pvt->mce_in) {
1933 1934
		smp_wmb();
		pvt->mce_overrun++;
1935
		return NOTIFY_DONE;
1936
	}
1937 1938 1939

	/* Copy memory error at the ringbuffer */
	memcpy(&pvt->mce_entry[pvt->mce_out], mce, sizeof(*mce));
1940
	smp_wmb();
1941
	pvt->mce_out = (pvt->mce_out + 1) % MCE_LOG_LEN;
1942

1943 1944 1945 1946
	/* Handle fatal errors immediately */
	if (mce->mcgstatus & 1)
		i7core_check_error(mci);

D
David Sterba 已提交
1947
	/* Advise mcelog that the errors were handled */
1948
	return NOTIFY_STOP;
1949 1950
}

1951 1952 1953 1954
static struct notifier_block i7_mce_dec = {
	.notifier_call	= i7core_mce_check_error,
};

1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064
/*
 * set_sdram_scrub_rate		This routine sets byte/sec bandwidth scrub rate
 *				to hardware according to SCRUBINTERVAL formula
 *				found in datasheet.
 */
static int set_sdram_scrub_rate(struct mem_ctl_info *mci, u32 new_bw)
{
	struct i7core_pvt *pvt = mci->pvt_info;
	struct pci_dev *pdev;
	const u32 cache_line_size = 64;
	const u32 freq_dclk = 800*1000000;
	u32 dw_scrub;
	u32 dw_ssr;

	/* Get data from the MC register, function 2 */
	pdev = pvt->pci_mcr[2];
	if (!pdev)
		return -ENODEV;

	pci_read_config_dword(pdev, MC_SCRUB_CONTROL, &dw_scrub);

	if (new_bw == 0) {
		/* Prepare to disable petrol scrub */
		dw_scrub &= ~STARTSCRUB;
		/* Stop the patrol scrub engine */
		write_and_test(pdev, MC_SCRUB_CONTROL, dw_scrub & ~0x00ffffff);

		/* Get current status of scrub rate and set bit to disable */
		pci_read_config_dword(pdev, MC_SSRCONTROL, &dw_ssr);
		dw_ssr &= ~SSR_MODE_MASK;
		dw_ssr |= SSR_MODE_DISABLE;
	} else {
		/*
		 * Translate the desired scrub rate to a register value and
		 * program the cooresponding register value.
		 */
		dw_scrub = 0x00ffffff & (cache_line_size * freq_dclk / new_bw);

		/* Start the patrol scrub engine */
		pci_write_config_dword(pdev, MC_SCRUB_CONTROL,
				       STARTSCRUB | dw_scrub);

		/* Get current status of scrub rate and set bit to enable */
		pci_read_config_dword(pdev, MC_SSRCONTROL, &dw_ssr);
		dw_ssr &= ~SSR_MODE_MASK;
		dw_ssr |= SSR_MODE_ENABLE;
	}
	/* Disable or enable scrubbing */
	pci_write_config_dword(pdev, MC_SSRCONTROL, dw_ssr);

	return new_bw;
}

/*
 * get_sdram_scrub_rate		This routine convert current scrub rate value
 *				into byte/sec bandwidth accourding to
 *				SCRUBINTERVAL formula found in datasheet.
 */
static int get_sdram_scrub_rate(struct mem_ctl_info *mci)
{
	struct i7core_pvt *pvt = mci->pvt_info;
	struct pci_dev *pdev;
	const u32 cache_line_size = 64;
	const u32 freq_dclk = 800*1000000;
	u32 scrubval;

	/* Get data from the MC register, function 2 */
	pdev = pvt->pci_mcr[2];
	if (!pdev)
		return -ENODEV;

	/* Get current scrub control data */
	pci_read_config_dword(pdev, MC_SCRUB_CONTROL, &scrubval);

	/* Mask highest 8-bits to 0 */
	scrubval &=  0x00ffffff;
	if (!scrubval)
		return 0;

	/* Calculate scrub rate value into byte/sec bandwidth */
	return 0xffffffff & (cache_line_size * freq_dclk / (u64) scrubval);
}

static void enable_sdram_scrub_setting(struct mem_ctl_info *mci)
{
	struct i7core_pvt *pvt = mci->pvt_info;
	u32 pci_lock;

	/* Unlock writes to pci registers */
	pci_read_config_dword(pvt->pci_noncore, MC_CFG_CONTROL, &pci_lock);
	pci_lock &= ~0x3;
	pci_write_config_dword(pvt->pci_noncore, MC_CFG_CONTROL,
			       pci_lock | MC_CFG_UNLOCK);

	mci->set_sdram_scrub_rate = set_sdram_scrub_rate;
	mci->get_sdram_scrub_rate = get_sdram_scrub_rate;
}

static void disable_sdram_scrub_setting(struct mem_ctl_info *mci)
{
	struct i7core_pvt *pvt = mci->pvt_info;
	u32 pci_lock;

	/* Lock writes to pci registers */
	pci_read_config_dword(pvt->pci_noncore, MC_CFG_CONTROL, &pci_lock);
	pci_lock &= ~0x3;
	pci_write_config_dword(pvt->pci_noncore, MC_CFG_CONTROL,
			       pci_lock | MC_CFG_LOCK);
}

2065 2066 2067 2068 2069 2070
static void i7core_pci_ctl_create(struct i7core_pvt *pvt)
{
	pvt->i7core_pci = edac_pci_create_generic_ctl(
						&pvt->i7core_dev->pdev[0]->dev,
						EDAC_MOD_STR);
	if (unlikely(!pvt->i7core_pci))
2071 2072
		i7core_printk(KERN_WARNING,
			      "Unable to setup PCI error report via EDAC\n");
2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085
}

static void i7core_pci_ctl_release(struct i7core_pvt *pvt)
{
	if (likely(pvt->i7core_pci))
		edac_pci_release_generic_ctl(pvt->i7core_pci);
	else
		i7core_printk(KERN_ERR,
				"Couldn't find mem_ctl_info for socket %d\n",
				pvt->i7core_dev->socket);
	pvt->i7core_pci = NULL;
}

2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103
static void i7core_unregister_mci(struct i7core_dev *i7core_dev)
{
	struct mem_ctl_info *mci = i7core_dev->mci;
	struct i7core_pvt *pvt;

	if (unlikely(!mci || !mci->pvt_info)) {
		debugf0("MC: " __FILE__ ": %s(): dev = %p\n",
			__func__, &i7core_dev->pdev[0]->dev);

		i7core_printk(KERN_ERR, "Couldn't find mci handler\n");
		return;
	}

	pvt = mci->pvt_info;

	debugf0("MC: " __FILE__ ": %s(): mci = %p, dev = %p\n",
		__func__, mci, &i7core_dev->pdev[0]->dev);

2104
	/* Disable scrubrate setting */
2105 2106
	if (pvt->enable_scrub)
		disable_sdram_scrub_setting(mci);
2107

2108
	atomic_notifier_chain_unregister(&x86_mce_decoder_chain, &i7_mce_dec);
2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121

	/* Disable EDAC polling */
	i7core_pci_ctl_release(pvt);

	/* Remove MC sysfs nodes */
	edac_mc_del_mc(mci->dev);

	debugf1("%s: free mci struct\n", mci->ctl_name);
	kfree(mci->ctl_name);
	edac_mc_free(mci);
	i7core_dev->mci = NULL;
}

2122
static int i7core_register_mci(struct i7core_dev *i7core_dev)
2123 2124 2125
{
	struct mem_ctl_info *mci;
	struct i7core_pvt *pvt;
2126 2127 2128 2129 2130 2131
	int rc, channels, csrows;

	/* Check the number of active and not disabled channels */
	rc = i7core_get_active_channels(i7core_dev->socket, &channels, &csrows);
	if (unlikely(rc < 0))
		return rc;
2132 2133

	/* allocate a new MC control structure */
2134
	mci = edac_mc_alloc(sizeof(*pvt), csrows, channels, i7core_dev->socket);
2135 2136
	if (unlikely(!mci))
		return -ENOMEM;
2137

2138 2139
	debugf0("MC: " __FILE__ ": %s(): mci = %p, dev = %p\n",
		__func__, mci, &i7core_dev->pdev[0]->dev);
2140 2141

	pvt = mci->pvt_info;
2142
	memset(pvt, 0, sizeof(*pvt));
2143

2144 2145 2146 2147
	/* Associates i7core_dev and mci for future usage */
	pvt->i7core_dev = i7core_dev;
	i7core_dev->mci = mci;

2148 2149 2150 2151 2152 2153
	/*
	 * FIXME: how to handle RDDR3 at MCI level? It is possible to have
	 * Mixed RDDR3/UDDR3 with Nehalem, provided that they are on different
	 * memory channels
	 */
	mci->mtype_cap = MEM_FLAG_DDR3;
2154 2155 2156 2157
	mci->edac_ctl_cap = EDAC_FLAG_NONE;
	mci->edac_cap = EDAC_FLAG_NONE;
	mci->mod_name = "i7core_edac.c";
	mci->mod_ver = I7CORE_REVISION;
2158 2159 2160
	mci->ctl_name = kasprintf(GFP_KERNEL, "i7 core #%d",
				  i7core_dev->socket);
	mci->dev_name = pci_name(i7core_dev->pdev[0]);
2161
	mci->ctl_page_to_phys = NULL;
2162

2163
	/* Store pci devices at mci for faster access */
2164
	rc = mci_bind_devs(mci, i7core_dev);
2165
	if (unlikely(rc < 0))
2166
		goto fail0;
2167

2168 2169 2170 2171 2172
	if (pvt->is_registered)
		mci->mc_driver_sysfs_attributes = i7core_sysfs_rdimm_attrs;
	else
		mci->mc_driver_sysfs_attributes = i7core_sysfs_udimm_attrs;

2173
	/* Get dimm basic config */
2174
	get_dimm_config(mci);
2175 2176 2177 2178
	/* record ptr to the generic device */
	mci->dev = &i7core_dev->pdev[0]->dev;
	/* Set the function pointer to an actual operation function */
	mci->edac_check = i7core_check_error;
2179

2180
	/* Enable scrubrate setting */
2181 2182
	if (pvt->enable_scrub)
		enable_sdram_scrub_setting(mci);
2183

2184
	/* add this new MC control structure to EDAC's list of MCs */
2185
	if (unlikely(edac_mc_add_mc(mci))) {
2186 2187 2188 2189 2190
		debugf0("MC: " __FILE__
			": %s(): failed edac_mc_add_mc()\n", __func__);
		/* FIXME: perhaps some code should go here that disables error
		 * reporting if we just enabled it
		 */
2191 2192

		rc = -EINVAL;
2193
		goto fail0;
2194 2195
	}

2196
	/* Default error mask is any memory */
2197
	pvt->inject.channel = 0;
2198 2199 2200 2201 2202 2203
	pvt->inject.dimm = -1;
	pvt->inject.rank = -1;
	pvt->inject.bank = -1;
	pvt->inject.page = -1;
	pvt->inject.col = -1;

2204 2205 2206
	/* allocating generic PCI control info */
	i7core_pci_ctl_create(pvt);

2207
	atomic_notifier_chain_register(&x86_mce_decoder_chain, &i7_mce_dec);
2208

2209 2210 2211 2212 2213
	return 0;

fail0:
	kfree(mci->ctl_name);
	edac_mc_free(mci);
2214
	i7core_dev->mci = NULL;
2215 2216 2217 2218 2219 2220 2221 2222 2223 2224
	return rc;
}

/*
 *	i7core_probe	Probe for ONE instance of device to see if it is
 *			present.
 *	return:
 *		0 for FOUND a device
 *		< 0 for error code
 */
2225

2226 2227 2228
static int __devinit i7core_probe(struct pci_dev *pdev,
				  const struct pci_device_id *id)
{
2229
	int rc, count = 0;
2230 2231
	struct i7core_dev *i7core_dev;

2232 2233 2234
	/* get the pci devices we want to reserve for our use */
	mutex_lock(&i7core_edac_lock);

2235
	/*
2236
	 * All memory controllers are allocated at the first pass.
2237
	 */
2238 2239
	if (unlikely(probed >= 1)) {
		mutex_unlock(&i7core_edac_lock);
2240
		return -ENODEV;
2241 2242
	}
	probed++;
2243

2244
	rc = i7core_get_all_devices();
2245 2246 2247 2248
	if (unlikely(rc < 0))
		goto fail0;

	list_for_each_entry(i7core_dev, &i7core_edac_list, list) {
2249
		count++;
2250
		rc = i7core_register_mci(i7core_dev);
2251 2252
		if (unlikely(rc < 0))
			goto fail1;
2253 2254
	}

2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270
	/*
	 * Nehalem-EX uses a different memory controller. However, as the
	 * memory controller is not visible on some Nehalem/Nehalem-EP, we
	 * need to indirectly probe via a X58 PCI device. The same devices
	 * are found on (some) Nehalem-EX. So, on those machines, the
	 * probe routine needs to return -ENODEV, as the actual Memory
	 * Controller registers won't be detected.
	 */
	if (!count) {
		rc = -ENODEV;
		goto fail1;
	}

	i7core_printk(KERN_INFO,
		      "Driver loaded, %d memory controller(s) found.\n",
		      count);
2271

2272
	mutex_unlock(&i7core_edac_lock);
2273 2274
	return 0;

2275
fail1:
2276 2277 2278
	list_for_each_entry(i7core_dev, &i7core_edac_list, list)
		i7core_unregister_mci(i7core_dev);

2279
	i7core_put_all_devices();
2280 2281
fail0:
	mutex_unlock(&i7core_edac_lock);
2282
	return rc;
2283 2284 2285 2286 2287 2288 2289 2290
}

/*
 *	i7core_remove	destructor for one instance of device
 *
 */
static void __devexit i7core_remove(struct pci_dev *pdev)
{
2291
	struct i7core_dev *i7core_dev;
2292 2293 2294

	debugf0(__FILE__ ": %s()\n", __func__);

2295 2296 2297 2298 2299 2300 2301
	/*
	 * we have a trouble here: pdev value for removal will be wrong, since
	 * it will point to the X58 register used to detect that the machine
	 * is a Nehalem or upper design. However, due to the way several PCI
	 * devices are grouped together to provide MC functionality, we need
	 * to use a different method for releasing the devices
	 */
2302

2303
	mutex_lock(&i7core_edac_lock);
2304 2305 2306 2307 2308 2309

	if (unlikely(!probed)) {
		mutex_unlock(&i7core_edac_lock);
		return;
	}

2310 2311
	list_for_each_entry(i7core_dev, &i7core_edac_list, list)
		i7core_unregister_mci(i7core_dev);
2312 2313 2314 2315

	/* Release PCI resources */
	i7core_put_all_devices();

2316 2317
	probed--;

2318
	mutex_unlock(&i7core_edac_lock);
2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346
}

MODULE_DEVICE_TABLE(pci, i7core_pci_tbl);

/*
 *	i7core_driver	pci_driver structure for this module
 *
 */
static struct pci_driver i7core_driver = {
	.name     = "i7core_edac",
	.probe    = i7core_probe,
	.remove   = __devexit_p(i7core_remove),
	.id_table = i7core_pci_tbl,
};

/*
 *	i7core_init		Module entry function
 *			Try to initialize this module for its devices
 */
static int __init i7core_init(void)
{
	int pci_rc;

	debugf2("MC: " __FILE__ ": %s()\n", __func__);

	/* Ensure that the OPSTATE is set correctly for POLL or NMI */
	opstate_init();

2347 2348
	if (use_pci_fixup)
		i7core_xeon_pci_fixup(pci_dev_table);
2349

2350 2351
	pci_rc = pci_register_driver(&i7core_driver);

2352 2353 2354 2355 2356 2357 2358
	if (pci_rc >= 0)
		return 0;

	i7core_printk(KERN_ERR, "Failed to register device with error %d.\n",
		      pci_rc);

	return pci_rc;
2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381
}

/*
 *	i7core_exit()	Module exit function
 *			Unregister the driver
 */
static void __exit i7core_exit(void)
{
	debugf2("MC: " __FILE__ ": %s()\n", __func__);
	pci_unregister_driver(&i7core_driver);
}

module_init(i7core_init);
module_exit(i7core_exit);

MODULE_LICENSE("GPL");
MODULE_AUTHOR("Mauro Carvalho Chehab <mchehab@redhat.com>");
MODULE_AUTHOR("Red Hat Inc. (http://www.redhat.com)");
MODULE_DESCRIPTION("MC Driver for Intel i7 Core memory controllers - "
		   I7CORE_REVISION);

module_param(edac_op_state, int, 0444);
MODULE_PARM_DESC(edac_op_state, "EDAC Error Reporting state: 0=Poll,1=NMI");