intel_pstate.c 47.0 KB
Newer Older
1
/*
2
 * intel_pstate.c: Native P state management for Intel processors
3 4 5 6 7 8 9 10 11 12
 *
 * (C) Copyright 2012 Intel Corporation
 * Author: Dirk Brandewie <dirk.j.brandewie@intel.com>
 *
 * This program is free software; you can redistribute it and/or
 * modify it under the terms of the GNU General Public License
 * as published by the Free Software Foundation; version 2
 * of the License.
 */

J
Joe Perches 已提交
13 14
#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt

15 16 17 18 19 20 21 22 23 24 25 26 27 28 29
#include <linux/kernel.h>
#include <linux/kernel_stat.h>
#include <linux/module.h>
#include <linux/ktime.h>
#include <linux/hrtimer.h>
#include <linux/tick.h>
#include <linux/slab.h>
#include <linux/sched.h>
#include <linux/list.h>
#include <linux/cpu.h>
#include <linux/cpufreq.h>
#include <linux/sysfs.h>
#include <linux/types.h>
#include <linux/fs.h>
#include <linux/debugfs.h>
30
#include <linux/acpi.h>
31
#include <linux/vmalloc.h>
32 33 34 35 36
#include <trace/events/power.h>

#include <asm/div64.h>
#include <asm/msr.h>
#include <asm/cpu_device_id.h>
37
#include <asm/cpufeature.h>
38
#include <asm/intel-family.h>
39

40 41 42 43
#define ATOM_RATIOS		0x66a
#define ATOM_VIDS		0x66b
#define ATOM_TURBO_RATIOS	0x66c
#define ATOM_TURBO_VIDS		0x66d
44

45 46 47 48
#ifdef CONFIG_ACPI
#include <acpi/processor.h>
#endif

49
#define FRAC_BITS 8
50 51
#define int_tofp(X) ((int64_t)(X) << FRAC_BITS)
#define fp_toint(X) ((X) >> FRAC_BITS)
52

53 54 55
#define EXT_BITS 6
#define EXT_FRAC_BITS (EXT_BITS + FRAC_BITS)

56 57 58 59 60
static inline int32_t mul_fp(int32_t x, int32_t y)
{
	return ((int64_t)x * (int64_t)y) >> FRAC_BITS;
}

61
static inline int32_t div_fp(s64 x, s64 y)
62
{
63
	return div64_s64((int64_t)x << FRAC_BITS, y);
64 65
}

66 67 68 69 70 71 72 73 74 75 76
static inline int ceiling_fp(int32_t x)
{
	int mask, ret;

	ret = fp_toint(x);
	mask = (1 << FRAC_BITS) - 1;
	if (x & mask)
		ret += 1;
	return ret;
}

77 78 79 80 81 82 83 84 85 86
static inline u64 mul_ext_fp(u64 x, u64 y)
{
	return (x * y) >> EXT_FRAC_BITS;
}

static inline u64 div_ext_fp(u64 x, u64 y)
{
	return div64_u64(x << EXT_FRAC_BITS, y);
}

87 88
/**
 * struct sample -	Store performance sample
89
 * @core_avg_perf:	Ratio of APERF/MPERF which is the actual average
90 91
 *			performance during last sample period
 * @busy_scaled:	Scaled busy value which is used to calculate next
92
 *			P state. This can be different than core_avg_perf
93 94 95 96 97 98 99 100 101 102 103 104 105
 *			to account for cpu idle period
 * @aperf:		Difference of actual performance frequency clock count
 *			read from APERF MSR between last and current sample
 * @mperf:		Difference of maximum performance frequency clock count
 *			read from MPERF MSR between last and current sample
 * @tsc:		Difference of time stamp counter between last and
 *			current sample
 * @freq:		Effective frequency calculated from APERF/MPERF
 * @time:		Current time from scheduler
 *
 * This structure is used in the cpudata structure to store performance sample
 * data for choosing next P State.
 */
106
struct sample {
107
	int32_t core_avg_perf;
108
	int32_t busy_scaled;
109 110
	u64 aperf;
	u64 mperf;
111
	u64 tsc;
112
	int freq;
113
	u64 time;
114 115
};

116 117 118 119 120 121 122 123 124 125 126 127 128 129
/**
 * struct pstate_data - Store P state data
 * @current_pstate:	Current requested P state
 * @min_pstate:		Min P state possible for this platform
 * @max_pstate:		Max P state possible for this platform
 * @max_pstate_physical:This is physical Max P state for a processor
 *			This can be higher than the max_pstate which can
 *			be limited by platform thermal design power limits
 * @scaling:		Scaling factor to  convert frequency to cpufreq
 *			frequency units
 * @turbo_pstate:	Max Turbo P state possible for this platform
 *
 * Stores the per cpu model P state limits and current P state.
 */
130 131 132 133
struct pstate_data {
	int	current_pstate;
	int	min_pstate;
	int	max_pstate;
134
	int	max_pstate_physical;
135
	int	scaling;
136 137 138
	int	turbo_pstate;
};

139 140 141 142 143 144 145 146 147 148 149 150 151
/**
 * struct vid_data -	Stores voltage information data
 * @min:		VID data for this platform corresponding to
 *			the lowest P state
 * @max:		VID data corresponding to the highest P State.
 * @turbo:		VID data for turbo P state
 * @ratio:		Ratio of (vid max - vid min) /
 *			(max P state - Min P State)
 *
 * Stores the voltage data for DVFS (Dynamic Voltage and Frequency Scaling)
 * This data is used in Atom platforms, where in addition to target P state,
 * the voltage data needs to be specified to select next P State.
 */
152
struct vid_data {
153 154 155
	int min;
	int max;
	int turbo;
156 157 158
	int32_t ratio;
};

159 160 161 162 163 164 165 166 167 168 169 170
/**
 * struct _pid -	Stores PID data
 * @setpoint:		Target set point for busyness or performance
 * @integral:		Storage for accumulated error values
 * @p_gain:		PID proportional gain
 * @i_gain:		PID integral gain
 * @d_gain:		PID derivative gain
 * @deadband:		PID deadband
 * @last_err:		Last error storage for integral part of PID calculation
 *
 * Stores PID coefficients and last error for PID controller.
 */
171 172 173 174 175 176 177
struct _pid {
	int setpoint;
	int32_t integral;
	int32_t p_gain;
	int32_t i_gain;
	int32_t d_gain;
	int deadband;
178
	int32_t last_err;
179 180
};

181 182 183 184
/**
 * struct cpudata -	Per CPU instance data storage
 * @cpu:		CPU number for this instance data
 * @update_util:	CPUFreq utility callback information
185
 * @update_util_set:	CPUFreq utility callback is set
186 187 188 189 190 191 192 193 194 195
 * @pstate:		Stores P state limits for this CPU
 * @vid:		Stores VID limits for this CPU
 * @pid:		Stores PID parameters for this CPU
 * @last_sample_time:	Last Sample time
 * @prev_aperf:		Last APERF value read from APERF MSR
 * @prev_mperf:		Last MPERF value read from MPERF MSR
 * @prev_tsc:		Last timestamp counter (TSC) value
 * @prev_cummulative_iowait: IO Wait time difference from last and
 *			current sample
 * @sample:		Storage for storing last Sample data
196 197
 * @acpi_perf_data:	Stores ACPI perf information read from _PSS
 * @valid_pss_table:	Set to true for valid ACPI _PSS entries found
198 199 200
 *
 * This structure stores per CPU instance data for all CPUs.
 */
201 202 203
struct cpudata {
	int cpu;

204
	struct update_util_data update_util;
205
	bool   update_util_set;
206 207

	struct pstate_data pstate;
208
	struct vid_data vid;
209 210
	struct _pid pid;

211
	u64	last_sample_time;
212 213
	u64	prev_aperf;
	u64	prev_mperf;
214
	u64	prev_tsc;
215
	u64	prev_cummulative_iowait;
216
	struct sample sample;
217 218 219 220
#ifdef CONFIG_ACPI
	struct acpi_processor_performance acpi_perf_data;
	bool valid_pss_table;
#endif
221 222 223
};

static struct cpudata **all_cpu_data;
224 225 226 227 228 229 230 231 232 233 234 235 236

/**
 * struct pid_adjust_policy - Stores static PID configuration data
 * @sample_rate_ms:	PID calculation sample rate in ms
 * @sample_rate_ns:	Sample rate calculation in ns
 * @deadband:		PID deadband
 * @setpoint:		PID Setpoint
 * @p_gain_pct:		PID proportional gain
 * @i_gain_pct:		PID integral gain
 * @d_gain_pct:		PID derivative gain
 *
 * Stores per CPU model static PID configuration data.
 */
237 238
struct pstate_adjust_policy {
	int sample_rate_ms;
239
	s64 sample_rate_ns;
240 241 242 243 244 245 246
	int deadband;
	int setpoint;
	int p_gain_pct;
	int d_gain_pct;
	int i_gain_pct;
};

247 248 249 250 251 252 253 254 255 256 257 258 259 260
/**
 * struct pstate_funcs - Per CPU model specific callbacks
 * @get_max:		Callback to get maximum non turbo effective P state
 * @get_max_physical:	Callback to get maximum non turbo physical P state
 * @get_min:		Callback to get minimum P state
 * @get_turbo:		Callback to get turbo P state
 * @get_scaling:	Callback to get frequency scaling factor
 * @get_val:		Callback to convert P state to actual MSR write value
 * @get_vid:		Callback to get VID data for Atom platforms
 * @get_target_pstate:	Callback to a function to calculate next P state to use
 *
 * Core and Atom CPU models have different way to get P State limits. This
 * structure is used to store those callbacks.
 */
261 262
struct pstate_funcs {
	int (*get_max)(void);
263
	int (*get_max_physical)(void);
264 265
	int (*get_min)(void);
	int (*get_turbo)(void);
266
	int (*get_scaling)(void);
267
	u64 (*get_val)(struct cpudata*, int pstate);
268
	void (*get_vid)(struct cpudata *);
269
	int32_t (*get_target_pstate)(struct cpudata *);
270 271
};

272 273 274 275 276
/**
 * struct cpu_defaults- Per CPU model default config data
 * @pid_policy:	PID config data
 * @funcs:		Callback function data
 */
277 278 279
struct cpu_defaults {
	struct pstate_adjust_policy pid_policy;
	struct pstate_funcs funcs;
280 281
};

282
static inline int32_t get_target_pstate_use_performance(struct cpudata *cpu);
283
static inline int32_t get_target_pstate_use_cpu_load(struct cpudata *cpu);
284

285 286 287
static struct pstate_adjust_policy pid_params __read_mostly;
static struct pstate_funcs pstate_funcs __read_mostly;
static int hwp_active __read_mostly;
288

289 290 291
#ifdef CONFIG_ACPI
static bool acpi_ppc;
#endif
292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319

/**
 * struct perf_limits - Store user and policy limits
 * @no_turbo:		User requested turbo state from intel_pstate sysfs
 * @turbo_disabled:	Platform turbo status either from msr
 *			MSR_IA32_MISC_ENABLE or when maximum available pstate
 *			matches the maximum turbo pstate
 * @max_perf_pct:	Effective maximum performance limit in percentage, this
 *			is minimum of either limits enforced by cpufreq policy
 *			or limits from user set limits via intel_pstate sysfs
 * @min_perf_pct:	Effective minimum performance limit in percentage, this
 *			is maximum of either limits enforced by cpufreq policy
 *			or limits from user set limits via intel_pstate sysfs
 * @max_perf:		This is a scaled value between 0 to 255 for max_perf_pct
 *			This value is used to limit max pstate
 * @min_perf:		This is a scaled value between 0 to 255 for min_perf_pct
 *			This value is used to limit min pstate
 * @max_policy_pct:	The maximum performance in percentage enforced by
 *			cpufreq setpolicy interface
 * @max_sysfs_pct:	The maximum performance in percentage enforced by
 *			intel pstate sysfs interface
 * @min_policy_pct:	The minimum performance in percentage enforced by
 *			cpufreq setpolicy interface
 * @min_sysfs_pct:	The minimum performance in percentage enforced by
 *			intel pstate sysfs interface
 *
 * Storage for user and policy defined limits.
 */
320 321
struct perf_limits {
	int no_turbo;
322
	int turbo_disabled;
323 324 325 326
	int max_perf_pct;
	int min_perf_pct;
	int32_t max_perf;
	int32_t min_perf;
327 328
	int max_policy_pct;
	int max_sysfs_pct;
329 330
	int min_policy_pct;
	int min_sysfs_pct;
331 332
};

333 334 335 336 337 338 339 340 341 342 343 344 345 346
static struct perf_limits performance_limits = {
	.no_turbo = 0,
	.turbo_disabled = 0,
	.max_perf_pct = 100,
	.max_perf = int_tofp(1),
	.min_perf_pct = 100,
	.min_perf = int_tofp(1),
	.max_policy_pct = 100,
	.max_sysfs_pct = 100,
	.min_policy_pct = 0,
	.min_sysfs_pct = 0,
};

static struct perf_limits powersave_limits = {
347
	.no_turbo = 0,
348
	.turbo_disabled = 0,
349 350 351 352
	.max_perf_pct = 100,
	.max_perf = int_tofp(1),
	.min_perf_pct = 0,
	.min_perf = 0,
353 354
	.max_policy_pct = 100,
	.max_sysfs_pct = 100,
355 356
	.min_policy_pct = 0,
	.min_sysfs_pct = 0,
357 358
};

359 360 361 362 363 364
#ifdef CONFIG_CPU_FREQ_DEFAULT_GOV_PERFORMANCE
static struct perf_limits *limits = &performance_limits;
#else
static struct perf_limits *limits = &powersave_limits;
#endif

365
#ifdef CONFIG_ACPI
366 367 368 369 370 371 372 373 374 375

static bool intel_pstate_get_ppc_enable_status(void)
{
	if (acpi_gbl_FADT.preferred_profile == PM_ENTERPRISE_SERVER ||
	    acpi_gbl_FADT.preferred_profile == PM_PERFORMANCE_SERVER)
		return true;

	return acpi_ppc;
}

376 377 378 379 380 381
static void intel_pstate_init_acpi_perf_limits(struct cpufreq_policy *policy)
{
	struct cpudata *cpu;
	int ret;
	int i;

382 383 384
	if (hwp_active)
		return;

385
	if (!intel_pstate_get_ppc_enable_status())
386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427
		return;

	cpu = all_cpu_data[policy->cpu];

	ret = acpi_processor_register_performance(&cpu->acpi_perf_data,
						  policy->cpu);
	if (ret)
		return;

	/*
	 * Check if the control value in _PSS is for PERF_CTL MSR, which should
	 * guarantee that the states returned by it map to the states in our
	 * list directly.
	 */
	if (cpu->acpi_perf_data.control_register.space_id !=
						ACPI_ADR_SPACE_FIXED_HARDWARE)
		goto err;

	/*
	 * If there is only one entry _PSS, simply ignore _PSS and continue as
	 * usual without taking _PSS into account
	 */
	if (cpu->acpi_perf_data.state_count < 2)
		goto err;

	pr_debug("CPU%u - ACPI _PSS perf data\n", policy->cpu);
	for (i = 0; i < cpu->acpi_perf_data.state_count; i++) {
		pr_debug("     %cP%d: %u MHz, %u mW, 0x%x\n",
			 (i == cpu->acpi_perf_data.state ? '*' : ' '), i,
			 (u32) cpu->acpi_perf_data.states[i].core_frequency,
			 (u32) cpu->acpi_perf_data.states[i].power,
			 (u32) cpu->acpi_perf_data.states[i].control);
	}

	/*
	 * The _PSS table doesn't contain whole turbo frequency range.
	 * This just contains +1 MHZ above the max non turbo frequency,
	 * with control value corresponding to max turbo ratio. But
	 * when cpufreq set policy is called, it will call with this
	 * max frequency, which will cause a reduced performance as
	 * this driver uses real max turbo frequency as the max
	 * frequency. So correct this frequency in _PSS table to
428
	 * correct max turbo frequency based on the turbo state.
429 430
	 * Also need to convert to MHz as _PSS freq is in MHz.
	 */
431
	if (!limits->turbo_disabled)
432 433 434
		cpu->acpi_perf_data.states[0].core_frequency =
					policy->cpuinfo.max_freq / 1000;
	cpu->valid_pss_table = true;
435
	pr_debug("_PPC limits will be enforced\n");
436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464

	return;

 err:
	cpu->valid_pss_table = false;
	acpi_processor_unregister_performance(policy->cpu);
}

static void intel_pstate_exit_perf_limits(struct cpufreq_policy *policy)
{
	struct cpudata *cpu;

	cpu = all_cpu_data[policy->cpu];
	if (!cpu->valid_pss_table)
		return;

	acpi_processor_unregister_performance(policy->cpu);
}

#else
static void intel_pstate_init_acpi_perf_limits(struct cpufreq_policy *policy)
{
}

static void intel_pstate_exit_perf_limits(struct cpufreq_policy *policy)
{
}
#endif

465
static inline void pid_reset(struct _pid *pid, int setpoint, int busy,
466
			     int deadband, int integral) {
467 468
	pid->setpoint = int_tofp(setpoint);
	pid->deadband  = int_tofp(deadband);
469
	pid->integral  = int_tofp(integral);
470
	pid->last_err  = int_tofp(setpoint) - int_tofp(busy);
471 472 473 474
}

static inline void pid_p_gain_set(struct _pid *pid, int percent)
{
475
	pid->p_gain = div_fp(percent, 100);
476 477 478 479
}

static inline void pid_i_gain_set(struct _pid *pid, int percent)
{
480
	pid->i_gain = div_fp(percent, 100);
481 482 483 484
}

static inline void pid_d_gain_set(struct _pid *pid, int percent)
{
485
	pid->d_gain = div_fp(percent, 100);
486 487
}

488
static signed int pid_calc(struct _pid *pid, int32_t busy)
489
{
490
	signed int result;
491 492 493
	int32_t pterm, dterm, fp_error;
	int32_t integral_limit;

494
	fp_error = pid->setpoint - busy;
495

496
	if (abs(fp_error) <= pid->deadband)
497 498 499 500 501 502
		return 0;

	pterm = mul_fp(pid->p_gain, fp_error);

	pid->integral += fp_error;

503 504 505 506 507 508 509 510
	/*
	 * We limit the integral here so that it will never
	 * get higher than 30.  This prevents it from becoming
	 * too large an input over long periods of time and allows
	 * it to get factored out sooner.
	 *
	 * The value of 30 was chosen through experimentation.
	 */
511 512 513 514 515 516
	integral_limit = int_tofp(30);
	if (pid->integral > integral_limit)
		pid->integral = integral_limit;
	if (pid->integral < -integral_limit)
		pid->integral = -integral_limit;

517 518
	dterm = mul_fp(pid->d_gain, fp_error - pid->last_err);
	pid->last_err = fp_error;
519 520

	result = pterm + mul_fp(pid->integral, pid->i_gain) + dterm;
521
	result = result + (1 << (FRAC_BITS-1));
522 523 524 525 526
	return (signed int)fp_toint(result);
}

static inline void intel_pstate_busy_pid_reset(struct cpudata *cpu)
{
527 528 529
	pid_p_gain_set(&cpu->pid, pid_params.p_gain_pct);
	pid_d_gain_set(&cpu->pid, pid_params.d_gain_pct);
	pid_i_gain_set(&cpu->pid, pid_params.i_gain_pct);
530

531
	pid_reset(&cpu->pid, pid_params.setpoint, 100, pid_params.deadband, 0);
532 533 534 535 536
}

static inline void intel_pstate_reset_all_pid(void)
{
	unsigned int cpu;
537

538 539 540 541 542 543
	for_each_online_cpu(cpu) {
		if (all_cpu_data[cpu])
			intel_pstate_busy_pid_reset(all_cpu_data[cpu]);
	}
}

544 545 546 547 548 549 550
static inline void update_turbo_state(void)
{
	u64 misc_en;
	struct cpudata *cpu;

	cpu = all_cpu_data[0];
	rdmsrl(MSR_IA32_MISC_ENABLE, misc_en);
551
	limits->turbo_disabled =
552 553 554 555
		(misc_en & MSR_IA32_MISC_ENABLE_TURBO_DISABLE ||
		 cpu->pstate.max_pstate == cpu->pstate.turbo_pstate);
}

556
static void intel_pstate_hwp_set(const struct cpumask *cpumask)
D
Dirk Brandewie 已提交
557
{
558 559 560 561 562 563 564
	int min, hw_min, max, hw_max, cpu, range, adj_range;
	u64 value, cap;

	rdmsrl(MSR_HWP_CAPABILITIES, cap);
	hw_min = HWP_LOWEST_PERF(cap);
	hw_max = HWP_HIGHEST_PERF(cap);
	range = hw_max - hw_min;
D
Dirk Brandewie 已提交
565

566
	for_each_cpu(cpu, cpumask) {
D
Dirk Brandewie 已提交
567
		rdmsrl_on_cpu(cpu, MSR_HWP_REQUEST, &value);
568
		adj_range = limits->min_perf_pct * range / 100;
569
		min = hw_min + adj_range;
D
Dirk Brandewie 已提交
570 571 572
		value &= ~HWP_MIN_PERF(~0L);
		value |= HWP_MIN_PERF(min);

573
		adj_range = limits->max_perf_pct * range / 100;
574
		max = hw_min + adj_range;
575
		if (limits->no_turbo) {
576 577 578
			hw_max = HWP_GUARANTEED_PERF(cap);
			if (hw_max < max)
				max = hw_max;
D
Dirk Brandewie 已提交
579 580 581 582 583 584
		}

		value &= ~HWP_MAX_PERF(~0L);
		value |= HWP_MAX_PERF(max);
		wrmsrl_on_cpu(cpu, MSR_HWP_REQUEST, value);
	}
585
}
D
Dirk Brandewie 已提交
586

587 588 589 590 591 592 593 594
static int intel_pstate_hwp_set_policy(struct cpufreq_policy *policy)
{
	if (hwp_active)
		intel_pstate_hwp_set(policy->cpus);

	return 0;
}

595 596 597 598
static void intel_pstate_hwp_set_online_cpus(void)
{
	get_online_cpus();
	intel_pstate_hwp_set(cpu_online_mask);
D
Dirk Brandewie 已提交
599 600 601
	put_online_cpus();
}

602 603 604 605 606 607 608
/************************** debugfs begin ************************/
static int pid_param_set(void *data, u64 val)
{
	*(u32 *)data = val;
	intel_pstate_reset_all_pid();
	return 0;
}
609

610 611 612 613 614
static int pid_param_get(void *data, u64 *val)
{
	*val = *(u32 *)data;
	return 0;
}
615
DEFINE_SIMPLE_ATTRIBUTE(fops_pid_param, pid_param_get, pid_param_set, "%llu\n");
616 617 618 619 620 621 622

struct pid_param {
	char *name;
	void *value;
};

static struct pid_param pid_files[] = {
623 624 625 626 627 628
	{"sample_rate_ms", &pid_params.sample_rate_ms},
	{"d_gain_pct", &pid_params.d_gain_pct},
	{"i_gain_pct", &pid_params.i_gain_pct},
	{"deadband", &pid_params.deadband},
	{"setpoint", &pid_params.setpoint},
	{"p_gain_pct", &pid_params.p_gain_pct},
629 630 631
	{NULL, NULL}
};

632
static void __init intel_pstate_debug_expose_params(void)
633
{
634
	struct dentry *debugfs_parent;
635 636
	int i = 0;

D
Dirk Brandewie 已提交
637 638
	if (hwp_active)
		return;
639 640 641 642 643
	debugfs_parent = debugfs_create_dir("pstate_snb", NULL);
	if (IS_ERR_OR_NULL(debugfs_parent))
		return;
	while (pid_files[i].name) {
		debugfs_create_file(pid_files[i].name, 0660,
644 645
				    debugfs_parent, pid_files[i].value,
				    &fops_pid_param);
646 647 648 649 650 651 652 653 654 655 656
		i++;
	}
}

/************************** debugfs end ************************/

/************************** sysfs begin ************************/
#define show_one(file_name, object)					\
	static ssize_t show_##file_name					\
	(struct kobject *kobj, struct attribute *attr, char *buf)	\
	{								\
657
		return sprintf(buf, "%u\n", limits->object);		\
658 659
	}

660 661 662 663 664 665 666 667 668 669 670
static ssize_t show_turbo_pct(struct kobject *kobj,
				struct attribute *attr, char *buf)
{
	struct cpudata *cpu;
	int total, no_turbo, turbo_pct;
	uint32_t turbo_fp;

	cpu = all_cpu_data[0];

	total = cpu->pstate.turbo_pstate - cpu->pstate.min_pstate + 1;
	no_turbo = cpu->pstate.max_pstate - cpu->pstate.min_pstate + 1;
671
	turbo_fp = div_fp(no_turbo, total);
672 673 674 675
	turbo_pct = 100 - fp_toint(mul_fp(turbo_fp, int_tofp(100)));
	return sprintf(buf, "%u\n", turbo_pct);
}

676 677 678 679 680 681 682 683 684 685 686
static ssize_t show_num_pstates(struct kobject *kobj,
				struct attribute *attr, char *buf)
{
	struct cpudata *cpu;
	int total;

	cpu = all_cpu_data[0];
	total = cpu->pstate.turbo_pstate - cpu->pstate.min_pstate + 1;
	return sprintf(buf, "%u\n", total);
}

687 688 689 690 691 692
static ssize_t show_no_turbo(struct kobject *kobj,
			     struct attribute *attr, char *buf)
{
	ssize_t ret;

	update_turbo_state();
693 694
	if (limits->turbo_disabled)
		ret = sprintf(buf, "%u\n", limits->turbo_disabled);
695
	else
696
		ret = sprintf(buf, "%u\n", limits->no_turbo);
697 698 699 700

	return ret;
}

701
static ssize_t store_no_turbo(struct kobject *a, struct attribute *b,
702
			      const char *buf, size_t count)
703 704 705
{
	unsigned int input;
	int ret;
706

707 708 709
	ret = sscanf(buf, "%u", &input);
	if (ret != 1)
		return -EINVAL;
710 711

	update_turbo_state();
712
	if (limits->turbo_disabled) {
J
Joe Perches 已提交
713
		pr_warn("Turbo disabled by BIOS or unavailable on processor\n");
714
		return -EPERM;
715
	}
D
Dirk Brandewie 已提交
716

717
	limits->no_turbo = clamp_t(int, input, 0, 1);
718

D
Dirk Brandewie 已提交
719
	if (hwp_active)
720
		intel_pstate_hwp_set_online_cpus();
D
Dirk Brandewie 已提交
721

722 723 724 725
	return count;
}

static ssize_t store_max_perf_pct(struct kobject *a, struct attribute *b,
726
				  const char *buf, size_t count)
727 728 729
{
	unsigned int input;
	int ret;
730

731 732 733 734
	ret = sscanf(buf, "%u", &input);
	if (ret != 1)
		return -EINVAL;

735 736 737 738 739 740 741
	limits->max_sysfs_pct = clamp_t(int, input, 0 , 100);
	limits->max_perf_pct = min(limits->max_policy_pct,
				   limits->max_sysfs_pct);
	limits->max_perf_pct = max(limits->min_policy_pct,
				   limits->max_perf_pct);
	limits->max_perf_pct = max(limits->min_perf_pct,
				   limits->max_perf_pct);
742
	limits->max_perf = div_fp(limits->max_perf_pct, 100);
743

D
Dirk Brandewie 已提交
744
	if (hwp_active)
745
		intel_pstate_hwp_set_online_cpus();
746 747 748 749
	return count;
}

static ssize_t store_min_perf_pct(struct kobject *a, struct attribute *b,
750
				  const char *buf, size_t count)
751 752 753
{
	unsigned int input;
	int ret;
754

755 756 757
	ret = sscanf(buf, "%u", &input);
	if (ret != 1)
		return -EINVAL;
758

759 760 761 762 763 764 765
	limits->min_sysfs_pct = clamp_t(int, input, 0 , 100);
	limits->min_perf_pct = max(limits->min_policy_pct,
				   limits->min_sysfs_pct);
	limits->min_perf_pct = min(limits->max_policy_pct,
				   limits->min_perf_pct);
	limits->min_perf_pct = min(limits->max_perf_pct,
				   limits->min_perf_pct);
766
	limits->min_perf = div_fp(limits->min_perf_pct, 100);
767

D
Dirk Brandewie 已提交
768
	if (hwp_active)
769
		intel_pstate_hwp_set_online_cpus();
770 771 772 773 774 775 776 777 778
	return count;
}

show_one(max_perf_pct, max_perf_pct);
show_one(min_perf_pct, min_perf_pct);

define_one_global_rw(no_turbo);
define_one_global_rw(max_perf_pct);
define_one_global_rw(min_perf_pct);
779
define_one_global_ro(turbo_pct);
780
define_one_global_ro(num_pstates);
781 782 783 784 785

static struct attribute *intel_pstate_attributes[] = {
	&no_turbo.attr,
	&max_perf_pct.attr,
	&min_perf_pct.attr,
786
	&turbo_pct.attr,
787
	&num_pstates.attr,
788 789 790 791 792 793 794
	NULL
};

static struct attribute_group intel_pstate_attr_group = {
	.attrs = intel_pstate_attributes,
};

795
static void __init intel_pstate_sysfs_expose_params(void)
796
{
797
	struct kobject *intel_pstate_kobject;
798 799 800 801 802
	int rc;

	intel_pstate_kobject = kobject_create_and_add("intel_pstate",
						&cpu_subsys.dev_root->kobj);
	BUG_ON(!intel_pstate_kobject);
803
	rc = sysfs_create_group(intel_pstate_kobject, &intel_pstate_attr_group);
804 805 806
	BUG_ON(rc);
}
/************************** sysfs end ************************/
D
Dirk Brandewie 已提交
807

808
static void intel_pstate_hwp_enable(struct cpudata *cpudata)
D
Dirk Brandewie 已提交
809
{
810 811 812
	/* First disable HWP notification interrupt as we don't process them */
	wrmsrl_on_cpu(cpudata->cpu, MSR_HWP_INTERRUPT, 0x00);

813
	wrmsrl_on_cpu(cpudata->cpu, MSR_PM_ENABLE, 0x1);
D
Dirk Brandewie 已提交
814 815
}

816
static int atom_get_min_pstate(void)
817 818
{
	u64 value;
819

820
	rdmsrl(ATOM_RATIOS, value);
D
Dirk Brandewie 已提交
821
	return (value >> 8) & 0x7F;
822 823
}

824
static int atom_get_max_pstate(void)
825 826
{
	u64 value;
827

828
	rdmsrl(ATOM_RATIOS, value);
D
Dirk Brandewie 已提交
829
	return (value >> 16) & 0x7F;
830
}
831

832
static int atom_get_turbo_pstate(void)
833 834
{
	u64 value;
835

836
	rdmsrl(ATOM_TURBO_RATIOS, value);
D
Dirk Brandewie 已提交
837
	return value & 0x7F;
838 839
}

840
static u64 atom_get_val(struct cpudata *cpudata, int pstate)
841 842 843 844 845
{
	u64 val;
	int32_t vid_fp;
	u32 vid;

846
	val = (u64)pstate << 8;
847
	if (limits->no_turbo && !limits->turbo_disabled)
848 849 850 851 852 853 854
		val |= (u64)1 << 32;

	vid_fp = cpudata->vid.min + mul_fp(
		int_tofp(pstate - cpudata->pstate.min_pstate),
		cpudata->vid.ratio);

	vid_fp = clamp_t(int32_t, vid_fp, cpudata->vid.min, cpudata->vid.max);
855
	vid = ceiling_fp(vid_fp);
856

857 858 859
	if (pstate > cpudata->pstate.max_pstate)
		vid = cpudata->vid.turbo;

860
	return val | vid;
861 862
}

863
static int silvermont_get_scaling(void)
864 865 866
{
	u64 value;
	int i;
867 868 869
	/* Defined in Table 35-6 from SDM (Sept 2015) */
	static int silvermont_freq_table[] = {
		83300, 100000, 133300, 116700, 80000};
870 871

	rdmsrl(MSR_FSB_FREQ, value);
872 873
	i = value & 0x7;
	WARN_ON(i > 4);
874

875 876
	return silvermont_freq_table[i];
}
877

878 879 880 881 882 883 884 885 886 887 888 889 890 891
static int airmont_get_scaling(void)
{
	u64 value;
	int i;
	/* Defined in Table 35-10 from SDM (Sept 2015) */
	static int airmont_freq_table[] = {
		83300, 100000, 133300, 116700, 80000,
		93300, 90000, 88900, 87500};

	rdmsrl(MSR_FSB_FREQ, value);
	i = value & 0xF;
	WARN_ON(i > 8);

	return airmont_freq_table[i];
892 893
}

894
static void atom_get_vid(struct cpudata *cpudata)
895 896 897
{
	u64 value;

898
	rdmsrl(ATOM_VIDS, value);
D
Dirk Brandewie 已提交
899 900
	cpudata->vid.min = int_tofp((value >> 8) & 0x7f);
	cpudata->vid.max = int_tofp((value >> 16) & 0x7f);
901 902 903 904
	cpudata->vid.ratio = div_fp(
		cpudata->vid.max - cpudata->vid.min,
		int_tofp(cpudata->pstate.max_pstate -
			cpudata->pstate.min_pstate));
905

906
	rdmsrl(ATOM_TURBO_VIDS, value);
907
	cpudata->vid.turbo = value & 0x7f;
908 909
}

910
static int core_get_min_pstate(void)
911 912
{
	u64 value;
913

914
	rdmsrl(MSR_PLATFORM_INFO, value);
915 916 917
	return (value >> 40) & 0xFF;
}

918
static int core_get_max_pstate_physical(void)
919 920
{
	u64 value;
921

922
	rdmsrl(MSR_PLATFORM_INFO, value);
923 924 925
	return (value >> 8) & 0xFF;
}

926
static int core_get_max_pstate(void)
927
{
928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952
	u64 tar;
	u64 plat_info;
	int max_pstate;
	int err;

	rdmsrl(MSR_PLATFORM_INFO, plat_info);
	max_pstate = (plat_info >> 8) & 0xFF;

	err = rdmsrl_safe(MSR_TURBO_ACTIVATION_RATIO, &tar);
	if (!err) {
		/* Do some sanity checking for safety */
		if (plat_info & 0x600000000) {
			u64 tdp_ctrl;
			u64 tdp_ratio;
			int tdp_msr;

			err = rdmsrl_safe(MSR_CONFIG_TDP_CONTROL, &tdp_ctrl);
			if (err)
				goto skip_tar;

			tdp_msr = MSR_CONFIG_TDP_NOMINAL + tdp_ctrl;
			err = rdmsrl_safe(tdp_msr, &tdp_ratio);
			if (err)
				goto skip_tar;

953 954 955 956 957
			/* For level 1 and 2, bits[23:16] contain the ratio */
			if (tdp_ctrl)
				tdp_ratio >>= 16;

			tdp_ratio &= 0xff; /* ratios are only 8 bits long */
958 959 960 961 962 963 964 965
			if (tdp_ratio - 1 == tar) {
				max_pstate = tar;
				pr_debug("max_pstate=TAC %x\n", max_pstate);
			} else {
				goto skip_tar;
			}
		}
	}
966

967 968
skip_tar:
	return max_pstate;
969 970
}

971
static int core_get_turbo_pstate(void)
972 973 974
{
	u64 value;
	int nont, ret;
975

976
	rdmsrl(MSR_NHM_TURBO_RATIO_LIMIT, value);
977
	nont = core_get_max_pstate();
978
	ret = (value) & 255;
979 980 981 982 983
	if (ret <= nont)
		ret = nont;
	return ret;
}

984 985 986 987 988
static inline int core_get_scaling(void)
{
	return 100000;
}

989
static u64 core_get_val(struct cpudata *cpudata, int pstate)
990 991 992
{
	u64 val;

993
	val = (u64)pstate << 8;
994
	if (limits->no_turbo && !limits->turbo_disabled)
995 996
		val |= (u64)1 << 32;

997
	return val;
998 999
}

1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012
static int knl_get_turbo_pstate(void)
{
	u64 value;
	int nont, ret;

	rdmsrl(MSR_NHM_TURBO_RATIO_LIMIT, value);
	nont = core_get_max_pstate();
	ret = (((value) >> 8) & 0xFF);
	if (ret <= nont)
		ret = nont;
	return ret;
}

1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023
static struct cpu_defaults core_params = {
	.pid_policy = {
		.sample_rate_ms = 10,
		.deadband = 0,
		.setpoint = 97,
		.p_gain_pct = 20,
		.d_gain_pct = 0,
		.i_gain_pct = 0,
	},
	.funcs = {
		.get_max = core_get_max_pstate,
1024
		.get_max_physical = core_get_max_pstate_physical,
1025 1026
		.get_min = core_get_min_pstate,
		.get_turbo = core_get_turbo_pstate,
1027
		.get_scaling = core_get_scaling,
1028
		.get_val = core_get_val,
1029
		.get_target_pstate = get_target_pstate_use_performance,
1030 1031 1032
	},
};

1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046
static struct cpu_defaults silvermont_params = {
	.pid_policy = {
		.sample_rate_ms = 10,
		.deadband = 0,
		.setpoint = 60,
		.p_gain_pct = 14,
		.d_gain_pct = 0,
		.i_gain_pct = 4,
	},
	.funcs = {
		.get_max = atom_get_max_pstate,
		.get_max_physical = atom_get_max_pstate,
		.get_min = atom_get_min_pstate,
		.get_turbo = atom_get_turbo_pstate,
1047
		.get_val = atom_get_val,
1048 1049
		.get_scaling = silvermont_get_scaling,
		.get_vid = atom_get_vid,
1050
		.get_target_pstate = get_target_pstate_use_cpu_load,
1051 1052 1053 1054
	},
};

static struct cpu_defaults airmont_params = {
1055 1056 1057
	.pid_policy = {
		.sample_rate_ms = 10,
		.deadband = 0,
1058
		.setpoint = 60,
1059 1060 1061 1062 1063
		.p_gain_pct = 14,
		.d_gain_pct = 0,
		.i_gain_pct = 4,
	},
	.funcs = {
1064 1065 1066 1067
		.get_max = atom_get_max_pstate,
		.get_max_physical = atom_get_max_pstate,
		.get_min = atom_get_min_pstate,
		.get_turbo = atom_get_turbo_pstate,
1068
		.get_val = atom_get_val,
1069
		.get_scaling = airmont_get_scaling,
1070
		.get_vid = atom_get_vid,
1071
		.get_target_pstate = get_target_pstate_use_cpu_load,
1072 1073 1074
	},
};

1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085
static struct cpu_defaults knl_params = {
	.pid_policy = {
		.sample_rate_ms = 10,
		.deadband = 0,
		.setpoint = 97,
		.p_gain_pct = 20,
		.d_gain_pct = 0,
		.i_gain_pct = 0,
	},
	.funcs = {
		.get_max = core_get_max_pstate,
1086
		.get_max_physical = core_get_max_pstate_physical,
1087 1088
		.get_min = core_get_min_pstate,
		.get_turbo = knl_get_turbo_pstate,
1089
		.get_scaling = core_get_scaling,
1090
		.get_val = core_get_val,
1091
		.get_target_pstate = get_target_pstate_use_performance,
1092 1093 1094
	},
};

1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114
static struct cpu_defaults bxt_params = {
	.pid_policy = {
		.sample_rate_ms = 10,
		.deadband = 0,
		.setpoint = 60,
		.p_gain_pct = 14,
		.d_gain_pct = 0,
		.i_gain_pct = 4,
	},
	.funcs = {
		.get_max = core_get_max_pstate,
		.get_max_physical = core_get_max_pstate_physical,
		.get_min = core_get_min_pstate,
		.get_turbo = core_get_turbo_pstate,
		.get_scaling = core_get_scaling,
		.get_val = core_get_val,
		.get_target_pstate = get_target_pstate_use_cpu_load,
	},
};

1115 1116 1117
static void intel_pstate_get_min_max(struct cpudata *cpu, int *min, int *max)
{
	int max_perf = cpu->pstate.turbo_pstate;
1118
	int max_perf_adj;
1119
	int min_perf;
1120

1121
	if (limits->no_turbo || limits->turbo_disabled)
1122 1123
		max_perf = cpu->pstate.max_pstate;

1124 1125 1126 1127 1128
	/*
	 * performance can be limited by user through sysfs, by cpufreq
	 * policy, or by cpu specific default values determined through
	 * experimentation.
	 */
1129
	max_perf_adj = fp_toint(max_perf * limits->max_perf);
1130 1131
	*max = clamp_t(int, max_perf_adj,
			cpu->pstate.min_pstate, cpu->pstate.turbo_pstate);
1132

1133
	min_perf = fp_toint(max_perf * limits->min_perf);
1134
	*min = clamp_t(int, min_perf, cpu->pstate.min_pstate, max_perf);
1135 1136
}

1137
static inline void intel_pstate_record_pstate(struct cpudata *cpu, int pstate)
1138
{
1139
	trace_cpu_frequency(pstate * cpu->pstate.scaling, cpu->cpu);
1140
	cpu->pstate.current_pstate = pstate;
1141
}
1142

1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154
static void intel_pstate_set_min_pstate(struct cpudata *cpu)
{
	int pstate = cpu->pstate.min_pstate;

	intel_pstate_record_pstate(cpu, pstate);
	/*
	 * Generally, there is no guarantee that this code will always run on
	 * the CPU being updated, so force the register update to run on the
	 * right CPU.
	 */
	wrmsrl_on_cpu(cpu->cpu, MSR_IA32_PERF_CTL,
		      pstate_funcs.get_val(cpu, pstate));
1155 1156 1157 1158
}

static void intel_pstate_get_cpu_pstates(struct cpudata *cpu)
{
1159 1160
	cpu->pstate.min_pstate = pstate_funcs.get_min();
	cpu->pstate.max_pstate = pstate_funcs.get_max();
1161
	cpu->pstate.max_pstate_physical = pstate_funcs.get_max_physical();
1162
	cpu->pstate.turbo_pstate = pstate_funcs.get_turbo();
1163
	cpu->pstate.scaling = pstate_funcs.get_scaling();
1164

1165 1166
	if (pstate_funcs.get_vid)
		pstate_funcs.get_vid(cpu);
1167 1168

	intel_pstate_set_min_pstate(cpu);
1169 1170
}

1171
static inline void intel_pstate_calc_avg_perf(struct cpudata *cpu)
1172
{
1173
	struct sample *sample = &cpu->sample;
1174

1175
	sample->core_avg_perf = div_ext_fp(sample->aperf, sample->mperf);
1176 1177
}

1178
static inline bool intel_pstate_sample(struct cpudata *cpu, u64 time)
1179 1180
{
	u64 aperf, mperf;
1181
	unsigned long flags;
1182
	u64 tsc;
1183

1184
	local_irq_save(flags);
1185 1186
	rdmsrl(MSR_IA32_APERF, aperf);
	rdmsrl(MSR_IA32_MPERF, mperf);
1187
	tsc = rdtsc();
1188
	if (cpu->prev_mperf == mperf || cpu->prev_tsc == tsc) {
1189
		local_irq_restore(flags);
1190
		return false;
1191
	}
1192
	local_irq_restore(flags);
1193

1194
	cpu->last_sample_time = cpu->sample.time;
1195
	cpu->sample.time = time;
1196 1197
	cpu->sample.aperf = aperf;
	cpu->sample.mperf = mperf;
1198
	cpu->sample.tsc =  tsc;
1199 1200
	cpu->sample.aperf -= cpu->prev_aperf;
	cpu->sample.mperf -= cpu->prev_mperf;
1201
	cpu->sample.tsc -= cpu->prev_tsc;
1202

1203 1204
	cpu->prev_aperf = aperf;
	cpu->prev_mperf = mperf;
1205
	cpu->prev_tsc = tsc;
1206 1207 1208 1209 1210 1211 1212 1213
	/*
	 * First time this function is invoked in a given cycle, all of the
	 * previous sample data fields are equal to zero or stale and they must
	 * be populated with meaningful numbers for things to work, so assume
	 * that sample.time will always be reset before setting the utilization
	 * update hook and make the caller skip the sample then.
	 */
	return !!cpu->last_sample_time;
1214 1215
}

1216 1217
static inline int32_t get_avg_frequency(struct cpudata *cpu)
{
1218 1219
	return mul_ext_fp(cpu->sample.core_avg_perf,
			  cpu->pstate.max_pstate_physical * cpu->pstate.scaling);
1220 1221
}

1222 1223
static inline int32_t get_avg_pstate(struct cpudata *cpu)
{
1224 1225
	return mul_ext_fp(cpu->pstate.max_pstate_physical,
			  cpu->sample.core_avg_perf);
1226 1227
}

1228 1229 1230
static inline int32_t get_target_pstate_use_cpu_load(struct cpudata *cpu)
{
	struct sample *sample = &cpu->sample;
1231 1232 1233
	u64 cummulative_iowait, delta_iowait_us;
	u64 delta_iowait_mperf;
	u64 mperf, now;
1234 1235
	int32_t cpu_load;

1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250
	cummulative_iowait = get_cpu_iowait_time_us(cpu->cpu, &now);

	/*
	 * Convert iowait time into number of IO cycles spent at max_freq.
	 * IO is considered as busy only for the cpu_load algorithm. For
	 * performance this is not needed since we always try to reach the
	 * maximum P-State, so we are already boosting the IOs.
	 */
	delta_iowait_us = cummulative_iowait - cpu->prev_cummulative_iowait;
	delta_iowait_mperf = div64_u64(delta_iowait_us * cpu->pstate.scaling *
		cpu->pstate.max_pstate, MSEC_PER_SEC);

	mperf = cpu->sample.mperf + delta_iowait_mperf;
	cpu->prev_cummulative_iowait = cummulative_iowait;

1251 1252 1253 1254 1255 1256
	/*
	 * The load can be estimated as the ratio of the mperf counter
	 * running at a constant frequency during active periods
	 * (C0) and the time stamp counter running at the same frequency
	 * also during C-states.
	 */
1257
	cpu_load = div64_u64(int_tofp(100) * mperf, sample->tsc);
1258 1259
	cpu->sample.busy_scaled = cpu_load;

1260
	return get_avg_pstate(cpu) - pid_calc(&cpu->pid, cpu_load);
1261 1262
}

1263
static inline int32_t get_target_pstate_use_performance(struct cpudata *cpu)
1264
{
1265
	int32_t perf_scaled, max_pstate, current_pstate, sample_ratio;
1266
	u64 duration_ns;
1267

1268
	/*
1269 1270 1271 1272
	 * perf_scaled is the average performance during the last sampling
	 * period scaled by the ratio of the maximum P-state to the P-state
	 * requested last time (in percent).  That measures the system's
	 * response to the previous P-state selection.
1273
	 */
1274 1275
	max_pstate = cpu->pstate.max_pstate_physical;
	current_pstate = cpu->pstate.current_pstate;
1276
	perf_scaled = mul_ext_fp(cpu->sample.core_avg_perf,
1277
			       div_fp(100 * max_pstate, current_pstate));
1278

1279
	/*
1280 1281 1282
	 * Since our utilization update callback will not run unless we are
	 * in C0, check if the actual elapsed time is significantly greater (3x)
	 * than our sample interval.  If it is, then we were idle for a long
1283
	 * enough period of time to adjust our performance metric.
1284
	 */
1285
	duration_ns = cpu->sample.time - cpu->last_sample_time;
1286
	if ((s64)duration_ns > pid_params.sample_rate_ns * 3) {
1287
		sample_ratio = div_fp(pid_params.sample_rate_ns, duration_ns);
1288
		perf_scaled = mul_fp(perf_scaled, sample_ratio);
1289 1290 1291
	} else {
		sample_ratio = div_fp(100 * cpu->sample.mperf, cpu->sample.tsc);
		if (sample_ratio < int_tofp(1))
1292
			perf_scaled = 0;
1293 1294
	}

1295 1296
	cpu->sample.busy_scaled = perf_scaled;
	return cpu->pstate.current_pstate - pid_calc(&cpu->pid, perf_scaled);
1297 1298
}

1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313
static inline void intel_pstate_update_pstate(struct cpudata *cpu, int pstate)
{
	int max_perf, min_perf;

	update_turbo_state();

	intel_pstate_get_min_max(cpu, &min_perf, &max_perf);
	pstate = clamp_t(int, pstate, min_perf, max_perf);
	if (pstate == cpu->pstate.current_pstate)
		return;

	intel_pstate_record_pstate(cpu, pstate);
	wrmsrl(MSR_IA32_PERF_CTL, pstate_funcs.get_val(cpu, pstate));
}

1314 1315
static inline void intel_pstate_adjust_busy_pstate(struct cpudata *cpu)
{
1316
	int from, target_pstate;
1317 1318 1319
	struct sample *sample;

	from = cpu->pstate.current_pstate;
1320

1321
	target_pstate = pstate_funcs.get_target_pstate(cpu);
1322

1323
	intel_pstate_update_pstate(cpu, target_pstate);
1324 1325

	sample = &cpu->sample;
1326
	trace_pstate_sample(mul_ext_fp(100, sample->core_avg_perf),
1327
		fp_toint(sample->busy_scaled),
1328 1329 1330 1331 1332
		from,
		cpu->pstate.current_pstate,
		sample->mperf,
		sample->aperf,
		sample->tsc,
1333
		get_avg_frequency(cpu));
1334 1335
}

1336 1337
static void intel_pstate_update_util(struct update_util_data *data, u64 time,
				     unsigned long util, unsigned long max)
1338
{
1339 1340
	struct cpudata *cpu = container_of(data, struct cpudata, update_util);
	u64 delta_ns = time - cpu->sample.time;
1341

1342
	if ((s64)delta_ns >= pid_params.sample_rate_ns) {
1343 1344
		bool sample_taken = intel_pstate_sample(cpu, time);

1345
		if (sample_taken) {
1346
			intel_pstate_calc_avg_perf(cpu);
1347 1348 1349
			if (!hwp_active)
				intel_pstate_adjust_busy_pstate(cpu);
		}
1350
	}
1351 1352 1353
}

#define ICPU(model, policy) \
1354 1355
	{ X86_VENDOR_INTEL, 6, model, X86_FEATURE_APERFMPERF,\
			(unsigned long)&policy }
1356 1357

static const struct x86_cpu_id intel_pstate_cpu_ids[] = {
1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374
	ICPU(INTEL_FAM6_SANDYBRIDGE, 		core_params),
	ICPU(INTEL_FAM6_SANDYBRIDGE_X,		core_params),
	ICPU(INTEL_FAM6_ATOM_SILVERMONT1,	silvermont_params),
	ICPU(INTEL_FAM6_IVYBRIDGE,		core_params),
	ICPU(INTEL_FAM6_HASWELL_CORE,		core_params),
	ICPU(INTEL_FAM6_BROADWELL_CORE,		core_params),
	ICPU(INTEL_FAM6_IVYBRIDGE_X,		core_params),
	ICPU(INTEL_FAM6_HASWELL_X,		core_params),
	ICPU(INTEL_FAM6_HASWELL_ULT,		core_params),
	ICPU(INTEL_FAM6_HASWELL_GT3E,		core_params),
	ICPU(INTEL_FAM6_BROADWELL_GT3E,		core_params),
	ICPU(INTEL_FAM6_ATOM_AIRMONT,		airmont_params),
	ICPU(INTEL_FAM6_SKYLAKE_MOBILE,		core_params),
	ICPU(INTEL_FAM6_BROADWELL_X,		core_params),
	ICPU(INTEL_FAM6_SKYLAKE_DESKTOP,	core_params),
	ICPU(INTEL_FAM6_BROADWELL_XEON_D,	core_params),
	ICPU(INTEL_FAM6_XEON_PHI_KNL,		knl_params),
1375
	ICPU(INTEL_FAM6_ATOM_GOLDMONT,		bxt_params),
1376 1377 1378 1379
	{}
};
MODULE_DEVICE_TABLE(x86cpu, intel_pstate_cpu_ids);

1380
static const struct x86_cpu_id intel_pstate_cpu_oob_ids[] __initconst = {
1381
	ICPU(INTEL_FAM6_BROADWELL_XEON_D, core_params),
D
Dirk Brandewie 已提交
1382 1383 1384
	{}
};

1385 1386 1387 1388
static int intel_pstate_init_cpu(unsigned int cpunum)
{
	struct cpudata *cpu;

1389 1390 1391
	if (!all_cpu_data[cpunum])
		all_cpu_data[cpunum] = kzalloc(sizeof(struct cpudata),
					       GFP_KERNEL);
1392 1393 1394 1395 1396 1397
	if (!all_cpu_data[cpunum])
		return -ENOMEM;

	cpu = all_cpu_data[cpunum];

	cpu->cpu = cpunum;
1398

1399
	if (hwp_active) {
1400
		intel_pstate_hwp_enable(cpu);
1401 1402 1403
		pid_params.sample_rate_ms = 50;
		pid_params.sample_rate_ns = 50 * NSEC_PER_MSEC;
	}
1404

1405
	intel_pstate_get_cpu_pstates(cpu);
1406

1407 1408
	intel_pstate_busy_pid_reset(cpu);

J
Joe Perches 已提交
1409
	pr_debug("controlling: cpu %d\n", cpunum);
1410 1411 1412 1413 1414 1415

	return 0;
}

static unsigned int intel_pstate_get(unsigned int cpu_num)
{
1416
	struct cpudata *cpu = all_cpu_data[cpu_num];
1417

1418
	return cpu ? get_avg_frequency(cpu) : 0;
1419 1420
}

1421
static void intel_pstate_set_update_util_hook(unsigned int cpu_num)
1422
{
1423 1424 1425 1426
	struct cpudata *cpu = all_cpu_data[cpu_num];

	/* Prevent intel_pstate_update_util() from using stale data. */
	cpu->sample.time = 0;
1427 1428
	cpufreq_add_update_util_hook(cpu_num, &cpu->update_util,
				     intel_pstate_update_util);
1429
	cpu->update_util_set = true;
1430 1431 1432 1433
}

static void intel_pstate_clear_update_util_hook(unsigned int cpu)
{
1434 1435 1436 1437 1438
	struct cpudata *cpu_data = all_cpu_data[cpu];

	if (!cpu_data->update_util_set)
		return;

1439
	cpufreq_remove_update_util_hook(cpu);
1440
	cpu_data->update_util_set = false;
1441 1442 1443
	synchronize_sched();
}

1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457
static void intel_pstate_set_performance_limits(struct perf_limits *limits)
{
	limits->no_turbo = 0;
	limits->turbo_disabled = 0;
	limits->max_perf_pct = 100;
	limits->max_perf = int_tofp(1);
	limits->min_perf_pct = 100;
	limits->min_perf = int_tofp(1);
	limits->max_policy_pct = 100;
	limits->max_sysfs_pct = 100;
	limits->min_policy_pct = 0;
	limits->min_sysfs_pct = 0;
}

1458 1459
static int intel_pstate_set_policy(struct cpufreq_policy *policy)
{
1460 1461
	struct cpudata *cpu;

1462 1463 1464
	if (!policy->cpuinfo.max_freq)
		return -ENODEV;

1465 1466
	intel_pstate_clear_update_util_hook(policy->cpu);

1467 1468 1469
	pr_debug("set_policy cpuinfo.max %u policy->max %u\n",
		 policy->cpuinfo.max_freq, policy->max);

1470
	cpu = all_cpu_data[0];
1471 1472 1473 1474 1475
	if (cpu->pstate.max_pstate_physical > cpu->pstate.max_pstate &&
	    policy->max < policy->cpuinfo.max_freq &&
	    policy->max > cpu->pstate.max_pstate * cpu->pstate.scaling) {
		pr_debug("policy->max > max non turbo frequency\n");
		policy->max = policy->cpuinfo.max_freq;
1476 1477
	}

1478
	if (policy->policy == CPUFREQ_POLICY_PERFORMANCE) {
1479
		limits = &performance_limits;
1480
		if (policy->max >= policy->cpuinfo.max_freq) {
J
Joe Perches 已提交
1481
			pr_debug("set performance\n");
1482 1483 1484 1485
			intel_pstate_set_performance_limits(limits);
			goto out;
		}
	} else {
J
Joe Perches 已提交
1486
		pr_debug("set powersave\n");
1487
		limits = &powersave_limits;
1488
	}
D
Dirk Brandewie 已提交
1489

1490 1491
	limits->min_policy_pct = (policy->min * 100) / policy->cpuinfo.max_freq;
	limits->min_policy_pct = clamp_t(int, limits->min_policy_pct, 0 , 100);
1492 1493
	limits->max_policy_pct = DIV_ROUND_UP(policy->max * 100,
					      policy->cpuinfo.max_freq);
1494
	limits->max_policy_pct = clamp_t(int, limits->max_policy_pct, 0 , 100);
1495 1496

	/* Normalize user input to [min_policy_pct, max_policy_pct] */
1497 1498 1499 1500 1501 1502 1503 1504
	limits->min_perf_pct = max(limits->min_policy_pct,
				   limits->min_sysfs_pct);
	limits->min_perf_pct = min(limits->max_policy_pct,
				   limits->min_perf_pct);
	limits->max_perf_pct = min(limits->max_policy_pct,
				   limits->max_sysfs_pct);
	limits->max_perf_pct = max(limits->min_policy_pct,
				   limits->max_perf_pct);
1505 1506

	/* Make sure min_perf_pct <= max_perf_pct */
1507
	limits->min_perf_pct = min(limits->max_perf_pct, limits->min_perf_pct);
1508

1509 1510
	limits->min_perf = div_fp(limits->min_perf_pct, 100);
	limits->max_perf = div_fp(limits->max_perf_pct, 100);
1511
	limits->max_perf = round_up(limits->max_perf, FRAC_BITS);
1512

1513 1514 1515
 out:
	intel_pstate_set_update_util_hook(policy->cpu);

1516
	intel_pstate_hwp_set_policy(policy);
D
Dirk Brandewie 已提交
1517

1518 1519 1520 1521 1522
	return 0;
}

static int intel_pstate_verify_policy(struct cpufreq_policy *policy)
{
1523
	cpufreq_verify_within_cpu_limits(policy);
1524

1525
	if (policy->policy != CPUFREQ_POLICY_POWERSAVE &&
1526
	    policy->policy != CPUFREQ_POLICY_PERFORMANCE)
1527 1528 1529 1530 1531
		return -EINVAL;

	return 0;
}

1532
static void intel_pstate_stop_cpu(struct cpufreq_policy *policy)
1533
{
1534 1535
	int cpu_num = policy->cpu;
	struct cpudata *cpu = all_cpu_data[cpu_num];
1536

J
Joe Perches 已提交
1537
	pr_debug("CPU %d exiting\n", cpu_num);
1538

1539
	intel_pstate_clear_update_util_hook(cpu_num);
1540

D
Dirk Brandewie 已提交
1541 1542 1543
	if (hwp_active)
		return;

1544
	intel_pstate_set_min_pstate(cpu);
1545 1546
}

1547
static int intel_pstate_cpu_init(struct cpufreq_policy *policy)
1548 1549
{
	struct cpudata *cpu;
1550
	int rc;
1551 1552 1553 1554 1555 1556 1557

	rc = intel_pstate_init_cpu(policy->cpu);
	if (rc)
		return rc;

	cpu = all_cpu_data[policy->cpu];

1558
	if (limits->min_perf_pct == 100 && limits->max_perf_pct == 100)
1559 1560 1561 1562
		policy->policy = CPUFREQ_POLICY_PERFORMANCE;
	else
		policy->policy = CPUFREQ_POLICY_POWERSAVE;

1563 1564
	policy->min = cpu->pstate.min_pstate * cpu->pstate.scaling;
	policy->max = cpu->pstate.turbo_pstate * cpu->pstate.scaling;
1565 1566

	/* cpuinfo and default policy values */
1567
	policy->cpuinfo.min_freq = cpu->pstate.min_pstate * cpu->pstate.scaling;
1568 1569 1570 1571 1572
	update_turbo_state();
	policy->cpuinfo.max_freq = limits->turbo_disabled ?
			cpu->pstate.max_pstate : cpu->pstate.turbo_pstate;
	policy->cpuinfo.max_freq *= cpu->pstate.scaling;

1573
	intel_pstate_init_acpi_perf_limits(policy);
1574 1575 1576 1577 1578 1579
	policy->cpuinfo.transition_latency = CPUFREQ_ETERNAL;
	cpumask_set_cpu(policy->cpu, policy->cpus);

	return 0;
}

1580 1581 1582 1583 1584 1585 1586
static int intel_pstate_cpu_exit(struct cpufreq_policy *policy)
{
	intel_pstate_exit_perf_limits(policy);

	return 0;
}

1587 1588 1589 1590
static struct cpufreq_driver intel_pstate_driver = {
	.flags		= CPUFREQ_CONST_LOOPS,
	.verify		= intel_pstate_verify_policy,
	.setpolicy	= intel_pstate_set_policy,
1591
	.resume		= intel_pstate_hwp_set_policy,
1592 1593
	.get		= intel_pstate_get,
	.init		= intel_pstate_cpu_init,
1594
	.exit		= intel_pstate_cpu_exit,
1595
	.stop_cpu	= intel_pstate_stop_cpu,
1596 1597 1598
	.name		= "intel_pstate",
};

1599 1600 1601
static int no_load __initdata;
static int no_hwp __initdata;
static int hwp_only __initdata;
1602
static unsigned int force_load __initdata;
1603

1604
static int __init intel_pstate_msrs_not_valid(void)
1605
{
1606
	if (!pstate_funcs.get_max() ||
1607 1608
	    !pstate_funcs.get_min() ||
	    !pstate_funcs.get_turbo())
1609 1610 1611 1612
		return -ENODEV;

	return 0;
}
1613

1614
static void __init copy_pid_params(struct pstate_adjust_policy *policy)
1615 1616
{
	pid_params.sample_rate_ms = policy->sample_rate_ms;
1617
	pid_params.sample_rate_ns = pid_params.sample_rate_ms * NSEC_PER_MSEC;
1618 1619 1620 1621 1622 1623 1624
	pid_params.p_gain_pct = policy->p_gain_pct;
	pid_params.i_gain_pct = policy->i_gain_pct;
	pid_params.d_gain_pct = policy->d_gain_pct;
	pid_params.deadband = policy->deadband;
	pid_params.setpoint = policy->setpoint;
}

1625
static void __init copy_cpu_funcs(struct pstate_funcs *funcs)
1626 1627
{
	pstate_funcs.get_max   = funcs->get_max;
1628
	pstate_funcs.get_max_physical = funcs->get_max_physical;
1629 1630
	pstate_funcs.get_min   = funcs->get_min;
	pstate_funcs.get_turbo = funcs->get_turbo;
1631
	pstate_funcs.get_scaling = funcs->get_scaling;
1632
	pstate_funcs.get_val   = funcs->get_val;
1633
	pstate_funcs.get_vid   = funcs->get_vid;
1634 1635
	pstate_funcs.get_target_pstate = funcs->get_target_pstate;

1636 1637
}

1638
#ifdef CONFIG_ACPI
1639

1640
static bool __init intel_pstate_no_acpi_pss(void)
1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668
{
	int i;

	for_each_possible_cpu(i) {
		acpi_status status;
		union acpi_object *pss;
		struct acpi_buffer buffer = { ACPI_ALLOCATE_BUFFER, NULL };
		struct acpi_processor *pr = per_cpu(processors, i);

		if (!pr)
			continue;

		status = acpi_evaluate_object(pr->handle, "_PSS", NULL, &buffer);
		if (ACPI_FAILURE(status))
			continue;

		pss = buffer.pointer;
		if (pss && pss->type == ACPI_TYPE_PACKAGE) {
			kfree(pss);
			return false;
		}

		kfree(pss);
	}

	return true;
}

1669
static bool __init intel_pstate_has_acpi_ppc(void)
1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688
{
	int i;

	for_each_possible_cpu(i) {
		struct acpi_processor *pr = per_cpu(processors, i);

		if (!pr)
			continue;
		if (acpi_has_method(pr->handle, "_PPC"))
			return true;
	}
	return false;
}

enum {
	PSS,
	PPC,
};

1689 1690 1691 1692
struct hw_vendor_info {
	u16  valid;
	char oem_id[ACPI_OEM_ID_SIZE];
	char oem_table_id[ACPI_OEM_TABLE_ID_SIZE];
1693
	int  oem_pwr_table;
1694 1695 1696
};

/* Hardware vendor-specific info that has its own power management modes */
1697
static struct hw_vendor_info vendor_info[] __initdata = {
1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708
	{1, "HP    ", "ProLiant", PSS},
	{1, "ORACLE", "X4-2    ", PPC},
	{1, "ORACLE", "X4-2L   ", PPC},
	{1, "ORACLE", "X4-2B   ", PPC},
	{1, "ORACLE", "X3-2    ", PPC},
	{1, "ORACLE", "X3-2L   ", PPC},
	{1, "ORACLE", "X3-2B   ", PPC},
	{1, "ORACLE", "X4470M2 ", PPC},
	{1, "ORACLE", "X4270M3 ", PPC},
	{1, "ORACLE", "X4270M2 ", PPC},
	{1, "ORACLE", "X4170M2 ", PPC},
1709 1710 1711 1712
	{1, "ORACLE", "X4170 M3", PPC},
	{1, "ORACLE", "X4275 M3", PPC},
	{1, "ORACLE", "X6-2    ", PPC},
	{1, "ORACLE", "Sudbury ", PPC},
1713 1714 1715
	{0, "", ""},
};

1716
static bool __init intel_pstate_platform_pwr_mgmt_exists(void)
1717 1718 1719
{
	struct acpi_table_header hdr;
	struct hw_vendor_info *v_info;
D
Dirk Brandewie 已提交
1720 1721 1722 1723 1724 1725 1726 1727 1728
	const struct x86_cpu_id *id;
	u64 misc_pwr;

	id = x86_match_cpu(intel_pstate_cpu_oob_ids);
	if (id) {
		rdmsrl(MSR_MISC_PWR_MGMT, misc_pwr);
		if ( misc_pwr & (1 << 8))
			return true;
	}
1729

1730 1731
	if (acpi_disabled ||
	    ACPI_FAILURE(acpi_get_table_header(ACPI_SIG_FADT, 0, &hdr)))
1732 1733 1734
		return false;

	for (v_info = vendor_info; v_info->valid; v_info++) {
1735
		if (!strncmp(hdr.oem_id, v_info->oem_id, ACPI_OEM_ID_SIZE) &&
1736 1737 1738 1739 1740 1741
			!strncmp(hdr.oem_table_id, v_info->oem_table_id,
						ACPI_OEM_TABLE_ID_SIZE))
			switch (v_info->oem_pwr_table) {
			case PSS:
				return intel_pstate_no_acpi_pss();
			case PPC:
1742 1743
				return intel_pstate_has_acpi_ppc() &&
					(!force_load);
1744
			}
1745 1746 1747 1748 1749 1750
	}

	return false;
}
#else /* CONFIG_ACPI not enabled */
static inline bool intel_pstate_platform_pwr_mgmt_exists(void) { return false; }
1751
static inline bool intel_pstate_has_acpi_ppc(void) { return false; }
1752 1753
#endif /* CONFIG_ACPI */

1754 1755 1756 1757 1758
static const struct x86_cpu_id hwp_support_ids[] __initconst = {
	{ X86_VENDOR_INTEL, 6, X86_MODEL_ANY, X86_FEATURE_HWP },
	{}
};

1759 1760
static int __init intel_pstate_init(void)
{
1761
	int cpu, rc = 0;
1762
	const struct x86_cpu_id *id;
1763
	struct cpu_defaults *cpu_def;
1764

1765 1766 1767
	if (no_load)
		return -ENODEV;

1768 1769 1770 1771 1772 1773
	if (x86_match_cpu(hwp_support_ids) && !no_hwp) {
		copy_cpu_funcs(&core_params.funcs);
		hwp_active++;
		goto hwp_cpu_matched;
	}

1774 1775 1776 1777
	id = x86_match_cpu(intel_pstate_cpu_ids);
	if (!id)
		return -ENODEV;

1778
	cpu_def = (struct cpu_defaults *)id->driver_data;
1779

1780 1781
	copy_pid_params(&cpu_def->pid_policy);
	copy_cpu_funcs(&cpu_def->funcs);
1782

1783 1784 1785
	if (intel_pstate_msrs_not_valid())
		return -ENODEV;

1786 1787 1788 1789 1790 1791 1792 1793
hwp_cpu_matched:
	/*
	 * The Intel pstate driver will be ignored if the platform
	 * firmware has its own power management modes.
	 */
	if (intel_pstate_platform_pwr_mgmt_exists())
		return -ENODEV;

J
Joe Perches 已提交
1794
	pr_info("Intel P-state driver initializing\n");
1795

1796
	all_cpu_data = vzalloc(sizeof(void *) * num_possible_cpus());
1797 1798 1799
	if (!all_cpu_data)
		return -ENOMEM;

1800 1801 1802
	if (!hwp_active && hwp_only)
		goto out;

1803 1804 1805 1806 1807 1808
	rc = cpufreq_register_driver(&intel_pstate_driver);
	if (rc)
		goto out;

	intel_pstate_debug_expose_params();
	intel_pstate_sysfs_expose_params();
1809

1810
	if (hwp_active)
J
Joe Perches 已提交
1811
		pr_info("HWP enabled\n");
1812

1813 1814
	return rc;
out:
1815 1816 1817
	get_online_cpus();
	for_each_online_cpu(cpu) {
		if (all_cpu_data[cpu]) {
1818
			intel_pstate_clear_update_util_hook(cpu);
1819 1820 1821 1822 1823 1824
			kfree(all_cpu_data[cpu]);
		}
	}

	put_online_cpus();
	vfree(all_cpu_data);
1825 1826 1827 1828
	return -ENODEV;
}
device_initcall(intel_pstate_init);

1829 1830 1831 1832 1833 1834 1835
static int __init intel_pstate_setup(char *str)
{
	if (!str)
		return -EINVAL;

	if (!strcmp(str, "disable"))
		no_load = 1;
1836
	if (!strcmp(str, "no_hwp")) {
J
Joe Perches 已提交
1837
		pr_info("HWP disabled\n");
D
Dirk Brandewie 已提交
1838
		no_hwp = 1;
1839
	}
1840 1841
	if (!strcmp(str, "force"))
		force_load = 1;
1842 1843
	if (!strcmp(str, "hwp_only"))
		hwp_only = 1;
1844 1845 1846 1847 1848 1849

#ifdef CONFIG_ACPI
	if (!strcmp(str, "support_acpi_ppc"))
		acpi_ppc = true;
#endif

1850 1851 1852 1853
	return 0;
}
early_param("intel_pstate", intel_pstate_setup);

1854 1855 1856
MODULE_AUTHOR("Dirk Brandewie <dirk.j.brandewie@intel.com>");
MODULE_DESCRIPTION("'intel_pstate' - P state driver Intel Core processors");
MODULE_LICENSE("GPL");