i7core_edac.c 55.1 KB
Newer Older
1 2 3 4 5 6
/* Intel i7 core/Nehalem Memory Controller kernel module
 *
 * This driver supports yhe memory controllers found on the Intel
 * processor families i7core, i7core 7xx/8xx, i5core, Xeon 35xx,
 * Xeon 55xx and Xeon 56xx also known as Nehalem, Nehalem-EP, Lynnfield
 * and Westmere-EP.
7 8 9 10
 *
 * This file may be distributed under the terms of the
 * GNU General Public License version 2 only.
 *
11
 * Copyright (c) 2009-2010 by:
12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32
 *	 Mauro Carvalho Chehab <mchehab@redhat.com>
 *
 * Red Hat Inc. http://www.redhat.com
 *
 * Forked and adapted from the i5400_edac driver
 *
 * Based on the following public Intel datasheets:
 * Intel Core i7 Processor Extreme Edition and Intel Core i7 Processor
 * Datasheet, Volume 2:
 *	http://download.intel.com/design/processor/datashts/320835.pdf
 * Intel Xeon Processor 5500 Series Datasheet Volume 2
 *	http://www.intel.com/Assets/PDF/datasheet/321322.pdf
 * also available at:
 * 	http://www.arrownac.com/manufacturers/intel/s/nehalem/5500-datasheet-v2.pdf
 */

#include <linux/module.h>
#include <linux/init.h>
#include <linux/pci.h>
#include <linux/pci_ids.h>
#include <linux/slab.h>
R
Randy Dunlap 已提交
33
#include <linux/delay.h>
34 35
#include <linux/edac.h>
#include <linux/mmzone.h>
36
#include <linux/edac_mce.h>
37
#include <linux/smp.h>
38
#include <asm/processor.h>
39 40 41

#include "edac_core.h"

42 43 44 45 46
/* Static vars */
static LIST_HEAD(i7core_edac_list);
static DEFINE_MUTEX(i7core_edac_lock);
static int probed;

47 48 49
static int use_pci_fixup;
module_param(use_pci_fixup, int, 0444);
MODULE_PARM_DESC(use_pci_fixup, "Enable PCI fixup to seek for hidden devices");
50 51 52 53 54 55 56 57 58
/*
 * This is used for Nehalem-EP and Nehalem-EX devices, where the non-core
 * registers start at bus 255, and are not reported by BIOS.
 * We currently find devices with only 2 sockets. In order to support more QPI
 * Quick Path Interconnect, just increment this number.
 */
#define MAX_SOCKET_BUSES	2


59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77
/*
 * Alter this version for the module when modifications are made
 */
#define I7CORE_REVISION    " Ver: 1.0.0 " __DATE__
#define EDAC_MOD_STR      "i7core_edac"

/*
 * Debug macros
 */
#define i7core_printk(level, fmt, arg...)			\
	edac_printk(level, "i7core", fmt, ##arg)

#define i7core_mc_printk(mci, level, fmt, arg...)		\
	edac_mc_chipset_printk(mci, level, "i7core", fmt, ##arg)

/*
 * i7core Memory Controller Registers
 */

78 79 80 81
	/* OFFSETS for Device 0 Function 0 */

#define MC_CFG_CONTROL	0x90

82 83 84 85 86 87
	/* OFFSETS for Device 3 Function 0 */

#define MC_CONTROL	0x48
#define MC_STATUS	0x4c
#define MC_MAX_DOD	0x64

88 89 90 91 92 93 94 95 96 97 98 99
/*
 * OFFSETS for Device 3 Function 4, as inicated on Xeon 5500 datasheet:
 * http://www.arrownac.com/manufacturers/intel/s/nehalem/5500-datasheet-v2.pdf
 */

#define MC_TEST_ERR_RCV1	0x60
  #define DIMM2_COR_ERR(r)			((r) & 0x7fff)

#define MC_TEST_ERR_RCV0	0x64
  #define DIMM1_COR_ERR(r)			(((r) >> 16) & 0x7fff)
  #define DIMM0_COR_ERR(r)			((r) & 0x7fff)

100 101 102 103 104 105 106 107 108 109 110 111
/* OFFSETS for Device 3 Function 2, as inicated on Xeon 5500 datasheet */
#define MC_COR_ECC_CNT_0	0x80
#define MC_COR_ECC_CNT_1	0x84
#define MC_COR_ECC_CNT_2	0x88
#define MC_COR_ECC_CNT_3	0x8c
#define MC_COR_ECC_CNT_4	0x90
#define MC_COR_ECC_CNT_5	0x94

#define DIMM_TOP_COR_ERR(r)			(((r) >> 16) & 0x7fff)
#define DIMM_BOT_COR_ERR(r)			((r) & 0x7fff)


112 113
	/* OFFSETS for Devices 4,5 and 6 Function 0 */

114 115 116 117 118 119
#define MC_CHANNEL_DIMM_INIT_PARAMS 0x58
  #define THREE_DIMMS_PRESENT		(1 << 24)
  #define SINGLE_QUAD_RANK_PRESENT	(1 << 23)
  #define QUAD_RANK_PRESENT		(1 << 22)
  #define REGISTERED_DIMM		(1 << 15)

120 121 122 123
#define MC_CHANNEL_MAPPER	0x60
  #define RDLCH(r, ch)		((((r) >> (3 + (ch * 6))) & 0x07) - 1)
  #define WRLCH(r, ch)		((((r) >> (ch * 6)) & 0x07) - 1)

124 125 126
#define MC_CHANNEL_RANK_PRESENT 0x7c
  #define RANK_PRESENT_MASK		0xffff

127
#define MC_CHANNEL_ADDR_MATCH	0xf0
128 129 130 131 132 133 134 135 136 137
#define MC_CHANNEL_ERROR_MASK	0xf8
#define MC_CHANNEL_ERROR_INJECT	0xfc
  #define INJECT_ADDR_PARITY	0x10
  #define INJECT_ECC		0x08
  #define MASK_CACHELINE	0x06
  #define MASK_FULL_CACHELINE	0x06
  #define MASK_MSB32_CACHELINE	0x04
  #define MASK_LSB32_CACHELINE	0x02
  #define NO_MASK_CACHELINE	0x00
  #define REPEAT_EN		0x01
138

139
	/* OFFSETS for Devices 4,5 and 6 Function 1 */
140

141 142 143 144 145 146 147
#define MC_DOD_CH_DIMM0		0x48
#define MC_DOD_CH_DIMM1		0x4c
#define MC_DOD_CH_DIMM2		0x50
  #define RANKOFFSET_MASK	((1 << 12) | (1 << 11) | (1 << 10))
  #define RANKOFFSET(x)		((x & RANKOFFSET_MASK) >> 10)
  #define DIMM_PRESENT_MASK	(1 << 9)
  #define DIMM_PRESENT(x)	(((x) & DIMM_PRESENT_MASK) >> 9)
148 149 150 151
  #define MC_DOD_NUMBANK_MASK		((1 << 8) | (1 << 7))
  #define MC_DOD_NUMBANK(x)		(((x) & MC_DOD_NUMBANK_MASK) >> 7)
  #define MC_DOD_NUMRANK_MASK		((1 << 6) | (1 << 5))
  #define MC_DOD_NUMRANK(x)		(((x) & MC_DOD_NUMRANK_MASK) >> 5)
152
  #define MC_DOD_NUMROW_MASK		((1 << 4) | (1 << 3) | (1 << 2))
153
  #define MC_DOD_NUMROW(x)		(((x) & MC_DOD_NUMROW_MASK) >> 2)
154 155
  #define MC_DOD_NUMCOL_MASK		3
  #define MC_DOD_NUMCOL(x)		((x) & MC_DOD_NUMCOL_MASK)
156

157 158
#define MC_RANK_PRESENT		0x7c

159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181
#define MC_SAG_CH_0	0x80
#define MC_SAG_CH_1	0x84
#define MC_SAG_CH_2	0x88
#define MC_SAG_CH_3	0x8c
#define MC_SAG_CH_4	0x90
#define MC_SAG_CH_5	0x94
#define MC_SAG_CH_6	0x98
#define MC_SAG_CH_7	0x9c

#define MC_RIR_LIMIT_CH_0	0x40
#define MC_RIR_LIMIT_CH_1	0x44
#define MC_RIR_LIMIT_CH_2	0x48
#define MC_RIR_LIMIT_CH_3	0x4C
#define MC_RIR_LIMIT_CH_4	0x50
#define MC_RIR_LIMIT_CH_5	0x54
#define MC_RIR_LIMIT_CH_6	0x58
#define MC_RIR_LIMIT_CH_7	0x5C
#define MC_RIR_LIMIT_MASK	((1 << 10) - 1)

#define MC_RIR_WAY_CH		0x80
  #define MC_RIR_WAY_OFFSET_MASK	(((1 << 14) - 1) & ~0x7)
  #define MC_RIR_WAY_RANK_MASK		0x7

182 183 184 185 186
/*
 * i7core structs
 */

#define NUM_CHANS 3
187 188 189
#define MAX_DIMMS 3		/* Max DIMMS per channel */
#define MAX_MCR_FUNC  4
#define MAX_CHAN_FUNC 3
190 191 192 193 194

struct i7core_info {
	u32	mc_control;
	u32	mc_status;
	u32	max_dod;
195
	u32	ch_map;
196 197
};

198 199 200 201 202 203 204 205 206 207 208 209

struct i7core_inject {
	int	enable;

	u32	section;
	u32	type;
	u32	eccmask;

	/* Error address mask */
	int channel, dimm, rank, bank, page, col;
};

210
struct i7core_channel {
211 212
	u32		ranks;
	u32		dimms;
213 214
};

215
struct pci_id_descr {
216 217 218
	int			dev;
	int			func;
	int 			dev_id;
219
	int			optional;
220 221
};

222
struct pci_id_table {
223 224
	const struct pci_id_descr	*descr;
	int				n_devs;
225 226
};

227 228 229 230
struct i7core_dev {
	struct list_head	list;
	u8			socket;
	struct pci_dev		**pdev;
231
	int			n_devs;
232 233 234
	struct mem_ctl_info	*mci;
};

235
struct i7core_pvt {
236 237 238 239 240
	struct pci_dev	*pci_noncore;
	struct pci_dev	*pci_mcr[MAX_MCR_FUNC + 1];
	struct pci_dev	*pci_ch[NUM_CHANS][MAX_CHAN_FUNC + 1];

	struct i7core_dev *i7core_dev;
241

242
	struct i7core_info	info;
243
	struct i7core_inject	inject;
244
	struct i7core_channel	channel[NUM_CHANS];
245

246 247
	int		ce_count_available;
	int 		csrow_map[NUM_CHANS][MAX_DIMMS];
248 249

			/* ECC corrected errors counts per udimm */
250 251
	unsigned long	udimm_ce_count[MAX_DIMMS];
	int		udimm_last_ce_count[MAX_DIMMS];
252
			/* ECC corrected errors counts per rdimm */
253 254
	unsigned long	rdimm_ce_count[NUM_CHANS][MAX_DIMMS];
	int		rdimm_last_ce_count[NUM_CHANS][MAX_DIMMS];
255

256
	unsigned int	is_registered;
257

258 259
	/* mcelog glue */
	struct edac_mce		edac_mce;
260 261

	/* Fifo double buffers */
262
	struct mce		mce_entry[MCE_LOG_LEN];
263 264 265 266 267 268 269
	struct mce		mce_outentry[MCE_LOG_LEN];

	/* Fifo in/out counters */
	unsigned		mce_in, mce_out;

	/* Count indicator to show errors not got */
	unsigned		mce_overrun;
270 271 272

	/* Struct to control EDAC polling */
	struct edac_pci_ctl_info *i7core_pci;
273 274
};

275 276 277 278 279
#define PCI_DESCR(device, function, device_id)	\
	.dev = (device),			\
	.func = (function),			\
	.dev_id = (device_id)

280
static const struct pci_id_descr pci_dev_descr_i7core_nehalem[] = {
281 282 283
		/* Memory controller */
	{ PCI_DESCR(3, 0, PCI_DEVICE_ID_INTEL_I7_MCR)     },
	{ PCI_DESCR(3, 1, PCI_DEVICE_ID_INTEL_I7_MC_TAD)  },
284 285

		/* Exists only for RDIMM */
286
	{ PCI_DESCR(3, 2, PCI_DEVICE_ID_INTEL_I7_MC_RAS), .optional = 1  },
287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305
	{ PCI_DESCR(3, 4, PCI_DEVICE_ID_INTEL_I7_MC_TEST) },

		/* Channel 0 */
	{ PCI_DESCR(4, 0, PCI_DEVICE_ID_INTEL_I7_MC_CH0_CTRL) },
	{ PCI_DESCR(4, 1, PCI_DEVICE_ID_INTEL_I7_MC_CH0_ADDR) },
	{ PCI_DESCR(4, 2, PCI_DEVICE_ID_INTEL_I7_MC_CH0_RANK) },
	{ PCI_DESCR(4, 3, PCI_DEVICE_ID_INTEL_I7_MC_CH0_TC)   },

		/* Channel 1 */
	{ PCI_DESCR(5, 0, PCI_DEVICE_ID_INTEL_I7_MC_CH1_CTRL) },
	{ PCI_DESCR(5, 1, PCI_DEVICE_ID_INTEL_I7_MC_CH1_ADDR) },
	{ PCI_DESCR(5, 2, PCI_DEVICE_ID_INTEL_I7_MC_CH1_RANK) },
	{ PCI_DESCR(5, 3, PCI_DEVICE_ID_INTEL_I7_MC_CH1_TC)   },

		/* Channel 2 */
	{ PCI_DESCR(6, 0, PCI_DEVICE_ID_INTEL_I7_MC_CH2_CTRL) },
	{ PCI_DESCR(6, 1, PCI_DEVICE_ID_INTEL_I7_MC_CH2_ADDR) },
	{ PCI_DESCR(6, 2, PCI_DEVICE_ID_INTEL_I7_MC_CH2_RANK) },
	{ PCI_DESCR(6, 3, PCI_DEVICE_ID_INTEL_I7_MC_CH2_TC)   },
306
};
307

308
static const struct pci_id_descr pci_dev_descr_lynnfield[] = {
309 310 311 312 313 314 315 316 317
	{ PCI_DESCR( 3, 0, PCI_DEVICE_ID_INTEL_LYNNFIELD_MCR)         },
	{ PCI_DESCR( 3, 1, PCI_DEVICE_ID_INTEL_LYNNFIELD_MC_TAD)      },
	{ PCI_DESCR( 3, 4, PCI_DEVICE_ID_INTEL_LYNNFIELD_MC_TEST)     },

	{ PCI_DESCR( 4, 0, PCI_DEVICE_ID_INTEL_LYNNFIELD_MC_CH0_CTRL) },
	{ PCI_DESCR( 4, 1, PCI_DEVICE_ID_INTEL_LYNNFIELD_MC_CH0_ADDR) },
	{ PCI_DESCR( 4, 2, PCI_DEVICE_ID_INTEL_LYNNFIELD_MC_CH0_RANK) },
	{ PCI_DESCR( 4, 3, PCI_DEVICE_ID_INTEL_LYNNFIELD_MC_CH0_TC)   },

318 319 320 321
	{ PCI_DESCR( 5, 0, PCI_DEVICE_ID_INTEL_LYNNFIELD_MC_CH1_CTRL) },
	{ PCI_DESCR( 5, 1, PCI_DEVICE_ID_INTEL_LYNNFIELD_MC_CH1_ADDR) },
	{ PCI_DESCR( 5, 2, PCI_DEVICE_ID_INTEL_LYNNFIELD_MC_CH1_RANK) },
	{ PCI_DESCR( 5, 3, PCI_DEVICE_ID_INTEL_LYNNFIELD_MC_CH1_TC)   },
322 323
};

324
static const struct pci_id_descr pci_dev_descr_i7core_westmere[] = {
325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350
		/* Memory controller */
	{ PCI_DESCR(3, 0, PCI_DEVICE_ID_INTEL_LYNNFIELD_MCR_REV2)     },
	{ PCI_DESCR(3, 1, PCI_DEVICE_ID_INTEL_LYNNFIELD_MC_TAD_REV2)  },
			/* Exists only for RDIMM */
	{ PCI_DESCR(3, 2, PCI_DEVICE_ID_INTEL_LYNNFIELD_MC_RAS_REV2), .optional = 1  },
	{ PCI_DESCR(3, 4, PCI_DEVICE_ID_INTEL_LYNNFIELD_MC_TEST_REV2) },

		/* Channel 0 */
	{ PCI_DESCR(4, 0, PCI_DEVICE_ID_INTEL_LYNNFIELD_MC_CH0_CTRL_REV2) },
	{ PCI_DESCR(4, 1, PCI_DEVICE_ID_INTEL_LYNNFIELD_MC_CH0_ADDR_REV2) },
	{ PCI_DESCR(4, 2, PCI_DEVICE_ID_INTEL_LYNNFIELD_MC_CH0_RANK_REV2) },
	{ PCI_DESCR(4, 3, PCI_DEVICE_ID_INTEL_LYNNFIELD_MC_CH0_TC_REV2)   },

		/* Channel 1 */
	{ PCI_DESCR(5, 0, PCI_DEVICE_ID_INTEL_LYNNFIELD_MC_CH1_CTRL_REV2) },
	{ PCI_DESCR(5, 1, PCI_DEVICE_ID_INTEL_LYNNFIELD_MC_CH1_ADDR_REV2) },
	{ PCI_DESCR(5, 2, PCI_DEVICE_ID_INTEL_LYNNFIELD_MC_CH1_RANK_REV2) },
	{ PCI_DESCR(5, 3, PCI_DEVICE_ID_INTEL_LYNNFIELD_MC_CH1_TC_REV2)   },

		/* Channel 2 */
	{ PCI_DESCR(6, 0, PCI_DEVICE_ID_INTEL_LYNNFIELD_MC_CH2_CTRL_REV2) },
	{ PCI_DESCR(6, 1, PCI_DEVICE_ID_INTEL_LYNNFIELD_MC_CH2_ADDR_REV2) },
	{ PCI_DESCR(6, 2, PCI_DEVICE_ID_INTEL_LYNNFIELD_MC_CH2_RANK_REV2) },
	{ PCI_DESCR(6, 3, PCI_DEVICE_ID_INTEL_LYNNFIELD_MC_CH2_TC_REV2)   },
};

351 352
#define PCI_ID_TABLE_ENTRY(A) { .descr=A, .n_devs = ARRAY_SIZE(A) }
static const struct pci_id_table pci_dev_table[] = {
353 354 355 356 357
	PCI_ID_TABLE_ENTRY(pci_dev_descr_i7core_nehalem),
	PCI_ID_TABLE_ENTRY(pci_dev_descr_lynnfield),
	PCI_ID_TABLE_ENTRY(pci_dev_descr_i7core_westmere),
};

358 359 360 361
/*
 *	pci_device_id	table for which devices we are looking for
 */
static const struct pci_device_id i7core_pci_tbl[] __devinitdata = {
362
	{PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_X58_HUB_MGMT)},
363
	{PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_LYNNFIELD_QPI_LINK0)},
364 365 366
	{0,}			/* 0 terminated list. */
};

367 368 369 370 371
/****************************************************************************
			Anciliary status routines
 ****************************************************************************/

	/* MC_CONTROL bits */
372 373
#define CH_ACTIVE(pvt, ch)	((pvt)->info.mc_control & (1 << (8 + ch)))
#define ECCx8(pvt)		((pvt)->info.mc_control & (1 << 1))
374 375

	/* MC_STATUS bits */
376
#define ECC_ENABLED(pvt)	((pvt)->info.mc_status & (1 << 4))
377
#define CH_DISABLED(pvt, ch)	((pvt)->info.mc_status & (1 << ch))
378 379

	/* MC_MAX_DOD read functions */
380
static inline int numdimms(u32 dimms)
381
{
382
	return (dimms & 0x3) + 1;
383 384
}

385
static inline int numrank(u32 rank)
386 387 388
{
	static int ranks[4] = { 1, 2, 4, -EINVAL };

389
	return ranks[rank & 0x3];
390 391
}

392
static inline int numbank(u32 bank)
393 394 395
{
	static int banks[4] = { 4, 8, 16, -EINVAL };

396
	return banks[bank & 0x3];
397 398
}

399
static inline int numrow(u32 row)
400 401 402 403 404 405
{
	static int rows[8] = {
		1 << 12, 1 << 13, 1 << 14, 1 << 15,
		1 << 16, -EINVAL, -EINVAL, -EINVAL,
	};

406
	return rows[row & 0x7];
407 408
}

409
static inline int numcol(u32 col)
410 411 412 413
{
	static int cols[8] = {
		1 << 10, 1 << 11, 1 << 12, -EINVAL,
	};
414
	return cols[col & 0x3];
415 416
}

417
static struct i7core_dev *get_i7core_dev(u8 socket)
418 419 420 421 422 423 424 425 426 427 428
{
	struct i7core_dev *i7core_dev;

	list_for_each_entry(i7core_dev, &i7core_edac_list, list) {
		if (i7core_dev->socket == socket)
			return i7core_dev;
	}

	return NULL;
}

429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451
static struct i7core_dev *alloc_i7core_dev(u8 socket,
					   const struct pci_id_table *table)
{
	struct i7core_dev *i7core_dev;

	i7core_dev = kzalloc(sizeof(*i7core_dev), GFP_KERNEL);
	if (!i7core_dev)
		return NULL;

	i7core_dev->pdev = kzalloc(sizeof(*i7core_dev->pdev) * table->n_devs,
				   GFP_KERNEL);
	if (!i7core_dev->pdev) {
		kfree(i7core_dev);
		return NULL;
	}

	i7core_dev->socket = socket;
	i7core_dev->n_devs = table->n_devs;
	list_add_tail(&i7core_dev->list, &i7core_edac_list);

	return i7core_dev;
}

452 453 454 455 456 457 458
static void free_i7core_dev(struct i7core_dev *i7core_dev)
{
	list_del(&i7core_dev->list);
	kfree(i7core_dev->pdev);
	kfree(i7core_dev);
}

459 460 461
/****************************************************************************
			Memory check routines
 ****************************************************************************/
462 463
static struct pci_dev *get_pdev_slot_func(u8 socket, unsigned slot,
					  unsigned func)
464
{
465
	struct i7core_dev *i7core_dev = get_i7core_dev(socket);
466 467
	int i;

468 469 470
	if (!i7core_dev)
		return NULL;

471
	for (i = 0; i < i7core_dev->n_devs; i++) {
472
		if (!i7core_dev->pdev[i])
473 474
			continue;

475 476 477
		if (PCI_SLOT(i7core_dev->pdev[i]->devfn) == slot &&
		    PCI_FUNC(i7core_dev->pdev[i]->devfn) == func) {
			return i7core_dev->pdev[i];
478 479 480
		}
	}

481 482 483
	return NULL;
}

484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500
/**
 * i7core_get_active_channels() - gets the number of channels and csrows
 * @socket:	Quick Path Interconnect socket
 * @channels:	Number of channels that will be returned
 * @csrows:	Number of csrows found
 *
 * Since EDAC core needs to know in advance the number of available channels
 * and csrows, in order to allocate memory for csrows/channels, it is needed
 * to run two similar steps. At the first step, implemented on this function,
 * it checks the number of csrows/channels present at one socket.
 * this is used in order to properly allocate the size of mci components.
 *
 * It should be noticed that none of the current available datasheets explain
 * or even mention how csrows are seen by the memory controller. So, we need
 * to add a fake description for csrows.
 * So, this driver is attributing one DIMM memory for one csrow.
 */
501
static int i7core_get_active_channels(const u8 socket, unsigned *channels,
502
				      unsigned *csrows)
503 504 505 506 507 508 509 510
{
	struct pci_dev *pdev = NULL;
	int i, j;
	u32 status, control;

	*channels = 0;
	*csrows = 0;

511
	pdev = get_pdev_slot_func(socket, 3, 0);
512
	if (!pdev) {
513 514
		i7core_printk(KERN_ERR, "Couldn't find socket %d fn 3.0!!!\n",
			      socket);
515
		return -ENODEV;
516
	}
517 518 519 520 521 522

	/* Device 3 function 0 reads */
	pci_read_config_dword(pdev, MC_STATUS, &status);
	pci_read_config_dword(pdev, MC_CONTROL, &control);

	for (i = 0; i < NUM_CHANS; i++) {
523
		u32 dimm_dod[3];
524 525 526 527 528
		/* Check if the channel is active */
		if (!(control & (1 << (8 + i))))
			continue;

		/* Check if the channel is disabled */
529
		if (status & (1 << i))
530 531
			continue;

532
		pdev = get_pdev_slot_func(socket, i + 4, 1);
533
		if (!pdev) {
534 535 536
			i7core_printk(KERN_ERR, "Couldn't find socket %d "
						"fn %d.%d!!!\n",
						socket, i + 4, 1);
537 538 539 540 541 542 543 544 545 546
			return -ENODEV;
		}
		/* Devices 4-6 function 1 */
		pci_read_config_dword(pdev,
				MC_DOD_CH_DIMM0, &dimm_dod[0]);
		pci_read_config_dword(pdev,
				MC_DOD_CH_DIMM1, &dimm_dod[1]);
		pci_read_config_dword(pdev,
				MC_DOD_CH_DIMM2, &dimm_dod[2]);

547
		(*channels)++;
548 549 550 551 552 553

		for (j = 0; j < 3; j++) {
			if (!DIMM_PRESENT(dimm_dod[j]))
				continue;
			(*csrows)++;
		}
554 555
	}

556
	debugf0("Number of active channels on socket %d: %d\n",
557
		socket, *channels);
558

559 560 561
	return 0;
}

562
static int get_dimm_config(const struct mem_ctl_info *mci)
563 564
{
	struct i7core_pvt *pvt = mci->pvt_info;
565
	struct csrow_info *csr;
566
	struct pci_dev *pdev;
567
	int i, j;
568
	int csrow = 0;
569
	unsigned long last_page = 0;
570
	enum edac_type mode;
571
	enum mem_type mtype;
572

573
	/* Get data from the MC register, function 0 */
574
	pdev = pvt->pci_mcr[0];
575
	if (!pdev)
576 577
		return -ENODEV;

578
	/* Device 3 function 0 reads */
579 580 581 582
	pci_read_config_dword(pdev, MC_CONTROL, &pvt->info.mc_control);
	pci_read_config_dword(pdev, MC_STATUS, &pvt->info.mc_status);
	pci_read_config_dword(pdev, MC_MAX_DOD, &pvt->info.max_dod);
	pci_read_config_dword(pdev, MC_CHANNEL_MAPPER, &pvt->info.ch_map);
583

584
	debugf0("QPI %d control=0x%08x status=0x%08x dod=0x%08x map=0x%08x\n",
585
		pvt->i7core_dev->socket, pvt->info.mc_control, pvt->info.mc_status,
586
		pvt->info.max_dod, pvt->info.ch_map);
587

588
	if (ECC_ENABLED(pvt)) {
589
		debugf0("ECC enabled with x%d SDCC\n", ECCx8(pvt) ? 8 : 4);
590 591 592 593 594
		if (ECCx8(pvt))
			mode = EDAC_S8ECD8ED;
		else
			mode = EDAC_S4ECD4ED;
	} else {
595
		debugf0("ECC disabled\n");
596 597
		mode = EDAC_NONE;
	}
598 599

	/* FIXME: need to handle the error codes */
600 601
	debugf0("DOD Max limits: DIMMS: %d, %d-ranked, %d-banked "
		"x%x x 0x%x\n",
602 603
		numdimms(pvt->info.max_dod),
		numrank(pvt->info.max_dod >> 2),
604
		numbank(pvt->info.max_dod >> 4),
605 606
		numrow(pvt->info.max_dod >> 6),
		numcol(pvt->info.max_dod >> 9));
607

608
	for (i = 0; i < NUM_CHANS; i++) {
609
		u32 data, dimm_dod[3], value[8];
610

611 612 613
		if (!pvt->pci_ch[i][0])
			continue;

614 615 616 617 618 619 620 621 622
		if (!CH_ACTIVE(pvt, i)) {
			debugf0("Channel %i is not active\n", i);
			continue;
		}
		if (CH_DISABLED(pvt, i)) {
			debugf0("Channel %i is disabled\n", i);
			continue;
		}

623
		/* Devices 4-6 function 0 */
624
		pci_read_config_dword(pvt->pci_ch[i][0],
625 626
				MC_CHANNEL_DIMM_INIT_PARAMS, &data);

627
		pvt->channel[i].ranks = (data & QUAD_RANK_PRESENT) ?
628
						4 : 2;
629

630 631
		if (data & REGISTERED_DIMM)
			mtype = MEM_RDDR3;
632
		else
633 634
			mtype = MEM_DDR3;
#if 0
635 636 637 638 639 640
		if (data & THREE_DIMMS_PRESENT)
			pvt->channel[i].dimms = 3;
		else if (data & SINGLE_QUAD_RANK_PRESENT)
			pvt->channel[i].dimms = 1;
		else
			pvt->channel[i].dimms = 2;
641 642 643
#endif

		/* Devices 4-6 function 1 */
644
		pci_read_config_dword(pvt->pci_ch[i][1],
645
				MC_DOD_CH_DIMM0, &dimm_dod[0]);
646
		pci_read_config_dword(pvt->pci_ch[i][1],
647
				MC_DOD_CH_DIMM1, &dimm_dod[1]);
648
		pci_read_config_dword(pvt->pci_ch[i][1],
649
				MC_DOD_CH_DIMM2, &dimm_dod[2]);
650

651
		debugf0("Ch%d phy rd%d, wr%d (0x%08x): "
652
			"%d ranks, %cDIMMs\n",
653 654 655
			i,
			RDLCH(pvt->info.ch_map, i), WRLCH(pvt->info.ch_map, i),
			data,
656
			pvt->channel[i].ranks,
657
			(data & REGISTERED_DIMM) ? 'R' : 'U');
658 659 660

		for (j = 0; j < 3; j++) {
			u32 banks, ranks, rows, cols;
661
			u32 size, npages;
662 663 664 665 666 667 668 669 670

			if (!DIMM_PRESENT(dimm_dod[j]))
				continue;

			banks = numbank(MC_DOD_NUMBANK(dimm_dod[j]));
			ranks = numrank(MC_DOD_NUMRANK(dimm_dod[j]));
			rows = numrow(MC_DOD_NUMROW(dimm_dod[j]));
			cols = numcol(MC_DOD_NUMCOL(dimm_dod[j]));

671 672 673
			/* DDR3 has 8 I/O banks */
			size = (rows * cols * banks * ranks) >> (20 - 3);

674
			pvt->channel[i].dimms++;
675

676 677 678
			debugf0("\tdimm %d %d Mb offset: %x, "
				"bank: %d, rank: %d, row: %#x, col: %#x\n",
				j, size,
679 680 681
				RANKOFFSET(dimm_dod[j]),
				banks, ranks, rows, cols);

682
			npages = MiB_TO_PAGES(size);
683

684
			csr = &mci->csrows[csrow];
685 686 687 688 689
			csr->first_page = last_page + 1;
			last_page += npages;
			csr->last_page = last_page;
			csr->nr_pages = npages;

690
			csr->page_mask = 0;
691
			csr->grain = 8;
692
			csr->csrow_idx = csrow;
693 694 695 696
			csr->nr_channels = 1;

			csr->channels[0].chan_idx = i;
			csr->channels[0].ce_count = 0;
697

698
			pvt->csrow_map[i][j] = csrow;
699

700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716
			switch (banks) {
			case 4:
				csr->dtype = DEV_X4;
				break;
			case 8:
				csr->dtype = DEV_X8;
				break;
			case 16:
				csr->dtype = DEV_X16;
				break;
			default:
				csr->dtype = DEV_UNKNOWN;
			}

			csr->edac_mode = mode;
			csr->mtype = mtype;

717
			csrow++;
718
		}
719

720 721 722 723 724 725 726 727
		pci_read_config_dword(pdev, MC_SAG_CH_0, &value[0]);
		pci_read_config_dword(pdev, MC_SAG_CH_1, &value[1]);
		pci_read_config_dword(pdev, MC_SAG_CH_2, &value[2]);
		pci_read_config_dword(pdev, MC_SAG_CH_3, &value[3]);
		pci_read_config_dword(pdev, MC_SAG_CH_4, &value[4]);
		pci_read_config_dword(pdev, MC_SAG_CH_5, &value[5]);
		pci_read_config_dword(pdev, MC_SAG_CH_6, &value[6]);
		pci_read_config_dword(pdev, MC_SAG_CH_7, &value[7]);
728
		debugf1("\t[%i] DIVBY3\tREMOVED\tOFFSET\n", i);
729
		for (j = 0; j < 8; j++)
730
			debugf1("\t\t%#x\t%#x\t%#x\n",
731 732 733
				(value[j] >> 27) & 0x1,
				(value[j] >> 24) & 0x7,
				(value[j] && ((1 << 24) - 1)));
734 735
	}

736 737 738
	return 0;
}

739 740 741 742 743 744 745 746 747 748 749
/****************************************************************************
			Error insertion routines
 ****************************************************************************/

/* The i7core has independent error injection features per channel.
   However, to have a simpler code, we don't allow enabling error injection
   on more than one channel.
   Also, since a change at an inject parameter will be applied only at enable,
   we're disabling error injection on all write calls to the sysfs nodes that
   controls the error code injection.
 */
750
static int disable_inject(const struct mem_ctl_info *mci)
751 752 753 754 755
{
	struct i7core_pvt *pvt = mci->pvt_info;

	pvt->inject.enable = 0;

756
	if (!pvt->pci_ch[pvt->inject.channel][0])
757 758
		return -ENODEV;

759
	pci_write_config_dword(pvt->pci_ch[pvt->inject.channel][0],
760
				MC_CHANNEL_ERROR_INJECT, 0);
761 762

	return 0;
763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779
}

/*
 * i7core inject inject.section
 *
 *	accept and store error injection inject.section value
 *	bit 0 - refers to the lower 32-byte half cacheline
 *	bit 1 - refers to the upper 32-byte half cacheline
 */
static ssize_t i7core_inject_section_store(struct mem_ctl_info *mci,
					   const char *data, size_t count)
{
	struct i7core_pvt *pvt = mci->pvt_info;
	unsigned long value;
	int rc;

	if (pvt->inject.enable)
780
		disable_inject(mci);
781 782 783

	rc = strict_strtoul(data, 10, &value);
	if ((rc < 0) || (value > 3))
784
		return -EIO;
785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812

	pvt->inject.section = (u32) value;
	return count;
}

static ssize_t i7core_inject_section_show(struct mem_ctl_info *mci,
					      char *data)
{
	struct i7core_pvt *pvt = mci->pvt_info;
	return sprintf(data, "0x%08x\n", pvt->inject.section);
}

/*
 * i7core inject.type
 *
 *	accept and store error injection inject.section value
 *	bit 0 - repeat enable - Enable error repetition
 *	bit 1 - inject ECC error
 *	bit 2 - inject parity error
 */
static ssize_t i7core_inject_type_store(struct mem_ctl_info *mci,
					const char *data, size_t count)
{
	struct i7core_pvt *pvt = mci->pvt_info;
	unsigned long value;
	int rc;

	if (pvt->inject.enable)
813
		disable_inject(mci);
814 815 816

	rc = strict_strtoul(data, 10, &value);
	if ((rc < 0) || (value > 7))
817
		return -EIO;
818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847

	pvt->inject.type = (u32) value;
	return count;
}

static ssize_t i7core_inject_type_show(struct mem_ctl_info *mci,
					      char *data)
{
	struct i7core_pvt *pvt = mci->pvt_info;
	return sprintf(data, "0x%08x\n", pvt->inject.type);
}

/*
 * i7core_inject_inject.eccmask_store
 *
 * The type of error (UE/CE) will depend on the inject.eccmask value:
 *   Any bits set to a 1 will flip the corresponding ECC bit
 *   Correctable errors can be injected by flipping 1 bit or the bits within
 *   a symbol pair (2 consecutive aligned 8-bit pairs - i.e. 7:0 and 15:8 or
 *   23:16 and 31:24). Flipping bits in two symbol pairs will cause an
 *   uncorrectable error to be injected.
 */
static ssize_t i7core_inject_eccmask_store(struct mem_ctl_info *mci,
					const char *data, size_t count)
{
	struct i7core_pvt *pvt = mci->pvt_info;
	unsigned long value;
	int rc;

	if (pvt->inject.enable)
848
		disable_inject(mci);
849 850 851

	rc = strict_strtoul(data, 10, &value);
	if (rc < 0)
852
		return -EIO;
853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875

	pvt->inject.eccmask = (u32) value;
	return count;
}

static ssize_t i7core_inject_eccmask_show(struct mem_ctl_info *mci,
					      char *data)
{
	struct i7core_pvt *pvt = mci->pvt_info;
	return sprintf(data, "0x%08x\n", pvt->inject.eccmask);
}

/*
 * i7core_addrmatch
 *
 * The type of error (UE/CE) will depend on the inject.eccmask value:
 *   Any bits set to a 1 will flip the corresponding ECC bit
 *   Correctable errors can be injected by flipping 1 bit or the bits within
 *   a symbol pair (2 consecutive aligned 8-bit pairs - i.e. 7:0 and 15:8 or
 *   23:16 and 31:24). Flipping bits in two symbol pairs will cause an
 *   uncorrectable error to be injected.
 */

876 877 878 879 880
#define DECLARE_ADDR_MATCH(param, limit)			\
static ssize_t i7core_inject_store_##param(			\
		struct mem_ctl_info *mci,			\
		const char *data, size_t count)			\
{								\
881
	struct i7core_pvt *pvt;					\
882 883 884
	long value;						\
	int rc;							\
								\
885 886 887
	debugf1("%s()\n", __func__);				\
	pvt = mci->pvt_info;					\
								\
888 889 890
	if (pvt->inject.enable)					\
		disable_inject(mci);				\
								\
891
	if (!strcasecmp(data, "any") || !strcasecmp(data, "any\n"))\
892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907
		value = -1;					\
	else {							\
		rc = strict_strtoul(data, 10, &value);		\
		if ((rc < 0) || (value >= limit))		\
			return -EIO;				\
	}							\
								\
	pvt->inject.param = value;				\
								\
	return count;						\
}								\
								\
static ssize_t i7core_inject_show_##param(			\
		struct mem_ctl_info *mci,			\
		char *data)					\
{								\
908 909 910 911
	struct i7core_pvt *pvt;					\
								\
	pvt = mci->pvt_info;					\
	debugf1("%s() pvt=%p\n", __func__, pvt);		\
912 913 914 915
	if (pvt->inject.param < 0)				\
		return sprintf(data, "any\n");			\
	else							\
		return sprintf(data, "%d\n", pvt->inject.param);\
916 917
}

918 919 920 921 922 923 924 925 926
#define ATTR_ADDR_MATCH(param)					\
	{							\
		.attr = {					\
			.name = #param,				\
			.mode = (S_IRUGO | S_IWUSR)		\
		},						\
		.show  = i7core_inject_show_##param,		\
		.store = i7core_inject_store_##param,		\
	}
927

928 929 930 931 932 933
DECLARE_ADDR_MATCH(channel, 3);
DECLARE_ADDR_MATCH(dimm, 3);
DECLARE_ADDR_MATCH(rank, 4);
DECLARE_ADDR_MATCH(bank, 32);
DECLARE_ADDR_MATCH(page, 0x10000);
DECLARE_ADDR_MATCH(col, 0x4000);
934

935
static int write_and_test(struct pci_dev *dev, const int where, const u32 val)
936 937 938 939
{
	u32 read;
	int count;

940 941 942 943
	debugf0("setting pci %02x:%02x.%x reg=%02x value=%08x\n",
		dev->bus->number, PCI_SLOT(dev->devfn), PCI_FUNC(dev->devfn),
		where, val);

944 945
	for (count = 0; count < 10; count++) {
		if (count)
946
			msleep(100);
947 948 949 950 951 952 953
		pci_write_config_dword(dev, where, val);
		pci_read_config_dword(dev, where, &read);

		if (read == val)
			return 0;
	}

954 955 956 957
	i7core_printk(KERN_ERR, "Error during set pci %02x:%02x.%x reg=%02x "
		"write=%08x. Read=%08x\n",
		dev->bus->number, PCI_SLOT(dev->devfn), PCI_FUNC(dev->devfn),
		where, val, read);
958 959 960 961

	return -EINVAL;
}

962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988
/*
 * This routine prepares the Memory Controller for error injection.
 * The error will be injected when some process tries to write to the
 * memory that matches the given criteria.
 * The criteria can be set in terms of a mask where dimm, rank, bank, page
 * and col can be specified.
 * A -1 value for any of the mask items will make the MCU to ignore
 * that matching criteria for error injection.
 *
 * It should be noticed that the error will only happen after a write operation
 * on a memory that matches the condition. if REPEAT_EN is not enabled at
 * inject mask, then it will produce just one error. Otherwise, it will repeat
 * until the injectmask would be cleaned.
 *
 * FIXME: This routine assumes that MAXNUMDIMMS value of MC_MAX_DOD
 *    is reliable enough to check if the MC is using the
 *    three channels. However, this is not clear at the datasheet.
 */
static ssize_t i7core_inject_enable_store(struct mem_ctl_info *mci,
				       const char *data, size_t count)
{
	struct i7core_pvt *pvt = mci->pvt_info;
	u32 injectmask;
	u64 mask = 0;
	int  rc;
	long enable;

989
	if (!pvt->pci_ch[pvt->inject.channel][0])
990 991
		return 0;

992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004
	rc = strict_strtoul(data, 10, &enable);
	if ((rc < 0))
		return 0;

	if (enable) {
		pvt->inject.enable = 1;
	} else {
		disable_inject(mci);
		return count;
	}

	/* Sets pvt->inject.dimm mask */
	if (pvt->inject.dimm < 0)
1005
		mask |= 1LL << 41;
1006
	else {
1007
		if (pvt->channel[pvt->inject.channel].dimms > 2)
1008
			mask |= (pvt->inject.dimm & 0x3LL) << 35;
1009
		else
1010
			mask |= (pvt->inject.dimm & 0x1LL) << 36;
1011 1012 1013 1014
	}

	/* Sets pvt->inject.rank mask */
	if (pvt->inject.rank < 0)
1015
		mask |= 1LL << 40;
1016
	else {
1017
		if (pvt->channel[pvt->inject.channel].dimms > 2)
1018
			mask |= (pvt->inject.rank & 0x1LL) << 34;
1019
		else
1020
			mask |= (pvt->inject.rank & 0x3LL) << 34;
1021 1022 1023 1024
	}

	/* Sets pvt->inject.bank mask */
	if (pvt->inject.bank < 0)
1025
		mask |= 1LL << 39;
1026
	else
1027
		mask |= (pvt->inject.bank & 0x15LL) << 30;
1028 1029 1030

	/* Sets pvt->inject.page mask */
	if (pvt->inject.page < 0)
1031
		mask |= 1LL << 38;
1032
	else
1033
		mask |= (pvt->inject.page & 0xffff) << 14;
1034 1035 1036

	/* Sets pvt->inject.column mask */
	if (pvt->inject.col < 0)
1037
		mask |= 1LL << 37;
1038
	else
1039
		mask |= (pvt->inject.col & 0x3fff);
1040

1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052
	/*
	 * bit    0: REPEAT_EN
	 * bits 1-2: MASK_HALF_CACHELINE
	 * bit    3: INJECT_ECC
	 * bit    4: INJECT_ADDR_PARITY
	 */

	injectmask = (pvt->inject.type & 1) |
		     (pvt->inject.section & 0x3) << 1 |
		     (pvt->inject.type & 0x6) << (3 - 1);

	/* Unlock writes to registers - this register is write only */
1053
	pci_write_config_dword(pvt->pci_noncore,
1054
			       MC_CFG_CONTROL, 0x2);
1055

1056
	write_and_test(pvt->pci_ch[pvt->inject.channel][0],
1057
			       MC_CHANNEL_ADDR_MATCH, mask);
1058
	write_and_test(pvt->pci_ch[pvt->inject.channel][0],
1059 1060
			       MC_CHANNEL_ADDR_MATCH + 4, mask >> 32L);

1061
	write_and_test(pvt->pci_ch[pvt->inject.channel][0],
1062 1063
			       MC_CHANNEL_ERROR_MASK, pvt->inject.eccmask);

1064
	write_and_test(pvt->pci_ch[pvt->inject.channel][0],
1065
			       MC_CHANNEL_ERROR_INJECT, injectmask);
1066

1067
	/*
1068 1069 1070
	 * This is something undocumented, based on my tests
	 * Without writing 8 to this register, errors aren't injected. Not sure
	 * why.
1071
	 */
1072
	pci_write_config_dword(pvt->pci_noncore,
1073
			       MC_CFG_CONTROL, 8);
1074

1075 1076
	debugf0("Error inject addr match 0x%016llx, ecc 0x%08x,"
		" inject 0x%08x\n",
1077 1078
		mask, pvt->inject.eccmask, injectmask);

1079

1080 1081 1082 1083 1084 1085 1086
	return count;
}

static ssize_t i7core_inject_enable_show(struct mem_ctl_info *mci,
					char *data)
{
	struct i7core_pvt *pvt = mci->pvt_info;
1087 1088
	u32 injectmask;

1089 1090 1091
	if (!pvt->pci_ch[pvt->inject.channel][0])
		return 0;

1092
	pci_read_config_dword(pvt->pci_ch[pvt->inject.channel][0],
1093
			       MC_CHANNEL_ERROR_INJECT, &injectmask);
1094 1095 1096 1097 1098 1099

	debugf0("Inject error read: 0x%018x\n", injectmask);

	if (injectmask & 0x0c)
		pvt->inject.enable = 1;

1100 1101 1102
	return sprintf(data, "%d\n", pvt->inject.enable);
}

1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115
#define DECLARE_COUNTER(param)					\
static ssize_t i7core_show_counter_##param(			\
		struct mem_ctl_info *mci,			\
		char *data)					\
{								\
	struct i7core_pvt *pvt = mci->pvt_info;			\
								\
	debugf1("%s() \n", __func__);				\
	if (!pvt->ce_count_available || (pvt->is_registered))	\
		return sprintf(data, "data unavailable\n");	\
	return sprintf(data, "%lu\n",				\
			pvt->udimm_ce_count[param]);		\
}
1116

1117 1118 1119 1120 1121 1122 1123
#define ATTR_COUNTER(param)					\
	{							\
		.attr = {					\
			.name = __stringify(udimm##param),	\
			.mode = (S_IRUGO | S_IWUSR)		\
		},						\
		.show  = i7core_show_counter_##param		\
1124
	}
1125

1126 1127 1128
DECLARE_COUNTER(0);
DECLARE_COUNTER(1);
DECLARE_COUNTER(2);
1129

1130 1131 1132
/*
 * Sysfs struct
 */
1133

1134
static const struct mcidev_sysfs_attribute i7core_addrmatch_attrs[] = {
1135 1136 1137 1138 1139 1140
	ATTR_ADDR_MATCH(channel),
	ATTR_ADDR_MATCH(dimm),
	ATTR_ADDR_MATCH(rank),
	ATTR_ADDR_MATCH(bank),
	ATTR_ADDR_MATCH(page),
	ATTR_ADDR_MATCH(col),
1141
	{ } /* End of list */
1142 1143
};

1144
static const struct mcidev_sysfs_group i7core_inject_addrmatch = {
1145 1146 1147 1148
	.name  = "inject_addrmatch",
	.mcidev_attr = i7core_addrmatch_attrs,
};

1149
static const struct mcidev_sysfs_attribute i7core_udimm_counters_attrs[] = {
1150 1151 1152
	ATTR_COUNTER(0),
	ATTR_COUNTER(1),
	ATTR_COUNTER(2),
1153
	{ .attr = { .name = NULL } }
1154 1155
};

1156
static const struct mcidev_sysfs_group i7core_udimm_counters = {
1157 1158 1159 1160
	.name  = "all_channel_counts",
	.mcidev_attr = i7core_udimm_counters_attrs,
};

1161
static const struct mcidev_sysfs_attribute i7core_sysfs_rdimm_attrs[] = {
1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183
	{
		.attr = {
			.name = "inject_section",
			.mode = (S_IRUGO | S_IWUSR)
		},
		.show  = i7core_inject_section_show,
		.store = i7core_inject_section_store,
	}, {
		.attr = {
			.name = "inject_type",
			.mode = (S_IRUGO | S_IWUSR)
		},
		.show  = i7core_inject_type_show,
		.store = i7core_inject_type_store,
	}, {
		.attr = {
			.name = "inject_eccmask",
			.mode = (S_IRUGO | S_IWUSR)
		},
		.show  = i7core_inject_eccmask_show,
		.store = i7core_inject_eccmask_store,
	}, {
1184
		.grp = &i7core_inject_addrmatch,
1185 1186 1187 1188 1189 1190 1191 1192
	}, {
		.attr = {
			.name = "inject_enable",
			.mode = (S_IRUGO | S_IWUSR)
		},
		.show  = i7core_inject_enable_show,
		.store = i7core_inject_enable_store,
	},
1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230
	{ }	/* End of list */
};

static const struct mcidev_sysfs_attribute i7core_sysfs_udimm_attrs[] = {
	{
		.attr = {
			.name = "inject_section",
			.mode = (S_IRUGO | S_IWUSR)
		},
		.show  = i7core_inject_section_show,
		.store = i7core_inject_section_store,
	}, {
		.attr = {
			.name = "inject_type",
			.mode = (S_IRUGO | S_IWUSR)
		},
		.show  = i7core_inject_type_show,
		.store = i7core_inject_type_store,
	}, {
		.attr = {
			.name = "inject_eccmask",
			.mode = (S_IRUGO | S_IWUSR)
		},
		.show  = i7core_inject_eccmask_show,
		.store = i7core_inject_eccmask_store,
	}, {
		.grp = &i7core_inject_addrmatch,
	}, {
		.attr = {
			.name = "inject_enable",
			.mode = (S_IRUGO | S_IWUSR)
		},
		.show  = i7core_inject_enable_show,
		.store = i7core_inject_enable_store,
	}, {
		.grp = &i7core_udimm_counters,
	},
	{ }	/* End of list */
1231 1232
};

1233 1234 1235 1236 1237
/****************************************************************************
	Device initialization routines: put/get, init/exit
 ****************************************************************************/

/*
1238
 *	i7core_put_all_devices	'put' all the devices that we have
1239 1240
 *				reserved via 'get'
 */
1241
static void i7core_put_devices(struct i7core_dev *i7core_dev)
1242
{
1243
	int i;
1244

1245
	debugf0(__FILE__ ": %s()\n", __func__);
1246
	for (i = 0; i < i7core_dev->n_devs; i++) {
1247 1248 1249 1250 1251 1252 1253 1254
		struct pci_dev *pdev = i7core_dev->pdev[i];
		if (!pdev)
			continue;
		debugf0("Removing dev %02x:%02x.%d\n",
			pdev->bus->number,
			PCI_SLOT(pdev->devfn), PCI_FUNC(pdev->devfn));
		pci_dev_put(pdev);
	}
1255
}
1256

1257 1258
static void i7core_put_all_devices(void)
{
1259
	struct i7core_dev *i7core_dev, *tmp;
1260

1261
	list_for_each_entry_safe(i7core_dev, tmp, &i7core_edac_list, list) {
1262
		i7core_put_devices(i7core_dev);
1263
		free_i7core_dev(i7core_dev);
1264
	}
1265 1266
}

1267
static void __init i7core_xeon_pci_fixup(const struct pci_id_table *table)
1268 1269 1270
{
	struct pci_dev *pdev = NULL;
	int i;
1271

1272 1273 1274 1275 1276
	/*
	 * On Xeon 55xx, the Intel Quckpath Arch Generic Non-core pci buses
	 * aren't announced by acpi. So, we need to use a legacy scan probing
	 * to detect them
	 */
1277 1278 1279 1280 1281 1282
	while (table && table->descr) {
		pdev = pci_get_device(PCI_VENDOR_ID_INTEL, table->descr[0].dev_id, NULL);
		if (unlikely(!pdev)) {
			for (i = 0; i < MAX_SOCKET_BUSES; i++)
				pcibios_scan_specific_bus(255-i);
		}
1283
		pci_dev_put(pdev);
1284
		table++;
1285 1286 1287
	}
}

1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304
static unsigned i7core_pci_lastbus(void)
{
	int last_bus = 0, bus;
	struct pci_bus *b = NULL;

	while ((b = pci_find_next_bus(b)) != NULL) {
		bus = b->number;
		debugf0("Found bus %d\n", bus);
		if (bus > last_bus)
			last_bus = bus;
	}

	debugf0("Last bus %d\n", last_bus);

	return last_bus;
}

1305
/*
1306
 *	i7core_get_all_devices	Find and perform 'get' operation on the MCH's
1307 1308 1309 1310
 *			device/functions we want to reference for this driver
 *
 *			Need to 'get' device 16 func 1 and func 2
 */
1311 1312 1313 1314
static int i7core_get_onedevice(struct pci_dev **prev,
				const struct pci_id_table *table,
				const unsigned devno,
				const unsigned last_bus)
1315
{
1316
	struct i7core_dev *i7core_dev;
1317
	const struct pci_id_descr *dev_descr = &table->descr[devno];
1318

1319
	struct pci_dev *pdev = NULL;
1320 1321
	u8 bus = 0;
	u8 socket = 0;
1322

1323
	pdev = pci_get_device(PCI_VENDOR_ID_INTEL,
1324
			      dev_descr->dev_id, *prev);
1325 1326 1327 1328 1329

	if (!pdev) {
		if (*prev) {
			*prev = pdev;
			return 0;
1330 1331
		}

1332
		if (dev_descr->optional)
1333
			return 0;
1334

1335 1336 1337
		if (devno == 0)
			return -ENODEV;

1338
		i7core_printk(KERN_INFO,
1339
			"Device not found: dev %02x.%d PCI ID %04x:%04x\n",
1340 1341
			dev_descr->dev, dev_descr->func,
			PCI_VENDOR_ID_INTEL, dev_descr->dev_id);
1342

1343 1344 1345 1346
		/* End of list, leave */
		return -ENODEV;
	}
	bus = pdev->bus->number;
1347

1348
	socket = last_bus - bus;
1349

1350 1351
	i7core_dev = get_i7core_dev(socket);
	if (!i7core_dev) {
1352
		i7core_dev = alloc_i7core_dev(socket, table);
1353 1354
		if (!i7core_dev) {
			pci_dev_put(pdev);
1355
			return -ENOMEM;
1356
		}
1357
	}
1358

1359
	if (i7core_dev->pdev[devno]) {
1360 1361 1362
		i7core_printk(KERN_ERR,
			"Duplicated device for "
			"dev %02x:%02x.%d PCI ID %04x:%04x\n",
1363 1364
			bus, dev_descr->dev, dev_descr->func,
			PCI_VENDOR_ID_INTEL, dev_descr->dev_id);
1365 1366 1367
		pci_dev_put(pdev);
		return -ENODEV;
	}
1368

1369
	i7core_dev->pdev[devno] = pdev;
1370 1371

	/* Sanity check */
1372 1373
	if (unlikely(PCI_SLOT(pdev->devfn) != dev_descr->dev ||
			PCI_FUNC(pdev->devfn) != dev_descr->func)) {
1374 1375 1376
		i7core_printk(KERN_ERR,
			"Device PCI ID %04x:%04x "
			"has dev %02x:%02x.%d instead of dev %02x:%02x.%d\n",
1377
			PCI_VENDOR_ID_INTEL, dev_descr->dev_id,
1378
			bus, PCI_SLOT(pdev->devfn), PCI_FUNC(pdev->devfn),
1379
			bus, dev_descr->dev, dev_descr->func);
1380 1381
		return -ENODEV;
	}
1382

1383 1384 1385 1386 1387
	/* Be sure that the device is enabled */
	if (unlikely(pci_enable_device(pdev) < 0)) {
		i7core_printk(KERN_ERR,
			"Couldn't enable "
			"dev %02x:%02x.%d PCI ID %04x:%04x\n",
1388 1389
			bus, dev_descr->dev, dev_descr->func,
			PCI_VENDOR_ID_INTEL, dev_descr->dev_id);
1390 1391
		return -ENODEV;
	}
1392

1393
	debugf0("Detected socket %d dev %02x:%02x.%d PCI ID %04x:%04x\n",
1394 1395 1396
		socket, bus, dev_descr->dev,
		dev_descr->func,
		PCI_VENDOR_ID_INTEL, dev_descr->dev_id);
1397

1398 1399 1400 1401 1402 1403 1404
	/*
	 * As stated on drivers/pci/search.c, the reference count for
	 * @from is always decremented if it is not %NULL. So, as we need
	 * to get all devices up to null, we need to do a get for the device
	 */
	pci_dev_get(pdev);

1405
	*prev = pdev;
1406

1407 1408
	return 0;
}
1409

1410
static int i7core_get_all_devices(void)
1411
{
1412
	int i, j, rc, last_bus;
1413
	struct pci_dev *pdev = NULL;
1414
	const struct pci_id_table *table;
1415

1416 1417
	last_bus = i7core_pci_lastbus();

1418 1419
	for (j = 0; j < ARRAY_SIZE(pci_dev_table); j++) {
		table = &pci_dev_table[j];
1420 1421 1422
		for (i = 0; i < table->n_devs; i++) {
			pdev = NULL;
			do {
1423
				rc = i7core_get_onedevice(&pdev, table, i,
1424
							  last_bus);
1425 1426 1427 1428 1429 1430 1431 1432 1433 1434
				if (rc < 0) {
					if (i == 0) {
						i = table->n_devs;
						break;
					}
					i7core_put_all_devices();
					return -ENODEV;
				}
			} while (pdev);
		}
1435
	}
1436

1437 1438 1439
	return 0;
}

1440 1441
static int mci_bind_devs(struct mem_ctl_info *mci,
			 struct i7core_dev *i7core_dev)
1442 1443 1444
{
	struct i7core_pvt *pvt = mci->pvt_info;
	struct pci_dev *pdev;
1445
	int i, func, slot;
1446

1447
	pvt->is_registered = 0;
1448
	for (i = 0; i < i7core_dev->n_devs; i++) {
1449 1450
		pdev = i7core_dev->pdev[i];
		if (!pdev)
1451 1452
			continue;

1453 1454 1455 1456 1457 1458 1459 1460
		func = PCI_FUNC(pdev->devfn);
		slot = PCI_SLOT(pdev->devfn);
		if (slot == 3) {
			if (unlikely(func > MAX_MCR_FUNC))
				goto error;
			pvt->pci_mcr[func] = pdev;
		} else if (likely(slot >= 4 && slot < 4 + NUM_CHANS)) {
			if (unlikely(func > MAX_CHAN_FUNC))
1461
				goto error;
1462 1463 1464 1465 1466
			pvt->pci_ch[slot - 4][func] = pdev;
		} else if (!slot && !func)
			pvt->pci_noncore = pdev;
		else
			goto error;
1467

1468 1469 1470
		debugf0("Associated fn %d.%d, dev = %p, socket %d\n",
			PCI_SLOT(pdev->devfn), PCI_FUNC(pdev->devfn),
			pdev, i7core_dev->socket);
1471

1472 1473 1474
		if (PCI_SLOT(pdev->devfn) == 3 &&
			PCI_FUNC(pdev->devfn) == 2)
			pvt->is_registered = 1;
1475
	}
1476

1477
	return 0;
1478 1479 1480 1481 1482 1483

error:
	i7core_printk(KERN_ERR, "Device %d, function %d "
		      "is out of the expected range\n",
		      slot, func);
	return -EINVAL;
1484 1485
}

1486 1487 1488
/****************************************************************************
			Error check routines
 ****************************************************************************/
1489
static void i7core_rdimm_update_csrow(struct mem_ctl_info *mci,
1490 1491 1492
				      const int chan,
				      const int dimm,
				      const int add)
1493 1494 1495
{
	char *msg;
	struct i7core_pvt *pvt = mci->pvt_info;
1496
	int row = pvt->csrow_map[chan][dimm], i;
1497 1498 1499

	for (i = 0; i < add; i++) {
		msg = kasprintf(GFP_KERNEL, "Corrected error "
1500 1501
				"(Socket=%d channel=%d dimm=%d)",
				pvt->i7core_dev->socket, chan, dimm);
1502 1503 1504 1505 1506 1507 1508

		edac_mc_handle_fbd_ce(mci, row, 0, msg);
		kfree (msg);
	}
}

static void i7core_rdimm_update_ce_count(struct mem_ctl_info *mci,
1509 1510 1511 1512
					 const int chan,
					 const int new0,
					 const int new1,
					 const int new2)
1513 1514 1515 1516
{
	struct i7core_pvt *pvt = mci->pvt_info;
	int add0 = 0, add1 = 0, add2 = 0;
	/* Updates CE counters if it is not the first time here */
1517
	if (pvt->ce_count_available) {
1518 1519
		/* Updates CE counters */

1520 1521 1522
		add2 = new2 - pvt->rdimm_last_ce_count[chan][2];
		add1 = new1 - pvt->rdimm_last_ce_count[chan][1];
		add0 = new0 - pvt->rdimm_last_ce_count[chan][0];
1523 1524 1525

		if (add2 < 0)
			add2 += 0x7fff;
1526
		pvt->rdimm_ce_count[chan][2] += add2;
1527 1528 1529

		if (add1 < 0)
			add1 += 0x7fff;
1530
		pvt->rdimm_ce_count[chan][1] += add1;
1531 1532 1533

		if (add0 < 0)
			add0 += 0x7fff;
1534
		pvt->rdimm_ce_count[chan][0] += add0;
1535
	} else
1536
		pvt->ce_count_available = 1;
1537 1538

	/* Store the new values */
1539 1540 1541
	pvt->rdimm_last_ce_count[chan][2] = new2;
	pvt->rdimm_last_ce_count[chan][1] = new1;
	pvt->rdimm_last_ce_count[chan][0] = new0;
1542 1543 1544

	/*updated the edac core */
	if (add0 != 0)
1545
		i7core_rdimm_update_csrow(mci, chan, 0, add0);
1546
	if (add1 != 0)
1547
		i7core_rdimm_update_csrow(mci, chan, 1, add1);
1548
	if (add2 != 0)
1549
		i7core_rdimm_update_csrow(mci, chan, 2, add2);
1550 1551 1552

}

1553
static void i7core_rdimm_check_mc_ecc_err(struct mem_ctl_info *mci)
1554 1555 1556 1557 1558 1559
{
	struct i7core_pvt *pvt = mci->pvt_info;
	u32 rcv[3][2];
	int i, new0, new1, new2;

	/*Read DEV 3: FUN 2:  MC_COR_ECC_CNT regs directly*/
1560
	pci_read_config_dword(pvt->pci_mcr[2], MC_COR_ECC_CNT_0,
1561
								&rcv[0][0]);
1562
	pci_read_config_dword(pvt->pci_mcr[2], MC_COR_ECC_CNT_1,
1563
								&rcv[0][1]);
1564
	pci_read_config_dword(pvt->pci_mcr[2], MC_COR_ECC_CNT_2,
1565
								&rcv[1][0]);
1566
	pci_read_config_dword(pvt->pci_mcr[2], MC_COR_ECC_CNT_3,
1567
								&rcv[1][1]);
1568
	pci_read_config_dword(pvt->pci_mcr[2], MC_COR_ECC_CNT_4,
1569
								&rcv[2][0]);
1570
	pci_read_config_dword(pvt->pci_mcr[2], MC_COR_ECC_CNT_5,
1571 1572 1573 1574 1575
								&rcv[2][1]);
	for (i = 0 ; i < 3; i++) {
		debugf3("MC_COR_ECC_CNT%d = 0x%x; MC_COR_ECC_CNT%d = 0x%x\n",
			(i * 2), rcv[i][0], (i * 2) + 1, rcv[i][1]);
		/*if the channel has 3 dimms*/
1576
		if (pvt->channel[i].dimms > 2) {
1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587
			new0 = DIMM_BOT_COR_ERR(rcv[i][0]);
			new1 = DIMM_TOP_COR_ERR(rcv[i][0]);
			new2 = DIMM_BOT_COR_ERR(rcv[i][1]);
		} else {
			new0 = DIMM_TOP_COR_ERR(rcv[i][0]) +
					DIMM_BOT_COR_ERR(rcv[i][0]);
			new1 = DIMM_TOP_COR_ERR(rcv[i][1]) +
					DIMM_BOT_COR_ERR(rcv[i][1]);
			new2 = 0;
		}

1588
		i7core_rdimm_update_ce_count(mci, i, new0, new1, new2);
1589 1590
	}
}
1591 1592 1593 1594 1595 1596 1597

/* This function is based on the device 3 function 4 registers as described on:
 * Intel Xeon Processor 5500 Series Datasheet Volume 2
 *	http://www.intel.com/Assets/PDF/datasheet/321322.pdf
 * also available at:
 * 	http://www.arrownac.com/manufacturers/intel/s/nehalem/5500-datasheet-v2.pdf
 */
1598
static void i7core_udimm_check_mc_ecc_err(struct mem_ctl_info *mci)
1599 1600 1601 1602 1603
{
	struct i7core_pvt *pvt = mci->pvt_info;
	u32 rcv1, rcv0;
	int new0, new1, new2;

1604
	if (!pvt->pci_mcr[4]) {
1605
		debugf0("%s MCR registers not found\n", __func__);
1606 1607 1608
		return;
	}

1609
	/* Corrected test errors */
1610 1611
	pci_read_config_dword(pvt->pci_mcr[4], MC_TEST_ERR_RCV1, &rcv1);
	pci_read_config_dword(pvt->pci_mcr[4], MC_TEST_ERR_RCV0, &rcv0);
1612 1613 1614 1615 1616 1617 1618

	/* Store the new values */
	new2 = DIMM2_COR_ERR(rcv1);
	new1 = DIMM1_COR_ERR(rcv0);
	new0 = DIMM0_COR_ERR(rcv0);

	/* Updates CE counters if it is not the first time here */
1619
	if (pvt->ce_count_available) {
1620 1621 1622
		/* Updates CE counters */
		int add0, add1, add2;

1623 1624 1625
		add2 = new2 - pvt->udimm_last_ce_count[2];
		add1 = new1 - pvt->udimm_last_ce_count[1];
		add0 = new0 - pvt->udimm_last_ce_count[0];
1626 1627 1628

		if (add2 < 0)
			add2 += 0x7fff;
1629
		pvt->udimm_ce_count[2] += add2;
1630 1631 1632

		if (add1 < 0)
			add1 += 0x7fff;
1633
		pvt->udimm_ce_count[1] += add1;
1634 1635 1636

		if (add0 < 0)
			add0 += 0x7fff;
1637
		pvt->udimm_ce_count[0] += add0;
1638 1639 1640 1641 1642

		if (add0 | add1 | add2)
			i7core_printk(KERN_ERR, "New Corrected error(s): "
				      "dimm0: +%d, dimm1: +%d, dimm2 +%d\n",
				      add0, add1, add2);
1643
	} else
1644
		pvt->ce_count_available = 1;
1645 1646

	/* Store the new values */
1647 1648 1649
	pvt->udimm_last_ce_count[2] = new2;
	pvt->udimm_last_ce_count[1] = new1;
	pvt->udimm_last_ce_count[0] = new0;
1650 1651
}

1652 1653 1654
/*
 * According with tables E-11 and E-12 of chapter E.3.3 of Intel 64 and IA-32
 * Architectures Software Developer’s Manual Volume 3B.
1655 1656 1657
 * Nehalem are defined as family 0x06, model 0x1a
 *
 * The MCA registers used here are the following ones:
1658
 *     struct mce field	MCA Register
1659 1660 1661
 *     m->status	MSR_IA32_MC8_STATUS
 *     m->addr		MSR_IA32_MC8_ADDR
 *     m->misc		MSR_IA32_MC8_MISC
1662 1663 1664
 * In the case of Nehalem, the error information is masked at .status and .misc
 * fields
 */
1665
static void i7core_mce_output_error(struct mem_ctl_info *mci,
1666
				    const struct mce *m)
1667
{
1668
	struct i7core_pvt *pvt = mci->pvt_info;
1669
	char *type, *optype, *err, *msg;
1670
	unsigned long error = m->status & 0x1ff0000l;
1671
	u32 optypenum = (m->status >> 4) & 0x07;
1672 1673 1674 1675 1676
	u32 core_err_cnt = (m->status >> 38) && 0x7fff;
	u32 dimm = (m->misc >> 16) & 0x3;
	u32 channel = (m->misc >> 18) & 0x3;
	u32 syndrome = m->misc >> 32;
	u32 errnum = find_first_bit(&error, 32);
1677
	int csrow;
1678

1679 1680 1681 1682 1683
	if (m->mcgstatus & 1)
		type = "FATAL";
	else
		type = "NON_FATAL";

1684
	switch (optypenum) {
1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702
	case 0:
		optype = "generic undef request";
		break;
	case 1:
		optype = "read error";
		break;
	case 2:
		optype = "write error";
		break;
	case 3:
		optype = "addr/cmd error";
		break;
	case 4:
		optype = "scrubbing error";
		break;
	default:
		optype = "reserved";
		break;
1703 1704
	}

1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734
	switch (errnum) {
	case 16:
		err = "read ECC error";
		break;
	case 17:
		err = "RAS ECC error";
		break;
	case 18:
		err = "write parity error";
		break;
	case 19:
		err = "redundacy loss";
		break;
	case 20:
		err = "reserved";
		break;
	case 21:
		err = "memory range error";
		break;
	case 22:
		err = "RTID out of range";
		break;
	case 23:
		err = "address parity error";
		break;
	case 24:
		err = "byte enable parity error";
		break;
	default:
		err = "unknown";
1735 1736
	}

1737
	/* FIXME: should convert addr into bank and rank information */
1738
	msg = kasprintf(GFP_ATOMIC,
1739
		"%s (addr = 0x%08llx, cpu=%d, Dimm=%d, Channel=%d, "
1740
		"syndrome=0x%08x, count=%d, Err=%08llx:%08llx (%s: %s))\n",
1741
		type, (long long) m->addr, m->cpu, dimm, channel,
1742 1743
		syndrome, core_err_cnt, (long long)m->status,
		(long long)m->misc, optype, err);
1744 1745

	debugf0("%s", msg);
1746

1747
	csrow = pvt->csrow_map[channel][dimm];
1748

1749
	/* Call the helper to output message */
1750 1751 1752
	if (m->mcgstatus & 1)
		edac_mc_handle_fbd_ue(mci, csrow, 0,
				0 /* FIXME: should be channel here */, msg);
1753
	else if (!pvt->is_registered)
1754 1755
		edac_mc_handle_fbd_ce(mci, csrow,
				0 /* FIXME: should be channel here */, msg);
1756 1757

	kfree(msg);
1758 1759
}

1760 1761 1762 1763 1764 1765
/*
 *	i7core_check_error	Retrieve and process errors reported by the
 *				hardware. Called by the Core module.
 */
static void i7core_check_error(struct mem_ctl_info *mci)
{
1766 1767 1768
	struct i7core_pvt *pvt = mci->pvt_info;
	int i;
	unsigned count = 0;
1769
	struct mce *m;
1770

1771 1772 1773 1774 1775 1776
	/*
	 * MCE first step: Copy all mce errors into a temporary buffer
	 * We use a double buffering here, to reduce the risk of
	 * loosing an error.
	 */
	smp_rmb();
1777 1778
	count = (pvt->mce_out + MCE_LOG_LEN - pvt->mce_in)
		% MCE_LOG_LEN;
1779
	if (!count)
1780
		goto check_ce_error;
1781

1782
	m = pvt->mce_outentry;
1783 1784
	if (pvt->mce_in + count > MCE_LOG_LEN) {
		unsigned l = MCE_LOG_LEN - pvt->mce_in;
1785

1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802
		memcpy(m, &pvt->mce_entry[pvt->mce_in], sizeof(*m) * l);
		smp_wmb();
		pvt->mce_in = 0;
		count -= l;
		m += l;
	}
	memcpy(m, &pvt->mce_entry[pvt->mce_in], sizeof(*m) * count);
	smp_wmb();
	pvt->mce_in += count;

	smp_rmb();
	if (pvt->mce_overrun) {
		i7core_printk(KERN_ERR, "Lost %d memory errors\n",
			      pvt->mce_overrun);
		smp_wmb();
		pvt->mce_overrun = 0;
	}
1803

1804 1805 1806
	/*
	 * MCE second step: parse errors and display
	 */
1807
	for (i = 0; i < count; i++)
1808
		i7core_mce_output_error(mci, &pvt->mce_outentry[i]);
1809

1810 1811 1812
	/*
	 * Now, let's increment CE error counts
	 */
1813
check_ce_error:
1814 1815 1816 1817
	if (!pvt->is_registered)
		i7core_udimm_check_mc_ecc_err(mci);
	else
		i7core_rdimm_check_mc_ecc_err(mci);
1818 1819
}

1820 1821 1822 1823 1824
/*
 * i7core_mce_check_error	Replicates mcelog routine to get errors
 *				This routine simply queues mcelog errors, and
 *				return. The error itself should be handled later
 *				by i7core_check_error.
1825 1826
 * WARNING: As this routine should be called at NMI time, extra care should
 * be taken to avoid deadlocks, and to be as fast as possible.
1827 1828 1829
 */
static int i7core_mce_check_error(void *priv, struct mce *mce)
{
1830 1831
	struct mem_ctl_info *mci = priv;
	struct i7core_pvt *pvt = mci->pvt_info;
1832

1833 1834 1835 1836 1837 1838 1839
	/*
	 * Just let mcelog handle it if the error is
	 * outside the memory controller
	 */
	if (((mce->status & 0xffff) >> 7) != 1)
		return 0;

1840 1841 1842 1843
	/* Bank 8 registers are the only ones that we know how to handle */
	if (mce->bank != 8)
		return 0;

R
Randy Dunlap 已提交
1844
#ifdef CONFIG_SMP
1845
	/* Only handle if it is the right mc controller */
1846
	if (cpu_data(mce->cpu).phys_proc_id != pvt->i7core_dev->socket)
1847
		return 0;
R
Randy Dunlap 已提交
1848
#endif
1849

1850
	smp_rmb();
1851
	if ((pvt->mce_out + 1) % MCE_LOG_LEN == pvt->mce_in) {
1852 1853 1854
		smp_wmb();
		pvt->mce_overrun++;
		return 0;
1855
	}
1856 1857 1858

	/* Copy memory error at the ringbuffer */
	memcpy(&pvt->mce_entry[pvt->mce_out], mce, sizeof(*mce));
1859
	smp_wmb();
1860
	pvt->mce_out = (pvt->mce_out + 1) % MCE_LOG_LEN;
1861

1862 1863 1864 1865
	/* Handle fatal errors immediately */
	if (mce->mcgstatus & 1)
		i7core_check_error(mci);

1866
	/* Advice mcelog that the error were handled */
1867
	return 1;
1868 1869
}

1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889
static void i7core_pci_ctl_create(struct i7core_pvt *pvt)
{
	pvt->i7core_pci = edac_pci_create_generic_ctl(
						&pvt->i7core_dev->pdev[0]->dev,
						EDAC_MOD_STR);
	if (unlikely(!pvt->i7core_pci))
		pr_warn("Unable to setup PCI error report via EDAC\n");
}

static void i7core_pci_ctl_release(struct i7core_pvt *pvt)
{
	if (likely(pvt->i7core_pci))
		edac_pci_release_generic_ctl(pvt->i7core_pci);
	else
		i7core_printk(KERN_ERR,
				"Couldn't find mem_ctl_info for socket %d\n",
				pvt->i7core_dev->socket);
	pvt->i7core_pci = NULL;
}

1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922
static void i7core_unregister_mci(struct i7core_dev *i7core_dev)
{
	struct mem_ctl_info *mci = i7core_dev->mci;
	struct i7core_pvt *pvt;

	if (unlikely(!mci || !mci->pvt_info)) {
		debugf0("MC: " __FILE__ ": %s(): dev = %p\n",
			__func__, &i7core_dev->pdev[0]->dev);

		i7core_printk(KERN_ERR, "Couldn't find mci handler\n");
		return;
	}

	pvt = mci->pvt_info;

	debugf0("MC: " __FILE__ ": %s(): mci = %p, dev = %p\n",
		__func__, mci, &i7core_dev->pdev[0]->dev);

	/* Disable MCE NMI handler */
	edac_mce_unregister(&pvt->edac_mce);

	/* Disable EDAC polling */
	i7core_pci_ctl_release(pvt);

	/* Remove MC sysfs nodes */
	edac_mc_del_mc(mci->dev);

	debugf1("%s: free mci struct\n", mci->ctl_name);
	kfree(mci->ctl_name);
	edac_mc_free(mci);
	i7core_dev->mci = NULL;
}

1923
static int i7core_register_mci(struct i7core_dev *i7core_dev)
1924 1925 1926
{
	struct mem_ctl_info *mci;
	struct i7core_pvt *pvt;
1927 1928 1929 1930 1931 1932
	int rc, channels, csrows;

	/* Check the number of active and not disabled channels */
	rc = i7core_get_active_channels(i7core_dev->socket, &channels, &csrows);
	if (unlikely(rc < 0))
		return rc;
1933 1934

	/* allocate a new MC control structure */
1935
	mci = edac_mc_alloc(sizeof(*pvt), csrows, channels, i7core_dev->socket);
1936 1937
	if (unlikely(!mci))
		return -ENOMEM;
1938

1939 1940
	debugf0("MC: " __FILE__ ": %s(): mci = %p, dev = %p\n",
		__func__, mci, &i7core_dev->pdev[0]->dev);
1941 1942

	pvt = mci->pvt_info;
1943
	memset(pvt, 0, sizeof(*pvt));
1944

1945 1946 1947 1948
	/* Associates i7core_dev and mci for future usage */
	pvt->i7core_dev = i7core_dev;
	i7core_dev->mci = mci;

1949 1950 1951 1952 1953 1954
	/*
	 * FIXME: how to handle RDDR3 at MCI level? It is possible to have
	 * Mixed RDDR3/UDDR3 with Nehalem, provided that they are on different
	 * memory channels
	 */
	mci->mtype_cap = MEM_FLAG_DDR3;
1955 1956 1957 1958
	mci->edac_ctl_cap = EDAC_FLAG_NONE;
	mci->edac_cap = EDAC_FLAG_NONE;
	mci->mod_name = "i7core_edac.c";
	mci->mod_ver = I7CORE_REVISION;
1959 1960 1961
	mci->ctl_name = kasprintf(GFP_KERNEL, "i7 core #%d",
				  i7core_dev->socket);
	mci->dev_name = pci_name(i7core_dev->pdev[0]);
1962
	mci->ctl_page_to_phys = NULL;
1963

1964
	/* Store pci devices at mci for faster access */
1965
	rc = mci_bind_devs(mci, i7core_dev);
1966
	if (unlikely(rc < 0))
1967
		goto fail0;
1968

1969 1970 1971 1972 1973
	if (pvt->is_registered)
		mci->mc_driver_sysfs_attributes = i7core_sysfs_rdimm_attrs;
	else
		mci->mc_driver_sysfs_attributes = i7core_sysfs_udimm_attrs;

1974
	/* Get dimm basic config */
1975
	get_dimm_config(mci);
1976 1977 1978 1979
	/* record ptr to the generic device */
	mci->dev = &i7core_dev->pdev[0]->dev;
	/* Set the function pointer to an actual operation function */
	mci->edac_check = i7core_check_error;
1980

1981
	/* add this new MC control structure to EDAC's list of MCs */
1982
	if (unlikely(edac_mc_add_mc(mci))) {
1983 1984 1985 1986 1987
		debugf0("MC: " __FILE__
			": %s(): failed edac_mc_add_mc()\n", __func__);
		/* FIXME: perhaps some code should go here that disables error
		 * reporting if we just enabled it
		 */
1988 1989

		rc = -EINVAL;
1990
		goto fail0;
1991 1992
	}

1993
	/* Default error mask is any memory */
1994
	pvt->inject.channel = 0;
1995 1996 1997 1998 1999 2000
	pvt->inject.dimm = -1;
	pvt->inject.rank = -1;
	pvt->inject.bank = -1;
	pvt->inject.page = -1;
	pvt->inject.col = -1;

2001 2002 2003
	/* allocating generic PCI control info */
	i7core_pci_ctl_create(pvt);

2004
	/* Registers on edac_mce in order to receive memory errors */
2005
	pvt->edac_mce.priv = mci;
2006 2007
	pvt->edac_mce.check_error = i7core_mce_check_error;
	rc = edac_mce_register(&pvt->edac_mce);
2008
	if (unlikely(rc < 0)) {
2009 2010
		debugf0("MC: " __FILE__
			": %s(): failed edac_mce_register()\n", __func__);
2011
		goto fail1;
2012 2013
	}

2014 2015 2016 2017 2018 2019 2020 2021
	return 0;

fail1:
	i7core_pci_ctl_release(pvt);
	edac_mc_del_mc(mci->dev);
fail0:
	kfree(mci->ctl_name);
	edac_mc_free(mci);
2022
	i7core_dev->mci = NULL;
2023 2024 2025 2026 2027 2028 2029 2030 2031 2032
	return rc;
}

/*
 *	i7core_probe	Probe for ONE instance of device to see if it is
 *			present.
 *	return:
 *		0 for FOUND a device
 *		< 0 for error code
 */
2033

2034 2035 2036 2037 2038 2039
static int __devinit i7core_probe(struct pci_dev *pdev,
				  const struct pci_device_id *id)
{
	int rc;
	struct i7core_dev *i7core_dev;

2040 2041 2042
	/* get the pci devices we want to reserve for our use */
	mutex_lock(&i7core_edac_lock);

2043
	/*
2044
	 * All memory controllers are allocated at the first pass.
2045
	 */
2046 2047
	if (unlikely(probed >= 1)) {
		mutex_unlock(&i7core_edac_lock);
2048
		return -EINVAL;
2049 2050
	}
	probed++;
2051

2052
	rc = i7core_get_all_devices();
2053 2054 2055 2056
	if (unlikely(rc < 0))
		goto fail0;

	list_for_each_entry(i7core_dev, &i7core_edac_list, list) {
2057
		rc = i7core_register_mci(i7core_dev);
2058 2059
		if (unlikely(rc < 0))
			goto fail1;
2060 2061
	}

2062
	i7core_printk(KERN_INFO, "Driver loaded.\n");
2063

2064
	mutex_unlock(&i7core_edac_lock);
2065 2066
	return 0;

2067
fail1:
2068 2069 2070
	list_for_each_entry(i7core_dev, &i7core_edac_list, list)
		i7core_unregister_mci(i7core_dev);

2071
	i7core_put_all_devices();
2072 2073
fail0:
	mutex_unlock(&i7core_edac_lock);
2074
	return rc;
2075 2076 2077 2078 2079 2080 2081 2082
}

/*
 *	i7core_remove	destructor for one instance of device
 *
 */
static void __devexit i7core_remove(struct pci_dev *pdev)
{
2083
	struct i7core_dev *i7core_dev;
2084 2085 2086

	debugf0(__FILE__ ": %s()\n", __func__);

2087 2088 2089 2090 2091 2092 2093
	/*
	 * we have a trouble here: pdev value for removal will be wrong, since
	 * it will point to the X58 register used to detect that the machine
	 * is a Nehalem or upper design. However, due to the way several PCI
	 * devices are grouped together to provide MC functionality, we need
	 * to use a different method for releasing the devices
	 */
2094

2095
	mutex_lock(&i7core_edac_lock);
2096 2097 2098 2099 2100 2101

	if (unlikely(!probed)) {
		mutex_unlock(&i7core_edac_lock);
		return;
	}

2102 2103
	list_for_each_entry(i7core_dev, &i7core_edac_list, list)
		i7core_unregister_mci(i7core_dev);
2104 2105 2106 2107

	/* Release PCI resources */
	i7core_put_all_devices();

2108 2109
	probed--;

2110
	mutex_unlock(&i7core_edac_lock);
2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138
}

MODULE_DEVICE_TABLE(pci, i7core_pci_tbl);

/*
 *	i7core_driver	pci_driver structure for this module
 *
 */
static struct pci_driver i7core_driver = {
	.name     = "i7core_edac",
	.probe    = i7core_probe,
	.remove   = __devexit_p(i7core_remove),
	.id_table = i7core_pci_tbl,
};

/*
 *	i7core_init		Module entry function
 *			Try to initialize this module for its devices
 */
static int __init i7core_init(void)
{
	int pci_rc;

	debugf2("MC: " __FILE__ ": %s()\n", __func__);

	/* Ensure that the OPSTATE is set correctly for POLL or NMI */
	opstate_init();

2139 2140
	if (use_pci_fixup)
		i7core_xeon_pci_fixup(pci_dev_table);
2141

2142 2143
	pci_rc = pci_register_driver(&i7core_driver);

2144 2145 2146 2147 2148 2149 2150
	if (pci_rc >= 0)
		return 0;

	i7core_printk(KERN_ERR, "Failed to register device with error %d.\n",
		      pci_rc);

	return pci_rc;
2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173
}

/*
 *	i7core_exit()	Module exit function
 *			Unregister the driver
 */
static void __exit i7core_exit(void)
{
	debugf2("MC: " __FILE__ ": %s()\n", __func__);
	pci_unregister_driver(&i7core_driver);
}

module_init(i7core_init);
module_exit(i7core_exit);

MODULE_LICENSE("GPL");
MODULE_AUTHOR("Mauro Carvalho Chehab <mchehab@redhat.com>");
MODULE_AUTHOR("Red Hat Inc. (http://www.redhat.com)");
MODULE_DESCRIPTION("MC Driver for Intel i7 Core memory controllers - "
		   I7CORE_REVISION);

module_param(edac_op_state, int, 0444);
MODULE_PARM_DESC(edac_op_state, "EDAC Error Reporting state: 0=Poll,1=NMI");