tensor.cpp 32.1 KB
Newer Older
1 2 3 4
/**
 * \file imperative/python/src/tensor.cpp
 * MegEngine is Licensed under the Apache License, Version 2.0 (the "License")
 *
5
 * Copyright (c) 2014-2021 Megvii Inc. All rights reserved.
6 7 8 9 10 11
 *
 * Unless required by applicable law or agreed to in writing,
 * software distributed under the License is distributed on an
 * "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 */

12 13
#include "megbrain/dtype.h"
#include "megbrain/common.h"
14
#include "megbrain/imperative/ops/utility.h"
15
#include "megbrain/imperative/ops/backward_graph.h"
16

17 18
#include "./tensor.h"
#include "./grad.h"
19
#include "./trace.h"
20 21
#include "./common.h"
#include "./numpy_dtypes.h"
22
#include "./graph_rt.h"
23
#include "./helper.h"
24 25 26

#include <pybind11/numpy.h>
#include <pybind11/operators.h>
27
#include <range/v3/all.hpp>
28
#include <string>
29 30 31

#include <unordered_map>

32
namespace py = pybind11;
33
namespace views = ranges::views;
34 35 36

namespace mgb::imperative::python {

37
interpreter::Interpreter::Channel* interpreter_for_py;
38

39 40
PyObject *cpp_apply_with_tracing, *cpp_apply_const_with_tracing,
           *cpp_apply_compiled_mode, *cpp_apply_const_compiled_mode;
41

42
PyObject *cpp_apply_backward_varnode;
43

44

45 46
#define REGISTE_APPLY_FUNC(mode)                                    \
        void set_##mode(py::object pyf) {                           \
47
            mode = pyf.ptr();                                       \
48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75
        }

REGISTE_APPLY_FUNC(cpp_apply_with_tracing)
REGISTE_APPLY_FUNC(cpp_apply_const_with_tracing)
REGISTE_APPLY_FUNC(cpp_apply_compiled_mode)
REGISTE_APPLY_FUNC(cpp_apply_const_compiled_mode)
REGISTE_APPLY_FUNC(cpp_apply_backward_varnode)

#undef REGISTE_APPLY_FUNC

bool is_tracing = false;
bool is_compiled = false;

#define SET_UNSET_PROP(mode)    \
    void set_##mode() {         \
        is_##mode = true;       \
    }                           \
    void unset_##mode() {       \
        is_##mode = false;      \
    }                           \

SET_UNSET_PROP(tracing)
SET_UNSET_PROP(compiled)

#undef SET_UNSET_PROP

bool skip_tracing = false;

76 77
Tensor::flags_t ApplyContext::global_disable = 0;

78 79 80 81
apply_result_t apply(ApplyContext& ctx) {
    // emulating scalar should be put to specific op's apply, e.g.,
    // elementwise, reduce, typecvt. Currently it's still handled at python
    // side. It could be move to C++ side if it has an impact on performance
82 83 84
    auto flags = ctx.flags & ~ApplyContext::global_disable;

    if (flags & Tensor::Flags::SCALAR) {
85 86 87
        // TODO: emulate scalar
    }

88
    if (flags & Tensor::Flags::GRAD) {
89 90 91
        return apply_grad(ctx);
    }

92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112
    if (auto* op = ctx.op->try_cast_final<GenericPyOp>()) {
        py::tuple pyin(ctx.nargs);
        for (size_t i = 0; i < ctx.nargs; ++i) {
            pyin[i] = TensorWrapper::make(ctx.pytype, ctx.args[i]->shared_from_this());
        }
        auto f = py::getattr(op->obj, "_default_rule");
        auto pyout = py::reinterpret_steal<py::object>(PyObject_Call(f.ptr(), pyin.ptr(), nullptr));
        if (!pyout) throw py::error_already_set();
        if (auto* tw = TensorWrapper::try_cast(pyout.ptr())) {
            return {tw->m_tensor};
        }
        apply_result_t ret;
        ret.reserve(py::len(pyout));
        for (auto&& i : pyout) {
            auto* tw = TensorWrapper::try_cast(i.ptr());
            mgb_assert(tw);
            ret.push_back(tw->m_tensor);
        }
        return ret;
    }

113
    if (flags & Tensor::Flags::TRACE) {
114
        return apply_trace(ctx);
115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139
    } else {
        SmallVector<interpreter::Interpreter::Handle> handles(ctx.nargs);
        for (size_t i = 0; i < ctx.nargs; ++i) {
            handles[i] = ctx.args[i]->m_handle.get();
        }

        auto output_handles = interpreter_for_py->apply_op(ctx.op, handles);

        apply_result_t outputs;
        outputs.reserve(output_handles.size());
        for (auto h : output_handles) {
            outputs.emplace_back(std::make_shared<Tensor>(h));
        }
        return outputs;
    }

    mgb_assert(0);
}

PyObject* py_apply(PyObject* self, PyObject*const* args, size_t nargs/* , PyObject* kwnames */) {
    try {
        // if (kwnames && PyTuple_GET_SIZE(kwnames)) {
        //     PyErr_SetString(PyExc_TypeError, "keyword argument not allowed");
        //     return nullptr;
        // }
140 141 142 143
        if (nargs < 2) {
            PyErr_SetString(PyExc_TypeError,
                            "py_apply expects one Op and at least one tensor "
                            "as argument");
144 145
            return nullptr;
        }
146

147 148 149 150 151 152 153 154 155 156 157 158
        auto* op = args[0];

        PyTypeObject* pytype = args[1]->ob_type;
        ++args;
        --nargs;

        ApplyContext ctx;
        ctx.flags = 0;
        ctx.op = py::handle(op).cast<std::shared_ptr<OpDef>>();
        SmallVector<Tensor*, 64> tensors(nargs);
        ctx.args = &tensors[0];
        ctx.nargs = nargs;
159
        ctx.pytype = pytype;
160
        if (ctx.op->same_type<BackwardGraph>()) {
161 162
            ctx.backward = true;
        }
163 164

        for (size_t i = 0; i < nargs; ++i) {
165
            if (TensorWrapper* tw = TensorWrapper::try_cast(args[i])) {
166 167 168
                auto* t = tensors[i] = tw->m_tensor.get();
                ctx.flags |= t->m_flags;
            } else {
169 170 171
                PyErr_SetString(PyExc_TypeError,
                    ssprintf("op %s expect type Tensor as inputs, got %s actually",
                        ctx.op->make_name().c_str(), Py_TYPE(args[i])->tp_name).c_str());
172 173 174 175
                return nullptr;
            }
        }

176 177 178
        if (is_tracing) {
            ctx.flags |= Tensor::Flags::TRACE;
        }
179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202

        auto outputs = apply(ctx);
        size_t nout = outputs.size();
        auto ret = py::tuple(nout);
        for (size_t i = 0; i < nout; ++i) {
            ret[i] = TensorWrapper::make(pytype, std::move(outputs[i]));
        }
        return ret.release().ptr();
    } catch (std::exception& e) {
        PyErr_SetString(PyExc_RuntimeError, e.what());
        return nullptr;
    }
}


TensorWrapper::TensorWrapper(PyObject* args, PyObject* kwargs) {
    if (kwargs && PyDict_Size(kwargs)) {
        throw py::type_error("keyword argument not allowed");
    }
    auto nargs = PyTuple_Size(args);
    auto tup = py::reinterpret_borrow<py::tuple>(args);
    if (nargs == 0) {
        throw py::type_error("too few arguments");
    }
203
    if (auto* t = try_cast(tup[0].ptr())) {
204 205 206 207 208
        if (nargs > 1) {
            throw py::type_error("expect 1 argument");
        }
        m_tensor = t->m_tensor;
    } else {
209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226
        if (nargs == 1) {
            auto arg0 = PyTuple_GetItem(args, 0);
            // for lazy_eval_tensor
            if (strstr(arg0->ob_type->tp_name, "VarNode")) {
                if (PyObject_HasAttrString(arg0, "_node")) {
                    arg0 = PyObject_GetAttrString(arg0, "_node");
                }
                m_tensor = std::make_shared<Tensor>(py::handle(arg0).cast<cg::VarNode *>());
            } else {
                // for DeviceTensorND
                if (strstr(arg0->ob_type->tp_name, "DeviceTensorND")) {
                    auto dv = py::handle(arg0).cast<DeviceTensorND>();
                    interpreter::Interpreter::Handle handle = interpreter_for_py->put(dv);
                    m_tensor = std::make_shared<Tensor>(handle);
                } else {
                    throw py::type_error("single argument is not tensor, varnode or devicetensor");
                }
            }
227
        } else {
228
            py::detail::loader_life_support life_sup; // FIXME!!!required to cast DType
229 230
            if (nargs != 5 && nargs != 6) {
                throw py::type_error("expect 5 or 6 arguments");
231
            }
232 233 234 235
            auto data = tup[0].cast<py::array>();
            DType dtype = tup[1].cast<DType>();
            CompNode cn = tup[2].cast<CompNode>();
            bool is_const = tup[3].cast<bool>();
236 237
            bool no_cache = nargs == 6 ? tup[4].cast<bool>() : false;
            std::string name = tup[nargs - 1].cast<std::string>();
238 239 240

            // const op
            if (is_const && is_tracing) {
241
                PyObject *pyf;
242 243 244 245 246 247
                if (is_compiled) {
                    pyf = cpp_apply_const_compiled_mode;
                } else {
                    pyf = cpp_apply_const_with_tracing;
                }

248 249 250 251
                auto py_ret = PyObject_Call(pyf, tup.ptr(), nullptr);
                if (!py_ret) throw py::error_already_set();
                auto py_list = py::reinterpret_steal<py::list>(py_ret);
                if (auto* t = try_cast(py_list[0].ptr())) {
252 253 254 255 256 257 258 259
                    m_tensor = t->m_tensor;
                }
                return;
            }

            interpreter::Interpreter::Handle handle;
            constexpr auto size_threshhold = TensorShape::MAX_NDIM;
            if (data.size() > size_threshhold) {
260
                handle = interpreter_for_py->put(npy::np2tensor(data.ptr(), npy::Meth::borrow(cn), dtype), no_cache);
261 262
            } else {
                HostTensorND ret(cn);
263
                handle = interpreter_for_py->put(npy::np2tensor(data.ptr(), npy::Meth::copy_into(&ret), dtype), no_cache);
264 265 266
            }

            m_tensor = std::make_shared<Tensor>(handle);
267
            m_tensor->user_custom_name = name;
268

269 270 271
            if (data.ndim() == 0) {
                m_tensor->m_flags |= Tensor::Flags::SCALAR;
            }
272 273 274 275 276
        }
    }
}


277 278 279 280 281 282 283 284 285 286 287
#define REGISTE_TENSORWRAPPER_FUNC(type, member)                                    \
        PyObject* TensorWrapper::member() {                                         \
            return py::cast(m_tensor->m_trace_info.member).release().ptr();         \
        }                                                                           \
        void TensorWrapper::set_##member(PyObject* dest) {                          \
            auto py_dest = py::reinterpret_borrow<py::object>(dest);                \
            type real_dest = py_dest.cast<type>();                                  \
            m_tensor->m_trace_info.member = real_dest;                              \
        }

REGISTE_TENSORWRAPPER_FUNC(int64_t, mixin_handle)
288
REGISTE_TENSORWRAPPER_FUNC(bool, recording)
289 290 291 292

#undef REGISTE_TENSORWRAPPER_FUNC


293 294 295 296 297
PyObject* TensorWrapper::copied() {
    return py::cast(m_tensor->m_trace_info.copied).release().ptr();
}


298 299
#define REGISTE_TENSORWRAPPER_PYOBJECT_FUNC(member)                                 \
        PyObject* TensorWrapper::member() {                                         \
300 301 302 303 304
            if (m_tensor->m_trace_info.member) {                                    \
                return m_tensor->m_trace_info.member;                               \
            } else {                                                                \
                Py_RETURN_NONE;                                                     \
            }                                                                       \
305 306
        }                                                                           \
        void TensorWrapper::set_##member(PyObject* dest) {                          \
307 308 309 310 311 312 313
            if (dest == Py_None) {                                                  \
                Py_XDECREF(m_tensor->m_trace_info.member);                          \
                m_tensor->m_trace_info.member = nullptr;                            \
            } else {                                                                \
                Py_INCREF(dest);                                                    \
                m_tensor->m_trace_info.member = dest;                               \
            }                                                                       \
314 315 316 317 318 319 320 321
        }

REGISTE_TENSORWRAPPER_PYOBJECT_FUNC(compiled_info)
REGISTE_TENSORWRAPPER_PYOBJECT_FUNC(trace_mixin_info)

#undef REGISTE_TENSORWRAPPER_PYOBJECT_FUNC


322 323 324 325 326 327 328 329 330 331 332 333 334
#define SET_GET_NAME(member)                                     \
    PyObject* TensorWrapper::member() {                          \
        return py::cast(m_tensor->member).release().ptr();       \
    }                                                            \
    void TensorWrapper::set_##member(PyObject* dest) {           \
        auto py_dest = py::reinterpret_borrow<py::object>(dest); \
        m_tensor->member = py_dest.cast<std::string>();          \
    }
SET_GET_NAME(user_custom_name)
SET_GET_NAME(automatic_name)
#undef SET_GET_NAME


335 336 337 338 339 340 341 342 343 344 345 346
PyObject* TensorWrapper::handle() {
    return py::cast(m_tensor->m_handle).release().ptr();
}


void TensorWrapper::set_handle(PyObject* dest) {
    auto py_dest = py::reinterpret_borrow<py::object>(dest);
    SharedHandle real_dest = py_dest.cast<SharedHandle>();
    m_tensor->m_handle = std::move(real_dest);
}


347
PyObject* TensorWrapper::shape() {
348
    // if it's tracing compiled mode, get value from compiled_info 
349 350 351 352
    if (m_tensor->m_trace_info.compiled_info != nullptr) {
        if (m_tensor->m_flags & Tensor::Flags::SCALAR) {
            return PyTuple_New(0);
        }
353 354 355 356 357
        PyObject *shp = PyObject_GetAttrString(m_tensor->m_trace_info.compiled_info, "shape");
        if (shp == Py_None) {
            throw TraceReadError("shape of this tensor is not read in trace");
        }
        return shp;
358
    }
359 360

    // inside trace, if tensor shape is useful for other operations, set shape_read = true
361 362
    if (m_tensor->m_trace_info.recording && !skip_tracing) {
        PyObject_SetAttrString(m_tensor->m_trace_info.trace_mixin_info, "shape_read", py::cast(true).release().ptr());
363
    }
364

365 366 367
    if (m_tensor->m_flags & Tensor::Flags::SCALAR) {
        return PyTuple_New(0);
    }
368 369

    TensorShape shape;
370
    if (m_tensor->m_var) {      // get shape from m_var
371 372 373 374 375 376
        auto&& mgr = m_tensor->m_var->owner_graph()->static_infer_manager();
        auto *tshp = mgr.infer_shape_fallible(m_tensor->m_var);
        if (!tshp) {
            Py_RETURN_NONE;
        }
        shape = *tshp;
377 378 379 380
    } else {
        shape = m_tensor->shape();
    }

381 382 383 384 385 386 387 388 389 390 391 392
    if (!shape.ndim) {
        Py_RETURN_NONE;
    }
    py::tuple ret(shape.ndim);
    for (size_t i = 0; i < shape.ndim; ++i) {
        ret[i] = shape[i];
    }
    return ret.release().ptr();
}


PyObject* TensorWrapper::dtype() {
393 394 395
    if (m_tensor->m_var) {
        return py::cast(m_tensor->m_var->dtype()).release().ptr();
    }
396 397 398 399 400
    return py::cast(m_tensor->dtype()).release().ptr();
}


PyObject* TensorWrapper::device() {
401 402 403
    if (m_tensor->m_var) {
        return py::cast(m_tensor->m_var->comp_node()).release().ptr();
    }
404 405 406 407 408
    return py::cast(m_tensor->comp_node()).release().ptr();
}


PyObject* TensorWrapper::numpy() {
409 410
    if (m_tensor->m_trace_info.compiled_info != nullptr) {
        PyObject* np_val = PyObject_CallMethod(m_tensor->m_trace_info.compiled_info, "numpy", nullptr);
411
        if (!np_val) throw py::error_already_set();
412 413 414
        if (np_val == Py_None) {
            throw TraceReadError("value of this tensor is not read in trace");
        }
415
        if (m_tensor->m_flags & Tensor::Flags::SCALAR) {
416 417 418
            PyObject *np_scalar = PyArray_Squeeze(reinterpret_cast<PyArrayObject*>(np_val));
            Py_DECREF(np_val);
            return np_scalar;
419 420 421
        }
        return np_val;
    }
422

423 424
    if (m_tensor->m_trace_info.recording && !skip_tracing) {
        PyObject_SetAttrString(m_tensor->m_trace_info.trace_mixin_info, "value_read", py::cast(true).release().ptr());
425
    }
426

427 428 429 430 431
    if (m_tensor->m_handle.get() == nullptr && m_tensor->m_var != nullptr) {
        auto&& mgr = m_tensor->m_var->owner_graph()->static_infer_manager();
        auto&& type = mgr.get_infer_type(m_tensor->m_var);
        using InferType = cg::static_infer::InferType;
        if (!(type.value & (InferType::CONST | InferType::RT_STATIC))) {
432
            PyErr_SetString(PyExc_ValueError, "tensor invalid");
433 434 435 436
            return nullptr;
        }
        auto* val = mgr.infer_value_fallible(m_tensor->m_var);
        if (!val) {
437
            PyErr_SetString(PyExc_ValueError, "tensor invalid");
438 439
            return nullptr;
        }
440 441 442 443 444
        auto np_val = py::cast(*val).attr("numpy")();
        if (m_tensor->m_flags & Tensor::Flags::SCALAR) {
            return PyArray_Squeeze(reinterpret_cast<PyArrayObject*>(np_val.release().ptr()));
        }
        return np_val.release().ptr();
445
    }
446 447 448 449
    auto&& hv = [&]() {
        py::gil_scoped_release _;
        return interpreter_for_py->get_value(m_tensor->m_handle.get());
    }();
450
    auto arr = py::reinterpret_steal<py::array>(npy::ndarray_from_tensor(hv, npy::ShareType::TRY_SHARE));
451 452 453 454
    if (!arr) {
        PyErr_SetString(PyExc_ValueError, "tensor invalid");
        return nullptr;
    }
455

456 457 458 459 460 461 462
    if (m_tensor->m_flags & Tensor::Flags::SCALAR) {
        mgb_assert(PyArray_Check(arr.ptr()));
        return PyArray_Squeeze(reinterpret_cast<PyArrayObject*>(arr.ptr()));
    }
    return arr.release().ptr();
}

463 464 465 466
PyObject* TensorWrapper::varnode() {
    if (m_tensor->m_var) {
        return py::cast(m_tensor->m_var).release().ptr();
    }
467
    Py_RETURN_NONE;
468 469
}

470
void TensorWrapper::reset(PyObject* tensor) {
471
    TensorWrapper* t = TensorWrapper::try_cast(tensor);
472 473 474
    if (!t) {
        throw py::type_error("expect Tensor");
    }
475 476
    std::string user_custom_name = m_tensor->user_custom_name;
    std::string automatic_name = m_tensor->automatic_name;
477
    m_tensor = t->m_tensor;
478 479
    m_tensor->user_custom_name = user_custom_name;
    m_tensor->automatic_name = automatic_name;
480 481
}

482 483 484 485
void TensorWrapper::reset_varnode() {
    m_tensor->m_var = nullptr;
}

486 487 488
PyObject* TensorWrapper::detach() {
    PyObject* self = wrap_t::pycast(this);
    PyTypeObject* pytype = self->ob_type;
489 490 491 492 493 494 495

    std::shared_ptr<Tensor> new_tensor;
    if (m_tensor->m_handle.get()) {
        new_tensor = std::make_shared<Tensor>(m_tensor->m_handle);
    } else {
        new_tensor = std::make_shared<Tensor>(m_tensor->m_var);
    }
496
    new_tensor->m_trace_info = m_tensor->m_trace_info;
497 498 499 500 501
    auto ret = TensorWrapper::make(pytype, std::move(new_tensor));
    return ret.release().ptr();

}

502
PyObject* TensorWrapper::_dev_tensor(){
503 504
    if (m_tensor->m_trace_info.compiled_info != nullptr) {
        auto *dev_tensor = PyObject_CallMethod(m_tensor->m_trace_info.compiled_info, "_dev_tensor", nullptr);
505
        if (!dev_tensor) throw py::error_already_set();
506 507 508
        if (dev_tensor == Py_None) {
            throw TraceReadError("raw data of this tensor is not read in trace");
        }
509 510

        // set m_handle to make it a real tensor
511 512 513
        auto py_dev_tensor = py::reinterpret_borrow<py::object>(dev_tensor);
        auto sh = interpreter_for_py->put(py_dev_tensor.cast<DeviceTensorND>());
        m_tensor->m_handle = std::move(SharedHandle(sh));
514 515

        // compiled info is useless after m_handle is set
516 517
        Py_DECREF(m_tensor->m_trace_info.compiled_info);
        m_tensor->m_trace_info.compiled_info = nullptr;
518 519

        return dev_tensor;
520 521 522
    }
    if (m_tensor->m_trace_info.recording && !skip_tracing) {
        PyObject_SetAttrString(m_tensor->m_trace_info.trace_mixin_info, "data_read", py::cast(true).release().ptr());
523
    }
524 525 526 527
    auto dev_tensor = [&](){
        py::gil_scoped_release _;
        return interpreter_for_py->get_dev_tensor(m_tensor->m_handle.get());
    }();
528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543
    return py::cast(dev_tensor).release().ptr();
}

void TensorWrapper::_swap_out() {
    interpreter_for_py->swap_out(m_tensor->m_handle.get());
}

void TensorWrapper::_swap_in() {
    interpreter_for_py->swap_in(m_tensor->m_handle.get());
}

void TensorWrapper::_drop() {
    interpreter_for_py->drop(m_tensor->m_handle.get());
}


544 545 546 547 548 549 550 551
PyObject* TensorWrapper::isscalar() {
    if(m_tensor->m_flags & Tensor::Flags::SCALAR) {
        Py_RETURN_TRUE;
    } else {
        Py_RETURN_FALSE;
    }
}

552

553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568
void TensorWrapper::setscalar() {
    m_tensor->m_flags |= Tensor::Flags::SCALAR;
}


struct TensorWeakRef {
    std::weak_ptr<Tensor> wptr;

    TensorWeakRef(const TensorWrapper& tw) : wptr(tw.m_tensor) {}

    py::object operator()() {
        if (auto p = wptr.lock()) {
            return TensorWrapper::make(p);
        }
        return py::none();
    }
569
    int _use_cnt() { return wptr.use_count(); }
570 571
};

572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597
/* ============== convert inputs ============== */

// map numpy.dtype.kind to priority
inline uint8_t category_priority(char c) {
    switch (c) {
        case 'f': return 3; // floating-point
        case 'i': return 2; // signed integer
        case 'u': return 2; // unsigned integer
        case 'b': return 1; // boolean
        default: return 0;
    }
}

// Returns the maximum value of the priority of each type in the list `types`.
uint8_t max_priority(SmallVector<PyArray_Descr*> types) {
    if (types.size() == 0) {
        return 0;
    } else {
        uint8_t max_p = 0;
        for (auto&& desc: types) {
            max_p = std::max(max_p, category_priority(desc->kind));
        }
        return max_p;
    }
}

598
// Returns the data type with sufficient size to hold all types of
599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643
// category `cat` in the list `types`.
PyArray_Descr* promote_types(SmallVector<PyArray_Descr*> types, uint8_t cat) {
    // Return value: New reference
    SmallVector<PyArray_Descr*> used_types;
    for (auto&& desc: types) {
        auto&& v = category_priority(desc->kind);
        if (v == cat) {
            used_types.emplace_back(desc);
        }
    }
    mgb_assert(used_types.size() > 0, "size of used_types is 0");
    PyArray_Descr* res = used_types[0];
    Py_INCREF(res);

    for (size_t i = 1; i < used_types.size(); ++i) {
        PyArray_Descr* tmp = PyArray_PromoteTypes(used_types[i], res);
        Py_DECREF(res);
        res = tmp;
    }
    return res;
}

PyArray_Descr* scalar2dtype(PyObject* arg) {
    // Return value: New reference
    if (PyBool_Check(arg)) {
        auto&& descr = PyArray_DescrFromType(NPY_BOOL);
        return descr;
    }
    if (PyLong_CheckExact(arg)) {
        auto&& descr = PyArray_DescrFromType(NPY_INT32);
        return descr;
    }
    if (PyFloat_CheckExact(arg)) {
        auto&& descr = PyArray_DescrFromType(NPY_FLOAT32);
        return descr;
    }
    return nullptr;
}

PyArray_Descr* _dtype_promotion(PyObject*const* args, size_t nargs) {
    // Return value: New reference
    SmallVector<PyArray_Descr*> tensors;
    SmallVector<PyArray_Descr*> scalars;

    bool is_tuple = false;
644
    PyObject* tuple = nullptr;
645 646 647 648 649 650 651 652 653 654 655 656 657 658
    if (nargs == 1 && (PyTuple_Check(args[0]) || PyList_Check(args[0]))) {
        if (PyList_Check(args[0])) {
            tuple = PyList_AsTuple(args[0]);
        } else {
            tuple = args[0];
            Py_INCREF(tuple);
        }
        nargs = PyTuple_Size(tuple);
        is_tuple = true;
    }

    for (size_t i = 0; i < nargs; ++i) {
        PyObject* handle = is_tuple ? PyTuple_GetItem(tuple, i): args[i];
        if (handle == Py_None) continue;
659
        TensorWrapper* tw = TensorWrapper::try_cast(handle);
660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692
        if (tw) {
            mgb::DType type = tw->m_tensor->dtype();
            auto&& descr = npy::dtype_mgb2np_descr(type);
            Py_INCREF(descr.get());
            tensors.emplace_back(descr.get());
        }else{
            if (PyArray_Check(handle) || PyArray_CheckScalar(handle)) {
                auto&& descr = PyArray_DescrFromObject(handle, nullptr);
                tensors.emplace_back(descr);
                continue;
            }
            PyArray_Descr* descr = scalar2dtype(handle);
            if (descr) {
                scalars.emplace_back(descr);
                continue;
            }
        }
    }

    auto max_pri_scalars = max_priority(scalars);
    auto max_pri_tensors = max_priority(tensors);

    if (max_pri_scalars <= 0 && max_pri_tensors <= 0) {
        throw py::value_error("invalid input, no dtype avaliable");
    }
    PyArray_Descr* res;
    if (max_pri_scalars > max_pri_tensors) {
        res = promote_types(scalars, max_pri_scalars);
    }else{
        res = promote_types(tensors, max_pri_tensors);
    }
    for (auto *p: tensors) { Py_DECREF(p); }
    for (auto *p: scalars) { Py_DECREF(p); }
693
    Py_XDECREF(tuple);
694 695 696 697 698
    return res;
}

CompNode _get_device(PyObject*const* args, size_t nargs) {
    bool is_tuple = false;
699
    PyObject* tuple = nullptr;
700 701 702 703 704 705 706 707 708 709 710 711 712 713
    if (nargs == 1 && (PyTuple_Check(args[0]) || PyList_Check(args[0]))) {
        if (PyList_Check(args[0])) {
            tuple = PyList_AsTuple(args[0]);
        } else {
            tuple = args[0];
            Py_INCREF(tuple);
        }
        nargs = PyTuple_Size(tuple);
        is_tuple = true;
    }
    bool valid = false;
    CompNode cn;
    for (size_t i = 0; i < nargs; ++i) {
        PyObject* handle = is_tuple ? PyTuple_GetItem(tuple, i): args[i];
714
        TensorWrapper* tw = TensorWrapper::try_cast(handle);
715 716 717 718 719 720 721 722 723 724 725 726 727 728
        if (tw) {
            if (!valid) {
                cn = tw->m_tensor->comp_node();
                valid = true;
            } else {
                CompNode cn1 = tw->m_tensor->comp_node();
                if (cn1 != cn) {
                    throw py::value_error(ssprintf("ambiguous device: %s vs %s",
                        cn.to_string().c_str(), cn1.to_string().c_str()));
                }
            }
        }
    }
    if (!valid) {
729
        mgb_assert(0, "expect at least 1 device");
730
    }
731
    Py_XDECREF(tuple);
732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763
    return cn;
}

// Returns the dtype that would result from performing an arithmetic
// operation on the provided input tensors and scalars.
PyObject* dtype_promotion(PyObject* self, PyObject*const* args, size_t nargs) {
    if (!nargs) {
        PyErr_SetString(PyExc_TypeError, "empty input is not allowed");
        return nullptr;
    }
    try {
        PyArray_Descr* res = _dtype_promotion(args, nargs);
        return py::cast(npy::dtype_np2mgb_descr(res)).release().ptr();
    } catch (std::exception& e) {
        PyErr_SetString(PyExc_RuntimeError, e.what());
        return nullptr;
    }
}

PyObject* get_device(PyObject* self, PyObject*const* args, size_t nargs) {
    if (!nargs) {
        PyErr_SetString(PyExc_TypeError, "empty input is not allowed");
        return nullptr;
    }
    try {
        CompNode cn = _get_device(args, nargs);
        return py::cast(cn).release().ptr();
    } catch (std::exception& e) {
        PyErr_SetString(PyExc_RuntimeError, e.what());
        return nullptr;
    }
}
764

765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782
#ifdef METH_FASTCALL
#define MGE_PY_INTERFACE(NAME, FUNC) \
    { #NAME, (PyCFunction)FUNC, METH_FASTCALL, nullptr }
#else
#define WRAP_FUNC_PY35(FUNC)                                \
    PyObject* py35_##FUNC(PyObject* self, PyObject* args) { \
        auto* arr = &PyTuple_GET_ITEM(args, 0);             \
        auto size = PyTuple_GET_SIZE(args);                 \
        return FUNC(self, arr, size);                       \
    }
WRAP_FUNC_PY35(py_apply);
WRAP_FUNC_PY35(dtype_promotion);
WRAP_FUNC_PY35(get_device);
#undef WRAP_FUNC_PY35
#define MGE_PY_INTERFACE(NAME, FUNC) \
    { #NAME, (PyCFunction)py35_##FUNC, METH_VARARGS, nullptr }
#endif

783

784
void init_tensor(py::module m) {
785 786 787
    imperative::Tensor::static_initialize();
    static auto sl_interpreter_for_py = interpreter::Interpreter::inst().create_channel();
    interpreter_for_py = sl_interpreter_for_py.get();
788 789 790 791 792 793 794 795 796

    auto* tensor_type = TensorWrapper::wrap_t::type()
        .def<&TensorWrapper::numpy>("numpy")
        .def_getset<&TensorWrapper::shape>("shape")
        .def_getset<&TensorWrapper::dtype>("dtype")
        .def_getset<&TensorWrapper::device>("device")
        .def<&TensorWrapper::reset>("_reset")
        .def<&TensorWrapper::isscalar>("isscalar")
        .def<&TensorWrapper::setscalar>("setscalar")
797
        .def<&TensorWrapper::detach>("detach")
798 799 800 801
        .def<&TensorWrapper::_dev_tensor>("_dev_tensor")
        .def<&TensorWrapper::_swap_out>("_swap_out")
        .def<&TensorWrapper::_swap_in>("_swap_in")
        .def<&TensorWrapper::_drop>("_drop")
802
        .def<&TensorWrapper::reset_varnode>("_reset_varnode")
803
        .def<&TensorWrapper::_use_cnt>("_use_cnt")
804
        .def_getset<&TensorWrapper::varnode>("_varnode")
805
        .def_getset<&TensorWrapper::copied>("_copied")
806 807
        .def_getset<&TensorWrapper::mixin_handle, &TensorWrapper::set_mixin_handle>("_mixin_handle")
        .def_getset<&TensorWrapper::recording, &TensorWrapper::set_recording>("_recording")
808
        .def_getset<&TensorWrapper::handle, &TensorWrapper::set_handle>("_handle")
809 810
        .def_getset<&TensorWrapper::compiled_info, &TensorWrapper::set_compiled_info>("_compiled_info")
        .def_getset<&TensorWrapper::trace_mixin_info, &TensorWrapper::set_trace_mixin_info>("_trace_mixin_info")
811 812
        .def_getset<&TensorWrapper::user_custom_name, &TensorWrapper::set_user_custom_name>("c_name")
        .def_getset<&TensorWrapper::automatic_name, &TensorWrapper::set_automatic_name>("_name")
813 814 815 816 817 818
        .finalize();
    if (!tensor_type) throw py::error_already_set();
    py::setattr(m, "Tensor", tensor_type);

    py::class_<TensorWeakRef>(m, "TensorWeakRef")
        .def(py::init<const TensorWrapper&>())
819 820
        .def("__call__", &TensorWeakRef::operator())
        .def("_use_cnt", &TensorWeakRef::_use_cnt);
821

822
    static PyMethodDef method_defs[] = {
823 824 825 826
            MGE_PY_INTERFACE(apply, py_apply),
            MGE_PY_INTERFACE(dtype_promotion, dtype_promotion),
            MGE_PY_INTERFACE(get_device, get_device),
            {nullptr, nullptr, 0, nullptr}};
827 828 829 830 831 832 833
    for (auto&& def: method_defs) {
        if (def.ml_meth != nullptr) {
            auto* func = PyCFunction_NewEx(&def, nullptr, nullptr);
            if (!func) throw py::error_already_set();
            py::setattr(m, def.ml_name, func);
        }
    }
834

835 836 837 838
    m.def("set_option",
          [](std::string name, int value){ interpreter_for_py->set_option(name, value); });
    m.def("get_option",
          [](std::string name){ return interpreter_for_py->get_option(name); });
839
    m.def("_set_swap_flag",
840
          [](bool flag) { interpreter_for_py->set_option("enable_swap", flag); });
841
    m.def("_set_drop_flag",
842
          [](bool flag) { interpreter_for_py->set_option("enable_drop", flag); });
843
    m.def("config_async_level",
844 845 846 847
          [](int level) {
              mgb_assert(level >= 0 and level <= 2, "async_level should be 0, 1 or 2");
              interpreter_for_py->set_option("async_level", level);
          });
848
    m.def("get_async_level",
849
          []() { return interpreter_for_py->get_option("async_level"); });
850
    m.def("set_buffer_length",
851 852 853 854 855 856 857 858 859 860 861 862
          [](int length) {
              mgb_assert(length >= 0 and length < 100, "buffer_length should be in [0, 100)");
              interpreter_for_py->set_option("buffer_length", length);
          });
    m.def("push_scope",
          [](std::string name) { interpreter_for_py->push_scope(name); });
    m.def("pop_scope",
          [](std::string name) { interpreter_for_py->pop_scope(name); });
    m.def("start_profile",
          [](std::unordered_map<std::string, int> option) { return interpreter_for_py->start_profile(option); });
    m.def("stop_profile",
          [](std::string basename, std::string format) { interpreter_for_py->stop_profile(basename, format); });
863 864 865 866 867 868
    m.def("sync",
          []() {
              interpreter_for_py->sync();
              py_task_q.wait_all_task_finish();
          },
          py::call_guard<py::gil_scoped_release>());
869 870 871 872 873 874 875
    m.def("full_sync",
          []() {
              interpreter_for_py->sync();
              CompNode::sync_all();
              py_task_q.wait_all_task_finish();
          },
          py::call_guard<py::gil_scoped_release>());
876

877 878
    py::handle grad_key_type = GradKeyWrapper::wrap_t::type()
        .def<&GradKeyWrapper::attach>("attach")
879 880
        .def<&GradKeyWrapper::is_attached_to>("is_attached_to")
        .def_getset<&GradKeyWrapper::get_name, &GradKeyWrapper::set_name>("name")
881 882 883
        .finalize();
    if (!grad_key_type) throw py::error_already_set();
    py::setattr(m, "GradKey", grad_key_type);
884 885
    m.def("backward", &GradKeyWrapper::backward);

886 887 888 889 890 891 892 893 894
    m.def("set_cpp_apply_with_tracing", &set_cpp_apply_with_tracing);
    m.def("set_cpp_apply_const_with_tracing", &set_cpp_apply_const_with_tracing);
    m.def("set_cpp_apply_compiled_mode", &set_cpp_apply_compiled_mode);
    m.def("set_cpp_apply_const_compiled_mode", &set_cpp_apply_const_compiled_mode);
    m.def("set_cpp_apply_backward_varnode", &set_cpp_apply_backward_varnode);

    m.attr("skip_tracing") = &skip_tracing;

    py::class_<SharedHandle>(m, "SharedHandle")
895 896 897 898 899 900 901 902
        .def(py::init<const SharedHandle&>())
        .def("__eq__", [](SharedHandle &thish, SharedHandle &thath) {
            return (thish.get() == thath.get());
        })
        .def("__hash__", [](SharedHandle &sh) {
            return reinterpret_cast<int64_t>(sh.get());
        })
        ;
903 904 905 906 907

    m.def("set_tracing", &set_tracing);
    m.def("unset_tracing", &unset_tracing);
    m.def("set_compiled", &set_compiled);
    m.def("unset_compiled", &unset_compiled);
908 909
}

910 911
#undef MGE_PY_INTERFACE

912
} // namespace mgb::imperative::python