core.c 173.7 KB
Newer Older
L
Linus Torvalds 已提交
1
/*
2
 *  kernel/sched/core.c
L
Linus Torvalds 已提交
3
 *
I
Ingo Molnar 已提交
4
 *  Core kernel scheduler code and related syscalls
L
Linus Torvalds 已提交
5 6 7
 *
 *  Copyright (C) 1991-2002  Linus Torvalds
 */
8
#include "sched.h"
L
Linus Torvalds 已提交
9

10
#include <linux/nospec.h>
11

12 13
#include <linux/kcov.h>

14
#include <asm/switch_to.h>
15
#include <asm/tlb.h>
L
Linus Torvalds 已提交
16

17
#include "../workqueue_internal.h"
18
#include "../../fs/io-wq.h"
19
#include "../smpboot.h"
20

21 22
#include "pelt.h"

23
#define CREATE_TRACE_POINTS
24
#include <trace/events/sched.h>
25

26
DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
27

28
#if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_JUMP_LABEL)
I
Ingo Molnar 已提交
29 30
/*
 * Debugging: various feature bits
31 32 33 34
 *
 * If SCHED_DEBUG is disabled, each compilation unit has its own copy of
 * sysctl_sched_features, defined in sched.h, to allow constants propagation
 * at compile time and compiler optimization based on features default.
I
Ingo Molnar 已提交
35
 */
P
Peter Zijlstra 已提交
36 37
#define SCHED_FEAT(name, enabled)	\
	(1UL << __SCHED_FEAT_##name) * enabled |
I
Ingo Molnar 已提交
38
const_debug unsigned int sysctl_sched_features =
39
#include "features.h"
P
Peter Zijlstra 已提交
40 41
	0;
#undef SCHED_FEAT
42
#endif
P
Peter Zijlstra 已提交
43

44 45 46 47 48 49
/*
 * Number of tasks to iterate in a single balance run.
 * Limited because this is done with IRQs disabled.
 */
const_debug unsigned int sysctl_sched_nr_migrate = 32;

P
Peter Zijlstra 已提交
50
/*
I
Ingo Molnar 已提交
51
 * period over which we measure -rt task CPU usage in us.
P
Peter Zijlstra 已提交
52 53
 * default: 1s
 */
P
Peter Zijlstra 已提交
54
unsigned int sysctl_sched_rt_period = 1000000;
P
Peter Zijlstra 已提交
55

56
__read_mostly int scheduler_running;
57

P
Peter Zijlstra 已提交
58 59 60 61 62
/*
 * part of the period that we allow rt tasks to run in us.
 * default: 0.95s
 */
int sysctl_sched_rt_runtime = 950000;
P
Peter Zijlstra 已提交
63

64 65 66
/*
 * __task_rq_lock - lock the rq @p resides on.
 */
67
struct rq *__task_rq_lock(struct task_struct *p, struct rq_flags *rf)
68 69 70 71 72 73 74 75 76 77
	__acquires(rq->lock)
{
	struct rq *rq;

	lockdep_assert_held(&p->pi_lock);

	for (;;) {
		rq = task_rq(p);
		raw_spin_lock(&rq->lock);
		if (likely(rq == task_rq(p) && !task_on_rq_migrating(p))) {
78
			rq_pin_lock(rq, rf);
79 80 81 82 83 84 85 86 87 88 89 90
			return rq;
		}
		raw_spin_unlock(&rq->lock);

		while (unlikely(task_on_rq_migrating(p)))
			cpu_relax();
	}
}

/*
 * task_rq_lock - lock p->pi_lock and lock the rq @p resides on.
 */
91
struct rq *task_rq_lock(struct task_struct *p, struct rq_flags *rf)
92 93 94 95 96 97
	__acquires(p->pi_lock)
	__acquires(rq->lock)
{
	struct rq *rq;

	for (;;) {
98
		raw_spin_lock_irqsave(&p->pi_lock, rf->flags);
99 100 101 102 103 104 105 106 107 108 109 110
		rq = task_rq(p);
		raw_spin_lock(&rq->lock);
		/*
		 *	move_queued_task()		task_rq_lock()
		 *
		 *	ACQUIRE (rq->lock)
		 *	[S] ->on_rq = MIGRATING		[L] rq = task_rq()
		 *	WMB (__set_task_cpu())		ACQUIRE (rq->lock);
		 *	[S] ->cpu = new_cpu		[L] task_rq()
		 *					[L] ->on_rq
		 *	RELEASE (rq->lock)
		 *
111
		 * If we observe the old CPU in task_rq_lock(), the acquire of
112 113
		 * the old rq->lock will fully serialize against the stores.
		 *
114 115 116
		 * If we observe the new CPU in task_rq_lock(), the address
		 * dependency headed by '[L] rq = task_rq()' and the acquire
		 * will pair with the WMB to ensure we then also see migrating.
117 118
		 */
		if (likely(rq == task_rq(p) && !task_on_rq_migrating(p))) {
119
			rq_pin_lock(rq, rf);
120 121 122
			return rq;
		}
		raw_spin_unlock(&rq->lock);
123
		raw_spin_unlock_irqrestore(&p->pi_lock, rf->flags);
124 125 126 127 128 129

		while (unlikely(task_on_rq_migrating(p)))
			cpu_relax();
	}
}

130 131 132 133 134 135 136 137 138 139
/*
 * RQ-clock updating methods:
 */

static void update_rq_clock_task(struct rq *rq, s64 delta)
{
/*
 * In theory, the compile should just see 0 here, and optimize out the call
 * to sched_rt_avg_update. But I don't trust it...
 */
140 141
	s64 __maybe_unused steal = 0, irq_delta = 0;

142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180
#ifdef CONFIG_IRQ_TIME_ACCOUNTING
	irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time;

	/*
	 * Since irq_time is only updated on {soft,}irq_exit, we might run into
	 * this case when a previous update_rq_clock() happened inside a
	 * {soft,}irq region.
	 *
	 * When this happens, we stop ->clock_task and only update the
	 * prev_irq_time stamp to account for the part that fit, so that a next
	 * update will consume the rest. This ensures ->clock_task is
	 * monotonic.
	 *
	 * It does however cause some slight miss-attribution of {soft,}irq
	 * time, a more accurate solution would be to update the irq_time using
	 * the current rq->clock timestamp, except that would require using
	 * atomic ops.
	 */
	if (irq_delta > delta)
		irq_delta = delta;

	rq->prev_irq_time += irq_delta;
	delta -= irq_delta;
#endif
#ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
	if (static_key_false((&paravirt_steal_rq_enabled))) {
		steal = paravirt_steal_clock(cpu_of(rq));
		steal -= rq->prev_steal_time_rq;

		if (unlikely(steal > delta))
			steal = delta;

		rq->prev_steal_time_rq += steal;
		delta -= steal;
	}
#endif

	rq->clock_task += delta;

181
#ifdef CONFIG_HAVE_SCHED_AVG_IRQ
182
	if ((irq_delta + steal) && sched_feat(NONTASK_CAPACITY))
183
		update_irq_load_avg(rq, irq_delta + steal);
184 185 186 187 188 189 190 191 192 193 194 195 196
#endif
}

void update_rq_clock(struct rq *rq)
{
	s64 delta;

	lockdep_assert_held(&rq->lock);

	if (rq->clock_update_flags & RQCF_ACT_SKIP)
		return;

#ifdef CONFIG_SCHED_DEBUG
197 198
	if (sched_feat(WARN_DOUBLE_CLOCK))
		SCHED_WARN_ON(rq->clock_update_flags & RQCF_UPDATED);
199 200
	rq->clock_update_flags |= RQCF_UPDATED;
#endif
201

202 203 204 205 206 207 208 209
	delta = sched_clock_cpu(cpu_of(rq)) - rq->clock;
	if (delta < 0)
		return;
	rq->clock += delta;
	update_rq_clock_task(rq, delta);
}


P
Peter Zijlstra 已提交
210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227
#ifdef CONFIG_SCHED_HRTICK
/*
 * Use HR-timers to deliver accurate preemption points.
 */

static void hrtick_clear(struct rq *rq)
{
	if (hrtimer_active(&rq->hrtick_timer))
		hrtimer_cancel(&rq->hrtick_timer);
}

/*
 * High-resolution timer tick.
 * Runs from hardirq context with interrupts disabled.
 */
static enum hrtimer_restart hrtick(struct hrtimer *timer)
{
	struct rq *rq = container_of(timer, struct rq, hrtick_timer);
228
	struct rq_flags rf;
P
Peter Zijlstra 已提交
229 230 231

	WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());

232
	rq_lock(rq, &rf);
233
	update_rq_clock(rq);
P
Peter Zijlstra 已提交
234
	rq->curr->sched_class->task_tick(rq, rq->curr, 1);
235
	rq_unlock(rq, &rf);
P
Peter Zijlstra 已提交
236 237 238 239

	return HRTIMER_NORESTART;
}

240
#ifdef CONFIG_SMP
P
Peter Zijlstra 已提交
241

242
static void __hrtick_restart(struct rq *rq)
P
Peter Zijlstra 已提交
243 244 245
{
	struct hrtimer *timer = &rq->hrtick_timer;

246
	hrtimer_start_expires(timer, HRTIMER_MODE_ABS_PINNED);
P
Peter Zijlstra 已提交
247 248
}

249 250 251 252
/*
 * called from hardirq (IPI) context
 */
static void __hrtick_start(void *arg)
253
{
254
	struct rq *rq = arg;
255
	struct rq_flags rf;
256

257
	rq_lock(rq, &rf);
P
Peter Zijlstra 已提交
258
	__hrtick_restart(rq);
259
	rq->hrtick_csd_pending = 0;
260
	rq_unlock(rq, &rf);
261 262
}

263 264 265 266 267
/*
 * Called to set the hrtick timer state.
 *
 * called with rq->lock held and irqs disabled
 */
268
void hrtick_start(struct rq *rq, u64 delay)
269
{
270
	struct hrtimer *timer = &rq->hrtick_timer;
271 272 273 274 275 276 277 278 279
	ktime_t time;
	s64 delta;

	/*
	 * Don't schedule slices shorter than 10000ns, that just
	 * doesn't make sense and can cause timer DoS.
	 */
	delta = max_t(s64, delay, 10000LL);
	time = ktime_add_ns(timer->base->get_time(), delta);
280

281
	hrtimer_set_expires(timer, time);
282 283

	if (rq == this_rq()) {
P
Peter Zijlstra 已提交
284
		__hrtick_restart(rq);
285
	} else if (!rq->hrtick_csd_pending) {
286
		smp_call_function_single_async(cpu_of(rq), &rq->hrtick_csd);
287 288
		rq->hrtick_csd_pending = 1;
	}
289 290
}

291 292 293 294 295 296
#else
/*
 * Called to set the hrtick timer state.
 *
 * called with rq->lock held and irqs disabled
 */
297
void hrtick_start(struct rq *rq, u64 delay)
298
{
W
Wanpeng Li 已提交
299 300 301 302 303
	/*
	 * Don't schedule slices shorter than 10000ns, that just
	 * doesn't make sense. Rely on vruntime for fairness.
	 */
	delay = max_t(u64, delay, 10000LL);
304 305
	hrtimer_start(&rq->hrtick_timer, ns_to_ktime(delay),
		      HRTIMER_MODE_REL_PINNED);
306 307
}
#endif /* CONFIG_SMP */
P
Peter Zijlstra 已提交
308

309
static void hrtick_rq_init(struct rq *rq)
P
Peter Zijlstra 已提交
310
{
311 312
#ifdef CONFIG_SMP
	rq->hrtick_csd_pending = 0;
P
Peter Zijlstra 已提交
313

314 315 316 317
	rq->hrtick_csd.flags = 0;
	rq->hrtick_csd.func = __hrtick_start;
	rq->hrtick_csd.info = rq;
#endif
P
Peter Zijlstra 已提交
318

319 320
	hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
	rq->hrtick_timer.function = hrtick;
P
Peter Zijlstra 已提交
321
}
A
Andrew Morton 已提交
322
#else	/* CONFIG_SCHED_HRTICK */
P
Peter Zijlstra 已提交
323 324 325 326
static inline void hrtick_clear(struct rq *rq)
{
}

327
static inline void hrtick_rq_init(struct rq *rq)
P
Peter Zijlstra 已提交
328 329
{
}
A
Andrew Morton 已提交
330
#endif	/* CONFIG_SCHED_HRTICK */
P
Peter Zijlstra 已提交
331

332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349
/*
 * cmpxchg based fetch_or, macro so it works for different integer types
 */
#define fetch_or(ptr, mask)						\
	({								\
		typeof(ptr) _ptr = (ptr);				\
		typeof(mask) _mask = (mask);				\
		typeof(*_ptr) _old, _val = *_ptr;			\
									\
		for (;;) {						\
			_old = cmpxchg(_ptr, _val, _val | _mask);	\
			if (_old == _val)				\
				break;					\
			_val = _old;					\
		}							\
	_old;								\
})

350
#if defined(CONFIG_SMP) && defined(TIF_POLLING_NRFLAG)
351 352 353 354 355 356 357 358 359 360
/*
 * Atomically set TIF_NEED_RESCHED and test for TIF_POLLING_NRFLAG,
 * this avoids any races wrt polling state changes and thereby avoids
 * spurious IPIs.
 */
static bool set_nr_and_not_polling(struct task_struct *p)
{
	struct thread_info *ti = task_thread_info(p);
	return !(fetch_or(&ti->flags, _TIF_NEED_RESCHED) & _TIF_POLLING_NRFLAG);
}
361 362 363 364 365 366 367 368 369 370

/*
 * Atomically set TIF_NEED_RESCHED if TIF_POLLING_NRFLAG is set.
 *
 * If this returns true, then the idle task promises to call
 * sched_ttwu_pending() and reschedule soon.
 */
static bool set_nr_if_polling(struct task_struct *p)
{
	struct thread_info *ti = task_thread_info(p);
371
	typeof(ti->flags) old, val = READ_ONCE(ti->flags);
372 373 374 375 376 377 378 379 380 381 382 383 384 385

	for (;;) {
		if (!(val & _TIF_POLLING_NRFLAG))
			return false;
		if (val & _TIF_NEED_RESCHED)
			return true;
		old = cmpxchg(&ti->flags, val, val | _TIF_NEED_RESCHED);
		if (old == val)
			break;
		val = old;
	}
	return true;
}

386 387 388 389 390 391
#else
static bool set_nr_and_not_polling(struct task_struct *p)
{
	set_tsk_need_resched(p);
	return true;
}
392 393 394 395 396 397 398

#ifdef CONFIG_SMP
static bool set_nr_if_polling(struct task_struct *p)
{
	return false;
}
#endif
399 400
#endif

401 402 403 404 405 406 407 408 409
void wake_q_add(struct wake_q_head *head, struct task_struct *task)
{
	struct wake_q_node *node = &task->wake_q;

	/*
	 * Atomically grab the task, if ->wake_q is !nil already it means
	 * its already queued (either by us or someone else) and will get the
	 * wakeup due to that.
	 *
410 411
	 * In order to ensure that a pending wakeup will observe our pending
	 * state, even in the failed case, an explicit smp_mb() must be used.
412
	 */
413 414
	smp_mb__before_atomic();
	if (cmpxchg_relaxed(&node->next, NULL, WAKE_Q_TAIL))
415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434
		return;

	get_task_struct(task);

	/*
	 * The head is context local, there can be no concurrency.
	 */
	*head->lastp = node;
	head->lastp = &node->next;
}

void wake_up_q(struct wake_q_head *head)
{
	struct wake_q_node *node = head->first;

	while (node != WAKE_Q_TAIL) {
		struct task_struct *task;

		task = container_of(node, struct task_struct, wake_q);
		BUG_ON(!task);
I
Ingo Molnar 已提交
435
		/* Task can safely be re-inserted now: */
436 437 438 439
		node = node->next;
		task->wake_q.next = NULL;

		/*
440 441
		 * wake_up_process() executes a full barrier, which pairs with
		 * the queueing in wake_q_add() so as not to miss wakeups.
442 443 444 445 446 447
		 */
		wake_up_process(task);
		put_task_struct(task);
	}
}

I
Ingo Molnar 已提交
448
/*
449
 * resched_curr - mark rq's current task 'to be rescheduled now'.
I
Ingo Molnar 已提交
450 451 452 453 454
 *
 * On UP this means the setting of the need_resched flag, on SMP it
 * might also involve a cross-CPU call to trigger the scheduler on
 * the target CPU.
 */
455
void resched_curr(struct rq *rq)
I
Ingo Molnar 已提交
456
{
457
	struct task_struct *curr = rq->curr;
I
Ingo Molnar 已提交
458 459
	int cpu;

460
	lockdep_assert_held(&rq->lock);
I
Ingo Molnar 已提交
461

462
	if (test_tsk_need_resched(curr))
I
Ingo Molnar 已提交
463 464
		return;

465
	cpu = cpu_of(rq);
466

467
	if (cpu == smp_processor_id()) {
468
		set_tsk_need_resched(curr);
469
		set_preempt_need_resched();
I
Ingo Molnar 已提交
470
		return;
471
	}
I
Ingo Molnar 已提交
472

473
	if (set_nr_and_not_polling(curr))
I
Ingo Molnar 已提交
474
		smp_send_reschedule(cpu);
475 476
	else
		trace_sched_wake_idle_without_ipi(cpu);
I
Ingo Molnar 已提交
477 478
}

479
void resched_cpu(int cpu)
I
Ingo Molnar 已提交
480 481 482 483
{
	struct rq *rq = cpu_rq(cpu);
	unsigned long flags;

484
	raw_spin_lock_irqsave(&rq->lock, flags);
485 486
	if (cpu_online(cpu) || cpu == smp_processor_id())
		resched_curr(rq);
487
	raw_spin_unlock_irqrestore(&rq->lock, flags);
I
Ingo Molnar 已提交
488
}
489

490
#ifdef CONFIG_SMP
491
#ifdef CONFIG_NO_HZ_COMMON
492
/*
I
Ingo Molnar 已提交
493 494
 * In the semi idle case, use the nearest busy CPU for migrating timers
 * from an idle CPU.  This is good for power-savings.
495 496
 *
 * We don't do similar optimization for completely idle system, as
I
Ingo Molnar 已提交
497 498
 * selecting an idle CPU will add more delays to the timers than intended
 * (as that CPU's timer base may not be uptodate wrt jiffies etc).
499
 */
500
int get_nohz_timer_target(void)
501
{
502
	int i, cpu = smp_processor_id();
503 504
	struct sched_domain *sd;

505
	if (!idle_cpu(cpu) && housekeeping_cpu(cpu, HK_FLAG_TIMER))
506 507
		return cpu;

508
	rcu_read_lock();
509
	for_each_domain(cpu, sd) {
510
		for_each_cpu(i, sched_domain_span(sd)) {
511 512 513
			if (cpu == i)
				continue;

514
			if (!idle_cpu(i) && housekeeping_cpu(i, HK_FLAG_TIMER)) {
515 516 517 518
				cpu = i;
				goto unlock;
			}
		}
519
	}
520

521 522
	if (!housekeeping_cpu(cpu, HK_FLAG_TIMER))
		cpu = housekeeping_any_cpu(HK_FLAG_TIMER);
523 524
unlock:
	rcu_read_unlock();
525 526
	return cpu;
}
I
Ingo Molnar 已提交
527

528 529 530 531 532 533 534 535 536 537
/*
 * When add_timer_on() enqueues a timer into the timer wheel of an
 * idle CPU then this timer might expire before the next timer event
 * which is scheduled to wake up that CPU. In case of a completely
 * idle system the next event might even be infinite time into the
 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
 * leaves the inner idle loop so the newly added timer is taken into
 * account when the CPU goes back to idle and evaluates the timer
 * wheel for the next timer event.
 */
538
static void wake_up_idle_cpu(int cpu)
539 540 541 542 543 544
{
	struct rq *rq = cpu_rq(cpu);

	if (cpu == smp_processor_id())
		return;

545
	if (set_nr_and_not_polling(rq->idle))
546
		smp_send_reschedule(cpu);
547 548
	else
		trace_sched_wake_idle_without_ipi(cpu);
549 550
}

551
static bool wake_up_full_nohz_cpu(int cpu)
552
{
553 554 555 556 557 558
	/*
	 * We just need the target to call irq_exit() and re-evaluate
	 * the next tick. The nohz full kick at least implies that.
	 * If needed we can still optimize that later with an
	 * empty IRQ.
	 */
559 560
	if (cpu_is_offline(cpu))
		return true;  /* Don't try to wake offline CPUs. */
561
	if (tick_nohz_full_cpu(cpu)) {
562 563
		if (cpu != smp_processor_id() ||
		    tick_nohz_tick_stopped())
564
			tick_nohz_full_kick_cpu(cpu);
565 566 567 568 569 570
		return true;
	}

	return false;
}

571 572 573 574 575
/*
 * Wake up the specified CPU.  If the CPU is going offline, it is the
 * caller's responsibility to deal with the lost wakeup, for example,
 * by hooking into the CPU_DEAD notifier like timers and hrtimers do.
 */
576 577
void wake_up_nohz_cpu(int cpu)
{
578
	if (!wake_up_full_nohz_cpu(cpu))
579 580 581
		wake_up_idle_cpu(cpu);
}

582
static inline bool got_nohz_idle_kick(void)
583
{
584
	int cpu = smp_processor_id();
585

P
Peter Zijlstra 已提交
586
	if (!(atomic_read(nohz_flags(cpu)) & NOHZ_KICK_MASK))
587 588 589 590 591 592 593 594 595
		return false;

	if (idle_cpu(cpu) && !need_resched())
		return true;

	/*
	 * We can't run Idle Load Balance on this CPU for this time so we
	 * cancel it and clear NOHZ_BALANCE_KICK
	 */
P
Peter Zijlstra 已提交
596
	atomic_andnot(NOHZ_KICK_MASK, nohz_flags(cpu));
597
	return false;
598 599
}

600
#else /* CONFIG_NO_HZ_COMMON */
601

602
static inline bool got_nohz_idle_kick(void)
P
Peter Zijlstra 已提交
603
{
604
	return false;
P
Peter Zijlstra 已提交
605 606
}

607
#endif /* CONFIG_NO_HZ_COMMON */
608

609
#ifdef CONFIG_NO_HZ_FULL
610
bool sched_can_stop_tick(struct rq *rq)
611
{
612 613 614 615 616 617
	int fifo_nr_running;

	/* Deadline tasks, even if single, need the tick */
	if (rq->dl.dl_nr_running)
		return false;

618
	/*
619 620
	 * If there are more than one RR tasks, we need the tick to effect the
	 * actual RR behaviour.
621
	 */
622 623 624 625 626
	if (rq->rt.rr_nr_running) {
		if (rq->rt.rr_nr_running == 1)
			return true;
		else
			return false;
627 628
	}

629 630 631 632 633 634 635 636 637 638 639 640 641 642
	/*
	 * If there's no RR tasks, but FIFO tasks, we can skip the tick, no
	 * forced preemption between FIFO tasks.
	 */
	fifo_nr_running = rq->rt.rt_nr_running - rq->rt.rr_nr_running;
	if (fifo_nr_running)
		return true;

	/*
	 * If there are no DL,RR/FIFO tasks, there must only be CFS tasks left;
	 * if there's more than one we need the tick for involuntary
	 * preemption.
	 */
	if (rq->nr_running > 1)
643
		return false;
644

645
	return true;
646 647
}
#endif /* CONFIG_NO_HZ_FULL */
648
#endif /* CONFIG_SMP */
649

650 651
#if defined(CONFIG_RT_GROUP_SCHED) || (defined(CONFIG_FAIR_GROUP_SCHED) && \
			(defined(CONFIG_SMP) || defined(CONFIG_CFS_BANDWIDTH)))
652
/*
653 654 655 656
 * Iterate task_group tree rooted at *from, calling @down when first entering a
 * node and @up when leaving it for the final time.
 *
 * Caller must hold rcu_lock or sufficient equivalent.
657
 */
658
int walk_tg_tree_from(struct task_group *from,
659
			     tg_visitor down, tg_visitor up, void *data)
660 661
{
	struct task_group *parent, *child;
P
Peter Zijlstra 已提交
662
	int ret;
663

664 665
	parent = from;

666
down:
P
Peter Zijlstra 已提交
667 668
	ret = (*down)(parent, data);
	if (ret)
669
		goto out;
670 671 672 673 674 675 676
	list_for_each_entry_rcu(child, &parent->children, siblings) {
		parent = child;
		goto down;

up:
		continue;
	}
P
Peter Zijlstra 已提交
677
	ret = (*up)(parent, data);
678 679
	if (ret || parent == from)
		goto out;
680 681 682 683 684

	child = parent;
	parent = parent->parent;
	if (parent)
		goto up;
685
out:
P
Peter Zijlstra 已提交
686
	return ret;
687 688
}

689
int tg_nop(struct task_group *tg, void *data)
P
Peter Zijlstra 已提交
690
{
691
	return 0;
P
Peter Zijlstra 已提交
692
}
693 694
#endif

695
static void set_load_weight(struct task_struct *p, bool update_load)
696
{
N
Nikhil Rao 已提交
697 698 699
	int prio = p->static_prio - MAX_RT_PRIO;
	struct load_weight *load = &p->se.load;

I
Ingo Molnar 已提交
700 701 702
	/*
	 * SCHED_IDLE tasks get minimal weight:
	 */
703
	if (idle_policy(p->policy)) {
704
		load->weight = scale_load(WEIGHT_IDLEPRIO);
N
Nikhil Rao 已提交
705
		load->inv_weight = WMULT_IDLEPRIO;
I
Ingo Molnar 已提交
706 707
		return;
	}
708

709 710 711 712 713 714 715 716 717 718
	/*
	 * SCHED_OTHER tasks have to update their load when changing their
	 * weight
	 */
	if (update_load && p->sched_class == &fair_sched_class) {
		reweight_task(p, prio);
	} else {
		load->weight = scale_load(sched_prio_to_weight[prio]);
		load->inv_weight = sched_prio_to_wmult[prio];
	}
719 720
}

721
static inline void enqueue_task(struct rq *rq, struct task_struct *p, int flags)
722
{
723 724 725
	if (!(flags & ENQUEUE_NOCLOCK))
		update_rq_clock(rq);

726
	if (!(flags & ENQUEUE_RESTORE)) {
727
		sched_info_queued(rq, p);
728 729
		psi_enqueue(p, flags & ENQUEUE_WAKEUP);
	}
730

731
	p->sched_class->enqueue_task(rq, p, flags);
732 733
}

734
static inline void dequeue_task(struct rq *rq, struct task_struct *p, int flags)
735
{
736 737 738
	if (!(flags & DEQUEUE_NOCLOCK))
		update_rq_clock(rq);

739
	if (!(flags & DEQUEUE_SAVE)) {
740
		sched_info_dequeued(rq, p);
741 742
		psi_dequeue(p, flags & DEQUEUE_SLEEP);
	}
743

744
	p->sched_class->dequeue_task(rq, p, flags);
745 746
}

747
void activate_task(struct rq *rq, struct task_struct *p, int flags)
748
{
749
	if (task_contributes_to_load(p))
750 751
		rq->nr_uninterruptible--;

752
	enqueue_task(rq, p, flags);
753 754
}

755
void deactivate_task(struct rq *rq, struct task_struct *p, int flags)
756
{
757
	if (task_contributes_to_load(p))
758 759
		rq->nr_uninterruptible++;

760
	dequeue_task(rq, p, flags);
761 762
}

763
/*
I
Ingo Molnar 已提交
764
 * __normal_prio - return the priority that is based on the static prio
765 766 767
 */
static inline int __normal_prio(struct task_struct *p)
{
I
Ingo Molnar 已提交
768
	return p->static_prio;
769 770
}

771 772 773 774 775 776 777
/*
 * Calculate the expected normal priority: i.e. priority
 * without taking RT-inheritance into account. Might be
 * boosted by interactivity modifiers. Changes upon fork,
 * setprio syscalls, and whenever the interactivity
 * estimator recalculates.
 */
778
static inline int normal_prio(struct task_struct *p)
779 780 781
{
	int prio;

782 783 784
	if (task_has_dl_policy(p))
		prio = MAX_DL_PRIO-1;
	else if (task_has_rt_policy(p))
785 786 787 788 789 790 791 792 793 794 795 796 797
		prio = MAX_RT_PRIO-1 - p->rt_priority;
	else
		prio = __normal_prio(p);
	return prio;
}

/*
 * Calculate the current priority, i.e. the priority
 * taken into account by the scheduler. This value might
 * be boosted by RT tasks, or might be boosted by
 * interactivity modifiers. Will be RT if the task got
 * RT-boosted. If not then it returns p->normal_prio.
 */
798
static int effective_prio(struct task_struct *p)
799 800 801 802 803 804 805 806 807 808 809 810
{
	p->normal_prio = normal_prio(p);
	/*
	 * If we are RT tasks or we were boosted to RT priority,
	 * keep the priority unchanged. Otherwise, update priority
	 * to the normal priority:
	 */
	if (!rt_prio(p->prio))
		return p->normal_prio;
	return p->prio;
}

L
Linus Torvalds 已提交
811 812 813
/**
 * task_curr - is this task currently executing on a CPU?
 * @p: the task in question.
814 815
 *
 * Return: 1 if the task is currently executing. 0 otherwise.
L
Linus Torvalds 已提交
816
 */
817
inline int task_curr(const struct task_struct *p)
L
Linus Torvalds 已提交
818 819 820 821
{
	return cpu_curr(task_cpu(p)) == p;
}

822
/*
823 824 825 826 827
 * switched_from, switched_to and prio_changed must _NOT_ drop rq->lock,
 * use the balance_callback list if you want balancing.
 *
 * this means any call to check_class_changed() must be followed by a call to
 * balance_callback().
828
 */
829 830
static inline void check_class_changed(struct rq *rq, struct task_struct *p,
				       const struct sched_class *prev_class,
P
Peter Zijlstra 已提交
831
				       int oldprio)
832 833 834
{
	if (prev_class != p->sched_class) {
		if (prev_class->switched_from)
P
Peter Zijlstra 已提交
835
			prev_class->switched_from(rq, p);
836

P
Peter Zijlstra 已提交
837
		p->sched_class->switched_to(rq, p);
838
	} else if (oldprio != p->prio || dl_task(p))
P
Peter Zijlstra 已提交
839
		p->sched_class->prio_changed(rq, p, oldprio);
840 841
}

842
void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
843 844 845 846 847 848 849 850 851 852
{
	const struct sched_class *class;

	if (p->sched_class == rq->curr->sched_class) {
		rq->curr->sched_class->check_preempt_curr(rq, p, flags);
	} else {
		for_each_class(class) {
			if (class == rq->curr->sched_class)
				break;
			if (class == p->sched_class) {
853
				resched_curr(rq);
854 855 856 857 858 859 860 861 862
				break;
			}
		}
	}

	/*
	 * A queue event has occurred, and we're going to schedule.  In
	 * this case, we can save a useless back to back clock update.
	 */
863
	if (task_on_rq_queued(rq->curr) && test_tsk_need_resched(rq->curr))
864
		rq_clock_skip_update(rq);
865 866
}

L
Linus Torvalds 已提交
867
#ifdef CONFIG_SMP
868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894

static inline bool is_per_cpu_kthread(struct task_struct *p)
{
	if (!(p->flags & PF_KTHREAD))
		return false;

	if (p->nr_cpus_allowed != 1)
		return false;

	return true;
}

/*
 * Per-CPU kthreads are allowed to run on !actie && online CPUs, see
 * __set_cpus_allowed_ptr() and select_fallback_rq().
 */
static inline bool is_cpu_allowed(struct task_struct *p, int cpu)
{
	if (!cpumask_test_cpu(cpu, &p->cpus_allowed))
		return false;

	if (is_per_cpu_kthread(p))
		return cpu_online(cpu);

	return cpu_active(cpu);
}

P
Peter Zijlstra 已提交
895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913
/*
 * This is how migration works:
 *
 * 1) we invoke migration_cpu_stop() on the target CPU using
 *    stop_one_cpu().
 * 2) stopper starts to run (implicitly forcing the migrated thread
 *    off the CPU)
 * 3) it checks whether the migrated task is still in the wrong runqueue.
 * 4) if it's in the wrong runqueue then the migration thread removes
 *    it and puts it into the right queue.
 * 5) stopper completes and stop_one_cpu() returns and the migration
 *    is done.
 */

/*
 * move_queued_task - move a queued task to new rq.
 *
 * Returns (locked) new rq. Old rq's lock is released.
 */
914 915
static struct rq *move_queued_task(struct rq *rq, struct rq_flags *rf,
				   struct task_struct *p, int new_cpu)
P
Peter Zijlstra 已提交
916 917 918
{
	lockdep_assert_held(&rq->lock);

919
	WRITE_ONCE(p->on_rq, TASK_ON_RQ_MIGRATING);
920
	dequeue_task(rq, p, DEQUEUE_NOCLOCK);
P
Peter Zijlstra 已提交
921
	set_task_cpu(p, new_cpu);
922
	rq_unlock(rq, rf);
P
Peter Zijlstra 已提交
923 924 925

	rq = cpu_rq(new_cpu);

926
	rq_lock(rq, rf);
P
Peter Zijlstra 已提交
927 928
	BUG_ON(task_cpu(p) != new_cpu);
	enqueue_task(rq, p, 0);
929
	p->on_rq = TASK_ON_RQ_QUEUED;
P
Peter Zijlstra 已提交
930 931 932 933 934 935 936 937 938 939 940
	check_preempt_curr(rq, p, 0);

	return rq;
}

struct migration_arg {
	struct task_struct *task;
	int dest_cpu;
};

/*
I
Ingo Molnar 已提交
941
 * Move (not current) task off this CPU, onto the destination CPU. We're doing
P
Peter Zijlstra 已提交
942 943 944 945 946 947 948
 * this because either it can't run here any more (set_cpus_allowed()
 * away from this CPU, or CPU going down), or because we're
 * attempting to rebalance this task on exec (sched_exec).
 *
 * So we race with normal scheduler movements, but that's OK, as long
 * as the task is no longer on this CPU.
 */
949 950
static struct rq *__migrate_task(struct rq *rq, struct rq_flags *rf,
				 struct task_struct *p, int dest_cpu)
P
Peter Zijlstra 已提交
951 952
{
	/* Affinity changed (again). */
953
	if (!is_cpu_allowed(p, dest_cpu))
954
		return rq;
P
Peter Zijlstra 已提交
955

956
	update_rq_clock(rq);
957
	rq = move_queued_task(rq, rf, p, dest_cpu);
958 959

	return rq;
P
Peter Zijlstra 已提交
960 961 962 963 964 965 966 967 968 969
}

/*
 * migration_cpu_stop - this will be executed by a highprio stopper thread
 * and performs thread migration by bumping thread off CPU then
 * 'pushing' onto another runqueue.
 */
static int migration_cpu_stop(void *data)
{
	struct migration_arg *arg = data;
970 971
	struct task_struct *p = arg->task;
	struct rq *rq = this_rq();
972
	struct rq_flags rf;
P
Peter Zijlstra 已提交
973 974

	/*
I
Ingo Molnar 已提交
975 976
	 * The original target CPU might have gone down and we might
	 * be on another CPU but it doesn't matter.
P
Peter Zijlstra 已提交
977 978 979 980 981 982 983 984
	 */
	local_irq_disable();
	/*
	 * We need to explicitly wake pending tasks before running
	 * __migrate_task() such that we will not miss enforcing cpus_allowed
	 * during wakeups, see set_cpus_allowed_ptr()'s TASK_WAKING test.
	 */
	sched_ttwu_pending();
985 986

	raw_spin_lock(&p->pi_lock);
987
	rq_lock(rq, &rf);
988 989 990 991 992
	/*
	 * If task_rq(p) != rq, it cannot be migrated here, because we're
	 * holding rq->lock, if p->on_rq == 0 it cannot get enqueued because
	 * we're holding p->pi_lock.
	 */
993 994
	if (task_rq(p) == rq) {
		if (task_on_rq_queued(p))
995
			rq = __migrate_task(rq, &rf, p, arg->dest_cpu);
996 997 998
		else
			p->wake_cpu = arg->dest_cpu;
	}
999
	rq_unlock(rq, &rf);
1000 1001
	raw_spin_unlock(&p->pi_lock);

P
Peter Zijlstra 已提交
1002 1003 1004 1005
	local_irq_enable();
	return 0;
}

1006 1007 1008 1009 1010
/*
 * sched_class::set_cpus_allowed must do the below, but is not required to
 * actually call this function.
 */
void set_cpus_allowed_common(struct task_struct *p, const struct cpumask *new_mask)
P
Peter Zijlstra 已提交
1011 1012 1013 1014 1015
{
	cpumask_copy(&p->cpus_allowed, new_mask);
	p->nr_cpus_allowed = cpumask_weight(new_mask);
}

1016 1017
void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask)
{
1018 1019 1020
	struct rq *rq = task_rq(p);
	bool queued, running;

1021
	lockdep_assert_held(&p->pi_lock);
1022 1023 1024 1025 1026 1027 1028 1029 1030 1031

	queued = task_on_rq_queued(p);
	running = task_current(rq, p);

	if (queued) {
		/*
		 * Because __kthread_bind() calls this on blocked tasks without
		 * holding rq->lock.
		 */
		lockdep_assert_held(&rq->lock);
1032
		dequeue_task(rq, p, DEQUEUE_SAVE | DEQUEUE_NOCLOCK);
1033 1034 1035 1036
	}
	if (running)
		put_prev_task(rq, p);

1037
	p->sched_class->set_cpus_allowed(p, new_mask);
1038 1039

	if (queued)
1040
		enqueue_task(rq, p, ENQUEUE_RESTORE | ENQUEUE_NOCLOCK);
1041
	if (running)
1042
		set_curr_task(rq, p);
1043 1044
}

P
Peter Zijlstra 已提交
1045 1046 1047 1048 1049 1050 1051 1052 1053
/*
 * Change a given task's CPU affinity. Migrate the thread to a
 * proper CPU and schedule it away if the CPU it's executing on
 * is removed from the allowed bitmask.
 *
 * NOTE: the caller must have a valid reference to the task, the
 * task must not exit() & deallocate itself prematurely. The
 * call is not atomic; no spinlocks may be held.
 */
1054 1055
static int __set_cpus_allowed_ptr(struct task_struct *p,
				  const struct cpumask *new_mask, bool check)
P
Peter Zijlstra 已提交
1056
{
1057
	const struct cpumask *cpu_valid_mask = cpu_active_mask;
P
Peter Zijlstra 已提交
1058
	unsigned int dest_cpu;
1059 1060
	struct rq_flags rf;
	struct rq *rq;
P
Peter Zijlstra 已提交
1061 1062
	int ret = 0;

1063
	rq = task_rq_lock(p, &rf);
1064
	update_rq_clock(rq);
P
Peter Zijlstra 已提交
1065

1066 1067 1068 1069 1070 1071 1072
	if (p->flags & PF_KTHREAD) {
		/*
		 * Kernel threads are allowed on online && !active CPUs
		 */
		cpu_valid_mask = cpu_online_mask;
	}

1073 1074 1075 1076 1077 1078 1079 1080 1081
	/*
	 * Must re-check here, to close a race against __kthread_bind(),
	 * sched_setaffinity() is not guaranteed to observe the flag.
	 */
	if (check && (p->flags & PF_NO_SETAFFINITY)) {
		ret = -EINVAL;
		goto out;
	}

P
Peter Zijlstra 已提交
1082 1083 1084
	if (cpumask_equal(&p->cpus_allowed, new_mask))
		goto out;

1085 1086
	dest_cpu = cpumask_any_and(cpu_valid_mask, new_mask);
	if (dest_cpu >= nr_cpu_ids) {
P
Peter Zijlstra 已提交
1087 1088 1089 1090 1091 1092
		ret = -EINVAL;
		goto out;
	}

	do_set_cpus_allowed(p, new_mask);

1093 1094 1095
	if (p->flags & PF_KTHREAD) {
		/*
		 * For kernel threads that do indeed end up on online &&
I
Ingo Molnar 已提交
1096
		 * !active we want to ensure they are strict per-CPU threads.
1097 1098 1099 1100 1101 1102
		 */
		WARN_ON(cpumask_intersects(new_mask, cpu_online_mask) &&
			!cpumask_intersects(new_mask, cpu_active_mask) &&
			p->nr_cpus_allowed != 1);
	}

P
Peter Zijlstra 已提交
1103 1104 1105 1106 1107 1108 1109
	/* Can the task run on the task's current CPU? If so, we're done */
	if (cpumask_test_cpu(task_cpu(p), new_mask))
		goto out;

	if (task_running(rq, p) || p->state == TASK_WAKING) {
		struct migration_arg arg = { p, dest_cpu };
		/* Need help from migration thread: drop lock and wait. */
1110
		task_rq_unlock(rq, p, &rf);
P
Peter Zijlstra 已提交
1111 1112 1113
		stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg);
		tlb_migrate_finish(p->mm);
		return 0;
1114 1115 1116 1117 1118
	} else if (task_on_rq_queued(p)) {
		/*
		 * OK, since we're going to drop the lock immediately
		 * afterwards anyway.
		 */
1119
		rq = move_queued_task(rq, &rf, p, dest_cpu);
1120
	}
P
Peter Zijlstra 已提交
1121
out:
1122
	task_rq_unlock(rq, p, &rf);
P
Peter Zijlstra 已提交
1123 1124 1125

	return ret;
}
1126 1127 1128 1129 1130

int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
{
	return __set_cpus_allowed_ptr(p, new_mask, false);
}
P
Peter Zijlstra 已提交
1131 1132
EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);

I
Ingo Molnar 已提交
1133
void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
I
Ingo Molnar 已提交
1134
{
1135 1136 1137 1138 1139
#ifdef CONFIG_SCHED_DEBUG
	/*
	 * We should never call set_task_cpu() on a blocked task,
	 * ttwu() will sort out the placement.
	 */
P
Peter Zijlstra 已提交
1140
	WARN_ON_ONCE(p->state != TASK_RUNNING && p->state != TASK_WAKING &&
O
Oleg Nesterov 已提交
1141
			!p->on_rq);
1142

1143 1144 1145 1146 1147 1148 1149 1150 1151
	/*
	 * Migrating fair class task must have p->on_rq = TASK_ON_RQ_MIGRATING,
	 * because schedstat_wait_{start,end} rebase migrating task's wait_start
	 * time relying on p->on_rq.
	 */
	WARN_ON_ONCE(p->state == TASK_RUNNING &&
		     p->sched_class == &fair_sched_class &&
		     (p->on_rq && !task_on_rq_migrating(p)));

1152
#ifdef CONFIG_LOCKDEP
1153 1154 1155 1156 1157
	/*
	 * The caller should hold either p->pi_lock or rq->lock, when changing
	 * a task's CPU. ->pi_lock for waking tasks, rq->lock for runnable tasks.
	 *
	 * sched_move_task() holds both and thus holding either pins the cgroup,
P
Peter Zijlstra 已提交
1158
	 * see task_group().
1159 1160 1161 1162
	 *
	 * Furthermore, all task_rq users should acquire both locks, see
	 * task_rq_lock().
	 */
1163 1164 1165
	WARN_ON_ONCE(debug_locks && !(lockdep_is_held(&p->pi_lock) ||
				      lockdep_is_held(&task_rq(p)->lock)));
#endif
1166 1167 1168 1169
	/*
	 * Clearly, migrating tasks to offline CPUs is a fairly daft thing.
	 */
	WARN_ON_ONCE(!cpu_online(new_cpu));
1170 1171
#endif

1172
	trace_sched_migrate_task(p, new_cpu);
1173

1174
	if (task_cpu(p) != new_cpu) {
1175
		if (p->sched_class->migrate_task_rq)
1176
			p->sched_class->migrate_task_rq(p, new_cpu);
1177
		p->se.nr_migrations++;
1178
		rseq_migrate(p);
1179
		task_ca_increase_nr_migrations(p);
1180
		perf_event_task_migrate(p);
1181
	}
I
Ingo Molnar 已提交
1182 1183

	__set_task_cpu(p, new_cpu);
I
Ingo Molnar 已提交
1184 1185
}

1186
#ifdef CONFIG_NUMA_BALANCING
1187 1188
static void __migrate_swap_task(struct task_struct *p, int cpu)
{
1189
	if (task_on_rq_queued(p)) {
1190
		struct rq *src_rq, *dst_rq;
1191
		struct rq_flags srf, drf;
1192 1193 1194 1195

		src_rq = task_rq(p);
		dst_rq = cpu_rq(cpu);

1196 1197 1198
		rq_pin_lock(src_rq, &srf);
		rq_pin_lock(dst_rq, &drf);

1199
		p->on_rq = TASK_ON_RQ_MIGRATING;
1200 1201 1202
		deactivate_task(src_rq, p, 0);
		set_task_cpu(p, cpu);
		activate_task(dst_rq, p, 0);
1203
		p->on_rq = TASK_ON_RQ_QUEUED;
1204
		check_preempt_curr(dst_rq, p, 0);
1205 1206 1207 1208

		rq_unpin_lock(dst_rq, &drf);
		rq_unpin_lock(src_rq, &srf);

1209 1210 1211 1212
	} else {
		/*
		 * Task isn't running anymore; make it appear like we migrated
		 * it before it went to sleep. This means on wakeup we make the
I
Ingo Molnar 已提交
1213
		 * previous CPU our target instead of where it really is.
1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229
		 */
		p->wake_cpu = cpu;
	}
}

struct migration_swap_arg {
	struct task_struct *src_task, *dst_task;
	int src_cpu, dst_cpu;
};

static int migrate_swap_stop(void *data)
{
	struct migration_swap_arg *arg = data;
	struct rq *src_rq, *dst_rq;
	int ret = -EAGAIN;

1230 1231 1232
	if (!cpu_active(arg->src_cpu) || !cpu_active(arg->dst_cpu))
		return -EAGAIN;

1233 1234 1235
	src_rq = cpu_rq(arg->src_cpu);
	dst_rq = cpu_rq(arg->dst_cpu);

1236 1237
	double_raw_lock(&arg->src_task->pi_lock,
			&arg->dst_task->pi_lock);
1238
	double_rq_lock(src_rq, dst_rq);
1239

1240 1241 1242 1243 1244 1245
	if (task_cpu(arg->dst_task) != arg->dst_cpu)
		goto unlock;

	if (task_cpu(arg->src_task) != arg->src_cpu)
		goto unlock;

1246
	if (!cpumask_test_cpu(arg->dst_cpu, &arg->src_task->cpus_allowed))
1247 1248
		goto unlock;

1249
	if (!cpumask_test_cpu(arg->src_cpu, &arg->dst_task->cpus_allowed))
1250 1251 1252 1253 1254 1255 1256 1257 1258
		goto unlock;

	__migrate_swap_task(arg->src_task, arg->dst_cpu);
	__migrate_swap_task(arg->dst_task, arg->src_cpu);

	ret = 0;

unlock:
	double_rq_unlock(src_rq, dst_rq);
1259 1260
	raw_spin_unlock(&arg->dst_task->pi_lock);
	raw_spin_unlock(&arg->src_task->pi_lock);
1261 1262 1263 1264 1265 1266 1267

	return ret;
}

/*
 * Cross migrate two tasks
 */
1268 1269
int migrate_swap(struct task_struct *cur, struct task_struct *p,
		int target_cpu, int curr_cpu)
1270 1271 1272 1273 1274 1275
{
	struct migration_swap_arg arg;
	int ret = -EINVAL;

	arg = (struct migration_swap_arg){
		.src_task = cur,
1276
		.src_cpu = curr_cpu,
1277
		.dst_task = p,
1278
		.dst_cpu = target_cpu,
1279 1280 1281 1282 1283
	};

	if (arg.src_cpu == arg.dst_cpu)
		goto out;

1284 1285 1286 1287
	/*
	 * These three tests are all lockless; this is OK since all of them
	 * will be re-checked with proper locks held further down the line.
	 */
1288 1289 1290
	if (!cpu_active(arg.src_cpu) || !cpu_active(arg.dst_cpu))
		goto out;

1291
	if (!cpumask_test_cpu(arg.dst_cpu, &arg.src_task->cpus_allowed))
1292 1293
		goto out;

1294
	if (!cpumask_test_cpu(arg.src_cpu, &arg.dst_task->cpus_allowed))
1295 1296
		goto out;

1297
	trace_sched_swap_numa(cur, arg.src_cpu, p, arg.dst_cpu);
1298 1299 1300 1301 1302
	ret = stop_two_cpus(arg.dst_cpu, arg.src_cpu, migrate_swap_stop, &arg);

out:
	return ret;
}
1303
#endif /* CONFIG_NUMA_BALANCING */
1304

L
Linus Torvalds 已提交
1305 1306 1307
/*
 * wait_task_inactive - wait for a thread to unschedule.
 *
R
Roland McGrath 已提交
1308 1309 1310 1311 1312 1313 1314
 * If @match_state is nonzero, it's the @p->state value just checked and
 * not expected to change.  If it changes, i.e. @p might have woken up,
 * then return zero.  When we succeed in waiting for @p to be off its CPU,
 * we return a positive number (its total switch count).  If a second call
 * a short while later returns the same number, the caller can be sure that
 * @p has remained unscheduled the whole time.
 *
L
Linus Torvalds 已提交
1315 1316 1317 1318 1319 1320
 * The caller must ensure that the task *will* unschedule sometime soon,
 * else this function might spin for a *long* time. This function can't
 * be called with interrupts off, or it may introduce deadlock with
 * smp_call_function() if an IPI is sent by the same process we are
 * waiting to become inactive.
 */
R
Roland McGrath 已提交
1321
unsigned long wait_task_inactive(struct task_struct *p, long match_state)
L
Linus Torvalds 已提交
1322
{
1323
	int running, queued;
1324
	struct rq_flags rf;
R
Roland McGrath 已提交
1325
	unsigned long ncsw;
1326
	struct rq *rq;
L
Linus Torvalds 已提交
1327

1328 1329 1330 1331 1332 1333 1334 1335
	for (;;) {
		/*
		 * We do the initial early heuristics without holding
		 * any task-queue locks at all. We'll only try to get
		 * the runqueue lock when things look like they will
		 * work out!
		 */
		rq = task_rq(p);
1336

1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347
		/*
		 * If the task is actively running on another CPU
		 * still, just relax and busy-wait without holding
		 * any locks.
		 *
		 * NOTE! Since we don't hold any locks, it's not
		 * even sure that "rq" stays as the right runqueue!
		 * But we don't care, since "task_running()" will
		 * return false if the runqueue has changed and p
		 * is actually now running somewhere else!
		 */
R
Roland McGrath 已提交
1348 1349 1350
		while (task_running(rq, p)) {
			if (match_state && unlikely(p->state != match_state))
				return 0;
1351
			cpu_relax();
R
Roland McGrath 已提交
1352
		}
1353

1354 1355 1356 1357 1358
		/*
		 * Ok, time to look more closely! We need the rq
		 * lock now, to be *sure*. If we're wrong, we'll
		 * just go back and repeat.
		 */
1359
		rq = task_rq_lock(p, &rf);
1360
		trace_sched_wait_task(p);
1361
		running = task_running(rq, p);
1362
		queued = task_on_rq_queued(p);
R
Roland McGrath 已提交
1363
		ncsw = 0;
1364
		if (!match_state || p->state == match_state)
1365
			ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
1366
		task_rq_unlock(rq, p, &rf);
1367

R
Roland McGrath 已提交
1368 1369 1370 1371 1372 1373
		/*
		 * If it changed from the expected state, bail out now.
		 */
		if (unlikely(!ncsw))
			break;

1374 1375 1376 1377 1378 1379 1380 1381 1382 1383
		/*
		 * Was it really running after all now that we
		 * checked with the proper locks actually held?
		 *
		 * Oops. Go back and try again..
		 */
		if (unlikely(running)) {
			cpu_relax();
			continue;
		}
1384

1385 1386 1387 1388 1389
		/*
		 * It's not enough that it's not actively running,
		 * it must be off the runqueue _entirely_, and not
		 * preempted!
		 *
1390
		 * So if it was still runnable (but just not actively
1391 1392 1393
		 * running right now), it's preempted, and we should
		 * yield - it could be a while.
		 */
1394
		if (unlikely(queued)) {
T
Thomas Gleixner 已提交
1395
			ktime_t to = NSEC_PER_SEC / HZ;
1396 1397 1398

			set_current_state(TASK_UNINTERRUPTIBLE);
			schedule_hrtimeout(&to, HRTIMER_MODE_REL);
1399 1400
			continue;
		}
1401

1402 1403 1404 1405 1406 1407 1408
		/*
		 * Ahh, all good. It wasn't running, and it wasn't
		 * runnable, which means that it will never become
		 * running in the future either. We're all done!
		 */
		break;
	}
R
Roland McGrath 已提交
1409 1410

	return ncsw;
L
Linus Torvalds 已提交
1411 1412 1413 1414 1415 1416 1417 1418 1419
}

/***
 * kick_process - kick a running thread to enter/exit the kernel
 * @p: the to-be-kicked thread
 *
 * Cause a process which is running on another CPU to enter
 * kernel-mode, without any delay. (to get signals handled.)
 *
L
Lucas De Marchi 已提交
1420
 * NOTE: this function doesn't have to take the runqueue lock,
L
Linus Torvalds 已提交
1421 1422 1423 1424 1425
 * because all it wants to ensure is that the remote task enters
 * the kernel. If the IPI races and the task has been migrated
 * to another CPU then no harm is done and the purpose has been
 * achieved as well.
 */
1426
void kick_process(struct task_struct *p)
L
Linus Torvalds 已提交
1427 1428 1429 1430 1431 1432 1433 1434 1435
{
	int cpu;

	preempt_disable();
	cpu = task_cpu(p);
	if ((cpu != smp_processor_id()) && task_curr(p))
		smp_send_reschedule(cpu);
	preempt_enable();
}
R
Rusty Russell 已提交
1436
EXPORT_SYMBOL_GPL(kick_process);
L
Linus Torvalds 已提交
1437

1438
/*
1439
 * ->cpus_allowed is protected by both rq->lock and p->pi_lock
1440 1441 1442 1443 1444
 *
 * A few notes on cpu_active vs cpu_online:
 *
 *  - cpu_active must be a subset of cpu_online
 *
1445
 *  - on CPU-up we allow per-CPU kthreads on the online && !active CPU,
1446
 *    see __set_cpus_allowed_ptr(). At this point the newly online
I
Ingo Molnar 已提交
1447
 *    CPU isn't yet part of the sched domains, and balancing will not
1448 1449
 *    see it.
 *
I
Ingo Molnar 已提交
1450
 *  - on CPU-down we clear cpu_active() to mask the sched domains and
1451
 *    avoid the load balancer to place new tasks on the to be removed
I
Ingo Molnar 已提交
1452
 *    CPU. Existing tasks will remain running there and will be taken
1453 1454 1455 1456 1457 1458
 *    off.
 *
 * This means that fallback selection must not select !active CPUs.
 * And can assume that any active CPU must be online. Conversely
 * select_task_rq() below may allow selection of !active CPUs in order
 * to satisfy the above rules.
1459
 */
1460 1461
static int select_fallback_rq(int cpu, struct task_struct *p)
{
1462 1463
	int nid = cpu_to_node(cpu);
	const struct cpumask *nodemask = NULL;
1464 1465
	enum { cpuset, possible, fail } state = cpuset;
	int dest_cpu;
1466

1467
	/*
I
Ingo Molnar 已提交
1468 1469 1470
	 * If the node that the CPU is on has been offlined, cpu_to_node()
	 * will return -1. There is no CPU on the node, and we should
	 * select the CPU on the other node.
1471 1472 1473 1474 1475 1476 1477 1478
	 */
	if (nid != -1) {
		nodemask = cpumask_of_node(nid);

		/* Look for allowed, online CPU in same node. */
		for_each_cpu(dest_cpu, nodemask) {
			if (!cpu_active(dest_cpu))
				continue;
1479
			if (cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
1480 1481
				return dest_cpu;
		}
1482
	}
1483

1484 1485
	for (;;) {
		/* Any allowed, online CPU? */
1486
		for_each_cpu(dest_cpu, &p->cpus_allowed) {
1487
			if (!is_cpu_allowed(p, dest_cpu))
1488
				continue;
1489

1490 1491
			goto out;
		}
1492

1493
		/* No more Mr. Nice Guy. */
1494 1495
		switch (state) {
		case cpuset:
1496 1497 1498 1499 1500
			if (IS_ENABLED(CONFIG_CPUSETS)) {
				cpuset_cpus_allowed_fallback(p);
				state = possible;
				break;
			}
I
Ingo Molnar 已提交
1501
			/* Fall-through */
1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520
		case possible:
			do_set_cpus_allowed(p, cpu_possible_mask);
			state = fail;
			break;

		case fail:
			BUG();
			break;
		}
	}

out:
	if (state != cpuset) {
		/*
		 * Don't tell them about moving exiting tasks or
		 * kernel threads (both mm NULL), since they never
		 * leave kernel.
		 */
		if (p->mm && printk_ratelimit()) {
1521
			printk_deferred("process %d (%s) no longer affine to cpu%d\n",
1522 1523
					task_pid_nr(p), p->comm, cpu);
		}
1524 1525 1526 1527 1528
	}

	return dest_cpu;
}

1529
/*
1530
 * The caller (fork, wakeup) owns p->pi_lock, ->cpus_allowed is stable.
1531
 */
1532
static inline
1533
int select_task_rq(struct task_struct *p, int cpu, int sd_flags, int wake_flags)
1534
{
1535 1536
	lockdep_assert_held(&p->pi_lock);

1537
	if (p->nr_cpus_allowed > 1)
1538
		cpu = p->sched_class->select_task_rq(p, cpu, sd_flags, wake_flags);
1539
	else
1540
		cpu = cpumask_any(&p->cpus_allowed);
1541 1542 1543 1544

	/*
	 * In order not to call set_task_cpu() on a blocking task we need
	 * to rely on ttwu() to place the task on a valid ->cpus_allowed
I
Ingo Molnar 已提交
1545
	 * CPU.
1546 1547 1548 1549 1550 1551
	 *
	 * Since this is common to all placement strategies, this lives here.
	 *
	 * [ this allows ->select_task() to simply return task_cpu(p) and
	 *   not worry about this generic constraint ]
	 */
1552
	if (unlikely(!is_cpu_allowed(p, cpu)))
1553
		cpu = select_fallback_rq(task_cpu(p), p);
1554 1555

	return cpu;
1556
}
1557 1558 1559 1560 1561 1562

static void update_avg(u64 *avg, u64 sample)
{
	s64 diff = sample - *avg;
	*avg += diff >> 3;
}
1563

1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593
void sched_set_stop_task(int cpu, struct task_struct *stop)
{
	struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
	struct task_struct *old_stop = cpu_rq(cpu)->stop;

	if (stop) {
		/*
		 * Make it appear like a SCHED_FIFO task, its something
		 * userspace knows about and won't get confused about.
		 *
		 * Also, it will make PI more or less work without too
		 * much confusion -- but then, stop work should not
		 * rely on PI working anyway.
		 */
		sched_setscheduler_nocheck(stop, SCHED_FIFO, &param);

		stop->sched_class = &stop_sched_class;
	}

	cpu_rq(cpu)->stop = stop;

	if (old_stop) {
		/*
		 * Reset it back to a normal scheduling class so that
		 * it can die in pieces.
		 */
		old_stop->sched_class = &rt_sched_class;
	}
}

1594 1595 1596 1597 1598 1599 1600 1601
#else

static inline int __set_cpus_allowed_ptr(struct task_struct *p,
					 const struct cpumask *new_mask, bool check)
{
	return set_cpus_allowed_ptr(p, new_mask);
}

P
Peter Zijlstra 已提交
1602
#endif /* CONFIG_SMP */
1603

P
Peter Zijlstra 已提交
1604
static void
1605
ttwu_stat(struct task_struct *p, int cpu, int wake_flags)
T
Tejun Heo 已提交
1606
{
1607
	struct rq *rq;
1608

1609 1610 1611 1612
	if (!schedstat_enabled())
		return;

	rq = this_rq();
P
Peter Zijlstra 已提交
1613

1614 1615
#ifdef CONFIG_SMP
	if (cpu == rq->cpu) {
1616 1617
		__schedstat_inc(rq->ttwu_local);
		__schedstat_inc(p->se.statistics.nr_wakeups_local);
P
Peter Zijlstra 已提交
1618 1619 1620
	} else {
		struct sched_domain *sd;

1621
		__schedstat_inc(p->se.statistics.nr_wakeups_remote);
1622
		rcu_read_lock();
1623
		for_each_domain(rq->cpu, sd) {
P
Peter Zijlstra 已提交
1624
			if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
1625
				__schedstat_inc(sd->ttwu_wake_remote);
P
Peter Zijlstra 已提交
1626 1627 1628
				break;
			}
		}
1629
		rcu_read_unlock();
P
Peter Zijlstra 已提交
1630
	}
1631 1632

	if (wake_flags & WF_MIGRATED)
1633
		__schedstat_inc(p->se.statistics.nr_wakeups_migrate);
P
Peter Zijlstra 已提交
1634 1635
#endif /* CONFIG_SMP */

1636 1637
	__schedstat_inc(rq->ttwu_count);
	__schedstat_inc(p->se.statistics.nr_wakeups);
P
Peter Zijlstra 已提交
1638 1639

	if (wake_flags & WF_SYNC)
1640
		__schedstat_inc(p->se.statistics.nr_wakeups_sync);
P
Peter Zijlstra 已提交
1641 1642
}

1643
static inline void ttwu_activate(struct rq *rq, struct task_struct *p, int en_flags)
P
Peter Zijlstra 已提交
1644
{
T
Tejun Heo 已提交
1645
	activate_task(rq, p, en_flags);
1646
	p->on_rq = TASK_ON_RQ_QUEUED;
T
Tejun Heo 已提交
1647 1648
}

1649 1650 1651
/*
 * Mark the task runnable and perform wakeup-preemption.
 */
1652
static void ttwu_do_wakeup(struct rq *rq, struct task_struct *p, int wake_flags,
1653
			   struct rq_flags *rf)
T
Tejun Heo 已提交
1654 1655 1656
{
	check_preempt_curr(rq, p, wake_flags);
	p->state = TASK_RUNNING;
1657 1658
	trace_sched_wakeup(p);

T
Tejun Heo 已提交
1659
#ifdef CONFIG_SMP
1660 1661
	if (p->sched_class->task_woken) {
		/*
1662 1663
		 * Our task @p is fully woken up and running; so its safe to
		 * drop the rq->lock, hereafter rq is only used for statistics.
1664
		 */
1665
		rq_unpin_lock(rq, rf);
T
Tejun Heo 已提交
1666
		p->sched_class->task_woken(rq, p);
1667
		rq_repin_lock(rq, rf);
1668
	}
T
Tejun Heo 已提交
1669

1670
	if (rq->idle_stamp) {
1671
		u64 delta = rq_clock(rq) - rq->idle_stamp;
1672
		u64 max = 2*rq->max_idle_balance_cost;
T
Tejun Heo 已提交
1673

1674 1675 1676
		update_avg(&rq->avg_idle, delta);

		if (rq->avg_idle > max)
T
Tejun Heo 已提交
1677
			rq->avg_idle = max;
1678

T
Tejun Heo 已提交
1679 1680 1681 1682 1683
		rq->idle_stamp = 0;
	}
#endif
}

1684
static void
1685
ttwu_do_activate(struct rq *rq, struct task_struct *p, int wake_flags,
1686
		 struct rq_flags *rf)
1687
{
1688
	int en_flags = ENQUEUE_WAKEUP | ENQUEUE_NOCLOCK;
1689

1690 1691
	lockdep_assert_held(&rq->lock);

1692
#ifdef CONFIG_SMP
1693
	if (p->sched_contributes_to_load)
1694
		rq->nr_uninterruptible--;
1695 1696

	if (wake_flags & WF_MIGRATED)
1697
		en_flags |= ENQUEUE_MIGRATED;
1698 1699
#endif

1700
	ttwu_activate(rq, p, en_flags);
1701
	ttwu_do_wakeup(rq, p, wake_flags, rf);
1702 1703 1704 1705 1706 1707 1708 1709 1710 1711
}

/*
 * Called in case the task @p isn't fully descheduled from its runqueue,
 * in this case we must do a remote wakeup. Its a 'light' wakeup though,
 * since all we need to do is flip p->state to TASK_RUNNING, since
 * the task is still ->on_rq.
 */
static int ttwu_remote(struct task_struct *p, int wake_flags)
{
1712
	struct rq_flags rf;
1713 1714 1715
	struct rq *rq;
	int ret = 0;

1716
	rq = __task_rq_lock(p, &rf);
1717
	if (task_on_rq_queued(p)) {
1718 1719
		/* check_preempt_curr() may use rq clock */
		update_rq_clock(rq);
1720
		ttwu_do_wakeup(rq, p, wake_flags, &rf);
1721 1722
		ret = 1;
	}
1723
	__task_rq_unlock(rq, &rf);
1724 1725 1726 1727

	return ret;
}

1728
#ifdef CONFIG_SMP
1729
void sched_ttwu_pending(void)
1730 1731
{
	struct rq *rq = this_rq();
P
Peter Zijlstra 已提交
1732
	struct llist_node *llist = llist_del_all(&rq->wake_list);
1733
	struct task_struct *p, *t;
1734
	struct rq_flags rf;
1735

1736 1737 1738
	if (!llist)
		return;

1739
	rq_lock_irqsave(rq, &rf);
1740
	update_rq_clock(rq);
1741

1742 1743
	llist_for_each_entry_safe(p, t, llist, wake_entry)
		ttwu_do_activate(rq, p, p->sched_remote_wakeup ? WF_MIGRATED : 0, &rf);
1744

1745
	rq_unlock_irqrestore(rq, &rf);
1746 1747 1748 1749
}

void scheduler_ipi(void)
{
1750 1751 1752 1753 1754
	/*
	 * Fold TIF_NEED_RESCHED into the preempt_count; anybody setting
	 * TIF_NEED_RESCHED remotely (for the first time) will also send
	 * this IPI.
	 */
1755
	preempt_fold_need_resched();
1756

1757
	if (llist_empty(&this_rq()->wake_list) && !got_nohz_idle_kick())
1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773
		return;

	/*
	 * Not all reschedule IPI handlers call irq_enter/irq_exit, since
	 * traditionally all their work was done from the interrupt return
	 * path. Now that we actually do some work, we need to make sure
	 * we do call them.
	 *
	 * Some archs already do call them, luckily irq_enter/exit nest
	 * properly.
	 *
	 * Arguably we should visit all archs and update all handlers,
	 * however a fair share of IPIs are still resched only so this would
	 * somewhat pessimize the simple resched case.
	 */
	irq_enter();
P
Peter Zijlstra 已提交
1774
	sched_ttwu_pending();
1775 1776 1777 1778

	/*
	 * Check if someone kicked us for doing the nohz idle load balance.
	 */
1779
	if (unlikely(got_nohz_idle_kick())) {
1780
		this_rq()->idle_balance = 1;
1781
		raise_softirq_irqoff(SCHED_SOFTIRQ);
1782
	}
1783
	irq_exit();
1784 1785
}

P
Peter Zijlstra 已提交
1786
static void ttwu_queue_remote(struct task_struct *p, int cpu, int wake_flags)
1787
{
1788 1789
	struct rq *rq = cpu_rq(cpu);

P
Peter Zijlstra 已提交
1790 1791
	p->sched_remote_wakeup = !!(wake_flags & WF_MIGRATED);

1792 1793 1794 1795 1796 1797
	if (llist_add(&p->wake_entry, &cpu_rq(cpu)->wake_list)) {
		if (!set_nr_if_polling(rq->idle))
			smp_send_reschedule(cpu);
		else
			trace_sched_wake_idle_without_ipi(cpu);
	}
1798
}
1799

1800 1801 1802
void wake_up_if_idle(int cpu)
{
	struct rq *rq = cpu_rq(cpu);
1803
	struct rq_flags rf;
1804

1805 1806 1807 1808
	rcu_read_lock();

	if (!is_idle_task(rcu_dereference(rq->curr)))
		goto out;
1809 1810 1811 1812

	if (set_nr_if_polling(rq->idle)) {
		trace_sched_wake_idle_without_ipi(cpu);
	} else {
1813
		rq_lock_irqsave(rq, &rf);
1814 1815
		if (is_idle_task(rq->curr))
			smp_send_reschedule(cpu);
I
Ingo Molnar 已提交
1816
		/* Else CPU is not idle, do nothing here: */
1817
		rq_unlock_irqrestore(rq, &rf);
1818
	}
1819 1820 1821

out:
	rcu_read_unlock();
1822 1823
}

1824
bool cpus_share_cache(int this_cpu, int that_cpu)
1825 1826 1827
{
	return per_cpu(sd_llc_id, this_cpu) == per_cpu(sd_llc_id, that_cpu);
}
1828
#endif /* CONFIG_SMP */
1829

1830
static void ttwu_queue(struct task_struct *p, int cpu, int wake_flags)
1831 1832
{
	struct rq *rq = cpu_rq(cpu);
1833
	struct rq_flags rf;
1834

1835
#if defined(CONFIG_SMP)
1836
	if (sched_feat(TTWU_QUEUE) && !cpus_share_cache(smp_processor_id(), cpu)) {
I
Ingo Molnar 已提交
1837
		sched_clock_cpu(cpu); /* Sync clocks across CPUs */
P
Peter Zijlstra 已提交
1838
		ttwu_queue_remote(p, cpu, wake_flags);
1839 1840 1841 1842
		return;
	}
#endif

1843
	rq_lock(rq, &rf);
1844
	update_rq_clock(rq);
1845
	ttwu_do_activate(rq, p, wake_flags, &rf);
1846
	rq_unlock(rq, &rf);
T
Tejun Heo 已提交
1847 1848
}

1849 1850 1851 1852 1853 1854
/*
 * Notes on Program-Order guarantees on SMP systems.
 *
 *  MIGRATION
 *
 * The basic program-order guarantee on SMP systems is that when a task [t]
I
Ingo Molnar 已提交
1855 1856
 * migrates, all its activity on its old CPU [c0] happens-before any subsequent
 * execution on its new CPU [c1].
1857 1858 1859 1860 1861 1862 1863 1864
 *
 * For migration (of runnable tasks) this is provided by the following means:
 *
 *  A) UNLOCK of the rq(c0)->lock scheduling out task t
 *  B) migration for t is required to synchronize *both* rq(c0)->lock and
 *     rq(c1)->lock (if not at the same time, then in that order).
 *  C) LOCK of the rq(c1)->lock scheduling in task
 *
1865
 * Release/acquire chaining guarantees that B happens after A and C after B.
I
Ingo Molnar 已提交
1866
 * Note: the CPU doing B need not be c0 or c1
1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897
 *
 * Example:
 *
 *   CPU0            CPU1            CPU2
 *
 *   LOCK rq(0)->lock
 *   sched-out X
 *   sched-in Y
 *   UNLOCK rq(0)->lock
 *
 *                                   LOCK rq(0)->lock // orders against CPU0
 *                                   dequeue X
 *                                   UNLOCK rq(0)->lock
 *
 *                                   LOCK rq(1)->lock
 *                                   enqueue X
 *                                   UNLOCK rq(1)->lock
 *
 *                   LOCK rq(1)->lock // orders against CPU2
 *                   sched-out Z
 *                   sched-in X
 *                   UNLOCK rq(1)->lock
 *
 *
 *  BLOCKING -- aka. SLEEP + WAKEUP
 *
 * For blocking we (obviously) need to provide the same guarantee as for
 * migration. However the means are completely different as there is no lock
 * chain to provide order. Instead we do:
 *
 *   1) smp_store_release(X->on_cpu, 0)
1898
 *   2) smp_cond_load_acquire(!X->on_cpu)
1899 1900 1901 1902 1903 1904 1905 1906 1907 1908
 *
 * Example:
 *
 *   CPU0 (schedule)  CPU1 (try_to_wake_up) CPU2 (schedule)
 *
 *   LOCK rq(0)->lock LOCK X->pi_lock
 *   dequeue X
 *   sched-out X
 *   smp_store_release(X->on_cpu, 0);
 *
1909
 *                    smp_cond_load_acquire(&X->on_cpu, !VAL);
1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926
 *                    X->state = WAKING
 *                    set_task_cpu(X,2)
 *
 *                    LOCK rq(2)->lock
 *                    enqueue X
 *                    X->state = RUNNING
 *                    UNLOCK rq(2)->lock
 *
 *                                          LOCK rq(2)->lock // orders against CPU1
 *                                          sched-out Z
 *                                          sched-in X
 *                                          UNLOCK rq(2)->lock
 *
 *                    UNLOCK X->pi_lock
 *   UNLOCK rq(0)->lock
 *
 *
1927 1928 1929
 * However, for wakeups there is a second guarantee we must provide, namely we
 * must ensure that CONDITION=1 done by the caller can not be reordered with
 * accesses to the task state; see try_to_wake_up() and set_current_state().
1930 1931
 */

T
Tejun Heo 已提交
1932
/**
L
Linus Torvalds 已提交
1933
 * try_to_wake_up - wake up a thread
T
Tejun Heo 已提交
1934
 * @p: the thread to be awakened
L
Linus Torvalds 已提交
1935
 * @state: the mask of task states that can be woken
T
Tejun Heo 已提交
1936
 * @wake_flags: wake modifier flags (WF_*)
L
Linus Torvalds 已提交
1937
 *
1938
 * If (@state & @p->state) @p->state = TASK_RUNNING.
L
Linus Torvalds 已提交
1939
 *
1940 1941 1942 1943 1944
 * If the task was not queued/runnable, also place it back on a runqueue.
 *
 * Atomic against schedule() which would dequeue a task, also see
 * set_current_state().
 *
1945 1946 1947
 * This function executes a full memory barrier before accessing the task
 * state; see set_current_state().
 *
1948 1949
 * Return: %true if @p->state changes (an actual wakeup was done),
 *	   %false otherwise.
L
Linus Torvalds 已提交
1950
 */
1951 1952
static int
try_to_wake_up(struct task_struct *p, unsigned int state, int wake_flags)
L
Linus Torvalds 已提交
1953 1954
{
	unsigned long flags;
1955
	int cpu, success = 0;
P
Peter Zijlstra 已提交
1956

1957 1958 1959 1960 1961 1962
	/*
	 * If we are going to wake up a thread waiting for CONDITION we
	 * need to ensure that CONDITION=1 done by the caller can not be
	 * reordered with p->state check below. This pairs with mb() in
	 * set_current_state() the waiting thread does.
	 */
1963
	raw_spin_lock_irqsave(&p->pi_lock, flags);
1964
	smp_mb__after_spinlock();
P
Peter Zijlstra 已提交
1965
	if (!(p->state & state))
L
Linus Torvalds 已提交
1966 1967
		goto out;

1968 1969
	trace_sched_waking(p);

I
Ingo Molnar 已提交
1970 1971
	/* We're going to change ->state: */
	success = 1;
L
Linus Torvalds 已提交
1972 1973
	cpu = task_cpu(p);

1974 1975 1976 1977 1978
	/*
	 * Ensure we load p->on_rq _after_ p->state, otherwise it would
	 * be possible to, falsely, observe p->on_rq == 0 and get stuck
	 * in smp_cond_load_acquire() below.
	 *
1979 1980 1981 1982 1983 1984 1985 1986
	 * sched_ttwu_pending()			try_to_wake_up()
	 *   STORE p->on_rq = 1			  LOAD p->state
	 *   UNLOCK rq->lock
	 *
	 * __schedule() (switch to task 'p')
	 *   LOCK rq->lock			  smp_rmb();
	 *   smp_mb__after_spinlock();
	 *   UNLOCK rq->lock
1987 1988
	 *
	 * [task p]
1989
	 *   STORE p->state = UNINTERRUPTIBLE	  LOAD p->on_rq
1990
	 *
1991 1992
	 * Pairs with the LOCK+smp_mb__after_spinlock() on rq->lock in
	 * __schedule().  See the comment for smp_mb__after_spinlock().
1993 1994
	 */
	smp_rmb();
1995 1996
	if (p->on_rq && ttwu_remote(p, wake_flags))
		goto stat;
L
Linus Torvalds 已提交
1997 1998

#ifdef CONFIG_SMP
1999 2000 2001 2002 2003 2004 2005
	/*
	 * Ensure we load p->on_cpu _after_ p->on_rq, otherwise it would be
	 * possible to, falsely, observe p->on_cpu == 0.
	 *
	 * One must be running (->on_cpu == 1) in order to remove oneself
	 * from the runqueue.
	 *
2006 2007 2008 2009 2010 2011 2012 2013
	 * __schedule() (switch to task 'p')	try_to_wake_up()
	 *   STORE p->on_cpu = 1		  LOAD p->on_rq
	 *   UNLOCK rq->lock
	 *
	 * __schedule() (put 'p' to sleep)
	 *   LOCK rq->lock			  smp_rmb();
	 *   smp_mb__after_spinlock();
	 *   STORE p->on_rq = 0			  LOAD p->on_cpu
2014
	 *
2015 2016
	 * Pairs with the LOCK+smp_mb__after_spinlock() on rq->lock in
	 * __schedule().  See the comment for smp_mb__after_spinlock().
2017 2018 2019
	 */
	smp_rmb();

P
Peter Zijlstra 已提交
2020
	/*
I
Ingo Molnar 已提交
2021
	 * If the owning (remote) CPU is still in the middle of schedule() with
2022
	 * this task as prev, wait until its done referencing the task.
2023
	 *
2024
	 * Pairs with the smp_store_release() in finish_task().
2025 2026 2027
	 *
	 * This ensures that tasks getting woken will be fully ordered against
	 * their previous state and preserve Program Order.
2028
	 */
2029
	smp_cond_load_acquire(&p->on_cpu, !VAL);
L
Linus Torvalds 已提交
2030

2031
	p->sched_contributes_to_load = !!task_contributes_to_load(p);
P
Peter Zijlstra 已提交
2032
	p->state = TASK_WAKING;
2033

2034
	if (p->in_iowait) {
2035
		delayacct_blkio_end(p);
2036
		atomic_dec(&task_rq(p)->nr_iowait);
2037
		update_nr_iowait(p, -1);
2038 2039
	}

2040
	cpu = select_task_rq(p, p->wake_cpu, SD_BALANCE_WAKE, wake_flags);
2041 2042
	if (task_cpu(p) != cpu) {
		wake_flags |= WF_MIGRATED;
2043
		psi_ttwu_dequeue(p);
2044
		set_task_cpu(p, cpu);
2045
	}
2046 2047 2048 2049

#else /* CONFIG_SMP */

	if (p->in_iowait) {
2050
		delayacct_blkio_end(p);
2051
		atomic_dec(&task_rq(p)->nr_iowait);
2052
		update_nr_iowait(p, -1);
2053 2054
	}

L
Linus Torvalds 已提交
2055 2056
#endif /* CONFIG_SMP */

2057
	ttwu_queue(p, cpu, wake_flags);
2058
stat:
2059
	ttwu_stat(p, cpu, wake_flags);
L
Linus Torvalds 已提交
2060
out:
2061
	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
L
Linus Torvalds 已提交
2062 2063 2064 2065

	return success;
}

2066 2067 2068 2069 2070
/**
 * wake_up_process - Wake up a specific process
 * @p: The process to be woken up.
 *
 * Attempt to wake up the nominated process and move it to the set of runnable
2071 2072 2073
 * processes.
 *
 * Return: 1 if the process was woken up, 0 if it was already running.
2074
 *
2075
 * This function executes a full memory barrier before accessing the task state.
2076
 */
2077
int wake_up_process(struct task_struct *p)
L
Linus Torvalds 已提交
2078
{
2079
	return try_to_wake_up(p, TASK_NORMAL, 0);
L
Linus Torvalds 已提交
2080 2081 2082
}
EXPORT_SYMBOL(wake_up_process);

2083
int wake_up_state(struct task_struct *p, unsigned int state)
L
Linus Torvalds 已提交
2084 2085 2086 2087 2088 2089 2090
{
	return try_to_wake_up(p, state, 0);
}

/*
 * Perform scheduler related setup for a newly forked process p.
 * p is forked by current.
I
Ingo Molnar 已提交
2091 2092 2093
 *
 * __sched_fork() is basic setup used by init_idle() too:
 */
2094
static void __sched_fork(unsigned long clone_flags, struct task_struct *p)
I
Ingo Molnar 已提交
2095
{
P
Peter Zijlstra 已提交
2096 2097 2098
	p->on_rq			= 0;

	p->se.on_rq			= 0;
I
Ingo Molnar 已提交
2099 2100
	p->se.exec_start		= 0;
	p->se.sum_exec_runtime		= 0;
2101
	p->se.prev_sum_exec_runtime	= 0;
2102
	p->se.nr_migrations		= 0;
P
Peter Zijlstra 已提交
2103
	p->se.vruntime			= 0;
P
Peter Zijlstra 已提交
2104
	INIT_LIST_HEAD(&p->se.group_node);
I
Ingo Molnar 已提交
2105

2106 2107 2108 2109
#ifdef CONFIG_FAIR_GROUP_SCHED
	p->se.cfs_rq			= NULL;
#endif

I
Ingo Molnar 已提交
2110
#ifdef CONFIG_SCHEDSTATS
2111
	/* Even if schedstat is disabled, there should not be garbage */
2112
	memset(&p->se.statistics, 0, sizeof(p->se.statistics));
I
Ingo Molnar 已提交
2113
#endif
N
Nick Piggin 已提交
2114

2115
	RB_CLEAR_NODE(&p->dl.rb_node);
2116
	init_dl_task_timer(&p->dl);
2117
	init_dl_inactive_task_timer(&p->dl);
2118
	__dl_clear_params(p);
2119

P
Peter Zijlstra 已提交
2120
	INIT_LIST_HEAD(&p->rt.run_list);
2121 2122 2123 2124
	p->rt.timeout		= 0;
	p->rt.time_slice	= sched_rr_timeslice;
	p->rt.on_rq		= 0;
	p->rt.on_list		= 0;
N
Nick Piggin 已提交
2125

2126 2127 2128
#ifdef CONFIG_PREEMPT_NOTIFIERS
	INIT_HLIST_HEAD(&p->preempt_notifiers);
#endif
2129

2130 2131 2132
#ifdef CONFIG_COMPACTION
	p->capture_control = NULL;
#endif
2133
	init_numa_balancing(clone_flags, p);
I
Ingo Molnar 已提交
2134 2135
}

2136 2137
DEFINE_STATIC_KEY_FALSE(sched_numa_balancing);

2138
#ifdef CONFIG_NUMA_BALANCING
2139

2140 2141 2142
void set_numabalancing_state(bool enabled)
{
	if (enabled)
2143
		static_branch_enable(&sched_numa_balancing);
2144
	else
2145
		static_branch_disable(&sched_numa_balancing);
2146
}
2147 2148 2149 2150 2151 2152 2153

#ifdef CONFIG_PROC_SYSCTL
int sysctl_numa_balancing(struct ctl_table *table, int write,
			 void __user *buffer, size_t *lenp, loff_t *ppos)
{
	struct ctl_table t;
	int err;
2154
	int state = static_branch_likely(&sched_numa_balancing);
2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169

	if (write && !capable(CAP_SYS_ADMIN))
		return -EPERM;

	t = *table;
	t.data = &state;
	err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
	if (err < 0)
		return err;
	if (write)
		set_numabalancing_state(state);
	return err;
}
#endif
#endif
I
Ingo Molnar 已提交
2170

2171 2172
#ifdef CONFIG_SCHEDSTATS

2173
DEFINE_STATIC_KEY_FALSE(sched_schedstats);
2174
static bool __initdata __sched_schedstats = false;
2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197

static void set_schedstats(bool enabled)
{
	if (enabled)
		static_branch_enable(&sched_schedstats);
	else
		static_branch_disable(&sched_schedstats);
}

void force_schedstat_enabled(void)
{
	if (!schedstat_enabled()) {
		pr_info("kernel profiling enabled schedstats, disable via kernel.sched_schedstats.\n");
		static_branch_enable(&sched_schedstats);
	}
}

static int __init setup_schedstats(char *str)
{
	int ret = 0;
	if (!str)
		goto out;

2198 2199 2200 2201 2202
	/*
	 * This code is called before jump labels have been set up, so we can't
	 * change the static branch directly just yet.  Instead set a temporary
	 * variable so init_schedstats() can do it later.
	 */
2203
	if (!strcmp(str, "enable")) {
2204
		__sched_schedstats = true;
2205 2206
		ret = 1;
	} else if (!strcmp(str, "disable")) {
2207
		__sched_schedstats = false;
2208 2209 2210 2211 2212 2213 2214 2215 2216 2217
		ret = 1;
	}
out:
	if (!ret)
		pr_warn("Unable to parse schedstats=\n");

	return ret;
}
__setup("schedstats=", setup_schedstats);

2218 2219 2220 2221 2222
static void __init init_schedstats(void)
{
	set_schedstats(__sched_schedstats);
}

2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242
#ifdef CONFIG_PROC_SYSCTL
int sysctl_schedstats(struct ctl_table *table, int write,
			 void __user *buffer, size_t *lenp, loff_t *ppos)
{
	struct ctl_table t;
	int err;
	int state = static_branch_likely(&sched_schedstats);

	if (write && !capable(CAP_SYS_ADMIN))
		return -EPERM;

	t = *table;
	t.data = &state;
	err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
	if (err < 0)
		return err;
	if (write)
		set_schedstats(state);
	return err;
}
2243 2244 2245 2246
#endif /* CONFIG_PROC_SYSCTL */
#else  /* !CONFIG_SCHEDSTATS */
static inline void init_schedstats(void) {}
#endif /* CONFIG_SCHEDSTATS */
I
Ingo Molnar 已提交
2247 2248 2249 2250

/*
 * fork()/clone()-time setup:
 */
2251
int sched_fork(unsigned long clone_flags, struct task_struct *p)
I
Ingo Molnar 已提交
2252
{
2253
	unsigned long flags;
I
Ingo Molnar 已提交
2254

2255
	__sched_fork(clone_flags, p);
2256
	/*
2257
	 * We mark the process as NEW here. This guarantees that
2258 2259 2260
	 * nobody will actually run it, and a signal or other external
	 * event cannot wake it up and insert it on the runqueue either.
	 */
2261
	p->state = TASK_NEW;
I
Ingo Molnar 已提交
2262

2263 2264 2265 2266 2267
	/*
	 * Make sure we do not leak PI boosting priority to the child.
	 */
	p->prio = current->normal_prio;

2268 2269 2270 2271
	/*
	 * Revert to default priority/policy on fork if requested.
	 */
	if (unlikely(p->sched_reset_on_fork)) {
2272
		if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
2273
			p->policy = SCHED_NORMAL;
2274
			p->static_prio = NICE_TO_PRIO(0);
2275 2276 2277 2278 2279
			p->rt_priority = 0;
		} else if (PRIO_TO_NICE(p->static_prio) < 0)
			p->static_prio = NICE_TO_PRIO(0);

		p->prio = p->normal_prio = __normal_prio(p);
2280
		set_load_weight(p, false);
2281

2282 2283 2284 2285 2286 2287
		/*
		 * We don't need the reset flag anymore after the fork. It has
		 * fulfilled its duty:
		 */
		p->sched_reset_on_fork = 0;
	}
2288

2289
	if (dl_prio(p->prio))
2290
		return -EAGAIN;
2291
	else if (rt_prio(p->prio))
2292
		p->sched_class = &rt_sched_class;
2293
	else
H
Hiroshi Shimamoto 已提交
2294
		p->sched_class = &fair_sched_class;
2295

2296
	init_entity_runnable_average(&p->se);
P
Peter Zijlstra 已提交
2297

2298 2299 2300 2301 2302 2303 2304
	/*
	 * The child is not yet in the pid-hash so no cgroup attach races,
	 * and the cgroup is pinned to this child due to cgroup_fork()
	 * is ran before sched_fork().
	 *
	 * Silence PROVE_RCU.
	 */
2305
	raw_spin_lock_irqsave(&p->pi_lock, flags);
2306
	/*
I
Ingo Molnar 已提交
2307
	 * We're setting the CPU for the first time, we don't migrate,
2308 2309
	 * so use __set_task_cpu().
	 */
2310
	__set_task_cpu(p, smp_processor_id());
2311 2312
	if (p->sched_class->task_fork)
		p->sched_class->task_fork(p);
2313
	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
2314

2315
#ifdef CONFIG_SCHED_INFO
I
Ingo Molnar 已提交
2316
	if (likely(sched_info_on()))
2317
		memset(&p->sched_info, 0, sizeof(p->sched_info));
L
Linus Torvalds 已提交
2318
#endif
P
Peter Zijlstra 已提交
2319 2320
#if defined(CONFIG_SMP)
	p->on_cpu = 0;
2321
#endif
2322
	init_task_preempt_count(p);
2323
#ifdef CONFIG_SMP
2324
	plist_node_init(&p->pushable_tasks, MAX_PRIO);
2325
	RB_CLEAR_NODE(&p->pushable_dl_tasks);
2326
#endif
2327
	return 0;
L
Linus Torvalds 已提交
2328 2329
}

2330 2331 2332
unsigned long to_ratio(u64 period, u64 runtime)
{
	if (runtime == RUNTIME_INF)
2333
		return BW_UNIT;
2334 2335 2336 2337 2338 2339 2340 2341 2342

	/*
	 * Doing this here saves a lot of checks in all
	 * the calling paths, and returning zero seems
	 * safe for them anyway.
	 */
	if (period == 0)
		return 0;

2343
	return div64_u64(runtime << BW_SHIFT, period);
2344 2345
}

L
Linus Torvalds 已提交
2346 2347 2348 2349 2350 2351 2352
/*
 * wake_up_new_task - wake up a newly created task for the first time.
 *
 * This function will do some initial scheduler statistics housekeeping
 * that must be done for every newly created context, then puts the task
 * on the runqueue and wakes it.
 */
2353
void wake_up_new_task(struct task_struct *p)
L
Linus Torvalds 已提交
2354
{
2355
	struct rq_flags rf;
I
Ingo Molnar 已提交
2356
	struct rq *rq;
2357

2358
	raw_spin_lock_irqsave(&p->pi_lock, rf.flags);
2359
	p->state = TASK_RUNNING;
2360 2361 2362 2363
#ifdef CONFIG_SMP
	/*
	 * Fork balancing, do it here and not earlier because:
	 *  - cpus_allowed can change in the fork path
I
Ingo Molnar 已提交
2364
	 *  - any previously selected CPU might disappear through hotplug
2365 2366 2367
	 *
	 * Use __set_task_cpu() to avoid calling sched_class::migrate_task_rq,
	 * as we're not fully set-up yet.
2368
	 */
2369
	p->recent_used_cpu = task_cpu(p);
2370
	__set_task_cpu(p, select_task_rq(p, task_cpu(p), SD_BALANCE_FORK, 0));
2371
#endif
2372
	rq = __task_rq_lock(p, &rf);
2373
	update_rq_clock(rq);
2374
	post_init_entity_util_avg(&p->se);
2375

2376
	activate_task(rq, p, ENQUEUE_NOCLOCK);
2377
	p->on_rq = TASK_ON_RQ_QUEUED;
2378
	trace_sched_wakeup_new(p);
P
Peter Zijlstra 已提交
2379
	check_preempt_curr(rq, p, WF_FORK);
2380
#ifdef CONFIG_SMP
2381 2382 2383 2384 2385
	if (p->sched_class->task_woken) {
		/*
		 * Nothing relies on rq->lock after this, so its fine to
		 * drop it.
		 */
2386
		rq_unpin_lock(rq, &rf);
2387
		p->sched_class->task_woken(rq, p);
2388
		rq_repin_lock(rq, &rf);
2389
	}
2390
#endif
2391
	task_rq_unlock(rq, p, &rf);
L
Linus Torvalds 已提交
2392 2393
}

2394 2395
#ifdef CONFIG_PREEMPT_NOTIFIERS

2396
static DEFINE_STATIC_KEY_FALSE(preempt_notifier_key);
2397

2398 2399
void preempt_notifier_inc(void)
{
2400
	static_branch_inc(&preempt_notifier_key);
2401 2402 2403 2404 2405
}
EXPORT_SYMBOL_GPL(preempt_notifier_inc);

void preempt_notifier_dec(void)
{
2406
	static_branch_dec(&preempt_notifier_key);
2407 2408 2409
}
EXPORT_SYMBOL_GPL(preempt_notifier_dec);

2410
/**
2411
 * preempt_notifier_register - tell me when current is being preempted & rescheduled
R
Randy Dunlap 已提交
2412
 * @notifier: notifier struct to register
2413 2414 2415
 */
void preempt_notifier_register(struct preempt_notifier *notifier)
{
2416
	if (!static_branch_unlikely(&preempt_notifier_key))
2417 2418
		WARN(1, "registering preempt_notifier while notifiers disabled\n");

2419 2420 2421 2422 2423 2424
	hlist_add_head(&notifier->link, &current->preempt_notifiers);
}
EXPORT_SYMBOL_GPL(preempt_notifier_register);

/**
 * preempt_notifier_unregister - no longer interested in preemption notifications
R
Randy Dunlap 已提交
2425
 * @notifier: notifier struct to unregister
2426
 *
2427
 * This is *not* safe to call from within a preemption notifier.
2428 2429 2430 2431 2432 2433 2434
 */
void preempt_notifier_unregister(struct preempt_notifier *notifier)
{
	hlist_del(&notifier->link);
}
EXPORT_SYMBOL_GPL(preempt_notifier_unregister);

2435
static void __fire_sched_in_preempt_notifiers(struct task_struct *curr)
2436 2437 2438
{
	struct preempt_notifier *notifier;

2439
	hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
2440 2441 2442
		notifier->ops->sched_in(notifier, raw_smp_processor_id());
}

2443 2444
static __always_inline void fire_sched_in_preempt_notifiers(struct task_struct *curr)
{
2445
	if (static_branch_unlikely(&preempt_notifier_key))
2446 2447 2448
		__fire_sched_in_preempt_notifiers(curr);
}

2449
static void
2450 2451
__fire_sched_out_preempt_notifiers(struct task_struct *curr,
				   struct task_struct *next)
2452 2453 2454
{
	struct preempt_notifier *notifier;

2455
	hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
2456 2457 2458
		notifier->ops->sched_out(notifier, next);
}

2459 2460 2461 2462
static __always_inline void
fire_sched_out_preempt_notifiers(struct task_struct *curr,
				 struct task_struct *next)
{
2463
	if (static_branch_unlikely(&preempt_notifier_key))
2464 2465 2466
		__fire_sched_out_preempt_notifiers(curr, next);
}

2467
#else /* !CONFIG_PREEMPT_NOTIFIERS */
2468

2469
static inline void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2470 2471 2472
{
}

2473
static inline void
2474 2475 2476 2477 2478
fire_sched_out_preempt_notifiers(struct task_struct *curr,
				 struct task_struct *next)
{
}

2479
#endif /* CONFIG_PREEMPT_NOTIFIERS */
2480

2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508
static inline void prepare_task(struct task_struct *next)
{
#ifdef CONFIG_SMP
	/*
	 * Claim the task as running, we do this before switching to it
	 * such that any running task will have this set.
	 */
	next->on_cpu = 1;
#endif
}

static inline void finish_task(struct task_struct *prev)
{
#ifdef CONFIG_SMP
	/*
	 * After ->on_cpu is cleared, the task can be moved to a different CPU.
	 * We must ensure this doesn't happen until the switch is completely
	 * finished.
	 *
	 * In particular, the load of prev->state in finish_task_switch() must
	 * happen before this.
	 *
	 * Pairs with the smp_cond_load_acquire() in try_to_wake_up().
	 */
	smp_store_release(&prev->on_cpu, 0);
#endif
}

2509 2510
static inline void
prepare_lock_switch(struct rq *rq, struct task_struct *next, struct rq_flags *rf)
2511
{
2512 2513 2514 2515 2516 2517 2518 2519
	/*
	 * Since the runqueue lock will be released by the next
	 * task (which is an invalid locking op but in the case
	 * of the scheduler it's an obvious special-case), so we
	 * do an early lockdep release here:
	 */
	rq_unpin_lock(rq, rf);
	spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
2520 2521
#ifdef CONFIG_DEBUG_SPINLOCK
	/* this is a valid case when another task releases the spinlock */
2522
	rq->lock.owner = next;
2523
#endif
2524 2525 2526 2527
}

static inline void finish_lock_switch(struct rq *rq)
{
2528 2529 2530 2531 2532 2533 2534 2535 2536
	/*
	 * If we are tracking spinlock dependencies then we have to
	 * fix up the runqueue lock - which gets 'carried over' from
	 * prev into current:
	 */
	spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);
	raw_spin_unlock_irq(&rq->lock);
}

2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548
/*
 * NOP if the arch has not defined these:
 */

#ifndef prepare_arch_switch
# define prepare_arch_switch(next)	do { } while (0)
#endif

#ifndef finish_arch_post_lock_switch
# define finish_arch_post_lock_switch()	do { } while (0)
#endif

2549 2550 2551
/**
 * prepare_task_switch - prepare to switch tasks
 * @rq: the runqueue preparing to switch
R
Randy Dunlap 已提交
2552
 * @prev: the current task that is being switched out
2553 2554 2555 2556 2557 2558 2559 2560 2561
 * @next: the task we are going to switch to.
 *
 * This is called with the rq lock held and interrupts off. It must
 * be paired with a subsequent finish_task_switch after the context
 * switch.
 *
 * prepare_task_switch sets up locking and calls architecture specific
 * hooks.
 */
2562 2563 2564
static inline void
prepare_task_switch(struct rq *rq, struct task_struct *prev,
		    struct task_struct *next)
2565
{
2566
	kcov_prepare_switch(prev);
2567
	sched_info_switch(rq, prev, next);
2568
	perf_event_task_sched_out(prev, next);
2569
	rseq_preempt(prev);
2570
	fire_sched_out_preempt_notifiers(prev, next);
2571
	prepare_task(next);
2572 2573 2574
	prepare_arch_switch(next);
}

L
Linus Torvalds 已提交
2575 2576 2577 2578
/**
 * finish_task_switch - clean up after a task-switch
 * @prev: the thread we just switched away from.
 *
2579 2580 2581 2582
 * finish_task_switch must be called after the context switch, paired
 * with a prepare_task_switch call before the context switch.
 * finish_task_switch will reconcile locking set up by prepare_task_switch,
 * and do any other architecture-specific cleanup actions.
L
Linus Torvalds 已提交
2583 2584
 *
 * Note that we may have delayed dropping an mm in context_switch(). If
I
Ingo Molnar 已提交
2585
 * so, we finish that here outside of the runqueue lock. (Doing it
L
Linus Torvalds 已提交
2586 2587
 * with the lock held can cause deadlocks; see schedule() for
 * details.)
2588 2589 2590 2591 2592
 *
 * The context switch have flipped the stack from under us and restored the
 * local variables which were saved when this task called schedule() in the
 * past. prev == current is still correct but we need to recalculate this_rq
 * because prev may have moved to another CPU.
L
Linus Torvalds 已提交
2593
 */
2594
static struct rq *finish_task_switch(struct task_struct *prev)
L
Linus Torvalds 已提交
2595 2596
	__releases(rq->lock)
{
2597
	struct rq *rq = this_rq();
L
Linus Torvalds 已提交
2598
	struct mm_struct *mm = rq->prev_mm;
O
Oleg Nesterov 已提交
2599
	long prev_state;
L
Linus Torvalds 已提交
2600

2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611
	/*
	 * The previous task will have left us with a preempt_count of 2
	 * because it left us after:
	 *
	 *	schedule()
	 *	  preempt_disable();			// 1
	 *	  __schedule()
	 *	    raw_spin_lock_irq(&rq->lock)	// 2
	 *
	 * Also, see FORK_PREEMPT_COUNT.
	 */
2612 2613 2614 2615
	if (WARN_ONCE(preempt_count() != 2*PREEMPT_DISABLE_OFFSET,
		      "corrupted preempt_count: %s/%d/0x%x\n",
		      current->comm, current->pid, preempt_count()))
		preempt_count_set(FORK_PREEMPT_COUNT);
2616

L
Linus Torvalds 已提交
2617 2618 2619 2620
	rq->prev_mm = NULL;

	/*
	 * A task struct has one reference for the use as "current".
2621
	 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
O
Oleg Nesterov 已提交
2622 2623
	 * schedule one last time. The schedule call will never return, and
	 * the scheduled task must drop that reference.
2624 2625
	 *
	 * We must observe prev->state before clearing prev->on_cpu (in
2626
	 * finish_task), otherwise a concurrent wakeup can get prev
2627 2628
	 * running on another CPU and we could rave with its RUNNING -> DEAD
	 * transition, resulting in a double drop.
L
Linus Torvalds 已提交
2629
	 */
O
Oleg Nesterov 已提交
2630
	prev_state = prev->state;
2631
	vtime_task_switch(prev);
2632
	perf_event_task_sched_in(prev, current);
2633 2634
	finish_task(prev);
	finish_lock_switch(rq);
2635
	finish_arch_post_lock_switch();
2636
	kcov_finish_switch(current);
S
Steven Rostedt 已提交
2637

2638
	fire_sched_in_preempt_notifiers(current);
2639
	/*
2640 2641 2642 2643 2644 2645 2646 2647 2648 2649
	 * When switching through a kernel thread, the loop in
	 * membarrier_{private,global}_expedited() may have observed that
	 * kernel thread and not issued an IPI. It is therefore possible to
	 * schedule between user->kernel->user threads without passing though
	 * switch_mm(). Membarrier requires a barrier after storing to
	 * rq->curr, before returning to userspace, so provide them here:
	 *
	 * - a full memory barrier for {PRIVATE,GLOBAL}_EXPEDITED, implicitly
	 *   provided by mmdrop(),
	 * - a sync_core for SYNC_CORE.
2650
	 */
2651 2652
	if (mm) {
		membarrier_mm_sync_core_before_usermode(mm);
L
Linus Torvalds 已提交
2653
		mmdrop(mm);
2654
	}
2655 2656 2657
	if (unlikely(prev_state == TASK_DEAD)) {
		if (prev->sched_class->task_dead)
			prev->sched_class->task_dead(prev);
2658

2659 2660 2661 2662 2663 2664 2665 2666 2667 2668
		/*
		 * Remove function-return probe instances associated with this
		 * task and put them back on the free list.
		 */
		kprobe_flush_task(prev);

		/* Task is done with its stack. */
		put_task_stack(prev);

		put_task_struct(prev);
2669
	}
2670

2671
	tick_nohz_task_switch();
2672
	return rq;
L
Linus Torvalds 已提交
2673 2674
}

2675 2676 2677
#ifdef CONFIG_SMP

/* rq->lock is NOT held, but preemption is disabled */
2678
static void __balance_callback(struct rq *rq)
2679
{
2680 2681 2682
	struct callback_head *head, *next;
	void (*func)(struct rq *rq);
	unsigned long flags;
2683

2684 2685 2686 2687 2688 2689 2690 2691
	raw_spin_lock_irqsave(&rq->lock, flags);
	head = rq->balance_callback;
	rq->balance_callback = NULL;
	while (head) {
		func = (void (*)(struct rq *))head->func;
		next = head->next;
		head->next = NULL;
		head = next;
2692

2693
		func(rq);
2694
	}
2695 2696 2697 2698 2699 2700 2701
	raw_spin_unlock_irqrestore(&rq->lock, flags);
}

static inline void balance_callback(struct rq *rq)
{
	if (unlikely(rq->balance_callback))
		__balance_callback(rq);
2702 2703 2704
}

#else
2705

2706
static inline void balance_callback(struct rq *rq)
2707
{
L
Linus Torvalds 已提交
2708 2709
}

2710 2711
#endif

L
Linus Torvalds 已提交
2712 2713 2714 2715
/**
 * schedule_tail - first thing a freshly forked thread must call.
 * @prev: the thread we just switched away from.
 */
2716
asmlinkage __visible void schedule_tail(struct task_struct *prev)
L
Linus Torvalds 已提交
2717 2718
	__releases(rq->lock)
{
2719
	struct rq *rq;
2720

2721 2722 2723 2724 2725 2726 2727 2728 2729
	/*
	 * New tasks start with FORK_PREEMPT_COUNT, see there and
	 * finish_task_switch() for details.
	 *
	 * finish_task_switch() will drop rq->lock() and lower preempt_count
	 * and the preempt_enable() will end up enabling preemption (on
	 * PREEMPT_COUNT kernels).
	 */

2730
	rq = finish_task_switch(prev);
2731
	balance_callback(rq);
2732
	preempt_enable();
2733

L
Linus Torvalds 已提交
2734
	if (current->set_child_tid)
2735
		put_user(task_pid_vnr(current), current->set_child_tid);
2736 2737

	calculate_sigpending();
L
Linus Torvalds 已提交
2738 2739 2740
}

/*
2741
 * context_switch - switch to the new MM and the new thread's register state.
L
Linus Torvalds 已提交
2742
 */
2743
static __always_inline struct rq *
2744
context_switch(struct rq *rq, struct task_struct *prev,
2745
	       struct task_struct *next, struct rq_flags *rf)
L
Linus Torvalds 已提交
2746
{
I
Ingo Molnar 已提交
2747
	struct mm_struct *mm, *oldmm;
L
Linus Torvalds 已提交
2748

2749
	prepare_task_switch(rq, prev, next);
2750

I
Ingo Molnar 已提交
2751 2752
	mm = next->mm;
	oldmm = prev->active_mm;
2753 2754 2755 2756 2757
	/*
	 * For paravirt, this is coupled with an exit in switch_to to
	 * combine the page table reload and the switch backend into
	 * one hypercall.
	 */
2758
	arch_start_context_switch(prev);
2759

2760 2761 2762 2763 2764 2765 2766
	/*
	 * If mm is non-NULL, we pass through switch_mm(). If mm is
	 * NULL, we will pass through mmdrop() in finish_task_switch().
	 * Both of these contain the full memory barrier required by
	 * membarrier after storing to rq->curr, before returning to
	 * user-space.
	 */
2767
	if (!mm) {
L
Linus Torvalds 已提交
2768
		next->active_mm = oldmm;
V
Vegard Nossum 已提交
2769
		mmgrab(oldmm);
L
Linus Torvalds 已提交
2770 2771
		enter_lazy_tlb(oldmm, next);
	} else
2772
		switch_mm_irqs_off(oldmm, mm, next);
L
Linus Torvalds 已提交
2773

2774
	if (!prev->mm) {
L
Linus Torvalds 已提交
2775 2776 2777
		prev->active_mm = NULL;
		rq->prev_mm = oldmm;
	}
2778

2779
	rq->clock_update_flags &= ~(RQCF_ACT_SKIP|RQCF_REQ_SKIP);
2780

2781
	prepare_lock_switch(rq, next, rf);
L
Linus Torvalds 已提交
2782 2783 2784

	/* Here we just switch the register state and the stack. */
	switch_to(prev, next, prev);
I
Ingo Molnar 已提交
2785
	barrier();
2786 2787

	return finish_task_switch(prev);
L
Linus Torvalds 已提交
2788 2789 2790
}

/*
2791
 * nr_running and nr_context_switches:
L
Linus Torvalds 已提交
2792 2793
 *
 * externally visible scheduler statistics: current number of runnable
2794
 * threads, total number of context switches performed since bootup.
L
Linus Torvalds 已提交
2795 2796 2797 2798 2799 2800 2801 2802 2803
 */
unsigned long nr_running(void)
{
	unsigned long i, sum = 0;

	for_each_online_cpu(i)
		sum += cpu_rq(i)->nr_running;

	return sum;
2804
}
L
Linus Torvalds 已提交
2805

2806
/*
I
Ingo Molnar 已提交
2807
 * Check if only the current task is running on the CPU.
2808 2809 2810 2811 2812 2813 2814 2815 2816 2817
 *
 * Caution: this function does not check that the caller has disabled
 * preemption, thus the result might have a time-of-check-to-time-of-use
 * race.  The caller is responsible to use it correctly, for example:
 *
 * - from a non-preemptable section (of course)
 *
 * - from a thread that is bound to a single CPU
 *
 * - in a loop with very short iterations (e.g. a polling loop)
2818 2819 2820
 */
bool single_task_running(void)
{
2821
	return raw_rq()->nr_running == 1;
2822 2823 2824
}
EXPORT_SYMBOL(single_task_running);

L
Linus Torvalds 已提交
2825
unsigned long long nr_context_switches(void)
2826
{
2827 2828
	int i;
	unsigned long long sum = 0;
2829

2830
	for_each_possible_cpu(i)
L
Linus Torvalds 已提交
2831
		sum += cpu_rq(i)->nr_switches;
2832

L
Linus Torvalds 已提交
2833 2834
	return sum;
}
2835

2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865
/*
 * IO-wait accounting, and how its mostly bollocks (on SMP).
 *
 * The idea behind IO-wait account is to account the idle time that we could
 * have spend running if it were not for IO. That is, if we were to improve the
 * storage performance, we'd have a proportional reduction in IO-wait time.
 *
 * This all works nicely on UP, where, when a task blocks on IO, we account
 * idle time as IO-wait, because if the storage were faster, it could've been
 * running and we'd not be idle.
 *
 * This has been extended to SMP, by doing the same for each CPU. This however
 * is broken.
 *
 * Imagine for instance the case where two tasks block on one CPU, only the one
 * CPU will have IO-wait accounted, while the other has regular idle. Even
 * though, if the storage were faster, both could've ran at the same time,
 * utilising both CPUs.
 *
 * This means, that when looking globally, the current IO-wait accounting on
 * SMP is a lower bound, by reason of under accounting.
 *
 * Worse, since the numbers are provided per CPU, they are sometimes
 * interpreted per CPU, and that is nonsensical. A blocked task isn't strictly
 * associated with any one particular CPU, it can wake to another CPU than it
 * blocked on. This means the per CPU IO-wait number is meaningless.
 *
 * Task CPU affinities can make all that even more 'interesting'.
 */

L
Linus Torvalds 已提交
2866 2867 2868
unsigned long nr_iowait(void)
{
	unsigned long i, sum = 0;
2869

2870
	for_each_possible_cpu(i)
L
Linus Torvalds 已提交
2871
		sum += atomic_read(&cpu_rq(i)->nr_iowait);
2872

L
Linus Torvalds 已提交
2873 2874
	return sum;
}
2875

2876 2877 2878 2879 2880 2881 2882
/*
 * Consumers of these two interfaces, like for example the cpufreq menu
 * governor are using nonsensical data. Boosting frequency for a CPU that has
 * IO-wait which might not even end up running the task when it does become
 * runnable.
 */

2883
unsigned long nr_iowait_cpu(int cpu)
2884
{
2885
	struct rq *this = cpu_rq(cpu);
2886 2887
	return atomic_read(&this->nr_iowait);
}
2888

I
Ingo Molnar 已提交
2889
#ifdef CONFIG_SMP
2890

2891
/*
P
Peter Zijlstra 已提交
2892 2893
 * sched_exec - execve() is a valuable balancing opportunity, because at
 * this point the task has the smallest effective memory and cache footprint.
2894
 */
P
Peter Zijlstra 已提交
2895
void sched_exec(void)
2896
{
P
Peter Zijlstra 已提交
2897
	struct task_struct *p = current;
L
Linus Torvalds 已提交
2898
	unsigned long flags;
2899
	int dest_cpu;
2900

2901
	raw_spin_lock_irqsave(&p->pi_lock, flags);
2902
	dest_cpu = p->sched_class->select_task_rq(p, task_cpu(p), SD_BALANCE_EXEC, 0);
2903 2904
	if (dest_cpu == smp_processor_id())
		goto unlock;
P
Peter Zijlstra 已提交
2905

2906
	if (likely(cpu_active(dest_cpu))) {
2907
		struct migration_arg arg = { p, dest_cpu };
2908

2909 2910
		raw_spin_unlock_irqrestore(&p->pi_lock, flags);
		stop_one_cpu(task_cpu(p), migration_cpu_stop, &arg);
L
Linus Torvalds 已提交
2911 2912
		return;
	}
2913
unlock:
2914
	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
L
Linus Torvalds 已提交
2915
}
I
Ingo Molnar 已提交
2916

L
Linus Torvalds 已提交
2917 2918 2919
#endif

DEFINE_PER_CPU(struct kernel_stat, kstat);
2920
DEFINE_PER_CPU(struct kernel_cpustat, kernel_cpustat);
L
Linus Torvalds 已提交
2921 2922

EXPORT_PER_CPU_SYMBOL(kstat);
2923
EXPORT_PER_CPU_SYMBOL(kernel_cpustat);
L
Linus Torvalds 已提交
2924

2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941
/*
 * The function fair_sched_class.update_curr accesses the struct curr
 * and its field curr->exec_start; when called from task_sched_runtime(),
 * we observe a high rate of cache misses in practice.
 * Prefetching this data results in improved performance.
 */
static inline void prefetch_curr_exec_start(struct task_struct *p)
{
#ifdef CONFIG_FAIR_GROUP_SCHED
	struct sched_entity *curr = (&p->se)->cfs_rq->curr;
#else
	struct sched_entity *curr = (&task_rq(p)->cfs)->curr;
#endif
	prefetch(curr);
	prefetch(&curr->exec_start);
}

2942 2943 2944 2945 2946 2947 2948
/*
 * Return accounted runtime for the task.
 * In case the task is currently running, return the runtime plus current's
 * pending runtime that have not been accounted yet.
 */
unsigned long long task_sched_runtime(struct task_struct *p)
{
2949
	struct rq_flags rf;
2950
	struct rq *rq;
2951
	u64 ns;
2952

2953 2954
#if defined(CONFIG_64BIT) && defined(CONFIG_SMP)
	/*
2955
	 * 64-bit doesn't need locks to atomically read a 64-bit value.
2956 2957 2958
	 * So we have a optimization chance when the task's delta_exec is 0.
	 * Reading ->on_cpu is racy, but this is ok.
	 *
I
Ingo Molnar 已提交
2959 2960
	 * If we race with it leaving CPU, we'll take a lock. So we're correct.
	 * If we race with it entering CPU, unaccounted time is 0. This is
2961
	 * indistinguishable from the read occurring a few cycles earlier.
2962 2963
	 * If we see ->on_cpu without ->on_rq, the task is leaving, and has
	 * been accounted, so we're correct here as well.
2964
	 */
2965
	if (!p->on_cpu || !task_on_rq_queued(p))
2966 2967 2968
		return p->se.sum_exec_runtime;
#endif

2969
	rq = task_rq_lock(p, &rf);
2970 2971 2972 2973 2974 2975
	/*
	 * Must be ->curr _and_ ->on_rq.  If dequeued, we would
	 * project cycles that may never be accounted to this
	 * thread, breaking clock_gettime().
	 */
	if (task_current(rq, p) && task_on_rq_queued(p)) {
2976
		prefetch_curr_exec_start(p);
2977 2978 2979 2980
		update_rq_clock(rq);
		p->sched_class->update_curr(rq);
	}
	ns = p->se.sum_exec_runtime;
2981
	task_rq_unlock(rq, p, &rf);
2982 2983 2984

	return ns;
}
2985

2986 2987 2988 2989 2990 2991 2992 2993
/*
 * This function gets called by the timer code, with HZ frequency.
 * We call it with interrupts disabled.
 */
void scheduler_tick(void)
{
	int cpu = smp_processor_id();
	struct rq *rq = cpu_rq(cpu);
I
Ingo Molnar 已提交
2994
	struct task_struct *curr = rq->curr;
2995
	struct rq_flags rf;
2996 2997

	sched_clock_tick();
I
Ingo Molnar 已提交
2998

2999 3000
	rq_lock(rq, &rf);

3001
	update_rq_clock(rq);
P
Peter Zijlstra 已提交
3002
	curr->sched_class->task_tick(rq, curr, 0);
3003
	calc_global_load_tick(rq);
3004
	psi_task_tick(rq);
3005 3006

	rq_unlock(rq, &rf);
3007

3008
	perf_event_task_tick();
3009

3010
#ifdef CONFIG_SMP
3011
	rq->idle_balance = idle_cpu(cpu);
3012
	trigger_load_balance(rq);
3013
#endif
L
Linus Torvalds 已提交
3014 3015
}

3016
#ifdef CONFIG_NO_HZ_FULL
3017 3018 3019

struct tick_work {
	int			cpu;
3020
	atomic_t		state;
3021 3022
	struct delayed_work	work;
};
3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049
/* Values for ->state, see diagram below. */
#define TICK_SCHED_REMOTE_OFFLINE	0
#define TICK_SCHED_REMOTE_OFFLINING	1
#define TICK_SCHED_REMOTE_RUNNING	2

/*
 * State diagram for ->state:
 *
 *
 *          TICK_SCHED_REMOTE_OFFLINE
 *                    |   ^
 *                    |   |
 *                    |   | sched_tick_remote()
 *                    |   |
 *                    |   |
 *                    +--TICK_SCHED_REMOTE_OFFLINING
 *                    |   ^
 *                    |   |
 * sched_tick_start() |   | sched_tick_stop()
 *                    |   |
 *                    V   |
 *          TICK_SCHED_REMOTE_RUNNING
 *
 *
 * Other transitions get WARN_ON_ONCE(), except that sched_tick_remote()
 * and sched_tick_start() are happy to leave the state in RUNNING.
 */
3050 3051 3052 3053 3054 3055 3056 3057 3058

static struct tick_work __percpu *tick_work_cpu;

static void sched_tick_remote(struct work_struct *work)
{
	struct delayed_work *dwork = to_delayed_work(work);
	struct tick_work *twork = container_of(dwork, struct tick_work, work);
	int cpu = twork->cpu;
	struct rq *rq = cpu_rq(cpu);
3059
	struct task_struct *curr;
3060
	struct rq_flags rf;
3061
	u64 delta;
3062
	int os;
3063 3064 3065 3066 3067 3068 3069 3070

	/*
	 * Handle the tick only if it appears the remote CPU is running in full
	 * dynticks mode. The check is racy by nature, but missing a tick or
	 * having one too much is no big deal because the scheduler tick updates
	 * statistics and checks timeslices in a time-independent way, regardless
	 * of when exactly it is running.
	 */
3071 3072
	if (idle_cpu(cpu) || !tick_nohz_tick_stopped_cpu(cpu))
		goto out_requeue;
3073

3074 3075
	rq_lock_irq(rq, &rf);
	curr = rq->curr;
3076
	if (is_idle_task(curr) || cpu_is_offline(cpu))
3077
		goto out_unlock;
3078

3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090
	update_rq_clock(rq);
	delta = rq_clock_task(rq) - curr->se.exec_start;

	/*
	 * Make sure the next tick runs within a reasonable
	 * amount of time.
	 */
	WARN_ON_ONCE(delta > (u64)NSEC_PER_SEC * 3);
	curr->sched_class->task_tick(rq, curr, 0);

out_unlock:
	rq_unlock_irq(rq, &rf);
3091

3092
out_requeue:
3093 3094 3095
	/*
	 * Run the remote tick once per second (1Hz). This arbitrary
	 * frequency is large enough to avoid overload but short enough
3096 3097
	 * to keep scheduler internal stats reasonably up to date.  But
	 * first update state to reflect hotplug activity if required.
3098
	 */
3099 3100 3101 3102
	os = atomic_fetch_add_unless(&twork->state, -1, TICK_SCHED_REMOTE_RUNNING);
	WARN_ON_ONCE(os == TICK_SCHED_REMOTE_OFFLINE);
	if (os == TICK_SCHED_REMOTE_RUNNING)
		queue_delayed_work(system_unbound_wq, dwork, HZ);
3103 3104 3105 3106
}

static void sched_tick_start(int cpu)
{
3107
	int os;
3108 3109 3110 3111 3112 3113 3114 3115
	struct tick_work *twork;

	if (housekeeping_cpu(cpu, HK_FLAG_TICK))
		return;

	WARN_ON_ONCE(!tick_work_cpu);

	twork = per_cpu_ptr(tick_work_cpu, cpu);
3116 3117 3118 3119 3120 3121 3122
	os = atomic_xchg(&twork->state, TICK_SCHED_REMOTE_RUNNING);
	WARN_ON_ONCE(os == TICK_SCHED_REMOTE_RUNNING);
	if (os == TICK_SCHED_REMOTE_OFFLINE) {
		twork->cpu = cpu;
		INIT_DELAYED_WORK(&twork->work, sched_tick_remote);
		queue_delayed_work(system_unbound_wq, &twork->work, HZ);
	}
3123 3124 3125 3126 3127 3128
}

#ifdef CONFIG_HOTPLUG_CPU
static void sched_tick_stop(int cpu)
{
	struct tick_work *twork;
3129
	int os;
3130 3131 3132 3133 3134 3135 3136

	if (housekeeping_cpu(cpu, HK_FLAG_TICK))
		return;

	WARN_ON_ONCE(!tick_work_cpu);

	twork = per_cpu_ptr(tick_work_cpu, cpu);
3137 3138 3139 3140
	/* There cannot be competing actions, but don't rely on stop-machine. */
	os = atomic_xchg(&twork->state, TICK_SCHED_REMOTE_OFFLINING);
	WARN_ON_ONCE(os != TICK_SCHED_REMOTE_RUNNING);
	/* Don't cancel, as this would mess up the state machine. */
3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153
}
#endif /* CONFIG_HOTPLUG_CPU */

int __init sched_tick_offload_init(void)
{
	tick_work_cpu = alloc_percpu(struct tick_work);
	BUG_ON(!tick_work_cpu);
	return 0;
}

#else /* !CONFIG_NO_HZ_FULL */
static inline void sched_tick_start(int cpu) { }
static inline void sched_tick_stop(int cpu) { }
3154
#endif
L
Linus Torvalds 已提交
3155

3156
#if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
3157
				defined(CONFIG_TRACE_PREEMPT_TOGGLE))
3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171
/*
 * If the value passed in is equal to the current preempt count
 * then we just disabled preemption. Start timing the latency.
 */
static inline void preempt_latency_start(int val)
{
	if (preempt_count() == val) {
		unsigned long ip = get_lock_parent_ip();
#ifdef CONFIG_DEBUG_PREEMPT
		current->preempt_disable_ip = ip;
#endif
		trace_preempt_off(CALLER_ADDR0, ip);
	}
}
3172

3173
void preempt_count_add(int val)
L
Linus Torvalds 已提交
3174
{
3175
#ifdef CONFIG_DEBUG_PREEMPT
L
Linus Torvalds 已提交
3176 3177 3178
	/*
	 * Underflow?
	 */
3179 3180
	if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
		return;
3181
#endif
3182
	__preempt_count_add(val);
3183
#ifdef CONFIG_DEBUG_PREEMPT
L
Linus Torvalds 已提交
3184 3185 3186
	/*
	 * Spinlock count overflowing soon?
	 */
3187 3188
	DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
				PREEMPT_MASK - 10);
3189
#endif
3190
	preempt_latency_start(val);
L
Linus Torvalds 已提交
3191
}
3192
EXPORT_SYMBOL(preempt_count_add);
3193
NOKPROBE_SYMBOL(preempt_count_add);
L
Linus Torvalds 已提交
3194

3195 3196 3197 3198 3199 3200 3201 3202 3203 3204
/*
 * If the value passed in equals to the current preempt count
 * then we just enabled preemption. Stop timing the latency.
 */
static inline void preempt_latency_stop(int val)
{
	if (preempt_count() == val)
		trace_preempt_on(CALLER_ADDR0, get_lock_parent_ip());
}

3205
void preempt_count_sub(int val)
L
Linus Torvalds 已提交
3206
{
3207
#ifdef CONFIG_DEBUG_PREEMPT
L
Linus Torvalds 已提交
3208 3209 3210
	/*
	 * Underflow?
	 */
3211
	if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
3212
		return;
L
Linus Torvalds 已提交
3213 3214 3215
	/*
	 * Is the spinlock portion underflowing?
	 */
3216 3217 3218
	if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
			!(preempt_count() & PREEMPT_MASK)))
		return;
3219
#endif
3220

3221
	preempt_latency_stop(val);
3222
	__preempt_count_sub(val);
L
Linus Torvalds 已提交
3223
}
3224
EXPORT_SYMBOL(preempt_count_sub);
3225
NOKPROBE_SYMBOL(preempt_count_sub);
L
Linus Torvalds 已提交
3226

3227 3228 3229
#else
static inline void preempt_latency_start(int val) { }
static inline void preempt_latency_stop(int val) { }
L
Linus Torvalds 已提交
3230 3231
#endif

3232 3233 3234 3235 3236 3237 3238 3239 3240
static inline unsigned long get_preempt_disable_ip(struct task_struct *p)
{
#ifdef CONFIG_DEBUG_PREEMPT
	return p->preempt_disable_ip;
#else
	return 0;
#endif
}

L
Linus Torvalds 已提交
3241
/*
I
Ingo Molnar 已提交
3242
 * Print scheduling while atomic bug:
L
Linus Torvalds 已提交
3243
 */
I
Ingo Molnar 已提交
3244
static noinline void __schedule_bug(struct task_struct *prev)
L
Linus Torvalds 已提交
3245
{
3246 3247 3248
	/* Save this before calling printk(), since that will clobber it */
	unsigned long preempt_disable_ip = get_preempt_disable_ip(current);

3249 3250 3251
	if (oops_in_progress)
		return;

P
Peter Zijlstra 已提交
3252 3253
	printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
		prev->comm, prev->pid, preempt_count());
3254

I
Ingo Molnar 已提交
3255
	debug_show_held_locks(prev);
3256
	print_modules();
I
Ingo Molnar 已提交
3257 3258
	if (irqs_disabled())
		print_irqtrace_events(prev);
3259 3260
	if (IS_ENABLED(CONFIG_DEBUG_PREEMPT)
	    && in_atomic_preempt_off()) {
3261
		pr_err("Preemption disabled at:");
3262
		print_ip_sym(preempt_disable_ip);
3263 3264
		pr_cont("\n");
	}
3265 3266 3267
	if (panic_on_warn)
		panic("scheduling while atomic\n");

3268
	dump_stack();
3269
	add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
I
Ingo Molnar 已提交
3270
}
L
Linus Torvalds 已提交
3271

I
Ingo Molnar 已提交
3272 3273 3274 3275 3276
/*
 * Various schedule()-time debugging checks and statistics:
 */
static inline void schedule_debug(struct task_struct *prev)
{
3277
#ifdef CONFIG_SCHED_STACK_END_CHECK
J
Jann Horn 已提交
3278 3279
	if (task_stack_end_corrupted(prev))
		panic("corrupted stack end detected inside scheduler\n");
3280
#endif
3281

3282
	if (unlikely(in_atomic_preempt_off())) {
I
Ingo Molnar 已提交
3283
		__schedule_bug(prev);
3284 3285
		preempt_count_set(PREEMPT_DISABLED);
	}
3286
	rcu_sleep_check();
I
Ingo Molnar 已提交
3287

L
Linus Torvalds 已提交
3288 3289
	profile_hit(SCHED_PROFILING, __builtin_return_address(0));

3290
	schedstat_inc(this_rq()->sched_count);
I
Ingo Molnar 已提交
3291 3292 3293 3294 3295 3296
}

/*
 * Pick up the highest-prio task:
 */
static inline struct task_struct *
3297
pick_next_task(struct rq *rq, struct task_struct *prev, struct rq_flags *rf)
I
Ingo Molnar 已提交
3298
{
3299
	const struct sched_class *class;
I
Ingo Molnar 已提交
3300
	struct task_struct *p;
L
Linus Torvalds 已提交
3301 3302

	/*
3303 3304 3305 3306
	 * Optimization: we know that if all tasks are in the fair class we can
	 * call that function directly, but only if the @prev task wasn't of a
	 * higher scheduling class, because otherwise those loose the
	 * opportunity to pull in more work from other CPUs.
L
Linus Torvalds 已提交
3307
	 */
3308 3309 3310 3311
	if (likely((prev->sched_class == &idle_sched_class ||
		    prev->sched_class == &fair_sched_class) &&
		   rq->nr_running == rq->cfs.h_nr_running)) {

3312
		p = fair_sched_class.pick_next_task(rq, prev, rf);
3313 3314 3315
		if (unlikely(p == RETRY_TASK))
			goto again;

I
Ingo Molnar 已提交
3316
		/* Assumes fair_sched_class->next == idle_sched_class */
3317
		if (unlikely(!p))
3318
			p = idle_sched_class.pick_next_task(rq, prev, rf);
3319 3320

		return p;
L
Linus Torvalds 已提交
3321 3322
	}

3323
again:
3324
	for_each_class(class) {
3325
		p = class->pick_next_task(rq, prev, rf);
3326 3327 3328
		if (p) {
			if (unlikely(p == RETRY_TASK))
				goto again;
I
Ingo Molnar 已提交
3329
			return p;
3330
		}
I
Ingo Molnar 已提交
3331
	}
3332

I
Ingo Molnar 已提交
3333 3334
	/* The idle class should always have a runnable task: */
	BUG();
I
Ingo Molnar 已提交
3335
}
L
Linus Torvalds 已提交
3336

I
Ingo Molnar 已提交
3337
/*
3338
 * __schedule() is the main scheduler function.
3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372
 *
 * The main means of driving the scheduler and thus entering this function are:
 *
 *   1. Explicit blocking: mutex, semaphore, waitqueue, etc.
 *
 *   2. TIF_NEED_RESCHED flag is checked on interrupt and userspace return
 *      paths. For example, see arch/x86/entry_64.S.
 *
 *      To drive preemption between tasks, the scheduler sets the flag in timer
 *      interrupt handler scheduler_tick().
 *
 *   3. Wakeups don't really cause entry into schedule(). They add a
 *      task to the run-queue and that's it.
 *
 *      Now, if the new task added to the run-queue preempts the current
 *      task, then the wakeup sets TIF_NEED_RESCHED and schedule() gets
 *      called on the nearest possible occasion:
 *
 *       - If the kernel is preemptible (CONFIG_PREEMPT=y):
 *
 *         - in syscall or exception context, at the next outmost
 *           preempt_enable(). (this might be as soon as the wake_up()'s
 *           spin_unlock()!)
 *
 *         - in IRQ context, return from interrupt-handler to
 *           preemptible context
 *
 *       - If the kernel is not preemptible (CONFIG_PREEMPT is not set)
 *         then at the next:
 *
 *          - cond_resched() call
 *          - explicit schedule() call
 *          - return from syscall or exception to user-space
 *          - return from interrupt-handler to user-space
3373
 *
3374
 * WARNING: must be called with preemption disabled!
I
Ingo Molnar 已提交
3375
 */
3376
static void __sched notrace __schedule(bool preempt)
I
Ingo Molnar 已提交
3377 3378
{
	struct task_struct *prev, *next;
3379
	unsigned long *switch_count;
3380
	struct rq_flags rf;
I
Ingo Molnar 已提交
3381
	struct rq *rq;
3382
	int cpu;
I
Ingo Molnar 已提交
3383 3384 3385 3386 3387 3388

	cpu = smp_processor_id();
	rq = cpu_rq(cpu);
	prev = rq->curr;

	schedule_debug(prev);
L
Linus Torvalds 已提交
3389

3390
	if (sched_feat(HRTICK))
M
Mike Galbraith 已提交
3391
		hrtick_clear(rq);
P
Peter Zijlstra 已提交
3392

3393
	local_irq_disable();
3394
	rcu_note_context_switch(preempt);
3395

3396 3397 3398 3399
	/*
	 * Make sure that signal_pending_state()->signal_pending() below
	 * can't be reordered with __set_current_state(TASK_INTERRUPTIBLE)
	 * done by the caller to avoid the race with signal_wake_up().
3400 3401 3402
	 *
	 * The membarrier system call requires a full memory barrier
	 * after coming from user-space, before storing to rq->curr.
3403
	 */
3404
	rq_lock(rq, &rf);
3405
	smp_mb__after_spinlock();
L
Linus Torvalds 已提交
3406

I
Ingo Molnar 已提交
3407 3408
	/* Promote REQ to ACT */
	rq->clock_update_flags <<= 1;
3409
	update_rq_clock(rq);
3410

3411
	switch_count = &prev->nivcsw;
3412
	if (!preempt && prev->state) {
T
Tejun Heo 已提交
3413
		if (unlikely(signal_pending_state(prev->state, prev))) {
L
Linus Torvalds 已提交
3414
			prev->state = TASK_RUNNING;
T
Tejun Heo 已提交
3415
		} else {
3416
			deactivate_task(rq, prev, DEQUEUE_SLEEP | DEQUEUE_NOCLOCK);
3417 3418
			prev->on_rq = 0;

3419 3420
			if (prev->in_iowait) {
				atomic_inc(&rq->nr_iowait);
3421
				update_nr_iowait(prev, 1);
3422 3423
				delayacct_blkio_start();
			}
T
Tejun Heo 已提交
3424
		}
I
Ingo Molnar 已提交
3425
		switch_count = &prev->nvcsw;
L
Linus Torvalds 已提交
3426 3427
	}

3428
	next = pick_next_task(rq, prev, &rf);
3429
	clear_tsk_need_resched(prev);
3430
	clear_preempt_need_resched();
L
Linus Torvalds 已提交
3431 3432 3433 3434

	if (likely(prev != next)) {
		rq->nr_switches++;
		rq->curr = next;
3435 3436 3437
		/*
		 * The membarrier system call requires each architecture
		 * to have a full memory barrier after updating
3438 3439 3440 3441 3442 3443 3444 3445 3446 3447
		 * rq->curr, before returning to user-space.
		 *
		 * Here are the schemes providing that barrier on the
		 * various architectures:
		 * - mm ? switch_mm() : mmdrop() for x86, s390, sparc, PowerPC.
		 *   switch_mm() rely on membarrier_arch_switch_mm() on PowerPC.
		 * - finish_lock_switch() for weakly-ordered
		 *   architectures where spin_unlock is a full barrier,
		 * - switch_to() for arm64 (weakly-ordered, spin_unlock
		 *   is a RELEASE barrier),
3448
		 */
L
Linus Torvalds 已提交
3449 3450
		++*switch_count;

3451 3452
		psi_sched_switch(prev, next, !task_on_rq_queued(prev));

3453
		trace_sched_switch(preempt, prev, next);
I
Ingo Molnar 已提交
3454 3455 3456

		/* Also unlocks the rq: */
		rq = context_switch(rq, prev, next, &rf);
3457
	} else {
3458
		rq->clock_update_flags &= ~(RQCF_ACT_SKIP|RQCF_REQ_SKIP);
3459
		rq_unlock_irq(rq, &rf);
3460
	}
L
Linus Torvalds 已提交
3461

3462
	balance_callback(rq);
L
Linus Torvalds 已提交
3463
}
3464

3465 3466
void __noreturn do_task_dead(void)
{
I
Ingo Molnar 已提交
3467
	/* Causes final put_task_struct in finish_task_switch(): */
3468
	set_special_state(TASK_DEAD);
I
Ingo Molnar 已提交
3469 3470 3471 3472

	/* Tell freezer to ignore us: */
	current->flags |= PF_NOFREEZE;

3473 3474
	__schedule(false);
	BUG();
I
Ingo Molnar 已提交
3475 3476

	/* Avoid "noreturn function does return" - but don't continue if BUG() is a NOP: */
3477
	for (;;)
I
Ingo Molnar 已提交
3478
		cpu_relax();
3479 3480
}

3481 3482
static inline void sched_submit_work(struct task_struct *tsk)
{
3483
	if (!tsk->state || tsk_is_pi_blocked(tsk))
3484
		return;
3485 3486 3487 3488 3489 3490 3491 3492

	/*
	 * If a worker went to sleep, notify and ask workqueue whether
	 * it wants to wake up a task to maintain concurrency.
	 * As this function is called inside the schedule() context,
	 * we disable preemption to avoid it calling schedule() again
	 * in the possible wakeup of a kworker.
	 */
3493
	if (tsk->flags & (PF_WQ_WORKER | PF_IO_WORKER)) {
3494
		preempt_disable();
3495 3496 3497 3498
		if (tsk->flags & PF_WQ_WORKER)
			wq_worker_sleeping(tsk);
		else
			io_wq_worker_sleeping(tsk);
3499 3500 3501
		preempt_enable_no_resched();
	}

3502 3503 3504 3505 3506 3507 3508 3509
	/*
	 * If we are going to sleep and we have plugged IO queued,
	 * make sure to submit it to avoid deadlocks.
	 */
	if (blk_needs_flush_plug(tsk))
		blk_schedule_flush_plug(tsk);
}

3510 3511
static void sched_update_worker(struct task_struct *tsk)
{
3512 3513 3514 3515 3516 3517
	if (tsk->flags & (PF_WQ_WORKER | PF_IO_WORKER)) {
		if (tsk->flags & PF_WQ_WORKER)
			wq_worker_running(tsk);
		else
			io_wq_worker_running(tsk);
	}
3518 3519
}

3520
asmlinkage __visible void __sched schedule(void)
3521
{
3522 3523 3524
	struct task_struct *tsk = current;

	sched_submit_work(tsk);
3525
	do {
3526
		preempt_disable();
3527
		__schedule(false);
3528
		sched_preempt_enable_no_resched();
3529
	} while (need_resched());
3530
	sched_update_worker(tsk);
3531
}
L
Linus Torvalds 已提交
3532 3533
EXPORT_SYMBOL(schedule);

3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558
/*
 * synchronize_rcu_tasks() makes sure that no task is stuck in preempted
 * state (have scheduled out non-voluntarily) by making sure that all
 * tasks have either left the run queue or have gone into user space.
 * As idle tasks do not do either, they must not ever be preempted
 * (schedule out non-voluntarily).
 *
 * schedule_idle() is similar to schedule_preempt_disable() except that it
 * never enables preemption because it does not call sched_submit_work().
 */
void __sched schedule_idle(void)
{
	/*
	 * As this skips calling sched_submit_work(), which the idle task does
	 * regardless because that function is a nop when the task is in a
	 * TASK_RUNNING state, make sure this isn't used someplace that the
	 * current task can be in any other state. Note, idle is always in the
	 * TASK_RUNNING state.
	 */
	WARN_ON_ONCE(current->state);
	do {
		__schedule(false);
	} while (need_resched());
}

3559
#ifdef CONFIG_CONTEXT_TRACKING
3560
asmlinkage __visible void __sched schedule_user(void)
3561 3562 3563 3564 3565 3566
{
	/*
	 * If we come here after a random call to set_need_resched(),
	 * or we have been woken up remotely but the IPI has not yet arrived,
	 * we haven't yet exited the RCU idle mode. Do it here manually until
	 * we find a better solution.
3567 3568
	 *
	 * NB: There are buggy callers of this function.  Ideally we
3569
	 * should warn if prev_state != CONTEXT_USER, but that will trigger
3570
	 * too frequently to make sense yet.
3571
	 */
3572
	enum ctx_state prev_state = exception_enter();
3573
	schedule();
3574
	exception_exit(prev_state);
3575 3576 3577
}
#endif

3578 3579 3580 3581 3582 3583 3584
/**
 * schedule_preempt_disabled - called with preemption disabled
 *
 * Returns with preemption disabled. Note: preempt_count must be 1
 */
void __sched schedule_preempt_disabled(void)
{
3585
	sched_preempt_enable_no_resched();
3586 3587 3588 3589
	schedule();
	preempt_disable();
}

3590
static void __sched notrace preempt_schedule_common(void)
3591 3592
{
	do {
3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605
		/*
		 * Because the function tracer can trace preempt_count_sub()
		 * and it also uses preempt_enable/disable_notrace(), if
		 * NEED_RESCHED is set, the preempt_enable_notrace() called
		 * by the function tracer will call this function again and
		 * cause infinite recursion.
		 *
		 * Preemption must be disabled here before the function
		 * tracer can trace. Break up preempt_disable() into two
		 * calls. One to disable preemption without fear of being
		 * traced. The other to still record the preemption latency,
		 * which can also be traced by the function tracer.
		 */
3606
		preempt_disable_notrace();
3607
		preempt_latency_start(1);
3608
		__schedule(true);
3609
		preempt_latency_stop(1);
3610
		preempt_enable_no_resched_notrace();
3611 3612 3613 3614 3615 3616 3617 3618

		/*
		 * Check again in case we missed a preemption opportunity
		 * between schedule and now.
		 */
	} while (need_resched());
}

L
Linus Torvalds 已提交
3619 3620
#ifdef CONFIG_PREEMPT
/*
3621
 * this is the entry point to schedule() from in-kernel preemption
I
Ingo Molnar 已提交
3622
 * off of preempt_enable. Kernel preemptions off return from interrupt
L
Linus Torvalds 已提交
3623 3624
 * occur there and call schedule directly.
 */
3625
asmlinkage __visible void __sched notrace preempt_schedule(void)
L
Linus Torvalds 已提交
3626 3627 3628
{
	/*
	 * If there is a non-zero preempt_count or interrupts are disabled,
I
Ingo Molnar 已提交
3629
	 * we do not want to preempt the current task. Just return..
L
Linus Torvalds 已提交
3630
	 */
3631
	if (likely(!preemptible()))
L
Linus Torvalds 已提交
3632 3633
		return;

3634
	preempt_schedule_common();
L
Linus Torvalds 已提交
3635
}
3636
NOKPROBE_SYMBOL(preempt_schedule);
L
Linus Torvalds 已提交
3637
EXPORT_SYMBOL(preempt_schedule);
3638 3639

/**
3640
 * preempt_schedule_notrace - preempt_schedule called by tracing
3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652
 *
 * The tracing infrastructure uses preempt_enable_notrace to prevent
 * recursion and tracing preempt enabling caused by the tracing
 * infrastructure itself. But as tracing can happen in areas coming
 * from userspace or just about to enter userspace, a preempt enable
 * can occur before user_exit() is called. This will cause the scheduler
 * to be called when the system is still in usermode.
 *
 * To prevent this, the preempt_enable_notrace will use this function
 * instead of preempt_schedule() to exit user context if needed before
 * calling the scheduler.
 */
3653
asmlinkage __visible void __sched notrace preempt_schedule_notrace(void)
3654 3655 3656 3657 3658 3659 3660
{
	enum ctx_state prev_ctx;

	if (likely(!preemptible()))
		return;

	do {
3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673
		/*
		 * Because the function tracer can trace preempt_count_sub()
		 * and it also uses preempt_enable/disable_notrace(), if
		 * NEED_RESCHED is set, the preempt_enable_notrace() called
		 * by the function tracer will call this function again and
		 * cause infinite recursion.
		 *
		 * Preemption must be disabled here before the function
		 * tracer can trace. Break up preempt_disable() into two
		 * calls. One to disable preemption without fear of being
		 * traced. The other to still record the preemption latency,
		 * which can also be traced by the function tracer.
		 */
3674
		preempt_disable_notrace();
3675
		preempt_latency_start(1);
3676 3677 3678 3679 3680 3681
		/*
		 * Needs preempt disabled in case user_exit() is traced
		 * and the tracer calls preempt_enable_notrace() causing
		 * an infinite recursion.
		 */
		prev_ctx = exception_enter();
3682
		__schedule(true);
3683 3684
		exception_exit(prev_ctx);

3685
		preempt_latency_stop(1);
3686
		preempt_enable_no_resched_notrace();
3687 3688
	} while (need_resched());
}
3689
EXPORT_SYMBOL_GPL(preempt_schedule_notrace);
3690

3691
#endif /* CONFIG_PREEMPT */
L
Linus Torvalds 已提交
3692 3693

/*
3694
 * this is the entry point to schedule() from kernel preemption
L
Linus Torvalds 已提交
3695 3696 3697 3698
 * off of irq context.
 * Note, that this is called and return with irqs disabled. This will
 * protect us against recursive calling from irq.
 */
3699
asmlinkage __visible void __sched preempt_schedule_irq(void)
L
Linus Torvalds 已提交
3700
{
3701
	enum ctx_state prev_state;
3702

3703
	/* Catch callers which need to be fixed */
3704
	BUG_ON(preempt_count() || !irqs_disabled());
L
Linus Torvalds 已提交
3705

3706 3707
	prev_state = exception_enter();

3708
	do {
3709
		preempt_disable();
3710
		local_irq_enable();
3711
		__schedule(true);
3712
		local_irq_disable();
3713
		sched_preempt_enable_no_resched();
3714
	} while (need_resched());
3715 3716

	exception_exit(prev_state);
L
Linus Torvalds 已提交
3717 3718
}

3719
int default_wake_function(wait_queue_entry_t *curr, unsigned mode, int wake_flags,
I
Ingo Molnar 已提交
3720
			  void *key)
L
Linus Torvalds 已提交
3721
{
P
Peter Zijlstra 已提交
3722
	return try_to_wake_up(curr->private, mode, wake_flags);
L
Linus Torvalds 已提交
3723 3724 3725
}
EXPORT_SYMBOL(default_wake_function);

3726 3727
#ifdef CONFIG_RT_MUTEXES

3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742
static inline int __rt_effective_prio(struct task_struct *pi_task, int prio)
{
	if (pi_task)
		prio = min(prio, pi_task->prio);

	return prio;
}

static inline int rt_effective_prio(struct task_struct *p, int prio)
{
	struct task_struct *pi_task = rt_mutex_get_top_task(p);

	return __rt_effective_prio(pi_task, prio);
}

3743 3744
/*
 * rt_mutex_setprio - set the current priority of a task
3745 3746
 * @p: task to boost
 * @pi_task: donor task
3747 3748 3749 3750
 *
 * This function changes the 'effective' priority of a task. It does
 * not touch ->normal_prio like __setscheduler().
 *
3751 3752
 * Used by the rt_mutex code to implement priority inheritance
 * logic. Call site only calls if the priority of the task changed.
3753
 */
3754
void rt_mutex_setprio(struct task_struct *p, struct task_struct *pi_task)
3755
{
3756
	int prio, oldprio, queued, running, queue_flag =
3757
		DEQUEUE_SAVE | DEQUEUE_MOVE | DEQUEUE_NOCLOCK;
3758
	const struct sched_class *prev_class;
3759 3760
	struct rq_flags rf;
	struct rq *rq;
3761

3762 3763 3764 3765 3766 3767 3768 3769
	/* XXX used to be waiter->prio, not waiter->task->prio */
	prio = __rt_effective_prio(pi_task, p->normal_prio);

	/*
	 * If nothing changed; bail early.
	 */
	if (p->pi_top_task == pi_task && prio == p->prio && !dl_prio(prio))
		return;
3770

3771
	rq = __task_rq_lock(p, &rf);
3772
	update_rq_clock(rq);
3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789
	/*
	 * Set under pi_lock && rq->lock, such that the value can be used under
	 * either lock.
	 *
	 * Note that there is loads of tricky to make this pointer cache work
	 * right. rt_mutex_slowunlock()+rt_mutex_postunlock() work together to
	 * ensure a task is de-boosted (pi_task is set to NULL) before the
	 * task is allowed to run again (and can exit). This ensures the pointer
	 * points to a blocked task -- which guaratees the task is present.
	 */
	p->pi_top_task = pi_task;

	/*
	 * For FIFO/RR we only need to set prio, if that matches we're done.
	 */
	if (prio == p->prio && !dl_prio(prio))
		goto out_unlock;
3790

3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808
	/*
	 * Idle task boosting is a nono in general. There is one
	 * exception, when PREEMPT_RT and NOHZ is active:
	 *
	 * The idle task calls get_next_timer_interrupt() and holds
	 * the timer wheel base->lock on the CPU and another CPU wants
	 * to access the timer (probably to cancel it). We can safely
	 * ignore the boosting request, as the idle CPU runs this code
	 * with interrupts disabled and will complete the lock
	 * protected section without being interrupted. So there is no
	 * real need to boost.
	 */
	if (unlikely(p == rq->idle)) {
		WARN_ON(p != rq->curr);
		WARN_ON(p->pi_blocked_on);
		goto out_unlock;
	}

3809
	trace_sched_pi_setprio(p, pi_task);
3810
	oldprio = p->prio;
3811 3812 3813 3814

	if (oldprio == prio)
		queue_flag &= ~DEQUEUE_MOVE;

3815
	prev_class = p->sched_class;
3816
	queued = task_on_rq_queued(p);
3817
	running = task_current(rq, p);
3818
	if (queued)
3819
		dequeue_task(rq, p, queue_flag);
3820
	if (running)
3821
		put_prev_task(rq, p);
I
Ingo Molnar 已提交
3822

3823 3824 3825 3826 3827 3828 3829 3830 3831 3832
	/*
	 * Boosting condition are:
	 * 1. -rt task is running and holds mutex A
	 *      --> -dl task blocks on mutex A
	 *
	 * 2. -dl task is running and holds mutex A
	 *      --> -dl task blocks on mutex A and could preempt the
	 *          running task
	 */
	if (dl_prio(prio)) {
3833 3834
		if (!dl_prio(p->normal_prio) ||
		    (pi_task && dl_entity_preempt(&pi_task->dl, &p->dl))) {
3835
			p->dl.dl_boosted = 1;
3836
			queue_flag |= ENQUEUE_REPLENISH;
3837 3838
		} else
			p->dl.dl_boosted = 0;
3839
		p->sched_class = &dl_sched_class;
3840 3841 3842 3843
	} else if (rt_prio(prio)) {
		if (dl_prio(oldprio))
			p->dl.dl_boosted = 0;
		if (oldprio < prio)
3844
			queue_flag |= ENQUEUE_HEAD;
I
Ingo Molnar 已提交
3845
		p->sched_class = &rt_sched_class;
3846 3847 3848
	} else {
		if (dl_prio(oldprio))
			p->dl.dl_boosted = 0;
3849 3850
		if (rt_prio(oldprio))
			p->rt.timeout = 0;
I
Ingo Molnar 已提交
3851
		p->sched_class = &fair_sched_class;
3852
	}
I
Ingo Molnar 已提交
3853

3854 3855
	p->prio = prio;

3856
	if (queued)
3857
		enqueue_task(rq, p, queue_flag);
3858
	if (running)
3859
		set_curr_task(rq, p);
3860

P
Peter Zijlstra 已提交
3861
	check_class_changed(rq, p, prev_class, oldprio);
3862
out_unlock:
I
Ingo Molnar 已提交
3863 3864
	/* Avoid rq from going away on us: */
	preempt_disable();
3865
	__task_rq_unlock(rq, &rf);
3866 3867 3868

	balance_callback(rq);
	preempt_enable();
3869
}
3870 3871 3872 3873 3874
#else
static inline int rt_effective_prio(struct task_struct *p, int prio)
{
	return prio;
}
3875
#endif
3876

3877
void set_user_nice(struct task_struct *p, long nice)
L
Linus Torvalds 已提交
3878
{
P
Peter Zijlstra 已提交
3879 3880
	bool queued, running;
	int old_prio, delta;
3881
	struct rq_flags rf;
3882
	struct rq *rq;
L
Linus Torvalds 已提交
3883

3884
	if (task_nice(p) == nice || nice < MIN_NICE || nice > MAX_NICE)
L
Linus Torvalds 已提交
3885 3886 3887 3888 3889
		return;
	/*
	 * We have to be careful, if called from sys_setpriority(),
	 * the task might be in the middle of scheduling on another CPU.
	 */
3890
	rq = task_rq_lock(p, &rf);
3891 3892
	update_rq_clock(rq);

L
Linus Torvalds 已提交
3893 3894 3895 3896
	/*
	 * The RT priorities are set via sched_setscheduler(), but we still
	 * allow the 'normal' nice value to be set - but as expected
	 * it wont have any effect on scheduling until the task is
3897
	 * SCHED_DEADLINE, SCHED_FIFO or SCHED_RR:
L
Linus Torvalds 已提交
3898
	 */
3899
	if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
L
Linus Torvalds 已提交
3900 3901 3902
		p->static_prio = NICE_TO_PRIO(nice);
		goto out_unlock;
	}
3903
	queued = task_on_rq_queued(p);
P
Peter Zijlstra 已提交
3904
	running = task_current(rq, p);
3905
	if (queued)
3906
		dequeue_task(rq, p, DEQUEUE_SAVE | DEQUEUE_NOCLOCK);
P
Peter Zijlstra 已提交
3907 3908
	if (running)
		put_prev_task(rq, p);
L
Linus Torvalds 已提交
3909 3910

	p->static_prio = NICE_TO_PRIO(nice);
3911
	set_load_weight(p, true);
3912 3913 3914
	old_prio = p->prio;
	p->prio = effective_prio(p);
	delta = p->prio - old_prio;
L
Linus Torvalds 已提交
3915

3916
	if (queued) {
3917
		enqueue_task(rq, p, ENQUEUE_RESTORE | ENQUEUE_NOCLOCK);
L
Linus Torvalds 已提交
3918
		/*
3919 3920
		 * If the task increased its priority or is running and
		 * lowered its priority, then reschedule its CPU:
L
Linus Torvalds 已提交
3921
		 */
3922
		if (delta < 0 || (delta > 0 && task_running(rq, p)))
3923
			resched_curr(rq);
L
Linus Torvalds 已提交
3924
	}
P
Peter Zijlstra 已提交
3925 3926
	if (running)
		set_curr_task(rq, p);
L
Linus Torvalds 已提交
3927
out_unlock:
3928
	task_rq_unlock(rq, p, &rf);
L
Linus Torvalds 已提交
3929 3930 3931
}
EXPORT_SYMBOL(set_user_nice);

M
Matt Mackall 已提交
3932 3933 3934 3935 3936
/*
 * can_nice - check if a task can reduce its nice value
 * @p: task
 * @nice: nice value
 */
3937
int can_nice(const struct task_struct *p, const int nice)
M
Matt Mackall 已提交
3938
{
I
Ingo Molnar 已提交
3939
	/* Convert nice value [19,-20] to rlimit style value [1,40]: */
3940
	int nice_rlim = nice_to_rlimit(nice);
3941

3942
	return (nice_rlim <= task_rlimit(p, RLIMIT_NICE) ||
M
Matt Mackall 已提交
3943 3944 3945
		capable(CAP_SYS_NICE));
}

L
Linus Torvalds 已提交
3946 3947 3948 3949 3950 3951 3952 3953 3954
#ifdef __ARCH_WANT_SYS_NICE

/*
 * sys_nice - change the priority of the current process.
 * @increment: priority increment
 *
 * sys_setpriority is a more generic, but much slower function that
 * does similar things.
 */
3955
SYSCALL_DEFINE1(nice, int, increment)
L
Linus Torvalds 已提交
3956
{
3957
	long nice, retval;
L
Linus Torvalds 已提交
3958 3959 3960 3961 3962 3963

	/*
	 * Setpriority might change our priority at the same moment.
	 * We don't have to worry. Conceptually one call occurs first
	 * and we have a single winner.
	 */
3964
	increment = clamp(increment, -NICE_WIDTH, NICE_WIDTH);
3965
	nice = task_nice(current) + increment;
L
Linus Torvalds 已提交
3966

3967
	nice = clamp_val(nice, MIN_NICE, MAX_NICE);
M
Matt Mackall 已提交
3968 3969 3970
	if (increment < 0 && !can_nice(current, nice))
		return -EPERM;

L
Linus Torvalds 已提交
3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 3984
	retval = security_task_setnice(current, nice);
	if (retval)
		return retval;

	set_user_nice(current, nice);
	return 0;
}

#endif

/**
 * task_prio - return the priority value of a given task.
 * @p: the task in question.
 *
3985
 * Return: The priority value as seen by users in /proc.
L
Linus Torvalds 已提交
3986 3987 3988
 * RT tasks are offset by -200. Normal tasks are centered
 * around 0, value goes from -16 to +15.
 */
3989
int task_prio(const struct task_struct *p)
L
Linus Torvalds 已提交
3990 3991 3992 3993 3994
{
	return p->prio - MAX_RT_PRIO;
}

/**
I
Ingo Molnar 已提交
3995
 * idle_cpu - is a given CPU idle currently?
L
Linus Torvalds 已提交
3996
 * @cpu: the processor in question.
3997 3998
 *
 * Return: 1 if the CPU is currently idle. 0 otherwise.
L
Linus Torvalds 已提交
3999 4000 4001
 */
int idle_cpu(int cpu)
{
T
Thomas Gleixner 已提交
4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015
	struct rq *rq = cpu_rq(cpu);

	if (rq->curr != rq->idle)
		return 0;

	if (rq->nr_running)
		return 0;

#ifdef CONFIG_SMP
	if (!llist_empty(&rq->wake_list))
		return 0;
#endif

	return 1;
L
Linus Torvalds 已提交
4016 4017
}

4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028
/**
 * available_idle_cpu - is a given CPU idle for enqueuing work.
 * @cpu: the CPU in question.
 *
 * Return: 1 if the CPU is currently idle. 0 otherwise.
 */
int available_idle_cpu(int cpu)
{
	if (!idle_cpu(cpu))
		return 0;

4029 4030 4031
	if (vcpu_is_preempted(cpu))
		return 0;

T
Thomas Gleixner 已提交
4032
	return 1;
L
Linus Torvalds 已提交
4033 4034 4035
}

/**
I
Ingo Molnar 已提交
4036
 * idle_task - return the idle task for a given CPU.
L
Linus Torvalds 已提交
4037
 * @cpu: the processor in question.
4038
 *
I
Ingo Molnar 已提交
4039
 * Return: The idle task for the CPU @cpu.
L
Linus Torvalds 已提交
4040
 */
4041
struct task_struct *idle_task(int cpu)
L
Linus Torvalds 已提交
4042 4043 4044 4045 4046 4047 4048
{
	return cpu_rq(cpu)->idle;
}

/**
 * find_process_by_pid - find a process with a matching PID value.
 * @pid: the pid in question.
4049 4050
 *
 * The task of @pid, if found. %NULL otherwise.
L
Linus Torvalds 已提交
4051
 */
A
Alexey Dobriyan 已提交
4052
static struct task_struct *find_process_by_pid(pid_t pid)
L
Linus Torvalds 已提交
4053
{
4054
	return pid ? find_task_by_vpid(pid) : current;
L
Linus Torvalds 已提交
4055 4056
}

4057 4058 4059 4060 4061 4062
/*
 * sched_setparam() passes in -1 for its policy, to let the functions
 * it calls know not to change it.
 */
#define SETPARAM_POLICY	-1

4063 4064
static void __setscheduler_params(struct task_struct *p,
		const struct sched_attr *attr)
L
Linus Torvalds 已提交
4065
{
4066 4067
	int policy = attr->sched_policy;

4068
	if (policy == SETPARAM_POLICY)
4069 4070
		policy = p->policy;

L
Linus Torvalds 已提交
4071
	p->policy = policy;
4072

4073 4074
	if (dl_policy(policy))
		__setparam_dl(p, attr);
4075
	else if (fair_policy(policy))
4076 4077
		p->static_prio = NICE_TO_PRIO(attr->sched_nice);

4078 4079 4080 4081 4082 4083
	/*
	 * __sched_setscheduler() ensures attr->sched_priority == 0 when
	 * !rt_policy. Always setting this ensures that things like
	 * getparam()/getattr() don't report silly values for !rt tasks.
	 */
	p->rt_priority = attr->sched_priority;
4084
	p->normal_prio = normal_prio(p);
4085
	set_load_weight(p, true);
4086
}
4087

4088 4089
/* Actually do priority change: must hold pi & rq lock. */
static void __setscheduler(struct rq *rq, struct task_struct *p,
4090
			   const struct sched_attr *attr, bool keep_boost)
4091 4092
{
	__setscheduler_params(p, attr);
4093

4094
	/*
4095 4096
	 * Keep a potential priority boosting if called from
	 * sched_setscheduler().
4097
	 */
4098
	p->prio = normal_prio(p);
4099
	if (keep_boost)
4100
		p->prio = rt_effective_prio(p, p->prio);
4101

4102 4103 4104
	if (dl_prio(p->prio))
		p->sched_class = &dl_sched_class;
	else if (rt_prio(p->prio))
4105 4106 4107
		p->sched_class = &rt_sched_class;
	else
		p->sched_class = &fair_sched_class;
L
Linus Torvalds 已提交
4108
}
4109

4110
/*
I
Ingo Molnar 已提交
4111
 * Check the target process has a UID that matches the current process's:
4112 4113 4114 4115 4116 4117 4118 4119
 */
static bool check_same_owner(struct task_struct *p)
{
	const struct cred *cred = current_cred(), *pcred;
	bool match;

	rcu_read_lock();
	pcred = __task_cred(p);
4120 4121
	match = (uid_eq(cred->euid, pcred->euid) ||
		 uid_eq(cred->euid, pcred->uid));
4122 4123 4124 4125
	rcu_read_unlock();
	return match;
}

4126 4127
static int __sched_setscheduler(struct task_struct *p,
				const struct sched_attr *attr,
4128
				bool user, bool pi)
L
Linus Torvalds 已提交
4129
{
4130 4131
	int newprio = dl_policy(attr->sched_policy) ? MAX_DL_PRIO - 1 :
		      MAX_RT_PRIO - 1 - attr->sched_priority;
4132
	int retval, oldprio, oldpolicy = -1, queued, running;
4133
	int new_effective_prio, policy = attr->sched_policy;
4134
	const struct sched_class *prev_class;
4135
	struct rq_flags rf;
4136
	int reset_on_fork;
4137
	int queue_flags = DEQUEUE_SAVE | DEQUEUE_MOVE | DEQUEUE_NOCLOCK;
4138
	struct rq *rq;
L
Linus Torvalds 已提交
4139

4140 4141
	/* The pi code expects interrupts enabled */
	BUG_ON(pi && in_interrupt());
L
Linus Torvalds 已提交
4142
recheck:
I
Ingo Molnar 已提交
4143
	/* Double check policy once rq lock held: */
4144 4145
	if (policy < 0) {
		reset_on_fork = p->sched_reset_on_fork;
L
Linus Torvalds 已提交
4146
		policy = oldpolicy = p->policy;
4147
	} else {
4148
		reset_on_fork = !!(attr->sched_flags & SCHED_FLAG_RESET_ON_FORK);
4149

4150
		if (!valid_policy(policy))
4151 4152 4153
			return -EINVAL;
	}

4154
	if (attr->sched_flags & ~(SCHED_FLAG_ALL | SCHED_FLAG_SUGOV))
4155 4156
		return -EINVAL;

L
Linus Torvalds 已提交
4157 4158
	/*
	 * Valid priorities for SCHED_FIFO and SCHED_RR are
I
Ingo Molnar 已提交
4159 4160
	 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
	 * SCHED_BATCH and SCHED_IDLE is 0.
L
Linus Torvalds 已提交
4161
	 */
4162
	if ((p->mm && attr->sched_priority > MAX_USER_RT_PRIO-1) ||
4163
	    (!p->mm && attr->sched_priority > MAX_RT_PRIO-1))
L
Linus Torvalds 已提交
4164
		return -EINVAL;
4165 4166
	if ((dl_policy(policy) && !__checkparam_dl(attr)) ||
	    (rt_policy(policy) != (attr->sched_priority != 0)))
L
Linus Torvalds 已提交
4167 4168
		return -EINVAL;

4169 4170 4171
	/*
	 * Allow unprivileged RT tasks to decrease priority:
	 */
4172
	if (user && !capable(CAP_SYS_NICE)) {
4173
		if (fair_policy(policy)) {
4174
			if (attr->sched_nice < task_nice(p) &&
4175
			    !can_nice(p, attr->sched_nice))
4176 4177 4178
				return -EPERM;
		}

4179
		if (rt_policy(policy)) {
4180 4181
			unsigned long rlim_rtprio =
					task_rlimit(p, RLIMIT_RTPRIO);
4182

I
Ingo Molnar 已提交
4183
			/* Can't set/change the rt policy: */
4184 4185 4186
			if (policy != p->policy && !rlim_rtprio)
				return -EPERM;

I
Ingo Molnar 已提交
4187
			/* Can't increase priority: */
4188 4189
			if (attr->sched_priority > p->rt_priority &&
			    attr->sched_priority > rlim_rtprio)
4190 4191
				return -EPERM;
		}
4192

4193 4194 4195 4196 4197 4198 4199 4200 4201
		 /*
		  * Can't set/change SCHED_DEADLINE policy at all for now
		  * (safest behavior); in the future we would like to allow
		  * unprivileged DL tasks to increase their relative deadline
		  * or reduce their runtime (both ways reducing utilization)
		  */
		if (dl_policy(policy))
			return -EPERM;

I
Ingo Molnar 已提交
4202
		/*
4203 4204
		 * Treat SCHED_IDLE as nice 20. Only allow a switch to
		 * SCHED_NORMAL if the RLIMIT_NICE would normally permit it.
I
Ingo Molnar 已提交
4205
		 */
4206
		if (idle_policy(p->policy) && !idle_policy(policy)) {
4207
			if (!can_nice(p, task_nice(p)))
4208 4209
				return -EPERM;
		}
4210

I
Ingo Molnar 已提交
4211
		/* Can't change other user's priorities: */
4212
		if (!check_same_owner(p))
4213
			return -EPERM;
4214

I
Ingo Molnar 已提交
4215
		/* Normal users shall not reset the sched_reset_on_fork flag: */
4216 4217
		if (p->sched_reset_on_fork && !reset_on_fork)
			return -EPERM;
4218
	}
L
Linus Torvalds 已提交
4219

4220
	if (user) {
4221 4222 4223
		if (attr->sched_flags & SCHED_FLAG_SUGOV)
			return -EINVAL;

4224
		retval = security_task_setscheduler(p);
4225 4226 4227 4228
		if (retval)
			return retval;
	}

4229
	/*
I
Ingo Molnar 已提交
4230
	 * Make sure no PI-waiters arrive (or leave) while we are
4231
	 * changing the priority of the task:
4232
	 *
L
Lucas De Marchi 已提交
4233
	 * To be able to change p->policy safely, the appropriate
L
Linus Torvalds 已提交
4234 4235
	 * runqueue lock must be held.
	 */
4236
	rq = task_rq_lock(p, &rf);
4237
	update_rq_clock(rq);
4238

4239
	/*
I
Ingo Molnar 已提交
4240
	 * Changing the policy of the stop threads its a very bad idea:
4241 4242
	 */
	if (p == rq->stop) {
4243
		task_rq_unlock(rq, p, &rf);
4244 4245 4246
		return -EINVAL;
	}

4247
	/*
4248 4249
	 * If not changing anything there's no need to proceed further,
	 * but store a possible modification of reset_on_fork.
4250
	 */
4251
	if (unlikely(policy == p->policy)) {
4252
		if (fair_policy(policy) && attr->sched_nice != task_nice(p))
4253 4254 4255
			goto change;
		if (rt_policy(policy) && attr->sched_priority != p->rt_priority)
			goto change;
4256
		if (dl_policy(policy) && dl_param_changed(p, attr))
4257
			goto change;
4258

4259
		p->sched_reset_on_fork = reset_on_fork;
4260
		task_rq_unlock(rq, p, &rf);
4261 4262
		return 0;
	}
4263
change:
4264

4265
	if (user) {
4266
#ifdef CONFIG_RT_GROUP_SCHED
4267 4268 4269 4270 4271
		/*
		 * Do not allow realtime tasks into groups that have no runtime
		 * assigned.
		 */
		if (rt_bandwidth_enabled() && rt_policy(policy) &&
4272 4273
				task_group(p)->rt_bandwidth.rt_runtime == 0 &&
				!task_group_is_autogroup(task_group(p))) {
4274
			task_rq_unlock(rq, p, &rf);
4275 4276 4277
			return -EPERM;
		}
#endif
4278
#ifdef CONFIG_SMP
4279 4280
		if (dl_bandwidth_enabled() && dl_policy(policy) &&
				!(attr->sched_flags & SCHED_FLAG_SUGOV)) {
4281 4282 4283 4284 4285 4286 4287
			cpumask_t *span = rq->rd->span;

			/*
			 * Don't allow tasks with an affinity mask smaller than
			 * the entire root_domain to become SCHED_DEADLINE. We
			 * will also fail if there's no bandwidth available.
			 */
4288 4289
			if (!cpumask_subset(span, &p->cpus_allowed) ||
			    rq->rd->dl_bw.bw == 0) {
4290
				task_rq_unlock(rq, p, &rf);
4291 4292 4293 4294 4295
				return -EPERM;
			}
		}
#endif
	}
4296

I
Ingo Molnar 已提交
4297
	/* Re-check policy now with rq lock held: */
L
Linus Torvalds 已提交
4298 4299
	if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
		policy = oldpolicy = -1;
4300
		task_rq_unlock(rq, p, &rf);
L
Linus Torvalds 已提交
4301 4302
		goto recheck;
	}
4303 4304 4305 4306 4307 4308

	/*
	 * If setscheduling to SCHED_DEADLINE (or changing the parameters
	 * of a SCHED_DEADLINE task) we need to check if enough bandwidth
	 * is available.
	 */
4309
	if ((dl_policy(policy) || dl_task(p)) && sched_dl_overflow(p, policy, attr)) {
4310
		task_rq_unlock(rq, p, &rf);
4311 4312 4313
		return -EBUSY;
	}

4314 4315 4316
	p->sched_reset_on_fork = reset_on_fork;
	oldprio = p->prio;

4317 4318 4319 4320 4321 4322 4323 4324
	if (pi) {
		/*
		 * Take priority boosted tasks into account. If the new
		 * effective priority is unchanged, we just store the new
		 * normal parameters and do not touch the scheduler class and
		 * the runqueue. This will be done when the task deboost
		 * itself.
		 */
4325
		new_effective_prio = rt_effective_prio(p, newprio);
4326 4327
		if (new_effective_prio == oldprio)
			queue_flags &= ~DEQUEUE_MOVE;
4328 4329
	}

4330
	queued = task_on_rq_queued(p);
4331
	running = task_current(rq, p);
4332
	if (queued)
4333
		dequeue_task(rq, p, queue_flags);
4334
	if (running)
4335
		put_prev_task(rq, p);
4336

4337
	prev_class = p->sched_class;
4338
	__setscheduler(rq, p, attr, pi);
4339

4340
	if (queued) {
4341 4342 4343 4344
		/*
		 * We enqueue to tail when the priority of a task is
		 * increased (user space view).
		 */
4345 4346
		if (oldprio < p->prio)
			queue_flags |= ENQUEUE_HEAD;
4347

4348
		enqueue_task(rq, p, queue_flags);
4349
	}
4350
	if (running)
4351
		set_curr_task(rq, p);
4352

P
Peter Zijlstra 已提交
4353
	check_class_changed(rq, p, prev_class, oldprio);
I
Ingo Molnar 已提交
4354 4355 4356

	/* Avoid rq from going away on us: */
	preempt_disable();
4357
	task_rq_unlock(rq, p, &rf);
4358

4359 4360
	if (pi)
		rt_mutex_adjust_pi(p);
4361

I
Ingo Molnar 已提交
4362
	/* Run balance callbacks after we've adjusted the PI chain: */
4363 4364
	balance_callback(rq);
	preempt_enable();
4365

L
Linus Torvalds 已提交
4366 4367
	return 0;
}
4368

4369 4370 4371 4372 4373 4374 4375 4376 4377
static int _sched_setscheduler(struct task_struct *p, int policy,
			       const struct sched_param *param, bool check)
{
	struct sched_attr attr = {
		.sched_policy   = policy,
		.sched_priority = param->sched_priority,
		.sched_nice	= PRIO_TO_NICE(p->static_prio),
	};

4378 4379
	/* Fixup the legacy SCHED_RESET_ON_FORK hack. */
	if ((policy != SETPARAM_POLICY) && (policy & SCHED_RESET_ON_FORK)) {
4380 4381 4382 4383 4384
		attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
		policy &= ~SCHED_RESET_ON_FORK;
		attr.sched_policy = policy;
	}

4385
	return __sched_setscheduler(p, &attr, check, true);
4386
}
4387 4388 4389 4390 4391 4392
/**
 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
 * @p: the task in question.
 * @policy: new policy.
 * @param: structure containing the new RT priority.
 *
4393 4394
 * Return: 0 on success. An error code otherwise.
 *
4395 4396 4397
 * NOTE that the task may be already dead.
 */
int sched_setscheduler(struct task_struct *p, int policy,
4398
		       const struct sched_param *param)
4399
{
4400
	return _sched_setscheduler(p, policy, param, true);
4401
}
L
Linus Torvalds 已提交
4402 4403
EXPORT_SYMBOL_GPL(sched_setscheduler);

4404 4405
int sched_setattr(struct task_struct *p, const struct sched_attr *attr)
{
4406
	return __sched_setscheduler(p, attr, true, true);
4407 4408 4409
}
EXPORT_SYMBOL_GPL(sched_setattr);

4410 4411 4412 4413 4414
int sched_setattr_nocheck(struct task_struct *p, const struct sched_attr *attr)
{
	return __sched_setscheduler(p, attr, false, true);
}

4415 4416 4417 4418 4419 4420 4421 4422 4423 4424
/**
 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
 * @p: the task in question.
 * @policy: new policy.
 * @param: structure containing the new RT priority.
 *
 * Just like sched_setscheduler, only don't bother checking if the
 * current context has permission.  For example, this is needed in
 * stop_machine(): we create temporary high priority worker threads,
 * but our caller might not have that capability.
4425 4426
 *
 * Return: 0 on success. An error code otherwise.
4427 4428
 */
int sched_setscheduler_nocheck(struct task_struct *p, int policy,
4429
			       const struct sched_param *param)
4430
{
4431
	return _sched_setscheduler(p, policy, param, false);
4432
}
4433
EXPORT_SYMBOL_GPL(sched_setscheduler_nocheck);
4434

I
Ingo Molnar 已提交
4435 4436
static int
do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
L
Linus Torvalds 已提交
4437 4438 4439
{
	struct sched_param lparam;
	struct task_struct *p;
4440
	int retval;
L
Linus Torvalds 已提交
4441 4442 4443 4444 4445

	if (!param || pid < 0)
		return -EINVAL;
	if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
		return -EFAULT;
4446 4447 4448

	rcu_read_lock();
	retval = -ESRCH;
L
Linus Torvalds 已提交
4449
	p = find_process_by_pid(pid);
4450 4451 4452
	if (p != NULL)
		retval = sched_setscheduler(p, policy, &lparam);
	rcu_read_unlock();
4453

L
Linus Torvalds 已提交
4454 4455 4456
	return retval;
}

4457 4458 4459
/*
 * Mimics kernel/events/core.c perf_copy_attr().
 */
I
Ingo Molnar 已提交
4460
static int sched_copy_attr(struct sched_attr __user *uattr, struct sched_attr *attr)
4461 4462 4463 4464 4465 4466 4467
{
	u32 size;
	int ret;

	if (!access_ok(VERIFY_WRITE, uattr, SCHED_ATTR_SIZE_VER0))
		return -EFAULT;

I
Ingo Molnar 已提交
4468
	/* Zero the full structure, so that a short copy will be nice: */
4469 4470 4471 4472 4473 4474
	memset(attr, 0, sizeof(*attr));

	ret = get_user(size, &uattr->size);
	if (ret)
		return ret;

I
Ingo Molnar 已提交
4475 4476
	/* Bail out on silly large: */
	if (size > PAGE_SIZE)
4477 4478
		goto err_size;

I
Ingo Molnar 已提交
4479 4480
	/* ABI compatibility quirk: */
	if (!size)
4481 4482 4483 4484 4485 4486 4487 4488 4489 4490 4491 4492 4493 4494 4495 4496 4497 4498 4499 4500 4501 4502 4503 4504 4505 4506 4507 4508 4509 4510 4511 4512 4513 4514
		size = SCHED_ATTR_SIZE_VER0;

	if (size < SCHED_ATTR_SIZE_VER0)
		goto err_size;

	/*
	 * If we're handed a bigger struct than we know of,
	 * ensure all the unknown bits are 0 - i.e. new
	 * user-space does not rely on any kernel feature
	 * extensions we dont know about yet.
	 */
	if (size > sizeof(*attr)) {
		unsigned char __user *addr;
		unsigned char __user *end;
		unsigned char val;

		addr = (void __user *)uattr + sizeof(*attr);
		end  = (void __user *)uattr + size;

		for (; addr < end; addr++) {
			ret = get_user(val, addr);
			if (ret)
				return ret;
			if (val)
				goto err_size;
		}
		size = sizeof(*attr);
	}

	ret = copy_from_user(attr, uattr, size);
	if (ret)
		return -EFAULT;

	/*
I
Ingo Molnar 已提交
4515
	 * XXX: Do we want to be lenient like existing syscalls; or do we want
4516 4517
	 * to be strict and return an error on out-of-bounds values?
	 */
4518
	attr->sched_nice = clamp(attr->sched_nice, MIN_NICE, MAX_NICE);
4519

4520
	return 0;
4521 4522 4523

err_size:
	put_user(sizeof(*attr), &uattr->size);
4524
	return -E2BIG;
4525 4526
}

L
Linus Torvalds 已提交
4527 4528 4529 4530 4531
/**
 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
 * @pid: the pid in question.
 * @policy: new policy.
 * @param: structure containing the new RT priority.
4532 4533
 *
 * Return: 0 on success. An error code otherwise.
L
Linus Torvalds 已提交
4534
 */
I
Ingo Molnar 已提交
4535
SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy, struct sched_param __user *, param)
L
Linus Torvalds 已提交
4536
{
4537 4538 4539
	if (policy < 0)
		return -EINVAL;

L
Linus Torvalds 已提交
4540 4541 4542 4543 4544 4545 4546
	return do_sched_setscheduler(pid, policy, param);
}

/**
 * sys_sched_setparam - set/change the RT priority of a thread
 * @pid: the pid in question.
 * @param: structure containing the new RT priority.
4547 4548
 *
 * Return: 0 on success. An error code otherwise.
L
Linus Torvalds 已提交
4549
 */
4550
SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
L
Linus Torvalds 已提交
4551
{
4552
	return do_sched_setscheduler(pid, SETPARAM_POLICY, param);
L
Linus Torvalds 已提交
4553 4554
}

4555 4556 4557
/**
 * sys_sched_setattr - same as above, but with extended sched_attr
 * @pid: the pid in question.
J
Juri Lelli 已提交
4558
 * @uattr: structure containing the extended parameters.
4559
 * @flags: for future extension.
4560
 */
4561 4562
SYSCALL_DEFINE3(sched_setattr, pid_t, pid, struct sched_attr __user *, uattr,
			       unsigned int, flags)
4563 4564 4565 4566 4567
{
	struct sched_attr attr;
	struct task_struct *p;
	int retval;

4568
	if (!uattr || pid < 0 || flags)
4569 4570
		return -EINVAL;

4571 4572 4573
	retval = sched_copy_attr(uattr, &attr);
	if (retval)
		return retval;
4574

4575
	if ((int)attr.sched_policy < 0)
4576
		return -EINVAL;
4577 4578 4579 4580 4581 4582 4583 4584 4585 4586 4587

	rcu_read_lock();
	retval = -ESRCH;
	p = find_process_by_pid(pid);
	if (p != NULL)
		retval = sched_setattr(p, &attr);
	rcu_read_unlock();

	return retval;
}

L
Linus Torvalds 已提交
4588 4589 4590
/**
 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
 * @pid: the pid in question.
4591 4592 4593
 *
 * Return: On success, the policy of the thread. Otherwise, a negative error
 * code.
L
Linus Torvalds 已提交
4594
 */
4595
SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
L
Linus Torvalds 已提交
4596
{
4597
	struct task_struct *p;
4598
	int retval;
L
Linus Torvalds 已提交
4599 4600

	if (pid < 0)
4601
		return -EINVAL;
L
Linus Torvalds 已提交
4602 4603

	retval = -ESRCH;
4604
	rcu_read_lock();
L
Linus Torvalds 已提交
4605 4606 4607 4608
	p = find_process_by_pid(pid);
	if (p) {
		retval = security_task_getscheduler(p);
		if (!retval)
4609 4610
			retval = p->policy
				| (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
L
Linus Torvalds 已提交
4611
	}
4612
	rcu_read_unlock();
L
Linus Torvalds 已提交
4613 4614 4615 4616
	return retval;
}

/**
4617
 * sys_sched_getparam - get the RT priority of a thread
L
Linus Torvalds 已提交
4618 4619
 * @pid: the pid in question.
 * @param: structure containing the RT priority.
4620 4621 4622
 *
 * Return: On success, 0 and the RT priority is in @param. Otherwise, an error
 * code.
L
Linus Torvalds 已提交
4623
 */
4624
SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
L
Linus Torvalds 已提交
4625
{
4626
	struct sched_param lp = { .sched_priority = 0 };
4627
	struct task_struct *p;
4628
	int retval;
L
Linus Torvalds 已提交
4629 4630

	if (!param || pid < 0)
4631
		return -EINVAL;
L
Linus Torvalds 已提交
4632

4633
	rcu_read_lock();
L
Linus Torvalds 已提交
4634 4635 4636 4637 4638 4639 4640 4641 4642
	p = find_process_by_pid(pid);
	retval = -ESRCH;
	if (!p)
		goto out_unlock;

	retval = security_task_getscheduler(p);
	if (retval)
		goto out_unlock;

4643 4644
	if (task_has_rt_policy(p))
		lp.sched_priority = p->rt_priority;
4645
	rcu_read_unlock();
L
Linus Torvalds 已提交
4646 4647 4648 4649 4650 4651 4652 4653 4654

	/*
	 * This one might sleep, we cannot do it with a spinlock held ...
	 */
	retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;

	return retval;

out_unlock:
4655
	rcu_read_unlock();
L
Linus Torvalds 已提交
4656 4657 4658
	return retval;
}

4659 4660 4661 4662 4663 4664 4665 4666 4667 4668 4669 4670 4671 4672 4673 4674 4675 4676 4677 4678 4679 4680 4681
static int sched_read_attr(struct sched_attr __user *uattr,
			   struct sched_attr *attr,
			   unsigned int usize)
{
	int ret;

	if (!access_ok(VERIFY_WRITE, uattr, usize))
		return -EFAULT;

	/*
	 * If we're handed a smaller struct than we know of,
	 * ensure all the unknown bits are 0 - i.e. old
	 * user-space does not get uncomplete information.
	 */
	if (usize < sizeof(*attr)) {
		unsigned char *addr;
		unsigned char *end;

		addr = (void *)attr + usize;
		end  = (void *)attr + sizeof(*attr);

		for (; addr < end; addr++) {
			if (*addr)
4682
				return -EFBIG;
4683 4684 4685 4686 4687
		}

		attr->size = usize;
	}

4688
	ret = copy_to_user(uattr, attr, attr->size);
4689 4690 4691
	if (ret)
		return -EFAULT;

4692
	return 0;
4693 4694 4695
}

/**
4696
 * sys_sched_getattr - similar to sched_getparam, but with sched_attr
4697
 * @pid: the pid in question.
J
Juri Lelli 已提交
4698
 * @uattr: structure containing the extended parameters.
4699
 * @size: sizeof(attr) for fwd/bwd comp.
4700
 * @flags: for future extension.
4701
 */
4702 4703
SYSCALL_DEFINE4(sched_getattr, pid_t, pid, struct sched_attr __user *, uattr,
		unsigned int, size, unsigned int, flags)
4704 4705 4706 4707 4708 4709 4710 4711
{
	struct sched_attr attr = {
		.size = sizeof(struct sched_attr),
	};
	struct task_struct *p;
	int retval;

	if (!uattr || pid < 0 || size > PAGE_SIZE ||
4712
	    size < SCHED_ATTR_SIZE_VER0 || flags)
4713 4714 4715 4716 4717 4718 4719 4720 4721 4722 4723 4724 4725
		return -EINVAL;

	rcu_read_lock();
	p = find_process_by_pid(pid);
	retval = -ESRCH;
	if (!p)
		goto out_unlock;

	retval = security_task_getscheduler(p);
	if (retval)
		goto out_unlock;

	attr.sched_policy = p->policy;
4726 4727
	if (p->sched_reset_on_fork)
		attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
4728 4729 4730
	if (task_has_dl_policy(p))
		__getparam_dl(p, &attr);
	else if (task_has_rt_policy(p))
4731 4732
		attr.sched_priority = p->rt_priority;
	else
4733
		attr.sched_nice = task_nice(p);
4734 4735 4736 4737 4738 4739 4740 4741 4742 4743 4744

	rcu_read_unlock();

	retval = sched_read_attr(uattr, &attr, size);
	return retval;

out_unlock:
	rcu_read_unlock();
	return retval;
}

4745
long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
L
Linus Torvalds 已提交
4746
{
4747
	cpumask_var_t cpus_allowed, new_mask;
4748 4749
	struct task_struct *p;
	int retval;
L
Linus Torvalds 已提交
4750

4751
	rcu_read_lock();
L
Linus Torvalds 已提交
4752 4753 4754

	p = find_process_by_pid(pid);
	if (!p) {
4755
		rcu_read_unlock();
L
Linus Torvalds 已提交
4756 4757 4758
		return -ESRCH;
	}

4759
	/* Prevent p going away */
L
Linus Torvalds 已提交
4760
	get_task_struct(p);
4761
	rcu_read_unlock();
L
Linus Torvalds 已提交
4762

4763 4764 4765 4766
	if (p->flags & PF_NO_SETAFFINITY) {
		retval = -EINVAL;
		goto out_put_task;
	}
4767 4768 4769 4770 4771 4772 4773 4774
	if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
		retval = -ENOMEM;
		goto out_put_task;
	}
	if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
		retval = -ENOMEM;
		goto out_free_cpus_allowed;
	}
L
Linus Torvalds 已提交
4775
	retval = -EPERM;
E
Eric W. Biederman 已提交
4776 4777 4778 4779
	if (!check_same_owner(p)) {
		rcu_read_lock();
		if (!ns_capable(__task_cred(p)->user_ns, CAP_SYS_NICE)) {
			rcu_read_unlock();
4780
			goto out_free_new_mask;
E
Eric W. Biederman 已提交
4781 4782 4783
		}
		rcu_read_unlock();
	}
L
Linus Torvalds 已提交
4784

4785
	retval = security_task_setscheduler(p);
4786
	if (retval)
4787
		goto out_free_new_mask;
4788

4789 4790 4791 4792

	cpuset_cpus_allowed(p, cpus_allowed);
	cpumask_and(new_mask, in_mask, cpus_allowed);

4793 4794 4795 4796 4797 4798 4799
	/*
	 * Since bandwidth control happens on root_domain basis,
	 * if admission test is enabled, we only admit -deadline
	 * tasks allowed to run on all the CPUs in the task's
	 * root_domain.
	 */
#ifdef CONFIG_SMP
4800 4801 4802
	if (task_has_dl_policy(p) && dl_bandwidth_enabled()) {
		rcu_read_lock();
		if (!cpumask_subset(task_rq(p)->rd->span, new_mask)) {
4803
			retval = -EBUSY;
4804
			rcu_read_unlock();
4805
			goto out_free_new_mask;
4806
		}
4807
		rcu_read_unlock();
4808 4809
	}
#endif
P
Peter Zijlstra 已提交
4810
again:
4811
	retval = __set_cpus_allowed_ptr(p, new_mask, true);
L
Linus Torvalds 已提交
4812

P
Paul Menage 已提交
4813
	if (!retval) {
4814 4815
		cpuset_cpus_allowed(p, cpus_allowed);
		if (!cpumask_subset(new_mask, cpus_allowed)) {
P
Paul Menage 已提交
4816 4817 4818 4819 4820
			/*
			 * We must have raced with a concurrent cpuset
			 * update. Just reset the cpus_allowed to the
			 * cpuset's cpus_allowed
			 */
4821
			cpumask_copy(new_mask, cpus_allowed);
P
Paul Menage 已提交
4822 4823 4824
			goto again;
		}
	}
4825
out_free_new_mask:
4826 4827 4828 4829
	free_cpumask_var(new_mask);
out_free_cpus_allowed:
	free_cpumask_var(cpus_allowed);
out_put_task:
L
Linus Torvalds 已提交
4830 4831 4832 4833 4834
	put_task_struct(p);
	return retval;
}

static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
4835
			     struct cpumask *new_mask)
L
Linus Torvalds 已提交
4836
{
4837 4838 4839 4840 4841
	if (len < cpumask_size())
		cpumask_clear(new_mask);
	else if (len > cpumask_size())
		len = cpumask_size();

L
Linus Torvalds 已提交
4842 4843 4844 4845
	return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
}

/**
I
Ingo Molnar 已提交
4846
 * sys_sched_setaffinity - set the CPU affinity of a process
L
Linus Torvalds 已提交
4847 4848
 * @pid: pid of the process
 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
I
Ingo Molnar 已提交
4849
 * @user_mask_ptr: user-space pointer to the new CPU mask
4850 4851
 *
 * Return: 0 on success. An error code otherwise.
L
Linus Torvalds 已提交
4852
 */
4853 4854
SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
		unsigned long __user *, user_mask_ptr)
L
Linus Torvalds 已提交
4855
{
4856
	cpumask_var_t new_mask;
L
Linus Torvalds 已提交
4857 4858
	int retval;

4859 4860
	if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
		return -ENOMEM;
L
Linus Torvalds 已提交
4861

4862 4863 4864 4865 4866
	retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
	if (retval == 0)
		retval = sched_setaffinity(pid, new_mask);
	free_cpumask_var(new_mask);
	return retval;
L
Linus Torvalds 已提交
4867 4868
}

4869
long sched_getaffinity(pid_t pid, struct cpumask *mask)
L
Linus Torvalds 已提交
4870
{
4871
	struct task_struct *p;
4872
	unsigned long flags;
L
Linus Torvalds 已提交
4873 4874
	int retval;

4875
	rcu_read_lock();
L
Linus Torvalds 已提交
4876 4877 4878 4879 4880 4881

	retval = -ESRCH;
	p = find_process_by_pid(pid);
	if (!p)
		goto out_unlock;

4882 4883 4884 4885
	retval = security_task_getscheduler(p);
	if (retval)
		goto out_unlock;

4886
	raw_spin_lock_irqsave(&p->pi_lock, flags);
4887
	cpumask_and(mask, &p->cpus_allowed, cpu_active_mask);
4888
	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
L
Linus Torvalds 已提交
4889 4890

out_unlock:
4891
	rcu_read_unlock();
L
Linus Torvalds 已提交
4892

4893
	return retval;
L
Linus Torvalds 已提交
4894 4895 4896
}

/**
I
Ingo Molnar 已提交
4897
 * sys_sched_getaffinity - get the CPU affinity of a process
L
Linus Torvalds 已提交
4898 4899
 * @pid: pid of the process
 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
I
Ingo Molnar 已提交
4900
 * @user_mask_ptr: user-space pointer to hold the current CPU mask
4901
 *
4902 4903
 * Return: size of CPU mask copied to user_mask_ptr on success. An
 * error code otherwise.
L
Linus Torvalds 已提交
4904
 */
4905 4906
SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
		unsigned long __user *, user_mask_ptr)
L
Linus Torvalds 已提交
4907 4908
{
	int ret;
4909
	cpumask_var_t mask;
L
Linus Torvalds 已提交
4910

A
Anton Blanchard 已提交
4911
	if ((len * BITS_PER_BYTE) < nr_cpu_ids)
4912 4913
		return -EINVAL;
	if (len & (sizeof(unsigned long)-1))
L
Linus Torvalds 已提交
4914 4915
		return -EINVAL;

4916 4917
	if (!alloc_cpumask_var(&mask, GFP_KERNEL))
		return -ENOMEM;
L
Linus Torvalds 已提交
4918

4919 4920
	ret = sched_getaffinity(pid, mask);
	if (ret == 0) {
4921
		unsigned int retlen = min(len, cpumask_size());
4922 4923

		if (copy_to_user(user_mask_ptr, mask, retlen))
4924 4925
			ret = -EFAULT;
		else
4926
			ret = retlen;
4927 4928
	}
	free_cpumask_var(mask);
L
Linus Torvalds 已提交
4929

4930
	return ret;
L
Linus Torvalds 已提交
4931 4932 4933 4934 4935
}

/**
 * sys_sched_yield - yield the current processor to other threads.
 *
I
Ingo Molnar 已提交
4936 4937
 * This function yields the current CPU to other tasks. If there are no
 * other threads running on this CPU then this function will return.
4938 4939
 *
 * Return: 0.
L
Linus Torvalds 已提交
4940
 */
4941
static void do_sched_yield(void)
L
Linus Torvalds 已提交
4942
{
4943 4944 4945
	struct rq_flags rf;
	struct rq *rq;

4946
	rq = this_rq_lock_irq(&rf);
L
Linus Torvalds 已提交
4947

4948
	schedstat_inc(rq->yld_count);
4949
	current->sched_class->yield_task(rq);
L
Linus Torvalds 已提交
4950 4951 4952 4953 4954

	/*
	 * Since we are going to call schedule() anyway, there's
	 * no need to preempt or enable interrupts:
	 */
4955 4956
	preempt_disable();
	rq_unlock(rq, &rf);
4957
	sched_preempt_enable_no_resched();
L
Linus Torvalds 已提交
4958 4959

	schedule();
4960
}
L
Linus Torvalds 已提交
4961

4962 4963 4964
SYSCALL_DEFINE0(sched_yield)
{
	do_sched_yield();
L
Linus Torvalds 已提交
4965 4966 4967
	return 0;
}

4968
#ifndef CONFIG_PREEMPT
4969
int __sched _cond_resched(void)
L
Linus Torvalds 已提交
4970
{
4971
	if (should_resched(0)) {
4972
		preempt_schedule_common();
L
Linus Torvalds 已提交
4973 4974
		return 1;
	}
4975
	rcu_all_qs();
L
Linus Torvalds 已提交
4976 4977
	return 0;
}
4978
EXPORT_SYMBOL(_cond_resched);
4979
#endif
L
Linus Torvalds 已提交
4980 4981

/*
4982
 * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
L
Linus Torvalds 已提交
4983 4984
 * call schedule, and on return reacquire the lock.
 *
I
Ingo Molnar 已提交
4985
 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
L
Linus Torvalds 已提交
4986 4987 4988
 * operations here to prevent schedule() from being called twice (once via
 * spin_unlock(), once by hand).
 */
4989
int __cond_resched_lock(spinlock_t *lock)
L
Linus Torvalds 已提交
4990
{
4991
	int resched = should_resched(PREEMPT_LOCK_OFFSET);
J
Jan Kara 已提交
4992 4993
	int ret = 0;

4994 4995
	lockdep_assert_held(lock);

4996
	if (spin_needbreak(lock) || resched) {
L
Linus Torvalds 已提交
4997
		spin_unlock(lock);
P
Peter Zijlstra 已提交
4998
		if (resched)
4999
			preempt_schedule_common();
N
Nick Piggin 已提交
5000 5001
		else
			cpu_relax();
J
Jan Kara 已提交
5002
		ret = 1;
L
Linus Torvalds 已提交
5003 5004
		spin_lock(lock);
	}
J
Jan Kara 已提交
5005
	return ret;
L
Linus Torvalds 已提交
5006
}
5007
EXPORT_SYMBOL(__cond_resched_lock);
L
Linus Torvalds 已提交
5008 5009 5010 5011

/**
 * yield - yield the current processor to other threads.
 *
P
Peter Zijlstra 已提交
5012 5013 5014 5015 5016 5017 5018 5019 5020
 * Do not ever use this function, there's a 99% chance you're doing it wrong.
 *
 * The scheduler is at all times free to pick the calling task as the most
 * eligible task to run, if removing the yield() call from your code breaks
 * it, its already broken.
 *
 * Typical broken usage is:
 *
 * while (!event)
I
Ingo Molnar 已提交
5021
 *	yield();
P
Peter Zijlstra 已提交
5022 5023 5024 5025 5026 5027 5028 5029
 *
 * where one assumes that yield() will let 'the other' process run that will
 * make event true. If the current task is a SCHED_FIFO task that will never
 * happen. Never use yield() as a progress guarantee!!
 *
 * If you want to use yield() to wait for something, use wait_event().
 * If you want to use yield() to be 'nice' for others, use cond_resched().
 * If you still want to use yield(), do not!
L
Linus Torvalds 已提交
5030 5031 5032 5033
 */
void __sched yield(void)
{
	set_current_state(TASK_RUNNING);
5034
	do_sched_yield();
L
Linus Torvalds 已提交
5035 5036 5037
}
EXPORT_SYMBOL(yield);

5038 5039 5040 5041
/**
 * yield_to - yield the current processor to another thread in
 * your thread group, or accelerate that thread toward the
 * processor it's on.
R
Randy Dunlap 已提交
5042 5043
 * @p: target task
 * @preempt: whether task preemption is allowed or not
5044 5045 5046 5047
 *
 * It's the caller's job to ensure that the target task struct
 * can't go away on us before we can do any checks.
 *
5048
 * Return:
5049 5050 5051
 *	true (>0) if we indeed boosted the target task.
 *	false (0) if we failed to boost the target.
 *	-ESRCH if there's no task to yield to.
5052
 */
5053
int __sched yield_to(struct task_struct *p, bool preempt)
5054 5055 5056 5057
{
	struct task_struct *curr = current;
	struct rq *rq, *p_rq;
	unsigned long flags;
5058
	int yielded = 0;
5059 5060 5061 5062 5063 5064

	local_irq_save(flags);
	rq = this_rq();

again:
	p_rq = task_rq(p);
5065 5066 5067 5068 5069 5070 5071 5072 5073
	/*
	 * If we're the only runnable task on the rq and target rq also
	 * has only one task, there's absolutely no point in yielding.
	 */
	if (rq->nr_running == 1 && p_rq->nr_running == 1) {
		yielded = -ESRCH;
		goto out_irq;
	}

5074
	double_rq_lock(rq, p_rq);
5075
	if (task_rq(p) != p_rq) {
5076 5077 5078 5079 5080
		double_rq_unlock(rq, p_rq);
		goto again;
	}

	if (!curr->sched_class->yield_to_task)
5081
		goto out_unlock;
5082 5083

	if (curr->sched_class != p->sched_class)
5084
		goto out_unlock;
5085 5086

	if (task_running(p_rq, p) || p->state)
5087
		goto out_unlock;
5088 5089

	yielded = curr->sched_class->yield_to_task(rq, p, preempt);
5090
	if (yielded) {
5091
		schedstat_inc(rq->yld_count);
5092 5093 5094 5095 5096
		/*
		 * Make p's CPU reschedule; pick_next_entity takes care of
		 * fairness.
		 */
		if (preempt && rq != p_rq)
5097
			resched_curr(p_rq);
5098
	}
5099

5100
out_unlock:
5101
	double_rq_unlock(rq, p_rq);
5102
out_irq:
5103 5104
	local_irq_restore(flags);

5105
	if (yielded > 0)
5106 5107 5108 5109 5110 5111
		schedule();

	return yielded;
}
EXPORT_SYMBOL_GPL(yield_to);

5112 5113 5114 5115 5116 5117 5118 5119 5120 5121 5122 5123 5124 5125 5126
int io_schedule_prepare(void)
{
	int old_iowait = current->in_iowait;

	current->in_iowait = 1;
	blk_schedule_flush_plug(current);

	return old_iowait;
}

void io_schedule_finish(int token)
{
	current->in_iowait = token;
}

L
Linus Torvalds 已提交
5127
/*
I
Ingo Molnar 已提交
5128
 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
L
Linus Torvalds 已提交
5129 5130 5131 5132
 * that process accounting knows that this is a task in IO wait state.
 */
long __sched io_schedule_timeout(long timeout)
{
5133
	int token;
L
Linus Torvalds 已提交
5134 5135
	long ret;

5136
	token = io_schedule_prepare();
L
Linus Torvalds 已提交
5137
	ret = schedule_timeout(timeout);
5138
	io_schedule_finish(token);
5139

L
Linus Torvalds 已提交
5140 5141
	return ret;
}
5142
EXPORT_SYMBOL(io_schedule_timeout);
L
Linus Torvalds 已提交
5143

5144
void __sched io_schedule(void)
5145 5146 5147 5148 5149 5150 5151 5152 5153
{
	int token;

	token = io_schedule_prepare();
	schedule();
	io_schedule_finish(token);
}
EXPORT_SYMBOL(io_schedule);

L
Linus Torvalds 已提交
5154 5155 5156 5157
/**
 * sys_sched_get_priority_max - return maximum RT priority.
 * @policy: scheduling class.
 *
5158 5159 5160
 * Return: On success, this syscall returns the maximum
 * rt_priority that can be used by a given scheduling class.
 * On failure, a negative error code is returned.
L
Linus Torvalds 已提交
5161
 */
5162
SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
L
Linus Torvalds 已提交
5163 5164 5165 5166 5167 5168 5169 5170
{
	int ret = -EINVAL;

	switch (policy) {
	case SCHED_FIFO:
	case SCHED_RR:
		ret = MAX_USER_RT_PRIO-1;
		break;
5171
	case SCHED_DEADLINE:
L
Linus Torvalds 已提交
5172
	case SCHED_NORMAL:
5173
	case SCHED_BATCH:
I
Ingo Molnar 已提交
5174
	case SCHED_IDLE:
L
Linus Torvalds 已提交
5175 5176 5177 5178 5179 5180 5181 5182 5183 5184
		ret = 0;
		break;
	}
	return ret;
}

/**
 * sys_sched_get_priority_min - return minimum RT priority.
 * @policy: scheduling class.
 *
5185 5186 5187
 * Return: On success, this syscall returns the minimum
 * rt_priority that can be used by a given scheduling class.
 * On failure, a negative error code is returned.
L
Linus Torvalds 已提交
5188
 */
5189
SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
L
Linus Torvalds 已提交
5190 5191 5192 5193 5194 5195 5196 5197
{
	int ret = -EINVAL;

	switch (policy) {
	case SCHED_FIFO:
	case SCHED_RR:
		ret = 1;
		break;
5198
	case SCHED_DEADLINE:
L
Linus Torvalds 已提交
5199
	case SCHED_NORMAL:
5200
	case SCHED_BATCH:
I
Ingo Molnar 已提交
5201
	case SCHED_IDLE:
L
Linus Torvalds 已提交
5202 5203 5204 5205 5206
		ret = 0;
	}
	return ret;
}

5207
static int sched_rr_get_interval(pid_t pid, struct timespec64 *t)
L
Linus Torvalds 已提交
5208
{
5209
	struct task_struct *p;
D
Dmitry Adamushko 已提交
5210
	unsigned int time_slice;
5211
	struct rq_flags rf;
5212
	struct rq *rq;
5213
	int retval;
L
Linus Torvalds 已提交
5214 5215

	if (pid < 0)
5216
		return -EINVAL;
L
Linus Torvalds 已提交
5217 5218

	retval = -ESRCH;
5219
	rcu_read_lock();
L
Linus Torvalds 已提交
5220 5221 5222 5223 5224 5225 5226 5227
	p = find_process_by_pid(pid);
	if (!p)
		goto out_unlock;

	retval = security_task_getscheduler(p);
	if (retval)
		goto out_unlock;

5228
	rq = task_rq_lock(p, &rf);
5229 5230 5231
	time_slice = 0;
	if (p->sched_class->get_rr_interval)
		time_slice = p->sched_class->get_rr_interval(rq, p);
5232
	task_rq_unlock(rq, p, &rf);
D
Dmitry Adamushko 已提交
5233

5234
	rcu_read_unlock();
5235 5236
	jiffies_to_timespec64(time_slice, t);
	return 0;
5237

L
Linus Torvalds 已提交
5238
out_unlock:
5239
	rcu_read_unlock();
L
Linus Torvalds 已提交
5240 5241 5242
	return retval;
}

5243 5244 5245 5246 5247 5248 5249 5250 5251 5252 5253
/**
 * sys_sched_rr_get_interval - return the default timeslice of a process.
 * @pid: pid of the process.
 * @interval: userspace pointer to the timeslice value.
 *
 * this syscall writes the default timeslice value of a given process
 * into the user-space timespec buffer. A value of '0' means infinity.
 *
 * Return: On success, 0 and the timeslice is in @interval. Otherwise,
 * an error code.
 */
5254 5255 5256 5257 5258 5259 5260 5261 5262 5263 5264 5265 5266 5267 5268 5269 5270 5271 5272 5273 5274 5275 5276 5277 5278 5279
SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
		struct timespec __user *, interval)
{
	struct timespec64 t;
	int retval = sched_rr_get_interval(pid, &t);

	if (retval == 0)
		retval = put_timespec64(&t, interval);

	return retval;
}

#ifdef CONFIG_COMPAT
COMPAT_SYSCALL_DEFINE2(sched_rr_get_interval,
		       compat_pid_t, pid,
		       struct compat_timespec __user *, interval)
{
	struct timespec64 t;
	int retval = sched_rr_get_interval(pid, &t);

	if (retval == 0)
		retval = compat_put_timespec64(&t, interval);
	return retval;
}
#endif

5280
void sched_show_task(struct task_struct *p)
L
Linus Torvalds 已提交
5281 5282
{
	unsigned long free = 0;
5283
	int ppid;
5284

5285 5286
	if (!try_get_task_stack(p))
		return;
5287 5288 5289 5290

	printk(KERN_INFO "%-15.15s %c", p->comm, task_state_to_char(p));

	if (p->state == TASK_RUNNING)
P
Peter Zijlstra 已提交
5291
		printk(KERN_CONT "  running task    ");
L
Linus Torvalds 已提交
5292
#ifdef CONFIG_DEBUG_STACK_USAGE
5293
	free = stack_not_used(p);
L
Linus Torvalds 已提交
5294
#endif
5295
	ppid = 0;
5296
	rcu_read_lock();
5297 5298
	if (pid_alive(p))
		ppid = task_pid_nr(rcu_dereference(p->real_parent));
5299
	rcu_read_unlock();
P
Peter Zijlstra 已提交
5300
	printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free,
5301
		task_pid_nr(p), ppid,
5302
		(unsigned long)task_thread_info(p)->flags);
L
Linus Torvalds 已提交
5303

5304
	print_worker_info(KERN_INFO, p);
5305
	show_stack(p, NULL);
5306
	put_task_stack(p);
L
Linus Torvalds 已提交
5307
}
5308
EXPORT_SYMBOL_GPL(sched_show_task);
L
Linus Torvalds 已提交
5309

5310 5311 5312 5313 5314 5315 5316 5317 5318 5319 5320 5321 5322 5323 5324 5325 5326 5327 5328 5329 5330 5331
static inline bool
state_filter_match(unsigned long state_filter, struct task_struct *p)
{
	/* no filter, everything matches */
	if (!state_filter)
		return true;

	/* filter, but doesn't match */
	if (!(p->state & state_filter))
		return false;

	/*
	 * When looking for TASK_UNINTERRUPTIBLE skip TASK_IDLE (allows
	 * TASK_KILLABLE).
	 */
	if (state_filter == TASK_UNINTERRUPTIBLE && p->state == TASK_IDLE)
		return false;

	return true;
}


I
Ingo Molnar 已提交
5332
void show_state_filter(unsigned long state_filter)
L
Linus Torvalds 已提交
5333
{
5334
	struct task_struct *g, *p;
L
Linus Torvalds 已提交
5335

5336
#if BITS_PER_LONG == 32
P
Peter Zijlstra 已提交
5337 5338
	printk(KERN_INFO
		"  task                PC stack   pid father\n");
L
Linus Torvalds 已提交
5339
#else
P
Peter Zijlstra 已提交
5340 5341
	printk(KERN_INFO
		"  task                        PC stack   pid father\n");
L
Linus Torvalds 已提交
5342
#endif
5343
	rcu_read_lock();
5344
	for_each_process_thread(g, p) {
L
Linus Torvalds 已提交
5345 5346
		/*
		 * reset the NMI-timeout, listing all files on a slow
L
Lucas De Marchi 已提交
5347
		 * console might take a lot of time:
5348 5349 5350
		 * Also, reset softlockup watchdogs on all CPUs, because
		 * another CPU might be blocked waiting for us to process
		 * an IPI.
L
Linus Torvalds 已提交
5351 5352
		 */
		touch_nmi_watchdog();
5353
		touch_all_softlockup_watchdogs();
5354
		if (state_filter_match(state_filter, p))
5355
			sched_show_task(p);
5356
	}
L
Linus Torvalds 已提交
5357

I
Ingo Molnar 已提交
5358
#ifdef CONFIG_SCHED_DEBUG
5359 5360
	if (!state_filter)
		sysrq_sched_debug_show();
I
Ingo Molnar 已提交
5361
#endif
5362
	rcu_read_unlock();
I
Ingo Molnar 已提交
5363 5364 5365
	/*
	 * Only show locks if all tasks are dumped:
	 */
5366
	if (!state_filter)
I
Ingo Molnar 已提交
5367
		debug_show_all_locks();
L
Linus Torvalds 已提交
5368 5369
}

5370 5371 5372
/**
 * init_idle - set up an idle thread for a given CPU
 * @idle: task in question
I
Ingo Molnar 已提交
5373
 * @cpu: CPU the idle task belongs to
5374 5375 5376 5377
 *
 * NOTE: this function does not set the idle thread's NEED_RESCHED
 * flag, to make booting more robust.
 */
5378
void init_idle(struct task_struct *idle, int cpu)
L
Linus Torvalds 已提交
5379
{
5380
	struct rq *rq = cpu_rq(cpu);
L
Linus Torvalds 已提交
5381 5382
	unsigned long flags;

5383 5384
	__sched_fork(0, idle);

5385 5386
	raw_spin_lock_irqsave(&idle->pi_lock, flags);
	raw_spin_lock(&rq->lock);
5387

5388
	idle->state = TASK_RUNNING;
I
Ingo Molnar 已提交
5389
	idle->se.exec_start = sched_clock();
5390
	idle->flags |= PF_IDLE;
I
Ingo Molnar 已提交
5391

5392 5393
	kasan_unpoison_task_stack(idle);

5394 5395 5396 5397 5398 5399 5400 5401 5402
#ifdef CONFIG_SMP
	/*
	 * Its possible that init_idle() gets called multiple times on a task,
	 * in that case do_set_cpus_allowed() will not do the right thing.
	 *
	 * And since this is boot we can forgo the serialization.
	 */
	set_cpus_allowed_common(idle, cpumask_of(cpu));
#endif
5403 5404
	/*
	 * We're having a chicken and egg problem, even though we are
I
Ingo Molnar 已提交
5405
	 * holding rq->lock, the CPU isn't yet set to this CPU so the
5406 5407 5408 5409 5410 5411 5412 5413
	 * lockdep check in task_group() will fail.
	 *
	 * Similar case to sched_fork(). / Alternatively we could
	 * use task_rq_lock() here and obtain the other rq->lock.
	 *
	 * Silence PROVE_RCU
	 */
	rcu_read_lock();
I
Ingo Molnar 已提交
5414
	__set_task_cpu(idle, cpu);
5415
	rcu_read_unlock();
L
Linus Torvalds 已提交
5416 5417

	rq->curr = rq->idle = idle;
5418
	idle->on_rq = TASK_ON_RQ_QUEUED;
5419
#ifdef CONFIG_SMP
P
Peter Zijlstra 已提交
5420
	idle->on_cpu = 1;
5421
#endif
5422 5423
	raw_spin_unlock(&rq->lock);
	raw_spin_unlock_irqrestore(&idle->pi_lock, flags);
L
Linus Torvalds 已提交
5424 5425

	/* Set the preempt count _outside_ the spinlocks! */
5426
	init_idle_preempt_count(idle, cpu);
5427

I
Ingo Molnar 已提交
5428 5429 5430 5431
	/*
	 * The idle tasks have their own, simple scheduling class:
	 */
	idle->sched_class = &idle_sched_class;
5432
	ftrace_graph_init_idle_task(idle, cpu);
5433
	vtime_init_idle(idle, cpu);
5434
#ifdef CONFIG_SMP
5435 5436
	sprintf(idle->comm, "%s/%d", INIT_TASK_COMM, cpu);
#endif
I
Ingo Molnar 已提交
5437 5438
}

5439 5440
#ifdef CONFIG_SMP

5441 5442 5443
int cpuset_cpumask_can_shrink(const struct cpumask *cur,
			      const struct cpumask *trial)
{
5444
	int ret = 1;
5445

5446 5447 5448
	if (!cpumask_weight(cur))
		return ret;

5449
	ret = dl_cpuset_cpumask_can_shrink(cur, trial);
5450 5451 5452 5453

	return ret;
}

5454 5455 5456 5457 5458 5459 5460
int task_can_attach(struct task_struct *p,
		    const struct cpumask *cs_cpus_allowed)
{
	int ret = 0;

	/*
	 * Kthreads which disallow setaffinity shouldn't be moved
I
Ingo Molnar 已提交
5461
	 * to a new cpuset; we don't want to change their CPU
5462 5463 5464 5465 5466 5467 5468 5469 5470 5471 5472 5473
	 * affinity and isolating such threads by their set of
	 * allowed nodes is unnecessary.  Thus, cpusets are not
	 * applicable for such threads.  This prevents checking for
	 * success of set_cpus_allowed_ptr() on all attached tasks
	 * before cpus_allowed may be changed.
	 */
	if (p->flags & PF_NO_SETAFFINITY) {
		ret = -EINVAL;
		goto out;
	}

	if (dl_task(p) && !cpumask_intersects(task_rq(p)->rd->span,
5474 5475
					      cs_cpus_allowed))
		ret = dl_task_can_attach(p, cs_cpus_allowed);
5476 5477 5478 5479 5480

out:
	return ret;
}

5481
bool sched_smp_initialized __read_mostly;
5482

5483 5484 5485 5486 5487 5488 5489 5490 5491 5492
#ifdef CONFIG_NUMA_BALANCING
/* Migrate current task p to target_cpu */
int migrate_task_to(struct task_struct *p, int target_cpu)
{
	struct migration_arg arg = { p, target_cpu };
	int curr_cpu = task_cpu(p);

	if (curr_cpu == target_cpu)
		return 0;

5493
	if (!cpumask_test_cpu(target_cpu, &p->cpus_allowed))
5494 5495 5496 5497
		return -EINVAL;

	/* TODO: This is not properly updating schedstats */

5498
	trace_sched_move_numa(p, curr_cpu, target_cpu);
5499 5500
	return stop_one_cpu(curr_cpu, migration_cpu_stop, &arg);
}
5501 5502 5503 5504 5505 5506 5507

/*
 * Requeue a task on a given node and accurately track the number of NUMA
 * tasks on the runqueues
 */
void sched_setnuma(struct task_struct *p, int nid)
{
5508
	bool queued, running;
5509 5510
	struct rq_flags rf;
	struct rq *rq;
5511

5512
	rq = task_rq_lock(p, &rf);
5513
	queued = task_on_rq_queued(p);
5514 5515
	running = task_current(rq, p);

5516
	if (queued)
5517
		dequeue_task(rq, p, DEQUEUE_SAVE);
5518
	if (running)
5519
		put_prev_task(rq, p);
5520 5521 5522

	p->numa_preferred_nid = nid;

5523
	if (queued)
5524
		enqueue_task(rq, p, ENQUEUE_RESTORE | ENQUEUE_NOCLOCK);
5525
	if (running)
5526
		set_curr_task(rq, p);
5527
	task_rq_unlock(rq, p, &rf);
5528
}
P
Peter Zijlstra 已提交
5529
#endif /* CONFIG_NUMA_BALANCING */
5530

L
Linus Torvalds 已提交
5531
#ifdef CONFIG_HOTPLUG_CPU
5532
/*
I
Ingo Molnar 已提交
5533
 * Ensure that the idle task is using init_mm right before its CPU goes
5534
 * offline.
5535
 */
5536
void idle_task_exit(void)
L
Linus Torvalds 已提交
5537
{
5538
	struct mm_struct *mm = current->active_mm;
5539

5540
	BUG_ON(cpu_online(smp_processor_id()));
5541

5542
	if (mm != &init_mm) {
5543
		switch_mm(mm, &init_mm, current);
5544
		current->active_mm = &init_mm;
5545 5546
		finish_arch_post_lock_switch();
	}
5547
	mmdrop(mm);
L
Linus Torvalds 已提交
5548 5549 5550
}

/*
5551 5552
 * Since this CPU is going 'away' for a while, fold any nr_active delta
 * we might have. Assumes we're called after migrate_tasks() so that the
5553 5554 5555
 * nr_active count is stable. We need to take the teardown thread which
 * is calling this into account, so we hand in adjust = 1 to the load
 * calculation.
5556 5557
 *
 * Also see the comment "Global load-average calculations".
L
Linus Torvalds 已提交
5558
 */
5559
static void calc_load_migrate(struct rq *rq)
L
Linus Torvalds 已提交
5560
{
5561
	long delta = calc_load_fold_active(rq, 1);
5562 5563
	if (delta)
		atomic_long_add(delta, &calc_load_tasks);
L
Linus Torvalds 已提交
5564 5565
}

5566 5567 5568 5569 5570 5571 5572 5573 5574 5575 5576 5577 5578 5579 5580 5581
static void put_prev_task_fake(struct rq *rq, struct task_struct *prev)
{
}

static const struct sched_class fake_sched_class = {
	.put_prev_task = put_prev_task_fake,
};

static struct task_struct fake_task = {
	/*
	 * Avoid pull_{rt,dl}_task()
	 */
	.prio = MAX_PRIO + 1,
	.sched_class = &fake_sched_class,
};

5582
/*
5583 5584 5585 5586 5587 5588
 * Migrate all tasks from the rq, sleeping tasks will be migrated by
 * try_to_wake_up()->select_task_rq().
 *
 * Called with rq->lock held even though we'er in stop_machine() and
 * there's no concurrency possible, we hold the required locks anyway
 * because of lock validation efforts.
L
Linus Torvalds 已提交
5589
 */
5590
static void migrate_tasks(struct rq *dead_rq, struct rq_flags *rf)
L
Linus Torvalds 已提交
5591
{
5592
	struct rq *rq = dead_rq;
5593
	struct task_struct *next, *stop = rq->stop;
5594
	struct rq_flags orf = *rf;
5595
	int dest_cpu;
L
Linus Torvalds 已提交
5596 5597

	/*
5598 5599 5600 5601 5602 5603 5604
	 * Fudge the rq selection such that the below task selection loop
	 * doesn't get stuck on the currently eligible stop task.
	 *
	 * We're currently inside stop_machine() and the rq is either stuck
	 * in the stop_machine_cpu_stop() loop, or we're executing this code,
	 * either way we should never end up calling schedule() until we're
	 * done here.
L
Linus Torvalds 已提交
5605
	 */
5606
	rq->stop = NULL;
5607

5608 5609 5610 5611 5612 5613 5614
	/*
	 * put_prev_task() and pick_next_task() sched
	 * class method both need to have an up-to-date
	 * value of rq->clock[_task]
	 */
	update_rq_clock(rq);

5615
	for (;;) {
5616 5617
		/*
		 * There's this thread running, bail when that's the only
I
Ingo Molnar 已提交
5618
		 * remaining thread:
5619 5620
		 */
		if (rq->nr_running == 1)
I
Ingo Molnar 已提交
5621
			break;
5622

5623
		/*
I
Ingo Molnar 已提交
5624
		 * pick_next_task() assumes pinned rq->lock:
5625
		 */
5626
		next = pick_next_task(rq, &fake_task, rf);
5627
		BUG_ON(!next);
V
Viresh Kumar 已提交
5628
		put_prev_task(rq, next);
5629

W
Wanpeng Li 已提交
5630 5631 5632 5633 5634 5635 5636 5637 5638
		/*
		 * Rules for changing task_struct::cpus_allowed are holding
		 * both pi_lock and rq->lock, such that holding either
		 * stabilizes the mask.
		 *
		 * Drop rq->lock is not quite as disastrous as it usually is
		 * because !cpu_active at this point, which means load-balance
		 * will not interfere. Also, stop-machine.
		 */
5639
		rq_unlock(rq, rf);
W
Wanpeng Li 已提交
5640
		raw_spin_lock(&next->pi_lock);
5641
		rq_relock(rq, rf);
W
Wanpeng Li 已提交
5642 5643 5644 5645 5646 5647 5648 5649 5650 5651 5652

		/*
		 * Since we're inside stop-machine, _nothing_ should have
		 * changed the task, WARN if weird stuff happened, because in
		 * that case the above rq->lock drop is a fail too.
		 */
		if (WARN_ON(task_rq(next) != rq || !task_on_rq_queued(next))) {
			raw_spin_unlock(&next->pi_lock);
			continue;
		}

5653
		/* Find suitable destination for @next, with force if needed. */
5654
		dest_cpu = select_fallback_rq(dead_rq->cpu, next);
5655
		rq = __migrate_task(rq, rf, next, dest_cpu);
5656
		if (rq != dead_rq) {
5657
			rq_unlock(rq, rf);
5658
			rq = dead_rq;
5659 5660
			*rf = orf;
			rq_relock(rq, rf);
5661
		}
W
Wanpeng Li 已提交
5662
		raw_spin_unlock(&next->pi_lock);
L
Linus Torvalds 已提交
5663
	}
5664

5665
	rq->stop = stop;
5666
}
L
Linus Torvalds 已提交
5667 5668
#endif /* CONFIG_HOTPLUG_CPU */

5669
void set_rq_online(struct rq *rq)
5670 5671 5672 5673
{
	if (!rq->online) {
		const struct sched_class *class;

5674
		cpumask_set_cpu(rq->cpu, rq->rd->online);
5675 5676 5677 5678 5679 5680 5681 5682 5683
		rq->online = 1;

		for_each_class(class) {
			if (class->rq_online)
				class->rq_online(rq);
		}
	}
}

5684
void set_rq_offline(struct rq *rq)
5685 5686 5687 5688 5689 5690 5691 5692 5693
{
	if (rq->online) {
		const struct sched_class *class;

		for_each_class(class) {
			if (class->rq_offline)
				class->rq_offline(rq);
		}

5694
		cpumask_clear_cpu(rq->cpu, rq->rd->online);
5695 5696 5697 5698
		rq->online = 0;
	}
}

I
Ingo Molnar 已提交
5699 5700 5701 5702
/*
 * used to mark begin/end of suspend/resume:
 */
static int num_cpus_frozen;
5703

L
Linus Torvalds 已提交
5704
/*
5705 5706 5707
 * Update cpusets according to cpu_active mask.  If cpusets are
 * disabled, cpuset_update_active_cpus() becomes a simple wrapper
 * around partition_sched_domains().
5708 5709 5710
 *
 * If we come here as part of a suspend/resume, don't touch cpusets because we
 * want to restore it back to its original state upon resume anyway.
L
Linus Torvalds 已提交
5711
 */
5712
static void cpuset_cpu_active(void)
5713
{
5714
	if (cpuhp_tasks_frozen) {
5715 5716 5717 5718 5719 5720
		/*
		 * num_cpus_frozen tracks how many CPUs are involved in suspend
		 * resume sequence. As long as this is not the last online
		 * operation in the resume sequence, just build a single sched
		 * domain, ignoring cpusets.
		 */
5721 5722
		partition_sched_domains(1, NULL, NULL);
		if (--num_cpus_frozen)
5723
			return;
5724 5725 5726 5727 5728
		/*
		 * This is the last CPU online operation. So fall through and
		 * restore the original sched domains by considering the
		 * cpuset configurations.
		 */
5729
		cpuset_force_rebuild();
5730
	}
5731
	cpuset_update_active_cpus();
5732
}
5733

5734
static int cpuset_cpu_inactive(unsigned int cpu)
5735
{
5736
	if (!cpuhp_tasks_frozen) {
5737
		if (dl_cpu_busy(cpu))
5738
			return -EBUSY;
5739
		cpuset_update_active_cpus();
5740
	} else {
5741 5742
		num_cpus_frozen++;
		partition_sched_domains(1, NULL, NULL);
5743
	}
5744
	return 0;
5745 5746
}

5747
int sched_cpu_activate(unsigned int cpu)
5748
{
5749
	struct rq *rq = cpu_rq(cpu);
5750
	struct rq_flags rf;
5751

5752 5753
#ifdef CONFIG_SCHED_SMT
	/*
5754
	 * When going up, increment the number of cores with SMT present.
5755
	 */
5756 5757
	if (cpumask_weight(cpu_smt_mask(cpu)) == 2)
		static_branch_inc_cpuslocked(&sched_smt_present);
5758
#endif
5759
	set_cpu_active(cpu, true);
5760

5761
	if (sched_smp_initialized) {
5762
		sched_domains_numa_masks_set(cpu);
5763
		cpuset_cpu_active();
5764
	}
5765 5766 5767 5768 5769

	/*
	 * Put the rq online, if not already. This happens:
	 *
	 * 1) In the early boot process, because we build the real domains
I
Ingo Molnar 已提交
5770
	 *    after all CPUs have been brought up.
5771 5772 5773 5774
	 *
	 * 2) At runtime, if cpuset_cpu_active() fails to rebuild the
	 *    domains.
	 */
5775
	rq_lock_irqsave(rq, &rf);
5776 5777 5778 5779
	if (rq->rd) {
		BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
		set_rq_online(rq);
	}
5780
	rq_unlock_irqrestore(rq, &rf);
5781 5782 5783

	update_max_interval();

5784
	return 0;
5785 5786
}

5787
int sched_cpu_deactivate(unsigned int cpu)
5788 5789 5790
{
	int ret;

5791
	set_cpu_active(cpu, false);
5792 5793 5794 5795 5796 5797 5798
	/*
	 * We've cleared cpu_active_mask, wait for all preempt-disabled and RCU
	 * users of this state to go away such that all new such users will
	 * observe it.
	 *
	 * Do sync before park smpboot threads to take care the rcu boost case.
	 */
5799
	synchronize_rcu_mult(call_rcu, call_rcu_sched);
5800

5801 5802 5803 5804 5805 5806 5807 5808
#ifdef CONFIG_SCHED_SMT
	/*
	 * When going down, decrement the number of cores with SMT present.
	 */
	if (cpumask_weight(cpu_smt_mask(cpu)) == 2)
		static_branch_dec_cpuslocked(&sched_smt_present);
#endif

5809 5810 5811 5812 5813 5814 5815
	if (!sched_smp_initialized)
		return 0;

	ret = cpuset_cpu_inactive(cpu);
	if (ret) {
		set_cpu_active(cpu, true);
		return ret;
5816
	}
5817 5818
	sched_domains_numa_masks_clear(cpu);
	return 0;
5819 5820
}

5821 5822 5823 5824 5825 5826 5827 5828
static void sched_rq_cpu_starting(unsigned int cpu)
{
	struct rq *rq = cpu_rq(cpu);

	rq->calc_load_update = calc_load_update;
	update_max_interval();
}

5829 5830
int sched_cpu_starting(unsigned int cpu)
{
5831
	sched_rq_cpu_starting(cpu);
5832
	sched_tick_start(cpu);
5833
	return 0;
5834 5835
}

5836 5837 5838 5839
#ifdef CONFIG_HOTPLUG_CPU
int sched_cpu_dying(unsigned int cpu)
{
	struct rq *rq = cpu_rq(cpu);
5840
	struct rq_flags rf;
5841 5842 5843

	/* Handle pending wakeups and then migrate everything off */
	sched_ttwu_pending();
5844
	sched_tick_stop(cpu);
5845 5846

	rq_lock_irqsave(rq, &rf);
5847 5848 5849 5850
	if (rq->rd) {
		BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
		set_rq_offline(rq);
	}
5851
	migrate_tasks(rq, &rf);
5852
	BUG_ON(rq->nr_running != 1);
5853 5854
	rq_unlock_irqrestore(rq, &rf);

5855 5856
	calc_load_migrate(rq);
	update_max_interval();
5857
	nohz_balance_exit_idle(rq);
5858
	hrtick_clear(rq);
5859 5860 5861 5862
	return 0;
}
#endif

L
Linus Torvalds 已提交
5863 5864
void __init sched_init_smp(void)
{
5865 5866
	sched_init_numa();

5867 5868
	/*
	 * There's no userspace yet to cause hotplug operations; hence all the
I
Ingo Molnar 已提交
5869
	 * CPU masks are stable and all blatant races in the below code cannot
5870 5871
	 * happen. The hotplug lock is nevertheless taken to satisfy lockdep,
	 * but there won't be any contention on it.
5872
	 */
5873
	cpus_read_lock();
5874
	mutex_lock(&sched_domains_mutex);
P
Peter Zijlstra 已提交
5875
	sched_init_domains(cpu_active_mask);
5876
	mutex_unlock(&sched_domains_mutex);
5877
	cpus_read_unlock();
5878

5879
	/* Move init over to a non-isolated CPU */
5880
	if (set_cpus_allowed_ptr(current, housekeeping_cpumask(HK_FLAG_DOMAIN)) < 0)
5881
		BUG();
I
Ingo Molnar 已提交
5882
	sched_init_granularity();
5883

5884
	init_sched_rt_class();
5885
	init_sched_dl_class();
P
Peter Zijlstra 已提交
5886

5887
	sched_smp_initialized = true;
L
Linus Torvalds 已提交
5888
}
5889 5890 5891

static int __init migration_init(void)
{
5892
	sched_rq_cpu_starting(smp_processor_id());
5893
	return 0;
L
Linus Torvalds 已提交
5894
}
5895 5896
early_initcall(migration_init);

L
Linus Torvalds 已提交
5897 5898 5899
#else
void __init sched_init_smp(void)
{
I
Ingo Molnar 已提交
5900
	sched_init_granularity();
L
Linus Torvalds 已提交
5901 5902 5903 5904 5905 5906 5907 5908 5909 5910
}
#endif /* CONFIG_SMP */

int in_sched_functions(unsigned long addr)
{
	return in_lock_functions(addr) ||
		(addr >= (unsigned long)__sched_text_start
		&& addr < (unsigned long)__sched_text_end);
}

5911
#ifdef CONFIG_CGROUP_SCHED
5912 5913 5914 5915
/*
 * Default task group.
 * Every task in system belongs to this group at bootup.
 */
5916
struct task_group root_task_group;
5917
LIST_HEAD(task_groups);
5918 5919 5920

/* Cacheline aligned slab cache for task_group */
static struct kmem_cache *task_group_cache __read_mostly;
5921
#endif
P
Peter Zijlstra 已提交
5922

5923
DECLARE_PER_CPU(cpumask_var_t, load_balance_mask);
5924
DECLARE_PER_CPU(cpumask_var_t, select_idle_mask);
P
Peter Zijlstra 已提交
5925

L
Linus Torvalds 已提交
5926 5927
void __init sched_init(void)
{
I
Ingo Molnar 已提交
5928
	int i, j;
5929 5930
	unsigned long alloc_size = 0, ptr;

5931
	wait_bit_init();
5932

5933 5934 5935 5936 5937 5938 5939
#ifdef CONFIG_FAIR_GROUP_SCHED
	alloc_size += 2 * nr_cpu_ids * sizeof(void **);
#endif
#ifdef CONFIG_RT_GROUP_SCHED
	alloc_size += 2 * nr_cpu_ids * sizeof(void **);
#endif
	if (alloc_size) {
5940
		ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT);
5941 5942

#ifdef CONFIG_FAIR_GROUP_SCHED
5943
		root_task_group.se = (struct sched_entity **)ptr;
5944 5945
		ptr += nr_cpu_ids * sizeof(void **);

5946
		root_task_group.cfs_rq = (struct cfs_rq **)ptr;
5947
		ptr += nr_cpu_ids * sizeof(void **);
5948

5949
#endif /* CONFIG_FAIR_GROUP_SCHED */
5950
#ifdef CONFIG_RT_GROUP_SCHED
5951
		root_task_group.rt_se = (struct sched_rt_entity **)ptr;
5952 5953
		ptr += nr_cpu_ids * sizeof(void **);

5954
		root_task_group.rt_rq = (struct rt_rq **)ptr;
5955 5956
		ptr += nr_cpu_ids * sizeof(void **);

5957
#endif /* CONFIG_RT_GROUP_SCHED */
5958
	}
5959
#ifdef CONFIG_CPUMASK_OFFSTACK
5960 5961 5962
	for_each_possible_cpu(i) {
		per_cpu(load_balance_mask, i) = (cpumask_var_t)kzalloc_node(
			cpumask_size(), GFP_KERNEL, cpu_to_node(i));
5963 5964
		per_cpu(select_idle_mask, i) = (cpumask_var_t)kzalloc_node(
			cpumask_size(), GFP_KERNEL, cpu_to_node(i));
5965
	}
5966
#endif /* CONFIG_CPUMASK_OFFSTACK */
I
Ingo Molnar 已提交
5967

I
Ingo Molnar 已提交
5968 5969
	init_rt_bandwidth(&def_rt_bandwidth, global_rt_period(), global_rt_runtime());
	init_dl_bandwidth(&def_dl_bandwidth, global_rt_period(), global_rt_runtime());
5970

G
Gregory Haskins 已提交
5971 5972 5973 5974
#ifdef CONFIG_SMP
	init_defrootdomain();
#endif

5975
#ifdef CONFIG_RT_GROUP_SCHED
5976
	init_rt_bandwidth(&root_task_group.rt_bandwidth,
5977
			global_rt_period(), global_rt_runtime());
5978
#endif /* CONFIG_RT_GROUP_SCHED */
5979

D
Dhaval Giani 已提交
5980
#ifdef CONFIG_CGROUP_SCHED
5981 5982
	task_group_cache = KMEM_CACHE(task_group, 0);

5983 5984
	list_add(&root_task_group.list, &task_groups);
	INIT_LIST_HEAD(&root_task_group.children);
5985
	INIT_LIST_HEAD(&root_task_group.siblings);
5986
	autogroup_init(&init_task);
D
Dhaval Giani 已提交
5987
#endif /* CONFIG_CGROUP_SCHED */
P
Peter Zijlstra 已提交
5988

5989
	for_each_possible_cpu(i) {
5990
		struct rq *rq;
L
Linus Torvalds 已提交
5991 5992

		rq = cpu_rq(i);
5993
		raw_spin_lock_init(&rq->lock);
N
Nick Piggin 已提交
5994
		rq->nr_running = 0;
5995 5996
		rq->calc_load_active = 0;
		rq->calc_load_update = jiffies + LOAD_FREQ;
5997
		init_cfs_rq(&rq->cfs);
5998 5999
		init_rt_rq(&rq->rt);
		init_dl_rq(&rq->dl);
I
Ingo Molnar 已提交
6000
#ifdef CONFIG_FAIR_GROUP_SCHED
6001
		root_task_group.shares = ROOT_TASK_GROUP_LOAD;
P
Peter Zijlstra 已提交
6002
		INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
6003
		rq->tmp_alone_branch = &rq->leaf_cfs_rq_list;
D
Dhaval Giani 已提交
6004
		/*
I
Ingo Molnar 已提交
6005
		 * How much CPU bandwidth does root_task_group get?
D
Dhaval Giani 已提交
6006 6007
		 *
		 * In case of task-groups formed thr' the cgroup filesystem, it
I
Ingo Molnar 已提交
6008 6009
		 * gets 100% of the CPU resources in the system. This overall
		 * system CPU resource is divided among the tasks of
6010
		 * root_task_group and its child task-groups in a fair manner,
D
Dhaval Giani 已提交
6011 6012 6013
		 * based on each entity's (task or task-group's) weight
		 * (se->load.weight).
		 *
6014
		 * In other words, if root_task_group has 10 tasks of weight
D
Dhaval Giani 已提交
6015
		 * 1024) and two child groups A0 and A1 (of weight 1024 each),
I
Ingo Molnar 已提交
6016
		 * then A0's share of the CPU resource is:
D
Dhaval Giani 已提交
6017
		 *
6018
		 *	A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
D
Dhaval Giani 已提交
6019
		 *
6020 6021
		 * We achieve this by letting root_task_group's tasks sit
		 * directly in rq->cfs (i.e root_task_group->se[] = NULL).
D
Dhaval Giani 已提交
6022
		 */
6023
		init_cfs_bandwidth(&root_task_group.cfs_bandwidth);
6024
		init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, NULL);
D
Dhaval Giani 已提交
6025 6026 6027
#endif /* CONFIG_FAIR_GROUP_SCHED */

		rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
6028
#ifdef CONFIG_RT_GROUP_SCHED
6029
		init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, NULL);
I
Ingo Molnar 已提交
6030
#endif
L
Linus Torvalds 已提交
6031

I
Ingo Molnar 已提交
6032 6033
		for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
			rq->cpu_load[j] = 0;
6034

L
Linus Torvalds 已提交
6035
#ifdef CONFIG_SMP
N
Nick Piggin 已提交
6036
		rq->sd = NULL;
G
Gregory Haskins 已提交
6037
		rq->rd = NULL;
6038
		rq->cpu_capacity = rq->cpu_capacity_orig = SCHED_CAPACITY_SCALE;
6039
		rq->balance_callback = NULL;
L
Linus Torvalds 已提交
6040
		rq->active_balance = 0;
I
Ingo Molnar 已提交
6041
		rq->next_balance = jiffies;
L
Linus Torvalds 已提交
6042
		rq->push_cpu = 0;
6043
		rq->cpu = i;
6044
		rq->online = 0;
6045 6046
		rq->idle_stamp = 0;
		rq->avg_idle = 2*sysctl_sched_migration_cost;
6047
		rq->max_idle_balance_cost = sysctl_sched_migration_cost;
6048 6049 6050

		INIT_LIST_HEAD(&rq->cfs_tasks);

6051
		rq_attach_root(rq, &def_root_domain);
6052
#ifdef CONFIG_NO_HZ_COMMON
6053
		rq->last_load_update_tick = jiffies;
6054
		rq->last_blocked_load_update_tick = jiffies;
6055
		atomic_set(&rq->nohz_flags, 0);
6056
#endif
6057
#endif /* CONFIG_SMP */
6058
		hrtick_rq_init(rq);
L
Linus Torvalds 已提交
6059 6060 6061
		atomic_set(&rq->nr_iowait, 0);
	}

6062
	set_load_weight(&init_task, false);
6063

L
Linus Torvalds 已提交
6064 6065 6066
	/*
	 * The boot idle thread does lazy MMU switching as well:
	 */
V
Vegard Nossum 已提交
6067
	mmgrab(&init_mm);
L
Linus Torvalds 已提交
6068 6069 6070 6071 6072 6073 6074 6075 6076
	enter_lazy_tlb(&init_mm, current);

	/*
	 * Make us the idle thread. Technically, schedule() should not be
	 * called from this thread, however somewhere below it might be,
	 * but because we are the idle thread, we just pick up running again
	 * when this runqueue becomes "idle".
	 */
	init_idle(current, smp_processor_id());
6077 6078 6079

	calc_load_update = jiffies + LOAD_FREQ;

6080
#ifdef CONFIG_SMP
6081
	idle_thread_set_boot_cpu();
6082 6083
#endif
	init_sched_fair_class();
6084

6085 6086
	init_schedstats();

6087 6088
	psi_init();

6089
	scheduler_running = 1;
L
Linus Torvalds 已提交
6090 6091
}

6092
#ifdef CONFIG_DEBUG_ATOMIC_SLEEP
6093 6094
static inline int preempt_count_equals(int preempt_offset)
{
6095
	int nested = preempt_count() + rcu_preempt_depth();
6096

A
Arnd Bergmann 已提交
6097
	return (nested == preempt_offset);
6098 6099
}

6100
void __might_sleep(const char *file, int line, int preempt_offset)
L
Linus Torvalds 已提交
6101
{
P
Peter Zijlstra 已提交
6102 6103 6104 6105 6106
	/*
	 * Blocking primitives will set (and therefore destroy) current->state,
	 * since we will exit with TASK_RUNNING make sure we enter with it,
	 * otherwise we will destroy state.
	 */
6107
	WARN_ONCE(current->state != TASK_RUNNING && current->task_state_change,
P
Peter Zijlstra 已提交
6108 6109 6110 6111
			"do not call blocking ops when !TASK_RUNNING; "
			"state=%lx set at [<%p>] %pS\n",
			current->state,
			(void *)current->task_state_change,
6112
			(void *)current->task_state_change);
P
Peter Zijlstra 已提交
6113

6114 6115 6116 6117 6118
	___might_sleep(file, line, preempt_offset);
}
EXPORT_SYMBOL(__might_sleep);

void ___might_sleep(const char *file, int line, int preempt_offset)
L
Linus Torvalds 已提交
6119
{
I
Ingo Molnar 已提交
6120 6121 6122
	/* Ratelimiting timestamp: */
	static unsigned long prev_jiffy;

6123
	unsigned long preempt_disable_ip;
L
Linus Torvalds 已提交
6124

I
Ingo Molnar 已提交
6125 6126 6127
	/* WARN_ON_ONCE() by default, no rate limit required: */
	rcu_sleep_check();

6128 6129
	if ((preempt_count_equals(preempt_offset) && !irqs_disabled() &&
	     !is_idle_task(current)) ||
6130 6131
	    system_state == SYSTEM_BOOTING || system_state > SYSTEM_RUNNING ||
	    oops_in_progress)
I
Ingo Molnar 已提交
6132
		return;
6133

I
Ingo Molnar 已提交
6134 6135 6136 6137
	if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
		return;
	prev_jiffy = jiffies;

I
Ingo Molnar 已提交
6138
	/* Save this before calling printk(), since that will clobber it: */
6139 6140
	preempt_disable_ip = get_preempt_disable_ip(current);

P
Peter Zijlstra 已提交
6141 6142 6143 6144 6145 6146 6147
	printk(KERN_ERR
		"BUG: sleeping function called from invalid context at %s:%d\n",
			file, line);
	printk(KERN_ERR
		"in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
			in_atomic(), irqs_disabled(),
			current->pid, current->comm);
I
Ingo Molnar 已提交
6148

6149 6150 6151
	if (task_stack_end_corrupted(current))
		printk(KERN_EMERG "Thread overran stack, or stack corrupted\n");

I
Ingo Molnar 已提交
6152 6153 6154
	debug_show_held_locks(current);
	if (irqs_disabled())
		print_irqtrace_events(current);
6155 6156
	if (IS_ENABLED(CONFIG_DEBUG_PREEMPT)
	    && !preempt_count_equals(preempt_offset)) {
6157
		pr_err("Preemption disabled at:");
6158
		print_ip_sym(preempt_disable_ip);
6159 6160
		pr_cont("\n");
	}
I
Ingo Molnar 已提交
6161
	dump_stack();
6162
	add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
L
Linus Torvalds 已提交
6163
}
6164
EXPORT_SYMBOL(___might_sleep);
L
Linus Torvalds 已提交
6165 6166 6167
#endif

#ifdef CONFIG_MAGIC_SYSRQ
6168
void normalize_rt_tasks(void)
6169
{
6170
	struct task_struct *g, *p;
6171 6172 6173
	struct sched_attr attr = {
		.sched_policy = SCHED_NORMAL,
	};
L
Linus Torvalds 已提交
6174

6175
	read_lock(&tasklist_lock);
6176
	for_each_process_thread(g, p) {
6177 6178 6179
		/*
		 * Only normalize user tasks:
		 */
6180
		if (p->flags & PF_KTHREAD)
6181 6182
			continue;

6183 6184 6185 6186
		p->se.exec_start = 0;
		schedstat_set(p->se.statistics.wait_start,  0);
		schedstat_set(p->se.statistics.sleep_start, 0);
		schedstat_set(p->se.statistics.block_start, 0);
I
Ingo Molnar 已提交
6187

6188
		if (!dl_task(p) && !rt_task(p)) {
I
Ingo Molnar 已提交
6189 6190 6191 6192
			/*
			 * Renice negative nice level userspace
			 * tasks back to 0:
			 */
6193
			if (task_nice(p) < 0)
I
Ingo Molnar 已提交
6194
				set_user_nice(p, 0);
L
Linus Torvalds 已提交
6195
			continue;
I
Ingo Molnar 已提交
6196
		}
L
Linus Torvalds 已提交
6197

6198
		__sched_setscheduler(p, &attr, false, false);
6199
	}
6200
	read_unlock(&tasklist_lock);
L
Linus Torvalds 已提交
6201 6202 6203
}

#endif /* CONFIG_MAGIC_SYSRQ */
6204

6205
#if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB)
6206
/*
6207
 * These functions are only useful for the IA64 MCA handling, or kdb.
6208 6209 6210 6211 6212 6213 6214 6215 6216
 *
 * They can only be called when the whole system has been
 * stopped - every CPU needs to be quiescent, and no scheduling
 * activity can take place. Using them for anything else would
 * be a serious bug, and as a result, they aren't even visible
 * under any other configuration.
 */

/**
I
Ingo Molnar 已提交
6217
 * curr_task - return the current task for a given CPU.
6218 6219 6220
 * @cpu: the processor in question.
 *
 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
6221 6222
 *
 * Return: The current task for @cpu.
6223
 */
6224
struct task_struct *curr_task(int cpu)
6225 6226 6227 6228
{
	return cpu_curr(cpu);
}

6229 6230 6231
#endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */

#ifdef CONFIG_IA64
6232
/**
I
Ingo Molnar 已提交
6233
 * set_curr_task - set the current task for a given CPU.
6234 6235 6236 6237
 * @cpu: the processor in question.
 * @p: the task pointer to set.
 *
 * Description: This function must only be used when non-maskable interrupts
I
Ingo Molnar 已提交
6238
 * are serviced on a separate stack. It allows the architecture to switch the
I
Ingo Molnar 已提交
6239
 * notion of the current task on a CPU in a non-blocking manner. This function
6240 6241 6242 6243 6244 6245 6246
 * must be called with all CPU's synchronized, and interrupts disabled, the
 * and caller must save the original value of the current task (see
 * curr_task() above) and restore that value before reenabling interrupts and
 * re-starting the system.
 *
 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
 */
6247
void ia64_set_curr_task(int cpu, struct task_struct *p)
6248 6249 6250 6251 6252
{
	cpu_curr(cpu) = p;
}

#endif
S
Srivatsa Vaddagiri 已提交
6253

D
Dhaval Giani 已提交
6254
#ifdef CONFIG_CGROUP_SCHED
6255 6256 6257
/* task_group_lock serializes the addition/removal of task groups */
static DEFINE_SPINLOCK(task_group_lock);

6258
static void sched_free_group(struct task_group *tg)
6259 6260 6261
{
	free_fair_sched_group(tg);
	free_rt_sched_group(tg);
6262
	autogroup_free(tg);
6263
	kmem_cache_free(task_group_cache, tg);
6264 6265 6266
}

/* allocate runqueue etc for a new task group */
6267
struct task_group *sched_create_group(struct task_group *parent)
6268 6269 6270
{
	struct task_group *tg;

6271
	tg = kmem_cache_alloc(task_group_cache, GFP_KERNEL | __GFP_ZERO);
6272 6273 6274
	if (!tg)
		return ERR_PTR(-ENOMEM);

6275
	if (!alloc_fair_sched_group(tg, parent))
6276 6277
		goto err;

6278
	if (!alloc_rt_sched_group(tg, parent))
6279 6280
		goto err;

6281 6282 6283
	return tg;

err:
6284
	sched_free_group(tg);
6285 6286 6287 6288 6289 6290 6291
	return ERR_PTR(-ENOMEM);
}

void sched_online_group(struct task_group *tg, struct task_group *parent)
{
	unsigned long flags;

6292
	spin_lock_irqsave(&task_group_lock, flags);
P
Peter Zijlstra 已提交
6293
	list_add_rcu(&tg->list, &task_groups);
P
Peter Zijlstra 已提交
6294

I
Ingo Molnar 已提交
6295 6296
	/* Root should already exist: */
	WARN_ON(!parent);
P
Peter Zijlstra 已提交
6297 6298 6299

	tg->parent = parent;
	INIT_LIST_HEAD(&tg->children);
6300
	list_add_rcu(&tg->siblings, &parent->children);
6301
	spin_unlock_irqrestore(&task_group_lock, flags);
6302 6303

	online_fair_sched_group(tg);
S
Srivatsa Vaddagiri 已提交
6304 6305
}

6306
/* rcu callback to free various structures associated with a task group */
6307
static void sched_free_group_rcu(struct rcu_head *rhp)
S
Srivatsa Vaddagiri 已提交
6308
{
I
Ingo Molnar 已提交
6309
	/* Now it should be safe to free those cfs_rqs: */
6310
	sched_free_group(container_of(rhp, struct task_group, rcu));
S
Srivatsa Vaddagiri 已提交
6311 6312
}

6313
void sched_destroy_group(struct task_group *tg)
6314
{
I
Ingo Molnar 已提交
6315
	/* Wait for possible concurrent references to cfs_rqs complete: */
6316
	call_rcu(&tg->rcu, sched_free_group_rcu);
6317 6318 6319
}

void sched_offline_group(struct task_group *tg)
S
Srivatsa Vaddagiri 已提交
6320
{
6321
	unsigned long flags;
S
Srivatsa Vaddagiri 已提交
6322

I
Ingo Molnar 已提交
6323
	/* End participation in shares distribution: */
6324
	unregister_fair_sched_group(tg);
6325 6326

	spin_lock_irqsave(&task_group_lock, flags);
P
Peter Zijlstra 已提交
6327
	list_del_rcu(&tg->list);
P
Peter Zijlstra 已提交
6328
	list_del_rcu(&tg->siblings);
6329
	spin_unlock_irqrestore(&task_group_lock, flags);
S
Srivatsa Vaddagiri 已提交
6330 6331
}

6332
static void sched_change_group(struct task_struct *tsk, int type)
S
Srivatsa Vaddagiri 已提交
6333
{
P
Peter Zijlstra 已提交
6334
	struct task_group *tg;
S
Srivatsa Vaddagiri 已提交
6335

6336 6337 6338 6339 6340 6341
	/*
	 * All callers are synchronized by task_rq_lock(); we do not use RCU
	 * which is pointless here. Thus, we pass "true" to task_css_check()
	 * to prevent lockdep warnings.
	 */
	tg = container_of(task_css_check(tsk, cpu_cgrp_id, true),
P
Peter Zijlstra 已提交
6342 6343 6344 6345
			  struct task_group, css);
	tg = autogroup_task_group(tsk, tg);
	tsk->sched_task_group = tg;

P
Peter Zijlstra 已提交
6346
#ifdef CONFIG_FAIR_GROUP_SCHED
6347 6348
	if (tsk->sched_class->task_change_group)
		tsk->sched_class->task_change_group(tsk, type);
6349
	else
P
Peter Zijlstra 已提交
6350
#endif
6351
		set_task_rq(tsk, task_cpu(tsk));
6352 6353 6354 6355 6356 6357 6358 6359 6360 6361 6362
}

/*
 * Change task's runqueue when it moves between groups.
 *
 * The caller of this function should have put the task in its new group by
 * now. This function just updates tsk->se.cfs_rq and tsk->se.parent to reflect
 * its new group.
 */
void sched_move_task(struct task_struct *tsk)
{
6363 6364
	int queued, running, queue_flags =
		DEQUEUE_SAVE | DEQUEUE_MOVE | DEQUEUE_NOCLOCK;
6365 6366 6367 6368
	struct rq_flags rf;
	struct rq *rq;

	rq = task_rq_lock(tsk, &rf);
6369
	update_rq_clock(rq);
6370 6371 6372 6373 6374

	running = task_current(rq, tsk);
	queued = task_on_rq_queued(tsk);

	if (queued)
6375
		dequeue_task(rq, tsk, queue_flags);
6376
	if (running)
6377 6378 6379
		put_prev_task(rq, tsk);

	sched_change_group(tsk, TASK_MOVE_GROUP);
P
Peter Zijlstra 已提交
6380

6381
	if (queued)
6382
		enqueue_task(rq, tsk, queue_flags);
6383
	if (running)
6384
		set_curr_task(rq, tsk);
S
Srivatsa Vaddagiri 已提交
6385

6386
	task_rq_unlock(rq, tsk, &rf);
S
Srivatsa Vaddagiri 已提交
6387
}
6388

6389
static inline struct task_group *css_tg(struct cgroup_subsys_state *css)
6390
{
6391
	return css ? container_of(css, struct task_group, css) : NULL;
6392 6393
}

6394 6395
static struct cgroup_subsys_state *
cpu_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
6396
{
6397 6398
	struct task_group *parent = css_tg(parent_css);
	struct task_group *tg;
6399

6400
	if (!parent) {
6401
		/* This is early initialization for the top cgroup */
6402
		return &root_task_group.css;
6403 6404
	}

6405
	tg = sched_create_group(parent);
6406 6407 6408 6409 6410 6411
	if (IS_ERR(tg))
		return ERR_PTR(-ENOMEM);

	return &tg->css;
}

6412 6413 6414 6415 6416 6417 6418 6419 6420 6421 6422
/* Expose task group only after completing cgroup initialization */
static int cpu_cgroup_css_online(struct cgroup_subsys_state *css)
{
	struct task_group *tg = css_tg(css);
	struct task_group *parent = css_tg(css->parent);

	if (parent)
		sched_online_group(tg, parent);
	return 0;
}

6423
static void cpu_cgroup_css_released(struct cgroup_subsys_state *css)
6424
{
6425
	struct task_group *tg = css_tg(css);
6426

6427
	sched_offline_group(tg);
6428 6429
}

6430
static void cpu_cgroup_css_free(struct cgroup_subsys_state *css)
6431
{
6432
	struct task_group *tg = css_tg(css);
6433

6434 6435 6436 6437
	/*
	 * Relies on the RCU grace period between css_released() and this.
	 */
	sched_free_group(tg);
6438 6439
}

6440 6441 6442 6443
/*
 * This is called before wake_up_new_task(), therefore we really only
 * have to set its group bits, all the other stuff does not apply.
 */
6444
static void cpu_cgroup_fork(struct task_struct *task)
6445
{
6446 6447 6448 6449 6450
	struct rq_flags rf;
	struct rq *rq;

	rq = task_rq_lock(task, &rf);

6451
	update_rq_clock(rq);
6452 6453 6454
	sched_change_group(task, TASK_SET_GROUP);

	task_rq_unlock(rq, task, &rf);
6455 6456
}

6457
static int cpu_cgroup_can_attach(struct cgroup_taskset *tset)
6458
{
6459
	struct task_struct *task;
6460
	struct cgroup_subsys_state *css;
6461
	int ret = 0;
6462

6463
	cgroup_taskset_for_each(task, css, tset) {
6464
#ifdef CONFIG_RT_GROUP_SCHED
6465
		if (!sched_rt_can_attach(css_tg(css), task))
6466
			return -EINVAL;
6467
#endif
6468 6469 6470 6471 6472 6473 6474 6475 6476 6477 6478 6479 6480 6481 6482 6483
		/*
		 * Serialize against wake_up_new_task() such that if its
		 * running, we're sure to observe its full state.
		 */
		raw_spin_lock_irq(&task->pi_lock);
		/*
		 * Avoid calling sched_move_task() before wake_up_new_task()
		 * has happened. This would lead to problems with PELT, due to
		 * move wanting to detach+attach while we're not attached yet.
		 */
		if (task->state == TASK_NEW)
			ret = -EINVAL;
		raw_spin_unlock_irq(&task->pi_lock);

		if (ret)
			break;
6484
	}
6485
	return ret;
6486
}
6487

6488
static void cpu_cgroup_attach(struct cgroup_taskset *tset)
6489
{
6490
	struct task_struct *task;
6491
	struct cgroup_subsys_state *css;
6492

6493
	cgroup_taskset_for_each(task, css, tset)
6494
		sched_move_task(task);
6495 6496
}

6497
#ifdef CONFIG_FAIR_GROUP_SCHED
6498 6499
static int cpu_shares_write_u64(struct cgroup_subsys_state *css,
				struct cftype *cftype, u64 shareval)
6500
{
6501 6502
	if (shareval > scale_load_down(ULONG_MAX))
		shareval = MAX_SHARES;
6503
	return sched_group_set_shares(css_tg(css), scale_load(shareval));
6504 6505
}

6506 6507
static u64 cpu_shares_read_u64(struct cgroup_subsys_state *css,
			       struct cftype *cft)
6508
{
6509
	struct task_group *tg = css_tg(css);
6510

6511
	return (u64) scale_load_down(tg->shares);
6512
}
6513 6514

#ifdef CONFIG_CFS_BANDWIDTH
6515 6516
static DEFINE_MUTEX(cfs_constraints_mutex);

6517 6518 6519
const u64 max_cfs_quota_period = 1 * NSEC_PER_SEC; /* 1s */
const u64 min_cfs_quota_period = 1 * NSEC_PER_MSEC; /* 1ms */

6520 6521
static int __cfs_schedulable(struct task_group *tg, u64 period, u64 runtime);

6522 6523
static int tg_set_cfs_bandwidth(struct task_group *tg, u64 period, u64 quota)
{
6524
	int i, ret = 0, runtime_enabled, runtime_was_enabled;
6525
	struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
6526 6527 6528 6529 6530 6531 6532 6533 6534 6535 6536 6537 6538 6539 6540 6541 6542 6543 6544 6545

	if (tg == &root_task_group)
		return -EINVAL;

	/*
	 * Ensure we have at some amount of bandwidth every period.  This is
	 * to prevent reaching a state of large arrears when throttled via
	 * entity_tick() resulting in prolonged exit starvation.
	 */
	if (quota < min_cfs_quota_period || period < min_cfs_quota_period)
		return -EINVAL;

	/*
	 * Likewise, bound things on the otherside by preventing insane quota
	 * periods.  This also allows us to normalize in computing quota
	 * feasibility.
	 */
	if (period > max_cfs_quota_period)
		return -EINVAL;

6546 6547 6548 6549 6550
	/*
	 * Prevent race between setting of cfs_rq->runtime_enabled and
	 * unthrottle_offline_cfs_rqs().
	 */
	get_online_cpus();
6551 6552 6553 6554 6555
	mutex_lock(&cfs_constraints_mutex);
	ret = __cfs_schedulable(tg, period, quota);
	if (ret)
		goto out_unlock;

6556
	runtime_enabled = quota != RUNTIME_INF;
6557
	runtime_was_enabled = cfs_b->quota != RUNTIME_INF;
6558 6559 6560 6561 6562 6563
	/*
	 * If we need to toggle cfs_bandwidth_used, off->on must occur
	 * before making related changes, and on->off must occur afterwards
	 */
	if (runtime_enabled && !runtime_was_enabled)
		cfs_bandwidth_usage_inc();
6564 6565 6566
	raw_spin_lock_irq(&cfs_b->lock);
	cfs_b->period = ns_to_ktime(period);
	cfs_b->quota = quota;
6567

P
Paul Turner 已提交
6568
	__refill_cfs_bandwidth_runtime(cfs_b);
I
Ingo Molnar 已提交
6569 6570

	/* Restart the period timer (if active) to handle new period expiry: */
P
Peter Zijlstra 已提交
6571 6572
	if (runtime_enabled)
		start_cfs_bandwidth(cfs_b);
I
Ingo Molnar 已提交
6573

6574 6575
	raw_spin_unlock_irq(&cfs_b->lock);

6576
	for_each_online_cpu(i) {
6577
		struct cfs_rq *cfs_rq = tg->cfs_rq[i];
6578
		struct rq *rq = cfs_rq->rq;
6579
		struct rq_flags rf;
6580

6581
		rq_lock_irq(rq, &rf);
6582
		cfs_rq->runtime_enabled = runtime_enabled;
6583
		cfs_rq->runtime_remaining = 0;
6584

6585
		if (cfs_rq->throttled)
6586
			unthrottle_cfs_rq(cfs_rq);
6587
		rq_unlock_irq(rq, &rf);
6588
	}
6589 6590
	if (runtime_was_enabled && !runtime_enabled)
		cfs_bandwidth_usage_dec();
6591 6592
out_unlock:
	mutex_unlock(&cfs_constraints_mutex);
6593
	put_online_cpus();
6594

6595
	return ret;
6596 6597 6598 6599 6600 6601
}

int tg_set_cfs_quota(struct task_group *tg, long cfs_quota_us)
{
	u64 quota, period;

6602
	period = ktime_to_ns(tg->cfs_bandwidth.period);
6603 6604
	if (cfs_quota_us < 0)
		quota = RUNTIME_INF;
6605
	else if ((u64)cfs_quota_us <= U64_MAX / NSEC_PER_USEC)
6606
		quota = (u64)cfs_quota_us * NSEC_PER_USEC;
6607 6608
	else
		return -EINVAL;
6609 6610 6611 6612 6613 6614 6615 6616

	return tg_set_cfs_bandwidth(tg, period, quota);
}

long tg_get_cfs_quota(struct task_group *tg)
{
	u64 quota_us;

6617
	if (tg->cfs_bandwidth.quota == RUNTIME_INF)
6618 6619
		return -1;

6620
	quota_us = tg->cfs_bandwidth.quota;
6621 6622 6623 6624 6625 6626 6627 6628 6629
	do_div(quota_us, NSEC_PER_USEC);

	return quota_us;
}

int tg_set_cfs_period(struct task_group *tg, long cfs_period_us)
{
	u64 quota, period;

6630 6631 6632
	if ((u64)cfs_period_us > U64_MAX / NSEC_PER_USEC)
		return -EINVAL;

6633
	period = (u64)cfs_period_us * NSEC_PER_USEC;
6634
	quota = tg->cfs_bandwidth.quota;
6635 6636 6637 6638 6639 6640 6641 6642

	return tg_set_cfs_bandwidth(tg, period, quota);
}

long tg_get_cfs_period(struct task_group *tg)
{
	u64 cfs_period_us;

6643
	cfs_period_us = ktime_to_ns(tg->cfs_bandwidth.period);
6644 6645 6646 6647 6648
	do_div(cfs_period_us, NSEC_PER_USEC);

	return cfs_period_us;
}

6649 6650
static s64 cpu_cfs_quota_read_s64(struct cgroup_subsys_state *css,
				  struct cftype *cft)
6651
{
6652
	return tg_get_cfs_quota(css_tg(css));
6653 6654
}

6655 6656
static int cpu_cfs_quota_write_s64(struct cgroup_subsys_state *css,
				   struct cftype *cftype, s64 cfs_quota_us)
6657
{
6658
	return tg_set_cfs_quota(css_tg(css), cfs_quota_us);
6659 6660
}

6661 6662
static u64 cpu_cfs_period_read_u64(struct cgroup_subsys_state *css,
				   struct cftype *cft)
6663
{
6664
	return tg_get_cfs_period(css_tg(css));
6665 6666
}

6667 6668
static int cpu_cfs_period_write_u64(struct cgroup_subsys_state *css,
				    struct cftype *cftype, u64 cfs_period_us)
6669
{
6670
	return tg_set_cfs_period(css_tg(css), cfs_period_us);
6671 6672
}

6673 6674 6675 6676 6677 6678 6679 6680 6681 6682 6683 6684 6685 6686 6687 6688 6689 6690 6691 6692 6693 6694 6695 6696 6697 6698 6699 6700 6701 6702 6703 6704
struct cfs_schedulable_data {
	struct task_group *tg;
	u64 period, quota;
};

/*
 * normalize group quota/period to be quota/max_period
 * note: units are usecs
 */
static u64 normalize_cfs_quota(struct task_group *tg,
			       struct cfs_schedulable_data *d)
{
	u64 quota, period;

	if (tg == d->tg) {
		period = d->period;
		quota = d->quota;
	} else {
		period = tg_get_cfs_period(tg);
		quota = tg_get_cfs_quota(tg);
	}

	/* note: these should typically be equivalent */
	if (quota == RUNTIME_INF || quota == -1)
		return RUNTIME_INF;

	return to_ratio(period, quota);
}

static int tg_cfs_schedulable_down(struct task_group *tg, void *data)
{
	struct cfs_schedulable_data *d = data;
6705
	struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
6706 6707 6708 6709 6710
	s64 quota = 0, parent_quota = -1;

	if (!tg->parent) {
		quota = RUNTIME_INF;
	} else {
6711
		struct cfs_bandwidth *parent_b = &tg->parent->cfs_bandwidth;
6712 6713

		quota = normalize_cfs_quota(tg, d);
6714
		parent_quota = parent_b->hierarchical_quota;
6715 6716

		/*
6717 6718
		 * Ensure max(child_quota) <= parent_quota.  On cgroup2,
		 * always take the min.  On cgroup1, only inherit when no
I
Ingo Molnar 已提交
6719
		 * limit is set:
6720
		 */
6721 6722 6723 6724 6725 6726 6727 6728
		if (cgroup_subsys_on_dfl(cpu_cgrp_subsys)) {
			quota = min(quota, parent_quota);
		} else {
			if (quota == RUNTIME_INF)
				quota = parent_quota;
			else if (parent_quota != RUNTIME_INF && quota > parent_quota)
				return -EINVAL;
		}
6729
	}
6730
	cfs_b->hierarchical_quota = quota;
6731 6732 6733 6734 6735 6736

	return 0;
}

static int __cfs_schedulable(struct task_group *tg, u64 period, u64 quota)
{
6737
	int ret;
6738 6739 6740 6741 6742 6743 6744 6745 6746 6747 6748
	struct cfs_schedulable_data data = {
		.tg = tg,
		.period = period,
		.quota = quota,
	};

	if (quota != RUNTIME_INF) {
		do_div(data.period, NSEC_PER_USEC);
		do_div(data.quota, NSEC_PER_USEC);
	}

6749 6750 6751 6752 6753
	rcu_read_lock();
	ret = walk_tg_tree(tg_cfs_schedulable_down, tg_nop, &data);
	rcu_read_unlock();

	return ret;
6754
}
6755

6756
static int cpu_cfs_stat_show(struct seq_file *sf, void *v)
6757
{
6758
	struct task_group *tg = css_tg(seq_css(sf));
6759
	struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
6760

6761 6762 6763
	seq_printf(sf, "nr_periods %d\n", cfs_b->nr_periods);
	seq_printf(sf, "nr_throttled %d\n", cfs_b->nr_throttled);
	seq_printf(sf, "throttled_time %llu\n", cfs_b->throttled_time);
6764

6765 6766 6767 6768 6769 6770 6771 6772 6773 6774
	if (schedstat_enabled() && tg != &root_task_group) {
		u64 ws = 0;
		int i;

		for_each_possible_cpu(i)
			ws += schedstat_val(tg->se[i]->statistics.wait_sum);

		seq_printf(sf, "wait_sum %llu\n", ws);
	}

6775 6776
	return 0;
}
6777
#endif /* CONFIG_CFS_BANDWIDTH */
6778
#endif /* CONFIG_FAIR_GROUP_SCHED */
6779

6780
#ifdef CONFIG_RT_GROUP_SCHED
6781 6782
static int cpu_rt_runtime_write(struct cgroup_subsys_state *css,
				struct cftype *cft, s64 val)
P
Peter Zijlstra 已提交
6783
{
6784
	return sched_group_set_rt_runtime(css_tg(css), val);
P
Peter Zijlstra 已提交
6785 6786
}

6787 6788
static s64 cpu_rt_runtime_read(struct cgroup_subsys_state *css,
			       struct cftype *cft)
P
Peter Zijlstra 已提交
6789
{
6790
	return sched_group_rt_runtime(css_tg(css));
P
Peter Zijlstra 已提交
6791
}
6792

6793 6794
static int cpu_rt_period_write_uint(struct cgroup_subsys_state *css,
				    struct cftype *cftype, u64 rt_period_us)
6795
{
6796
	return sched_group_set_rt_period(css_tg(css), rt_period_us);
6797 6798
}

6799 6800
static u64 cpu_rt_period_read_uint(struct cgroup_subsys_state *css,
				   struct cftype *cft)
6801
{
6802
	return sched_group_rt_period(css_tg(css));
6803
}
6804
#endif /* CONFIG_RT_GROUP_SCHED */
P
Peter Zijlstra 已提交
6805

6806
static struct cftype cpu_legacy_files[] = {
6807
#ifdef CONFIG_FAIR_GROUP_SCHED
6808 6809
	{
		.name = "shares",
6810 6811
		.read_u64 = cpu_shares_read_u64,
		.write_u64 = cpu_shares_write_u64,
6812
	},
6813
#endif
6814 6815 6816 6817 6818 6819 6820 6821 6822 6823 6824
#ifdef CONFIG_CFS_BANDWIDTH
	{
		.name = "cfs_quota_us",
		.read_s64 = cpu_cfs_quota_read_s64,
		.write_s64 = cpu_cfs_quota_write_s64,
	},
	{
		.name = "cfs_period_us",
		.read_u64 = cpu_cfs_period_read_u64,
		.write_u64 = cpu_cfs_period_write_u64,
	},
6825 6826
	{
		.name = "stat",
6827
		.seq_show = cpu_cfs_stat_show,
6828
	},
6829
#endif
6830
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
6831
	{
P
Peter Zijlstra 已提交
6832
		.name = "rt_runtime_us",
6833 6834
		.read_s64 = cpu_rt_runtime_read,
		.write_s64 = cpu_rt_runtime_write,
P
Peter Zijlstra 已提交
6835
	},
6836 6837
	{
		.name = "rt_period_us",
6838 6839
		.read_u64 = cpu_rt_period_read_uint,
		.write_u64 = cpu_rt_period_write_uint,
6840
	},
6841
#endif
I
Ingo Molnar 已提交
6842
	{ }	/* Terminate */
6843 6844
};

6845 6846
static int cpu_extra_stat_show(struct seq_file *sf,
			       struct cgroup_subsys_state *css)
6847 6848 6849
{
#ifdef CONFIG_CFS_BANDWIDTH
	{
6850
		struct task_group *tg = css_tg(css);
6851 6852 6853 6854 6855 6856 6857 6858 6859 6860 6861 6862 6863 6864 6865 6866 6867 6868 6869 6870 6871 6872 6873 6874 6875 6876 6877 6878 6879 6880 6881 6882 6883 6884 6885 6886 6887 6888 6889 6890 6891 6892 6893 6894 6895 6896 6897 6898 6899 6900 6901 6902 6903 6904 6905 6906 6907 6908 6909 6910 6911 6912 6913 6914 6915 6916
		struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
		u64 throttled_usec;

		throttled_usec = cfs_b->throttled_time;
		do_div(throttled_usec, NSEC_PER_USEC);

		seq_printf(sf, "nr_periods %d\n"
			   "nr_throttled %d\n"
			   "throttled_usec %llu\n",
			   cfs_b->nr_periods, cfs_b->nr_throttled,
			   throttled_usec);
	}
#endif
	return 0;
}

#ifdef CONFIG_FAIR_GROUP_SCHED
static u64 cpu_weight_read_u64(struct cgroup_subsys_state *css,
			       struct cftype *cft)
{
	struct task_group *tg = css_tg(css);
	u64 weight = scale_load_down(tg->shares);

	return DIV_ROUND_CLOSEST_ULL(weight * CGROUP_WEIGHT_DFL, 1024);
}

static int cpu_weight_write_u64(struct cgroup_subsys_state *css,
				struct cftype *cft, u64 weight)
{
	/*
	 * cgroup weight knobs should use the common MIN, DFL and MAX
	 * values which are 1, 100 and 10000 respectively.  While it loses
	 * a bit of range on both ends, it maps pretty well onto the shares
	 * value used by scheduler and the round-trip conversions preserve
	 * the original value over the entire range.
	 */
	if (weight < CGROUP_WEIGHT_MIN || weight > CGROUP_WEIGHT_MAX)
		return -ERANGE;

	weight = DIV_ROUND_CLOSEST_ULL(weight * 1024, CGROUP_WEIGHT_DFL);

	return sched_group_set_shares(css_tg(css), scale_load(weight));
}

static s64 cpu_weight_nice_read_s64(struct cgroup_subsys_state *css,
				    struct cftype *cft)
{
	unsigned long weight = scale_load_down(css_tg(css)->shares);
	int last_delta = INT_MAX;
	int prio, delta;

	/* find the closest nice value to the current weight */
	for (prio = 0; prio < ARRAY_SIZE(sched_prio_to_weight); prio++) {
		delta = abs(sched_prio_to_weight[prio] - weight);
		if (delta >= last_delta)
			break;
		last_delta = delta;
	}

	return PRIO_TO_NICE(prio - 1 + MAX_RT_PRIO);
}

static int cpu_weight_nice_write_s64(struct cgroup_subsys_state *css,
				     struct cftype *cft, s64 nice)
{
	unsigned long weight;
6917
	int idx;
6918 6919 6920 6921

	if (nice < MIN_NICE || nice > MAX_NICE)
		return -ERANGE;

6922 6923 6924 6925
	idx = NICE_TO_PRIO(nice) - MAX_RT_PRIO;
	idx = array_index_nospec(idx, 40);
	weight = sched_prio_to_weight[idx];

6926 6927 6928 6929 6930 6931 6932 6933 6934 6935 6936 6937 6938 6939 6940 6941 6942 6943 6944 6945 6946
	return sched_group_set_shares(css_tg(css), scale_load(weight));
}
#endif

static void __maybe_unused cpu_period_quota_print(struct seq_file *sf,
						  long period, long quota)
{
	if (quota < 0)
		seq_puts(sf, "max");
	else
		seq_printf(sf, "%ld", quota);

	seq_printf(sf, " %ld\n", period);
}

/* caller should put the current value in *@periodp before calling */
static int __maybe_unused cpu_period_quota_parse(char *buf,
						 u64 *periodp, u64 *quotap)
{
	char tok[21];	/* U64_MAX */

6947
	if (sscanf(buf, "%20s %llu", tok, periodp) < 1)
6948 6949 6950 6951 6952 6953 6954 6955 6956 6957 6958 6959 6960 6961 6962 6963 6964 6965 6966 6967 6968 6969 6970 6971 6972 6973 6974 6975 6976 6977 6978 6979 6980 6981 6982 6983 6984 6985 6986 6987 6988 6989 6990 6991 6992 6993 6994 6995 6996 6997 6998 6999 7000 7001 7002 7003 7004 7005 7006 7007 7008 7009 7010 7011
		return -EINVAL;

	*periodp *= NSEC_PER_USEC;

	if (sscanf(tok, "%llu", quotap))
		*quotap *= NSEC_PER_USEC;
	else if (!strcmp(tok, "max"))
		*quotap = RUNTIME_INF;
	else
		return -EINVAL;

	return 0;
}

#ifdef CONFIG_CFS_BANDWIDTH
static int cpu_max_show(struct seq_file *sf, void *v)
{
	struct task_group *tg = css_tg(seq_css(sf));

	cpu_period_quota_print(sf, tg_get_cfs_period(tg), tg_get_cfs_quota(tg));
	return 0;
}

static ssize_t cpu_max_write(struct kernfs_open_file *of,
			     char *buf, size_t nbytes, loff_t off)
{
	struct task_group *tg = css_tg(of_css(of));
	u64 period = tg_get_cfs_period(tg);
	u64 quota;
	int ret;

	ret = cpu_period_quota_parse(buf, &period, &quota);
	if (!ret)
		ret = tg_set_cfs_bandwidth(tg, period, quota);
	return ret ?: nbytes;
}
#endif

static struct cftype cpu_files[] = {
#ifdef CONFIG_FAIR_GROUP_SCHED
	{
		.name = "weight",
		.flags = CFTYPE_NOT_ON_ROOT,
		.read_u64 = cpu_weight_read_u64,
		.write_u64 = cpu_weight_write_u64,
	},
	{
		.name = "weight.nice",
		.flags = CFTYPE_NOT_ON_ROOT,
		.read_s64 = cpu_weight_nice_read_s64,
		.write_s64 = cpu_weight_nice_write_s64,
	},
#endif
#ifdef CONFIG_CFS_BANDWIDTH
	{
		.name = "max",
		.flags = CFTYPE_NOT_ON_ROOT,
		.seq_show = cpu_max_show,
		.write = cpu_max_write,
	},
#endif
	{ }	/* terminate */
};

7012
struct cgroup_subsys cpu_cgrp_subsys = {
7013
	.css_alloc	= cpu_cgroup_css_alloc,
7014
	.css_online	= cpu_cgroup_css_online,
7015
	.css_released	= cpu_cgroup_css_released,
7016
	.css_free	= cpu_cgroup_css_free,
7017
	.css_extra_stat_show = cpu_extra_stat_show,
7018
	.fork		= cpu_cgroup_fork,
7019 7020
	.can_attach	= cpu_cgroup_can_attach,
	.attach		= cpu_cgroup_attach,
7021
	.legacy_cftypes	= cpu_legacy_files,
7022
	.dfl_cftypes	= cpu_files,
7023
	.early_init	= true,
7024
	.threaded	= true,
7025 7026
};

7027
#endif	/* CONFIG_CGROUP_SCHED */
7028

7029 7030 7031 7032 7033
void dump_cpu_task(int cpu)
{
	pr_info("Task dump for CPU %d:\n", cpu);
	sched_show_task(cpu_curr(cpu));
}
7034 7035 7036 7037 7038 7039 7040 7041 7042 7043 7044 7045 7046 7047 7048 7049 7050 7051 7052 7053 7054 7055 7056 7057 7058 7059 7060 7061 7062 7063 7064 7065 7066 7067 7068 7069 7070 7071 7072 7073 7074

/*
 * Nice levels are multiplicative, with a gentle 10% change for every
 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
 * nice 1, it will get ~10% less CPU time than another CPU-bound task
 * that remained on nice 0.
 *
 * The "10% effect" is relative and cumulative: from _any_ nice level,
 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
 * If a task goes up by ~10% and another task goes down by ~10% then
 * the relative distance between them is ~25%.)
 */
const int sched_prio_to_weight[40] = {
 /* -20 */     88761,     71755,     56483,     46273,     36291,
 /* -15 */     29154,     23254,     18705,     14949,     11916,
 /* -10 */      9548,      7620,      6100,      4904,      3906,
 /*  -5 */      3121,      2501,      1991,      1586,      1277,
 /*   0 */      1024,       820,       655,       526,       423,
 /*   5 */       335,       272,       215,       172,       137,
 /*  10 */       110,        87,        70,        56,        45,
 /*  15 */        36,        29,        23,        18,        15,
};

/*
 * Inverse (2^32/x) values of the sched_prio_to_weight[] array, precalculated.
 *
 * In cases where the weight does not change often, we can use the
 * precalculated inverse to speed up arithmetics by turning divisions
 * into multiplications:
 */
const u32 sched_prio_to_wmult[40] = {
 /* -20 */     48388,     59856,     76040,     92818,    118348,
 /* -15 */    147320,    184698,    229616,    287308,    360437,
 /* -10 */    449829,    563644,    704093,    875809,   1099582,
 /*  -5 */   1376151,   1717300,   2157191,   2708050,   3363326,
 /*   0 */   4194304,   5237765,   6557202,   8165337,  10153587,
 /*   5 */  12820798,  15790321,  19976592,  24970740,  31350126,
 /*  10 */  39045157,  49367440,  61356676,  76695844,  95443717,
 /*  15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
};
7075 7076

#undef CREATE_TRACE_POINTS