i7core_edac.c 61.2 KB
Newer Older
1 2
/* Intel i7 core/Nehalem Memory Controller kernel module
 *
D
David Sterba 已提交
3
 * This driver supports the memory controllers found on the Intel
4 5 6
 * processor families i7core, i7core 7xx/8xx, i5core, Xeon 35xx,
 * Xeon 55xx and Xeon 56xx also known as Nehalem, Nehalem-EP, Lynnfield
 * and Westmere-EP.
7 8 9 10
 *
 * This file may be distributed under the terms of the
 * GNU General Public License version 2 only.
 *
11
 * Copyright (c) 2009-2010 by:
12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32
 *	 Mauro Carvalho Chehab <mchehab@redhat.com>
 *
 * Red Hat Inc. http://www.redhat.com
 *
 * Forked and adapted from the i5400_edac driver
 *
 * Based on the following public Intel datasheets:
 * Intel Core i7 Processor Extreme Edition and Intel Core i7 Processor
 * Datasheet, Volume 2:
 *	http://download.intel.com/design/processor/datashts/320835.pdf
 * Intel Xeon Processor 5500 Series Datasheet Volume 2
 *	http://www.intel.com/Assets/PDF/datasheet/321322.pdf
 * also available at:
 * 	http://www.arrownac.com/manufacturers/intel/s/nehalem/5500-datasheet-v2.pdf
 */

#include <linux/module.h>
#include <linux/init.h>
#include <linux/pci.h>
#include <linux/pci_ids.h>
#include <linux/slab.h>
R
Randy Dunlap 已提交
33
#include <linux/delay.h>
N
Nils Carlson 已提交
34
#include <linux/dmi.h>
35 36
#include <linux/edac.h>
#include <linux/mmzone.h>
37
#include <linux/smp.h>
38
#include <asm/mce.h>
39
#include <asm/processor.h>
40
#include <asm/div64.h>
41 42 43

#include "edac_core.h"

44 45 46 47 48
/* Static vars */
static LIST_HEAD(i7core_edac_list);
static DEFINE_MUTEX(i7core_edac_lock);
static int probed;

49 50 51
static int use_pci_fixup;
module_param(use_pci_fixup, int, 0444);
MODULE_PARM_DESC(use_pci_fixup, "Enable PCI fixup to seek for hidden devices");
52 53 54 55 56 57 58 59 60
/*
 * This is used for Nehalem-EP and Nehalem-EX devices, where the non-core
 * registers start at bus 255, and are not reported by BIOS.
 * We currently find devices with only 2 sockets. In order to support more QPI
 * Quick Path Interconnect, just increment this number.
 */
#define MAX_SOCKET_BUSES	2


61 62 63
/*
 * Alter this version for the module when modifications are made
 */
M
Michal Marek 已提交
64
#define I7CORE_REVISION    " Ver: 1.0.0"
65 66 67 68 69 70 71 72 73 74 75 76 77 78 79
#define EDAC_MOD_STR      "i7core_edac"

/*
 * Debug macros
 */
#define i7core_printk(level, fmt, arg...)			\
	edac_printk(level, "i7core", fmt, ##arg)

#define i7core_mc_printk(mci, level, fmt, arg...)		\
	edac_mc_chipset_printk(mci, level, "i7core", fmt, ##arg)

/*
 * i7core Memory Controller Registers
 */

80 81 82
	/* OFFSETS for Device 0 Function 0 */

#define MC_CFG_CONTROL	0x90
83 84
  #define MC_CFG_UNLOCK		0x02
  #define MC_CFG_LOCK		0x00
85

86 87 88 89 90 91
	/* OFFSETS for Device 3 Function 0 */

#define MC_CONTROL	0x48
#define MC_STATUS	0x4c
#define MC_MAX_DOD	0x64

92
/*
D
David Mackey 已提交
93
 * OFFSETS for Device 3 Function 4, as indicated on Xeon 5500 datasheet:
94 95 96 97 98 99 100 101 102 103
 * http://www.arrownac.com/manufacturers/intel/s/nehalem/5500-datasheet-v2.pdf
 */

#define MC_TEST_ERR_RCV1	0x60
  #define DIMM2_COR_ERR(r)			((r) & 0x7fff)

#define MC_TEST_ERR_RCV0	0x64
  #define DIMM1_COR_ERR(r)			(((r) >> 16) & 0x7fff)
  #define DIMM0_COR_ERR(r)			((r) & 0x7fff)

D
David Mackey 已提交
104
/* OFFSETS for Device 3 Function 2, as indicated on Xeon 5500 datasheet */
105 106 107 108 109 110 111
#define MC_SSRCONTROL		0x48
  #define SSR_MODE_DISABLE	0x00
  #define SSR_MODE_ENABLE	0x01
  #define SSR_MODE_MASK		0x03

#define MC_SCRUB_CONTROL	0x4c
  #define STARTSCRUB		(1 << 24)
N
Nils Carlson 已提交
112
  #define SCRUBINTERVAL_MASK    0xffffff
113

114 115 116 117 118 119 120 121 122 123 124
#define MC_COR_ECC_CNT_0	0x80
#define MC_COR_ECC_CNT_1	0x84
#define MC_COR_ECC_CNT_2	0x88
#define MC_COR_ECC_CNT_3	0x8c
#define MC_COR_ECC_CNT_4	0x90
#define MC_COR_ECC_CNT_5	0x94

#define DIMM_TOP_COR_ERR(r)			(((r) >> 16) & 0x7fff)
#define DIMM_BOT_COR_ERR(r)			((r) & 0x7fff)


125 126
	/* OFFSETS for Devices 4,5 and 6 Function 0 */

127 128 129 130 131 132
#define MC_CHANNEL_DIMM_INIT_PARAMS 0x58
  #define THREE_DIMMS_PRESENT		(1 << 24)
  #define SINGLE_QUAD_RANK_PRESENT	(1 << 23)
  #define QUAD_RANK_PRESENT		(1 << 22)
  #define REGISTERED_DIMM		(1 << 15)

133 134 135 136
#define MC_CHANNEL_MAPPER	0x60
  #define RDLCH(r, ch)		((((r) >> (3 + (ch * 6))) & 0x07) - 1)
  #define WRLCH(r, ch)		((((r) >> (ch * 6)) & 0x07) - 1)

137 138 139
#define MC_CHANNEL_RANK_PRESENT 0x7c
  #define RANK_PRESENT_MASK		0xffff

140
#define MC_CHANNEL_ADDR_MATCH	0xf0
141 142 143 144 145 146 147 148 149 150
#define MC_CHANNEL_ERROR_MASK	0xf8
#define MC_CHANNEL_ERROR_INJECT	0xfc
  #define INJECT_ADDR_PARITY	0x10
  #define INJECT_ECC		0x08
  #define MASK_CACHELINE	0x06
  #define MASK_FULL_CACHELINE	0x06
  #define MASK_MSB32_CACHELINE	0x04
  #define MASK_LSB32_CACHELINE	0x02
  #define NO_MASK_CACHELINE	0x00
  #define REPEAT_EN		0x01
151

152
	/* OFFSETS for Devices 4,5 and 6 Function 1 */
153

154 155 156 157 158 159 160
#define MC_DOD_CH_DIMM0		0x48
#define MC_DOD_CH_DIMM1		0x4c
#define MC_DOD_CH_DIMM2		0x50
  #define RANKOFFSET_MASK	((1 << 12) | (1 << 11) | (1 << 10))
  #define RANKOFFSET(x)		((x & RANKOFFSET_MASK) >> 10)
  #define DIMM_PRESENT_MASK	(1 << 9)
  #define DIMM_PRESENT(x)	(((x) & DIMM_PRESENT_MASK) >> 9)
161 162 163 164
  #define MC_DOD_NUMBANK_MASK		((1 << 8) | (1 << 7))
  #define MC_DOD_NUMBANK(x)		(((x) & MC_DOD_NUMBANK_MASK) >> 7)
  #define MC_DOD_NUMRANK_MASK		((1 << 6) | (1 << 5))
  #define MC_DOD_NUMRANK(x)		(((x) & MC_DOD_NUMRANK_MASK) >> 5)
165
  #define MC_DOD_NUMROW_MASK		((1 << 4) | (1 << 3) | (1 << 2))
166
  #define MC_DOD_NUMROW(x)		(((x) & MC_DOD_NUMROW_MASK) >> 2)
167 168
  #define MC_DOD_NUMCOL_MASK		3
  #define MC_DOD_NUMCOL(x)		((x) & MC_DOD_NUMCOL_MASK)
169

170 171
#define MC_RANK_PRESENT		0x7c

172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194
#define MC_SAG_CH_0	0x80
#define MC_SAG_CH_1	0x84
#define MC_SAG_CH_2	0x88
#define MC_SAG_CH_3	0x8c
#define MC_SAG_CH_4	0x90
#define MC_SAG_CH_5	0x94
#define MC_SAG_CH_6	0x98
#define MC_SAG_CH_7	0x9c

#define MC_RIR_LIMIT_CH_0	0x40
#define MC_RIR_LIMIT_CH_1	0x44
#define MC_RIR_LIMIT_CH_2	0x48
#define MC_RIR_LIMIT_CH_3	0x4C
#define MC_RIR_LIMIT_CH_4	0x50
#define MC_RIR_LIMIT_CH_5	0x54
#define MC_RIR_LIMIT_CH_6	0x58
#define MC_RIR_LIMIT_CH_7	0x5C
#define MC_RIR_LIMIT_MASK	((1 << 10) - 1)

#define MC_RIR_WAY_CH		0x80
  #define MC_RIR_WAY_OFFSET_MASK	(((1 << 14) - 1) & ~0x7)
  #define MC_RIR_WAY_RANK_MASK		0x7

195 196 197 198 199
/*
 * i7core structs
 */

#define NUM_CHANS 3
200 201 202
#define MAX_DIMMS 3		/* Max DIMMS per channel */
#define MAX_MCR_FUNC  4
#define MAX_CHAN_FUNC 3
203 204 205 206 207

struct i7core_info {
	u32	mc_control;
	u32	mc_status;
	u32	max_dod;
208
	u32	ch_map;
209 210
};

211 212 213 214 215 216 217 218 219 220 221 222

struct i7core_inject {
	int	enable;

	u32	section;
	u32	type;
	u32	eccmask;

	/* Error address mask */
	int channel, dimm, rank, bank, page, col;
};

223
struct i7core_channel {
224 225 226
	bool		is_3dimms_present;
	bool		is_single_4rank;
	bool		has_4rank;
227
	u32		dimms;
228 229
};

230
struct pci_id_descr {
231 232 233
	int			dev;
	int			func;
	int 			dev_id;
234
	int			optional;
235 236
};

237
struct pci_id_table {
238 239
	const struct pci_id_descr	*descr;
	int				n_devs;
240 241
};

242 243 244 245
struct i7core_dev {
	struct list_head	list;
	u8			socket;
	struct pci_dev		**pdev;
246
	int			n_devs;
247 248 249
	struct mem_ctl_info	*mci;
};

250
struct i7core_pvt {
251 252 253 254 255
	struct pci_dev	*pci_noncore;
	struct pci_dev	*pci_mcr[MAX_MCR_FUNC + 1];
	struct pci_dev	*pci_ch[NUM_CHANS][MAX_CHAN_FUNC + 1];

	struct i7core_dev *i7core_dev;
256

257
	struct i7core_info	info;
258
	struct i7core_inject	inject;
259
	struct i7core_channel	channel[NUM_CHANS];
260

261
	int		ce_count_available;
262 263

			/* ECC corrected errors counts per udimm */
264 265
	unsigned long	udimm_ce_count[MAX_DIMMS];
	int		udimm_last_ce_count[MAX_DIMMS];
266
			/* ECC corrected errors counts per rdimm */
267 268
	unsigned long	rdimm_ce_count[NUM_CHANS][MAX_DIMMS];
	int		rdimm_last_ce_count[NUM_CHANS][MAX_DIMMS];
269

270
	bool		is_registered, enable_scrub;
271

272
	/* Fifo double buffers */
273
	struct mce		mce_entry[MCE_LOG_LEN];
274 275 276 277 278 279 280
	struct mce		mce_outentry[MCE_LOG_LEN];

	/* Fifo in/out counters */
	unsigned		mce_in, mce_out;

	/* Count indicator to show errors not got */
	unsigned		mce_overrun;
281

N
Nils Carlson 已提交
282 283 284
	/* DCLK Frequency used for computing scrub rate */
	int			dclk_freq;

285 286
	/* Struct to control EDAC polling */
	struct edac_pci_ctl_info *i7core_pci;
287 288
};

289 290 291 292 293
#define PCI_DESCR(device, function, device_id)	\
	.dev = (device),			\
	.func = (function),			\
	.dev_id = (device_id)

294
static const struct pci_id_descr pci_dev_descr_i7core_nehalem[] = {
295 296 297
		/* Memory controller */
	{ PCI_DESCR(3, 0, PCI_DEVICE_ID_INTEL_I7_MCR)     },
	{ PCI_DESCR(3, 1, PCI_DEVICE_ID_INTEL_I7_MC_TAD)  },
298
			/* Exists only for RDIMM */
299
	{ PCI_DESCR(3, 2, PCI_DEVICE_ID_INTEL_I7_MC_RAS), .optional = 1  },
300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318
	{ PCI_DESCR(3, 4, PCI_DEVICE_ID_INTEL_I7_MC_TEST) },

		/* Channel 0 */
	{ PCI_DESCR(4, 0, PCI_DEVICE_ID_INTEL_I7_MC_CH0_CTRL) },
	{ PCI_DESCR(4, 1, PCI_DEVICE_ID_INTEL_I7_MC_CH0_ADDR) },
	{ PCI_DESCR(4, 2, PCI_DEVICE_ID_INTEL_I7_MC_CH0_RANK) },
	{ PCI_DESCR(4, 3, PCI_DEVICE_ID_INTEL_I7_MC_CH0_TC)   },

		/* Channel 1 */
	{ PCI_DESCR(5, 0, PCI_DEVICE_ID_INTEL_I7_MC_CH1_CTRL) },
	{ PCI_DESCR(5, 1, PCI_DEVICE_ID_INTEL_I7_MC_CH1_ADDR) },
	{ PCI_DESCR(5, 2, PCI_DEVICE_ID_INTEL_I7_MC_CH1_RANK) },
	{ PCI_DESCR(5, 3, PCI_DEVICE_ID_INTEL_I7_MC_CH1_TC)   },

		/* Channel 2 */
	{ PCI_DESCR(6, 0, PCI_DEVICE_ID_INTEL_I7_MC_CH2_CTRL) },
	{ PCI_DESCR(6, 1, PCI_DEVICE_ID_INTEL_I7_MC_CH2_ADDR) },
	{ PCI_DESCR(6, 2, PCI_DEVICE_ID_INTEL_I7_MC_CH2_RANK) },
	{ PCI_DESCR(6, 3, PCI_DEVICE_ID_INTEL_I7_MC_CH2_TC)   },
319 320 321 322 323 324 325 326 327 328

		/* Generic Non-core registers */
	/*
	 * This is the PCI device on i7core and on Xeon 35xx (8086:2c41)
	 * On Xeon 55xx, however, it has a different id (8086:2c40). So,
	 * the probing code needs to test for the other address in case of
	 * failure of this one
	 */
	{ PCI_DESCR(0, 0, PCI_DEVICE_ID_INTEL_I7_NONCORE)  },

329
};
330

331
static const struct pci_id_descr pci_dev_descr_lynnfield[] = {
332 333 334 335 336 337 338 339 340
	{ PCI_DESCR( 3, 0, PCI_DEVICE_ID_INTEL_LYNNFIELD_MCR)         },
	{ PCI_DESCR( 3, 1, PCI_DEVICE_ID_INTEL_LYNNFIELD_MC_TAD)      },
	{ PCI_DESCR( 3, 4, PCI_DEVICE_ID_INTEL_LYNNFIELD_MC_TEST)     },

	{ PCI_DESCR( 4, 0, PCI_DEVICE_ID_INTEL_LYNNFIELD_MC_CH0_CTRL) },
	{ PCI_DESCR( 4, 1, PCI_DEVICE_ID_INTEL_LYNNFIELD_MC_CH0_ADDR) },
	{ PCI_DESCR( 4, 2, PCI_DEVICE_ID_INTEL_LYNNFIELD_MC_CH0_RANK) },
	{ PCI_DESCR( 4, 3, PCI_DEVICE_ID_INTEL_LYNNFIELD_MC_CH0_TC)   },

341 342 343 344
	{ PCI_DESCR( 5, 0, PCI_DEVICE_ID_INTEL_LYNNFIELD_MC_CH1_CTRL) },
	{ PCI_DESCR( 5, 1, PCI_DEVICE_ID_INTEL_LYNNFIELD_MC_CH1_ADDR) },
	{ PCI_DESCR( 5, 2, PCI_DEVICE_ID_INTEL_LYNNFIELD_MC_CH1_RANK) },
	{ PCI_DESCR( 5, 3, PCI_DEVICE_ID_INTEL_LYNNFIELD_MC_CH1_TC)   },
345 346 347 348 349 350

	/*
	 * This is the PCI device has an alternate address on some
	 * processors like Core i7 860
	 */
	{ PCI_DESCR( 0, 0, PCI_DEVICE_ID_INTEL_LYNNFIELD_NONCORE)     },
351 352
};

353
static const struct pci_id_descr pci_dev_descr_i7core_westmere[] = {
354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377
		/* Memory controller */
	{ PCI_DESCR(3, 0, PCI_DEVICE_ID_INTEL_LYNNFIELD_MCR_REV2)     },
	{ PCI_DESCR(3, 1, PCI_DEVICE_ID_INTEL_LYNNFIELD_MC_TAD_REV2)  },
			/* Exists only for RDIMM */
	{ PCI_DESCR(3, 2, PCI_DEVICE_ID_INTEL_LYNNFIELD_MC_RAS_REV2), .optional = 1  },
	{ PCI_DESCR(3, 4, PCI_DEVICE_ID_INTEL_LYNNFIELD_MC_TEST_REV2) },

		/* Channel 0 */
	{ PCI_DESCR(4, 0, PCI_DEVICE_ID_INTEL_LYNNFIELD_MC_CH0_CTRL_REV2) },
	{ PCI_DESCR(4, 1, PCI_DEVICE_ID_INTEL_LYNNFIELD_MC_CH0_ADDR_REV2) },
	{ PCI_DESCR(4, 2, PCI_DEVICE_ID_INTEL_LYNNFIELD_MC_CH0_RANK_REV2) },
	{ PCI_DESCR(4, 3, PCI_DEVICE_ID_INTEL_LYNNFIELD_MC_CH0_TC_REV2)   },

		/* Channel 1 */
	{ PCI_DESCR(5, 0, PCI_DEVICE_ID_INTEL_LYNNFIELD_MC_CH1_CTRL_REV2) },
	{ PCI_DESCR(5, 1, PCI_DEVICE_ID_INTEL_LYNNFIELD_MC_CH1_ADDR_REV2) },
	{ PCI_DESCR(5, 2, PCI_DEVICE_ID_INTEL_LYNNFIELD_MC_CH1_RANK_REV2) },
	{ PCI_DESCR(5, 3, PCI_DEVICE_ID_INTEL_LYNNFIELD_MC_CH1_TC_REV2)   },

		/* Channel 2 */
	{ PCI_DESCR(6, 0, PCI_DEVICE_ID_INTEL_LYNNFIELD_MC_CH2_CTRL_REV2) },
	{ PCI_DESCR(6, 1, PCI_DEVICE_ID_INTEL_LYNNFIELD_MC_CH2_ADDR_REV2) },
	{ PCI_DESCR(6, 2, PCI_DEVICE_ID_INTEL_LYNNFIELD_MC_CH2_RANK_REV2) },
	{ PCI_DESCR(6, 3, PCI_DEVICE_ID_INTEL_LYNNFIELD_MC_CH2_TC_REV2)   },
378 379 380 381

		/* Generic Non-core registers */
	{ PCI_DESCR(0, 0, PCI_DEVICE_ID_INTEL_LYNNFIELD_NONCORE_REV2)  },

382 383
};

384 385
#define PCI_ID_TABLE_ENTRY(A) { .descr=A, .n_devs = ARRAY_SIZE(A) }
static const struct pci_id_table pci_dev_table[] = {
386 387 388
	PCI_ID_TABLE_ENTRY(pci_dev_descr_i7core_nehalem),
	PCI_ID_TABLE_ENTRY(pci_dev_descr_lynnfield),
	PCI_ID_TABLE_ENTRY(pci_dev_descr_i7core_westmere),
389
	{0,}			/* 0 terminated list. */
390 391
};

392 393 394
/*
 *	pci_device_id	table for which devices we are looking for
 */
395
static DEFINE_PCI_DEVICE_TABLE(i7core_pci_tbl) = {
396
	{PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_X58_HUB_MGMT)},
397
	{PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_LYNNFIELD_QPI_LINK0)},
398 399 400
	{0,}			/* 0 terminated list. */
};

401
/****************************************************************************
D
David Mackey 已提交
402
			Ancillary status routines
403 404 405
 ****************************************************************************/

	/* MC_CONTROL bits */
406 407
#define CH_ACTIVE(pvt, ch)	((pvt)->info.mc_control & (1 << (8 + ch)))
#define ECCx8(pvt)		((pvt)->info.mc_control & (1 << 1))
408 409

	/* MC_STATUS bits */
410
#define ECC_ENABLED(pvt)	((pvt)->info.mc_status & (1 << 4))
411
#define CH_DISABLED(pvt, ch)	((pvt)->info.mc_status & (1 << ch))
412 413

	/* MC_MAX_DOD read functions */
414
static inline int numdimms(u32 dimms)
415
{
416
	return (dimms & 0x3) + 1;
417 418
}

419
static inline int numrank(u32 rank)
420 421 422
{
	static int ranks[4] = { 1, 2, 4, -EINVAL };

423
	return ranks[rank & 0x3];
424 425
}

426
static inline int numbank(u32 bank)
427 428 429
{
	static int banks[4] = { 4, 8, 16, -EINVAL };

430
	return banks[bank & 0x3];
431 432
}

433
static inline int numrow(u32 row)
434 435 436 437 438 439
{
	static int rows[8] = {
		1 << 12, 1 << 13, 1 << 14, 1 << 15,
		1 << 16, -EINVAL, -EINVAL, -EINVAL,
	};

440
	return rows[row & 0x7];
441 442
}

443
static inline int numcol(u32 col)
444 445 446 447
{
	static int cols[8] = {
		1 << 10, 1 << 11, 1 << 12, -EINVAL,
	};
448
	return cols[col & 0x3];
449 450
}

451
static struct i7core_dev *get_i7core_dev(u8 socket)
452 453 454 455 456 457 458 459 460 461 462
{
	struct i7core_dev *i7core_dev;

	list_for_each_entry(i7core_dev, &i7core_edac_list, list) {
		if (i7core_dev->socket == socket)
			return i7core_dev;
	}

	return NULL;
}

463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485
static struct i7core_dev *alloc_i7core_dev(u8 socket,
					   const struct pci_id_table *table)
{
	struct i7core_dev *i7core_dev;

	i7core_dev = kzalloc(sizeof(*i7core_dev), GFP_KERNEL);
	if (!i7core_dev)
		return NULL;

	i7core_dev->pdev = kzalloc(sizeof(*i7core_dev->pdev) * table->n_devs,
				   GFP_KERNEL);
	if (!i7core_dev->pdev) {
		kfree(i7core_dev);
		return NULL;
	}

	i7core_dev->socket = socket;
	i7core_dev->n_devs = table->n_devs;
	list_add_tail(&i7core_dev->list, &i7core_edac_list);

	return i7core_dev;
}

486 487 488 489 490 491 492
static void free_i7core_dev(struct i7core_dev *i7core_dev)
{
	list_del(&i7core_dev->list);
	kfree(i7core_dev->pdev);
	kfree(i7core_dev);
}

493 494 495
/****************************************************************************
			Memory check routines
 ****************************************************************************/
496

497
static int get_dimm_config(struct mem_ctl_info *mci)
498 499
{
	struct i7core_pvt *pvt = mci->pvt_info;
500
	struct pci_dev *pdev;
501
	int i, j;
502
	enum edac_type mode;
503
	enum mem_type mtype;
504
	struct dimm_info *dimm;
505

506
	/* Get data from the MC register, function 0 */
507
	pdev = pvt->pci_mcr[0];
508
	if (!pdev)
509 510
		return -ENODEV;

511
	/* Device 3 function 0 reads */
512 513 514 515
	pci_read_config_dword(pdev, MC_CONTROL, &pvt->info.mc_control);
	pci_read_config_dword(pdev, MC_STATUS, &pvt->info.mc_status);
	pci_read_config_dword(pdev, MC_MAX_DOD, &pvt->info.max_dod);
	pci_read_config_dword(pdev, MC_CHANNEL_MAPPER, &pvt->info.ch_map);
516

517
	debugf0("QPI %d control=0x%08x status=0x%08x dod=0x%08x map=0x%08x\n",
518
		pvt->i7core_dev->socket, pvt->info.mc_control, pvt->info.mc_status,
519
		pvt->info.max_dod, pvt->info.ch_map);
520

521
	if (ECC_ENABLED(pvt)) {
522
		debugf0("ECC enabled with x%d SDCC\n", ECCx8(pvt) ? 8 : 4);
523 524 525 526 527
		if (ECCx8(pvt))
			mode = EDAC_S8ECD8ED;
		else
			mode = EDAC_S4ECD4ED;
	} else {
528
		debugf0("ECC disabled\n");
529 530
		mode = EDAC_NONE;
	}
531 532

	/* FIXME: need to handle the error codes */
533 534
	debugf0("DOD Max limits: DIMMS: %d, %d-ranked, %d-banked "
		"x%x x 0x%x\n",
535 536
		numdimms(pvt->info.max_dod),
		numrank(pvt->info.max_dod >> 2),
537
		numbank(pvt->info.max_dod >> 4),
538 539
		numrow(pvt->info.max_dod >> 6),
		numcol(pvt->info.max_dod >> 9));
540

541
	for (i = 0; i < NUM_CHANS; i++) {
542
		u32 data, dimm_dod[3], value[8];
543

544 545 546
		if (!pvt->pci_ch[i][0])
			continue;

547 548 549 550 551 552 553 554 555
		if (!CH_ACTIVE(pvt, i)) {
			debugf0("Channel %i is not active\n", i);
			continue;
		}
		if (CH_DISABLED(pvt, i)) {
			debugf0("Channel %i is disabled\n", i);
			continue;
		}

556
		/* Devices 4-6 function 0 */
557
		pci_read_config_dword(pvt->pci_ch[i][0],
558 559
				MC_CHANNEL_DIMM_INIT_PARAMS, &data);

560 561 562 563 564 565 566 567 568

		if (data & THREE_DIMMS_PRESENT)
			pvt->channel[i].is_3dimms_present = true;

		if (data & SINGLE_QUAD_RANK_PRESENT)
			pvt->channel[i].is_single_4rank = true;

		if (data & QUAD_RANK_PRESENT)
			pvt->channel[i].has_4rank = true;
569

570 571
		if (data & REGISTERED_DIMM)
			mtype = MEM_RDDR3;
572
		else
573 574 575
			mtype = MEM_DDR3;

		/* Devices 4-6 function 1 */
576
		pci_read_config_dword(pvt->pci_ch[i][1],
577
				MC_DOD_CH_DIMM0, &dimm_dod[0]);
578
		pci_read_config_dword(pvt->pci_ch[i][1],
579
				MC_DOD_CH_DIMM1, &dimm_dod[1]);
580
		pci_read_config_dword(pvt->pci_ch[i][1],
581
				MC_DOD_CH_DIMM2, &dimm_dod[2]);
582

583
		debugf0("Ch%d phy rd%d, wr%d (0x%08x): "
584
			"%s%s%s%cDIMMs\n",
585 586 587
			i,
			RDLCH(pvt->info.ch_map, i), WRLCH(pvt->info.ch_map, i),
			data,
588 589 590
			pvt->channel[i].is_3dimms_present ? "3DIMMS " : "",
			pvt->channel[i].is_3dimms_present ? "SINGLE_4R " : "",
			pvt->channel[i].has_4rank ? "HAS_4R " : "",
591
			(data & REGISTERED_DIMM) ? 'R' : 'U');
592 593 594

		for (j = 0; j < 3; j++) {
			u32 banks, ranks, rows, cols;
595
			u32 size, npages;
596 597 598 599

			if (!DIMM_PRESENT(dimm_dod[j]))
				continue;

600 601
			dimm = EDAC_DIMM_PTR(mci->layers, mci->dimms, mci->n_layers,
				       i, j, 0);
602 603 604 605 606
			banks = numbank(MC_DOD_NUMBANK(dimm_dod[j]));
			ranks = numrank(MC_DOD_NUMRANK(dimm_dod[j]));
			rows = numrow(MC_DOD_NUMROW(dimm_dod[j]));
			cols = numcol(MC_DOD_NUMCOL(dimm_dod[j]));

607 608 609
			/* DDR3 has 8 I/O banks */
			size = (rows * cols * banks * ranks) >> (20 - 3);

610 611 612
			debugf0("\tdimm %d %d Mb offset: %x, "
				"bank: %d, rank: %d, row: %#x, col: %#x\n",
				j, size,
613 614 615
				RANKOFFSET(dimm_dod[j]),
				banks, ranks, rows, cols);

616
			npages = MiB_TO_PAGES(size);
617

618
			dimm->nr_pages = npages;
619

620 621
			switch (banks) {
			case 4:
622
				dimm->dtype = DEV_X4;
623 624
				break;
			case 8:
625
				dimm->dtype = DEV_X8;
626 627
				break;
			case 16:
628
				dimm->dtype = DEV_X16;
629 630
				break;
			default:
631
				dimm->dtype = DEV_UNKNOWN;
632 633
			}

634 635 636 637 638 639
			snprintf(dimm->label, sizeof(dimm->label),
				 "CPU#%uChannel#%u_DIMM#%u",
				 pvt->i7core_dev->socket, i, j);
			dimm->grain = 8;
			dimm->edac_mode = mode;
			dimm->mtype = mtype;
640
		}
641

642 643 644 645 646 647 648 649
		pci_read_config_dword(pdev, MC_SAG_CH_0, &value[0]);
		pci_read_config_dword(pdev, MC_SAG_CH_1, &value[1]);
		pci_read_config_dword(pdev, MC_SAG_CH_2, &value[2]);
		pci_read_config_dword(pdev, MC_SAG_CH_3, &value[3]);
		pci_read_config_dword(pdev, MC_SAG_CH_4, &value[4]);
		pci_read_config_dword(pdev, MC_SAG_CH_5, &value[5]);
		pci_read_config_dword(pdev, MC_SAG_CH_6, &value[6]);
		pci_read_config_dword(pdev, MC_SAG_CH_7, &value[7]);
650
		debugf1("\t[%i] DIVBY3\tREMOVED\tOFFSET\n", i);
651
		for (j = 0; j < 8; j++)
652
			debugf1("\t\t%#x\t%#x\t%#x\n",
653 654
				(value[j] >> 27) & 0x1,
				(value[j] >> 24) & 0x7,
655
				(value[j] & ((1 << 24) - 1)));
656 657
	}

658 659 660
	return 0;
}

661 662 663 664 665 666 667 668 669 670 671
/****************************************************************************
			Error insertion routines
 ****************************************************************************/

/* The i7core has independent error injection features per channel.
   However, to have a simpler code, we don't allow enabling error injection
   on more than one channel.
   Also, since a change at an inject parameter will be applied only at enable,
   we're disabling error injection on all write calls to the sysfs nodes that
   controls the error code injection.
 */
672
static int disable_inject(const struct mem_ctl_info *mci)
673 674 675 676 677
{
	struct i7core_pvt *pvt = mci->pvt_info;

	pvt->inject.enable = 0;

678
	if (!pvt->pci_ch[pvt->inject.channel][0])
679 680
		return -ENODEV;

681
	pci_write_config_dword(pvt->pci_ch[pvt->inject.channel][0],
682
				MC_CHANNEL_ERROR_INJECT, 0);
683 684

	return 0;
685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701
}

/*
 * i7core inject inject.section
 *
 *	accept and store error injection inject.section value
 *	bit 0 - refers to the lower 32-byte half cacheline
 *	bit 1 - refers to the upper 32-byte half cacheline
 */
static ssize_t i7core_inject_section_store(struct mem_ctl_info *mci,
					   const char *data, size_t count)
{
	struct i7core_pvt *pvt = mci->pvt_info;
	unsigned long value;
	int rc;

	if (pvt->inject.enable)
702
		disable_inject(mci);
703 704 705

	rc = strict_strtoul(data, 10, &value);
	if ((rc < 0) || (value > 3))
706
		return -EIO;
707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734

	pvt->inject.section = (u32) value;
	return count;
}

static ssize_t i7core_inject_section_show(struct mem_ctl_info *mci,
					      char *data)
{
	struct i7core_pvt *pvt = mci->pvt_info;
	return sprintf(data, "0x%08x\n", pvt->inject.section);
}

/*
 * i7core inject.type
 *
 *	accept and store error injection inject.section value
 *	bit 0 - repeat enable - Enable error repetition
 *	bit 1 - inject ECC error
 *	bit 2 - inject parity error
 */
static ssize_t i7core_inject_type_store(struct mem_ctl_info *mci,
					const char *data, size_t count)
{
	struct i7core_pvt *pvt = mci->pvt_info;
	unsigned long value;
	int rc;

	if (pvt->inject.enable)
735
		disable_inject(mci);
736 737 738

	rc = strict_strtoul(data, 10, &value);
	if ((rc < 0) || (value > 7))
739
		return -EIO;
740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769

	pvt->inject.type = (u32) value;
	return count;
}

static ssize_t i7core_inject_type_show(struct mem_ctl_info *mci,
					      char *data)
{
	struct i7core_pvt *pvt = mci->pvt_info;
	return sprintf(data, "0x%08x\n", pvt->inject.type);
}

/*
 * i7core_inject_inject.eccmask_store
 *
 * The type of error (UE/CE) will depend on the inject.eccmask value:
 *   Any bits set to a 1 will flip the corresponding ECC bit
 *   Correctable errors can be injected by flipping 1 bit or the bits within
 *   a symbol pair (2 consecutive aligned 8-bit pairs - i.e. 7:0 and 15:8 or
 *   23:16 and 31:24). Flipping bits in two symbol pairs will cause an
 *   uncorrectable error to be injected.
 */
static ssize_t i7core_inject_eccmask_store(struct mem_ctl_info *mci,
					const char *data, size_t count)
{
	struct i7core_pvt *pvt = mci->pvt_info;
	unsigned long value;
	int rc;

	if (pvt->inject.enable)
770
		disable_inject(mci);
771 772 773

	rc = strict_strtoul(data, 10, &value);
	if (rc < 0)
774
		return -EIO;
775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797

	pvt->inject.eccmask = (u32) value;
	return count;
}

static ssize_t i7core_inject_eccmask_show(struct mem_ctl_info *mci,
					      char *data)
{
	struct i7core_pvt *pvt = mci->pvt_info;
	return sprintf(data, "0x%08x\n", pvt->inject.eccmask);
}

/*
 * i7core_addrmatch
 *
 * The type of error (UE/CE) will depend on the inject.eccmask value:
 *   Any bits set to a 1 will flip the corresponding ECC bit
 *   Correctable errors can be injected by flipping 1 bit or the bits within
 *   a symbol pair (2 consecutive aligned 8-bit pairs - i.e. 7:0 and 15:8 or
 *   23:16 and 31:24). Flipping bits in two symbol pairs will cause an
 *   uncorrectable error to be injected.
 */

798 799 800 801 802
#define DECLARE_ADDR_MATCH(param, limit)			\
static ssize_t i7core_inject_store_##param(			\
		struct mem_ctl_info *mci,			\
		const char *data, size_t count)			\
{								\
803
	struct i7core_pvt *pvt;					\
804 805 806
	long value;						\
	int rc;							\
								\
807 808 809
	debugf1("%s()\n", __func__);				\
	pvt = mci->pvt_info;					\
								\
810 811 812
	if (pvt->inject.enable)					\
		disable_inject(mci);				\
								\
813
	if (!strcasecmp(data, "any") || !strcasecmp(data, "any\n"))\
814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829
		value = -1;					\
	else {							\
		rc = strict_strtoul(data, 10, &value);		\
		if ((rc < 0) || (value >= limit))		\
			return -EIO;				\
	}							\
								\
	pvt->inject.param = value;				\
								\
	return count;						\
}								\
								\
static ssize_t i7core_inject_show_##param(			\
		struct mem_ctl_info *mci,			\
		char *data)					\
{								\
830 831 832 833
	struct i7core_pvt *pvt;					\
								\
	pvt = mci->pvt_info;					\
	debugf1("%s() pvt=%p\n", __func__, pvt);		\
834 835 836 837
	if (pvt->inject.param < 0)				\
		return sprintf(data, "any\n");			\
	else							\
		return sprintf(data, "%d\n", pvt->inject.param);\
838 839
}

840 841 842 843 844 845 846 847 848
#define ATTR_ADDR_MATCH(param)					\
	{							\
		.attr = {					\
			.name = #param,				\
			.mode = (S_IRUGO | S_IWUSR)		\
		},						\
		.show  = i7core_inject_show_##param,		\
		.store = i7core_inject_store_##param,		\
	}
849

850 851 852 853 854 855
DECLARE_ADDR_MATCH(channel, 3);
DECLARE_ADDR_MATCH(dimm, 3);
DECLARE_ADDR_MATCH(rank, 4);
DECLARE_ADDR_MATCH(bank, 32);
DECLARE_ADDR_MATCH(page, 0x10000);
DECLARE_ADDR_MATCH(col, 0x4000);
856

857
static int write_and_test(struct pci_dev *dev, const int where, const u32 val)
858 859 860 861
{
	u32 read;
	int count;

862 863 864 865
	debugf0("setting pci %02x:%02x.%x reg=%02x value=%08x\n",
		dev->bus->number, PCI_SLOT(dev->devfn), PCI_FUNC(dev->devfn),
		where, val);

866 867
	for (count = 0; count < 10; count++) {
		if (count)
868
			msleep(100);
869 870 871 872 873 874 875
		pci_write_config_dword(dev, where, val);
		pci_read_config_dword(dev, where, &read);

		if (read == val)
			return 0;
	}

876 877 878 879
	i7core_printk(KERN_ERR, "Error during set pci %02x:%02x.%x reg=%02x "
		"write=%08x. Read=%08x\n",
		dev->bus->number, PCI_SLOT(dev->devfn), PCI_FUNC(dev->devfn),
		where, val, read);
880 881 882 883

	return -EINVAL;
}

884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910
/*
 * This routine prepares the Memory Controller for error injection.
 * The error will be injected when some process tries to write to the
 * memory that matches the given criteria.
 * The criteria can be set in terms of a mask where dimm, rank, bank, page
 * and col can be specified.
 * A -1 value for any of the mask items will make the MCU to ignore
 * that matching criteria for error injection.
 *
 * It should be noticed that the error will only happen after a write operation
 * on a memory that matches the condition. if REPEAT_EN is not enabled at
 * inject mask, then it will produce just one error. Otherwise, it will repeat
 * until the injectmask would be cleaned.
 *
 * FIXME: This routine assumes that MAXNUMDIMMS value of MC_MAX_DOD
 *    is reliable enough to check if the MC is using the
 *    three channels. However, this is not clear at the datasheet.
 */
static ssize_t i7core_inject_enable_store(struct mem_ctl_info *mci,
				       const char *data, size_t count)
{
	struct i7core_pvt *pvt = mci->pvt_info;
	u32 injectmask;
	u64 mask = 0;
	int  rc;
	long enable;

911
	if (!pvt->pci_ch[pvt->inject.channel][0])
912 913
		return 0;

914 915 916 917 918 919 920 921 922 923 924 925 926
	rc = strict_strtoul(data, 10, &enable);
	if ((rc < 0))
		return 0;

	if (enable) {
		pvt->inject.enable = 1;
	} else {
		disable_inject(mci);
		return count;
	}

	/* Sets pvt->inject.dimm mask */
	if (pvt->inject.dimm < 0)
927
		mask |= 1LL << 41;
928
	else {
929
		if (pvt->channel[pvt->inject.channel].dimms > 2)
930
			mask |= (pvt->inject.dimm & 0x3LL) << 35;
931
		else
932
			mask |= (pvt->inject.dimm & 0x1LL) << 36;
933 934 935 936
	}

	/* Sets pvt->inject.rank mask */
	if (pvt->inject.rank < 0)
937
		mask |= 1LL << 40;
938
	else {
939
		if (pvt->channel[pvt->inject.channel].dimms > 2)
940
			mask |= (pvt->inject.rank & 0x1LL) << 34;
941
		else
942
			mask |= (pvt->inject.rank & 0x3LL) << 34;
943 944 945 946
	}

	/* Sets pvt->inject.bank mask */
	if (pvt->inject.bank < 0)
947
		mask |= 1LL << 39;
948
	else
949
		mask |= (pvt->inject.bank & 0x15LL) << 30;
950 951 952

	/* Sets pvt->inject.page mask */
	if (pvt->inject.page < 0)
953
		mask |= 1LL << 38;
954
	else
955
		mask |= (pvt->inject.page & 0xffff) << 14;
956 957 958

	/* Sets pvt->inject.column mask */
	if (pvt->inject.col < 0)
959
		mask |= 1LL << 37;
960
	else
961
		mask |= (pvt->inject.col & 0x3fff);
962

963 964 965 966 967 968 969 970 971 972 973 974
	/*
	 * bit    0: REPEAT_EN
	 * bits 1-2: MASK_HALF_CACHELINE
	 * bit    3: INJECT_ECC
	 * bit    4: INJECT_ADDR_PARITY
	 */

	injectmask = (pvt->inject.type & 1) |
		     (pvt->inject.section & 0x3) << 1 |
		     (pvt->inject.type & 0x6) << (3 - 1);

	/* Unlock writes to registers - this register is write only */
975
	pci_write_config_dword(pvt->pci_noncore,
976
			       MC_CFG_CONTROL, 0x2);
977

978
	write_and_test(pvt->pci_ch[pvt->inject.channel][0],
979
			       MC_CHANNEL_ADDR_MATCH, mask);
980
	write_and_test(pvt->pci_ch[pvt->inject.channel][0],
981 982
			       MC_CHANNEL_ADDR_MATCH + 4, mask >> 32L);

983
	write_and_test(pvt->pci_ch[pvt->inject.channel][0],
984 985
			       MC_CHANNEL_ERROR_MASK, pvt->inject.eccmask);

986
	write_and_test(pvt->pci_ch[pvt->inject.channel][0],
987
			       MC_CHANNEL_ERROR_INJECT, injectmask);
988

989
	/*
990 991 992
	 * This is something undocumented, based on my tests
	 * Without writing 8 to this register, errors aren't injected. Not sure
	 * why.
993
	 */
994
	pci_write_config_dword(pvt->pci_noncore,
995
			       MC_CFG_CONTROL, 8);
996

997 998
	debugf0("Error inject addr match 0x%016llx, ecc 0x%08x,"
		" inject 0x%08x\n",
999 1000
		mask, pvt->inject.eccmask, injectmask);

1001

1002 1003 1004 1005 1006 1007 1008
	return count;
}

static ssize_t i7core_inject_enable_show(struct mem_ctl_info *mci,
					char *data)
{
	struct i7core_pvt *pvt = mci->pvt_info;
1009 1010
	u32 injectmask;

1011 1012 1013
	if (!pvt->pci_ch[pvt->inject.channel][0])
		return 0;

1014
	pci_read_config_dword(pvt->pci_ch[pvt->inject.channel][0],
1015
			       MC_CHANNEL_ERROR_INJECT, &injectmask);
1016 1017 1018 1019 1020 1021

	debugf0("Inject error read: 0x%018x\n", injectmask);

	if (injectmask & 0x0c)
		pvt->inject.enable = 1;

1022 1023 1024
	return sprintf(data, "%d\n", pvt->inject.enable);
}

1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037
#define DECLARE_COUNTER(param)					\
static ssize_t i7core_show_counter_##param(			\
		struct mem_ctl_info *mci,			\
		char *data)					\
{								\
	struct i7core_pvt *pvt = mci->pvt_info;			\
								\
	debugf1("%s() \n", __func__);				\
	if (!pvt->ce_count_available || (pvt->is_registered))	\
		return sprintf(data, "data unavailable\n");	\
	return sprintf(data, "%lu\n",				\
			pvt->udimm_ce_count[param]);		\
}
1038

1039 1040 1041 1042 1043 1044 1045
#define ATTR_COUNTER(param)					\
	{							\
		.attr = {					\
			.name = __stringify(udimm##param),	\
			.mode = (S_IRUGO | S_IWUSR)		\
		},						\
		.show  = i7core_show_counter_##param		\
1046
	}
1047

1048 1049 1050
DECLARE_COUNTER(0);
DECLARE_COUNTER(1);
DECLARE_COUNTER(2);
1051

1052 1053 1054
/*
 * Sysfs struct
 */
1055

1056
static const struct mcidev_sysfs_attribute i7core_addrmatch_attrs[] = {
1057 1058 1059 1060 1061 1062
	ATTR_ADDR_MATCH(channel),
	ATTR_ADDR_MATCH(dimm),
	ATTR_ADDR_MATCH(rank),
	ATTR_ADDR_MATCH(bank),
	ATTR_ADDR_MATCH(page),
	ATTR_ADDR_MATCH(col),
1063
	{ } /* End of list */
1064 1065
};

1066
static const struct mcidev_sysfs_group i7core_inject_addrmatch = {
1067 1068 1069 1070
	.name  = "inject_addrmatch",
	.mcidev_attr = i7core_addrmatch_attrs,
};

1071
static const struct mcidev_sysfs_attribute i7core_udimm_counters_attrs[] = {
1072 1073 1074
	ATTR_COUNTER(0),
	ATTR_COUNTER(1),
	ATTR_COUNTER(2),
1075
	{ .attr = { .name = NULL } }
1076 1077
};

1078
static const struct mcidev_sysfs_group i7core_udimm_counters = {
1079 1080 1081 1082
	.name  = "all_channel_counts",
	.mcidev_attr = i7core_udimm_counters_attrs,
};

1083
static const struct mcidev_sysfs_attribute i7core_sysfs_rdimm_attrs[] = {
1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105
	{
		.attr = {
			.name = "inject_section",
			.mode = (S_IRUGO | S_IWUSR)
		},
		.show  = i7core_inject_section_show,
		.store = i7core_inject_section_store,
	}, {
		.attr = {
			.name = "inject_type",
			.mode = (S_IRUGO | S_IWUSR)
		},
		.show  = i7core_inject_type_show,
		.store = i7core_inject_type_store,
	}, {
		.attr = {
			.name = "inject_eccmask",
			.mode = (S_IRUGO | S_IWUSR)
		},
		.show  = i7core_inject_eccmask_show,
		.store = i7core_inject_eccmask_store,
	}, {
1106
		.grp = &i7core_inject_addrmatch,
1107 1108 1109 1110 1111 1112 1113 1114
	}, {
		.attr = {
			.name = "inject_enable",
			.mode = (S_IRUGO | S_IWUSR)
		},
		.show  = i7core_inject_enable_show,
		.store = i7core_inject_enable_store,
	},
1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152
	{ }	/* End of list */
};

static const struct mcidev_sysfs_attribute i7core_sysfs_udimm_attrs[] = {
	{
		.attr = {
			.name = "inject_section",
			.mode = (S_IRUGO | S_IWUSR)
		},
		.show  = i7core_inject_section_show,
		.store = i7core_inject_section_store,
	}, {
		.attr = {
			.name = "inject_type",
			.mode = (S_IRUGO | S_IWUSR)
		},
		.show  = i7core_inject_type_show,
		.store = i7core_inject_type_store,
	}, {
		.attr = {
			.name = "inject_eccmask",
			.mode = (S_IRUGO | S_IWUSR)
		},
		.show  = i7core_inject_eccmask_show,
		.store = i7core_inject_eccmask_store,
	}, {
		.grp = &i7core_inject_addrmatch,
	}, {
		.attr = {
			.name = "inject_enable",
			.mode = (S_IRUGO | S_IWUSR)
		},
		.show  = i7core_inject_enable_show,
		.store = i7core_inject_enable_store,
	}, {
		.grp = &i7core_udimm_counters,
	},
	{ }	/* End of list */
1153 1154
};

1155 1156 1157 1158 1159
/****************************************************************************
	Device initialization routines: put/get, init/exit
 ****************************************************************************/

/*
1160
 *	i7core_put_all_devices	'put' all the devices that we have
1161 1162
 *				reserved via 'get'
 */
1163
static void i7core_put_devices(struct i7core_dev *i7core_dev)
1164
{
1165
	int i;
1166

1167
	debugf0(__FILE__ ": %s()\n", __func__);
1168
	for (i = 0; i < i7core_dev->n_devs; i++) {
1169 1170 1171 1172 1173 1174 1175 1176
		struct pci_dev *pdev = i7core_dev->pdev[i];
		if (!pdev)
			continue;
		debugf0("Removing dev %02x:%02x.%d\n",
			pdev->bus->number,
			PCI_SLOT(pdev->devfn), PCI_FUNC(pdev->devfn));
		pci_dev_put(pdev);
	}
1177
}
1178

1179 1180
static void i7core_put_all_devices(void)
{
1181
	struct i7core_dev *i7core_dev, *tmp;
1182

1183
	list_for_each_entry_safe(i7core_dev, tmp, &i7core_edac_list, list) {
1184
		i7core_put_devices(i7core_dev);
1185
		free_i7core_dev(i7core_dev);
1186
	}
1187 1188
}

1189
static void __init i7core_xeon_pci_fixup(const struct pci_id_table *table)
1190 1191 1192
{
	struct pci_dev *pdev = NULL;
	int i;
1193

1194
	/*
D
David Sterba 已提交
1195
	 * On Xeon 55xx, the Intel Quick Path Arch Generic Non-core pci buses
1196 1197 1198
	 * aren't announced by acpi. So, we need to use a legacy scan probing
	 * to detect them
	 */
1199 1200 1201 1202 1203 1204
	while (table && table->descr) {
		pdev = pci_get_device(PCI_VENDOR_ID_INTEL, table->descr[0].dev_id, NULL);
		if (unlikely(!pdev)) {
			for (i = 0; i < MAX_SOCKET_BUSES; i++)
				pcibios_scan_specific_bus(255-i);
		}
1205
		pci_dev_put(pdev);
1206
		table++;
1207 1208 1209
	}
}

1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226
static unsigned i7core_pci_lastbus(void)
{
	int last_bus = 0, bus;
	struct pci_bus *b = NULL;

	while ((b = pci_find_next_bus(b)) != NULL) {
		bus = b->number;
		debugf0("Found bus %d\n", bus);
		if (bus > last_bus)
			last_bus = bus;
	}

	debugf0("Last bus %d\n", last_bus);

	return last_bus;
}

1227
/*
1228
 *	i7core_get_all_devices	Find and perform 'get' operation on the MCH's
1229 1230 1231 1232
 *			device/functions we want to reference for this driver
 *
 *			Need to 'get' device 16 func 1 and func 2
 */
1233 1234 1235 1236
static int i7core_get_onedevice(struct pci_dev **prev,
				const struct pci_id_table *table,
				const unsigned devno,
				const unsigned last_bus)
1237
{
1238
	struct i7core_dev *i7core_dev;
1239
	const struct pci_id_descr *dev_descr = &table->descr[devno];
1240

1241
	struct pci_dev *pdev = NULL;
1242 1243
	u8 bus = 0;
	u8 socket = 0;
1244

1245
	pdev = pci_get_device(PCI_VENDOR_ID_INTEL,
1246
			      dev_descr->dev_id, *prev);
1247

1248
	/*
D
David Mackey 已提交
1249
	 * On Xeon 55xx, the Intel QuickPath Arch Generic Non-core regs
1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261
	 * is at addr 8086:2c40, instead of 8086:2c41. So, we need
	 * to probe for the alternate address in case of failure
	 */
	if (dev_descr->dev_id == PCI_DEVICE_ID_INTEL_I7_NONCORE && !pdev)
		pdev = pci_get_device(PCI_VENDOR_ID_INTEL,
				      PCI_DEVICE_ID_INTEL_I7_NONCORE_ALT, *prev);

	if (dev_descr->dev_id == PCI_DEVICE_ID_INTEL_LYNNFIELD_NONCORE && !pdev)
		pdev = pci_get_device(PCI_VENDOR_ID_INTEL,
				      PCI_DEVICE_ID_INTEL_LYNNFIELD_NONCORE_ALT,
				      *prev);

1262 1263 1264 1265
	if (!pdev) {
		if (*prev) {
			*prev = pdev;
			return 0;
1266 1267
		}

1268
		if (dev_descr->optional)
1269
			return 0;
1270

1271 1272 1273
		if (devno == 0)
			return -ENODEV;

1274
		i7core_printk(KERN_INFO,
1275
			"Device not found: dev %02x.%d PCI ID %04x:%04x\n",
1276 1277
			dev_descr->dev, dev_descr->func,
			PCI_VENDOR_ID_INTEL, dev_descr->dev_id);
1278

1279 1280 1281 1282
		/* End of list, leave */
		return -ENODEV;
	}
	bus = pdev->bus->number;
1283

1284
	socket = last_bus - bus;
1285

1286 1287
	i7core_dev = get_i7core_dev(socket);
	if (!i7core_dev) {
1288
		i7core_dev = alloc_i7core_dev(socket, table);
1289 1290
		if (!i7core_dev) {
			pci_dev_put(pdev);
1291
			return -ENOMEM;
1292
		}
1293
	}
1294

1295
	if (i7core_dev->pdev[devno]) {
1296 1297 1298
		i7core_printk(KERN_ERR,
			"Duplicated device for "
			"dev %02x:%02x.%d PCI ID %04x:%04x\n",
1299 1300
			bus, dev_descr->dev, dev_descr->func,
			PCI_VENDOR_ID_INTEL, dev_descr->dev_id);
1301 1302 1303
		pci_dev_put(pdev);
		return -ENODEV;
	}
1304

1305
	i7core_dev->pdev[devno] = pdev;
1306 1307

	/* Sanity check */
1308 1309
	if (unlikely(PCI_SLOT(pdev->devfn) != dev_descr->dev ||
			PCI_FUNC(pdev->devfn) != dev_descr->func)) {
1310 1311 1312
		i7core_printk(KERN_ERR,
			"Device PCI ID %04x:%04x "
			"has dev %02x:%02x.%d instead of dev %02x:%02x.%d\n",
1313
			PCI_VENDOR_ID_INTEL, dev_descr->dev_id,
1314
			bus, PCI_SLOT(pdev->devfn), PCI_FUNC(pdev->devfn),
1315
			bus, dev_descr->dev, dev_descr->func);
1316 1317
		return -ENODEV;
	}
1318

1319 1320 1321 1322 1323
	/* Be sure that the device is enabled */
	if (unlikely(pci_enable_device(pdev) < 0)) {
		i7core_printk(KERN_ERR,
			"Couldn't enable "
			"dev %02x:%02x.%d PCI ID %04x:%04x\n",
1324 1325
			bus, dev_descr->dev, dev_descr->func,
			PCI_VENDOR_ID_INTEL, dev_descr->dev_id);
1326 1327
		return -ENODEV;
	}
1328

1329
	debugf0("Detected socket %d dev %02x:%02x.%d PCI ID %04x:%04x\n",
1330 1331 1332
		socket, bus, dev_descr->dev,
		dev_descr->func,
		PCI_VENDOR_ID_INTEL, dev_descr->dev_id);
1333

1334 1335 1336 1337 1338 1339 1340
	/*
	 * As stated on drivers/pci/search.c, the reference count for
	 * @from is always decremented if it is not %NULL. So, as we need
	 * to get all devices up to null, we need to do a get for the device
	 */
	pci_dev_get(pdev);

1341
	*prev = pdev;
1342

1343 1344
	return 0;
}
1345

1346
static int i7core_get_all_devices(void)
1347
{
1348
	int i, rc, last_bus;
1349
	struct pci_dev *pdev = NULL;
1350
	const struct pci_id_table *table = pci_dev_table;
1351

1352 1353
	last_bus = i7core_pci_lastbus();

1354
	while (table && table->descr) {
1355 1356 1357
		for (i = 0; i < table->n_devs; i++) {
			pdev = NULL;
			do {
1358
				rc = i7core_get_onedevice(&pdev, table, i,
1359
							  last_bus);
1360 1361 1362 1363 1364 1365 1366 1367 1368 1369
				if (rc < 0) {
					if (i == 0) {
						i = table->n_devs;
						break;
					}
					i7core_put_all_devices();
					return -ENODEV;
				}
			} while (pdev);
		}
1370
		table++;
1371
	}
1372

1373 1374 1375
	return 0;
}

1376 1377
static int mci_bind_devs(struct mem_ctl_info *mci,
			 struct i7core_dev *i7core_dev)
1378 1379 1380
{
	struct i7core_pvt *pvt = mci->pvt_info;
	struct pci_dev *pdev;
1381
	int i, func, slot;
1382
	char *family;
1383

1384 1385
	pvt->is_registered = false;
	pvt->enable_scrub  = false;
1386
	for (i = 0; i < i7core_dev->n_devs; i++) {
1387 1388
		pdev = i7core_dev->pdev[i];
		if (!pdev)
1389 1390
			continue;

1391 1392 1393 1394 1395 1396 1397 1398
		func = PCI_FUNC(pdev->devfn);
		slot = PCI_SLOT(pdev->devfn);
		if (slot == 3) {
			if (unlikely(func > MAX_MCR_FUNC))
				goto error;
			pvt->pci_mcr[func] = pdev;
		} else if (likely(slot >= 4 && slot < 4 + NUM_CHANS)) {
			if (unlikely(func > MAX_CHAN_FUNC))
1399
				goto error;
1400
			pvt->pci_ch[slot - 4][func] = pdev;
1401
		} else if (!slot && !func) {
1402
			pvt->pci_noncore = pdev;
1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431

			/* Detect the processor family */
			switch (pdev->device) {
			case PCI_DEVICE_ID_INTEL_I7_NONCORE:
				family = "Xeon 35xx/ i7core";
				pvt->enable_scrub = false;
				break;
			case PCI_DEVICE_ID_INTEL_LYNNFIELD_NONCORE_ALT:
				family = "i7-800/i5-700";
				pvt->enable_scrub = false;
				break;
			case PCI_DEVICE_ID_INTEL_LYNNFIELD_NONCORE:
				family = "Xeon 34xx";
				pvt->enable_scrub = false;
				break;
			case PCI_DEVICE_ID_INTEL_I7_NONCORE_ALT:
				family = "Xeon 55xx";
				pvt->enable_scrub = true;
				break;
			case PCI_DEVICE_ID_INTEL_LYNNFIELD_NONCORE_REV2:
				family = "Xeon 56xx / i7-900";
				pvt->enable_scrub = true;
				break;
			default:
				family = "unknown";
				pvt->enable_scrub = false;
			}
			debugf0("Detected a processor type %s\n", family);
		} else
1432
			goto error;
1433

1434 1435 1436
		debugf0("Associated fn %d.%d, dev = %p, socket %d\n",
			PCI_SLOT(pdev->devfn), PCI_FUNC(pdev->devfn),
			pdev, i7core_dev->socket);
1437

1438 1439
		if (PCI_SLOT(pdev->devfn) == 3 &&
			PCI_FUNC(pdev->devfn) == 2)
1440
			pvt->is_registered = true;
1441
	}
1442

1443
	return 0;
1444 1445 1446 1447 1448 1449

error:
	i7core_printk(KERN_ERR, "Device %d, function %d "
		      "is out of the expected range\n",
		      slot, func);
	return -EINVAL;
1450 1451
}

1452 1453 1454
/****************************************************************************
			Error check routines
 ****************************************************************************/
1455
static void i7core_rdimm_update_errcount(struct mem_ctl_info *mci,
1456 1457 1458
				      const int chan,
				      const int dimm,
				      const int add)
1459
{
1460
	int i;
1461 1462

	for (i = 0; i < add; i++) {
1463 1464
		edac_mc_handle_error(HW_EVENT_ERR_CORRECTED, mci, 0, 0, 0,
				     chan, dimm, -1, "error", "", NULL);
1465 1466 1467 1468
	}
}

static void i7core_rdimm_update_ce_count(struct mem_ctl_info *mci,
1469 1470 1471 1472
					 const int chan,
					 const int new0,
					 const int new1,
					 const int new2)
1473 1474 1475 1476
{
	struct i7core_pvt *pvt = mci->pvt_info;
	int add0 = 0, add1 = 0, add2 = 0;
	/* Updates CE counters if it is not the first time here */
1477
	if (pvt->ce_count_available) {
1478 1479
		/* Updates CE counters */

1480 1481 1482
		add2 = new2 - pvt->rdimm_last_ce_count[chan][2];
		add1 = new1 - pvt->rdimm_last_ce_count[chan][1];
		add0 = new0 - pvt->rdimm_last_ce_count[chan][0];
1483 1484 1485

		if (add2 < 0)
			add2 += 0x7fff;
1486
		pvt->rdimm_ce_count[chan][2] += add2;
1487 1488 1489

		if (add1 < 0)
			add1 += 0x7fff;
1490
		pvt->rdimm_ce_count[chan][1] += add1;
1491 1492 1493

		if (add0 < 0)
			add0 += 0x7fff;
1494
		pvt->rdimm_ce_count[chan][0] += add0;
1495
	} else
1496
		pvt->ce_count_available = 1;
1497 1498

	/* Store the new values */
1499 1500 1501
	pvt->rdimm_last_ce_count[chan][2] = new2;
	pvt->rdimm_last_ce_count[chan][1] = new1;
	pvt->rdimm_last_ce_count[chan][0] = new0;
1502 1503 1504

	/*updated the edac core */
	if (add0 != 0)
1505
		i7core_rdimm_update_errcount(mci, chan, 0, add0);
1506
	if (add1 != 0)
1507
		i7core_rdimm_update_errcount(mci, chan, 1, add1);
1508
	if (add2 != 0)
1509
		i7core_rdimm_update_errcount(mci, chan, 2, add2);
1510 1511 1512

}

1513
static void i7core_rdimm_check_mc_ecc_err(struct mem_ctl_info *mci)
1514 1515 1516 1517 1518 1519
{
	struct i7core_pvt *pvt = mci->pvt_info;
	u32 rcv[3][2];
	int i, new0, new1, new2;

	/*Read DEV 3: FUN 2:  MC_COR_ECC_CNT regs directly*/
1520
	pci_read_config_dword(pvt->pci_mcr[2], MC_COR_ECC_CNT_0,
1521
								&rcv[0][0]);
1522
	pci_read_config_dword(pvt->pci_mcr[2], MC_COR_ECC_CNT_1,
1523
								&rcv[0][1]);
1524
	pci_read_config_dword(pvt->pci_mcr[2], MC_COR_ECC_CNT_2,
1525
								&rcv[1][0]);
1526
	pci_read_config_dword(pvt->pci_mcr[2], MC_COR_ECC_CNT_3,
1527
								&rcv[1][1]);
1528
	pci_read_config_dword(pvt->pci_mcr[2], MC_COR_ECC_CNT_4,
1529
								&rcv[2][0]);
1530
	pci_read_config_dword(pvt->pci_mcr[2], MC_COR_ECC_CNT_5,
1531 1532 1533 1534 1535
								&rcv[2][1]);
	for (i = 0 ; i < 3; i++) {
		debugf3("MC_COR_ECC_CNT%d = 0x%x; MC_COR_ECC_CNT%d = 0x%x\n",
			(i * 2), rcv[i][0], (i * 2) + 1, rcv[i][1]);
		/*if the channel has 3 dimms*/
1536
		if (pvt->channel[i].dimms > 2) {
1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547
			new0 = DIMM_BOT_COR_ERR(rcv[i][0]);
			new1 = DIMM_TOP_COR_ERR(rcv[i][0]);
			new2 = DIMM_BOT_COR_ERR(rcv[i][1]);
		} else {
			new0 = DIMM_TOP_COR_ERR(rcv[i][0]) +
					DIMM_BOT_COR_ERR(rcv[i][0]);
			new1 = DIMM_TOP_COR_ERR(rcv[i][1]) +
					DIMM_BOT_COR_ERR(rcv[i][1]);
			new2 = 0;
		}

1548
		i7core_rdimm_update_ce_count(mci, i, new0, new1, new2);
1549 1550
	}
}
1551 1552 1553 1554 1555 1556 1557

/* This function is based on the device 3 function 4 registers as described on:
 * Intel Xeon Processor 5500 Series Datasheet Volume 2
 *	http://www.intel.com/Assets/PDF/datasheet/321322.pdf
 * also available at:
 * 	http://www.arrownac.com/manufacturers/intel/s/nehalem/5500-datasheet-v2.pdf
 */
1558
static void i7core_udimm_check_mc_ecc_err(struct mem_ctl_info *mci)
1559 1560 1561 1562 1563
{
	struct i7core_pvt *pvt = mci->pvt_info;
	u32 rcv1, rcv0;
	int new0, new1, new2;

1564
	if (!pvt->pci_mcr[4]) {
1565
		debugf0("%s MCR registers not found\n", __func__);
1566 1567 1568
		return;
	}

1569
	/* Corrected test errors */
1570 1571
	pci_read_config_dword(pvt->pci_mcr[4], MC_TEST_ERR_RCV1, &rcv1);
	pci_read_config_dword(pvt->pci_mcr[4], MC_TEST_ERR_RCV0, &rcv0);
1572 1573 1574 1575 1576 1577 1578

	/* Store the new values */
	new2 = DIMM2_COR_ERR(rcv1);
	new1 = DIMM1_COR_ERR(rcv0);
	new0 = DIMM0_COR_ERR(rcv0);

	/* Updates CE counters if it is not the first time here */
1579
	if (pvt->ce_count_available) {
1580 1581 1582
		/* Updates CE counters */
		int add0, add1, add2;

1583 1584 1585
		add2 = new2 - pvt->udimm_last_ce_count[2];
		add1 = new1 - pvt->udimm_last_ce_count[1];
		add0 = new0 - pvt->udimm_last_ce_count[0];
1586 1587 1588

		if (add2 < 0)
			add2 += 0x7fff;
1589
		pvt->udimm_ce_count[2] += add2;
1590 1591 1592

		if (add1 < 0)
			add1 += 0x7fff;
1593
		pvt->udimm_ce_count[1] += add1;
1594 1595 1596

		if (add0 < 0)
			add0 += 0x7fff;
1597
		pvt->udimm_ce_count[0] += add0;
1598 1599 1600 1601 1602

		if (add0 | add1 | add2)
			i7core_printk(KERN_ERR, "New Corrected error(s): "
				      "dimm0: +%d, dimm1: +%d, dimm2 +%d\n",
				      add0, add1, add2);
1603
	} else
1604
		pvt->ce_count_available = 1;
1605 1606

	/* Store the new values */
1607 1608 1609
	pvt->udimm_last_ce_count[2] = new2;
	pvt->udimm_last_ce_count[1] = new1;
	pvt->udimm_last_ce_count[0] = new0;
1610 1611
}

1612 1613 1614
/*
 * According with tables E-11 and E-12 of chapter E.3.3 of Intel 64 and IA-32
 * Architectures Software Developer’s Manual Volume 3B.
1615 1616 1617
 * Nehalem are defined as family 0x06, model 0x1a
 *
 * The MCA registers used here are the following ones:
1618
 *     struct mce field	MCA Register
1619 1620 1621
 *     m->status	MSR_IA32_MC8_STATUS
 *     m->addr		MSR_IA32_MC8_ADDR
 *     m->misc		MSR_IA32_MC8_MISC
1622 1623 1624
 * In the case of Nehalem, the error information is masked at .status and .misc
 * fields
 */
1625
static void i7core_mce_output_error(struct mem_ctl_info *mci,
1626
				    const struct mce *m)
1627
{
1628
	struct i7core_pvt *pvt = mci->pvt_info;
1629
	char *type, *optype, *err, msg[80];
1630
	enum hw_event_mc_err_type tp_event;
1631
	unsigned long error = m->status & 0x1ff0000l;
1632 1633
	bool uncorrected_error = m->mcgstatus & 1ll << 61;
	bool ripv = m->mcgstatus & 1;
1634
	u32 optypenum = (m->status >> 4) & 0x07;
1635
	u32 core_err_cnt = (m->status >> 38) & 0x7fff;
1636 1637 1638 1639 1640
	u32 dimm = (m->misc >> 16) & 0x3;
	u32 channel = (m->misc >> 18) & 0x3;
	u32 syndrome = m->misc >> 32;
	u32 errnum = find_first_bit(&error, 32);

1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652
	if (uncorrected_error) {
		if (ripv) {
			type = "FATAL";
			tp_event = HW_EVENT_ERR_FATAL;
		} else {
			type = "NON_FATAL";
			tp_event = HW_EVENT_ERR_UNCORRECTED;
		}
	} else {
		type = "CORRECTED";
		tp_event = HW_EVENT_ERR_CORRECTED;
	}
1653

1654
	switch (optypenum) {
1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672
	case 0:
		optype = "generic undef request";
		break;
	case 1:
		optype = "read error";
		break;
	case 2:
		optype = "write error";
		break;
	case 3:
		optype = "addr/cmd error";
		break;
	case 4:
		optype = "scrubbing error";
		break;
	default:
		optype = "reserved";
		break;
1673 1674
	}

1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704
	switch (errnum) {
	case 16:
		err = "read ECC error";
		break;
	case 17:
		err = "RAS ECC error";
		break;
	case 18:
		err = "write parity error";
		break;
	case 19:
		err = "redundacy loss";
		break;
	case 20:
		err = "reserved";
		break;
	case 21:
		err = "memory range error";
		break;
	case 22:
		err = "RTID out of range";
		break;
	case 23:
		err = "address parity error";
		break;
	case 24:
		err = "byte enable parity error";
		break;
	default:
		err = "unknown";
1705 1706
	}

1707
	snprintf(msg, sizeof(msg), "count=%d %s", core_err_cnt, optype);
1708

1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720
	/*
	 * Call the helper to output message
	 * FIXME: what to do if core_err_cnt > 1? Currently, it generates
	 * only one event
	 */
	if (uncorrected_error || !pvt->is_registered)
		edac_mc_handle_error(tp_event, mci,
				     m->addr >> PAGE_SHIFT,
				     m->addr & ~PAGE_MASK,
				     syndrome,
				     channel, dimm, -1,
				     err, msg, m);
1721 1722
}

1723 1724 1725 1726 1727 1728
/*
 *	i7core_check_error	Retrieve and process errors reported by the
 *				hardware. Called by the Core module.
 */
static void i7core_check_error(struct mem_ctl_info *mci)
{
1729 1730 1731
	struct i7core_pvt *pvt = mci->pvt_info;
	int i;
	unsigned count = 0;
1732
	struct mce *m;
1733

1734 1735 1736
	/*
	 * MCE first step: Copy all mce errors into a temporary buffer
	 * We use a double buffering here, to reduce the risk of
L
Lucas De Marchi 已提交
1737
	 * losing an error.
1738 1739
	 */
	smp_rmb();
1740 1741
	count = (pvt->mce_out + MCE_LOG_LEN - pvt->mce_in)
		% MCE_LOG_LEN;
1742
	if (!count)
1743
		goto check_ce_error;
1744

1745
	m = pvt->mce_outentry;
1746 1747
	if (pvt->mce_in + count > MCE_LOG_LEN) {
		unsigned l = MCE_LOG_LEN - pvt->mce_in;
1748

1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765
		memcpy(m, &pvt->mce_entry[pvt->mce_in], sizeof(*m) * l);
		smp_wmb();
		pvt->mce_in = 0;
		count -= l;
		m += l;
	}
	memcpy(m, &pvt->mce_entry[pvt->mce_in], sizeof(*m) * count);
	smp_wmb();
	pvt->mce_in += count;

	smp_rmb();
	if (pvt->mce_overrun) {
		i7core_printk(KERN_ERR, "Lost %d memory errors\n",
			      pvt->mce_overrun);
		smp_wmb();
		pvt->mce_overrun = 0;
	}
1766

1767 1768 1769
	/*
	 * MCE second step: parse errors and display
	 */
1770
	for (i = 0; i < count; i++)
1771
		i7core_mce_output_error(mci, &pvt->mce_outentry[i]);
1772

1773 1774 1775
	/*
	 * Now, let's increment CE error counts
	 */
1776
check_ce_error:
1777 1778 1779 1780
	if (!pvt->is_registered)
		i7core_udimm_check_mc_ecc_err(mci);
	else
		i7core_rdimm_check_mc_ecc_err(mci);
1781 1782
}

1783 1784 1785 1786 1787
/*
 * i7core_mce_check_error	Replicates mcelog routine to get errors
 *				This routine simply queues mcelog errors, and
 *				return. The error itself should be handled later
 *				by i7core_check_error.
1788 1789
 * WARNING: As this routine should be called at NMI time, extra care should
 * be taken to avoid deadlocks, and to be as fast as possible.
1790
 */
1791 1792
static int i7core_mce_check_error(struct notifier_block *nb, unsigned long val,
				  void *data)
1793
{
1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804
	struct mce *mce = (struct mce *)data;
	struct i7core_dev *i7_dev;
	struct mem_ctl_info *mci;
	struct i7core_pvt *pvt;

	i7_dev = get_i7core_dev(mce->socketid);
	if (!i7_dev)
		return NOTIFY_BAD;

	mci = i7_dev->mci;
	pvt = mci->pvt_info;
1805

1806 1807 1808 1809 1810
	/*
	 * Just let mcelog handle it if the error is
	 * outside the memory controller
	 */
	if (((mce->status & 0xffff) >> 7) != 1)
1811
		return NOTIFY_DONE;
1812

1813 1814
	/* Bank 8 registers are the only ones that we know how to handle */
	if (mce->bank != 8)
1815
		return NOTIFY_DONE;
1816

R
Randy Dunlap 已提交
1817
#ifdef CONFIG_SMP
1818
	/* Only handle if it is the right mc controller */
1819
	if (mce->socketid != pvt->i7core_dev->socket)
1820
		return NOTIFY_DONE;
R
Randy Dunlap 已提交
1821
#endif
1822

1823
	smp_rmb();
1824
	if ((pvt->mce_out + 1) % MCE_LOG_LEN == pvt->mce_in) {
1825 1826
		smp_wmb();
		pvt->mce_overrun++;
1827
		return NOTIFY_DONE;
1828
	}
1829 1830 1831

	/* Copy memory error at the ringbuffer */
	memcpy(&pvt->mce_entry[pvt->mce_out], mce, sizeof(*mce));
1832
	smp_wmb();
1833
	pvt->mce_out = (pvt->mce_out + 1) % MCE_LOG_LEN;
1834

1835 1836 1837 1838
	/* Handle fatal errors immediately */
	if (mce->mcgstatus & 1)
		i7core_check_error(mci);

D
David Sterba 已提交
1839
	/* Advise mcelog that the errors were handled */
1840
	return NOTIFY_STOP;
1841 1842
}

1843 1844 1845 1846
static struct notifier_block i7_mce_dec = {
	.notifier_call	= i7core_mce_check_error,
};

N
Nils Carlson 已提交
1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952
struct memdev_dmi_entry {
	u8 type;
	u8 length;
	u16 handle;
	u16 phys_mem_array_handle;
	u16 mem_err_info_handle;
	u16 total_width;
	u16 data_width;
	u16 size;
	u8 form;
	u8 device_set;
	u8 device_locator;
	u8 bank_locator;
	u8 memory_type;
	u16 type_detail;
	u16 speed;
	u8 manufacturer;
	u8 serial_number;
	u8 asset_tag;
	u8 part_number;
	u8 attributes;
	u32 extended_size;
	u16 conf_mem_clk_speed;
} __attribute__((__packed__));


/*
 * Decode the DRAM Clock Frequency, be paranoid, make sure that all
 * memory devices show the same speed, and if they don't then consider
 * all speeds to be invalid.
 */
static void decode_dclk(const struct dmi_header *dh, void *_dclk_freq)
{
	int *dclk_freq = _dclk_freq;
	u16 dmi_mem_clk_speed;

	if (*dclk_freq == -1)
		return;

	if (dh->type == DMI_ENTRY_MEM_DEVICE) {
		struct memdev_dmi_entry *memdev_dmi_entry =
			(struct memdev_dmi_entry *)dh;
		unsigned long conf_mem_clk_speed_offset =
			(unsigned long)&memdev_dmi_entry->conf_mem_clk_speed -
			(unsigned long)&memdev_dmi_entry->type;
		unsigned long speed_offset =
			(unsigned long)&memdev_dmi_entry->speed -
			(unsigned long)&memdev_dmi_entry->type;

		/* Check that a DIMM is present */
		if (memdev_dmi_entry->size == 0)
			return;

		/*
		 * Pick the configured speed if it's available, otherwise
		 * pick the DIMM speed, or we don't have a speed.
		 */
		if (memdev_dmi_entry->length > conf_mem_clk_speed_offset) {
			dmi_mem_clk_speed =
				memdev_dmi_entry->conf_mem_clk_speed;
		} else if (memdev_dmi_entry->length > speed_offset) {
			dmi_mem_clk_speed = memdev_dmi_entry->speed;
		} else {
			*dclk_freq = -1;
			return;
		}

		if (*dclk_freq == 0) {
			/* First pass, speed was 0 */
			if (dmi_mem_clk_speed > 0) {
				/* Set speed if a valid speed is read */
				*dclk_freq = dmi_mem_clk_speed;
			} else {
				/* Otherwise we don't have a valid speed */
				*dclk_freq = -1;
			}
		} else if (*dclk_freq > 0 &&
			   *dclk_freq != dmi_mem_clk_speed) {
			/*
			 * If we have a speed, check that all DIMMS are the same
			 * speed, otherwise set the speed as invalid.
			 */
			*dclk_freq = -1;
		}
	}
}

/*
 * The default DCLK frequency is used as a fallback if we
 * fail to find anything reliable in the DMI. The value
 * is taken straight from the datasheet.
 */
#define DEFAULT_DCLK_FREQ 800

static int get_dclk_freq(void)
{
	int dclk_freq = 0;

	dmi_walk(decode_dclk, (void *)&dclk_freq);

	if (dclk_freq < 1)
		return DEFAULT_DCLK_FREQ;

	return dclk_freq;
}

1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975
/*
 * set_sdram_scrub_rate		This routine sets byte/sec bandwidth scrub rate
 *				to hardware according to SCRUBINTERVAL formula
 *				found in datasheet.
 */
static int set_sdram_scrub_rate(struct mem_ctl_info *mci, u32 new_bw)
{
	struct i7core_pvt *pvt = mci->pvt_info;
	struct pci_dev *pdev;
	u32 dw_scrub;
	u32 dw_ssr;

	/* Get data from the MC register, function 2 */
	pdev = pvt->pci_mcr[2];
	if (!pdev)
		return -ENODEV;

	pci_read_config_dword(pdev, MC_SCRUB_CONTROL, &dw_scrub);

	if (new_bw == 0) {
		/* Prepare to disable petrol scrub */
		dw_scrub &= ~STARTSCRUB;
		/* Stop the patrol scrub engine */
N
Nils Carlson 已提交
1976 1977
		write_and_test(pdev, MC_SCRUB_CONTROL,
			       dw_scrub & ~SCRUBINTERVAL_MASK);
1978 1979 1980 1981 1982 1983

		/* Get current status of scrub rate and set bit to disable */
		pci_read_config_dword(pdev, MC_SSRCONTROL, &dw_ssr);
		dw_ssr &= ~SSR_MODE_MASK;
		dw_ssr |= SSR_MODE_DISABLE;
	} else {
N
Nils Carlson 已提交
1984 1985 1986
		const int cache_line_size = 64;
		const u32 freq_dclk_mhz = pvt->dclk_freq;
		unsigned long long scrub_interval;
1987 1988
		/*
		 * Translate the desired scrub rate to a register value and
N
Nils Carlson 已提交
1989
		 * program the corresponding register value.
1990
		 */
N
Nils Carlson 已提交
1991
		scrub_interval = (unsigned long long)freq_dclk_mhz *
1992 1993
			cache_line_size * 1000000;
		do_div(scrub_interval, new_bw);
N
Nils Carlson 已提交
1994 1995 1996 1997 1998

		if (!scrub_interval || scrub_interval > SCRUBINTERVAL_MASK)
			return -EINVAL;

		dw_scrub = SCRUBINTERVAL_MASK & scrub_interval;
1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016

		/* Start the patrol scrub engine */
		pci_write_config_dword(pdev, MC_SCRUB_CONTROL,
				       STARTSCRUB | dw_scrub);

		/* Get current status of scrub rate and set bit to enable */
		pci_read_config_dword(pdev, MC_SSRCONTROL, &dw_ssr);
		dw_ssr &= ~SSR_MODE_MASK;
		dw_ssr |= SSR_MODE_ENABLE;
	}
	/* Disable or enable scrubbing */
	pci_write_config_dword(pdev, MC_SSRCONTROL, dw_ssr);

	return new_bw;
}

/*
 * get_sdram_scrub_rate		This routine convert current scrub rate value
D
David Mackey 已提交
2017
 *				into byte/sec bandwidth according to
2018 2019 2020 2021 2022 2023 2024
 *				SCRUBINTERVAL formula found in datasheet.
 */
static int get_sdram_scrub_rate(struct mem_ctl_info *mci)
{
	struct i7core_pvt *pvt = mci->pvt_info;
	struct pci_dev *pdev;
	const u32 cache_line_size = 64;
N
Nils Carlson 已提交
2025 2026
	const u32 freq_dclk_mhz = pvt->dclk_freq;
	unsigned long long scrub_rate;
2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037
	u32 scrubval;

	/* Get data from the MC register, function 2 */
	pdev = pvt->pci_mcr[2];
	if (!pdev)
		return -ENODEV;

	/* Get current scrub control data */
	pci_read_config_dword(pdev, MC_SCRUB_CONTROL, &scrubval);

	/* Mask highest 8-bits to 0 */
N
Nils Carlson 已提交
2038
	scrubval &=  SCRUBINTERVAL_MASK;
2039 2040 2041 2042
	if (!scrubval)
		return 0;

	/* Calculate scrub rate value into byte/sec bandwidth */
N
Nils Carlson 已提交
2043
	scrub_rate =  (unsigned long long)freq_dclk_mhz *
2044 2045
		1000000 * cache_line_size;
	do_div(scrub_rate, scrubval);
N
Nils Carlson 已提交
2046
	return (int)scrub_rate;
2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075
}

static void enable_sdram_scrub_setting(struct mem_ctl_info *mci)
{
	struct i7core_pvt *pvt = mci->pvt_info;
	u32 pci_lock;

	/* Unlock writes to pci registers */
	pci_read_config_dword(pvt->pci_noncore, MC_CFG_CONTROL, &pci_lock);
	pci_lock &= ~0x3;
	pci_write_config_dword(pvt->pci_noncore, MC_CFG_CONTROL,
			       pci_lock | MC_CFG_UNLOCK);

	mci->set_sdram_scrub_rate = set_sdram_scrub_rate;
	mci->get_sdram_scrub_rate = get_sdram_scrub_rate;
}

static void disable_sdram_scrub_setting(struct mem_ctl_info *mci)
{
	struct i7core_pvt *pvt = mci->pvt_info;
	u32 pci_lock;

	/* Lock writes to pci registers */
	pci_read_config_dword(pvt->pci_noncore, MC_CFG_CONTROL, &pci_lock);
	pci_lock &= ~0x3;
	pci_write_config_dword(pvt->pci_noncore, MC_CFG_CONTROL,
			       pci_lock | MC_CFG_LOCK);
}

2076 2077 2078 2079 2080 2081
static void i7core_pci_ctl_create(struct i7core_pvt *pvt)
{
	pvt->i7core_pci = edac_pci_create_generic_ctl(
						&pvt->i7core_dev->pdev[0]->dev,
						EDAC_MOD_STR);
	if (unlikely(!pvt->i7core_pci))
2082 2083
		i7core_printk(KERN_WARNING,
			      "Unable to setup PCI error report via EDAC\n");
2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096
}

static void i7core_pci_ctl_release(struct i7core_pvt *pvt)
{
	if (likely(pvt->i7core_pci))
		edac_pci_release_generic_ctl(pvt->i7core_pci);
	else
		i7core_printk(KERN_ERR,
				"Couldn't find mem_ctl_info for socket %d\n",
				pvt->i7core_dev->socket);
	pvt->i7core_pci = NULL;
}

2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114
static void i7core_unregister_mci(struct i7core_dev *i7core_dev)
{
	struct mem_ctl_info *mci = i7core_dev->mci;
	struct i7core_pvt *pvt;

	if (unlikely(!mci || !mci->pvt_info)) {
		debugf0("MC: " __FILE__ ": %s(): dev = %p\n",
			__func__, &i7core_dev->pdev[0]->dev);

		i7core_printk(KERN_ERR, "Couldn't find mci handler\n");
		return;
	}

	pvt = mci->pvt_info;

	debugf0("MC: " __FILE__ ": %s(): mci = %p, dev = %p\n",
		__func__, mci, &i7core_dev->pdev[0]->dev);

2115
	/* Disable scrubrate setting */
2116 2117
	if (pvt->enable_scrub)
		disable_sdram_scrub_setting(mci);
2118

2119
	mce_unregister_decode_chain(&i7_mce_dec);
2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132

	/* Disable EDAC polling */
	i7core_pci_ctl_release(pvt);

	/* Remove MC sysfs nodes */
	edac_mc_del_mc(mci->dev);

	debugf1("%s: free mci struct\n", mci->ctl_name);
	kfree(mci->ctl_name);
	edac_mc_free(mci);
	i7core_dev->mci = NULL;
}

2133
static int i7core_register_mci(struct i7core_dev *i7core_dev)
2134 2135 2136
{
	struct mem_ctl_info *mci;
	struct i7core_pvt *pvt;
2137 2138
	int rc;
	struct edac_mc_layer layers[2];
2139 2140

	/* allocate a new MC control structure */
2141 2142 2143 2144 2145 2146 2147

	layers[0].type = EDAC_MC_LAYER_CHANNEL;
	layers[0].size = NUM_CHANS;
	layers[0].is_virt_csrow = false;
	layers[1].type = EDAC_MC_LAYER_SLOT;
	layers[1].size = MAX_DIMMS;
	layers[1].is_virt_csrow = true;
2148
	mci = edac_mc_alloc(i7core_dev->socket, ARRAY_SIZE(layers), layers,
2149
			    sizeof(*pvt));
2150 2151
	if (unlikely(!mci))
		return -ENOMEM;
2152

2153 2154
	debugf0("MC: " __FILE__ ": %s(): mci = %p, dev = %p\n",
		__func__, mci, &i7core_dev->pdev[0]->dev);
2155 2156

	pvt = mci->pvt_info;
2157
	memset(pvt, 0, sizeof(*pvt));
2158

2159 2160 2161 2162
	/* Associates i7core_dev and mci for future usage */
	pvt->i7core_dev = i7core_dev;
	i7core_dev->mci = mci;

2163 2164 2165 2166 2167 2168
	/*
	 * FIXME: how to handle RDDR3 at MCI level? It is possible to have
	 * Mixed RDDR3/UDDR3 with Nehalem, provided that they are on different
	 * memory channels
	 */
	mci->mtype_cap = MEM_FLAG_DDR3;
2169 2170 2171 2172
	mci->edac_ctl_cap = EDAC_FLAG_NONE;
	mci->edac_cap = EDAC_FLAG_NONE;
	mci->mod_name = "i7core_edac.c";
	mci->mod_ver = I7CORE_REVISION;
2173 2174 2175
	mci->ctl_name = kasprintf(GFP_KERNEL, "i7 core #%d",
				  i7core_dev->socket);
	mci->dev_name = pci_name(i7core_dev->pdev[0]);
2176
	mci->ctl_page_to_phys = NULL;
2177

2178
	/* Store pci devices at mci for faster access */
2179
	rc = mci_bind_devs(mci, i7core_dev);
2180
	if (unlikely(rc < 0))
2181
		goto fail0;
2182

2183 2184 2185 2186 2187
	if (pvt->is_registered)
		mci->mc_driver_sysfs_attributes = i7core_sysfs_rdimm_attrs;
	else
		mci->mc_driver_sysfs_attributes = i7core_sysfs_udimm_attrs;

2188
	/* Get dimm basic config */
2189
	get_dimm_config(mci);
2190 2191 2192 2193
	/* record ptr to the generic device */
	mci->dev = &i7core_dev->pdev[0]->dev;
	/* Set the function pointer to an actual operation function */
	mci->edac_check = i7core_check_error;
2194

2195
	/* Enable scrubrate setting */
2196 2197
	if (pvt->enable_scrub)
		enable_sdram_scrub_setting(mci);
2198

2199
	/* add this new MC control structure to EDAC's list of MCs */
2200
	if (unlikely(edac_mc_add_mc(mci))) {
2201 2202 2203 2204 2205
		debugf0("MC: " __FILE__
			": %s(): failed edac_mc_add_mc()\n", __func__);
		/* FIXME: perhaps some code should go here that disables error
		 * reporting if we just enabled it
		 */
2206 2207

		rc = -EINVAL;
2208
		goto fail0;
2209 2210
	}

2211
	/* Default error mask is any memory */
2212
	pvt->inject.channel = 0;
2213 2214 2215 2216 2217 2218
	pvt->inject.dimm = -1;
	pvt->inject.rank = -1;
	pvt->inject.bank = -1;
	pvt->inject.page = -1;
	pvt->inject.col = -1;

2219 2220 2221
	/* allocating generic PCI control info */
	i7core_pci_ctl_create(pvt);

N
Nils Carlson 已提交
2222 2223 2224
	/* DCLK for scrub rate setting */
	pvt->dclk_freq = get_dclk_freq();

2225
	mce_register_decode_chain(&i7_mce_dec);
2226

2227 2228 2229 2230 2231
	return 0;

fail0:
	kfree(mci->ctl_name);
	edac_mc_free(mci);
2232
	i7core_dev->mci = NULL;
2233 2234 2235 2236 2237 2238 2239 2240 2241 2242
	return rc;
}

/*
 *	i7core_probe	Probe for ONE instance of device to see if it is
 *			present.
 *	return:
 *		0 for FOUND a device
 *		< 0 for error code
 */
2243

2244 2245 2246
static int __devinit i7core_probe(struct pci_dev *pdev,
				  const struct pci_device_id *id)
{
2247
	int rc, count = 0;
2248 2249
	struct i7core_dev *i7core_dev;

2250 2251 2252
	/* get the pci devices we want to reserve for our use */
	mutex_lock(&i7core_edac_lock);

2253
	/*
2254
	 * All memory controllers are allocated at the first pass.
2255
	 */
2256 2257
	if (unlikely(probed >= 1)) {
		mutex_unlock(&i7core_edac_lock);
2258
		return -ENODEV;
2259 2260
	}
	probed++;
2261

2262
	rc = i7core_get_all_devices();
2263 2264 2265 2266
	if (unlikely(rc < 0))
		goto fail0;

	list_for_each_entry(i7core_dev, &i7core_edac_list, list) {
2267
		count++;
2268
		rc = i7core_register_mci(i7core_dev);
2269 2270
		if (unlikely(rc < 0))
			goto fail1;
2271 2272
	}

2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288
	/*
	 * Nehalem-EX uses a different memory controller. However, as the
	 * memory controller is not visible on some Nehalem/Nehalem-EP, we
	 * need to indirectly probe via a X58 PCI device. The same devices
	 * are found on (some) Nehalem-EX. So, on those machines, the
	 * probe routine needs to return -ENODEV, as the actual Memory
	 * Controller registers won't be detected.
	 */
	if (!count) {
		rc = -ENODEV;
		goto fail1;
	}

	i7core_printk(KERN_INFO,
		      "Driver loaded, %d memory controller(s) found.\n",
		      count);
2289

2290
	mutex_unlock(&i7core_edac_lock);
2291 2292
	return 0;

2293
fail1:
2294 2295 2296
	list_for_each_entry(i7core_dev, &i7core_edac_list, list)
		i7core_unregister_mci(i7core_dev);

2297
	i7core_put_all_devices();
2298 2299
fail0:
	mutex_unlock(&i7core_edac_lock);
2300
	return rc;
2301 2302 2303 2304 2305 2306 2307 2308
}

/*
 *	i7core_remove	destructor for one instance of device
 *
 */
static void __devexit i7core_remove(struct pci_dev *pdev)
{
2309
	struct i7core_dev *i7core_dev;
2310 2311 2312

	debugf0(__FILE__ ": %s()\n", __func__);

2313 2314 2315 2316 2317 2318 2319
	/*
	 * we have a trouble here: pdev value for removal will be wrong, since
	 * it will point to the X58 register used to detect that the machine
	 * is a Nehalem or upper design. However, due to the way several PCI
	 * devices are grouped together to provide MC functionality, we need
	 * to use a different method for releasing the devices
	 */
2320

2321
	mutex_lock(&i7core_edac_lock);
2322 2323 2324 2325 2326 2327

	if (unlikely(!probed)) {
		mutex_unlock(&i7core_edac_lock);
		return;
	}

2328 2329
	list_for_each_entry(i7core_dev, &i7core_edac_list, list)
		i7core_unregister_mci(i7core_dev);
2330 2331 2332 2333

	/* Release PCI resources */
	i7core_put_all_devices();

2334 2335
	probed--;

2336
	mutex_unlock(&i7core_edac_lock);
2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364
}

MODULE_DEVICE_TABLE(pci, i7core_pci_tbl);

/*
 *	i7core_driver	pci_driver structure for this module
 *
 */
static struct pci_driver i7core_driver = {
	.name     = "i7core_edac",
	.probe    = i7core_probe,
	.remove   = __devexit_p(i7core_remove),
	.id_table = i7core_pci_tbl,
};

/*
 *	i7core_init		Module entry function
 *			Try to initialize this module for its devices
 */
static int __init i7core_init(void)
{
	int pci_rc;

	debugf2("MC: " __FILE__ ": %s()\n", __func__);

	/* Ensure that the OPSTATE is set correctly for POLL or NMI */
	opstate_init();

2365 2366
	if (use_pci_fixup)
		i7core_xeon_pci_fixup(pci_dev_table);
2367

2368 2369
	pci_rc = pci_register_driver(&i7core_driver);

2370 2371 2372 2373 2374 2375 2376
	if (pci_rc >= 0)
		return 0;

	i7core_printk(KERN_ERR, "Failed to register device with error %d.\n",
		      pci_rc);

	return pci_rc;
2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399
}

/*
 *	i7core_exit()	Module exit function
 *			Unregister the driver
 */
static void __exit i7core_exit(void)
{
	debugf2("MC: " __FILE__ ": %s()\n", __func__);
	pci_unregister_driver(&i7core_driver);
}

module_init(i7core_init);
module_exit(i7core_exit);

MODULE_LICENSE("GPL");
MODULE_AUTHOR("Mauro Carvalho Chehab <mchehab@redhat.com>");
MODULE_AUTHOR("Red Hat Inc. (http://www.redhat.com)");
MODULE_DESCRIPTION("MC Driver for Intel i7 Core memory controllers - "
		   I7CORE_REVISION);

module_param(edac_op_state, int, 0444);
MODULE_PARM_DESC(edac_op_state, "EDAC Error Reporting state: 0=Poll,1=NMI");