i7core_edac.c 55.9 KB
Newer Older
1 2 3 4 5 6
/* Intel i7 core/Nehalem Memory Controller kernel module
 *
 * This driver supports yhe memory controllers found on the Intel
 * processor families i7core, i7core 7xx/8xx, i5core, Xeon 35xx,
 * Xeon 55xx and Xeon 56xx also known as Nehalem, Nehalem-EP, Lynnfield
 * and Westmere-EP.
7 8 9 10
 *
 * This file may be distributed under the terms of the
 * GNU General Public License version 2 only.
 *
11
 * Copyright (c) 2009-2010 by:
12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32
 *	 Mauro Carvalho Chehab <mchehab@redhat.com>
 *
 * Red Hat Inc. http://www.redhat.com
 *
 * Forked and adapted from the i5400_edac driver
 *
 * Based on the following public Intel datasheets:
 * Intel Core i7 Processor Extreme Edition and Intel Core i7 Processor
 * Datasheet, Volume 2:
 *	http://download.intel.com/design/processor/datashts/320835.pdf
 * Intel Xeon Processor 5500 Series Datasheet Volume 2
 *	http://www.intel.com/Assets/PDF/datasheet/321322.pdf
 * also available at:
 * 	http://www.arrownac.com/manufacturers/intel/s/nehalem/5500-datasheet-v2.pdf
 */

#include <linux/module.h>
#include <linux/init.h>
#include <linux/pci.h>
#include <linux/pci_ids.h>
#include <linux/slab.h>
R
Randy Dunlap 已提交
33
#include <linux/delay.h>
34 35
#include <linux/edac.h>
#include <linux/mmzone.h>
36
#include <linux/edac_mce.h>
37
#include <linux/smp.h>
38
#include <asm/processor.h>
39 40 41

#include "edac_core.h"

42 43 44 45 46
/* Static vars */
static LIST_HEAD(i7core_edac_list);
static DEFINE_MUTEX(i7core_edac_lock);
static int probed;

47 48 49
static int use_pci_fixup;
module_param(use_pci_fixup, int, 0444);
MODULE_PARM_DESC(use_pci_fixup, "Enable PCI fixup to seek for hidden devices");
50 51 52 53 54 55 56 57 58
/*
 * This is used for Nehalem-EP and Nehalem-EX devices, where the non-core
 * registers start at bus 255, and are not reported by BIOS.
 * We currently find devices with only 2 sockets. In order to support more QPI
 * Quick Path Interconnect, just increment this number.
 */
#define MAX_SOCKET_BUSES	2


59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77
/*
 * Alter this version for the module when modifications are made
 */
#define I7CORE_REVISION    " Ver: 1.0.0 " __DATE__
#define EDAC_MOD_STR      "i7core_edac"

/*
 * Debug macros
 */
#define i7core_printk(level, fmt, arg...)			\
	edac_printk(level, "i7core", fmt, ##arg)

#define i7core_mc_printk(mci, level, fmt, arg...)		\
	edac_mc_chipset_printk(mci, level, "i7core", fmt, ##arg)

/*
 * i7core Memory Controller Registers
 */

78 79 80 81
	/* OFFSETS for Device 0 Function 0 */

#define MC_CFG_CONTROL	0x90

82 83 84 85 86 87
	/* OFFSETS for Device 3 Function 0 */

#define MC_CONTROL	0x48
#define MC_STATUS	0x4c
#define MC_MAX_DOD	0x64

88 89 90 91 92 93 94 95 96 97 98 99
/*
 * OFFSETS for Device 3 Function 4, as inicated on Xeon 5500 datasheet:
 * http://www.arrownac.com/manufacturers/intel/s/nehalem/5500-datasheet-v2.pdf
 */

#define MC_TEST_ERR_RCV1	0x60
  #define DIMM2_COR_ERR(r)			((r) & 0x7fff)

#define MC_TEST_ERR_RCV0	0x64
  #define DIMM1_COR_ERR(r)			(((r) >> 16) & 0x7fff)
  #define DIMM0_COR_ERR(r)			((r) & 0x7fff)

100 101 102 103 104 105 106 107 108 109 110 111
/* OFFSETS for Device 3 Function 2, as inicated on Xeon 5500 datasheet */
#define MC_COR_ECC_CNT_0	0x80
#define MC_COR_ECC_CNT_1	0x84
#define MC_COR_ECC_CNT_2	0x88
#define MC_COR_ECC_CNT_3	0x8c
#define MC_COR_ECC_CNT_4	0x90
#define MC_COR_ECC_CNT_5	0x94

#define DIMM_TOP_COR_ERR(r)			(((r) >> 16) & 0x7fff)
#define DIMM_BOT_COR_ERR(r)			((r) & 0x7fff)


112 113
	/* OFFSETS for Devices 4,5 and 6 Function 0 */

114 115 116 117 118 119
#define MC_CHANNEL_DIMM_INIT_PARAMS 0x58
  #define THREE_DIMMS_PRESENT		(1 << 24)
  #define SINGLE_QUAD_RANK_PRESENT	(1 << 23)
  #define QUAD_RANK_PRESENT		(1 << 22)
  #define REGISTERED_DIMM		(1 << 15)

120 121 122 123
#define MC_CHANNEL_MAPPER	0x60
  #define RDLCH(r, ch)		((((r) >> (3 + (ch * 6))) & 0x07) - 1)
  #define WRLCH(r, ch)		((((r) >> (ch * 6)) & 0x07) - 1)

124 125 126
#define MC_CHANNEL_RANK_PRESENT 0x7c
  #define RANK_PRESENT_MASK		0xffff

127
#define MC_CHANNEL_ADDR_MATCH	0xf0
128 129 130 131 132 133 134 135 136 137
#define MC_CHANNEL_ERROR_MASK	0xf8
#define MC_CHANNEL_ERROR_INJECT	0xfc
  #define INJECT_ADDR_PARITY	0x10
  #define INJECT_ECC		0x08
  #define MASK_CACHELINE	0x06
  #define MASK_FULL_CACHELINE	0x06
  #define MASK_MSB32_CACHELINE	0x04
  #define MASK_LSB32_CACHELINE	0x02
  #define NO_MASK_CACHELINE	0x00
  #define REPEAT_EN		0x01
138

139
	/* OFFSETS for Devices 4,5 and 6 Function 1 */
140

141 142 143 144 145 146 147
#define MC_DOD_CH_DIMM0		0x48
#define MC_DOD_CH_DIMM1		0x4c
#define MC_DOD_CH_DIMM2		0x50
  #define RANKOFFSET_MASK	((1 << 12) | (1 << 11) | (1 << 10))
  #define RANKOFFSET(x)		((x & RANKOFFSET_MASK) >> 10)
  #define DIMM_PRESENT_MASK	(1 << 9)
  #define DIMM_PRESENT(x)	(((x) & DIMM_PRESENT_MASK) >> 9)
148 149 150 151
  #define MC_DOD_NUMBANK_MASK		((1 << 8) | (1 << 7))
  #define MC_DOD_NUMBANK(x)		(((x) & MC_DOD_NUMBANK_MASK) >> 7)
  #define MC_DOD_NUMRANK_MASK		((1 << 6) | (1 << 5))
  #define MC_DOD_NUMRANK(x)		(((x) & MC_DOD_NUMRANK_MASK) >> 5)
152
  #define MC_DOD_NUMROW_MASK		((1 << 4) | (1 << 3) | (1 << 2))
153
  #define MC_DOD_NUMROW(x)		(((x) & MC_DOD_NUMROW_MASK) >> 2)
154 155
  #define MC_DOD_NUMCOL_MASK		3
  #define MC_DOD_NUMCOL(x)		((x) & MC_DOD_NUMCOL_MASK)
156

157 158
#define MC_RANK_PRESENT		0x7c

159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181
#define MC_SAG_CH_0	0x80
#define MC_SAG_CH_1	0x84
#define MC_SAG_CH_2	0x88
#define MC_SAG_CH_3	0x8c
#define MC_SAG_CH_4	0x90
#define MC_SAG_CH_5	0x94
#define MC_SAG_CH_6	0x98
#define MC_SAG_CH_7	0x9c

#define MC_RIR_LIMIT_CH_0	0x40
#define MC_RIR_LIMIT_CH_1	0x44
#define MC_RIR_LIMIT_CH_2	0x48
#define MC_RIR_LIMIT_CH_3	0x4C
#define MC_RIR_LIMIT_CH_4	0x50
#define MC_RIR_LIMIT_CH_5	0x54
#define MC_RIR_LIMIT_CH_6	0x58
#define MC_RIR_LIMIT_CH_7	0x5C
#define MC_RIR_LIMIT_MASK	((1 << 10) - 1)

#define MC_RIR_WAY_CH		0x80
  #define MC_RIR_WAY_OFFSET_MASK	(((1 << 14) - 1) & ~0x7)
  #define MC_RIR_WAY_RANK_MASK		0x7

182 183 184 185 186
/*
 * i7core structs
 */

#define NUM_CHANS 3
187 188 189
#define MAX_DIMMS 3		/* Max DIMMS per channel */
#define MAX_MCR_FUNC  4
#define MAX_CHAN_FUNC 3
190 191 192 193 194

struct i7core_info {
	u32	mc_control;
	u32	mc_status;
	u32	max_dod;
195
	u32	ch_map;
196 197
};

198 199 200 201 202 203 204 205 206 207 208 209

struct i7core_inject {
	int	enable;

	u32	section;
	u32	type;
	u32	eccmask;

	/* Error address mask */
	int channel, dimm, rank, bank, page, col;
};

210
struct i7core_channel {
211 212
	u32		ranks;
	u32		dimms;
213 214
};

215
struct pci_id_descr {
216 217 218
	int			dev;
	int			func;
	int 			dev_id;
219
	int			optional;
220 221
};

222
struct pci_id_table {
223 224
	const struct pci_id_descr	*descr;
	int				n_devs;
225 226
};

227 228 229 230
struct i7core_dev {
	struct list_head	list;
	u8			socket;
	struct pci_dev		**pdev;
231
	int			n_devs;
232 233 234
	struct mem_ctl_info	*mci;
};

235
struct i7core_pvt {
236 237 238 239 240
	struct pci_dev	*pci_noncore;
	struct pci_dev	*pci_mcr[MAX_MCR_FUNC + 1];
	struct pci_dev	*pci_ch[NUM_CHANS][MAX_CHAN_FUNC + 1];

	struct i7core_dev *i7core_dev;
241

242
	struct i7core_info	info;
243
	struct i7core_inject	inject;
244
	struct i7core_channel	channel[NUM_CHANS];
245

246
	int		channels; /* Number of active channels */
247

248 249
	int		ce_count_available;
	int 		csrow_map[NUM_CHANS][MAX_DIMMS];
250 251

			/* ECC corrected errors counts per udimm */
252 253
	unsigned long	udimm_ce_count[MAX_DIMMS];
	int		udimm_last_ce_count[MAX_DIMMS];
254
			/* ECC corrected errors counts per rdimm */
255 256
	unsigned long	rdimm_ce_count[NUM_CHANS][MAX_DIMMS];
	int		rdimm_last_ce_count[NUM_CHANS][MAX_DIMMS];
257

258
	unsigned int	is_registered;
259

260 261
	/* mcelog glue */
	struct edac_mce		edac_mce;
262 263

	/* Fifo double buffers */
264
	struct mce		mce_entry[MCE_LOG_LEN];
265 266 267 268 269 270 271
	struct mce		mce_outentry[MCE_LOG_LEN];

	/* Fifo in/out counters */
	unsigned		mce_in, mce_out;

	/* Count indicator to show errors not got */
	unsigned		mce_overrun;
272 273 274

	/* Struct to control EDAC polling */
	struct edac_pci_ctl_info *i7core_pci;
275 276
};

277 278 279 280 281
#define PCI_DESCR(device, function, device_id)	\
	.dev = (device),			\
	.func = (function),			\
	.dev_id = (device_id)

282
static const struct pci_id_descr pci_dev_descr_i7core_nehalem[] = {
283 284 285
		/* Memory controller */
	{ PCI_DESCR(3, 0, PCI_DEVICE_ID_INTEL_I7_MCR)     },
	{ PCI_DESCR(3, 1, PCI_DEVICE_ID_INTEL_I7_MC_TAD)  },
286 287
			/* Exists only for RDIMM */
	{ PCI_DESCR(3, 2, PCI_DEVICE_ID_INTEL_I7_MC_RAS), .optional = 1  },
288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306
	{ PCI_DESCR(3, 4, PCI_DEVICE_ID_INTEL_I7_MC_TEST) },

		/* Channel 0 */
	{ PCI_DESCR(4, 0, PCI_DEVICE_ID_INTEL_I7_MC_CH0_CTRL) },
	{ PCI_DESCR(4, 1, PCI_DEVICE_ID_INTEL_I7_MC_CH0_ADDR) },
	{ PCI_DESCR(4, 2, PCI_DEVICE_ID_INTEL_I7_MC_CH0_RANK) },
	{ PCI_DESCR(4, 3, PCI_DEVICE_ID_INTEL_I7_MC_CH0_TC)   },

		/* Channel 1 */
	{ PCI_DESCR(5, 0, PCI_DEVICE_ID_INTEL_I7_MC_CH1_CTRL) },
	{ PCI_DESCR(5, 1, PCI_DEVICE_ID_INTEL_I7_MC_CH1_ADDR) },
	{ PCI_DESCR(5, 2, PCI_DEVICE_ID_INTEL_I7_MC_CH1_RANK) },
	{ PCI_DESCR(5, 3, PCI_DEVICE_ID_INTEL_I7_MC_CH1_TC)   },

		/* Channel 2 */
	{ PCI_DESCR(6, 0, PCI_DEVICE_ID_INTEL_I7_MC_CH2_CTRL) },
	{ PCI_DESCR(6, 1, PCI_DEVICE_ID_INTEL_I7_MC_CH2_ADDR) },
	{ PCI_DESCR(6, 2, PCI_DEVICE_ID_INTEL_I7_MC_CH2_RANK) },
	{ PCI_DESCR(6, 3, PCI_DEVICE_ID_INTEL_I7_MC_CH2_TC)   },
307 308 309 310 311 312 313 314

		/* Generic Non-core registers */
	/*
	 * This is the PCI device on i7core and on Xeon 35xx (8086:2c41)
	 * On Xeon 55xx, however, it has a different id (8086:2c40). So,
	 * the probing code needs to test for the other address in case of
	 * failure of this one
	 */
315
	{ PCI_DESCR(0, 0, PCI_DEVICE_ID_INTEL_I7_NONCORE)  },
316

317
};
318

319
static const struct pci_id_descr pci_dev_descr_lynnfield[] = {
320 321 322 323 324 325 326 327 328
	{ PCI_DESCR( 3, 0, PCI_DEVICE_ID_INTEL_LYNNFIELD_MCR)         },
	{ PCI_DESCR( 3, 1, PCI_DEVICE_ID_INTEL_LYNNFIELD_MC_TAD)      },
	{ PCI_DESCR( 3, 4, PCI_DEVICE_ID_INTEL_LYNNFIELD_MC_TEST)     },

	{ PCI_DESCR( 4, 0, PCI_DEVICE_ID_INTEL_LYNNFIELD_MC_CH0_CTRL) },
	{ PCI_DESCR( 4, 1, PCI_DEVICE_ID_INTEL_LYNNFIELD_MC_CH0_ADDR) },
	{ PCI_DESCR( 4, 2, PCI_DEVICE_ID_INTEL_LYNNFIELD_MC_CH0_RANK) },
	{ PCI_DESCR( 4, 3, PCI_DEVICE_ID_INTEL_LYNNFIELD_MC_CH0_TC)   },

329 330 331 332
	{ PCI_DESCR( 5, 0, PCI_DEVICE_ID_INTEL_LYNNFIELD_MC_CH1_CTRL) },
	{ PCI_DESCR( 5, 1, PCI_DEVICE_ID_INTEL_LYNNFIELD_MC_CH1_ADDR) },
	{ PCI_DESCR( 5, 2, PCI_DEVICE_ID_INTEL_LYNNFIELD_MC_CH1_RANK) },
	{ PCI_DESCR( 5, 3, PCI_DEVICE_ID_INTEL_LYNNFIELD_MC_CH1_TC)   },
333

334 335 336 337
	/*
	 * This is the PCI device has an alternate address on some
	 * processors like Core i7 860
	 */
338 339 340
	{ PCI_DESCR( 0, 0, PCI_DEVICE_ID_INTEL_LYNNFIELD_NONCORE)     },
};

341
static const struct pci_id_descr pci_dev_descr_i7core_westmere[] = {
342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371
		/* Memory controller */
	{ PCI_DESCR(3, 0, PCI_DEVICE_ID_INTEL_LYNNFIELD_MCR_REV2)     },
	{ PCI_DESCR(3, 1, PCI_DEVICE_ID_INTEL_LYNNFIELD_MC_TAD_REV2)  },
			/* Exists only for RDIMM */
	{ PCI_DESCR(3, 2, PCI_DEVICE_ID_INTEL_LYNNFIELD_MC_RAS_REV2), .optional = 1  },
	{ PCI_DESCR(3, 4, PCI_DEVICE_ID_INTEL_LYNNFIELD_MC_TEST_REV2) },

		/* Channel 0 */
	{ PCI_DESCR(4, 0, PCI_DEVICE_ID_INTEL_LYNNFIELD_MC_CH0_CTRL_REV2) },
	{ PCI_DESCR(4, 1, PCI_DEVICE_ID_INTEL_LYNNFIELD_MC_CH0_ADDR_REV2) },
	{ PCI_DESCR(4, 2, PCI_DEVICE_ID_INTEL_LYNNFIELD_MC_CH0_RANK_REV2) },
	{ PCI_DESCR(4, 3, PCI_DEVICE_ID_INTEL_LYNNFIELD_MC_CH0_TC_REV2)   },

		/* Channel 1 */
	{ PCI_DESCR(5, 0, PCI_DEVICE_ID_INTEL_LYNNFIELD_MC_CH1_CTRL_REV2) },
	{ PCI_DESCR(5, 1, PCI_DEVICE_ID_INTEL_LYNNFIELD_MC_CH1_ADDR_REV2) },
	{ PCI_DESCR(5, 2, PCI_DEVICE_ID_INTEL_LYNNFIELD_MC_CH1_RANK_REV2) },
	{ PCI_DESCR(5, 3, PCI_DEVICE_ID_INTEL_LYNNFIELD_MC_CH1_TC_REV2)   },

		/* Channel 2 */
	{ PCI_DESCR(6, 0, PCI_DEVICE_ID_INTEL_LYNNFIELD_MC_CH2_CTRL_REV2) },
	{ PCI_DESCR(6, 1, PCI_DEVICE_ID_INTEL_LYNNFIELD_MC_CH2_ADDR_REV2) },
	{ PCI_DESCR(6, 2, PCI_DEVICE_ID_INTEL_LYNNFIELD_MC_CH2_RANK_REV2) },
	{ PCI_DESCR(6, 3, PCI_DEVICE_ID_INTEL_LYNNFIELD_MC_CH2_TC_REV2)   },

		/* Generic Non-core registers */
	{ PCI_DESCR(0, 0, PCI_DEVICE_ID_INTEL_LYNNFIELD_NONCORE_REV2)  },

};

372 373
#define PCI_ID_TABLE_ENTRY(A) { .descr=A, .n_devs = ARRAY_SIZE(A) }
static const struct pci_id_table pci_dev_table[] = {
374 375 376 377 378
	PCI_ID_TABLE_ENTRY(pci_dev_descr_i7core_nehalem),
	PCI_ID_TABLE_ENTRY(pci_dev_descr_lynnfield),
	PCI_ID_TABLE_ENTRY(pci_dev_descr_i7core_westmere),
};

379 380 381 382
/*
 *	pci_device_id	table for which devices we are looking for
 */
static const struct pci_device_id i7core_pci_tbl[] __devinitdata = {
383
	{PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_X58_HUB_MGMT)},
384
	{PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_LYNNFIELD_QPI_LINK0)},
385 386 387
	{0,}			/* 0 terminated list. */
};

388 389 390 391 392
/****************************************************************************
			Anciliary status routines
 ****************************************************************************/

	/* MC_CONTROL bits */
393 394
#define CH_ACTIVE(pvt, ch)	((pvt)->info.mc_control & (1 << (8 + ch)))
#define ECCx8(pvt)		((pvt)->info.mc_control & (1 << 1))
395 396

	/* MC_STATUS bits */
397
#define ECC_ENABLED(pvt)	((pvt)->info.mc_status & (1 << 4))
398
#define CH_DISABLED(pvt, ch)	((pvt)->info.mc_status & (1 << ch))
399 400

	/* MC_MAX_DOD read functions */
401
static inline int numdimms(u32 dimms)
402
{
403
	return (dimms & 0x3) + 1;
404 405
}

406
static inline int numrank(u32 rank)
407 408 409
{
	static int ranks[4] = { 1, 2, 4, -EINVAL };

410
	return ranks[rank & 0x3];
411 412
}

413
static inline int numbank(u32 bank)
414 415 416
{
	static int banks[4] = { 4, 8, 16, -EINVAL };

417
	return banks[bank & 0x3];
418 419
}

420
static inline int numrow(u32 row)
421 422 423 424 425 426
{
	static int rows[8] = {
		1 << 12, 1 << 13, 1 << 14, 1 << 15,
		1 << 16, -EINVAL, -EINVAL, -EINVAL,
	};

427
	return rows[row & 0x7];
428 429
}

430
static inline int numcol(u32 col)
431 432 433 434
{
	static int cols[8] = {
		1 << 10, 1 << 11, 1 << 12, -EINVAL,
	};
435
	return cols[col & 0x3];
436 437
}

438
static struct i7core_dev *get_i7core_dev(u8 socket)
439 440 441 442 443 444 445 446 447 448 449
{
	struct i7core_dev *i7core_dev;

	list_for_each_entry(i7core_dev, &i7core_edac_list, list) {
		if (i7core_dev->socket == socket)
			return i7core_dev;
	}

	return NULL;
}

450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472
static struct i7core_dev *alloc_i7core_dev(u8 socket,
					   const struct pci_id_table *table)
{
	struct i7core_dev *i7core_dev;

	i7core_dev = kzalloc(sizeof(*i7core_dev), GFP_KERNEL);
	if (!i7core_dev)
		return NULL;

	i7core_dev->pdev = kzalloc(sizeof(*i7core_dev->pdev) * table->n_devs,
				   GFP_KERNEL);
	if (!i7core_dev->pdev) {
		kfree(i7core_dev);
		return NULL;
	}

	i7core_dev->socket = socket;
	i7core_dev->n_devs = table->n_devs;
	list_add_tail(&i7core_dev->list, &i7core_edac_list);

	return i7core_dev;
}

473 474 475 476 477 478 479
static void free_i7core_dev(struct i7core_dev *i7core_dev)
{
	list_del(&i7core_dev->list);
	kfree(i7core_dev->pdev);
	kfree(i7core_dev);
}

480 481 482
/****************************************************************************
			Memory check routines
 ****************************************************************************/
483 484
static struct pci_dev *get_pdev_slot_func(u8 socket, unsigned slot,
					  unsigned func)
485
{
486
	struct i7core_dev *i7core_dev = get_i7core_dev(socket);
487 488
	int i;

489 490 491
	if (!i7core_dev)
		return NULL;

492
	for (i = 0; i < i7core_dev->n_devs; i++) {
493
		if (!i7core_dev->pdev[i])
494 495
			continue;

496 497 498
		if (PCI_SLOT(i7core_dev->pdev[i]->devfn) == slot &&
		    PCI_FUNC(i7core_dev->pdev[i]->devfn) == func) {
			return i7core_dev->pdev[i];
499 500 501
		}
	}

502 503 504
	return NULL;
}

505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521
/**
 * i7core_get_active_channels() - gets the number of channels and csrows
 * @socket:	Quick Path Interconnect socket
 * @channels:	Number of channels that will be returned
 * @csrows:	Number of csrows found
 *
 * Since EDAC core needs to know in advance the number of available channels
 * and csrows, in order to allocate memory for csrows/channels, it is needed
 * to run two similar steps. At the first step, implemented on this function,
 * it checks the number of csrows/channels present at one socket.
 * this is used in order to properly allocate the size of mci components.
 *
 * It should be noticed that none of the current available datasheets explain
 * or even mention how csrows are seen by the memory controller. So, we need
 * to add a fake description for csrows.
 * So, this driver is attributing one DIMM memory for one csrow.
 */
522
static int i7core_get_active_channels(const u8 socket, unsigned *channels,
523
				      unsigned *csrows)
524 525 526 527 528 529 530 531
{
	struct pci_dev *pdev = NULL;
	int i, j;
	u32 status, control;

	*channels = 0;
	*csrows = 0;

532
	pdev = get_pdev_slot_func(socket, 3, 0);
533
	if (!pdev) {
534 535
		i7core_printk(KERN_ERR, "Couldn't find socket %d fn 3.0!!!\n",
			      socket);
536
		return -ENODEV;
537
	}
538 539 540 541 542 543

	/* Device 3 function 0 reads */
	pci_read_config_dword(pdev, MC_STATUS, &status);
	pci_read_config_dword(pdev, MC_CONTROL, &control);

	for (i = 0; i < NUM_CHANS; i++) {
544
		u32 dimm_dod[3];
545 546 547 548 549
		/* Check if the channel is active */
		if (!(control & (1 << (8 + i))))
			continue;

		/* Check if the channel is disabled */
550
		if (status & (1 << i))
551 552
			continue;

553
		pdev = get_pdev_slot_func(socket, i + 4, 1);
554
		if (!pdev) {
555 556 557
			i7core_printk(KERN_ERR, "Couldn't find socket %d "
						"fn %d.%d!!!\n",
						socket, i + 4, 1);
558 559 560 561 562 563 564 565 566 567
			return -ENODEV;
		}
		/* Devices 4-6 function 1 */
		pci_read_config_dword(pdev,
				MC_DOD_CH_DIMM0, &dimm_dod[0]);
		pci_read_config_dword(pdev,
				MC_DOD_CH_DIMM1, &dimm_dod[1]);
		pci_read_config_dword(pdev,
				MC_DOD_CH_DIMM2, &dimm_dod[2]);

568
		(*channels)++;
569 570 571 572 573 574

		for (j = 0; j < 3; j++) {
			if (!DIMM_PRESENT(dimm_dod[j]))
				continue;
			(*csrows)++;
		}
575 576
	}

577
	debugf0("Number of active channels on socket %d: %d\n",
578
		socket, *channels);
579

580 581 582
	return 0;
}

583
static int get_dimm_config(const struct mem_ctl_info *mci, int *csrow)
584 585
{
	struct i7core_pvt *pvt = mci->pvt_info;
586
	struct csrow_info *csr;
587
	struct pci_dev *pdev;
588
	int i, j;
589
	unsigned long last_page = 0;
590
	enum edac_type mode;
591
	enum mem_type mtype;
592

593
	/* Get data from the MC register, function 0 */
594
	pdev = pvt->pci_mcr[0];
595
	if (!pdev)
596 597
		return -ENODEV;

598
	/* Device 3 function 0 reads */
599 600 601 602
	pci_read_config_dword(pdev, MC_CONTROL, &pvt->info.mc_control);
	pci_read_config_dword(pdev, MC_STATUS, &pvt->info.mc_status);
	pci_read_config_dword(pdev, MC_MAX_DOD, &pvt->info.max_dod);
	pci_read_config_dword(pdev, MC_CHANNEL_MAPPER, &pvt->info.ch_map);
603

604
	debugf0("QPI %d control=0x%08x status=0x%08x dod=0x%08x map=0x%08x\n",
605
		pvt->i7core_dev->socket, pvt->info.mc_control, pvt->info.mc_status,
606
		pvt->info.max_dod, pvt->info.ch_map);
607

608
	if (ECC_ENABLED(pvt)) {
609
		debugf0("ECC enabled with x%d SDCC\n", ECCx8(pvt) ? 8 : 4);
610 611 612 613 614
		if (ECCx8(pvt))
			mode = EDAC_S8ECD8ED;
		else
			mode = EDAC_S4ECD4ED;
	} else {
615
		debugf0("ECC disabled\n");
616 617
		mode = EDAC_NONE;
	}
618 619

	/* FIXME: need to handle the error codes */
620 621
	debugf0("DOD Max limits: DIMMS: %d, %d-ranked, %d-banked "
		"x%x x 0x%x\n",
622 623
		numdimms(pvt->info.max_dod),
		numrank(pvt->info.max_dod >> 2),
624
		numbank(pvt->info.max_dod >> 4),
625 626
		numrow(pvt->info.max_dod >> 6),
		numcol(pvt->info.max_dod >> 9));
627

628
	for (i = 0; i < NUM_CHANS; i++) {
629
		u32 data, dimm_dod[3], value[8];
630

631 632 633
		if (!pvt->pci_ch[i][0])
			continue;

634 635 636 637 638 639 640 641 642
		if (!CH_ACTIVE(pvt, i)) {
			debugf0("Channel %i is not active\n", i);
			continue;
		}
		if (CH_DISABLED(pvt, i)) {
			debugf0("Channel %i is disabled\n", i);
			continue;
		}

643
		/* Devices 4-6 function 0 */
644
		pci_read_config_dword(pvt->pci_ch[i][0],
645 646
				MC_CHANNEL_DIMM_INIT_PARAMS, &data);

647
		pvt->channel[i].ranks = (data & QUAD_RANK_PRESENT) ?
648
						4 : 2;
649

650 651
		if (data & REGISTERED_DIMM)
			mtype = MEM_RDDR3;
652
		else
653 654
			mtype = MEM_DDR3;
#if 0
655 656 657 658 659 660
		if (data & THREE_DIMMS_PRESENT)
			pvt->channel[i].dimms = 3;
		else if (data & SINGLE_QUAD_RANK_PRESENT)
			pvt->channel[i].dimms = 1;
		else
			pvt->channel[i].dimms = 2;
661 662 663
#endif

		/* Devices 4-6 function 1 */
664
		pci_read_config_dword(pvt->pci_ch[i][1],
665
				MC_DOD_CH_DIMM0, &dimm_dod[0]);
666
		pci_read_config_dword(pvt->pci_ch[i][1],
667
				MC_DOD_CH_DIMM1, &dimm_dod[1]);
668
		pci_read_config_dword(pvt->pci_ch[i][1],
669
				MC_DOD_CH_DIMM2, &dimm_dod[2]);
670

671
		debugf0("Ch%d phy rd%d, wr%d (0x%08x): "
672
			"%d ranks, %cDIMMs\n",
673 674 675
			i,
			RDLCH(pvt->info.ch_map, i), WRLCH(pvt->info.ch_map, i),
			data,
676
			pvt->channel[i].ranks,
677
			(data & REGISTERED_DIMM) ? 'R' : 'U');
678 679 680

		for (j = 0; j < 3; j++) {
			u32 banks, ranks, rows, cols;
681
			u32 size, npages;
682 683 684 685 686 687 688 689 690

			if (!DIMM_PRESENT(dimm_dod[j]))
				continue;

			banks = numbank(MC_DOD_NUMBANK(dimm_dod[j]));
			ranks = numrank(MC_DOD_NUMRANK(dimm_dod[j]));
			rows = numrow(MC_DOD_NUMROW(dimm_dod[j]));
			cols = numcol(MC_DOD_NUMCOL(dimm_dod[j]));

691 692 693
			/* DDR3 has 8 I/O banks */
			size = (rows * cols * banks * ranks) >> (20 - 3);

694
			pvt->channel[i].dimms++;
695

696 697 698
			debugf0("\tdimm %d %d Mb offset: %x, "
				"bank: %d, rank: %d, row: %#x, col: %#x\n",
				j, size,
699 700 701
				RANKOFFSET(dimm_dod[j]),
				banks, ranks, rows, cols);

702
			npages = MiB_TO_PAGES(size);
703

704
			csr = &mci->csrows[*csrow];
705 706 707 708 709
			csr->first_page = last_page + 1;
			last_page += npages;
			csr->last_page = last_page;
			csr->nr_pages = npages;

710
			csr->page_mask = 0;
711
			csr->grain = 8;
712
			csr->csrow_idx = *csrow;
713 714 715 716
			csr->nr_channels = 1;

			csr->channels[0].chan_idx = i;
			csr->channels[0].ce_count = 0;
717

718
			pvt->csrow_map[i][j] = *csrow;
719

720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736
			switch (banks) {
			case 4:
				csr->dtype = DEV_X4;
				break;
			case 8:
				csr->dtype = DEV_X8;
				break;
			case 16:
				csr->dtype = DEV_X16;
				break;
			default:
				csr->dtype = DEV_UNKNOWN;
			}

			csr->edac_mode = mode;
			csr->mtype = mtype;

737
			(*csrow)++;
738
		}
739

740 741 742 743 744 745 746 747
		pci_read_config_dword(pdev, MC_SAG_CH_0, &value[0]);
		pci_read_config_dword(pdev, MC_SAG_CH_1, &value[1]);
		pci_read_config_dword(pdev, MC_SAG_CH_2, &value[2]);
		pci_read_config_dword(pdev, MC_SAG_CH_3, &value[3]);
		pci_read_config_dword(pdev, MC_SAG_CH_4, &value[4]);
		pci_read_config_dword(pdev, MC_SAG_CH_5, &value[5]);
		pci_read_config_dword(pdev, MC_SAG_CH_6, &value[6]);
		pci_read_config_dword(pdev, MC_SAG_CH_7, &value[7]);
748
		debugf1("\t[%i] DIVBY3\tREMOVED\tOFFSET\n", i);
749
		for (j = 0; j < 8; j++)
750
			debugf1("\t\t%#x\t%#x\t%#x\n",
751 752 753
				(value[j] >> 27) & 0x1,
				(value[j] >> 24) & 0x7,
				(value[j] && ((1 << 24) - 1)));
754 755
	}

756 757 758
	return 0;
}

759 760 761 762 763 764 765 766 767 768 769
/****************************************************************************
			Error insertion routines
 ****************************************************************************/

/* The i7core has independent error injection features per channel.
   However, to have a simpler code, we don't allow enabling error injection
   on more than one channel.
   Also, since a change at an inject parameter will be applied only at enable,
   we're disabling error injection on all write calls to the sysfs nodes that
   controls the error code injection.
 */
770
static int disable_inject(const struct mem_ctl_info *mci)
771 772 773 774 775
{
	struct i7core_pvt *pvt = mci->pvt_info;

	pvt->inject.enable = 0;

776
	if (!pvt->pci_ch[pvt->inject.channel][0])
777 778
		return -ENODEV;

779
	pci_write_config_dword(pvt->pci_ch[pvt->inject.channel][0],
780
				MC_CHANNEL_ERROR_INJECT, 0);
781 782

	return 0;
783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799
}

/*
 * i7core inject inject.section
 *
 *	accept and store error injection inject.section value
 *	bit 0 - refers to the lower 32-byte half cacheline
 *	bit 1 - refers to the upper 32-byte half cacheline
 */
static ssize_t i7core_inject_section_store(struct mem_ctl_info *mci,
					   const char *data, size_t count)
{
	struct i7core_pvt *pvt = mci->pvt_info;
	unsigned long value;
	int rc;

	if (pvt->inject.enable)
800
		disable_inject(mci);
801 802 803

	rc = strict_strtoul(data, 10, &value);
	if ((rc < 0) || (value > 3))
804
		return -EIO;
805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832

	pvt->inject.section = (u32) value;
	return count;
}

static ssize_t i7core_inject_section_show(struct mem_ctl_info *mci,
					      char *data)
{
	struct i7core_pvt *pvt = mci->pvt_info;
	return sprintf(data, "0x%08x\n", pvt->inject.section);
}

/*
 * i7core inject.type
 *
 *	accept and store error injection inject.section value
 *	bit 0 - repeat enable - Enable error repetition
 *	bit 1 - inject ECC error
 *	bit 2 - inject parity error
 */
static ssize_t i7core_inject_type_store(struct mem_ctl_info *mci,
					const char *data, size_t count)
{
	struct i7core_pvt *pvt = mci->pvt_info;
	unsigned long value;
	int rc;

	if (pvt->inject.enable)
833
		disable_inject(mci);
834 835 836

	rc = strict_strtoul(data, 10, &value);
	if ((rc < 0) || (value > 7))
837
		return -EIO;
838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867

	pvt->inject.type = (u32) value;
	return count;
}

static ssize_t i7core_inject_type_show(struct mem_ctl_info *mci,
					      char *data)
{
	struct i7core_pvt *pvt = mci->pvt_info;
	return sprintf(data, "0x%08x\n", pvt->inject.type);
}

/*
 * i7core_inject_inject.eccmask_store
 *
 * The type of error (UE/CE) will depend on the inject.eccmask value:
 *   Any bits set to a 1 will flip the corresponding ECC bit
 *   Correctable errors can be injected by flipping 1 bit or the bits within
 *   a symbol pair (2 consecutive aligned 8-bit pairs - i.e. 7:0 and 15:8 or
 *   23:16 and 31:24). Flipping bits in two symbol pairs will cause an
 *   uncorrectable error to be injected.
 */
static ssize_t i7core_inject_eccmask_store(struct mem_ctl_info *mci,
					const char *data, size_t count)
{
	struct i7core_pvt *pvt = mci->pvt_info;
	unsigned long value;
	int rc;

	if (pvt->inject.enable)
868
		disable_inject(mci);
869 870 871

	rc = strict_strtoul(data, 10, &value);
	if (rc < 0)
872
		return -EIO;
873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895

	pvt->inject.eccmask = (u32) value;
	return count;
}

static ssize_t i7core_inject_eccmask_show(struct mem_ctl_info *mci,
					      char *data)
{
	struct i7core_pvt *pvt = mci->pvt_info;
	return sprintf(data, "0x%08x\n", pvt->inject.eccmask);
}

/*
 * i7core_addrmatch
 *
 * The type of error (UE/CE) will depend on the inject.eccmask value:
 *   Any bits set to a 1 will flip the corresponding ECC bit
 *   Correctable errors can be injected by flipping 1 bit or the bits within
 *   a symbol pair (2 consecutive aligned 8-bit pairs - i.e. 7:0 and 15:8 or
 *   23:16 and 31:24). Flipping bits in two symbol pairs will cause an
 *   uncorrectable error to be injected.
 */

896 897 898 899 900
#define DECLARE_ADDR_MATCH(param, limit)			\
static ssize_t i7core_inject_store_##param(			\
		struct mem_ctl_info *mci,			\
		const char *data, size_t count)			\
{								\
901
	struct i7core_pvt *pvt;					\
902 903 904
	long value;						\
	int rc;							\
								\
905 906 907
	debugf1("%s()\n", __func__);				\
	pvt = mci->pvt_info;					\
								\
908 909 910
	if (pvt->inject.enable)					\
		disable_inject(mci);				\
								\
911
	if (!strcasecmp(data, "any") || !strcasecmp(data, "any\n"))\
912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927
		value = -1;					\
	else {							\
		rc = strict_strtoul(data, 10, &value);		\
		if ((rc < 0) || (value >= limit))		\
			return -EIO;				\
	}							\
								\
	pvt->inject.param = value;				\
								\
	return count;						\
}								\
								\
static ssize_t i7core_inject_show_##param(			\
		struct mem_ctl_info *mci,			\
		char *data)					\
{								\
928 929 930 931
	struct i7core_pvt *pvt;					\
								\
	pvt = mci->pvt_info;					\
	debugf1("%s() pvt=%p\n", __func__, pvt);		\
932 933 934 935
	if (pvt->inject.param < 0)				\
		return sprintf(data, "any\n");			\
	else							\
		return sprintf(data, "%d\n", pvt->inject.param);\
936 937
}

938 939 940 941 942 943 944 945 946
#define ATTR_ADDR_MATCH(param)					\
	{							\
		.attr = {					\
			.name = #param,				\
			.mode = (S_IRUGO | S_IWUSR)		\
		},						\
		.show  = i7core_inject_show_##param,		\
		.store = i7core_inject_store_##param,		\
	}
947

948 949 950 951 952 953
DECLARE_ADDR_MATCH(channel, 3);
DECLARE_ADDR_MATCH(dimm, 3);
DECLARE_ADDR_MATCH(rank, 4);
DECLARE_ADDR_MATCH(bank, 32);
DECLARE_ADDR_MATCH(page, 0x10000);
DECLARE_ADDR_MATCH(col, 0x4000);
954

955
static int write_and_test(struct pci_dev *dev, const int where, const u32 val)
956 957 958 959
{
	u32 read;
	int count;

960 961 962 963
	debugf0("setting pci %02x:%02x.%x reg=%02x value=%08x\n",
		dev->bus->number, PCI_SLOT(dev->devfn), PCI_FUNC(dev->devfn),
		where, val);

964 965
	for (count = 0; count < 10; count++) {
		if (count)
966
			msleep(100);
967 968 969 970 971 972 973
		pci_write_config_dword(dev, where, val);
		pci_read_config_dword(dev, where, &read);

		if (read == val)
			return 0;
	}

974 975 976 977
	i7core_printk(KERN_ERR, "Error during set pci %02x:%02x.%x reg=%02x "
		"write=%08x. Read=%08x\n",
		dev->bus->number, PCI_SLOT(dev->devfn), PCI_FUNC(dev->devfn),
		where, val, read);
978 979 980 981

	return -EINVAL;
}

982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008
/*
 * This routine prepares the Memory Controller for error injection.
 * The error will be injected when some process tries to write to the
 * memory that matches the given criteria.
 * The criteria can be set in terms of a mask where dimm, rank, bank, page
 * and col can be specified.
 * A -1 value for any of the mask items will make the MCU to ignore
 * that matching criteria for error injection.
 *
 * It should be noticed that the error will only happen after a write operation
 * on a memory that matches the condition. if REPEAT_EN is not enabled at
 * inject mask, then it will produce just one error. Otherwise, it will repeat
 * until the injectmask would be cleaned.
 *
 * FIXME: This routine assumes that MAXNUMDIMMS value of MC_MAX_DOD
 *    is reliable enough to check if the MC is using the
 *    three channels. However, this is not clear at the datasheet.
 */
static ssize_t i7core_inject_enable_store(struct mem_ctl_info *mci,
				       const char *data, size_t count)
{
	struct i7core_pvt *pvt = mci->pvt_info;
	u32 injectmask;
	u64 mask = 0;
	int  rc;
	long enable;

1009
	if (!pvt->pci_ch[pvt->inject.channel][0])
1010 1011
		return 0;

1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024
	rc = strict_strtoul(data, 10, &enable);
	if ((rc < 0))
		return 0;

	if (enable) {
		pvt->inject.enable = 1;
	} else {
		disable_inject(mci);
		return count;
	}

	/* Sets pvt->inject.dimm mask */
	if (pvt->inject.dimm < 0)
1025
		mask |= 1LL << 41;
1026
	else {
1027
		if (pvt->channel[pvt->inject.channel].dimms > 2)
1028
			mask |= (pvt->inject.dimm & 0x3LL) << 35;
1029
		else
1030
			mask |= (pvt->inject.dimm & 0x1LL) << 36;
1031 1032 1033 1034
	}

	/* Sets pvt->inject.rank mask */
	if (pvt->inject.rank < 0)
1035
		mask |= 1LL << 40;
1036
	else {
1037
		if (pvt->channel[pvt->inject.channel].dimms > 2)
1038
			mask |= (pvt->inject.rank & 0x1LL) << 34;
1039
		else
1040
			mask |= (pvt->inject.rank & 0x3LL) << 34;
1041 1042 1043 1044
	}

	/* Sets pvt->inject.bank mask */
	if (pvt->inject.bank < 0)
1045
		mask |= 1LL << 39;
1046
	else
1047
		mask |= (pvt->inject.bank & 0x15LL) << 30;
1048 1049 1050

	/* Sets pvt->inject.page mask */
	if (pvt->inject.page < 0)
1051
		mask |= 1LL << 38;
1052
	else
1053
		mask |= (pvt->inject.page & 0xffff) << 14;
1054 1055 1056

	/* Sets pvt->inject.column mask */
	if (pvt->inject.col < 0)
1057
		mask |= 1LL << 37;
1058
	else
1059
		mask |= (pvt->inject.col & 0x3fff);
1060

1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072
	/*
	 * bit    0: REPEAT_EN
	 * bits 1-2: MASK_HALF_CACHELINE
	 * bit    3: INJECT_ECC
	 * bit    4: INJECT_ADDR_PARITY
	 */

	injectmask = (pvt->inject.type & 1) |
		     (pvt->inject.section & 0x3) << 1 |
		     (pvt->inject.type & 0x6) << (3 - 1);

	/* Unlock writes to registers - this register is write only */
1073
	pci_write_config_dword(pvt->pci_noncore,
1074
			       MC_CFG_CONTROL, 0x2);
1075

1076
	write_and_test(pvt->pci_ch[pvt->inject.channel][0],
1077
			       MC_CHANNEL_ADDR_MATCH, mask);
1078
	write_and_test(pvt->pci_ch[pvt->inject.channel][0],
1079 1080
			       MC_CHANNEL_ADDR_MATCH + 4, mask >> 32L);

1081
	write_and_test(pvt->pci_ch[pvt->inject.channel][0],
1082 1083
			       MC_CHANNEL_ERROR_MASK, pvt->inject.eccmask);

1084
	write_and_test(pvt->pci_ch[pvt->inject.channel][0],
1085
			       MC_CHANNEL_ERROR_INJECT, injectmask);
1086

1087
	/*
1088 1089 1090
	 * This is something undocumented, based on my tests
	 * Without writing 8 to this register, errors aren't injected. Not sure
	 * why.
1091
	 */
1092
	pci_write_config_dword(pvt->pci_noncore,
1093
			       MC_CFG_CONTROL, 8);
1094

1095 1096
	debugf0("Error inject addr match 0x%016llx, ecc 0x%08x,"
		" inject 0x%08x\n",
1097 1098
		mask, pvt->inject.eccmask, injectmask);

1099

1100 1101 1102 1103 1104 1105 1106
	return count;
}

static ssize_t i7core_inject_enable_show(struct mem_ctl_info *mci,
					char *data)
{
	struct i7core_pvt *pvt = mci->pvt_info;
1107 1108
	u32 injectmask;

1109 1110 1111
	if (!pvt->pci_ch[pvt->inject.channel][0])
		return 0;

1112
	pci_read_config_dword(pvt->pci_ch[pvt->inject.channel][0],
1113
			       MC_CHANNEL_ERROR_INJECT, &injectmask);
1114 1115 1116 1117 1118 1119

	debugf0("Inject error read: 0x%018x\n", injectmask);

	if (injectmask & 0x0c)
		pvt->inject.enable = 1;

1120 1121 1122
	return sprintf(data, "%d\n", pvt->inject.enable);
}

1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135
#define DECLARE_COUNTER(param)					\
static ssize_t i7core_show_counter_##param(			\
		struct mem_ctl_info *mci,			\
		char *data)					\
{								\
	struct i7core_pvt *pvt = mci->pvt_info;			\
								\
	debugf1("%s() \n", __func__);				\
	if (!pvt->ce_count_available || (pvt->is_registered))	\
		return sprintf(data, "data unavailable\n");	\
	return sprintf(data, "%lu\n",				\
			pvt->udimm_ce_count[param]);		\
}
1136

1137 1138 1139 1140 1141 1142 1143
#define ATTR_COUNTER(param)					\
	{							\
		.attr = {					\
			.name = __stringify(udimm##param),	\
			.mode = (S_IRUGO | S_IWUSR)		\
		},						\
		.show  = i7core_show_counter_##param		\
1144
	}
1145

1146 1147 1148
DECLARE_COUNTER(0);
DECLARE_COUNTER(1);
DECLARE_COUNTER(2);
1149

1150 1151 1152
/*
 * Sysfs struct
 */
1153

1154
static const struct mcidev_sysfs_attribute i7core_addrmatch_attrs[] = {
1155 1156 1157 1158 1159 1160
	ATTR_ADDR_MATCH(channel),
	ATTR_ADDR_MATCH(dimm),
	ATTR_ADDR_MATCH(rank),
	ATTR_ADDR_MATCH(bank),
	ATTR_ADDR_MATCH(page),
	ATTR_ADDR_MATCH(col),
1161
	{ } /* End of list */
1162 1163
};

1164
static const struct mcidev_sysfs_group i7core_inject_addrmatch = {
1165 1166 1167 1168
	.name  = "inject_addrmatch",
	.mcidev_attr = i7core_addrmatch_attrs,
};

1169
static const struct mcidev_sysfs_attribute i7core_udimm_counters_attrs[] = {
1170 1171 1172
	ATTR_COUNTER(0),
	ATTR_COUNTER(1),
	ATTR_COUNTER(2),
1173
	{ .attr = { .name = NULL } }
1174 1175
};

1176
static const struct mcidev_sysfs_group i7core_udimm_counters = {
1177 1178 1179 1180
	.name  = "all_channel_counts",
	.mcidev_attr = i7core_udimm_counters_attrs,
};

1181
static const struct mcidev_sysfs_attribute i7core_sysfs_rdimm_attrs[] = {
1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203
	{
		.attr = {
			.name = "inject_section",
			.mode = (S_IRUGO | S_IWUSR)
		},
		.show  = i7core_inject_section_show,
		.store = i7core_inject_section_store,
	}, {
		.attr = {
			.name = "inject_type",
			.mode = (S_IRUGO | S_IWUSR)
		},
		.show  = i7core_inject_type_show,
		.store = i7core_inject_type_store,
	}, {
		.attr = {
			.name = "inject_eccmask",
			.mode = (S_IRUGO | S_IWUSR)
		},
		.show  = i7core_inject_eccmask_show,
		.store = i7core_inject_eccmask_store,
	}, {
1204
		.grp = &i7core_inject_addrmatch,
1205 1206 1207 1208 1209 1210 1211 1212
	}, {
		.attr = {
			.name = "inject_enable",
			.mode = (S_IRUGO | S_IWUSR)
		},
		.show  = i7core_inject_enable_show,
		.store = i7core_inject_enable_store,
	},
1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250
	{ }	/* End of list */
};

static const struct mcidev_sysfs_attribute i7core_sysfs_udimm_attrs[] = {
	{
		.attr = {
			.name = "inject_section",
			.mode = (S_IRUGO | S_IWUSR)
		},
		.show  = i7core_inject_section_show,
		.store = i7core_inject_section_store,
	}, {
		.attr = {
			.name = "inject_type",
			.mode = (S_IRUGO | S_IWUSR)
		},
		.show  = i7core_inject_type_show,
		.store = i7core_inject_type_store,
	}, {
		.attr = {
			.name = "inject_eccmask",
			.mode = (S_IRUGO | S_IWUSR)
		},
		.show  = i7core_inject_eccmask_show,
		.store = i7core_inject_eccmask_store,
	}, {
		.grp = &i7core_inject_addrmatch,
	}, {
		.attr = {
			.name = "inject_enable",
			.mode = (S_IRUGO | S_IWUSR)
		},
		.show  = i7core_inject_enable_show,
		.store = i7core_inject_enable_store,
	}, {
		.grp = &i7core_udimm_counters,
	},
	{ }	/* End of list */
1251 1252
};

1253 1254 1255 1256 1257
/****************************************************************************
	Device initialization routines: put/get, init/exit
 ****************************************************************************/

/*
1258
 *	i7core_put_all_devices	'put' all the devices that we have
1259 1260
 *				reserved via 'get'
 */
1261
static void i7core_put_devices(struct i7core_dev *i7core_dev)
1262
{
1263
	int i;
1264

1265
	debugf0(__FILE__ ": %s()\n", __func__);
1266
	for (i = 0; i < i7core_dev->n_devs; i++) {
1267 1268 1269 1270 1271 1272 1273 1274
		struct pci_dev *pdev = i7core_dev->pdev[i];
		if (!pdev)
			continue;
		debugf0("Removing dev %02x:%02x.%d\n",
			pdev->bus->number,
			PCI_SLOT(pdev->devfn), PCI_FUNC(pdev->devfn));
		pci_dev_put(pdev);
	}
1275
}
1276

1277 1278
static void i7core_put_all_devices(void)
{
1279
	struct i7core_dev *i7core_dev, *tmp;
1280

1281
	list_for_each_entry_safe(i7core_dev, tmp, &i7core_edac_list, list) {
1282
		i7core_put_devices(i7core_dev);
1283
		free_i7core_dev(i7core_dev);
1284
	}
1285 1286
}

1287
static void __init i7core_xeon_pci_fixup(const struct pci_id_table *table)
1288 1289 1290
{
	struct pci_dev *pdev = NULL;
	int i;
1291

1292 1293 1294 1295 1296
	/*
	 * On Xeon 55xx, the Intel Quckpath Arch Generic Non-core pci buses
	 * aren't announced by acpi. So, we need to use a legacy scan probing
	 * to detect them
	 */
1297 1298 1299 1300 1301 1302
	while (table && table->descr) {
		pdev = pci_get_device(PCI_VENDOR_ID_INTEL, table->descr[0].dev_id, NULL);
		if (unlikely(!pdev)) {
			for (i = 0; i < MAX_SOCKET_BUSES; i++)
				pcibios_scan_specific_bus(255-i);
		}
1303
		pci_dev_put(pdev);
1304
		table++;
1305 1306 1307
	}
}

1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324
static unsigned i7core_pci_lastbus(void)
{
	int last_bus = 0, bus;
	struct pci_bus *b = NULL;

	while ((b = pci_find_next_bus(b)) != NULL) {
		bus = b->number;
		debugf0("Found bus %d\n", bus);
		if (bus > last_bus)
			last_bus = bus;
	}

	debugf0("Last bus %d\n", last_bus);

	return last_bus;
}

1325
/*
1326
 *	i7core_get_all_devices	Find and perform 'get' operation on the MCH's
1327 1328 1329 1330
 *			device/functions we want to reference for this driver
 *
 *			Need to 'get' device 16 func 1 and func 2
 */
1331 1332 1333 1334
static int i7core_get_onedevice(struct pci_dev **prev,
				const struct pci_id_table *table,
				const unsigned devno,
				const unsigned last_bus)
1335
{
1336
	struct i7core_dev *i7core_dev;
1337
	const struct pci_id_descr *dev_descr = &table->descr[devno];
1338

1339
	struct pci_dev *pdev = NULL;
1340 1341
	u8 bus = 0;
	u8 socket = 0;
1342

1343
	pdev = pci_get_device(PCI_VENDOR_ID_INTEL,
1344
			      dev_descr->dev_id, *prev);
1345 1346 1347 1348 1349 1350

	/*
	 * On Xeon 55xx, the Intel Quckpath Arch Generic Non-core regs
	 * is at addr 8086:2c40, instead of 8086:2c41. So, we need
	 * to probe for the alternate address in case of failure
	 */
1351
	if (dev_descr->dev_id == PCI_DEVICE_ID_INTEL_I7_NONCORE && !pdev)
1352
		pdev = pci_get_device(PCI_VENDOR_ID_INTEL,
1353
				      PCI_DEVICE_ID_INTEL_I7_NONCORE_ALT, *prev);
1354

1355
	if (dev_descr->dev_id == PCI_DEVICE_ID_INTEL_LYNNFIELD_NONCORE && !pdev)
1356 1357 1358 1359
		pdev = pci_get_device(PCI_VENDOR_ID_INTEL,
				      PCI_DEVICE_ID_INTEL_LYNNFIELD_NONCORE_ALT,
				      *prev);

1360 1361 1362 1363
	if (!pdev) {
		if (*prev) {
			*prev = pdev;
			return 0;
1364 1365
		}

1366
		if (dev_descr->optional)
1367
			return 0;
1368

1369 1370 1371
		if (devno == 0)
			return -ENODEV;

1372
		i7core_printk(KERN_INFO,
1373
			"Device not found: dev %02x.%d PCI ID %04x:%04x\n",
1374 1375
			dev_descr->dev, dev_descr->func,
			PCI_VENDOR_ID_INTEL, dev_descr->dev_id);
1376

1377 1378 1379 1380
		/* End of list, leave */
		return -ENODEV;
	}
	bus = pdev->bus->number;
1381

1382
	socket = last_bus - bus;
1383

1384 1385
	i7core_dev = get_i7core_dev(socket);
	if (!i7core_dev) {
1386
		i7core_dev = alloc_i7core_dev(socket, table);
1387 1388
		if (!i7core_dev)
			return -ENOMEM;
1389
	}
1390

1391
	if (i7core_dev->pdev[devno]) {
1392 1393 1394
		i7core_printk(KERN_ERR,
			"Duplicated device for "
			"dev %02x:%02x.%d PCI ID %04x:%04x\n",
1395 1396
			bus, dev_descr->dev, dev_descr->func,
			PCI_VENDOR_ID_INTEL, dev_descr->dev_id);
1397 1398 1399
		pci_dev_put(pdev);
		return -ENODEV;
	}
1400

1401
	i7core_dev->pdev[devno] = pdev;
1402 1403

	/* Sanity check */
1404 1405
	if (unlikely(PCI_SLOT(pdev->devfn) != dev_descr->dev ||
			PCI_FUNC(pdev->devfn) != dev_descr->func)) {
1406 1407 1408
		i7core_printk(KERN_ERR,
			"Device PCI ID %04x:%04x "
			"has dev %02x:%02x.%d instead of dev %02x:%02x.%d\n",
1409
			PCI_VENDOR_ID_INTEL, dev_descr->dev_id,
1410
			bus, PCI_SLOT(pdev->devfn), PCI_FUNC(pdev->devfn),
1411
			bus, dev_descr->dev, dev_descr->func);
1412 1413
		return -ENODEV;
	}
1414

1415 1416 1417 1418 1419
	/* Be sure that the device is enabled */
	if (unlikely(pci_enable_device(pdev) < 0)) {
		i7core_printk(KERN_ERR,
			"Couldn't enable "
			"dev %02x:%02x.%d PCI ID %04x:%04x\n",
1420 1421
			bus, dev_descr->dev, dev_descr->func,
			PCI_VENDOR_ID_INTEL, dev_descr->dev_id);
1422 1423
		return -ENODEV;
	}
1424

1425
	debugf0("Detected socket %d dev %02x:%02x.%d PCI ID %04x:%04x\n",
1426 1427 1428
		socket, bus, dev_descr->dev,
		dev_descr->func,
		PCI_VENDOR_ID_INTEL, dev_descr->dev_id);
1429

1430
	*prev = pdev;
1431

1432 1433
	return 0;
}
1434

1435
static int i7core_get_all_devices(void)
1436
{
1437
	int i, j, rc, last_bus;
1438
	struct pci_dev *pdev = NULL;
1439
	const struct pci_id_table *table;
1440

1441 1442
	last_bus = i7core_pci_lastbus();

1443 1444
	for (j = 0; j < ARRAY_SIZE(pci_dev_table); j++) {
		table = &pci_dev_table[j];
1445 1446 1447
		for (i = 0; i < table->n_devs; i++) {
			pdev = NULL;
			do {
1448
				rc = i7core_get_onedevice(&pdev, table, i,
1449
							  last_bus);
1450 1451 1452 1453 1454 1455 1456 1457 1458 1459
				if (rc < 0) {
					if (i == 0) {
						i = table->n_devs;
						break;
					}
					i7core_put_all_devices();
					return -ENODEV;
				}
			} while (pdev);
		}
1460
	}
1461

1462 1463 1464
	return 0;
}

1465 1466
static int mci_bind_devs(struct mem_ctl_info *mci,
			 struct i7core_dev *i7core_dev)
1467 1468 1469
{
	struct i7core_pvt *pvt = mci->pvt_info;
	struct pci_dev *pdev;
1470
	int i, func, slot;
1471

1472 1473 1474
	/* Associates i7core_dev and mci for future usage */
	pvt->i7core_dev = i7core_dev;
	i7core_dev->mci = mci;
1475

1476
	pvt->is_registered = 0;
1477
	for (i = 0; i < i7core_dev->n_devs; i++) {
1478 1479
		pdev = i7core_dev->pdev[i];
		if (!pdev)
1480 1481
			continue;

1482 1483 1484 1485 1486 1487 1488 1489
		func = PCI_FUNC(pdev->devfn);
		slot = PCI_SLOT(pdev->devfn);
		if (slot == 3) {
			if (unlikely(func > MAX_MCR_FUNC))
				goto error;
			pvt->pci_mcr[func] = pdev;
		} else if (likely(slot >= 4 && slot < 4 + NUM_CHANS)) {
			if (unlikely(func > MAX_CHAN_FUNC))
1490
				goto error;
1491 1492 1493 1494 1495
			pvt->pci_ch[slot - 4][func] = pdev;
		} else if (!slot && !func)
			pvt->pci_noncore = pdev;
		else
			goto error;
1496

1497 1498 1499
		debugf0("Associated fn %d.%d, dev = %p, socket %d\n",
			PCI_SLOT(pdev->devfn), PCI_FUNC(pdev->devfn),
			pdev, i7core_dev->socket);
1500

1501 1502 1503
		if (PCI_SLOT(pdev->devfn) == 3 &&
			PCI_FUNC(pdev->devfn) == 2)
			pvt->is_registered = 1;
1504
	}
1505

1506
	return 0;
1507 1508 1509 1510 1511 1512

error:
	i7core_printk(KERN_ERR, "Device %d, function %d "
		      "is out of the expected range\n",
		      slot, func);
	return -EINVAL;
1513 1514
}

1515 1516 1517
/****************************************************************************
			Error check routines
 ****************************************************************************/
1518
static void i7core_rdimm_update_csrow(struct mem_ctl_info *mci,
1519 1520 1521
				      const int chan,
				      const int dimm,
				      const int add)
1522 1523 1524
{
	char *msg;
	struct i7core_pvt *pvt = mci->pvt_info;
1525
	int row = pvt->csrow_map[chan][dimm], i;
1526 1527 1528

	for (i = 0; i < add; i++) {
		msg = kasprintf(GFP_KERNEL, "Corrected error "
1529 1530
				"(Socket=%d channel=%d dimm=%d)",
				pvt->i7core_dev->socket, chan, dimm);
1531 1532 1533 1534 1535 1536 1537

		edac_mc_handle_fbd_ce(mci, row, 0, msg);
		kfree (msg);
	}
}

static void i7core_rdimm_update_ce_count(struct mem_ctl_info *mci,
1538 1539 1540 1541
					 const int chan,
					 const int new0,
					 const int new1,
					 const int new2)
1542 1543 1544 1545
{
	struct i7core_pvt *pvt = mci->pvt_info;
	int add0 = 0, add1 = 0, add2 = 0;
	/* Updates CE counters if it is not the first time here */
1546
	if (pvt->ce_count_available) {
1547 1548
		/* Updates CE counters */

1549 1550 1551
		add2 = new2 - pvt->rdimm_last_ce_count[chan][2];
		add1 = new1 - pvt->rdimm_last_ce_count[chan][1];
		add0 = new0 - pvt->rdimm_last_ce_count[chan][0];
1552 1553 1554

		if (add2 < 0)
			add2 += 0x7fff;
1555
		pvt->rdimm_ce_count[chan][2] += add2;
1556 1557 1558

		if (add1 < 0)
			add1 += 0x7fff;
1559
		pvt->rdimm_ce_count[chan][1] += add1;
1560 1561 1562

		if (add0 < 0)
			add0 += 0x7fff;
1563
		pvt->rdimm_ce_count[chan][0] += add0;
1564
	} else
1565
		pvt->ce_count_available = 1;
1566 1567

	/* Store the new values */
1568 1569 1570
	pvt->rdimm_last_ce_count[chan][2] = new2;
	pvt->rdimm_last_ce_count[chan][1] = new1;
	pvt->rdimm_last_ce_count[chan][0] = new0;
1571 1572 1573

	/*updated the edac core */
	if (add0 != 0)
1574
		i7core_rdimm_update_csrow(mci, chan, 0, add0);
1575
	if (add1 != 0)
1576
		i7core_rdimm_update_csrow(mci, chan, 1, add1);
1577
	if (add2 != 0)
1578
		i7core_rdimm_update_csrow(mci, chan, 2, add2);
1579 1580 1581

}

1582
static void i7core_rdimm_check_mc_ecc_err(struct mem_ctl_info *mci)
1583 1584 1585 1586 1587 1588
{
	struct i7core_pvt *pvt = mci->pvt_info;
	u32 rcv[3][2];
	int i, new0, new1, new2;

	/*Read DEV 3: FUN 2:  MC_COR_ECC_CNT regs directly*/
1589
	pci_read_config_dword(pvt->pci_mcr[2], MC_COR_ECC_CNT_0,
1590
								&rcv[0][0]);
1591
	pci_read_config_dword(pvt->pci_mcr[2], MC_COR_ECC_CNT_1,
1592
								&rcv[0][1]);
1593
	pci_read_config_dword(pvt->pci_mcr[2], MC_COR_ECC_CNT_2,
1594
								&rcv[1][0]);
1595
	pci_read_config_dword(pvt->pci_mcr[2], MC_COR_ECC_CNT_3,
1596
								&rcv[1][1]);
1597
	pci_read_config_dword(pvt->pci_mcr[2], MC_COR_ECC_CNT_4,
1598
								&rcv[2][0]);
1599
	pci_read_config_dword(pvt->pci_mcr[2], MC_COR_ECC_CNT_5,
1600 1601 1602 1603 1604
								&rcv[2][1]);
	for (i = 0 ; i < 3; i++) {
		debugf3("MC_COR_ECC_CNT%d = 0x%x; MC_COR_ECC_CNT%d = 0x%x\n",
			(i * 2), rcv[i][0], (i * 2) + 1, rcv[i][1]);
		/*if the channel has 3 dimms*/
1605
		if (pvt->channel[i].dimms > 2) {
1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616
			new0 = DIMM_BOT_COR_ERR(rcv[i][0]);
			new1 = DIMM_TOP_COR_ERR(rcv[i][0]);
			new2 = DIMM_BOT_COR_ERR(rcv[i][1]);
		} else {
			new0 = DIMM_TOP_COR_ERR(rcv[i][0]) +
					DIMM_BOT_COR_ERR(rcv[i][0]);
			new1 = DIMM_TOP_COR_ERR(rcv[i][1]) +
					DIMM_BOT_COR_ERR(rcv[i][1]);
			new2 = 0;
		}

1617
		i7core_rdimm_update_ce_count(mci, i, new0, new1, new2);
1618 1619
	}
}
1620 1621 1622 1623 1624 1625 1626

/* This function is based on the device 3 function 4 registers as described on:
 * Intel Xeon Processor 5500 Series Datasheet Volume 2
 *	http://www.intel.com/Assets/PDF/datasheet/321322.pdf
 * also available at:
 * 	http://www.arrownac.com/manufacturers/intel/s/nehalem/5500-datasheet-v2.pdf
 */
1627
static void i7core_udimm_check_mc_ecc_err(struct mem_ctl_info *mci)
1628 1629 1630 1631 1632
{
	struct i7core_pvt *pvt = mci->pvt_info;
	u32 rcv1, rcv0;
	int new0, new1, new2;

1633
	if (!pvt->pci_mcr[4]) {
1634
		debugf0("%s MCR registers not found\n", __func__);
1635 1636 1637
		return;
	}

1638
	/* Corrected test errors */
1639 1640
	pci_read_config_dword(pvt->pci_mcr[4], MC_TEST_ERR_RCV1, &rcv1);
	pci_read_config_dword(pvt->pci_mcr[4], MC_TEST_ERR_RCV0, &rcv0);
1641 1642 1643 1644 1645 1646 1647

	/* Store the new values */
	new2 = DIMM2_COR_ERR(rcv1);
	new1 = DIMM1_COR_ERR(rcv0);
	new0 = DIMM0_COR_ERR(rcv0);

	/* Updates CE counters if it is not the first time here */
1648
	if (pvt->ce_count_available) {
1649 1650 1651
		/* Updates CE counters */
		int add0, add1, add2;

1652 1653 1654
		add2 = new2 - pvt->udimm_last_ce_count[2];
		add1 = new1 - pvt->udimm_last_ce_count[1];
		add0 = new0 - pvt->udimm_last_ce_count[0];
1655 1656 1657

		if (add2 < 0)
			add2 += 0x7fff;
1658
		pvt->udimm_ce_count[2] += add2;
1659 1660 1661

		if (add1 < 0)
			add1 += 0x7fff;
1662
		pvt->udimm_ce_count[1] += add1;
1663 1664 1665

		if (add0 < 0)
			add0 += 0x7fff;
1666
		pvt->udimm_ce_count[0] += add0;
1667 1668 1669 1670 1671

		if (add0 | add1 | add2)
			i7core_printk(KERN_ERR, "New Corrected error(s): "
				      "dimm0: +%d, dimm1: +%d, dimm2 +%d\n",
				      add0, add1, add2);
1672
	} else
1673
		pvt->ce_count_available = 1;
1674 1675

	/* Store the new values */
1676 1677 1678
	pvt->udimm_last_ce_count[2] = new2;
	pvt->udimm_last_ce_count[1] = new1;
	pvt->udimm_last_ce_count[0] = new0;
1679 1680
}

1681 1682 1683
/*
 * According with tables E-11 and E-12 of chapter E.3.3 of Intel 64 and IA-32
 * Architectures Software Developer’s Manual Volume 3B.
1684 1685 1686
 * Nehalem are defined as family 0x06, model 0x1a
 *
 * The MCA registers used here are the following ones:
1687
 *     struct mce field	MCA Register
1688 1689 1690
 *     m->status	MSR_IA32_MC8_STATUS
 *     m->addr		MSR_IA32_MC8_ADDR
 *     m->misc		MSR_IA32_MC8_MISC
1691 1692 1693
 * In the case of Nehalem, the error information is masked at .status and .misc
 * fields
 */
1694
static void i7core_mce_output_error(struct mem_ctl_info *mci,
1695
				    const struct mce *m)
1696
{
1697
	struct i7core_pvt *pvt = mci->pvt_info;
1698
	char *type, *optype, *err, *msg;
1699
	unsigned long error = m->status & 0x1ff0000l;
1700
	u32 optypenum = (m->status >> 4) & 0x07;
1701 1702 1703 1704 1705
	u32 core_err_cnt = (m->status >> 38) && 0x7fff;
	u32 dimm = (m->misc >> 16) & 0x3;
	u32 channel = (m->misc >> 18) & 0x3;
	u32 syndrome = m->misc >> 32;
	u32 errnum = find_first_bit(&error, 32);
1706
	int csrow;
1707

1708 1709 1710 1711 1712
	if (m->mcgstatus & 1)
		type = "FATAL";
	else
		type = "NON_FATAL";

1713
	switch (optypenum) {
1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731
	case 0:
		optype = "generic undef request";
		break;
	case 1:
		optype = "read error";
		break;
	case 2:
		optype = "write error";
		break;
	case 3:
		optype = "addr/cmd error";
		break;
	case 4:
		optype = "scrubbing error";
		break;
	default:
		optype = "reserved";
		break;
1732 1733
	}

1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763
	switch (errnum) {
	case 16:
		err = "read ECC error";
		break;
	case 17:
		err = "RAS ECC error";
		break;
	case 18:
		err = "write parity error";
		break;
	case 19:
		err = "redundacy loss";
		break;
	case 20:
		err = "reserved";
		break;
	case 21:
		err = "memory range error";
		break;
	case 22:
		err = "RTID out of range";
		break;
	case 23:
		err = "address parity error";
		break;
	case 24:
		err = "byte enable parity error";
		break;
	default:
		err = "unknown";
1764 1765
	}

1766
	/* FIXME: should convert addr into bank and rank information */
1767
	msg = kasprintf(GFP_ATOMIC,
1768
		"%s (addr = 0x%08llx, cpu=%d, Dimm=%d, Channel=%d, "
1769
		"syndrome=0x%08x, count=%d, Err=%08llx:%08llx (%s: %s))\n",
1770
		type, (long long) m->addr, m->cpu, dimm, channel,
1771 1772
		syndrome, core_err_cnt, (long long)m->status,
		(long long)m->misc, optype, err);
1773 1774

	debugf0("%s", msg);
1775

1776
	csrow = pvt->csrow_map[channel][dimm];
1777

1778
	/* Call the helper to output message */
1779 1780 1781
	if (m->mcgstatus & 1)
		edac_mc_handle_fbd_ue(mci, csrow, 0,
				0 /* FIXME: should be channel here */, msg);
1782
	else if (!pvt->is_registered)
1783 1784
		edac_mc_handle_fbd_ce(mci, csrow,
				0 /* FIXME: should be channel here */, msg);
1785 1786

	kfree(msg);
1787 1788
}

1789 1790 1791 1792 1793 1794
/*
 *	i7core_check_error	Retrieve and process errors reported by the
 *				hardware. Called by the Core module.
 */
static void i7core_check_error(struct mem_ctl_info *mci)
{
1795 1796 1797
	struct i7core_pvt *pvt = mci->pvt_info;
	int i;
	unsigned count = 0;
1798
	struct mce *m;
1799

1800 1801 1802 1803 1804 1805
	/*
	 * MCE first step: Copy all mce errors into a temporary buffer
	 * We use a double buffering here, to reduce the risk of
	 * loosing an error.
	 */
	smp_rmb();
1806 1807
	count = (pvt->mce_out + MCE_LOG_LEN - pvt->mce_in)
		% MCE_LOG_LEN;
1808
	if (!count)
1809
		goto check_ce_error;
1810

1811
	m = pvt->mce_outentry;
1812 1813
	if (pvt->mce_in + count > MCE_LOG_LEN) {
		unsigned l = MCE_LOG_LEN - pvt->mce_in;
1814

1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831
		memcpy(m, &pvt->mce_entry[pvt->mce_in], sizeof(*m) * l);
		smp_wmb();
		pvt->mce_in = 0;
		count -= l;
		m += l;
	}
	memcpy(m, &pvt->mce_entry[pvt->mce_in], sizeof(*m) * count);
	smp_wmb();
	pvt->mce_in += count;

	smp_rmb();
	if (pvt->mce_overrun) {
		i7core_printk(KERN_ERR, "Lost %d memory errors\n",
			      pvt->mce_overrun);
		smp_wmb();
		pvt->mce_overrun = 0;
	}
1832

1833 1834 1835
	/*
	 * MCE second step: parse errors and display
	 */
1836
	for (i = 0; i < count; i++)
1837
		i7core_mce_output_error(mci, &pvt->mce_outentry[i]);
1838

1839 1840 1841
	/*
	 * Now, let's increment CE error counts
	 */
1842
check_ce_error:
1843 1844 1845 1846
	if (!pvt->is_registered)
		i7core_udimm_check_mc_ecc_err(mci);
	else
		i7core_rdimm_check_mc_ecc_err(mci);
1847 1848
}

1849 1850 1851 1852 1853
/*
 * i7core_mce_check_error	Replicates mcelog routine to get errors
 *				This routine simply queues mcelog errors, and
 *				return. The error itself should be handled later
 *				by i7core_check_error.
1854 1855
 * WARNING: As this routine should be called at NMI time, extra care should
 * be taken to avoid deadlocks, and to be as fast as possible.
1856 1857 1858
 */
static int i7core_mce_check_error(void *priv, struct mce *mce)
{
1859 1860
	struct mem_ctl_info *mci = priv;
	struct i7core_pvt *pvt = mci->pvt_info;
1861

1862 1863 1864 1865 1866 1867 1868
	/*
	 * Just let mcelog handle it if the error is
	 * outside the memory controller
	 */
	if (((mce->status & 0xffff) >> 7) != 1)
		return 0;

1869 1870 1871 1872
	/* Bank 8 registers are the only ones that we know how to handle */
	if (mce->bank != 8)
		return 0;

R
Randy Dunlap 已提交
1873
#ifdef CONFIG_SMP
1874
	/* Only handle if it is the right mc controller */
1875
	if (cpu_data(mce->cpu).phys_proc_id != pvt->i7core_dev->socket)
1876
		return 0;
R
Randy Dunlap 已提交
1877
#endif
1878

1879
	smp_rmb();
1880
	if ((pvt->mce_out + 1) % MCE_LOG_LEN == pvt->mce_in) {
1881 1882 1883
		smp_wmb();
		pvt->mce_overrun++;
		return 0;
1884
	}
1885 1886 1887

	/* Copy memory error at the ringbuffer */
	memcpy(&pvt->mce_entry[pvt->mce_out], mce, sizeof(*mce));
1888
	smp_wmb();
1889
	pvt->mce_out = (pvt->mce_out + 1) % MCE_LOG_LEN;
1890

1891 1892 1893 1894
	/* Handle fatal errors immediately */
	if (mce->mcgstatus & 1)
		i7core_check_error(mci);

1895
	/* Advice mcelog that the error were handled */
1896
	return 1;
1897 1898
}

1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918
static void i7core_pci_ctl_create(struct i7core_pvt *pvt)
{
	pvt->i7core_pci = edac_pci_create_generic_ctl(
						&pvt->i7core_dev->pdev[0]->dev,
						EDAC_MOD_STR);
	if (unlikely(!pvt->i7core_pci))
		pr_warn("Unable to setup PCI error report via EDAC\n");
}

static void i7core_pci_ctl_release(struct i7core_pvt *pvt)
{
	if (likely(pvt->i7core_pci))
		edac_pci_release_generic_ctl(pvt->i7core_pci);
	else
		i7core_printk(KERN_ERR,
				"Couldn't find mem_ctl_info for socket %d\n",
				pvt->i7core_dev->socket);
	pvt->i7core_pci = NULL;
}

1919
static int i7core_register_mci(struct i7core_dev *i7core_dev,
1920
			       const int num_channels, const int num_csrows)
1921 1922 1923
{
	struct mem_ctl_info *mci;
	struct i7core_pvt *pvt;
1924
	int csrow = 0;
1925
	int rc;
1926 1927

	/* allocate a new MC control structure */
1928 1929
	mci = edac_mc_alloc(sizeof(*pvt), num_csrows, num_channels,
			    i7core_dev->socket);
1930 1931
	if (unlikely(!mci))
		return -ENOMEM;
1932

1933 1934
	debugf0("MC: " __FILE__ ": %s(): mci = %p, dev = %p\n",
		__func__, mci, &i7core_dev->pdev[0]->dev);
1935

1936 1937 1938
	/* record ptr to the generic device */
	mci->dev = &i7core_dev->pdev[0]->dev;

1939
	pvt = mci->pvt_info;
1940
	memset(pvt, 0, sizeof(*pvt));
1941

1942 1943 1944 1945 1946 1947
	/*
	 * FIXME: how to handle RDDR3 at MCI level? It is possible to have
	 * Mixed RDDR3/UDDR3 with Nehalem, provided that they are on different
	 * memory channels
	 */
	mci->mtype_cap = MEM_FLAG_DDR3;
1948 1949 1950 1951
	mci->edac_ctl_cap = EDAC_FLAG_NONE;
	mci->edac_cap = EDAC_FLAG_NONE;
	mci->mod_name = "i7core_edac.c";
	mci->mod_ver = I7CORE_REVISION;
1952 1953 1954
	mci->ctl_name = kasprintf(GFP_KERNEL, "i7 core #%d",
				  i7core_dev->socket);
	mci->dev_name = pci_name(i7core_dev->pdev[0]);
1955
	mci->ctl_page_to_phys = NULL;
1956 1957 1958 1959 1960 1961

	if (pvt->is_registered)
		mci->mc_driver_sysfs_attributes = i7core_sysfs_rdimm_attrs;
	else
		mci->mc_driver_sysfs_attributes = i7core_sysfs_udimm_attrs;

1962 1963
	/* Set the function pointer to an actual operation function */
	mci->edac_check = i7core_check_error;
1964

1965
	/* Store pci devices at mci for faster access */
1966
	rc = mci_bind_devs(mci, i7core_dev);
1967
	if (unlikely(rc < 0))
1968
		goto fail;
1969 1970

	/* Get dimm basic config */
1971
	get_dimm_config(mci, &csrow);
1972

1973
	/* add this new MC control structure to EDAC's list of MCs */
1974
	if (unlikely(edac_mc_add_mc(mci))) {
1975 1976 1977 1978 1979
		debugf0("MC: " __FILE__
			": %s(): failed edac_mc_add_mc()\n", __func__);
		/* FIXME: perhaps some code should go here that disables error
		 * reporting if we just enabled it
		 */
1980 1981

		rc = -EINVAL;
1982
		goto fail;
1983 1984
	}

1985
	/* Default error mask is any memory */
1986
	pvt->inject.channel = 0;
1987 1988 1989 1990 1991 1992
	pvt->inject.dimm = -1;
	pvt->inject.rank = -1;
	pvt->inject.bank = -1;
	pvt->inject.page = -1;
	pvt->inject.col = -1;

1993 1994 1995
	/* allocating generic PCI control info */
	i7core_pci_ctl_create(pvt);

1996
	/* Registers on edac_mce in order to receive memory errors */
1997
	pvt->edac_mce.priv = mci;
1998 1999
	pvt->edac_mce.check_error = i7core_mce_check_error;
	rc = edac_mce_register(&pvt->edac_mce);
2000
	if (unlikely(rc < 0)) {
2001 2002
		debugf0("MC: " __FILE__
			": %s(): failed edac_mce_register()\n", __func__);
2003 2004 2005
	}

fail:
T
Tony Luck 已提交
2006 2007
	if (rc < 0)
		edac_mc_free(mci);
2008 2009 2010 2011 2012 2013 2014 2015 2016 2017
	return rc;
}

/*
 *	i7core_probe	Probe for ONE instance of device to see if it is
 *			present.
 *	return:
 *		0 for FOUND a device
 *		< 0 for error code
 */
2018

2019 2020 2021 2022 2023 2024
static int __devinit i7core_probe(struct pci_dev *pdev,
				  const struct pci_device_id *id)
{
	int rc;
	struct i7core_dev *i7core_dev;

2025 2026 2027
	/* get the pci devices we want to reserve for our use */
	mutex_lock(&i7core_edac_lock);

2028
	/*
2029
	 * All memory controllers are allocated at the first pass.
2030
	 */
2031 2032
	if (unlikely(probed >= 1)) {
		mutex_unlock(&i7core_edac_lock);
2033
		return -EINVAL;
2034 2035
	}
	probed++;
2036

2037
	rc = i7core_get_all_devices();
2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050
	if (unlikely(rc < 0))
		goto fail0;

	list_for_each_entry(i7core_dev, &i7core_edac_list, list) {
		int channels;
		int csrows;

		/* Check the number of active and not disabled channels */
		rc = i7core_get_active_channels(i7core_dev->socket,
						&channels, &csrows);
		if (unlikely(rc < 0))
			goto fail1;

2051 2052 2053
		rc = i7core_register_mci(i7core_dev, channels, csrows);
		if (unlikely(rc < 0))
			goto fail1;
2054 2055
	}

2056
	i7core_printk(KERN_INFO, "Driver loaded.\n");
2057

2058
	mutex_unlock(&i7core_edac_lock);
2059 2060
	return 0;

2061
fail1:
2062
	i7core_put_all_devices();
2063 2064
fail0:
	mutex_unlock(&i7core_edac_lock);
2065
	return rc;
2066 2067 2068 2069 2070 2071 2072 2073 2074
}

/*
 *	i7core_remove	destructor for one instance of device
 *
 */
static void __devexit i7core_remove(struct pci_dev *pdev)
{
	struct mem_ctl_info *mci;
2075
	struct i7core_dev *i7core_dev;
2076
	struct i7core_pvt *pvt;
2077 2078 2079

	debugf0(__FILE__ ": %s()\n", __func__);

2080 2081 2082 2083 2084 2085 2086
	/*
	 * we have a trouble here: pdev value for removal will be wrong, since
	 * it will point to the X58 register used to detect that the machine
	 * is a Nehalem or upper design. However, due to the way several PCI
	 * devices are grouped together to provide MC functionality, we need
	 * to use a different method for releasing the devices
	 */
2087

2088
	mutex_lock(&i7core_edac_lock);
2089
	list_for_each_entry(i7core_dev, &i7core_edac_list, list) {
2090 2091
		mci = find_mci_by_dev(&i7core_dev->pdev[0]->dev);
		if (unlikely(!mci || !mci->pvt_info)) {
2092 2093 2094 2095
			debugf0("MC: " __FILE__ ": %s(): dev = %p\n",
				__func__, &i7core_dev->pdev[0]->dev);

				i7core_printk(KERN_ERR,
2096 2097 2098
				      "Couldn't find mci hanler\n");
		} else {
			pvt = mci->pvt_info;
2099
			i7core_dev = pvt->i7core_dev;
2100

2101 2102 2103
			debugf0("MC: " __FILE__ ": %s(): mci = %p, dev = %p\n",
				__func__, mci, &i7core_dev->pdev[0]->dev);

2104 2105 2106 2107
			/* Disable MCE NMI handler */
			edac_mce_unregister(&pvt->edac_mce);

			/* Disable EDAC polling */
2108
			i7core_pci_ctl_release(pvt);
2109

2110
			/* Remove MC sysfs nodes */
2111 2112
			edac_mc_del_mc(&i7core_dev->pdev[0]->dev);

2113
			debugf1("%s: free mci struct\n", mci->ctl_name);
2114 2115 2116 2117
			kfree(mci->ctl_name);
			edac_mc_free(mci);
		}
	}
2118 2119 2120 2121

	/* Release PCI resources */
	i7core_put_all_devices();

2122 2123
	probed--;

2124
	mutex_unlock(&i7core_edac_lock);
2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152
}

MODULE_DEVICE_TABLE(pci, i7core_pci_tbl);

/*
 *	i7core_driver	pci_driver structure for this module
 *
 */
static struct pci_driver i7core_driver = {
	.name     = "i7core_edac",
	.probe    = i7core_probe,
	.remove   = __devexit_p(i7core_remove),
	.id_table = i7core_pci_tbl,
};

/*
 *	i7core_init		Module entry function
 *			Try to initialize this module for its devices
 */
static int __init i7core_init(void)
{
	int pci_rc;

	debugf2("MC: " __FILE__ ": %s()\n", __func__);

	/* Ensure that the OPSTATE is set correctly for POLL or NMI */
	opstate_init();

2153 2154
	if (use_pci_fixup)
		i7core_xeon_pci_fixup(pci_dev_table);
2155

2156 2157
	pci_rc = pci_register_driver(&i7core_driver);

2158 2159 2160 2161 2162 2163 2164
	if (pci_rc >= 0)
		return 0;

	i7core_printk(KERN_ERR, "Failed to register device with error %d.\n",
		      pci_rc);

	return pci_rc;
2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187
}

/*
 *	i7core_exit()	Module exit function
 *			Unregister the driver
 */
static void __exit i7core_exit(void)
{
	debugf2("MC: " __FILE__ ": %s()\n", __func__);
	pci_unregister_driver(&i7core_driver);
}

module_init(i7core_init);
module_exit(i7core_exit);

MODULE_LICENSE("GPL");
MODULE_AUTHOR("Mauro Carvalho Chehab <mchehab@redhat.com>");
MODULE_AUTHOR("Red Hat Inc. (http://www.redhat.com)");
MODULE_DESCRIPTION("MC Driver for Intel i7 Core memory controllers - "
		   I7CORE_REVISION);

module_param(edac_op_state, int, 0444);
MODULE_PARM_DESC(edac_op_state, "EDAC Error Reporting state: 0=Poll,1=NMI");