intel_lrc.c 78.7 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
/*
 * Copyright © 2014 Intel Corporation
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice (including the next
 * paragraph) shall be included in all copies or substantial portions of the
 * Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
 * IN THE SOFTWARE.
 *
 * Authors:
 *    Ben Widawsky <ben@bwidawsk.net>
 *    Michel Thierry <michel.thierry@intel.com>
 *    Thomas Daniel <thomas.daniel@intel.com>
 *    Oscar Mateo <oscar.mateo@intel.com>
 *
 */

31 32 33 34
/**
 * DOC: Logical Rings, Logical Ring Contexts and Execlists
 *
 * Motivation:
35 36 37 38
 * GEN8 brings an expansion of the HW contexts: "Logical Ring Contexts".
 * These expanded contexts enable a number of new abilities, especially
 * "Execlists" (also implemented in this file).
 *
39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89
 * One of the main differences with the legacy HW contexts is that logical
 * ring contexts incorporate many more things to the context's state, like
 * PDPs or ringbuffer control registers:
 *
 * The reason why PDPs are included in the context is straightforward: as
 * PPGTTs (per-process GTTs) are actually per-context, having the PDPs
 * contained there mean you don't need to do a ppgtt->switch_mm yourself,
 * instead, the GPU will do it for you on the context switch.
 *
 * But, what about the ringbuffer control registers (head, tail, etc..)?
 * shouldn't we just need a set of those per engine command streamer? This is
 * where the name "Logical Rings" starts to make sense: by virtualizing the
 * rings, the engine cs shifts to a new "ring buffer" with every context
 * switch. When you want to submit a workload to the GPU you: A) choose your
 * context, B) find its appropriate virtualized ring, C) write commands to it
 * and then, finally, D) tell the GPU to switch to that context.
 *
 * Instead of the legacy MI_SET_CONTEXT, the way you tell the GPU to switch
 * to a contexts is via a context execution list, ergo "Execlists".
 *
 * LRC implementation:
 * Regarding the creation of contexts, we have:
 *
 * - One global default context.
 * - One local default context for each opened fd.
 * - One local extra context for each context create ioctl call.
 *
 * Now that ringbuffers belong per-context (and not per-engine, like before)
 * and that contexts are uniquely tied to a given engine (and not reusable,
 * like before) we need:
 *
 * - One ringbuffer per-engine inside each context.
 * - One backing object per-engine inside each context.
 *
 * The global default context starts its life with these new objects fully
 * allocated and populated. The local default context for each opened fd is
 * more complex, because we don't know at creation time which engine is going
 * to use them. To handle this, we have implemented a deferred creation of LR
 * contexts:
 *
 * The local context starts its life as a hollow or blank holder, that only
 * gets populated for a given engine once we receive an execbuffer. If later
 * on we receive another execbuffer ioctl for the same context but a different
 * engine, we allocate/populate a new ringbuffer and context backing object and
 * so on.
 *
 * Finally, regarding local contexts created using the ioctl call: as they are
 * only allowed with the render ring, we can allocate & populate them right
 * away (no need to defer anything, at least for now).
 *
 * Execlists implementation:
90 91
 * Execlists are the new method by which, on gen8+ hardware, workloads are
 * submitted for execution (as opposed to the legacy, ringbuffer-based, method).
92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132
 * This method works as follows:
 *
 * When a request is committed, its commands (the BB start and any leading or
 * trailing commands, like the seqno breadcrumbs) are placed in the ringbuffer
 * for the appropriate context. The tail pointer in the hardware context is not
 * updated at this time, but instead, kept by the driver in the ringbuffer
 * structure. A structure representing this request is added to a request queue
 * for the appropriate engine: this structure contains a copy of the context's
 * tail after the request was written to the ring buffer and a pointer to the
 * context itself.
 *
 * If the engine's request queue was empty before the request was added, the
 * queue is processed immediately. Otherwise the queue will be processed during
 * a context switch interrupt. In any case, elements on the queue will get sent
 * (in pairs) to the GPU's ExecLists Submit Port (ELSP, for short) with a
 * globally unique 20-bits submission ID.
 *
 * When execution of a request completes, the GPU updates the context status
 * buffer with a context complete event and generates a context switch interrupt.
 * During the interrupt handling, the driver examines the events in the buffer:
 * for each context complete event, if the announced ID matches that on the head
 * of the request queue, then that request is retired and removed from the queue.
 *
 * After processing, if any requests were retired and the queue is not empty
 * then a new execution list can be submitted. The two requests at the front of
 * the queue are next to be submitted but since a context may not occur twice in
 * an execution list, if subsequent requests have the same ID as the first then
 * the two requests must be combined. This is done simply by discarding requests
 * at the head of the queue until either only one requests is left (in which case
 * we use a NULL second context) or the first two requests have unique IDs.
 *
 * By always executing the first two requests in the queue the driver ensures
 * that the GPU is kept as busy as possible. In the case where a single context
 * completes but a second context is still executing, the request for this second
 * context will be at the head of the queue when we remove the first one. This
 * request will then be resubmitted along with a new request for a different context,
 * which will cause the hardware to continue executing the second request and queue
 * the new request (the GPU detects the condition of a context getting preempted
 * with the same context and optimizes the context switch flow by not doing
 * preemption, but just sampling the new tail pointer).
 *
133
 */
134
#include <linux/interrupt.h>
135 136 137 138

#include <drm/drmP.h>
#include <drm/i915_drm.h>
#include "i915_drv.h"
139
#include "intel_mocs.h"
140

141
#define GEN9_LR_CONTEXT_RENDER_SIZE (22 * PAGE_SIZE)
142 143 144
#define GEN8_LR_CONTEXT_RENDER_SIZE (20 * PAGE_SIZE)
#define GEN8_LR_CONTEXT_OTHER_SIZE (2 * PAGE_SIZE)

145 146 147 148 149 150 151 152 153 154 155 156 157
#define RING_EXECLIST_QFULL		(1 << 0x2)
#define RING_EXECLIST1_VALID		(1 << 0x3)
#define RING_EXECLIST0_VALID		(1 << 0x4)
#define RING_EXECLIST_ACTIVE_STATUS	(3 << 0xE)
#define RING_EXECLIST1_ACTIVE		(1 << 0x11)
#define RING_EXECLIST0_ACTIVE		(1 << 0x12)

#define GEN8_CTX_STATUS_IDLE_ACTIVE	(1 << 0)
#define GEN8_CTX_STATUS_PREEMPTED	(1 << 1)
#define GEN8_CTX_STATUS_ELEMENT_SWITCH	(1 << 2)
#define GEN8_CTX_STATUS_ACTIVE_IDLE	(1 << 3)
#define GEN8_CTX_STATUS_COMPLETE	(1 << 4)
#define GEN8_CTX_STATUS_LITE_RESTORE	(1 << 15)
158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187

#define CTX_LRI_HEADER_0		0x01
#define CTX_CONTEXT_CONTROL		0x02
#define CTX_RING_HEAD			0x04
#define CTX_RING_TAIL			0x06
#define CTX_RING_BUFFER_START		0x08
#define CTX_RING_BUFFER_CONTROL		0x0a
#define CTX_BB_HEAD_U			0x0c
#define CTX_BB_HEAD_L			0x0e
#define CTX_BB_STATE			0x10
#define CTX_SECOND_BB_HEAD_U		0x12
#define CTX_SECOND_BB_HEAD_L		0x14
#define CTX_SECOND_BB_STATE		0x16
#define CTX_BB_PER_CTX_PTR		0x18
#define CTX_RCS_INDIRECT_CTX		0x1a
#define CTX_RCS_INDIRECT_CTX_OFFSET	0x1c
#define CTX_LRI_HEADER_1		0x21
#define CTX_CTX_TIMESTAMP		0x22
#define CTX_PDP3_UDW			0x24
#define CTX_PDP3_LDW			0x26
#define CTX_PDP2_UDW			0x28
#define CTX_PDP2_LDW			0x2a
#define CTX_PDP1_UDW			0x2c
#define CTX_PDP1_LDW			0x2e
#define CTX_PDP0_UDW			0x30
#define CTX_PDP0_LDW			0x32
#define CTX_LRI_HEADER_2		0x41
#define CTX_R_PWR_CLK_STATE		0x42
#define CTX_GPGPU_CSR_BASE_ADDRESS	0x44

188 189 190 191 192
#define GEN8_CTX_VALID (1<<0)
#define GEN8_CTX_FORCE_PD_RESTORE (1<<1)
#define GEN8_CTX_FORCE_RESTORE (1<<2)
#define GEN8_CTX_L3LLC_COHERENT (1<<5)
#define GEN8_CTX_PRIVILEGE (1<<8)
193

194
#define ASSIGN_CTX_REG(reg_state, pos, reg, val) do { \
195
	(reg_state)[(pos)+0] = i915_mmio_reg_offset(reg); \
196 197 198 199
	(reg_state)[(pos)+1] = (val); \
} while (0)

#define ASSIGN_CTX_PDP(ppgtt, reg_state, n) do {		\
200
	const u64 _addr = i915_page_dir_dma_addr((ppgtt), (n));	\
201 202
	reg_state[CTX_PDP ## n ## _UDW+1] = upper_32_bits(_addr); \
	reg_state[CTX_PDP ## n ## _LDW+1] = lower_32_bits(_addr); \
203
} while (0)
204

205
#define ASSIGN_CTX_PML4(ppgtt, reg_state) do { \
206 207
	reg_state[CTX_PDP0_UDW + 1] = upper_32_bits(px_dma(&ppgtt->pml4)); \
	reg_state[CTX_PDP0_LDW + 1] = lower_32_bits(px_dma(&ppgtt->pml4)); \
208
} while (0)
209

210 211
enum {
	ADVANCED_CONTEXT = 0,
212
	LEGACY_32B_CONTEXT,
213 214 215
	ADVANCED_AD_CONTEXT,
	LEGACY_64B_CONTEXT
};
216 217 218 219
#define GEN8_CTX_ADDRESSING_MODE_SHIFT 3
#define GEN8_CTX_ADDRESSING_MODE(dev)  (USES_FULL_48BIT_PPGTT(dev) ?\
		LEGACY_64B_CONTEXT :\
		LEGACY_32B_CONTEXT)
220 221 222 223 224 225 226
enum {
	FAULT_AND_HANG = 0,
	FAULT_AND_HALT, /* Debug only */
	FAULT_AND_STREAM,
	FAULT_AND_CONTINUE /* Unsupported */
};
#define GEN8_CTX_ID_SHIFT 32
227 228
#define GEN8_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT	0x17
#define GEN9_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT	0x26
229

230 231
static int intel_lr_context_pin(struct intel_context *ctx,
				struct intel_engine_cs *engine);
232

233 234 235 236 237 238
/**
 * intel_sanitize_enable_execlists() - sanitize i915.enable_execlists
 * @dev: DRM device.
 * @enable_execlists: value of i915.enable_execlists module parameter.
 *
 * Only certain platforms support Execlists (the prerequisites being
239
 * support for Logical Ring Contexts and Aliasing PPGTT or better).
240 241 242
 *
 * Return: 1 if Execlists is supported and has to be enabled.
 */
243 244
int intel_sanitize_enable_execlists(struct drm_device *dev, int enable_execlists)
{
245 246
	WARN_ON(i915.enable_ppgtt == -1);

247 248 249 250 251 252
	/* On platforms with execlist available, vGPU will only
	 * support execlist mode, no ring buffer mode.
	 */
	if (HAS_LOGICAL_RING_CONTEXTS(dev) && intel_vgpu_active(dev))
		return 1;

253 254 255
	if (INTEL_INFO(dev)->gen >= 9)
		return 1;

256 257 258
	if (enable_execlists == 0)
		return 0;

259 260
	if (HAS_LOGICAL_RING_CONTEXTS(dev) && USES_PPGTT(dev) &&
	    i915.use_mmio_flip >= 0)
261 262 263 264
		return 1;

	return 0;
}
265

266
static void
267
logical_ring_init_platform_invariants(struct intel_engine_cs *engine)
268
{
269
	struct drm_device *dev = engine->dev;
270

271
	if (IS_GEN8(dev) || IS_GEN9(dev))
272
		engine->idle_lite_restore_wa = ~0;
273

274
	engine->disable_lite_restore_wa = (IS_SKL_REVID(dev, 0, SKL_REVID_B0) ||
275
					IS_BXT_REVID(dev, 0, BXT_REVID_A1)) &&
276
					(engine->id == VCS || engine->id == VCS2);
277

278 279
	engine->ctx_desc_template = GEN8_CTX_VALID;
	engine->ctx_desc_template |= GEN8_CTX_ADDRESSING_MODE(dev) <<
280 281
				   GEN8_CTX_ADDRESSING_MODE_SHIFT;
	if (IS_GEN8(dev))
282 283
		engine->ctx_desc_template |= GEN8_CTX_L3LLC_COHERENT;
	engine->ctx_desc_template |= GEN8_CTX_PRIVILEGE;
284 285 286 287 288 289 290

	/* TODO: WaDisableLiteRestore when we start using semaphore
	 * signalling between Command Streamers */
	/* ring->ctx_desc_template |= GEN8_CTX_FORCE_RESTORE; */

	/* WaEnableForceRestoreInCtxtDescForVCS:skl */
	/* WaEnableForceRestoreInCtxtDescForVCS:bxt */
291 292
	if (engine->disable_lite_restore_wa)
		engine->ctx_desc_template |= GEN8_CTX_FORCE_RESTORE;
293 294
}

295
/**
296 297
 * intel_lr_context_descriptor_update() - calculate & cache the descriptor
 * 					  descriptor for a pinned context
298
 *
299 300
 * @ctx: Context to work on
 * @ring: Engine the descriptor will be used with
301
 *
302 303 304 305 306 307 308 309 310 311
 * The context descriptor encodes various attributes of a context,
 * including its GTT address and some flags. Because it's fairly
 * expensive to calculate, we'll just do it once and cache the result,
 * which remains valid until the context is unpinned.
 *
 * This is what a descriptor looks like, from LSB to MSB:
 *    bits 0-11:    flags, GEN8_CTX_* (cached in ctx_desc_template)
 *    bits 12-31:    LRCA, GTT address of (the HWSP of) this context
 *    bits 32-51:    ctx ID, a globally unique tag (the LRCA again!)
 *    bits 52-63:    reserved, may encode the engine ID (for GuC)
312
 */
313 314
static void
intel_lr_context_descriptor_update(struct intel_context *ctx,
315
				   struct intel_engine_cs *engine)
316
{
317
	uint64_t lrca, desc;
318

319
	lrca = ctx->engine[engine->id].lrc_vma->node.start +
320
	       LRC_PPHWSP_PN * PAGE_SIZE;
321

322
	desc = engine->ctx_desc_template;			   /* bits  0-11 */
323 324
	desc |= lrca;					   /* bits 12-31 */
	desc |= (lrca >> PAGE_SHIFT) << GEN8_CTX_ID_SHIFT; /* bits 32-51 */
325

326
	ctx->engine[engine->id].lrc_desc = desc;
327 328
}

329
uint64_t intel_lr_context_descriptor(struct intel_context *ctx,
330
				     struct intel_engine_cs *engine)
331
{
332
	return ctx->engine[engine->id].lrc_desc;
333
}
334

335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351
/**
 * intel_execlists_ctx_id() - get the Execlists Context ID
 * @ctx: Context to get the ID for
 * @ring: Engine to get the ID for
 *
 * Do not confuse with ctx->id! Unfortunately we have a name overload
 * here: the old context ID we pass to userspace as a handler so that
 * they can refer to a context, and the new context ID we pass to the
 * ELSP so that the GPU can inform us of the context status via
 * interrupts.
 *
 * The context ID is a portion of the context descriptor, so we can
 * just extract the required part from the cached descriptor.
 *
 * Return: 20-bits globally unique context ID.
 */
u32 intel_execlists_ctx_id(struct intel_context *ctx,
352
			   struct intel_engine_cs *engine)
353
{
354
	return intel_lr_context_descriptor(ctx, engine) >> GEN8_CTX_ID_SHIFT;
355 356
}

357 358
static void execlists_elsp_write(struct drm_i915_gem_request *rq0,
				 struct drm_i915_gem_request *rq1)
359
{
360

361
	struct intel_engine_cs *engine = rq0->engine;
362
	struct drm_device *dev = engine->dev;
363
	struct drm_i915_private *dev_priv = dev->dev_private;
364
	uint64_t desc[2];
365

366
	if (rq1) {
367
		desc[1] = intel_lr_context_descriptor(rq1->ctx, rq1->engine);
368 369 370 371
		rq1->elsp_submitted++;
	} else {
		desc[1] = 0;
	}
372

373
	desc[0] = intel_lr_context_descriptor(rq0->ctx, rq0->engine);
374
	rq0->elsp_submitted++;
375

376
	/* You must always write both descriptors in the order below. */
377 378
	I915_WRITE_FW(RING_ELSP(engine), upper_32_bits(desc[1]));
	I915_WRITE_FW(RING_ELSP(engine), lower_32_bits(desc[1]));
379

380
	I915_WRITE_FW(RING_ELSP(engine), upper_32_bits(desc[0]));
381
	/* The context is automatically loaded after the following */
382
	I915_WRITE_FW(RING_ELSP(engine), lower_32_bits(desc[0]));
383

384
	/* ELSP is a wo register, use another nearby reg for posting */
385
	POSTING_READ_FW(RING_EXECLIST_STATUS_LO(engine));
386 387
}

388 389 390 391 392 393 394 395 396 397
static void
execlists_update_context_pdps(struct i915_hw_ppgtt *ppgtt, u32 *reg_state)
{
	ASSIGN_CTX_PDP(ppgtt, reg_state, 3);
	ASSIGN_CTX_PDP(ppgtt, reg_state, 2);
	ASSIGN_CTX_PDP(ppgtt, reg_state, 1);
	ASSIGN_CTX_PDP(ppgtt, reg_state, 0);
}

static void execlists_update_context(struct drm_i915_gem_request *rq)
398
{
399
	struct intel_engine_cs *engine = rq->engine;
400
	struct i915_hw_ppgtt *ppgtt = rq->ctx->ppgtt;
401
	uint32_t *reg_state = rq->ctx->engine[engine->id].lrc_reg_state;
402

403
	reg_state[CTX_RING_TAIL+1] = rq->tail;
404

405 406 407 408 409 410 411
	/* True 32b PPGTT with dynamic page allocation: update PDP
	 * registers and point the unallocated PDPs to scratch page.
	 * PML4 is allocated during ppgtt init, so this is not needed
	 * in 48-bit mode.
	 */
	if (ppgtt && !USES_FULL_48BIT_PPGTT(ppgtt->base.dev))
		execlists_update_context_pdps(ppgtt, reg_state);
412 413
}

414 415
static void execlists_submit_requests(struct drm_i915_gem_request *rq0,
				      struct drm_i915_gem_request *rq1)
416
{
417
	struct drm_i915_private *dev_priv = rq0->i915;
418
	unsigned int fw_domains = rq0->engine->fw_domains;
419

420
	execlists_update_context(rq0);
421

422
	if (rq1)
423
		execlists_update_context(rq1);
424

425
	spin_lock_irq(&dev_priv->uncore.lock);
426
	intel_uncore_forcewake_get__locked(dev_priv, fw_domains);
427

428
	execlists_elsp_write(rq0, rq1);
429

430
	intel_uncore_forcewake_put__locked(dev_priv, fw_domains);
431
	spin_unlock_irq(&dev_priv->uncore.lock);
432 433
}

434
static void execlists_context_unqueue(struct intel_engine_cs *engine)
435
{
436
	struct drm_i915_gem_request *req0 = NULL, *req1 = NULL;
437
	struct drm_i915_gem_request *cursor, *tmp;
438

439
	assert_spin_locked(&engine->execlist_lock);
440

441 442 443 444
	/*
	 * If irqs are not active generate a warning as batches that finish
	 * without the irqs may get lost and a GPU Hang may occur.
	 */
445
	WARN_ON(!intel_irqs_enabled(engine->dev->dev_private));
446

447
	/* Try to read in pairs */
448
	list_for_each_entry_safe(cursor, tmp, &engine->execlist_queue,
449 450 451
				 execlist_link) {
		if (!req0) {
			req0 = cursor;
452
		} else if (req0->ctx == cursor->ctx) {
453 454
			/* Same ctx: ignore first request, as second request
			 * will update tail past first request's workload */
455
			cursor->elsp_submitted = req0->elsp_submitted;
456
			list_move_tail(&req0->execlist_link,
457
				       &engine->execlist_retired_req_list);
458 459 460
			req0 = cursor;
		} else {
			req1 = cursor;
461
			WARN_ON(req1->elsp_submitted);
462 463 464 465
			break;
		}
	}

466 467 468
	if (unlikely(!req0))
		return;

469
	if (req0->elsp_submitted & engine->idle_lite_restore_wa) {
470
		/*
471 472 473 474 475 476
		 * WaIdleLiteRestore: make sure we never cause a lite restore
		 * with HEAD==TAIL.
		 *
		 * Apply the wa NOOPS to prevent ring:HEAD == req:TAIL as we
		 * resubmit the request. See gen8_emit_request() for where we
		 * prepare the padding after the end of the request.
477
		 */
478
		struct intel_ringbuffer *ringbuf;
479

480
		ringbuf = req0->ctx->engine[engine->id].ringbuf;
481 482
		req0->tail += 8;
		req0->tail &= ringbuf->size - 1;
483 484
	}

485
	execlists_submit_requests(req0, req1);
486 487
}

488
static unsigned int
489
execlists_check_remove_request(struct intel_engine_cs *engine, u32 request_id)
490
{
491
	struct drm_i915_gem_request *head_req;
492

493
	assert_spin_locked(&engine->execlist_lock);
494

495
	head_req = list_first_entry_or_null(&engine->execlist_queue,
496
					    struct drm_i915_gem_request,
497 498
					    execlist_link);

499 500
	if (!head_req)
		return 0;
501

502
	if (unlikely(intel_execlists_ctx_id(head_req->ctx, engine) != request_id))
503 504 505 506 507 508 509 510
		return 0;

	WARN(head_req->elsp_submitted == 0, "Never submitted head request\n");

	if (--head_req->elsp_submitted > 0)
		return 0;

	list_move_tail(&head_req->execlist_link,
511
		       &engine->execlist_retired_req_list);
512

513
	return 1;
514 515
}

516
static u32
517
get_context_status(struct intel_engine_cs *engine, unsigned int read_pointer,
518
		   u32 *context_id)
B
Ben Widawsky 已提交
519
{
520
	struct drm_i915_private *dev_priv = engine->dev->dev_private;
521
	u32 status;
B
Ben Widawsky 已提交
522

523 524
	read_pointer %= GEN8_CSB_ENTRIES;

525
	status = I915_READ_FW(RING_CONTEXT_STATUS_BUF_LO(engine, read_pointer));
526 527 528

	if (status & GEN8_CTX_STATUS_IDLE_ACTIVE)
		return 0;
B
Ben Widawsky 已提交
529

530
	*context_id = I915_READ_FW(RING_CONTEXT_STATUS_BUF_HI(engine,
531 532 533
							      read_pointer));

	return status;
B
Ben Widawsky 已提交
534 535
}

536
/**
537
 * intel_lrc_irq_handler() - handle Context Switch interrupts
538
 * @engine: Engine Command Streamer to handle.
539 540 541 542
 *
 * Check the unread Context Status Buffers and manage the submission of new
 * contexts to the ELSP accordingly.
 */
543
static void intel_lrc_irq_handler(unsigned long data)
544
{
545
	struct intel_engine_cs *engine = (struct intel_engine_cs *)data;
546
	struct drm_i915_private *dev_priv = engine->dev->dev_private;
547
	u32 status_pointer;
548
	unsigned int read_pointer, write_pointer;
549 550
	u32 csb[GEN8_CSB_ENTRIES][2];
	unsigned int csb_read = 0, i;
551 552
	unsigned int submit_contexts = 0;

553
	intel_uncore_forcewake_get(dev_priv, engine->fw_domains);
554

555
	status_pointer = I915_READ_FW(RING_CONTEXT_STATUS_PTR(engine));
556

557
	read_pointer = engine->next_context_status_buffer;
558
	write_pointer = GEN8_CSB_WRITE_PTR(status_pointer);
559
	if (read_pointer > write_pointer)
560
		write_pointer += GEN8_CSB_ENTRIES;
561 562

	while (read_pointer < write_pointer) {
563 564 565 566 567 568
		if (WARN_ON_ONCE(csb_read == GEN8_CSB_ENTRIES))
			break;
		csb[csb_read][0] = get_context_status(engine, ++read_pointer,
						      &csb[csb_read][1]);
		csb_read++;
	}
B
Ben Widawsky 已提交
569

570 571 572 573 574 575 576 577
	engine->next_context_status_buffer = write_pointer % GEN8_CSB_ENTRIES;

	/* Update the read pointer to the old write pointer. Manual ringbuffer
	 * management ftw </sarcasm> */
	I915_WRITE_FW(RING_CONTEXT_STATUS_PTR(engine),
		      _MASKED_FIELD(GEN8_CSB_READ_PTR_MASK,
				    engine->next_context_status_buffer << 8));

578
	intel_uncore_forcewake_put(dev_priv, engine->fw_domains);
579 580 581 582 583 584 585

	spin_lock(&engine->execlist_lock);

	for (i = 0; i < csb_read; i++) {
		if (unlikely(csb[i][0] & GEN8_CTX_STATUS_PREEMPTED)) {
			if (csb[i][0] & GEN8_CTX_STATUS_LITE_RESTORE) {
				if (execlists_check_remove_request(engine, csb[i][1]))
586 587 588 589 590
					WARN(1, "Lite Restored request removed from queue\n");
			} else
				WARN(1, "Preemption without Lite Restore\n");
		}

591
		if (csb[i][0] & (GEN8_CTX_STATUS_ACTIVE_IDLE |
592 593
		    GEN8_CTX_STATUS_ELEMENT_SWITCH))
			submit_contexts +=
594
				execlists_check_remove_request(engine, csb[i][1]);
595 596
	}

597
	if (submit_contexts) {
598
		if (!engine->disable_lite_restore_wa ||
599 600
		    (csb[i][0] & GEN8_CTX_STATUS_ACTIVE_IDLE))
			execlists_context_unqueue(engine);
601
	}
602

603
	spin_unlock(&engine->execlist_lock);
604 605 606

	if (unlikely(submit_contexts > 2))
		DRM_ERROR("More than two context complete events?\n");
607 608
}

609
static void execlists_context_queue(struct drm_i915_gem_request *request)
610
{
611
	struct intel_engine_cs *engine = request->engine;
612
	struct drm_i915_gem_request *cursor;
613
	int num_elements = 0;
614

615
	if (request->ctx != request->i915->kernel_context)
616
		intel_lr_context_pin(request->ctx, engine);
617

618 619
	i915_gem_request_reference(request);

620
	spin_lock_bh(&engine->execlist_lock);
621

622
	list_for_each_entry(cursor, &engine->execlist_queue, execlist_link)
623 624 625 626
		if (++num_elements > 2)
			break;

	if (num_elements > 2) {
627
		struct drm_i915_gem_request *tail_req;
628

629
		tail_req = list_last_entry(&engine->execlist_queue,
630
					   struct drm_i915_gem_request,
631 632
					   execlist_link);

633
		if (request->ctx == tail_req->ctx) {
634
			WARN(tail_req->elsp_submitted != 0,
635
				"More than 2 already-submitted reqs queued\n");
636
			list_move_tail(&tail_req->execlist_link,
637
				       &engine->execlist_retired_req_list);
638 639 640
		}
	}

641
	list_add_tail(&request->execlist_link, &engine->execlist_queue);
642
	if (num_elements == 0)
643
		execlists_context_unqueue(engine);
644

645
	spin_unlock_bh(&engine->execlist_lock);
646 647
}

648
static int logical_ring_invalidate_all_caches(struct drm_i915_gem_request *req)
649
{
650
	struct intel_engine_cs *engine = req->engine;
651 652 653 654
	uint32_t flush_domains;
	int ret;

	flush_domains = 0;
655
	if (engine->gpu_caches_dirty)
656 657
		flush_domains = I915_GEM_GPU_DOMAINS;

658
	ret = engine->emit_flush(req, I915_GEM_GPU_DOMAINS, flush_domains);
659 660 661
	if (ret)
		return ret;

662
	engine->gpu_caches_dirty = false;
663 664 665
	return 0;
}

666
static int execlists_move_to_gpu(struct drm_i915_gem_request *req,
667 668
				 struct list_head *vmas)
{
669
	const unsigned other_rings = ~intel_engine_flag(req->engine);
670 671 672 673 674 675 676 677
	struct i915_vma *vma;
	uint32_t flush_domains = 0;
	bool flush_chipset = false;
	int ret;

	list_for_each_entry(vma, vmas, exec_list) {
		struct drm_i915_gem_object *obj = vma->obj;

678
		if (obj->active & other_rings) {
679
			ret = i915_gem_object_sync(obj, req->engine, &req);
680 681 682
			if (ret)
				return ret;
		}
683 684 685 686 687 688 689 690 691 692 693 694 695

		if (obj->base.write_domain & I915_GEM_DOMAIN_CPU)
			flush_chipset |= i915_gem_clflush_object(obj, false);

		flush_domains |= obj->base.write_domain;
	}

	if (flush_domains & I915_GEM_DOMAIN_GTT)
		wmb();

	/* Unconditionally invalidate gpu caches and ensure that we do flush
	 * any residual writes from the previous batch.
	 */
696
	return logical_ring_invalidate_all_caches(req);
697 698
}

699
int intel_logical_ring_alloc_request_extras(struct drm_i915_gem_request *request)
700
{
D
Dave Gordon 已提交
701
	int ret = 0;
702

703
	request->ringbuf = request->ctx->engine[request->engine->id].ringbuf;
704

705 706 707 708 709 710 711 712 713 714 715 716 717
	if (i915.enable_guc_submission) {
		/*
		 * Check that the GuC has space for the request before
		 * going any further, as the i915_add_request() call
		 * later on mustn't fail ...
		 */
		struct intel_guc *guc = &request->i915->guc;

		ret = i915_guc_wq_check_space(guc->execbuf_client);
		if (ret)
			return ret;
	}

D
Dave Gordon 已提交
718
	if (request->ctx != request->i915->kernel_context)
719
		ret = intel_lr_context_pin(request->ctx, request->engine);
D
Dave Gordon 已提交
720 721

	return ret;
722 723 724 725
}

/*
 * intel_logical_ring_advance_and_submit() - advance the tail and submit the workload
726
 * @request: Request to advance the logical ringbuffer of.
727 728 729 730 731 732
 *
 * The tail is updated in our logical ringbuffer struct, not in the actual context. What
 * really happens during submission is that the context and current tail will be placed
 * on a queue waiting for the ELSP to be ready to accept a new context submission. At that
 * point, the tail *inside* the context is updated and the ELSP written to.
 */
733
static int
734
intel_logical_ring_advance_and_submit(struct drm_i915_gem_request *request)
735
{
736
	struct intel_ringbuffer *ringbuf = request->ringbuf;
737
	struct drm_i915_private *dev_priv = request->i915;
738
	struct intel_engine_cs *engine = request->engine;
739

740 741
	intel_logical_ring_advance(ringbuf);
	request->tail = ringbuf->tail;
742

743 744 745 746 747 748 749 750 751
	/*
	 * Here we add two extra NOOPs as padding to avoid
	 * lite restore of a context with HEAD==TAIL.
	 *
	 * Caller must reserve WA_TAIL_DWORDS for us!
	 */
	intel_logical_ring_emit(ringbuf, MI_NOOP);
	intel_logical_ring_emit(ringbuf, MI_NOOP);
	intel_logical_ring_advance(ringbuf);
752

753
	if (intel_engine_stopped(engine))
754
		return 0;
755

756 757 758 759 760 761 762 763 764 765 766
	if (engine->last_context != request->ctx) {
		if (engine->last_context)
			intel_lr_context_unpin(engine->last_context, engine);
		if (request->ctx != request->i915->kernel_context) {
			intel_lr_context_pin(request->ctx, engine);
			engine->last_context = request->ctx;
		} else {
			engine->last_context = NULL;
		}
	}

767 768 769 770
	if (dev_priv->guc.execbuf_client)
		i915_guc_submit(dev_priv->guc.execbuf_client, request);
	else
		execlists_context_queue(request);
771 772

	return 0;
773 774
}

775 776 777 778 779 780 781 782 783 784 785 786
int intel_logical_ring_reserve_space(struct drm_i915_gem_request *request)
{
	/*
	 * The first call merely notes the reserve request and is common for
	 * all back ends. The subsequent localised _begin() call actually
	 * ensures that the reservation is available. Without the begin, if
	 * the request creator immediately submitted the request without
	 * adding any commands to it then there might not actually be
	 * sufficient room for the submission commands.
	 */
	intel_ring_reserved_space_reserve(request->ringbuf, MIN_SPACE_FOR_ADD_REQUEST);

787
	return intel_ring_begin(request, 0);
788 789
}

790 791 792 793 794 795 796 797 798 799
/**
 * execlists_submission() - submit a batchbuffer for execution, Execlists style
 * @dev: DRM device.
 * @file: DRM file.
 * @ring: Engine Command Streamer to submit to.
 * @ctx: Context to employ for this submission.
 * @args: execbuffer call arguments.
 * @vmas: list of vmas.
 * @batch_obj: the batchbuffer to submit.
 * @exec_start: batchbuffer start virtual address pointer.
800
 * @dispatch_flags: translated execbuffer call flags.
801 802 803 804 805 806
 *
 * This is the evil twin version of i915_gem_ringbuffer_submission. It abstracts
 * away the submission details of the execbuffer ioctl call.
 *
 * Return: non-zero if the submission fails.
 */
807
int intel_execlists_submission(struct i915_execbuffer_params *params,
808
			       struct drm_i915_gem_execbuffer2 *args,
809
			       struct list_head *vmas)
810
{
811
	struct drm_device       *dev = params->dev;
812
	struct intel_engine_cs *engine = params->engine;
813
	struct drm_i915_private *dev_priv = dev->dev_private;
814
	struct intel_ringbuffer *ringbuf = params->ctx->engine[engine->id].ringbuf;
815
	u64 exec_start;
816 817 818 819 820 821 822 823 824 825
	int instp_mode;
	u32 instp_mask;
	int ret;

	instp_mode = args->flags & I915_EXEC_CONSTANTS_MASK;
	instp_mask = I915_EXEC_CONSTANTS_MASK;
	switch (instp_mode) {
	case I915_EXEC_CONSTANTS_REL_GENERAL:
	case I915_EXEC_CONSTANTS_ABSOLUTE:
	case I915_EXEC_CONSTANTS_REL_SURFACE:
826
		if (instp_mode != 0 && engine != &dev_priv->engine[RCS]) {
827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850
			DRM_DEBUG("non-0 rel constants mode on non-RCS\n");
			return -EINVAL;
		}

		if (instp_mode != dev_priv->relative_constants_mode) {
			if (instp_mode == I915_EXEC_CONSTANTS_REL_SURFACE) {
				DRM_DEBUG("rel surface constants mode invalid on gen5+\n");
				return -EINVAL;
			}

			/* The HW changed the meaning on this bit on gen6 */
			instp_mask &= ~I915_EXEC_CONSTANTS_REL_SURFACE;
		}
		break;
	default:
		DRM_DEBUG("execbuf with unknown constants: %d\n", instp_mode);
		return -EINVAL;
	}

	if (args->flags & I915_EXEC_GEN7_SOL_RESET) {
		DRM_DEBUG("sol reset is gen7 only\n");
		return -EINVAL;
	}

851
	ret = execlists_move_to_gpu(params->request, vmas);
852 853 854
	if (ret)
		return ret;

855
	if (engine == &dev_priv->engine[RCS] &&
856
	    instp_mode != dev_priv->relative_constants_mode) {
857
		ret = intel_ring_begin(params->request, 4);
858 859 860 861 862
		if (ret)
			return ret;

		intel_logical_ring_emit(ringbuf, MI_NOOP);
		intel_logical_ring_emit(ringbuf, MI_LOAD_REGISTER_IMM(1));
863
		intel_logical_ring_emit_reg(ringbuf, INSTPM);
864 865 866 867 868 869
		intel_logical_ring_emit(ringbuf, instp_mask << 16 | instp_mode);
		intel_logical_ring_advance(ringbuf);

		dev_priv->relative_constants_mode = instp_mode;
	}

870 871 872
	exec_start = params->batch_obj_vm_offset +
		     args->batch_start_offset;

873
	ret = engine->emit_bb_start(params->request, exec_start, params->dispatch_flags);
874 875 876
	if (ret)
		return ret;

877
	trace_i915_gem_ring_dispatch(params->request, params->dispatch_flags);
878

879
	i915_gem_execbuffer_move_to_active(vmas, params->request);
880

881 882 883
	return 0;
}

884
void intel_execlists_retire_requests(struct intel_engine_cs *engine)
885
{
886
	struct drm_i915_gem_request *req, *tmp;
887 888
	struct list_head retired_list;

889 890
	WARN_ON(!mutex_is_locked(&engine->dev->struct_mutex));
	if (list_empty(&engine->execlist_retired_req_list))
891 892 893
		return;

	INIT_LIST_HEAD(&retired_list);
894
	spin_lock_bh(&engine->execlist_lock);
895
	list_replace_init(&engine->execlist_retired_req_list, &retired_list);
896
	spin_unlock_bh(&engine->execlist_lock);
897 898

	list_for_each_entry_safe(req, tmp, &retired_list, execlist_link) {
899 900
		struct intel_context *ctx = req->ctx;
		struct drm_i915_gem_object *ctx_obj =
901
				ctx->engine[engine->id].state;
902

903
		if (ctx_obj && (ctx != req->i915->kernel_context))
904
			intel_lr_context_unpin(ctx, engine);
905

906
		list_del(&req->execlist_link);
907
		i915_gem_request_unreference(req);
908 909 910
	}
}

911
void intel_logical_ring_stop(struct intel_engine_cs *engine)
912
{
913
	struct drm_i915_private *dev_priv = engine->dev->dev_private;
914 915
	int ret;

916
	if (!intel_engine_initialized(engine))
917 918
		return;

919
	ret = intel_engine_idle(engine);
920
	if (ret)
921
		DRM_ERROR("failed to quiesce %s whilst cleaning up: %d\n",
922
			  engine->name, ret);
923 924

	/* TODO: Is this correct with Execlists enabled? */
925 926 927
	I915_WRITE_MODE(engine, _MASKED_BIT_ENABLE(STOP_RING));
	if (wait_for((I915_READ_MODE(engine) & MODE_IDLE) != 0, 1000)) {
		DRM_ERROR("%s :timed out trying to stop ring\n", engine->name);
928 929
		return;
	}
930
	I915_WRITE_MODE(engine, _MASKED_BIT_DISABLE(STOP_RING));
931 932
}

933
int logical_ring_flush_all_caches(struct drm_i915_gem_request *req)
934
{
935
	struct intel_engine_cs *engine = req->engine;
936 937
	int ret;

938
	if (!engine->gpu_caches_dirty)
939 940
		return 0;

941
	ret = engine->emit_flush(req, 0, I915_GEM_GPU_DOMAINS);
942 943 944
	if (ret)
		return ret;

945
	engine->gpu_caches_dirty = false;
946 947 948
	return 0;
}

949
static int intel_lr_context_do_pin(struct intel_context *ctx,
950
				   struct intel_engine_cs *engine)
951
{
952
	struct drm_device *dev = engine->dev;
953
	struct drm_i915_private *dev_priv = dev->dev_private;
954 955
	struct drm_i915_gem_object *ctx_obj = ctx->engine[engine->id].state;
	struct intel_ringbuffer *ringbuf = ctx->engine[engine->id].ringbuf;
956 957
	void *vaddr;
	u32 *lrc_reg_state;
958
	int ret;
959

960
	WARN_ON(!mutex_is_locked(&engine->dev->struct_mutex));
961

962 963 964 965
	ret = i915_gem_obj_ggtt_pin(ctx_obj, GEN8_LR_CONTEXT_ALIGN,
			PIN_OFFSET_BIAS | GUC_WOPCM_TOP);
	if (ret)
		return ret;
966

967 968 969
	vaddr = i915_gem_object_pin_map(ctx_obj);
	if (IS_ERR(vaddr)) {
		ret = PTR_ERR(vaddr);
970 971 972
		goto unpin_ctx_obj;
	}

973 974
	lrc_reg_state = vaddr + LRC_STATE_PN * PAGE_SIZE;

975
	ret = intel_pin_and_map_ringbuffer_obj(engine->dev, ringbuf);
976
	if (ret)
977
		goto unpin_map;
978

979 980
	ctx->engine[engine->id].lrc_vma = i915_gem_obj_to_ggtt(ctx_obj);
	intel_lr_context_descriptor_update(ctx, engine);
981
	lrc_reg_state[CTX_RING_BUFFER_START+1] = ringbuf->vma->node.start;
982
	ctx->engine[engine->id].lrc_reg_state = lrc_reg_state;
983
	ctx_obj->dirty = true;
984

985 986 987
	/* Invalidate GuC TLB. */
	if (i915.enable_guc_submission)
		I915_WRITE(GEN8_GTCR, GEN8_GTCR_INVALIDATE);
988

989 990
	return ret;

991 992
unpin_map:
	i915_gem_object_unpin_map(ctx_obj);
993 994
unpin_ctx_obj:
	i915_gem_object_ggtt_unpin(ctx_obj);
995 996 997 998

	return ret;
}

999 1000
static int intel_lr_context_pin(struct intel_context *ctx,
				struct intel_engine_cs *engine)
1001 1002 1003
{
	int ret = 0;

1004 1005
	if (ctx->engine[engine->id].pin_count++ == 0) {
		ret = intel_lr_context_do_pin(ctx, engine);
1006 1007
		if (ret)
			goto reset_pin_count;
1008 1009

		i915_gem_context_reference(ctx);
1010 1011 1012
	}
	return ret;

1013
reset_pin_count:
1014
	ctx->engine[engine->id].pin_count = 0;
1015 1016 1017
	return ret;
}

1018 1019
void intel_lr_context_unpin(struct intel_context *ctx,
			    struct intel_engine_cs *engine)
1020
{
1021
	struct drm_i915_gem_object *ctx_obj = ctx->engine[engine->id].state;
1022

1023
	WARN_ON(!mutex_is_locked(&ctx->i915->dev->struct_mutex));
1024
	if (--ctx->engine[engine->id].pin_count == 0) {
1025
		i915_gem_object_unpin_map(ctx_obj);
1026
		intel_unpin_ringbuffer_obj(ctx->engine[engine->id].ringbuf);
1027
		i915_gem_object_ggtt_unpin(ctx_obj);
1028 1029 1030
		ctx->engine[engine->id].lrc_vma = NULL;
		ctx->engine[engine->id].lrc_desc = 0;
		ctx->engine[engine->id].lrc_reg_state = NULL;
1031 1032

		i915_gem_context_unreference(ctx);
1033 1034 1035
	}
}

1036
static int intel_logical_ring_workarounds_emit(struct drm_i915_gem_request *req)
1037 1038
{
	int ret, i;
1039
	struct intel_engine_cs *engine = req->engine;
1040
	struct intel_ringbuffer *ringbuf = req->ringbuf;
1041
	struct drm_device *dev = engine->dev;
1042 1043 1044
	struct drm_i915_private *dev_priv = dev->dev_private;
	struct i915_workarounds *w = &dev_priv->workarounds;

1045
	if (w->count == 0)
1046 1047
		return 0;

1048
	engine->gpu_caches_dirty = true;
1049
	ret = logical_ring_flush_all_caches(req);
1050 1051 1052
	if (ret)
		return ret;

1053
	ret = intel_ring_begin(req, w->count * 2 + 2);
1054 1055 1056 1057 1058
	if (ret)
		return ret;

	intel_logical_ring_emit(ringbuf, MI_LOAD_REGISTER_IMM(w->count));
	for (i = 0; i < w->count; i++) {
1059
		intel_logical_ring_emit_reg(ringbuf, w->reg[i].addr);
1060 1061 1062 1063 1064 1065
		intel_logical_ring_emit(ringbuf, w->reg[i].value);
	}
	intel_logical_ring_emit(ringbuf, MI_NOOP);

	intel_logical_ring_advance(ringbuf);

1066
	engine->gpu_caches_dirty = true;
1067
	ret = logical_ring_flush_all_caches(req);
1068 1069 1070 1071 1072 1073
	if (ret)
		return ret;

	return 0;
}

1074
#define wa_ctx_emit(batch, index, cmd)					\
1075
	do {								\
1076 1077
		int __index = (index)++;				\
		if (WARN_ON(__index >= (PAGE_SIZE / sizeof(uint32_t)))) { \
1078 1079
			return -ENOSPC;					\
		}							\
1080
		batch[__index] = (cmd);					\
1081 1082
	} while (0)

V
Ville Syrjälä 已提交
1083
#define wa_ctx_emit_reg(batch, index, reg) \
1084
	wa_ctx_emit((batch), (index), i915_mmio_reg_offset(reg))
1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101

/*
 * In this WA we need to set GEN8_L3SQCREG4[21:21] and reset it after
 * PIPE_CONTROL instruction. This is required for the flush to happen correctly
 * but there is a slight complication as this is applied in WA batch where the
 * values are only initialized once so we cannot take register value at the
 * beginning and reuse it further; hence we save its value to memory, upload a
 * constant value with bit21 set and then we restore it back with the saved value.
 * To simplify the WA, a constant value is formed by using the default value
 * of this register. This shouldn't be a problem because we are only modifying
 * it for a short period and this batch in non-premptible. We can ofcourse
 * use additional instructions that read the actual value of the register
 * at that time and set our bit of interest but it makes the WA complicated.
 *
 * This WA is also required for Gen9 so extracting as a function avoids
 * code duplication.
 */
1102
static inline int gen8_emit_flush_coherentl3_wa(struct intel_engine_cs *engine,
1103 1104 1105 1106 1107
						uint32_t *const batch,
						uint32_t index)
{
	uint32_t l3sqc4_flush = (0x40400000 | GEN8_LQSC_FLUSH_COHERENT_LINES);

1108 1109 1110 1111 1112 1113
	/*
	 * WaDisableLSQCROPERFforOCL:skl
	 * This WA is implemented in skl_init_clock_gating() but since
	 * this batch updates GEN8_L3SQCREG4 with default value we need to
	 * set this bit here to retain the WA during flush.
	 */
1114
	if (IS_SKL_REVID(engine->dev, 0, SKL_REVID_E0))
1115 1116
		l3sqc4_flush |= GEN8_LQSC_RO_PERF_DIS;

1117
	wa_ctx_emit(batch, index, (MI_STORE_REGISTER_MEM_GEN8 |
1118
				   MI_SRM_LRM_GLOBAL_GTT));
V
Ville Syrjälä 已提交
1119
	wa_ctx_emit_reg(batch, index, GEN8_L3SQCREG4);
1120
	wa_ctx_emit(batch, index, engine->scratch.gtt_offset + 256);
1121 1122 1123
	wa_ctx_emit(batch, index, 0);

	wa_ctx_emit(batch, index, MI_LOAD_REGISTER_IMM(1));
V
Ville Syrjälä 已提交
1124
	wa_ctx_emit_reg(batch, index, GEN8_L3SQCREG4);
1125 1126 1127 1128 1129 1130 1131 1132 1133 1134
	wa_ctx_emit(batch, index, l3sqc4_flush);

	wa_ctx_emit(batch, index, GFX_OP_PIPE_CONTROL(6));
	wa_ctx_emit(batch, index, (PIPE_CONTROL_CS_STALL |
				   PIPE_CONTROL_DC_FLUSH_ENABLE));
	wa_ctx_emit(batch, index, 0);
	wa_ctx_emit(batch, index, 0);
	wa_ctx_emit(batch, index, 0);
	wa_ctx_emit(batch, index, 0);

1135
	wa_ctx_emit(batch, index, (MI_LOAD_REGISTER_MEM_GEN8 |
1136
				   MI_SRM_LRM_GLOBAL_GTT));
V
Ville Syrjälä 已提交
1137
	wa_ctx_emit_reg(batch, index, GEN8_L3SQCREG4);
1138
	wa_ctx_emit(batch, index, engine->scratch.gtt_offset + 256);
1139
	wa_ctx_emit(batch, index, 0);
1140 1141 1142 1143

	return index;
}

1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181
static inline uint32_t wa_ctx_start(struct i915_wa_ctx_bb *wa_ctx,
				    uint32_t offset,
				    uint32_t start_alignment)
{
	return wa_ctx->offset = ALIGN(offset, start_alignment);
}

static inline int wa_ctx_end(struct i915_wa_ctx_bb *wa_ctx,
			     uint32_t offset,
			     uint32_t size_alignment)
{
	wa_ctx->size = offset - wa_ctx->offset;

	WARN(wa_ctx->size % size_alignment,
	     "wa_ctx_bb failed sanity checks: size %d is not aligned to %d\n",
	     wa_ctx->size, size_alignment);
	return 0;
}

/**
 * gen8_init_indirectctx_bb() - initialize indirect ctx batch with WA
 *
 * @ring: only applicable for RCS
 * @wa_ctx: structure representing wa_ctx
 *  offset: specifies start of the batch, should be cache-aligned. This is updated
 *    with the offset value received as input.
 *  size: size of the batch in DWORDS but HW expects in terms of cachelines
 * @batch: page in which WA are loaded
 * @offset: This field specifies the start of the batch, it should be
 *  cache-aligned otherwise it is adjusted accordingly.
 *  Typically we only have one indirect_ctx and per_ctx batch buffer which are
 *  initialized at the beginning and shared across all contexts but this field
 *  helps us to have multiple batches at different offsets and select them based
 *  on a criteria. At the moment this batch always start at the beginning of the page
 *  and at this point we don't have multiple wa_ctx batch buffers.
 *
 *  The number of WA applied are not known at the beginning; we use this field
 *  to return the no of DWORDS written.
1182
 *
1183 1184 1185 1186 1187 1188 1189 1190
 *  It is to be noted that this batch does not contain MI_BATCH_BUFFER_END
 *  so it adds NOOPs as padding to make it cacheline aligned.
 *  MI_BATCH_BUFFER_END will be added to perctx batch and both of them together
 *  makes a complete batch buffer.
 *
 * Return: non-zero if we exceed the PAGE_SIZE limit.
 */

1191
static int gen8_init_indirectctx_bb(struct intel_engine_cs *engine,
1192 1193 1194 1195
				    struct i915_wa_ctx_bb *wa_ctx,
				    uint32_t *const batch,
				    uint32_t *offset)
{
1196
	uint32_t scratch_addr;
1197 1198
	uint32_t index = wa_ctx_start(wa_ctx, *offset, CACHELINE_DWORDS);

1199
	/* WaDisableCtxRestoreArbitration:bdw,chv */
1200
	wa_ctx_emit(batch, index, MI_ARB_ON_OFF | MI_ARB_DISABLE);
1201

1202
	/* WaFlushCoherentL3CacheLinesAtContextSwitch:bdw */
1203 1204
	if (IS_BROADWELL(engine->dev)) {
		int rc = gen8_emit_flush_coherentl3_wa(engine, batch, index);
1205 1206 1207
		if (rc < 0)
			return rc;
		index = rc;
1208 1209
	}

1210 1211
	/* WaClearSlmSpaceAtContextSwitch:bdw,chv */
	/* Actual scratch location is at 128 bytes offset */
1212
	scratch_addr = engine->scratch.gtt_offset + 2*CACHELINE_BYTES;
1213

1214 1215 1216 1217 1218 1219 1220 1221 1222
	wa_ctx_emit(batch, index, GFX_OP_PIPE_CONTROL(6));
	wa_ctx_emit(batch, index, (PIPE_CONTROL_FLUSH_L3 |
				   PIPE_CONTROL_GLOBAL_GTT_IVB |
				   PIPE_CONTROL_CS_STALL |
				   PIPE_CONTROL_QW_WRITE));
	wa_ctx_emit(batch, index, scratch_addr);
	wa_ctx_emit(batch, index, 0);
	wa_ctx_emit(batch, index, 0);
	wa_ctx_emit(batch, index, 0);
1223

1224 1225
	/* Pad to end of cacheline */
	while (index % CACHELINE_DWORDS)
1226
		wa_ctx_emit(batch, index, MI_NOOP);
1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243

	/*
	 * MI_BATCH_BUFFER_END is not required in Indirect ctx BB because
	 * execution depends on the length specified in terms of cache lines
	 * in the register CTX_RCS_INDIRECT_CTX
	 */

	return wa_ctx_end(wa_ctx, *offset = index, CACHELINE_DWORDS);
}

/**
 * gen8_init_perctx_bb() - initialize per ctx batch with WA
 *
 * @ring: only applicable for RCS
 * @wa_ctx: structure representing wa_ctx
 *  offset: specifies start of the batch, should be cache-aligned.
 *  size: size of the batch in DWORDS but HW expects in terms of cachelines
1244
 * @batch: page in which WA are loaded
1245 1246 1247 1248 1249 1250 1251 1252 1253
 * @offset: This field specifies the start of this batch.
 *   This batch is started immediately after indirect_ctx batch. Since we ensure
 *   that indirect_ctx ends on a cacheline this batch is aligned automatically.
 *
 *   The number of DWORDS written are returned using this field.
 *
 *  This batch is terminated with MI_BATCH_BUFFER_END and so we need not add padding
 *  to align it with cacheline as padding after MI_BATCH_BUFFER_END is redundant.
 */
1254
static int gen8_init_perctx_bb(struct intel_engine_cs *engine,
1255 1256 1257 1258 1259 1260
			       struct i915_wa_ctx_bb *wa_ctx,
			       uint32_t *const batch,
			       uint32_t *offset)
{
	uint32_t index = wa_ctx_start(wa_ctx, *offset, CACHELINE_DWORDS);

1261
	/* WaDisableCtxRestoreArbitration:bdw,chv */
1262
	wa_ctx_emit(batch, index, MI_ARB_ON_OFF | MI_ARB_ENABLE);
1263

1264
	wa_ctx_emit(batch, index, MI_BATCH_BUFFER_END);
1265 1266 1267 1268

	return wa_ctx_end(wa_ctx, *offset = index, 1);
}

1269
static int gen9_init_indirectctx_bb(struct intel_engine_cs *engine,
1270 1271 1272 1273
				    struct i915_wa_ctx_bb *wa_ctx,
				    uint32_t *const batch,
				    uint32_t *offset)
{
1274
	int ret;
1275
	struct drm_device *dev = engine->dev;
1276 1277
	uint32_t index = wa_ctx_start(wa_ctx, *offset, CACHELINE_DWORDS);

1278
	/* WaDisableCtxRestoreArbitration:skl,bxt */
1279
	if (IS_SKL_REVID(dev, 0, SKL_REVID_D0) ||
T
Tim Gore 已提交
1280
	    IS_BXT_REVID(dev, 0, BXT_REVID_A1))
1281
		wa_ctx_emit(batch, index, MI_ARB_ON_OFF | MI_ARB_DISABLE);
1282

1283
	/* WaFlushCoherentL3CacheLinesAtContextSwitch:skl,bxt */
1284
	ret = gen8_emit_flush_coherentl3_wa(engine, batch, index);
1285 1286 1287 1288
	if (ret < 0)
		return ret;
	index = ret;

1289 1290 1291 1292 1293 1294 1295
	/* Pad to end of cacheline */
	while (index % CACHELINE_DWORDS)
		wa_ctx_emit(batch, index, MI_NOOP);

	return wa_ctx_end(wa_ctx, *offset = index, CACHELINE_DWORDS);
}

1296
static int gen9_init_perctx_bb(struct intel_engine_cs *engine,
1297 1298 1299 1300
			       struct i915_wa_ctx_bb *wa_ctx,
			       uint32_t *const batch,
			       uint32_t *offset)
{
1301
	struct drm_device *dev = engine->dev;
1302 1303
	uint32_t index = wa_ctx_start(wa_ctx, *offset, CACHELINE_DWORDS);

1304
	/* WaSetDisablePixMaskCammingAndRhwoInCommonSliceChicken:skl,bxt */
1305
	if (IS_SKL_REVID(dev, 0, SKL_REVID_B0) ||
T
Tim Gore 已提交
1306
	    IS_BXT_REVID(dev, 0, BXT_REVID_A1)) {
1307
		wa_ctx_emit(batch, index, MI_LOAD_REGISTER_IMM(1));
V
Ville Syrjälä 已提交
1308
		wa_ctx_emit_reg(batch, index, GEN9_SLICE_COMMON_ECO_CHICKEN0);
1309 1310 1311 1312 1313
		wa_ctx_emit(batch, index,
			    _MASKED_BIT_ENABLE(DISABLE_PIXEL_MASK_CAMMING));
		wa_ctx_emit(batch, index, MI_NOOP);
	}

1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332
	/* WaClearTdlStateAckDirtyBits:bxt */
	if (IS_BXT_REVID(dev, 0, BXT_REVID_B0)) {
		wa_ctx_emit(batch, index, MI_LOAD_REGISTER_IMM(4));

		wa_ctx_emit_reg(batch, index, GEN8_STATE_ACK);
		wa_ctx_emit(batch, index, _MASKED_BIT_DISABLE(GEN9_SUBSLICE_TDL_ACK_BITS));

		wa_ctx_emit_reg(batch, index, GEN9_STATE_ACK_SLICE1);
		wa_ctx_emit(batch, index, _MASKED_BIT_DISABLE(GEN9_SUBSLICE_TDL_ACK_BITS));

		wa_ctx_emit_reg(batch, index, GEN9_STATE_ACK_SLICE2);
		wa_ctx_emit(batch, index, _MASKED_BIT_DISABLE(GEN9_SUBSLICE_TDL_ACK_BITS));

		wa_ctx_emit_reg(batch, index, GEN7_ROW_CHICKEN2);
		/* dummy write to CS, mask bits are 0 to ensure the register is not modified */
		wa_ctx_emit(batch, index, 0x0);
		wa_ctx_emit(batch, index, MI_NOOP);
	}

1333
	/* WaDisableCtxRestoreArbitration:skl,bxt */
1334
	if (IS_SKL_REVID(dev, 0, SKL_REVID_D0) ||
T
Tim Gore 已提交
1335
	    IS_BXT_REVID(dev, 0, BXT_REVID_A1))
1336 1337
		wa_ctx_emit(batch, index, MI_ARB_ON_OFF | MI_ARB_ENABLE);

1338 1339 1340 1341 1342
	wa_ctx_emit(batch, index, MI_BATCH_BUFFER_END);

	return wa_ctx_end(wa_ctx, *offset = index, 1);
}

1343
static int lrc_setup_wa_ctx_obj(struct intel_engine_cs *engine, u32 size)
1344 1345 1346
{
	int ret;

1347 1348 1349
	engine->wa_ctx.obj = i915_gem_alloc_object(engine->dev,
						   PAGE_ALIGN(size));
	if (!engine->wa_ctx.obj) {
1350 1351 1352 1353
		DRM_DEBUG_DRIVER("alloc LRC WA ctx backing obj failed.\n");
		return -ENOMEM;
	}

1354
	ret = i915_gem_obj_ggtt_pin(engine->wa_ctx.obj, PAGE_SIZE, 0);
1355 1356 1357
	if (ret) {
		DRM_DEBUG_DRIVER("pin LRC WA ctx backing obj failed: %d\n",
				 ret);
1358
		drm_gem_object_unreference(&engine->wa_ctx.obj->base);
1359 1360 1361 1362 1363 1364
		return ret;
	}

	return 0;
}

1365
static void lrc_destroy_wa_ctx_obj(struct intel_engine_cs *engine)
1366
{
1367 1368 1369 1370
	if (engine->wa_ctx.obj) {
		i915_gem_object_ggtt_unpin(engine->wa_ctx.obj);
		drm_gem_object_unreference(&engine->wa_ctx.obj->base);
		engine->wa_ctx.obj = NULL;
1371 1372 1373
	}
}

1374
static int intel_init_workaround_bb(struct intel_engine_cs *engine)
1375 1376 1377 1378 1379
{
	int ret;
	uint32_t *batch;
	uint32_t offset;
	struct page *page;
1380
	struct i915_ctx_workarounds *wa_ctx = &engine->wa_ctx;
1381

1382
	WARN_ON(engine->id != RCS);
1383

1384
	/* update this when WA for higher Gen are added */
1385
	if (INTEL_INFO(engine->dev)->gen > 9) {
1386
		DRM_ERROR("WA batch buffer is not initialized for Gen%d\n",
1387
			  INTEL_INFO(engine->dev)->gen);
1388
		return 0;
1389
	}
1390

1391
	/* some WA perform writes to scratch page, ensure it is valid */
1392 1393
	if (engine->scratch.obj == NULL) {
		DRM_ERROR("scratch page not allocated for %s\n", engine->name);
1394 1395 1396
		return -EINVAL;
	}

1397
	ret = lrc_setup_wa_ctx_obj(engine, PAGE_SIZE);
1398 1399 1400 1401 1402
	if (ret) {
		DRM_DEBUG_DRIVER("Failed to setup context WA page: %d\n", ret);
		return ret;
	}

1403
	page = i915_gem_object_get_dirty_page(wa_ctx->obj, 0);
1404 1405 1406
	batch = kmap_atomic(page);
	offset = 0;

1407 1408
	if (INTEL_INFO(engine->dev)->gen == 8) {
		ret = gen8_init_indirectctx_bb(engine,
1409 1410 1411 1412 1413 1414
					       &wa_ctx->indirect_ctx,
					       batch,
					       &offset);
		if (ret)
			goto out;

1415
		ret = gen8_init_perctx_bb(engine,
1416 1417 1418 1419 1420
					  &wa_ctx->per_ctx,
					  batch,
					  &offset);
		if (ret)
			goto out;
1421 1422
	} else if (INTEL_INFO(engine->dev)->gen == 9) {
		ret = gen9_init_indirectctx_bb(engine,
1423 1424 1425 1426 1427 1428
					       &wa_ctx->indirect_ctx,
					       batch,
					       &offset);
		if (ret)
			goto out;

1429
		ret = gen9_init_perctx_bb(engine,
1430 1431 1432 1433 1434
					  &wa_ctx->per_ctx,
					  batch,
					  &offset);
		if (ret)
			goto out;
1435 1436 1437 1438 1439
	}

out:
	kunmap_atomic(batch);
	if (ret)
1440
		lrc_destroy_wa_ctx_obj(engine);
1441 1442 1443 1444

	return ret;
}

1445 1446 1447 1448 1449 1450 1451 1452 1453
static void lrc_init_hws(struct intel_engine_cs *engine)
{
	struct drm_i915_private *dev_priv = engine->dev->dev_private;

	I915_WRITE(RING_HWS_PGA(engine->mmio_base),
		   (u32)engine->status_page.gfx_addr);
	POSTING_READ(RING_HWS_PGA(engine->mmio_base));
}

1454
static int gen8_init_common_ring(struct intel_engine_cs *engine)
1455
{
1456
	struct drm_device *dev = engine->dev;
1457
	struct drm_i915_private *dev_priv = dev->dev_private;
1458
	unsigned int next_context_status_buffer_hw;
1459

1460
	lrc_init_hws(engine);
1461

1462 1463 1464
	I915_WRITE_IMR(engine,
		       ~(engine->irq_enable_mask | engine->irq_keep_mask));
	I915_WRITE(RING_HWSTAM(engine->mmio_base), 0xffffffff);
1465

1466
	I915_WRITE(RING_MODE_GEN7(engine),
1467 1468
		   _MASKED_BIT_DISABLE(GFX_REPLAY_MODE) |
		   _MASKED_BIT_ENABLE(GFX_RUN_LIST_ENABLE));
1469
	POSTING_READ(RING_MODE_GEN7(engine));
1470 1471 1472 1473 1474 1475 1476 1477 1478 1479

	/*
	 * Instead of resetting the Context Status Buffer (CSB) read pointer to
	 * zero, we need to read the write pointer from hardware and use its
	 * value because "this register is power context save restored".
	 * Effectively, these states have been observed:
	 *
	 *      | Suspend-to-idle (freeze) | Suspend-to-RAM (mem) |
	 * BDW  | CSB regs not reset       | CSB regs reset       |
	 * CHT  | CSB regs not reset       | CSB regs not reset   |
1480 1481
	 * SKL  |         ?                |         ?            |
	 * BXT  |         ?                |         ?            |
1482
	 */
1483
	next_context_status_buffer_hw =
1484
		GEN8_CSB_WRITE_PTR(I915_READ(RING_CONTEXT_STATUS_PTR(engine)));
1485 1486 1487 1488 1489 1490 1491 1492 1493

	/*
	 * When the CSB registers are reset (also after power-up / gpu reset),
	 * CSB write pointer is set to all 1's, which is not valid, use '5' in
	 * this special case, so the first element read is CSB[0].
	 */
	if (next_context_status_buffer_hw == GEN8_CSB_PTR_MASK)
		next_context_status_buffer_hw = (GEN8_CSB_ENTRIES - 1);

1494 1495
	engine->next_context_status_buffer = next_context_status_buffer_hw;
	DRM_DEBUG_DRIVER("Execlists enabled for %s\n", engine->name);
1496

1497
	intel_engine_init_hangcheck(engine);
1498

1499
	return intel_mocs_init_engine(engine);
1500 1501
}

1502
static int gen8_init_render_ring(struct intel_engine_cs *engine)
1503
{
1504
	struct drm_device *dev = engine->dev;
1505 1506 1507
	struct drm_i915_private *dev_priv = dev->dev_private;
	int ret;

1508
	ret = gen8_init_common_ring(engine);
1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521
	if (ret)
		return ret;

	/* We need to disable the AsyncFlip performance optimisations in order
	 * to use MI_WAIT_FOR_EVENT within the CS. It should already be
	 * programmed to '1' on all products.
	 *
	 * WaDisableAsyncFlipPerfMode:snb,ivb,hsw,vlv,bdw,chv
	 */
	I915_WRITE(MI_MODE, _MASKED_BIT_ENABLE(ASYNC_FLIP_PERF_DISABLE));

	I915_WRITE(INSTPM, _MASKED_BIT_ENABLE(INSTPM_FORCE_ORDERING));

1522
	return init_workarounds_ring(engine);
1523 1524
}

1525
static int gen9_init_render_ring(struct intel_engine_cs *engine)
1526 1527 1528
{
	int ret;

1529
	ret = gen8_init_common_ring(engine);
1530 1531 1532
	if (ret)
		return ret;

1533
	return init_workarounds_ring(engine);
1534 1535
}

1536 1537 1538
static int intel_logical_ring_emit_pdps(struct drm_i915_gem_request *req)
{
	struct i915_hw_ppgtt *ppgtt = req->ctx->ppgtt;
1539
	struct intel_engine_cs *engine = req->engine;
1540 1541 1542 1543
	struct intel_ringbuffer *ringbuf = req->ringbuf;
	const int num_lri_cmds = GEN8_LEGACY_PDPES * 2;
	int i, ret;

1544
	ret = intel_ring_begin(req, num_lri_cmds * 2 + 2);
1545 1546 1547 1548 1549 1550 1551
	if (ret)
		return ret;

	intel_logical_ring_emit(ringbuf, MI_LOAD_REGISTER_IMM(num_lri_cmds));
	for (i = GEN8_LEGACY_PDPES - 1; i >= 0; i--) {
		const dma_addr_t pd_daddr = i915_page_dir_dma_addr(ppgtt, i);

1552 1553
		intel_logical_ring_emit_reg(ringbuf,
					    GEN8_RING_PDP_UDW(engine, i));
1554
		intel_logical_ring_emit(ringbuf, upper_32_bits(pd_daddr));
1555 1556
		intel_logical_ring_emit_reg(ringbuf,
					    GEN8_RING_PDP_LDW(engine, i));
1557 1558 1559 1560 1561 1562 1563 1564 1565
		intel_logical_ring_emit(ringbuf, lower_32_bits(pd_daddr));
	}

	intel_logical_ring_emit(ringbuf, MI_NOOP);
	intel_logical_ring_advance(ringbuf);

	return 0;
}

1566
static int gen8_emit_bb_start(struct drm_i915_gem_request *req,
1567
			      u64 offset, unsigned dispatch_flags)
1568
{
1569
	struct intel_ringbuffer *ringbuf = req->ringbuf;
1570
	bool ppgtt = !(dispatch_flags & I915_DISPATCH_SECURE);
1571 1572
	int ret;

1573 1574 1575 1576
	/* Don't rely in hw updating PDPs, specially in lite-restore.
	 * Ideally, we should set Force PD Restore in ctx descriptor,
	 * but we can't. Force Restore would be a second option, but
	 * it is unsafe in case of lite-restore (because the ctx is
1577 1578
	 * not idle). PML4 is allocated during ppgtt init so this is
	 * not needed in 48-bit.*/
1579
	if (req->ctx->ppgtt &&
1580
	    (intel_engine_flag(req->engine) & req->ctx->ppgtt->pd_dirty_rings)) {
1581 1582
		if (!USES_FULL_48BIT_PPGTT(req->i915) &&
		    !intel_vgpu_active(req->i915->dev)) {
1583 1584 1585 1586
			ret = intel_logical_ring_emit_pdps(req);
			if (ret)
				return ret;
		}
1587

1588
		req->ctx->ppgtt->pd_dirty_rings &= ~intel_engine_flag(req->engine);
1589 1590
	}

1591
	ret = intel_ring_begin(req, 4);
1592 1593 1594 1595
	if (ret)
		return ret;

	/* FIXME(BDW): Address space and security selectors. */
1596 1597 1598 1599
	intel_logical_ring_emit(ringbuf, MI_BATCH_BUFFER_START_GEN8 |
				(ppgtt<<8) |
				(dispatch_flags & I915_DISPATCH_RS ?
				 MI_BATCH_RESOURCE_STREAMER : 0));
1600 1601 1602 1603 1604 1605 1606 1607
	intel_logical_ring_emit(ringbuf, lower_32_bits(offset));
	intel_logical_ring_emit(ringbuf, upper_32_bits(offset));
	intel_logical_ring_emit(ringbuf, MI_NOOP);
	intel_logical_ring_advance(ringbuf);

	return 0;
}

1608
static bool gen8_logical_ring_get_irq(struct intel_engine_cs *engine)
1609
{
1610
	struct drm_device *dev = engine->dev;
1611 1612 1613
	struct drm_i915_private *dev_priv = dev->dev_private;
	unsigned long flags;

1614
	if (WARN_ON(!intel_irqs_enabled(dev_priv)))
1615 1616 1617
		return false;

	spin_lock_irqsave(&dev_priv->irq_lock, flags);
1618 1619 1620 1621
	if (engine->irq_refcount++ == 0) {
		I915_WRITE_IMR(engine,
			       ~(engine->irq_enable_mask | engine->irq_keep_mask));
		POSTING_READ(RING_IMR(engine->mmio_base));
1622 1623 1624 1625 1626 1627
	}
	spin_unlock_irqrestore(&dev_priv->irq_lock, flags);

	return true;
}

1628
static void gen8_logical_ring_put_irq(struct intel_engine_cs *engine)
1629
{
1630
	struct drm_device *dev = engine->dev;
1631 1632 1633 1634
	struct drm_i915_private *dev_priv = dev->dev_private;
	unsigned long flags;

	spin_lock_irqsave(&dev_priv->irq_lock, flags);
1635 1636 1637
	if (--engine->irq_refcount == 0) {
		I915_WRITE_IMR(engine, ~engine->irq_keep_mask);
		POSTING_READ(RING_IMR(engine->mmio_base));
1638 1639 1640 1641
	}
	spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
}

1642
static int gen8_emit_flush(struct drm_i915_gem_request *request,
1643 1644 1645
			   u32 invalidate_domains,
			   u32 unused)
{
1646
	struct intel_ringbuffer *ringbuf = request->ringbuf;
1647
	struct intel_engine_cs *engine = ringbuf->engine;
1648
	struct drm_device *dev = engine->dev;
1649 1650 1651 1652
	struct drm_i915_private *dev_priv = dev->dev_private;
	uint32_t cmd;
	int ret;

1653
	ret = intel_ring_begin(request, 4);
1654 1655 1656 1657 1658
	if (ret)
		return ret;

	cmd = MI_FLUSH_DW + 1;

1659 1660 1661 1662 1663 1664 1665 1666 1667
	/* We always require a command barrier so that subsequent
	 * commands, such as breadcrumb interrupts, are strictly ordered
	 * wrt the contents of the write cache being flushed to memory
	 * (and thus being coherent from the CPU).
	 */
	cmd |= MI_FLUSH_DW_STORE_INDEX | MI_FLUSH_DW_OP_STOREDW;

	if (invalidate_domains & I915_GEM_GPU_DOMAINS) {
		cmd |= MI_INVALIDATE_TLB;
1668
		if (engine == &dev_priv->engine[VCS])
1669
			cmd |= MI_INVALIDATE_BSD;
1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682
	}

	intel_logical_ring_emit(ringbuf, cmd);
	intel_logical_ring_emit(ringbuf,
				I915_GEM_HWS_SCRATCH_ADDR |
				MI_FLUSH_DW_USE_GTT);
	intel_logical_ring_emit(ringbuf, 0); /* upper addr */
	intel_logical_ring_emit(ringbuf, 0); /* value */
	intel_logical_ring_advance(ringbuf);

	return 0;
}

1683
static int gen8_emit_flush_render(struct drm_i915_gem_request *request,
1684 1685 1686
				  u32 invalidate_domains,
				  u32 flush_domains)
{
1687
	struct intel_ringbuffer *ringbuf = request->ringbuf;
1688
	struct intel_engine_cs *engine = ringbuf->engine;
1689
	u32 scratch_addr = engine->scratch.gtt_offset + 2 * CACHELINE_BYTES;
1690
	bool vf_flush_wa = false;
1691 1692 1693 1694 1695 1696 1697 1698
	u32 flags = 0;
	int ret;

	flags |= PIPE_CONTROL_CS_STALL;

	if (flush_domains) {
		flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
		flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
1699
		flags |= PIPE_CONTROL_DC_FLUSH_ENABLE;
1700
		flags |= PIPE_CONTROL_FLUSH_ENABLE;
1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712
	}

	if (invalidate_domains) {
		flags |= PIPE_CONTROL_TLB_INVALIDATE;
		flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_QW_WRITE;
		flags |= PIPE_CONTROL_GLOBAL_GTT_IVB;

1713 1714 1715 1716
		/*
		 * On GEN9: before VF_CACHE_INVALIDATE we need to emit a NULL
		 * pipe control.
		 */
1717
		if (IS_GEN9(engine->dev))
1718 1719
			vf_flush_wa = true;
	}
1720

1721
	ret = intel_ring_begin(request, vf_flush_wa ? 12 : 6);
1722 1723 1724
	if (ret)
		return ret;

1725 1726 1727 1728 1729 1730 1731 1732 1733
	if (vf_flush_wa) {
		intel_logical_ring_emit(ringbuf, GFX_OP_PIPE_CONTROL(6));
		intel_logical_ring_emit(ringbuf, 0);
		intel_logical_ring_emit(ringbuf, 0);
		intel_logical_ring_emit(ringbuf, 0);
		intel_logical_ring_emit(ringbuf, 0);
		intel_logical_ring_emit(ringbuf, 0);
	}

1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744
	intel_logical_ring_emit(ringbuf, GFX_OP_PIPE_CONTROL(6));
	intel_logical_ring_emit(ringbuf, flags);
	intel_logical_ring_emit(ringbuf, scratch_addr);
	intel_logical_ring_emit(ringbuf, 0);
	intel_logical_ring_emit(ringbuf, 0);
	intel_logical_ring_emit(ringbuf, 0);
	intel_logical_ring_advance(ringbuf);

	return 0;
}

1745
static u32 gen8_get_seqno(struct intel_engine_cs *engine)
1746
{
1747
	return intel_read_status_page(engine, I915_GEM_HWS_INDEX);
1748 1749
}

1750
static void gen8_set_seqno(struct intel_engine_cs *engine, u32 seqno)
1751
{
1752
	intel_write_status_page(engine, I915_GEM_HWS_INDEX, seqno);
1753 1754
}

1755
static void bxt_a_seqno_barrier(struct intel_engine_cs *engine)
1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766
{
	/*
	 * On BXT A steppings there is a HW coherency issue whereby the
	 * MI_STORE_DATA_IMM storing the completed request's seqno
	 * occasionally doesn't invalidate the CPU cache. Work around this by
	 * clflushing the corresponding cacheline whenever the caller wants
	 * the coherency to be guaranteed. Note that this cacheline is known
	 * to be clean at this point, since we only write it in
	 * bxt_a_set_seqno(), where we also do a clflush after the write. So
	 * this clflush in practice becomes an invalidate operation.
	 */
1767
	intel_flush_status_page(engine, I915_GEM_HWS_INDEX);
1768 1769
}

1770
static void bxt_a_set_seqno(struct intel_engine_cs *engine, u32 seqno)
1771
{
1772
	intel_write_status_page(engine, I915_GEM_HWS_INDEX, seqno);
1773 1774

	/* See bxt_a_get_seqno() explaining the reason for the clflush. */
1775
	intel_flush_status_page(engine, I915_GEM_HWS_INDEX);
1776 1777
}

1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789
/*
 * Reserve space for 2 NOOPs at the end of each request to be
 * used as a workaround for not being allowed to do lite
 * restore with HEAD==TAIL (WaIdleLiteRestore).
 */
#define WA_TAIL_DWORDS 2

static inline u32 hws_seqno_address(struct intel_engine_cs *engine)
{
	return engine->status_page.gfx_addr + I915_GEM_HWS_INDEX_ADDR;
}

1790
static int gen8_emit_request(struct drm_i915_gem_request *request)
1791
{
1792
	struct intel_ringbuffer *ringbuf = request->ringbuf;
1793 1794
	int ret;

1795
	ret = intel_ring_begin(request, 6 + WA_TAIL_DWORDS);
1796 1797 1798
	if (ret)
		return ret;

1799 1800
	/* w/a: bit 5 needs to be zero for MI_FLUSH_DW address. */
	BUILD_BUG_ON(I915_GEM_HWS_INDEX_ADDR & (1 << 5));
1801 1802

	intel_logical_ring_emit(ringbuf,
1803 1804
				(MI_FLUSH_DW + 1) | MI_FLUSH_DW_OP_STOREDW);
	intel_logical_ring_emit(ringbuf,
1805
				hws_seqno_address(request->engine) |
1806
				MI_FLUSH_DW_USE_GTT);
1807
	intel_logical_ring_emit(ringbuf, 0);
1808
	intel_logical_ring_emit(ringbuf, i915_gem_request_get_seqno(request));
1809 1810
	intel_logical_ring_emit(ringbuf, MI_USER_INTERRUPT);
	intel_logical_ring_emit(ringbuf, MI_NOOP);
1811 1812
	return intel_logical_ring_advance_and_submit(request);
}
1813

1814 1815 1816 1817
static int gen8_emit_request_render(struct drm_i915_gem_request *request)
{
	struct intel_ringbuffer *ringbuf = request->ringbuf;
	int ret;
1818

1819
	ret = intel_ring_begin(request, 8 + WA_TAIL_DWORDS);
1820 1821 1822
	if (ret)
		return ret;

1823 1824 1825
	/* We're using qword write, seqno should be aligned to 8 bytes. */
	BUILD_BUG_ON(I915_GEM_HWS_INDEX & 1);

1826 1827 1828 1829
	/* w/a for post sync ops following a GPGPU operation we
	 * need a prior CS_STALL, which is emitted by the flush
	 * following the batch.
	 */
1830
	intel_logical_ring_emit(ringbuf, GFX_OP_PIPE_CONTROL(6));
1831 1832 1833 1834
	intel_logical_ring_emit(ringbuf,
				(PIPE_CONTROL_GLOBAL_GTT_IVB |
				 PIPE_CONTROL_CS_STALL |
				 PIPE_CONTROL_QW_WRITE));
1835
	intel_logical_ring_emit(ringbuf, hws_seqno_address(request->engine));
1836 1837
	intel_logical_ring_emit(ringbuf, 0);
	intel_logical_ring_emit(ringbuf, i915_gem_request_get_seqno(request));
1838 1839
	/* We're thrashing one dword of HWS. */
	intel_logical_ring_emit(ringbuf, 0);
1840
	intel_logical_ring_emit(ringbuf, MI_USER_INTERRUPT);
1841
	intel_logical_ring_emit(ringbuf, MI_NOOP);
1842
	return intel_logical_ring_advance_and_submit(request);
1843 1844
}

1845
static int intel_lr_context_render_state_init(struct drm_i915_gem_request *req)
1846 1847 1848 1849
{
	struct render_state so;
	int ret;

1850
	ret = i915_gem_render_state_prepare(req->engine, &so);
1851 1852 1853 1854 1855 1856
	if (ret)
		return ret;

	if (so.rodata == NULL)
		return 0;

1857
	ret = req->engine->emit_bb_start(req, so.ggtt_offset,
1858
				       I915_DISPATCH_SECURE);
1859 1860 1861
	if (ret)
		goto out;

1862
	ret = req->engine->emit_bb_start(req,
1863 1864 1865 1866 1867
				       (so.ggtt_offset + so.aux_batch_offset),
				       I915_DISPATCH_SECURE);
	if (ret)
		goto out;

1868
	i915_vma_move_to_active(i915_gem_obj_to_ggtt(so.obj), req);
1869 1870 1871 1872 1873 1874

out:
	i915_gem_render_state_fini(&so);
	return ret;
}

1875
static int gen8_init_rcs_context(struct drm_i915_gem_request *req)
1876 1877 1878
{
	int ret;

1879
	ret = intel_logical_ring_workarounds_emit(req);
1880 1881 1882
	if (ret)
		return ret;

1883 1884 1885 1886 1887 1888 1889 1890
	ret = intel_rcs_context_init_mocs(req);
	/*
	 * Failing to program the MOCS is non-fatal.The system will not
	 * run at peak performance. So generate an error and carry on.
	 */
	if (ret)
		DRM_ERROR("MOCS failed to program: expect performance issues.\n");

1891
	return intel_lr_context_render_state_init(req);
1892 1893
}

1894 1895 1896 1897 1898 1899
/**
 * intel_logical_ring_cleanup() - deallocate the Engine Command Streamer
 *
 * @ring: Engine Command Streamer.
 *
 */
1900
void intel_logical_ring_cleanup(struct intel_engine_cs *engine)
1901
{
1902
	struct drm_i915_private *dev_priv;
1903

1904
	if (!intel_engine_initialized(engine))
1905 1906
		return;

1907 1908 1909 1910 1911 1912 1913
	/*
	 * Tasklet cannot be active at this point due intel_mark_active/idle
	 * so this is just for documentation.
	 */
	if (WARN_ON(test_bit(TASKLET_STATE_SCHED, &engine->irq_tasklet.state)))
		tasklet_kill(&engine->irq_tasklet);

1914
	dev_priv = engine->dev->dev_private;
1915

1916 1917 1918
	if (engine->buffer) {
		intel_logical_ring_stop(engine);
		WARN_ON((I915_READ_MODE(engine) & MODE_IDLE) == 0);
1919
	}
1920

1921 1922
	if (engine->cleanup)
		engine->cleanup(engine);
1923

1924 1925
	i915_cmd_parser_fini_ring(engine);
	i915_gem_batch_pool_fini(&engine->batch_pool);
1926

1927
	if (engine->status_page.obj) {
1928
		i915_gem_object_unpin_map(engine->status_page.obj);
1929
		engine->status_page.obj = NULL;
1930
	}
1931

1932 1933 1934
	engine->idle_lite_restore_wa = 0;
	engine->disable_lite_restore_wa = false;
	engine->ctx_desc_template = 0;
1935

1936 1937
	lrc_destroy_wa_ctx_obj(engine);
	engine->dev = NULL;
1938 1939
}

1940 1941
static void
logical_ring_default_vfuncs(struct drm_device *dev,
1942
			    struct intel_engine_cs *engine)
1943 1944
{
	/* Default vfuncs which can be overriden by each engine. */
1945 1946 1947 1948 1949 1950
	engine->init_hw = gen8_init_common_ring;
	engine->emit_request = gen8_emit_request;
	engine->emit_flush = gen8_emit_flush;
	engine->irq_get = gen8_logical_ring_get_irq;
	engine->irq_put = gen8_logical_ring_put_irq;
	engine->emit_bb_start = gen8_emit_bb_start;
1951 1952
	engine->get_seqno = gen8_get_seqno;
	engine->set_seqno = gen8_set_seqno;
1953
	if (IS_BXT_REVID(dev, 0, BXT_REVID_A1)) {
1954
		engine->irq_seqno_barrier = bxt_a_seqno_barrier;
1955
		engine->set_seqno = bxt_a_set_seqno;
1956 1957 1958
	}
}

1959
static inline void
1960
logical_ring_default_irqs(struct intel_engine_cs *engine, unsigned shift)
1961
{
1962 1963
	engine->irq_enable_mask = GT_RENDER_USER_INTERRUPT << shift;
	engine->irq_keep_mask = GT_CONTEXT_SWITCH_INTERRUPT << shift;
1964 1965
}

1966
static int
1967 1968 1969
lrc_setup_hws(struct intel_engine_cs *engine,
	      struct drm_i915_gem_object *dctx_obj)
{
1970
	void *hws;
1971 1972 1973 1974

	/* The HWSP is part of the default context object in LRC mode. */
	engine->status_page.gfx_addr = i915_gem_obj_ggtt_offset(dctx_obj) +
				       LRC_PPHWSP_PN * PAGE_SIZE;
1975 1976 1977 1978
	hws = i915_gem_object_pin_map(dctx_obj);
	if (IS_ERR(hws))
		return PTR_ERR(hws);
	engine->status_page.page_addr = hws + LRC_PPHWSP_PN * PAGE_SIZE;
1979
	engine->status_page.obj = dctx_obj;
1980 1981

	return 0;
1982 1983
}

1984
static int
1985
logical_ring_init(struct drm_device *dev, struct intel_engine_cs *engine)
1986
{
1987 1988 1989
	struct drm_i915_private *dev_priv = to_i915(dev);
	struct intel_context *dctx = dev_priv->kernel_context;
	enum forcewake_domains fw_domains;
1990 1991 1992
	int ret;

	/* Intentionally left blank. */
1993
	engine->buffer = NULL;
1994

1995 1996 1997 1998 1999
	engine->dev = dev;
	INIT_LIST_HEAD(&engine->active_list);
	INIT_LIST_HEAD(&engine->request_list);
	i915_gem_batch_pool_init(dev, &engine->batch_pool);
	init_waitqueue_head(&engine->irq_queue);
2000

2001 2002 2003 2004
	INIT_LIST_HEAD(&engine->buffers);
	INIT_LIST_HEAD(&engine->execlist_queue);
	INIT_LIST_HEAD(&engine->execlist_retired_req_list);
	spin_lock_init(&engine->execlist_lock);
2005

2006 2007 2008
	tasklet_init(&engine->irq_tasklet,
		     intel_lrc_irq_handler, (unsigned long)engine);

2009
	logical_ring_init_platform_invariants(engine);
2010

2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024
	fw_domains = intel_uncore_forcewake_for_reg(dev_priv,
						    RING_ELSP(engine),
						    FW_REG_WRITE);

	fw_domains |= intel_uncore_forcewake_for_reg(dev_priv,
						     RING_CONTEXT_STATUS_PTR(engine),
						     FW_REG_READ | FW_REG_WRITE);

	fw_domains |= intel_uncore_forcewake_for_reg(dev_priv,
						     RING_CONTEXT_STATUS_BUF_BASE(engine),
						     FW_REG_READ);

	engine->fw_domains = fw_domains;

2025
	ret = i915_cmd_parser_init_ring(engine);
2026
	if (ret)
2027
		goto error;
2028

2029
	ret = intel_lr_context_deferred_alloc(dctx, engine);
2030
	if (ret)
2031
		goto error;
2032 2033

	/* As this is the default context, always pin it */
2034
	ret = intel_lr_context_do_pin(dctx, engine);
2035 2036 2037
	if (ret) {
		DRM_ERROR(
			"Failed to pin and map ringbuffer %s: %d\n",
2038
			engine->name, ret);
2039
		goto error;
2040
	}
2041

2042
	/* And setup the hardware status page. */
2043 2044 2045 2046 2047
	ret = lrc_setup_hws(engine, dctx->engine[engine->id].state);
	if (ret) {
		DRM_ERROR("Failed to set up hws %s: %d\n", engine->name, ret);
		goto error;
	}
2048

2049 2050 2051
	return 0;

error:
2052
	intel_logical_ring_cleanup(engine);
2053
	return ret;
2054 2055 2056 2057 2058
}

static int logical_render_ring_init(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
2059
	struct intel_engine_cs *engine = &dev_priv->engine[RCS];
2060
	int ret;
2061

2062 2063 2064 2065 2066
	engine->name = "render ring";
	engine->id = RCS;
	engine->exec_id = I915_EXEC_RENDER;
	engine->guc_id = GUC_RENDER_ENGINE;
	engine->mmio_base = RENDER_RING_BASE;
2067

2068
	logical_ring_default_irqs(engine, GEN8_RCS_IRQ_SHIFT);
2069
	if (HAS_L3_DPF(dev))
2070
		engine->irq_keep_mask |= GT_RENDER_L3_PARITY_ERROR_INTERRUPT;
2071

2072
	logical_ring_default_vfuncs(dev, engine);
2073 2074

	/* Override some for render ring. */
2075
	if (INTEL_INFO(dev)->gen >= 9)
2076
		engine->init_hw = gen9_init_render_ring;
2077
	else
2078 2079 2080 2081 2082
		engine->init_hw = gen8_init_render_ring;
	engine->init_context = gen8_init_rcs_context;
	engine->cleanup = intel_fini_pipe_control;
	engine->emit_flush = gen8_emit_flush_render;
	engine->emit_request = gen8_emit_request_render;
2083

2084
	engine->dev = dev;
2085

2086
	ret = intel_init_pipe_control(engine);
2087 2088 2089
	if (ret)
		return ret;

2090
	ret = intel_init_workaround_bb(engine);
2091 2092 2093 2094 2095 2096 2097 2098 2099 2100
	if (ret) {
		/*
		 * We continue even if we fail to initialize WA batch
		 * because we only expect rare glitches but nothing
		 * critical to prevent us from using GPU
		 */
		DRM_ERROR("WA batch buffer initialization failed: %d\n",
			  ret);
	}

2101
	ret = logical_ring_init(dev, engine);
2102
	if (ret) {
2103
		lrc_destroy_wa_ctx_obj(engine);
2104
	}
2105 2106

	return ret;
2107 2108 2109 2110 2111
}

static int logical_bsd_ring_init(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
2112
	struct intel_engine_cs *engine = &dev_priv->engine[VCS];
2113

2114 2115 2116 2117 2118
	engine->name = "bsd ring";
	engine->id = VCS;
	engine->exec_id = I915_EXEC_BSD;
	engine->guc_id = GUC_VIDEO_ENGINE;
	engine->mmio_base = GEN6_BSD_RING_BASE;
2119

2120 2121
	logical_ring_default_irqs(engine, GEN8_VCS1_IRQ_SHIFT);
	logical_ring_default_vfuncs(dev, engine);
2122

2123
	return logical_ring_init(dev, engine);
2124 2125 2126 2127 2128
}

static int logical_bsd2_ring_init(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
2129
	struct intel_engine_cs *engine = &dev_priv->engine[VCS2];
2130

2131 2132 2133 2134 2135
	engine->name = "bsd2 ring";
	engine->id = VCS2;
	engine->exec_id = I915_EXEC_BSD;
	engine->guc_id = GUC_VIDEO_ENGINE2;
	engine->mmio_base = GEN8_BSD2_RING_BASE;
2136

2137 2138
	logical_ring_default_irqs(engine, GEN8_VCS2_IRQ_SHIFT);
	logical_ring_default_vfuncs(dev, engine);
2139

2140
	return logical_ring_init(dev, engine);
2141 2142 2143 2144 2145
}

static int logical_blt_ring_init(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
2146
	struct intel_engine_cs *engine = &dev_priv->engine[BCS];
2147

2148 2149 2150 2151 2152
	engine->name = "blitter ring";
	engine->id = BCS;
	engine->exec_id = I915_EXEC_BLT;
	engine->guc_id = GUC_BLITTER_ENGINE;
	engine->mmio_base = BLT_RING_BASE;
2153

2154 2155
	logical_ring_default_irqs(engine, GEN8_BCS_IRQ_SHIFT);
	logical_ring_default_vfuncs(dev, engine);
2156

2157
	return logical_ring_init(dev, engine);
2158 2159 2160 2161 2162
}

static int logical_vebox_ring_init(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
2163
	struct intel_engine_cs *engine = &dev_priv->engine[VECS];
2164

2165 2166 2167 2168 2169
	engine->name = "video enhancement ring";
	engine->id = VECS;
	engine->exec_id = I915_EXEC_VEBOX;
	engine->guc_id = GUC_VIDEOENHANCE_ENGINE;
	engine->mmio_base = VEBOX_RING_BASE;
2170

2171 2172
	logical_ring_default_irqs(engine, GEN8_VECS_IRQ_SHIFT);
	logical_ring_default_vfuncs(dev, engine);
2173

2174
	return logical_ring_init(dev, engine);
2175 2176
}

2177 2178 2179 2180 2181
/**
 * intel_logical_rings_init() - allocate, populate and init the Engine Command Streamers
 * @dev: DRM device.
 *
 * This function inits the engines for an Execlists submission style (the equivalent in the
2182
 * legacy ringbuffer submission world would be i915_gem_init_engines). It does it only for
2183 2184 2185 2186
 * those engines that are present in the hardware.
 *
 * Return: non-zero if the initialization failed.
 */
2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222
int intel_logical_rings_init(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	int ret;

	ret = logical_render_ring_init(dev);
	if (ret)
		return ret;

	if (HAS_BSD(dev)) {
		ret = logical_bsd_ring_init(dev);
		if (ret)
			goto cleanup_render_ring;
	}

	if (HAS_BLT(dev)) {
		ret = logical_blt_ring_init(dev);
		if (ret)
			goto cleanup_bsd_ring;
	}

	if (HAS_VEBOX(dev)) {
		ret = logical_vebox_ring_init(dev);
		if (ret)
			goto cleanup_blt_ring;
	}

	if (HAS_BSD2(dev)) {
		ret = logical_bsd2_ring_init(dev);
		if (ret)
			goto cleanup_vebox_ring;
	}

	return 0;

cleanup_vebox_ring:
2223
	intel_logical_ring_cleanup(&dev_priv->engine[VECS]);
2224
cleanup_blt_ring:
2225
	intel_logical_ring_cleanup(&dev_priv->engine[BCS]);
2226
cleanup_bsd_ring:
2227
	intel_logical_ring_cleanup(&dev_priv->engine[VCS]);
2228
cleanup_render_ring:
2229
	intel_logical_ring_cleanup(&dev_priv->engine[RCS]);
2230 2231 2232 2233

	return ret;
}

2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276
static u32
make_rpcs(struct drm_device *dev)
{
	u32 rpcs = 0;

	/*
	 * No explicit RPCS request is needed to ensure full
	 * slice/subslice/EU enablement prior to Gen9.
	*/
	if (INTEL_INFO(dev)->gen < 9)
		return 0;

	/*
	 * Starting in Gen9, render power gating can leave
	 * slice/subslice/EU in a partially enabled state. We
	 * must make an explicit request through RPCS for full
	 * enablement.
	*/
	if (INTEL_INFO(dev)->has_slice_pg) {
		rpcs |= GEN8_RPCS_S_CNT_ENABLE;
		rpcs |= INTEL_INFO(dev)->slice_total <<
			GEN8_RPCS_S_CNT_SHIFT;
		rpcs |= GEN8_RPCS_ENABLE;
	}

	if (INTEL_INFO(dev)->has_subslice_pg) {
		rpcs |= GEN8_RPCS_SS_CNT_ENABLE;
		rpcs |= INTEL_INFO(dev)->subslice_per_slice <<
			GEN8_RPCS_SS_CNT_SHIFT;
		rpcs |= GEN8_RPCS_ENABLE;
	}

	if (INTEL_INFO(dev)->has_eu_pg) {
		rpcs |= INTEL_INFO(dev)->eu_per_subslice <<
			GEN8_RPCS_EU_MIN_SHIFT;
		rpcs |= INTEL_INFO(dev)->eu_per_subslice <<
			GEN8_RPCS_EU_MAX_SHIFT;
		rpcs |= GEN8_RPCS_ENABLE;
	}

	return rpcs;
}

2277
static u32 intel_lr_indirect_ctx_offset(struct intel_engine_cs *engine)
2278 2279 2280
{
	u32 indirect_ctx_offset;

2281
	switch (INTEL_INFO(engine->dev)->gen) {
2282
	default:
2283
		MISSING_CASE(INTEL_INFO(engine->dev)->gen);
2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297
		/* fall through */
	case 9:
		indirect_ctx_offset =
			GEN9_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT;
		break;
	case 8:
		indirect_ctx_offset =
			GEN8_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT;
		break;
	}

	return indirect_ctx_offset;
}

2298
static int
2299 2300
populate_lr_context(struct intel_context *ctx,
		    struct drm_i915_gem_object *ctx_obj,
2301 2302
		    struct intel_engine_cs *engine,
		    struct intel_ringbuffer *ringbuf)
2303
{
2304
	struct drm_device *dev = engine->dev;
2305
	struct drm_i915_private *dev_priv = dev->dev_private;
2306
	struct i915_hw_ppgtt *ppgtt = ctx->ppgtt;
2307 2308
	void *vaddr;
	u32 *reg_state;
2309 2310
	int ret;

2311 2312 2313
	if (!ppgtt)
		ppgtt = dev_priv->mm.aliasing_ppgtt;

2314 2315 2316 2317 2318 2319
	ret = i915_gem_object_set_to_cpu_domain(ctx_obj, true);
	if (ret) {
		DRM_DEBUG_DRIVER("Could not set to CPU domain\n");
		return ret;
	}

2320 2321 2322 2323
	vaddr = i915_gem_object_pin_map(ctx_obj);
	if (IS_ERR(vaddr)) {
		ret = PTR_ERR(vaddr);
		DRM_DEBUG_DRIVER("Could not map object pages! (%d)\n", ret);
2324 2325
		return ret;
	}
2326
	ctx_obj->dirty = true;
2327 2328 2329

	/* The second page of the context object contains some fields which must
	 * be set up prior to the first execution. */
2330
	reg_state = vaddr + LRC_STATE_PN * PAGE_SIZE;
2331 2332 2333 2334 2335 2336

	/* A context is actually a big batch buffer with several MI_LOAD_REGISTER_IMM
	 * commands followed by (reg, value) pairs. The values we are setting here are
	 * only for the first context restore: on a subsequent save, the GPU will
	 * recreate this batchbuffer with new values (including all the missing
	 * MI_LOAD_REGISTER_IMM commands that we are not initializing here). */
2337
	reg_state[CTX_LRI_HEADER_0] =
2338 2339 2340
		MI_LOAD_REGISTER_IMM(engine->id == RCS ? 14 : 11) | MI_LRI_FORCE_POSTED;
	ASSIGN_CTX_REG(reg_state, CTX_CONTEXT_CONTROL,
		       RING_CONTEXT_CONTROL(engine),
2341 2342
		       _MASKED_BIT_ENABLE(CTX_CTRL_INHIBIT_SYN_CTX_SWITCH |
					  CTX_CTRL_ENGINE_CTX_RESTORE_INHIBIT |
2343 2344
					  (HAS_RESOURCE_STREAMER(dev) ?
					    CTX_CTRL_RS_CTX_ENABLE : 0)));
2345 2346 2347 2348
	ASSIGN_CTX_REG(reg_state, CTX_RING_HEAD, RING_HEAD(engine->mmio_base),
		       0);
	ASSIGN_CTX_REG(reg_state, CTX_RING_TAIL, RING_TAIL(engine->mmio_base),
		       0);
2349 2350 2351
	/* Ring buffer start address is not known until the buffer is pinned.
	 * It is written to the context image in execlists_update_context()
	 */
2352 2353 2354 2355
	ASSIGN_CTX_REG(reg_state, CTX_RING_BUFFER_START,
		       RING_START(engine->mmio_base), 0);
	ASSIGN_CTX_REG(reg_state, CTX_RING_BUFFER_CONTROL,
		       RING_CTL(engine->mmio_base),
2356
		       ((ringbuf->size - PAGE_SIZE) & RING_NR_PAGES) | RING_VALID);
2357 2358 2359 2360 2361 2362
	ASSIGN_CTX_REG(reg_state, CTX_BB_HEAD_U,
		       RING_BBADDR_UDW(engine->mmio_base), 0);
	ASSIGN_CTX_REG(reg_state, CTX_BB_HEAD_L,
		       RING_BBADDR(engine->mmio_base), 0);
	ASSIGN_CTX_REG(reg_state, CTX_BB_STATE,
		       RING_BBSTATE(engine->mmio_base),
2363
		       RING_BB_PPGTT);
2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378
	ASSIGN_CTX_REG(reg_state, CTX_SECOND_BB_HEAD_U,
		       RING_SBBADDR_UDW(engine->mmio_base), 0);
	ASSIGN_CTX_REG(reg_state, CTX_SECOND_BB_HEAD_L,
		       RING_SBBADDR(engine->mmio_base), 0);
	ASSIGN_CTX_REG(reg_state, CTX_SECOND_BB_STATE,
		       RING_SBBSTATE(engine->mmio_base), 0);
	if (engine->id == RCS) {
		ASSIGN_CTX_REG(reg_state, CTX_BB_PER_CTX_PTR,
			       RING_BB_PER_CTX_PTR(engine->mmio_base), 0);
		ASSIGN_CTX_REG(reg_state, CTX_RCS_INDIRECT_CTX,
			       RING_INDIRECT_CTX(engine->mmio_base), 0);
		ASSIGN_CTX_REG(reg_state, CTX_RCS_INDIRECT_CTX_OFFSET,
			       RING_INDIRECT_CTX_OFFSET(engine->mmio_base), 0);
		if (engine->wa_ctx.obj) {
			struct i915_ctx_workarounds *wa_ctx = &engine->wa_ctx;
2379 2380 2381 2382 2383 2384 2385
			uint32_t ggtt_offset = i915_gem_obj_ggtt_offset(wa_ctx->obj);

			reg_state[CTX_RCS_INDIRECT_CTX+1] =
				(ggtt_offset + wa_ctx->indirect_ctx.offset * sizeof(uint32_t)) |
				(wa_ctx->indirect_ctx.size / CACHELINE_DWORDS);

			reg_state[CTX_RCS_INDIRECT_CTX_OFFSET+1] =
2386
				intel_lr_indirect_ctx_offset(engine) << 6;
2387 2388 2389 2390 2391

			reg_state[CTX_BB_PER_CTX_PTR+1] =
				(ggtt_offset + wa_ctx->per_ctx.offset * sizeof(uint32_t)) |
				0x01;
		}
2392
	}
2393
	reg_state[CTX_LRI_HEADER_1] = MI_LOAD_REGISTER_IMM(9) | MI_LRI_FORCE_POSTED;
2394 2395
	ASSIGN_CTX_REG(reg_state, CTX_CTX_TIMESTAMP,
		       RING_CTX_TIMESTAMP(engine->mmio_base), 0);
2396
	/* PDP values well be assigned later if needed */
2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412
	ASSIGN_CTX_REG(reg_state, CTX_PDP3_UDW, GEN8_RING_PDP_UDW(engine, 3),
		       0);
	ASSIGN_CTX_REG(reg_state, CTX_PDP3_LDW, GEN8_RING_PDP_LDW(engine, 3),
		       0);
	ASSIGN_CTX_REG(reg_state, CTX_PDP2_UDW, GEN8_RING_PDP_UDW(engine, 2),
		       0);
	ASSIGN_CTX_REG(reg_state, CTX_PDP2_LDW, GEN8_RING_PDP_LDW(engine, 2),
		       0);
	ASSIGN_CTX_REG(reg_state, CTX_PDP1_UDW, GEN8_RING_PDP_UDW(engine, 1),
		       0);
	ASSIGN_CTX_REG(reg_state, CTX_PDP1_LDW, GEN8_RING_PDP_LDW(engine, 1),
		       0);
	ASSIGN_CTX_REG(reg_state, CTX_PDP0_UDW, GEN8_RING_PDP_UDW(engine, 0),
		       0);
	ASSIGN_CTX_REG(reg_state, CTX_PDP0_LDW, GEN8_RING_PDP_LDW(engine, 0),
		       0);
2413

2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425
	if (USES_FULL_48BIT_PPGTT(ppgtt->base.dev)) {
		/* 64b PPGTT (48bit canonical)
		 * PDP0_DESCRIPTOR contains the base address to PML4 and
		 * other PDP Descriptors are ignored.
		 */
		ASSIGN_CTX_PML4(ppgtt, reg_state);
	} else {
		/* 32b PPGTT
		 * PDP*_DESCRIPTOR contains the base address of space supported.
		 * With dynamic page allocation, PDPs may not be allocated at
		 * this point. Point the unallocated PDPs to the scratch page
		 */
2426
		execlists_update_context_pdps(ppgtt, reg_state);
2427 2428
	}

2429
	if (engine->id == RCS) {
2430
		reg_state[CTX_LRI_HEADER_2] = MI_LOAD_REGISTER_IMM(1);
2431 2432
		ASSIGN_CTX_REG(reg_state, CTX_R_PWR_CLK_STATE, GEN8_R_PWR_CLK_STATE,
			       make_rpcs(dev));
2433 2434
	}

2435
	i915_gem_object_unpin_map(ctx_obj);
2436 2437 2438 2439

	return 0;
}

2440 2441 2442 2443 2444 2445 2446 2447
/**
 * intel_lr_context_free() - free the LRC specific bits of a context
 * @ctx: the LR context to free.
 *
 * The real context freeing is done in i915_gem_context_free: this only
 * takes care of the bits that are LRC related: the per-engine backing
 * objects and the logical ringbuffer.
 */
2448 2449
void intel_lr_context_free(struct intel_context *ctx)
{
2450 2451
	int i;

2452
	for (i = I915_NUM_ENGINES; --i >= 0; ) {
D
Dave Gordon 已提交
2453
		struct intel_ringbuffer *ringbuf = ctx->engine[i].ringbuf;
2454
		struct drm_i915_gem_object *ctx_obj = ctx->engine[i].state;
2455

D
Dave Gordon 已提交
2456 2457
		if (!ctx_obj)
			continue;
2458

D
Dave Gordon 已提交
2459 2460 2461
		if (ctx == ctx->i915->kernel_context) {
			intel_unpin_ringbuffer_obj(ringbuf);
			i915_gem_object_ggtt_unpin(ctx_obj);
2462
			i915_gem_object_unpin_map(ctx_obj);
2463
		}
D
Dave Gordon 已提交
2464 2465 2466 2467

		WARN_ON(ctx->engine[i].pin_count);
		intel_ringbuffer_free(ringbuf);
		drm_gem_object_unreference(&ctx_obj->base);
2468 2469 2470
	}
}

2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484
/**
 * intel_lr_context_size() - return the size of the context for an engine
 * @ring: which engine to find the context size for
 *
 * Each engine may require a different amount of space for a context image,
 * so when allocating (or copying) an image, this function can be used to
 * find the right size for the specific engine.
 *
 * Return: size (in bytes) of an engine-specific context image
 *
 * Note: this size includes the HWSP, which is part of the context image
 * in LRC mode, but does not include the "shared data page" used with
 * GuC submission. The caller should account for this if using the GuC.
 */
2485
uint32_t intel_lr_context_size(struct intel_engine_cs *engine)
2486 2487 2488
{
	int ret = 0;

2489
	WARN_ON(INTEL_INFO(engine->dev)->gen < 8);
2490

2491
	switch (engine->id) {
2492
	case RCS:
2493
		if (INTEL_INFO(engine->dev)->gen >= 9)
2494 2495 2496
			ret = GEN9_LR_CONTEXT_RENDER_SIZE;
		else
			ret = GEN8_LR_CONTEXT_RENDER_SIZE;
2497 2498 2499 2500 2501 2502 2503 2504 2505 2506
		break;
	case VCS:
	case BCS:
	case VECS:
	case VCS2:
		ret = GEN8_LR_CONTEXT_OTHER_SIZE;
		break;
	}

	return ret;
2507 2508
}

2509
/**
2510
 * intel_lr_context_deferred_alloc() - create the LRC specific bits of a context
2511 2512 2513 2514 2515 2516 2517 2518 2519
 * @ctx: LR context to create.
 * @ring: engine to be used with the context.
 *
 * This function can be called more than once, with different engines, if we plan
 * to use the context with them. The context backing objects and the ringbuffers
 * (specially the ringbuffer backing objects) suck a lot of memory up, and that's why
 * the creation is a deferred call: it's better to make sure first that we need to use
 * a given ring with the context.
 *
2520
 * Return: non-zero on error.
2521
 */
2522 2523

int intel_lr_context_deferred_alloc(struct intel_context *ctx,
2524
				    struct intel_engine_cs *engine)
2525
{
2526
	struct drm_device *dev = engine->dev;
2527 2528
	struct drm_i915_gem_object *ctx_obj;
	uint32_t context_size;
2529
	struct intel_ringbuffer *ringbuf;
2530 2531
	int ret;

2532
	WARN_ON(ctx->legacy_hw_ctx.rcs_state != NULL);
2533
	WARN_ON(ctx->engine[engine->id].state);
2534

2535
	context_size = round_up(intel_lr_context_size(engine), 4096);
2536

2537 2538 2539
	/* One extra page as the sharing data between driver and GuC */
	context_size += PAGE_SIZE * LRC_PPHWSP_PN;

2540
	ctx_obj = i915_gem_alloc_object(dev, context_size);
2541 2542 2543
	if (!ctx_obj) {
		DRM_DEBUG_DRIVER("Alloc LRC backing obj failed.\n");
		return -ENOMEM;
2544 2545
	}

2546
	ringbuf = intel_engine_create_ringbuffer(engine, 4 * PAGE_SIZE);
2547 2548
	if (IS_ERR(ringbuf)) {
		ret = PTR_ERR(ringbuf);
2549
		goto error_deref_obj;
2550 2551
	}

2552
	ret = populate_lr_context(ctx, ctx_obj, engine, ringbuf);
2553 2554
	if (ret) {
		DRM_DEBUG_DRIVER("Failed to populate LRC: %d\n", ret);
2555
		goto error_ringbuf;
2556 2557
	}

2558 2559
	ctx->engine[engine->id].ringbuf = ringbuf;
	ctx->engine[engine->id].state = ctx_obj;
2560

2561
	if (ctx != ctx->i915->kernel_context && engine->init_context) {
2562
		struct drm_i915_gem_request *req;
2563

2564
		req = i915_gem_request_alloc(engine, ctx);
2565 2566 2567
		if (IS_ERR(req)) {
			ret = PTR_ERR(req);
			DRM_ERROR("ring create req: %d\n", ret);
2568
			goto error_ringbuf;
2569 2570
		}

2571
		ret = engine->init_context(req);
2572
		i915_add_request_no_flush(req);
2573 2574 2575 2576 2577
		if (ret) {
			DRM_ERROR("ring init context: %d\n",
				ret);
			goto error_ringbuf;
		}
2578
	}
2579
	return 0;
2580

2581 2582
error_ringbuf:
	intel_ringbuffer_free(ringbuf);
2583
error_deref_obj:
2584
	drm_gem_object_unreference(&ctx_obj->base);
2585 2586
	ctx->engine[engine->id].ringbuf = NULL;
	ctx->engine[engine->id].state = NULL;
2587
	return ret;
2588
}
2589

2590 2591
void intel_lr_context_reset(struct drm_i915_private *dev_priv,
			    struct intel_context *ctx)
2592
{
2593
	struct intel_engine_cs *engine;
2594

2595
	for_each_engine(engine, dev_priv) {
2596
		struct drm_i915_gem_object *ctx_obj =
2597
				ctx->engine[engine->id].state;
2598
		struct intel_ringbuffer *ringbuf =
2599
				ctx->engine[engine->id].ringbuf;
2600
		void *vaddr;
2601 2602 2603 2604 2605
		uint32_t *reg_state;

		if (!ctx_obj)
			continue;

2606 2607
		vaddr = i915_gem_object_pin_map(ctx_obj);
		if (WARN_ON(IS_ERR(vaddr)))
2608
			continue;
2609 2610 2611

		reg_state = vaddr + LRC_STATE_PN * PAGE_SIZE;
		ctx_obj->dirty = true;
2612 2613 2614 2615

		reg_state[CTX_RING_HEAD+1] = 0;
		reg_state[CTX_RING_TAIL+1] = 0;

2616
		i915_gem_object_unpin_map(ctx_obj);
2617 2618 2619 2620 2621

		ringbuf->head = 0;
		ringbuf->tail = 0;
	}
}