i7core_edac.c 54.2 KB
Newer Older
1 2 3 4 5 6
/* Intel i7 core/Nehalem Memory Controller kernel module
 *
 * This driver supports yhe memory controllers found on the Intel
 * processor families i7core, i7core 7xx/8xx, i5core, Xeon 35xx,
 * Xeon 55xx and Xeon 56xx also known as Nehalem, Nehalem-EP, Lynnfield
 * and Westmere-EP.
7 8 9 10
 *
 * This file may be distributed under the terms of the
 * GNU General Public License version 2 only.
 *
11
 * Copyright (c) 2009-2010 by:
12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32
 *	 Mauro Carvalho Chehab <mchehab@redhat.com>
 *
 * Red Hat Inc. http://www.redhat.com
 *
 * Forked and adapted from the i5400_edac driver
 *
 * Based on the following public Intel datasheets:
 * Intel Core i7 Processor Extreme Edition and Intel Core i7 Processor
 * Datasheet, Volume 2:
 *	http://download.intel.com/design/processor/datashts/320835.pdf
 * Intel Xeon Processor 5500 Series Datasheet Volume 2
 *	http://www.intel.com/Assets/PDF/datasheet/321322.pdf
 * also available at:
 * 	http://www.arrownac.com/manufacturers/intel/s/nehalem/5500-datasheet-v2.pdf
 */

#include <linux/module.h>
#include <linux/init.h>
#include <linux/pci.h>
#include <linux/pci_ids.h>
#include <linux/slab.h>
R
Randy Dunlap 已提交
33
#include <linux/delay.h>
34 35
#include <linux/edac.h>
#include <linux/mmzone.h>
36
#include <linux/edac_mce.h>
37
#include <linux/smp.h>
38
#include <asm/processor.h>
39 40 41

#include "edac_core.h"

42 43 44 45 46
/* Static vars */
static LIST_HEAD(i7core_edac_list);
static DEFINE_MUTEX(i7core_edac_lock);
static int probed;

47 48 49 50 51 52 53 54 55
/*
 * This is used for Nehalem-EP and Nehalem-EX devices, where the non-core
 * registers start at bus 255, and are not reported by BIOS.
 * We currently find devices with only 2 sockets. In order to support more QPI
 * Quick Path Interconnect, just increment this number.
 */
#define MAX_SOCKET_BUSES	2


56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74
/*
 * Alter this version for the module when modifications are made
 */
#define I7CORE_REVISION    " Ver: 1.0.0 " __DATE__
#define EDAC_MOD_STR      "i7core_edac"

/*
 * Debug macros
 */
#define i7core_printk(level, fmt, arg...)			\
	edac_printk(level, "i7core", fmt, ##arg)

#define i7core_mc_printk(mci, level, fmt, arg...)		\
	edac_mc_chipset_printk(mci, level, "i7core", fmt, ##arg)

/*
 * i7core Memory Controller Registers
 */

75 76 77 78
	/* OFFSETS for Device 0 Function 0 */

#define MC_CFG_CONTROL	0x90

79 80 81 82 83 84
	/* OFFSETS for Device 3 Function 0 */

#define MC_CONTROL	0x48
#define MC_STATUS	0x4c
#define MC_MAX_DOD	0x64

85 86 87 88 89 90 91 92 93 94 95 96
/*
 * OFFSETS for Device 3 Function 4, as inicated on Xeon 5500 datasheet:
 * http://www.arrownac.com/manufacturers/intel/s/nehalem/5500-datasheet-v2.pdf
 */

#define MC_TEST_ERR_RCV1	0x60
  #define DIMM2_COR_ERR(r)			((r) & 0x7fff)

#define MC_TEST_ERR_RCV0	0x64
  #define DIMM1_COR_ERR(r)			(((r) >> 16) & 0x7fff)
  #define DIMM0_COR_ERR(r)			((r) & 0x7fff)

97 98 99 100 101 102 103 104 105 106 107 108
/* OFFSETS for Device 3 Function 2, as inicated on Xeon 5500 datasheet */
#define MC_COR_ECC_CNT_0	0x80
#define MC_COR_ECC_CNT_1	0x84
#define MC_COR_ECC_CNT_2	0x88
#define MC_COR_ECC_CNT_3	0x8c
#define MC_COR_ECC_CNT_4	0x90
#define MC_COR_ECC_CNT_5	0x94

#define DIMM_TOP_COR_ERR(r)			(((r) >> 16) & 0x7fff)
#define DIMM_BOT_COR_ERR(r)			((r) & 0x7fff)


109 110
	/* OFFSETS for Devices 4,5 and 6 Function 0 */

111 112 113 114 115 116
#define MC_CHANNEL_DIMM_INIT_PARAMS 0x58
  #define THREE_DIMMS_PRESENT		(1 << 24)
  #define SINGLE_QUAD_RANK_PRESENT	(1 << 23)
  #define QUAD_RANK_PRESENT		(1 << 22)
  #define REGISTERED_DIMM		(1 << 15)

117 118 119 120
#define MC_CHANNEL_MAPPER	0x60
  #define RDLCH(r, ch)		((((r) >> (3 + (ch * 6))) & 0x07) - 1)
  #define WRLCH(r, ch)		((((r) >> (ch * 6)) & 0x07) - 1)

121 122 123
#define MC_CHANNEL_RANK_PRESENT 0x7c
  #define RANK_PRESENT_MASK		0xffff

124
#define MC_CHANNEL_ADDR_MATCH	0xf0
125 126 127 128 129 130 131 132 133 134
#define MC_CHANNEL_ERROR_MASK	0xf8
#define MC_CHANNEL_ERROR_INJECT	0xfc
  #define INJECT_ADDR_PARITY	0x10
  #define INJECT_ECC		0x08
  #define MASK_CACHELINE	0x06
  #define MASK_FULL_CACHELINE	0x06
  #define MASK_MSB32_CACHELINE	0x04
  #define MASK_LSB32_CACHELINE	0x02
  #define NO_MASK_CACHELINE	0x00
  #define REPEAT_EN		0x01
135

136
	/* OFFSETS for Devices 4,5 and 6 Function 1 */
137

138 139 140 141 142 143 144
#define MC_DOD_CH_DIMM0		0x48
#define MC_DOD_CH_DIMM1		0x4c
#define MC_DOD_CH_DIMM2		0x50
  #define RANKOFFSET_MASK	((1 << 12) | (1 << 11) | (1 << 10))
  #define RANKOFFSET(x)		((x & RANKOFFSET_MASK) >> 10)
  #define DIMM_PRESENT_MASK	(1 << 9)
  #define DIMM_PRESENT(x)	(((x) & DIMM_PRESENT_MASK) >> 9)
145 146 147 148
  #define MC_DOD_NUMBANK_MASK		((1 << 8) | (1 << 7))
  #define MC_DOD_NUMBANK(x)		(((x) & MC_DOD_NUMBANK_MASK) >> 7)
  #define MC_DOD_NUMRANK_MASK		((1 << 6) | (1 << 5))
  #define MC_DOD_NUMRANK(x)		(((x) & MC_DOD_NUMRANK_MASK) >> 5)
149
  #define MC_DOD_NUMROW_MASK		((1 << 4) | (1 << 3) | (1 << 2))
150
  #define MC_DOD_NUMROW(x)		(((x) & MC_DOD_NUMROW_MASK) >> 2)
151 152
  #define MC_DOD_NUMCOL_MASK		3
  #define MC_DOD_NUMCOL(x)		((x) & MC_DOD_NUMCOL_MASK)
153

154 155
#define MC_RANK_PRESENT		0x7c

156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178
#define MC_SAG_CH_0	0x80
#define MC_SAG_CH_1	0x84
#define MC_SAG_CH_2	0x88
#define MC_SAG_CH_3	0x8c
#define MC_SAG_CH_4	0x90
#define MC_SAG_CH_5	0x94
#define MC_SAG_CH_6	0x98
#define MC_SAG_CH_7	0x9c

#define MC_RIR_LIMIT_CH_0	0x40
#define MC_RIR_LIMIT_CH_1	0x44
#define MC_RIR_LIMIT_CH_2	0x48
#define MC_RIR_LIMIT_CH_3	0x4C
#define MC_RIR_LIMIT_CH_4	0x50
#define MC_RIR_LIMIT_CH_5	0x54
#define MC_RIR_LIMIT_CH_6	0x58
#define MC_RIR_LIMIT_CH_7	0x5C
#define MC_RIR_LIMIT_MASK	((1 << 10) - 1)

#define MC_RIR_WAY_CH		0x80
  #define MC_RIR_WAY_OFFSET_MASK	(((1 << 14) - 1) & ~0x7)
  #define MC_RIR_WAY_RANK_MASK		0x7

179 180 181 182 183
/*
 * i7core structs
 */

#define NUM_CHANS 3
184 185 186
#define MAX_DIMMS 3		/* Max DIMMS per channel */
#define MAX_MCR_FUNC  4
#define MAX_CHAN_FUNC 3
187 188 189 190 191

struct i7core_info {
	u32	mc_control;
	u32	mc_status;
	u32	max_dod;
192
	u32	ch_map;
193 194
};

195 196 197 198 199 200 201 202 203 204 205 206

struct i7core_inject {
	int	enable;

	u32	section;
	u32	type;
	u32	eccmask;

	/* Error address mask */
	int channel, dimm, rank, bank, page, col;
};

207
struct i7core_channel {
208 209
	u32		ranks;
	u32		dimms;
210 211
};

212
struct pci_id_descr {
213 214 215
	int			dev;
	int			func;
	int 			dev_id;
216
	int			optional;
217 218
};

219 220 221 222 223
struct pci_id_table {
	struct pci_id_descr	*descr;
	int			n_devs;
};

224 225 226 227
struct i7core_dev {
	struct list_head	list;
	u8			socket;
	struct pci_dev		**pdev;
228
	int			n_devs;
229 230 231
	struct mem_ctl_info	*mci;
};

232
struct i7core_pvt {
233 234 235 236 237
	struct pci_dev	*pci_noncore;
	struct pci_dev	*pci_mcr[MAX_MCR_FUNC + 1];
	struct pci_dev	*pci_ch[NUM_CHANS][MAX_CHAN_FUNC + 1];

	struct i7core_dev *i7core_dev;
238

239
	struct i7core_info	info;
240
	struct i7core_inject	inject;
241
	struct i7core_channel	channel[NUM_CHANS];
242

243
	int		channels; /* Number of active channels */
244

245 246
	int		ce_count_available;
	int 		csrow_map[NUM_CHANS][MAX_DIMMS];
247 248

			/* ECC corrected errors counts per udimm */
249 250
	unsigned long	udimm_ce_count[MAX_DIMMS];
	int		udimm_last_ce_count[MAX_DIMMS];
251
			/* ECC corrected errors counts per rdimm */
252 253
	unsigned long	rdimm_ce_count[NUM_CHANS][MAX_DIMMS];
	int		rdimm_last_ce_count[NUM_CHANS][MAX_DIMMS];
254

255
	unsigned int	is_registered;
256

257 258
	/* mcelog glue */
	struct edac_mce		edac_mce;
259 260

	/* Fifo double buffers */
261
	struct mce		mce_entry[MCE_LOG_LEN];
262 263 264 265 266 267 268
	struct mce		mce_outentry[MCE_LOG_LEN];

	/* Fifo in/out counters */
	unsigned		mce_in, mce_out;

	/* Count indicator to show errors not got */
	unsigned		mce_overrun;
269 270 271

	/* Struct to control EDAC polling */
	struct edac_pci_ctl_info *i7core_pci;
272 273
};

274 275 276 277 278
#define PCI_DESCR(device, function, device_id)	\
	.dev = (device),			\
	.func = (function),			\
	.dev_id = (device_id)

279
struct pci_id_descr pci_dev_descr_i7core_nehalem[] = {
280 281 282
		/* Memory controller */
	{ PCI_DESCR(3, 0, PCI_DEVICE_ID_INTEL_I7_MCR)     },
	{ PCI_DESCR(3, 1, PCI_DEVICE_ID_INTEL_I7_MC_TAD)  },
283 284
			/* Exists only for RDIMM */
	{ PCI_DESCR(3, 2, PCI_DEVICE_ID_INTEL_I7_MC_RAS), .optional = 1  },
285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303
	{ PCI_DESCR(3, 4, PCI_DEVICE_ID_INTEL_I7_MC_TEST) },

		/* Channel 0 */
	{ PCI_DESCR(4, 0, PCI_DEVICE_ID_INTEL_I7_MC_CH0_CTRL) },
	{ PCI_DESCR(4, 1, PCI_DEVICE_ID_INTEL_I7_MC_CH0_ADDR) },
	{ PCI_DESCR(4, 2, PCI_DEVICE_ID_INTEL_I7_MC_CH0_RANK) },
	{ PCI_DESCR(4, 3, PCI_DEVICE_ID_INTEL_I7_MC_CH0_TC)   },

		/* Channel 1 */
	{ PCI_DESCR(5, 0, PCI_DEVICE_ID_INTEL_I7_MC_CH1_CTRL) },
	{ PCI_DESCR(5, 1, PCI_DEVICE_ID_INTEL_I7_MC_CH1_ADDR) },
	{ PCI_DESCR(5, 2, PCI_DEVICE_ID_INTEL_I7_MC_CH1_RANK) },
	{ PCI_DESCR(5, 3, PCI_DEVICE_ID_INTEL_I7_MC_CH1_TC)   },

		/* Channel 2 */
	{ PCI_DESCR(6, 0, PCI_DEVICE_ID_INTEL_I7_MC_CH2_CTRL) },
	{ PCI_DESCR(6, 1, PCI_DEVICE_ID_INTEL_I7_MC_CH2_ADDR) },
	{ PCI_DESCR(6, 2, PCI_DEVICE_ID_INTEL_I7_MC_CH2_RANK) },
	{ PCI_DESCR(6, 3, PCI_DEVICE_ID_INTEL_I7_MC_CH2_TC)   },
304 305 306 307 308 309 310 311

		/* Generic Non-core registers */
	/*
	 * This is the PCI device on i7core and on Xeon 35xx (8086:2c41)
	 * On Xeon 55xx, however, it has a different id (8086:2c40). So,
	 * the probing code needs to test for the other address in case of
	 * failure of this one
	 */
312
	{ PCI_DESCR(0, 0, PCI_DEVICE_ID_INTEL_I7_NONCORE)  },
313

314
};
315

316 317 318 319 320 321 322 323 324 325
struct pci_id_descr pci_dev_descr_lynnfield[] = {
	{ PCI_DESCR( 3, 0, PCI_DEVICE_ID_INTEL_LYNNFIELD_MCR)         },
	{ PCI_DESCR( 3, 1, PCI_DEVICE_ID_INTEL_LYNNFIELD_MC_TAD)      },
	{ PCI_DESCR( 3, 4, PCI_DEVICE_ID_INTEL_LYNNFIELD_MC_TEST)     },

	{ PCI_DESCR( 4, 0, PCI_DEVICE_ID_INTEL_LYNNFIELD_MC_CH0_CTRL) },
	{ PCI_DESCR( 4, 1, PCI_DEVICE_ID_INTEL_LYNNFIELD_MC_CH0_ADDR) },
	{ PCI_DESCR( 4, 2, PCI_DEVICE_ID_INTEL_LYNNFIELD_MC_CH0_RANK) },
	{ PCI_DESCR( 4, 3, PCI_DEVICE_ID_INTEL_LYNNFIELD_MC_CH0_TC)   },

326 327 328 329
	{ PCI_DESCR( 5, 0, PCI_DEVICE_ID_INTEL_LYNNFIELD_MC_CH1_CTRL) },
	{ PCI_DESCR( 5, 1, PCI_DEVICE_ID_INTEL_LYNNFIELD_MC_CH1_ADDR) },
	{ PCI_DESCR( 5, 2, PCI_DEVICE_ID_INTEL_LYNNFIELD_MC_CH1_RANK) },
	{ PCI_DESCR( 5, 3, PCI_DEVICE_ID_INTEL_LYNNFIELD_MC_CH1_TC)   },
330

331 332 333 334
	/*
	 * This is the PCI device has an alternate address on some
	 * processors like Core i7 860
	 */
335 336 337
	{ PCI_DESCR( 0, 0, PCI_DEVICE_ID_INTEL_LYNNFIELD_NONCORE)     },
};

338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375
struct pci_id_descr pci_dev_descr_i7core_westmere[] = {
		/* Memory controller */
	{ PCI_DESCR(3, 0, PCI_DEVICE_ID_INTEL_LYNNFIELD_MCR_REV2)     },
	{ PCI_DESCR(3, 1, PCI_DEVICE_ID_INTEL_LYNNFIELD_MC_TAD_REV2)  },
			/* Exists only for RDIMM */
	{ PCI_DESCR(3, 2, PCI_DEVICE_ID_INTEL_LYNNFIELD_MC_RAS_REV2), .optional = 1  },
	{ PCI_DESCR(3, 4, PCI_DEVICE_ID_INTEL_LYNNFIELD_MC_TEST_REV2) },

		/* Channel 0 */
	{ PCI_DESCR(4, 0, PCI_DEVICE_ID_INTEL_LYNNFIELD_MC_CH0_CTRL_REV2) },
	{ PCI_DESCR(4, 1, PCI_DEVICE_ID_INTEL_LYNNFIELD_MC_CH0_ADDR_REV2) },
	{ PCI_DESCR(4, 2, PCI_DEVICE_ID_INTEL_LYNNFIELD_MC_CH0_RANK_REV2) },
	{ PCI_DESCR(4, 3, PCI_DEVICE_ID_INTEL_LYNNFIELD_MC_CH0_TC_REV2)   },

		/* Channel 1 */
	{ PCI_DESCR(5, 0, PCI_DEVICE_ID_INTEL_LYNNFIELD_MC_CH1_CTRL_REV2) },
	{ PCI_DESCR(5, 1, PCI_DEVICE_ID_INTEL_LYNNFIELD_MC_CH1_ADDR_REV2) },
	{ PCI_DESCR(5, 2, PCI_DEVICE_ID_INTEL_LYNNFIELD_MC_CH1_RANK_REV2) },
	{ PCI_DESCR(5, 3, PCI_DEVICE_ID_INTEL_LYNNFIELD_MC_CH1_TC_REV2)   },

		/* Channel 2 */
	{ PCI_DESCR(6, 0, PCI_DEVICE_ID_INTEL_LYNNFIELD_MC_CH2_CTRL_REV2) },
	{ PCI_DESCR(6, 1, PCI_DEVICE_ID_INTEL_LYNNFIELD_MC_CH2_ADDR_REV2) },
	{ PCI_DESCR(6, 2, PCI_DEVICE_ID_INTEL_LYNNFIELD_MC_CH2_RANK_REV2) },
	{ PCI_DESCR(6, 3, PCI_DEVICE_ID_INTEL_LYNNFIELD_MC_CH2_TC_REV2)   },

		/* Generic Non-core registers */
	{ PCI_DESCR(0, 0, PCI_DEVICE_ID_INTEL_LYNNFIELD_NONCORE_REV2)  },

};

#define PCI_ID_TABLE_ENTRY(A) { A, ARRAY_SIZE(A) }
struct pci_id_table pci_dev_table[] = {
	PCI_ID_TABLE_ENTRY(pci_dev_descr_i7core_nehalem),
	PCI_ID_TABLE_ENTRY(pci_dev_descr_lynnfield),
	PCI_ID_TABLE_ENTRY(pci_dev_descr_i7core_westmere),
};

376 377 378 379
/*
 *	pci_device_id	table for which devices we are looking for
 */
static const struct pci_device_id i7core_pci_tbl[] __devinitdata = {
380
	{PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_X58_HUB_MGMT)},
381
	{PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_LYNNFIELD_QPI_LINK0)},
382 383 384
	{0,}			/* 0 terminated list. */
};

385 386 387 388 389
/****************************************************************************
			Anciliary status routines
 ****************************************************************************/

	/* MC_CONTROL bits */
390 391
#define CH_ACTIVE(pvt, ch)	((pvt)->info.mc_control & (1 << (8 + ch)))
#define ECCx8(pvt)		((pvt)->info.mc_control & (1 << 1))
392 393

	/* MC_STATUS bits */
394
#define ECC_ENABLED(pvt)	((pvt)->info.mc_status & (1 << 4))
395
#define CH_DISABLED(pvt, ch)	((pvt)->info.mc_status & (1 << ch))
396 397

	/* MC_MAX_DOD read functions */
398
static inline int numdimms(u32 dimms)
399
{
400
	return (dimms & 0x3) + 1;
401 402
}

403
static inline int numrank(u32 rank)
404 405 406
{
	static int ranks[4] = { 1, 2, 4, -EINVAL };

407
	return ranks[rank & 0x3];
408 409
}

410
static inline int numbank(u32 bank)
411 412 413
{
	static int banks[4] = { 4, 8, 16, -EINVAL };

414
	return banks[bank & 0x3];
415 416
}

417
static inline int numrow(u32 row)
418 419 420 421 422 423
{
	static int rows[8] = {
		1 << 12, 1 << 13, 1 << 14, 1 << 15,
		1 << 16, -EINVAL, -EINVAL, -EINVAL,
	};

424
	return rows[row & 0x7];
425 426
}

427
static inline int numcol(u32 col)
428 429 430 431
{
	static int cols[8] = {
		1 << 10, 1 << 11, 1 << 12, -EINVAL,
	};
432
	return cols[col & 0x3];
433 434
}

435
static struct i7core_dev *get_i7core_dev(u8 socket)
436 437 438 439 440 441 442 443 444 445 446
{
	struct i7core_dev *i7core_dev;

	list_for_each_entry(i7core_dev, &i7core_edac_list, list) {
		if (i7core_dev->socket == socket)
			return i7core_dev;
	}

	return NULL;
}

447 448 449
/****************************************************************************
			Memory check routines
 ****************************************************************************/
450 451
static struct pci_dev *get_pdev_slot_func(u8 socket, unsigned slot,
					  unsigned func)
452
{
453
	struct i7core_dev *i7core_dev = get_i7core_dev(socket);
454 455
	int i;

456 457 458
	if (!i7core_dev)
		return NULL;

459
	for (i = 0; i < i7core_dev->n_devs; i++) {
460
		if (!i7core_dev->pdev[i])
461 462
			continue;

463 464 465
		if (PCI_SLOT(i7core_dev->pdev[i]->devfn) == slot &&
		    PCI_FUNC(i7core_dev->pdev[i]->devfn) == func) {
			return i7core_dev->pdev[i];
466 467 468
		}
	}

469 470 471
	return NULL;
}

472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488
/**
 * i7core_get_active_channels() - gets the number of channels and csrows
 * @socket:	Quick Path Interconnect socket
 * @channels:	Number of channels that will be returned
 * @csrows:	Number of csrows found
 *
 * Since EDAC core needs to know in advance the number of available channels
 * and csrows, in order to allocate memory for csrows/channels, it is needed
 * to run two similar steps. At the first step, implemented on this function,
 * it checks the number of csrows/channels present at one socket.
 * this is used in order to properly allocate the size of mci components.
 *
 * It should be noticed that none of the current available datasheets explain
 * or even mention how csrows are seen by the memory controller. So, we need
 * to add a fake description for csrows.
 * So, this driver is attributing one DIMM memory for one csrow.
 */
489 490
static int i7core_get_active_channels(u8 socket, unsigned *channels,
				      unsigned *csrows)
491 492 493 494 495 496 497 498
{
	struct pci_dev *pdev = NULL;
	int i, j;
	u32 status, control;

	*channels = 0;
	*csrows = 0;

499
	pdev = get_pdev_slot_func(socket, 3, 0);
500
	if (!pdev) {
501 502
		i7core_printk(KERN_ERR, "Couldn't find socket %d fn 3.0!!!\n",
			      socket);
503
		return -ENODEV;
504
	}
505 506 507 508 509 510

	/* Device 3 function 0 reads */
	pci_read_config_dword(pdev, MC_STATUS, &status);
	pci_read_config_dword(pdev, MC_CONTROL, &control);

	for (i = 0; i < NUM_CHANS; i++) {
511
		u32 dimm_dod[3];
512 513 514 515 516
		/* Check if the channel is active */
		if (!(control & (1 << (8 + i))))
			continue;

		/* Check if the channel is disabled */
517
		if (status & (1 << i))
518 519
			continue;

520
		pdev = get_pdev_slot_func(socket, i + 4, 1);
521
		if (!pdev) {
522 523 524
			i7core_printk(KERN_ERR, "Couldn't find socket %d "
						"fn %d.%d!!!\n",
						socket, i + 4, 1);
525 526 527 528 529 530 531 532 533 534
			return -ENODEV;
		}
		/* Devices 4-6 function 1 */
		pci_read_config_dword(pdev,
				MC_DOD_CH_DIMM0, &dimm_dod[0]);
		pci_read_config_dword(pdev,
				MC_DOD_CH_DIMM1, &dimm_dod[1]);
		pci_read_config_dword(pdev,
				MC_DOD_CH_DIMM2, &dimm_dod[2]);

535
		(*channels)++;
536 537 538 539 540 541

		for (j = 0; j < 3; j++) {
			if (!DIMM_PRESENT(dimm_dod[j]))
				continue;
			(*csrows)++;
		}
542 543
	}

544
	debugf0("Number of active channels on socket %d: %d\n",
545
		socket, *channels);
546

547 548 549
	return 0;
}

550
static int get_dimm_config(struct mem_ctl_info *mci, int *csrow)
551 552
{
	struct i7core_pvt *pvt = mci->pvt_info;
553
	struct csrow_info *csr;
554
	struct pci_dev *pdev;
555
	int i, j;
556
	unsigned long last_page = 0;
557
	enum edac_type mode;
558
	enum mem_type mtype;
559

560
	/* Get data from the MC register, function 0 */
561
	pdev = pvt->pci_mcr[0];
562
	if (!pdev)
563 564
		return -ENODEV;

565
	/* Device 3 function 0 reads */
566 567 568 569
	pci_read_config_dword(pdev, MC_CONTROL, &pvt->info.mc_control);
	pci_read_config_dword(pdev, MC_STATUS, &pvt->info.mc_status);
	pci_read_config_dword(pdev, MC_MAX_DOD, &pvt->info.max_dod);
	pci_read_config_dword(pdev, MC_CHANNEL_MAPPER, &pvt->info.ch_map);
570

571
	debugf0("QPI %d control=0x%08x status=0x%08x dod=0x%08x map=0x%08x\n",
572
		pvt->i7core_dev->socket, pvt->info.mc_control, pvt->info.mc_status,
573
		pvt->info.max_dod, pvt->info.ch_map);
574

575
	if (ECC_ENABLED(pvt)) {
576
		debugf0("ECC enabled with x%d SDCC\n", ECCx8(pvt) ? 8 : 4);
577 578 579 580 581
		if (ECCx8(pvt))
			mode = EDAC_S8ECD8ED;
		else
			mode = EDAC_S4ECD4ED;
	} else {
582
		debugf0("ECC disabled\n");
583 584
		mode = EDAC_NONE;
	}
585 586

	/* FIXME: need to handle the error codes */
587 588
	debugf0("DOD Max limits: DIMMS: %d, %d-ranked, %d-banked "
		"x%x x 0x%x\n",
589 590
		numdimms(pvt->info.max_dod),
		numrank(pvt->info.max_dod >> 2),
591
		numbank(pvt->info.max_dod >> 4),
592 593
		numrow(pvt->info.max_dod >> 6),
		numcol(pvt->info.max_dod >> 9));
594

595
	for (i = 0; i < NUM_CHANS; i++) {
596
		u32 data, dimm_dod[3], value[8];
597

598 599 600
		if (!pvt->pci_ch[i][0])
			continue;

601 602 603 604 605 606 607 608 609
		if (!CH_ACTIVE(pvt, i)) {
			debugf0("Channel %i is not active\n", i);
			continue;
		}
		if (CH_DISABLED(pvt, i)) {
			debugf0("Channel %i is disabled\n", i);
			continue;
		}

610
		/* Devices 4-6 function 0 */
611
		pci_read_config_dword(pvt->pci_ch[i][0],
612 613
				MC_CHANNEL_DIMM_INIT_PARAMS, &data);

614
		pvt->channel[i].ranks = (data & QUAD_RANK_PRESENT) ?
615
						4 : 2;
616

617 618
		if (data & REGISTERED_DIMM)
			mtype = MEM_RDDR3;
619
		else
620 621
			mtype = MEM_DDR3;
#if 0
622 623 624 625 626 627
		if (data & THREE_DIMMS_PRESENT)
			pvt->channel[i].dimms = 3;
		else if (data & SINGLE_QUAD_RANK_PRESENT)
			pvt->channel[i].dimms = 1;
		else
			pvt->channel[i].dimms = 2;
628 629 630
#endif

		/* Devices 4-6 function 1 */
631
		pci_read_config_dword(pvt->pci_ch[i][1],
632
				MC_DOD_CH_DIMM0, &dimm_dod[0]);
633
		pci_read_config_dword(pvt->pci_ch[i][1],
634
				MC_DOD_CH_DIMM1, &dimm_dod[1]);
635
		pci_read_config_dword(pvt->pci_ch[i][1],
636
				MC_DOD_CH_DIMM2, &dimm_dod[2]);
637

638
		debugf0("Ch%d phy rd%d, wr%d (0x%08x): "
639
			"%d ranks, %cDIMMs\n",
640 641 642
			i,
			RDLCH(pvt->info.ch_map, i), WRLCH(pvt->info.ch_map, i),
			data,
643
			pvt->channel[i].ranks,
644
			(data & REGISTERED_DIMM) ? 'R' : 'U');
645 646 647

		for (j = 0; j < 3; j++) {
			u32 banks, ranks, rows, cols;
648
			u32 size, npages;
649 650 651 652 653 654 655 656 657

			if (!DIMM_PRESENT(dimm_dod[j]))
				continue;

			banks = numbank(MC_DOD_NUMBANK(dimm_dod[j]));
			ranks = numrank(MC_DOD_NUMRANK(dimm_dod[j]));
			rows = numrow(MC_DOD_NUMROW(dimm_dod[j]));
			cols = numcol(MC_DOD_NUMCOL(dimm_dod[j]));

658 659 660
			/* DDR3 has 8 I/O banks */
			size = (rows * cols * banks * ranks) >> (20 - 3);

661
			pvt->channel[i].dimms++;
662

663 664 665
			debugf0("\tdimm %d %d Mb offset: %x, "
				"bank: %d, rank: %d, row: %#x, col: %#x\n",
				j, size,
666 667 668
				RANKOFFSET(dimm_dod[j]),
				banks, ranks, rows, cols);

669 670 671 672 673
#if PAGE_SHIFT > 20
			npages = size >> (PAGE_SHIFT - 20);
#else
			npages = size << (20 - PAGE_SHIFT);
#endif
674

675
			csr = &mci->csrows[*csrow];
676 677 678 679 680
			csr->first_page = last_page + 1;
			last_page += npages;
			csr->last_page = last_page;
			csr->nr_pages = npages;

681
			csr->page_mask = 0;
682
			csr->grain = 8;
683
			csr->csrow_idx = *csrow;
684 685 686 687
			csr->nr_channels = 1;

			csr->channels[0].chan_idx = i;
			csr->channels[0].ce_count = 0;
688

689
			pvt->csrow_map[i][j] = *csrow;
690

691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707
			switch (banks) {
			case 4:
				csr->dtype = DEV_X4;
				break;
			case 8:
				csr->dtype = DEV_X8;
				break;
			case 16:
				csr->dtype = DEV_X16;
				break;
			default:
				csr->dtype = DEV_UNKNOWN;
			}

			csr->edac_mode = mode;
			csr->mtype = mtype;

708
			(*csrow)++;
709
		}
710

711 712 713 714 715 716 717 718
		pci_read_config_dword(pdev, MC_SAG_CH_0, &value[0]);
		pci_read_config_dword(pdev, MC_SAG_CH_1, &value[1]);
		pci_read_config_dword(pdev, MC_SAG_CH_2, &value[2]);
		pci_read_config_dword(pdev, MC_SAG_CH_3, &value[3]);
		pci_read_config_dword(pdev, MC_SAG_CH_4, &value[4]);
		pci_read_config_dword(pdev, MC_SAG_CH_5, &value[5]);
		pci_read_config_dword(pdev, MC_SAG_CH_6, &value[6]);
		pci_read_config_dword(pdev, MC_SAG_CH_7, &value[7]);
719
		debugf1("\t[%i] DIVBY3\tREMOVED\tOFFSET\n", i);
720
		for (j = 0; j < 8; j++)
721
			debugf1("\t\t%#x\t%#x\t%#x\n",
722 723 724
				(value[j] >> 27) & 0x1,
				(value[j] >> 24) & 0x7,
				(value[j] && ((1 << 24) - 1)));
725 726
	}

727 728 729
	return 0;
}

730 731 732 733 734 735 736 737 738 739 740
/****************************************************************************
			Error insertion routines
 ****************************************************************************/

/* The i7core has independent error injection features per channel.
   However, to have a simpler code, we don't allow enabling error injection
   on more than one channel.
   Also, since a change at an inject parameter will be applied only at enable,
   we're disabling error injection on all write calls to the sysfs nodes that
   controls the error code injection.
 */
741
static int disable_inject(struct mem_ctl_info *mci)
742 743 744 745 746
{
	struct i7core_pvt *pvt = mci->pvt_info;

	pvt->inject.enable = 0;

747
	if (!pvt->pci_ch[pvt->inject.channel][0])
748 749
		return -ENODEV;

750
	pci_write_config_dword(pvt->pci_ch[pvt->inject.channel][0],
751
				MC_CHANNEL_ERROR_INJECT, 0);
752 753

	return 0;
754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770
}

/*
 * i7core inject inject.section
 *
 *	accept and store error injection inject.section value
 *	bit 0 - refers to the lower 32-byte half cacheline
 *	bit 1 - refers to the upper 32-byte half cacheline
 */
static ssize_t i7core_inject_section_store(struct mem_ctl_info *mci,
					   const char *data, size_t count)
{
	struct i7core_pvt *pvt = mci->pvt_info;
	unsigned long value;
	int rc;

	if (pvt->inject.enable)
771
		disable_inject(mci);
772 773 774

	rc = strict_strtoul(data, 10, &value);
	if ((rc < 0) || (value > 3))
775
		return -EIO;
776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803

	pvt->inject.section = (u32) value;
	return count;
}

static ssize_t i7core_inject_section_show(struct mem_ctl_info *mci,
					      char *data)
{
	struct i7core_pvt *pvt = mci->pvt_info;
	return sprintf(data, "0x%08x\n", pvt->inject.section);
}

/*
 * i7core inject.type
 *
 *	accept and store error injection inject.section value
 *	bit 0 - repeat enable - Enable error repetition
 *	bit 1 - inject ECC error
 *	bit 2 - inject parity error
 */
static ssize_t i7core_inject_type_store(struct mem_ctl_info *mci,
					const char *data, size_t count)
{
	struct i7core_pvt *pvt = mci->pvt_info;
	unsigned long value;
	int rc;

	if (pvt->inject.enable)
804
		disable_inject(mci);
805 806 807

	rc = strict_strtoul(data, 10, &value);
	if ((rc < 0) || (value > 7))
808
		return -EIO;
809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838

	pvt->inject.type = (u32) value;
	return count;
}

static ssize_t i7core_inject_type_show(struct mem_ctl_info *mci,
					      char *data)
{
	struct i7core_pvt *pvt = mci->pvt_info;
	return sprintf(data, "0x%08x\n", pvt->inject.type);
}

/*
 * i7core_inject_inject.eccmask_store
 *
 * The type of error (UE/CE) will depend on the inject.eccmask value:
 *   Any bits set to a 1 will flip the corresponding ECC bit
 *   Correctable errors can be injected by flipping 1 bit or the bits within
 *   a symbol pair (2 consecutive aligned 8-bit pairs - i.e. 7:0 and 15:8 or
 *   23:16 and 31:24). Flipping bits in two symbol pairs will cause an
 *   uncorrectable error to be injected.
 */
static ssize_t i7core_inject_eccmask_store(struct mem_ctl_info *mci,
					const char *data, size_t count)
{
	struct i7core_pvt *pvt = mci->pvt_info;
	unsigned long value;
	int rc;

	if (pvt->inject.enable)
839
		disable_inject(mci);
840 841 842

	rc = strict_strtoul(data, 10, &value);
	if (rc < 0)
843
		return -EIO;
844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866

	pvt->inject.eccmask = (u32) value;
	return count;
}

static ssize_t i7core_inject_eccmask_show(struct mem_ctl_info *mci,
					      char *data)
{
	struct i7core_pvt *pvt = mci->pvt_info;
	return sprintf(data, "0x%08x\n", pvt->inject.eccmask);
}

/*
 * i7core_addrmatch
 *
 * The type of error (UE/CE) will depend on the inject.eccmask value:
 *   Any bits set to a 1 will flip the corresponding ECC bit
 *   Correctable errors can be injected by flipping 1 bit or the bits within
 *   a symbol pair (2 consecutive aligned 8-bit pairs - i.e. 7:0 and 15:8 or
 *   23:16 and 31:24). Flipping bits in two symbol pairs will cause an
 *   uncorrectable error to be injected.
 */

867 868 869 870 871
#define DECLARE_ADDR_MATCH(param, limit)			\
static ssize_t i7core_inject_store_##param(			\
		struct mem_ctl_info *mci,			\
		const char *data, size_t count)			\
{								\
872
	struct i7core_pvt *pvt;					\
873 874 875
	long value;						\
	int rc;							\
								\
876 877 878
	debugf1("%s()\n", __func__);				\
	pvt = mci->pvt_info;					\
								\
879 880 881
	if (pvt->inject.enable)					\
		disable_inject(mci);				\
								\
882
	if (!strcasecmp(data, "any") || !strcasecmp(data, "any\n"))\
883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898
		value = -1;					\
	else {							\
		rc = strict_strtoul(data, 10, &value);		\
		if ((rc < 0) || (value >= limit))		\
			return -EIO;				\
	}							\
								\
	pvt->inject.param = value;				\
								\
	return count;						\
}								\
								\
static ssize_t i7core_inject_show_##param(			\
		struct mem_ctl_info *mci,			\
		char *data)					\
{								\
899 900 901 902
	struct i7core_pvt *pvt;					\
								\
	pvt = mci->pvt_info;					\
	debugf1("%s() pvt=%p\n", __func__, pvt);		\
903 904 905 906
	if (pvt->inject.param < 0)				\
		return sprintf(data, "any\n");			\
	else							\
		return sprintf(data, "%d\n", pvt->inject.param);\
907 908
}

909 910 911 912 913 914 915 916 917
#define ATTR_ADDR_MATCH(param)					\
	{							\
		.attr = {					\
			.name = #param,				\
			.mode = (S_IRUGO | S_IWUSR)		\
		},						\
		.show  = i7core_inject_show_##param,		\
		.store = i7core_inject_store_##param,		\
	}
918

919 920 921 922 923 924
DECLARE_ADDR_MATCH(channel, 3);
DECLARE_ADDR_MATCH(dimm, 3);
DECLARE_ADDR_MATCH(rank, 4);
DECLARE_ADDR_MATCH(bank, 32);
DECLARE_ADDR_MATCH(page, 0x10000);
DECLARE_ADDR_MATCH(col, 0x4000);
925

926 927 928 929 930
static int write_and_test(struct pci_dev *dev, int where, u32 val)
{
	u32 read;
	int count;

931 932 933 934
	debugf0("setting pci %02x:%02x.%x reg=%02x value=%08x\n",
		dev->bus->number, PCI_SLOT(dev->devfn), PCI_FUNC(dev->devfn),
		where, val);

935 936
	for (count = 0; count < 10; count++) {
		if (count)
937
			msleep(100);
938 939 940 941 942 943 944
		pci_write_config_dword(dev, where, val);
		pci_read_config_dword(dev, where, &read);

		if (read == val)
			return 0;
	}

945 946 947 948
	i7core_printk(KERN_ERR, "Error during set pci %02x:%02x.%x reg=%02x "
		"write=%08x. Read=%08x\n",
		dev->bus->number, PCI_SLOT(dev->devfn), PCI_FUNC(dev->devfn),
		where, val, read);
949 950 951 952

	return -EINVAL;
}

953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979
/*
 * This routine prepares the Memory Controller for error injection.
 * The error will be injected when some process tries to write to the
 * memory that matches the given criteria.
 * The criteria can be set in terms of a mask where dimm, rank, bank, page
 * and col can be specified.
 * A -1 value for any of the mask items will make the MCU to ignore
 * that matching criteria for error injection.
 *
 * It should be noticed that the error will only happen after a write operation
 * on a memory that matches the condition. if REPEAT_EN is not enabled at
 * inject mask, then it will produce just one error. Otherwise, it will repeat
 * until the injectmask would be cleaned.
 *
 * FIXME: This routine assumes that MAXNUMDIMMS value of MC_MAX_DOD
 *    is reliable enough to check if the MC is using the
 *    three channels. However, this is not clear at the datasheet.
 */
static ssize_t i7core_inject_enable_store(struct mem_ctl_info *mci,
				       const char *data, size_t count)
{
	struct i7core_pvt *pvt = mci->pvt_info;
	u32 injectmask;
	u64 mask = 0;
	int  rc;
	long enable;

980
	if (!pvt->pci_ch[pvt->inject.channel][0])
981 982
		return 0;

983 984 985 986 987 988 989 990 991 992 993 994 995
	rc = strict_strtoul(data, 10, &enable);
	if ((rc < 0))
		return 0;

	if (enable) {
		pvt->inject.enable = 1;
	} else {
		disable_inject(mci);
		return count;
	}

	/* Sets pvt->inject.dimm mask */
	if (pvt->inject.dimm < 0)
996
		mask |= 1LL << 41;
997
	else {
998
		if (pvt->channel[pvt->inject.channel].dimms > 2)
999
			mask |= (pvt->inject.dimm & 0x3LL) << 35;
1000
		else
1001
			mask |= (pvt->inject.dimm & 0x1LL) << 36;
1002 1003 1004 1005
	}

	/* Sets pvt->inject.rank mask */
	if (pvt->inject.rank < 0)
1006
		mask |= 1LL << 40;
1007
	else {
1008
		if (pvt->channel[pvt->inject.channel].dimms > 2)
1009
			mask |= (pvt->inject.rank & 0x1LL) << 34;
1010
		else
1011
			mask |= (pvt->inject.rank & 0x3LL) << 34;
1012 1013 1014 1015
	}

	/* Sets pvt->inject.bank mask */
	if (pvt->inject.bank < 0)
1016
		mask |= 1LL << 39;
1017
	else
1018
		mask |= (pvt->inject.bank & 0x15LL) << 30;
1019 1020 1021

	/* Sets pvt->inject.page mask */
	if (pvt->inject.page < 0)
1022
		mask |= 1LL << 38;
1023
	else
1024
		mask |= (pvt->inject.page & 0xffff) << 14;
1025 1026 1027

	/* Sets pvt->inject.column mask */
	if (pvt->inject.col < 0)
1028
		mask |= 1LL << 37;
1029
	else
1030
		mask |= (pvt->inject.col & 0x3fff);
1031

1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043
	/*
	 * bit    0: REPEAT_EN
	 * bits 1-2: MASK_HALF_CACHELINE
	 * bit    3: INJECT_ECC
	 * bit    4: INJECT_ADDR_PARITY
	 */

	injectmask = (pvt->inject.type & 1) |
		     (pvt->inject.section & 0x3) << 1 |
		     (pvt->inject.type & 0x6) << (3 - 1);

	/* Unlock writes to registers - this register is write only */
1044
	pci_write_config_dword(pvt->pci_noncore,
1045
			       MC_CFG_CONTROL, 0x2);
1046

1047
	write_and_test(pvt->pci_ch[pvt->inject.channel][0],
1048
			       MC_CHANNEL_ADDR_MATCH, mask);
1049
	write_and_test(pvt->pci_ch[pvt->inject.channel][0],
1050 1051
			       MC_CHANNEL_ADDR_MATCH + 4, mask >> 32L);

1052
	write_and_test(pvt->pci_ch[pvt->inject.channel][0],
1053 1054
			       MC_CHANNEL_ERROR_MASK, pvt->inject.eccmask);

1055
	write_and_test(pvt->pci_ch[pvt->inject.channel][0],
1056
			       MC_CHANNEL_ERROR_INJECT, injectmask);
1057

1058
	/*
1059 1060 1061
	 * This is something undocumented, based on my tests
	 * Without writing 8 to this register, errors aren't injected. Not sure
	 * why.
1062
	 */
1063
	pci_write_config_dword(pvt->pci_noncore,
1064
			       MC_CFG_CONTROL, 8);
1065

1066 1067
	debugf0("Error inject addr match 0x%016llx, ecc 0x%08x,"
		" inject 0x%08x\n",
1068 1069
		mask, pvt->inject.eccmask, injectmask);

1070

1071 1072 1073 1074 1075 1076 1077
	return count;
}

static ssize_t i7core_inject_enable_show(struct mem_ctl_info *mci,
					char *data)
{
	struct i7core_pvt *pvt = mci->pvt_info;
1078 1079
	u32 injectmask;

1080 1081 1082
	if (!pvt->pci_ch[pvt->inject.channel][0])
		return 0;

1083
	pci_read_config_dword(pvt->pci_ch[pvt->inject.channel][0],
1084
			       MC_CHANNEL_ERROR_INJECT, &injectmask);
1085 1086 1087 1088 1089 1090

	debugf0("Inject error read: 0x%018x\n", injectmask);

	if (injectmask & 0x0c)
		pvt->inject.enable = 1;

1091 1092 1093
	return sprintf(data, "%d\n", pvt->inject.enable);
}

1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106
#define DECLARE_COUNTER(param)					\
static ssize_t i7core_show_counter_##param(			\
		struct mem_ctl_info *mci,			\
		char *data)					\
{								\
	struct i7core_pvt *pvt = mci->pvt_info;			\
								\
	debugf1("%s() \n", __func__);				\
	if (!pvt->ce_count_available || (pvt->is_registered))	\
		return sprintf(data, "data unavailable\n");	\
	return sprintf(data, "%lu\n",				\
			pvt->udimm_ce_count[param]);		\
}
1107

1108 1109 1110 1111 1112 1113 1114
#define ATTR_COUNTER(param)					\
	{							\
		.attr = {					\
			.name = __stringify(udimm##param),	\
			.mode = (S_IRUGO | S_IWUSR)		\
		},						\
		.show  = i7core_show_counter_##param		\
1115
	}
1116

1117 1118 1119
DECLARE_COUNTER(0);
DECLARE_COUNTER(1);
DECLARE_COUNTER(2);
1120

1121 1122 1123
/*
 * Sysfs struct
 */
1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140


static struct mcidev_sysfs_attribute i7core_addrmatch_attrs[] = {
	ATTR_ADDR_MATCH(channel),
	ATTR_ADDR_MATCH(dimm),
	ATTR_ADDR_MATCH(rank),
	ATTR_ADDR_MATCH(bank),
	ATTR_ADDR_MATCH(page),
	ATTR_ADDR_MATCH(col),
	{ .attr = { .name = NULL } }
};

static struct mcidev_sysfs_group i7core_inject_addrmatch = {
	.name  = "inject_addrmatch",
	.mcidev_attr = i7core_addrmatch_attrs,
};

1141 1142 1143 1144
static struct mcidev_sysfs_attribute i7core_udimm_counters_attrs[] = {
	ATTR_COUNTER(0),
	ATTR_COUNTER(1),
	ATTR_COUNTER(2),
1145
	{ .attr = { .name = NULL } }
1146 1147 1148 1149 1150 1151 1152
};

static struct mcidev_sysfs_group i7core_udimm_counters = {
	.name  = "all_channel_counts",
	.mcidev_attr = i7core_udimm_counters_attrs,
};

1153
static struct mcidev_sysfs_attribute i7core_sysfs_attrs[] = {
1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175
	{
		.attr = {
			.name = "inject_section",
			.mode = (S_IRUGO | S_IWUSR)
		},
		.show  = i7core_inject_section_show,
		.store = i7core_inject_section_store,
	}, {
		.attr = {
			.name = "inject_type",
			.mode = (S_IRUGO | S_IWUSR)
		},
		.show  = i7core_inject_type_show,
		.store = i7core_inject_type_store,
	}, {
		.attr = {
			.name = "inject_eccmask",
			.mode = (S_IRUGO | S_IWUSR)
		},
		.show  = i7core_inject_eccmask_show,
		.store = i7core_inject_eccmask_store,
	}, {
1176
		.grp = &i7core_inject_addrmatch,
1177 1178 1179 1180 1181 1182 1183 1184
	}, {
		.attr = {
			.name = "inject_enable",
			.mode = (S_IRUGO | S_IWUSR)
		},
		.show  = i7core_inject_enable_show,
		.store = i7core_inject_enable_store,
	},
1185
	{ .attr = { .name = NULL } },	/* Reserved for udimm counters */
1186
	{ .attr = { .name = NULL } }
1187 1188
};

1189 1190 1191 1192 1193 1194 1195 1196
/****************************************************************************
	Device initialization routines: put/get, init/exit
 ****************************************************************************/

/*
 *	i7core_put_devices	'put' all the devices that we have
 *				reserved via 'get'
 */
1197
static void i7core_put_devices(struct i7core_dev *i7core_dev)
1198
{
1199
	int i;
1200

1201
	debugf0(__FILE__ ": %s()\n", __func__);
1202
	for (i = 0; i < i7core_dev->n_devs; i++) {
1203 1204 1205 1206 1207 1208 1209 1210
		struct pci_dev *pdev = i7core_dev->pdev[i];
		if (!pdev)
			continue;
		debugf0("Removing dev %02x:%02x.%d\n",
			pdev->bus->number,
			PCI_SLOT(pdev->devfn), PCI_FUNC(pdev->devfn));
		pci_dev_put(pdev);
	}
1211
	kfree(i7core_dev->pdev);
1212
	list_del(&i7core_dev->list);
1213 1214
	kfree(i7core_dev);
}
1215

1216 1217
static void i7core_put_all_devices(void)
{
1218
	struct i7core_dev *i7core_dev, *tmp;
1219

1220
	list_for_each_entry_safe(i7core_dev, tmp, &i7core_edac_list, list)
1221
		i7core_put_devices(i7core_dev);
1222 1223
}

1224
static void __init i7core_xeon_pci_fixup(struct pci_id_table *table)
1225 1226 1227 1228 1229 1230 1231 1232
{
	struct pci_dev *pdev = NULL;
	int i;
	/*
	 * On Xeon 55xx, the Intel Quckpath Arch Generic Non-core pci buses
	 * aren't announced by acpi. So, we need to use a legacy scan probing
	 * to detect them
	 */
1233 1234 1235 1236 1237 1238
	while (table && table->descr) {
		pdev = pci_get_device(PCI_VENDOR_ID_INTEL, table->descr[0].dev_id, NULL);
		if (unlikely(!pdev)) {
			for (i = 0; i < MAX_SOCKET_BUSES; i++)
				pcibios_scan_specific_bus(255-i);
		}
1239
		pci_dev_put(pdev);
1240
		table++;
1241 1242 1243
	}
}

1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260
static unsigned i7core_pci_lastbus(void)
{
	int last_bus = 0, bus;
	struct pci_bus *b = NULL;

	while ((b = pci_find_next_bus(b)) != NULL) {
		bus = b->number;
		debugf0("Found bus %d\n", bus);
		if (bus > last_bus)
			last_bus = bus;
	}

	debugf0("Last bus %d\n", last_bus);

	return last_bus;
}

1261 1262 1263 1264 1265 1266
/*
 *	i7core_get_devices	Find and perform 'get' operation on the MCH's
 *			device/functions we want to reference for this driver
 *
 *			Need to 'get' device 16 func 1 and func 2
 */
1267
int i7core_get_onedevice(struct pci_dev **prev, int devno,
1268 1269
			 struct pci_id_descr *dev_descr, unsigned n_devs,
			 unsigned last_bus)
1270
{
1271 1272
	struct i7core_dev *i7core_dev;

1273
	struct pci_dev *pdev = NULL;
1274 1275
	u8 bus = 0;
	u8 socket = 0;
1276

1277
	pdev = pci_get_device(PCI_VENDOR_ID_INTEL,
1278
			      dev_descr->dev_id, *prev);
1279 1280 1281 1282 1283 1284

	/*
	 * On Xeon 55xx, the Intel Quckpath Arch Generic Non-core regs
	 * is at addr 8086:2c40, instead of 8086:2c41. So, we need
	 * to probe for the alternate address in case of failure
	 */
1285
	if (dev_descr->dev_id == PCI_DEVICE_ID_INTEL_I7_NONCORE && !pdev)
1286
		pdev = pci_get_device(PCI_VENDOR_ID_INTEL,
1287
				      PCI_DEVICE_ID_INTEL_I7_NONCORE_ALT, *prev);
1288

1289
	if (dev_descr->dev_id == PCI_DEVICE_ID_INTEL_LYNNFIELD_NONCORE && !pdev)
1290 1291 1292 1293
		pdev = pci_get_device(PCI_VENDOR_ID_INTEL,
				      PCI_DEVICE_ID_INTEL_LYNNFIELD_NONCORE_ALT,
				      *prev);

1294 1295 1296 1297
	if (!pdev) {
		if (*prev) {
			*prev = pdev;
			return 0;
1298 1299
		}

1300
		if (dev_descr->optional)
1301
			return 0;
1302

1303 1304 1305
		if (devno == 0)
			return -ENODEV;

1306
		i7core_printk(KERN_INFO,
1307
			"Device not found: dev %02x.%d PCI ID %04x:%04x\n",
1308 1309
			dev_descr->dev, dev_descr->func,
			PCI_VENDOR_ID_INTEL, dev_descr->dev_id);
1310

1311 1312 1313 1314
		/* End of list, leave */
		return -ENODEV;
	}
	bus = pdev->bus->number;
1315

1316
	socket = last_bus - bus;
1317

1318 1319 1320 1321 1322
	i7core_dev = get_i7core_dev(socket);
	if (!i7core_dev) {
		i7core_dev = kzalloc(sizeof(*i7core_dev), GFP_KERNEL);
		if (!i7core_dev)
			return -ENOMEM;
1323
		i7core_dev->pdev = kzalloc(sizeof(*i7core_dev->pdev) * n_devs,
1324
					   GFP_KERNEL);
1325 1326
		if (!i7core_dev->pdev) {
			kfree(i7core_dev);
1327
			return -ENOMEM;
1328
		}
1329
		i7core_dev->socket = socket;
1330
		i7core_dev->n_devs = n_devs;
1331
		list_add_tail(&i7core_dev->list, &i7core_edac_list);
1332
	}
1333

1334
	if (i7core_dev->pdev[devno]) {
1335 1336 1337
		i7core_printk(KERN_ERR,
			"Duplicated device for "
			"dev %02x:%02x.%d PCI ID %04x:%04x\n",
1338 1339
			bus, dev_descr->dev, dev_descr->func,
			PCI_VENDOR_ID_INTEL, dev_descr->dev_id);
1340 1341 1342
		pci_dev_put(pdev);
		return -ENODEV;
	}
1343

1344
	i7core_dev->pdev[devno] = pdev;
1345 1346

	/* Sanity check */
1347 1348
	if (unlikely(PCI_SLOT(pdev->devfn) != dev_descr->dev ||
			PCI_FUNC(pdev->devfn) != dev_descr->func)) {
1349 1350 1351
		i7core_printk(KERN_ERR,
			"Device PCI ID %04x:%04x "
			"has dev %02x:%02x.%d instead of dev %02x:%02x.%d\n",
1352
			PCI_VENDOR_ID_INTEL, dev_descr->dev_id,
1353
			bus, PCI_SLOT(pdev->devfn), PCI_FUNC(pdev->devfn),
1354
			bus, dev_descr->dev, dev_descr->func);
1355 1356
		return -ENODEV;
	}
1357

1358 1359 1360 1361 1362
	/* Be sure that the device is enabled */
	if (unlikely(pci_enable_device(pdev) < 0)) {
		i7core_printk(KERN_ERR,
			"Couldn't enable "
			"dev %02x:%02x.%d PCI ID %04x:%04x\n",
1363 1364
			bus, dev_descr->dev, dev_descr->func,
			PCI_VENDOR_ID_INTEL, dev_descr->dev_id);
1365 1366
		return -ENODEV;
	}
1367

1368
	debugf0("Detected socket %d dev %02x:%02x.%d PCI ID %04x:%04x\n",
1369 1370 1371
		socket, bus, dev_descr->dev,
		dev_descr->func,
		PCI_VENDOR_ID_INTEL, dev_descr->dev_id);
1372

1373
	*prev = pdev;
1374

1375 1376
	return 0;
}
1377

1378
static int i7core_get_devices(struct pci_id_table *table)
1379
{
1380
	int i, rc, last_bus;
1381
	struct pci_dev *pdev = NULL;
1382 1383
	struct pci_id_descr *dev_descr;

1384 1385
	last_bus = i7core_pci_lastbus();

1386 1387 1388 1389 1390
	while (table && table->descr) {
		dev_descr = table->descr;
		for (i = 0; i < table->n_devs; i++) {
			pdev = NULL;
			do {
1391 1392 1393 1394
				rc = i7core_get_onedevice(&pdev, i,
							  &dev_descr[i],
							  table->n_devs,
							  last_bus);
1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405
				if (rc < 0) {
					if (i == 0) {
						i = table->n_devs;
						break;
					}
					i7core_put_all_devices();
					return -ENODEV;
				}
			} while (pdev);
		}
		table++;
1406
	}
1407

1408
	return 0;
1409
	return 0;
1410 1411
}

1412 1413
static int mci_bind_devs(struct mem_ctl_info *mci,
			 struct i7core_dev *i7core_dev)
1414 1415 1416
{
	struct i7core_pvt *pvt = mci->pvt_info;
	struct pci_dev *pdev;
1417
	int i, func, slot;
1418

1419 1420 1421
	/* Associates i7core_dev and mci for future usage */
	pvt->i7core_dev = i7core_dev;
	i7core_dev->mci = mci;
1422

1423
	pvt->is_registered = 0;
1424
	for (i = 0; i < i7core_dev->n_devs; i++) {
1425 1426
		pdev = i7core_dev->pdev[i];
		if (!pdev)
1427 1428
			continue;

1429 1430 1431 1432 1433 1434 1435 1436
		func = PCI_FUNC(pdev->devfn);
		slot = PCI_SLOT(pdev->devfn);
		if (slot == 3) {
			if (unlikely(func > MAX_MCR_FUNC))
				goto error;
			pvt->pci_mcr[func] = pdev;
		} else if (likely(slot >= 4 && slot < 4 + NUM_CHANS)) {
			if (unlikely(func > MAX_CHAN_FUNC))
1437
				goto error;
1438 1439 1440 1441 1442
			pvt->pci_ch[slot - 4][func] = pdev;
		} else if (!slot && !func)
			pvt->pci_noncore = pdev;
		else
			goto error;
1443

1444 1445 1446
		debugf0("Associated fn %d.%d, dev = %p, socket %d\n",
			PCI_SLOT(pdev->devfn), PCI_FUNC(pdev->devfn),
			pdev, i7core_dev->socket);
1447

1448 1449 1450
		if (PCI_SLOT(pdev->devfn) == 3 &&
			PCI_FUNC(pdev->devfn) == 2)
			pvt->is_registered = 1;
1451
	}
1452

1453 1454 1455 1456 1457 1458 1459 1460 1461
	/*
	 * Add extra nodes to count errors on udimm
	 * For registered memory, this is not needed, since the counters
	 * are already displayed at the standard locations
	 */
	if (!pvt->is_registered)
		i7core_sysfs_attrs[ARRAY_SIZE(i7core_sysfs_attrs)-2].grp =
			&i7core_udimm_counters;

1462
	return 0;
1463 1464 1465 1466 1467 1468

error:
	i7core_printk(KERN_ERR, "Device %d, function %d "
		      "is out of the expected range\n",
		      slot, func);
	return -EINVAL;
1469 1470
}

1471 1472 1473
/****************************************************************************
			Error check routines
 ****************************************************************************/
1474
static void i7core_rdimm_update_csrow(struct mem_ctl_info *mci,
1475 1476 1477 1478
					 int chan, int dimm, int add)
{
	char *msg;
	struct i7core_pvt *pvt = mci->pvt_info;
1479
	int row = pvt->csrow_map[chan][dimm], i;
1480 1481 1482

	for (i = 0; i < add; i++) {
		msg = kasprintf(GFP_KERNEL, "Corrected error "
1483 1484
				"(Socket=%d channel=%d dimm=%d)",
				pvt->i7core_dev->socket, chan, dimm);
1485 1486 1487 1488 1489 1490 1491

		edac_mc_handle_fbd_ce(mci, row, 0, msg);
		kfree (msg);
	}
}

static void i7core_rdimm_update_ce_count(struct mem_ctl_info *mci,
1492
			int chan, int new0, int new1, int new2)
1493 1494 1495 1496
{
	struct i7core_pvt *pvt = mci->pvt_info;
	int add0 = 0, add1 = 0, add2 = 0;
	/* Updates CE counters if it is not the first time here */
1497
	if (pvt->ce_count_available) {
1498 1499
		/* Updates CE counters */

1500 1501 1502
		add2 = new2 - pvt->rdimm_last_ce_count[chan][2];
		add1 = new1 - pvt->rdimm_last_ce_count[chan][1];
		add0 = new0 - pvt->rdimm_last_ce_count[chan][0];
1503 1504 1505

		if (add2 < 0)
			add2 += 0x7fff;
1506
		pvt->rdimm_ce_count[chan][2] += add2;
1507 1508 1509

		if (add1 < 0)
			add1 += 0x7fff;
1510
		pvt->rdimm_ce_count[chan][1] += add1;
1511 1512 1513

		if (add0 < 0)
			add0 += 0x7fff;
1514
		pvt->rdimm_ce_count[chan][0] += add0;
1515
	} else
1516
		pvt->ce_count_available = 1;
1517 1518

	/* Store the new values */
1519 1520 1521
	pvt->rdimm_last_ce_count[chan][2] = new2;
	pvt->rdimm_last_ce_count[chan][1] = new1;
	pvt->rdimm_last_ce_count[chan][0] = new0;
1522 1523 1524

	/*updated the edac core */
	if (add0 != 0)
1525
		i7core_rdimm_update_csrow(mci, chan, 0, add0);
1526
	if (add1 != 0)
1527
		i7core_rdimm_update_csrow(mci, chan, 1, add1);
1528
	if (add2 != 0)
1529
		i7core_rdimm_update_csrow(mci, chan, 2, add2);
1530 1531 1532

}

1533
static void i7core_rdimm_check_mc_ecc_err(struct mem_ctl_info *mci)
1534 1535 1536 1537 1538 1539
{
	struct i7core_pvt *pvt = mci->pvt_info;
	u32 rcv[3][2];
	int i, new0, new1, new2;

	/*Read DEV 3: FUN 2:  MC_COR_ECC_CNT regs directly*/
1540
	pci_read_config_dword(pvt->pci_mcr[2], MC_COR_ECC_CNT_0,
1541
								&rcv[0][0]);
1542
	pci_read_config_dword(pvt->pci_mcr[2], MC_COR_ECC_CNT_1,
1543
								&rcv[0][1]);
1544
	pci_read_config_dword(pvt->pci_mcr[2], MC_COR_ECC_CNT_2,
1545
								&rcv[1][0]);
1546
	pci_read_config_dword(pvt->pci_mcr[2], MC_COR_ECC_CNT_3,
1547
								&rcv[1][1]);
1548
	pci_read_config_dword(pvt->pci_mcr[2], MC_COR_ECC_CNT_4,
1549
								&rcv[2][0]);
1550
	pci_read_config_dword(pvt->pci_mcr[2], MC_COR_ECC_CNT_5,
1551 1552 1553 1554 1555
								&rcv[2][1]);
	for (i = 0 ; i < 3; i++) {
		debugf3("MC_COR_ECC_CNT%d = 0x%x; MC_COR_ECC_CNT%d = 0x%x\n",
			(i * 2), rcv[i][0], (i * 2) + 1, rcv[i][1]);
		/*if the channel has 3 dimms*/
1556
		if (pvt->channel[i].dimms > 2) {
1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567
			new0 = DIMM_BOT_COR_ERR(rcv[i][0]);
			new1 = DIMM_TOP_COR_ERR(rcv[i][0]);
			new2 = DIMM_BOT_COR_ERR(rcv[i][1]);
		} else {
			new0 = DIMM_TOP_COR_ERR(rcv[i][0]) +
					DIMM_BOT_COR_ERR(rcv[i][0]);
			new1 = DIMM_TOP_COR_ERR(rcv[i][1]) +
					DIMM_BOT_COR_ERR(rcv[i][1]);
			new2 = 0;
		}

1568
		i7core_rdimm_update_ce_count(mci, i, new0, new1, new2);
1569 1570
	}
}
1571 1572 1573 1574 1575 1576 1577

/* This function is based on the device 3 function 4 registers as described on:
 * Intel Xeon Processor 5500 Series Datasheet Volume 2
 *	http://www.intel.com/Assets/PDF/datasheet/321322.pdf
 * also available at:
 * 	http://www.arrownac.com/manufacturers/intel/s/nehalem/5500-datasheet-v2.pdf
 */
1578
static void i7core_udimm_check_mc_ecc_err(struct mem_ctl_info *mci)
1579 1580 1581 1582 1583
{
	struct i7core_pvt *pvt = mci->pvt_info;
	u32 rcv1, rcv0;
	int new0, new1, new2;

1584
	if (!pvt->pci_mcr[4]) {
1585
		debugf0("%s MCR registers not found\n", __func__);
1586 1587 1588
		return;
	}

1589
	/* Corrected test errors */
1590 1591
	pci_read_config_dword(pvt->pci_mcr[4], MC_TEST_ERR_RCV1, &rcv1);
	pci_read_config_dword(pvt->pci_mcr[4], MC_TEST_ERR_RCV0, &rcv0);
1592 1593 1594 1595 1596 1597 1598

	/* Store the new values */
	new2 = DIMM2_COR_ERR(rcv1);
	new1 = DIMM1_COR_ERR(rcv0);
	new0 = DIMM0_COR_ERR(rcv0);

	/* Updates CE counters if it is not the first time here */
1599
	if (pvt->ce_count_available) {
1600 1601 1602
		/* Updates CE counters */
		int add0, add1, add2;

1603 1604 1605
		add2 = new2 - pvt->udimm_last_ce_count[2];
		add1 = new1 - pvt->udimm_last_ce_count[1];
		add0 = new0 - pvt->udimm_last_ce_count[0];
1606 1607 1608

		if (add2 < 0)
			add2 += 0x7fff;
1609
		pvt->udimm_ce_count[2] += add2;
1610 1611 1612

		if (add1 < 0)
			add1 += 0x7fff;
1613
		pvt->udimm_ce_count[1] += add1;
1614 1615 1616

		if (add0 < 0)
			add0 += 0x7fff;
1617
		pvt->udimm_ce_count[0] += add0;
1618 1619 1620 1621 1622

		if (add0 | add1 | add2)
			i7core_printk(KERN_ERR, "New Corrected error(s): "
				      "dimm0: +%d, dimm1: +%d, dimm2 +%d\n",
				      add0, add1, add2);
1623
	} else
1624
		pvt->ce_count_available = 1;
1625 1626

	/* Store the new values */
1627 1628 1629
	pvt->udimm_last_ce_count[2] = new2;
	pvt->udimm_last_ce_count[1] = new1;
	pvt->udimm_last_ce_count[0] = new0;
1630 1631
}

1632 1633 1634
/*
 * According with tables E-11 and E-12 of chapter E.3.3 of Intel 64 and IA-32
 * Architectures Software Developer’s Manual Volume 3B.
1635 1636 1637
 * Nehalem are defined as family 0x06, model 0x1a
 *
 * The MCA registers used here are the following ones:
1638
 *     struct mce field	MCA Register
1639 1640 1641
 *     m->status	MSR_IA32_MC8_STATUS
 *     m->addr		MSR_IA32_MC8_ADDR
 *     m->misc		MSR_IA32_MC8_MISC
1642 1643 1644
 * In the case of Nehalem, the error information is masked at .status and .misc
 * fields
 */
1645 1646 1647
static void i7core_mce_output_error(struct mem_ctl_info *mci,
				    struct mce *m)
{
1648
	struct i7core_pvt *pvt = mci->pvt_info;
1649
	char *type, *optype, *err, *msg;
1650
	unsigned long error = m->status & 0x1ff0000l;
1651
	u32 optypenum = (m->status >> 4) & 0x07;
1652 1653 1654 1655 1656
	u32 core_err_cnt = (m->status >> 38) && 0x7fff;
	u32 dimm = (m->misc >> 16) & 0x3;
	u32 channel = (m->misc >> 18) & 0x3;
	u32 syndrome = m->misc >> 32;
	u32 errnum = find_first_bit(&error, 32);
1657
	int csrow;
1658

1659 1660 1661 1662 1663
	if (m->mcgstatus & 1)
		type = "FATAL";
	else
		type = "NON_FATAL";

1664
	switch (optypenum) {
1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682
	case 0:
		optype = "generic undef request";
		break;
	case 1:
		optype = "read error";
		break;
	case 2:
		optype = "write error";
		break;
	case 3:
		optype = "addr/cmd error";
		break;
	case 4:
		optype = "scrubbing error";
		break;
	default:
		optype = "reserved";
		break;
1683 1684
	}

1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714
	switch (errnum) {
	case 16:
		err = "read ECC error";
		break;
	case 17:
		err = "RAS ECC error";
		break;
	case 18:
		err = "write parity error";
		break;
	case 19:
		err = "redundacy loss";
		break;
	case 20:
		err = "reserved";
		break;
	case 21:
		err = "memory range error";
		break;
	case 22:
		err = "RTID out of range";
		break;
	case 23:
		err = "address parity error";
		break;
	case 24:
		err = "byte enable parity error";
		break;
	default:
		err = "unknown";
1715 1716
	}

1717
	/* FIXME: should convert addr into bank and rank information */
1718
	msg = kasprintf(GFP_ATOMIC,
1719
		"%s (addr = 0x%08llx, cpu=%d, Dimm=%d, Channel=%d, "
1720
		"syndrome=0x%08x, count=%d, Err=%08llx:%08llx (%s: %s))\n",
1721
		type, (long long) m->addr, m->cpu, dimm, channel,
1722 1723
		syndrome, core_err_cnt, (long long)m->status,
		(long long)m->misc, optype, err);
1724 1725

	debugf0("%s", msg);
1726

1727
	csrow = pvt->csrow_map[channel][dimm];
1728

1729
	/* Call the helper to output message */
1730 1731 1732
	if (m->mcgstatus & 1)
		edac_mc_handle_fbd_ue(mci, csrow, 0,
				0 /* FIXME: should be channel here */, msg);
1733
	else if (!pvt->is_registered)
1734 1735
		edac_mc_handle_fbd_ce(mci, csrow,
				0 /* FIXME: should be channel here */, msg);
1736 1737

	kfree(msg);
1738 1739
}

1740 1741 1742 1743 1744 1745
/*
 *	i7core_check_error	Retrieve and process errors reported by the
 *				hardware. Called by the Core module.
 */
static void i7core_check_error(struct mem_ctl_info *mci)
{
1746 1747 1748
	struct i7core_pvt *pvt = mci->pvt_info;
	int i;
	unsigned count = 0;
1749
	struct mce *m;
1750

1751 1752 1753 1754 1755 1756
	/*
	 * MCE first step: Copy all mce errors into a temporary buffer
	 * We use a double buffering here, to reduce the risk of
	 * loosing an error.
	 */
	smp_rmb();
1757 1758
	count = (pvt->mce_out + MCE_LOG_LEN - pvt->mce_in)
		% MCE_LOG_LEN;
1759
	if (!count)
1760
		goto check_ce_error;
1761

1762
	m = pvt->mce_outentry;
1763 1764
	if (pvt->mce_in + count > MCE_LOG_LEN) {
		unsigned l = MCE_LOG_LEN - pvt->mce_in;
1765

1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782
		memcpy(m, &pvt->mce_entry[pvt->mce_in], sizeof(*m) * l);
		smp_wmb();
		pvt->mce_in = 0;
		count -= l;
		m += l;
	}
	memcpy(m, &pvt->mce_entry[pvt->mce_in], sizeof(*m) * count);
	smp_wmb();
	pvt->mce_in += count;

	smp_rmb();
	if (pvt->mce_overrun) {
		i7core_printk(KERN_ERR, "Lost %d memory errors\n",
			      pvt->mce_overrun);
		smp_wmb();
		pvt->mce_overrun = 0;
	}
1783

1784 1785 1786
	/*
	 * MCE second step: parse errors and display
	 */
1787
	for (i = 0; i < count; i++)
1788
		i7core_mce_output_error(mci, &pvt->mce_outentry[i]);
1789

1790 1791 1792
	/*
	 * Now, let's increment CE error counts
	 */
1793
check_ce_error:
1794 1795 1796 1797
	if (!pvt->is_registered)
		i7core_udimm_check_mc_ecc_err(mci);
	else
		i7core_rdimm_check_mc_ecc_err(mci);
1798 1799
}

1800 1801 1802 1803 1804
/*
 * i7core_mce_check_error	Replicates mcelog routine to get errors
 *				This routine simply queues mcelog errors, and
 *				return. The error itself should be handled later
 *				by i7core_check_error.
1805 1806
 * WARNING: As this routine should be called at NMI time, extra care should
 * be taken to avoid deadlocks, and to be as fast as possible.
1807 1808 1809
 */
static int i7core_mce_check_error(void *priv, struct mce *mce)
{
1810 1811
	struct mem_ctl_info *mci = priv;
	struct i7core_pvt *pvt = mci->pvt_info;
1812

1813 1814 1815 1816 1817 1818 1819
	/*
	 * Just let mcelog handle it if the error is
	 * outside the memory controller
	 */
	if (((mce->status & 0xffff) >> 7) != 1)
		return 0;

1820 1821 1822 1823
	/* Bank 8 registers are the only ones that we know how to handle */
	if (mce->bank != 8)
		return 0;

R
Randy Dunlap 已提交
1824
#ifdef CONFIG_SMP
1825
	/* Only handle if it is the right mc controller */
1826
	if (cpu_data(mce->cpu).phys_proc_id != pvt->i7core_dev->socket)
1827
		return 0;
R
Randy Dunlap 已提交
1828
#endif
1829

1830
	smp_rmb();
1831
	if ((pvt->mce_out + 1) % MCE_LOG_LEN == pvt->mce_in) {
1832 1833 1834
		smp_wmb();
		pvt->mce_overrun++;
		return 0;
1835
	}
1836 1837 1838

	/* Copy memory error at the ringbuffer */
	memcpy(&pvt->mce_entry[pvt->mce_out], mce, sizeof(*mce));
1839
	smp_wmb();
1840
	pvt->mce_out = (pvt->mce_out + 1) % MCE_LOG_LEN;
1841

1842 1843 1844 1845
	/* Handle fatal errors immediately */
	if (mce->mcgstatus & 1)
		i7core_check_error(mci);

1846
	/* Advice mcelog that the error were handled */
1847
	return 1;
1848 1849
}

1850 1851
static int i7core_register_mci(struct i7core_dev *i7core_dev,
			       int num_channels, int num_csrows)
1852 1853 1854
{
	struct mem_ctl_info *mci;
	struct i7core_pvt *pvt;
1855
	int csrow = 0;
1856
	int rc;
1857 1858

	/* allocate a new MC control structure */
1859 1860
	mci = edac_mc_alloc(sizeof(*pvt), num_csrows, num_channels,
			    i7core_dev->socket);
1861 1862
	if (unlikely(!mci))
		return -ENOMEM;
1863 1864 1865

	debugf0("MC: " __FILE__ ": %s(): mci = %p\n", __func__, mci);

1866 1867 1868
	/* record ptr to the generic device */
	mci->dev = &i7core_dev->pdev[0]->dev;

1869
	pvt = mci->pvt_info;
1870
	memset(pvt, 0, sizeof(*pvt));
1871

1872 1873 1874 1875 1876 1877
	/*
	 * FIXME: how to handle RDDR3 at MCI level? It is possible to have
	 * Mixed RDDR3/UDDR3 with Nehalem, provided that they are on different
	 * memory channels
	 */
	mci->mtype_cap = MEM_FLAG_DDR3;
1878 1879 1880 1881
	mci->edac_ctl_cap = EDAC_FLAG_NONE;
	mci->edac_cap = EDAC_FLAG_NONE;
	mci->mod_name = "i7core_edac.c";
	mci->mod_ver = I7CORE_REVISION;
1882 1883 1884
	mci->ctl_name = kasprintf(GFP_KERNEL, "i7 core #%d",
				  i7core_dev->socket);
	mci->dev_name = pci_name(i7core_dev->pdev[0]);
1885
	mci->ctl_page_to_phys = NULL;
1886
	mci->mc_driver_sysfs_attributes = i7core_sysfs_attrs;
1887 1888
	/* Set the function pointer to an actual operation function */
	mci->edac_check = i7core_check_error;
1889

1890
	/* Store pci devices at mci for faster access */
1891
	rc = mci_bind_devs(mci, i7core_dev);
1892
	if (unlikely(rc < 0))
1893
		goto fail;
1894 1895

	/* Get dimm basic config */
1896
	get_dimm_config(mci, &csrow);
1897

1898
	/* add this new MC control structure to EDAC's list of MCs */
1899
	if (unlikely(edac_mc_add_mc(mci))) {
1900 1901 1902 1903 1904
		debugf0("MC: " __FILE__
			": %s(): failed edac_mc_add_mc()\n", __func__);
		/* FIXME: perhaps some code should go here that disables error
		 * reporting if we just enabled it
		 */
1905 1906

		rc = -EINVAL;
1907
		goto fail;
1908 1909 1910
	}

	/* allocating generic PCI control info */
1911
	pvt->i7core_pci = edac_pci_create_generic_ctl(&i7core_dev->pdev[0]->dev,
1912
						 EDAC_MOD_STR);
1913
	if (unlikely(!pvt->i7core_pci)) {
1914 1915 1916 1917 1918 1919 1920 1921
		printk(KERN_WARNING
			"%s(): Unable to create PCI control\n",
			__func__);
		printk(KERN_WARNING
			"%s(): PCI error report via EDAC not setup\n",
			__func__);
	}

1922
	/* Default error mask is any memory */
1923
	pvt->inject.channel = 0;
1924 1925 1926 1927 1928 1929
	pvt->inject.dimm = -1;
	pvt->inject.rank = -1;
	pvt->inject.bank = -1;
	pvt->inject.page = -1;
	pvt->inject.col = -1;

1930
	/* Registers on edac_mce in order to receive memory errors */
1931
	pvt->edac_mce.priv = mci;
1932 1933 1934
	pvt->edac_mce.check_error = i7core_mce_check_error;

	rc = edac_mce_register(&pvt->edac_mce);
1935
	if (unlikely(rc < 0)) {
1936 1937
		debugf0("MC: " __FILE__
			": %s(): failed edac_mce_register()\n", __func__);
1938 1939 1940
	}

fail:
T
Tony Luck 已提交
1941 1942
	if (rc < 0)
		edac_mc_free(mci);
1943 1944 1945 1946 1947 1948 1949 1950 1951 1952
	return rc;
}

/*
 *	i7core_probe	Probe for ONE instance of device to see if it is
 *			present.
 *	return:
 *		0 for FOUND a device
 *		< 0 for error code
 */
1953

1954 1955 1956 1957 1958 1959
static int __devinit i7core_probe(struct pci_dev *pdev,
				  const struct pci_device_id *id)
{
	int rc;
	struct i7core_dev *i7core_dev;

1960 1961 1962
	/* get the pci devices we want to reserve for our use */
	mutex_lock(&i7core_edac_lock);

1963
	/*
1964
	 * All memory controllers are allocated at the first pass.
1965
	 */
1966 1967
	if (unlikely(probed >= 1)) {
		mutex_unlock(&i7core_edac_lock);
1968
		return -EINVAL;
1969 1970
	}
	probed++;
1971

1972
	rc = i7core_get_devices(pci_dev_table);
1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985
	if (unlikely(rc < 0))
		goto fail0;

	list_for_each_entry(i7core_dev, &i7core_edac_list, list) {
		int channels;
		int csrows;

		/* Check the number of active and not disabled channels */
		rc = i7core_get_active_channels(i7core_dev->socket,
						&channels, &csrows);
		if (unlikely(rc < 0))
			goto fail1;

1986 1987 1988
		rc = i7core_register_mci(i7core_dev, channels, csrows);
		if (unlikely(rc < 0))
			goto fail1;
1989 1990
	}

1991
	i7core_printk(KERN_INFO, "Driver loaded.\n");
1992

1993
	mutex_unlock(&i7core_edac_lock);
1994 1995
	return 0;

1996
fail1:
1997
	i7core_put_all_devices();
1998 1999
fail0:
	mutex_unlock(&i7core_edac_lock);
2000
	return rc;
2001 2002 2003 2004 2005 2006 2007 2008 2009
}

/*
 *	i7core_remove	destructor for one instance of device
 *
 */
static void __devexit i7core_remove(struct pci_dev *pdev)
{
	struct mem_ctl_info *mci;
2010
	struct i7core_dev *i7core_dev, *tmp;
2011
	struct i7core_pvt *pvt;
2012 2013 2014

	debugf0(__FILE__ ": %s()\n", __func__);

2015 2016 2017 2018 2019 2020 2021
	/*
	 * we have a trouble here: pdev value for removal will be wrong, since
	 * it will point to the X58 register used to detect that the machine
	 * is a Nehalem or upper design. However, due to the way several PCI
	 * devices are grouped together to provide MC functionality, we need
	 * to use a different method for releasing the devices
	 */
2022

2023
	mutex_lock(&i7core_edac_lock);
2024
	list_for_each_entry_safe(i7core_dev, tmp, &i7core_edac_list, list) {
2025 2026 2027 2028 2029 2030
		mci = find_mci_by_dev(&i7core_dev->pdev[0]->dev);
		if (unlikely(!mci || !mci->pvt_info)) {
			i7core_printk(KERN_ERR,
				      "Couldn't find mci hanler\n");
		} else {
			pvt = mci->pvt_info;
2031
			i7core_dev = pvt->i7core_dev;
2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042

			if (likely(pvt->i7core_pci))
				edac_pci_release_generic_ctl(pvt->i7core_pci);
			else
				i7core_printk(KERN_ERR,
					      "Couldn't find mem_ctl_info for socket %d\n",
					      i7core_dev->socket);
			pvt->i7core_pci = NULL;

			edac_mc_del_mc(&i7core_dev->pdev[0]->dev);

2043 2044 2045 2046 2047 2048
			edac_mce_unregister(&pvt->edac_mce);
			kfree(mci->ctl_name);
			edac_mc_free(mci);
			i7core_put_devices(i7core_dev);
		}
	}
2049 2050
	probed--;

2051
	mutex_unlock(&i7core_edac_lock);
2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079
}

MODULE_DEVICE_TABLE(pci, i7core_pci_tbl);

/*
 *	i7core_driver	pci_driver structure for this module
 *
 */
static struct pci_driver i7core_driver = {
	.name     = "i7core_edac",
	.probe    = i7core_probe,
	.remove   = __devexit_p(i7core_remove),
	.id_table = i7core_pci_tbl,
};

/*
 *	i7core_init		Module entry function
 *			Try to initialize this module for its devices
 */
static int __init i7core_init(void)
{
	int pci_rc;

	debugf2("MC: " __FILE__ ": %s()\n", __func__);

	/* Ensure that the OPSTATE is set correctly for POLL or NMI */
	opstate_init();

2080
	i7core_xeon_pci_fixup(pci_dev_table);
2081

2082 2083
	pci_rc = pci_register_driver(&i7core_driver);

2084 2085 2086 2087 2088 2089 2090
	if (pci_rc >= 0)
		return 0;

	i7core_printk(KERN_ERR, "Failed to register device with error %d.\n",
		      pci_rc);

	return pci_rc;
2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113
}

/*
 *	i7core_exit()	Module exit function
 *			Unregister the driver
 */
static void __exit i7core_exit(void)
{
	debugf2("MC: " __FILE__ ": %s()\n", __func__);
	pci_unregister_driver(&i7core_driver);
}

module_init(i7core_init);
module_exit(i7core_exit);

MODULE_LICENSE("GPL");
MODULE_AUTHOR("Mauro Carvalho Chehab <mchehab@redhat.com>");
MODULE_AUTHOR("Red Hat Inc. (http://www.redhat.com)");
MODULE_DESCRIPTION("MC Driver for Intel i7 Core memory controllers - "
		   I7CORE_REVISION);

module_param(edac_op_state, int, 0444);
MODULE_PARM_DESC(edac_op_state, "EDAC Error Reporting state: 0=Poll,1=NMI");