mod.rs 112.2 KB
Newer Older
1
// Copyright 2012-2015 The Rust Project Developers. See the COPYRIGHT
2 3 4 5 6 7 8 9 10
// file at the top-level directory of this distribution and at
// http://rust-lang.org/COPYRIGHT.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.

S
Steven Fackler 已提交
11
pub use self::Variance::*;
12
pub use self::AssociatedItemContainer::*;
S
Steven Fackler 已提交
13 14
pub use self::BorrowKind::*;
pub use self::IntVarValue::*;
15
pub use self::fold::TypeFoldable;
S
Steven Fackler 已提交
16

17
use hir::{map as hir_map, FreevarMap, TraitMap};
V
varkor 已提交
18
use hir::Node;
19
use hir::def::{Def, CtorKind, ExportMap};
20
use hir::def_id::{CrateNum, DefId, LocalDefId, CRATE_DEF_INDEX, LOCAL_CRATE};
21
use hir::map::DefPathData;
22
use rustc_data_structures::svh::Svh;
W
Wesley Wiser 已提交
23
use ich::Fingerprint;
24
use ich::StableHashingContext;
25
use infer::canonical::Canonical;
26
use middle::lang_items::{FnTraitLangItem, FnMutTraitLangItem, FnOnceTraitLangItem};
27
use middle::privacy::AccessLevels;
28
use middle::resolve_lifetime::ObjectLifetimeDefault;
29
use mir::Mir;
30
use mir::interpret::{GlobalId, ErrorHandled};
J
John Kåre Alsaker 已提交
31
use mir::GeneratorLayout;
32
use session::CrateDisambiguator;
33
use traits::{self, Reveal};
34
use ty;
35
use ty::subst::{Subst, Substs};
O
Oliver Schneider 已提交
36
use ty::util::{IntTypeExt, Discr};
37
use ty::walk::TypeWalker;
38
use util::captures::Captures;
39
use util::nodemap::{NodeSet, DefIdMap, FxHashMap};
J
John Kåre Alsaker 已提交
40
use arena::SyncDroplessArena;
41
use session::DataTypeKind;
42

43
use serialize::{self, Encodable, Encoder};
W
Wesley Wiser 已提交
44
use std::cell::RefCell;
45
use std::cmp::{self, Ordering};
46
use std::fmt;
47
use std::hash::{Hash, Hasher};
48
use std::ops::Deref;
J
John Kåre Alsaker 已提交
49
use rustc_data_structures::sync::{self, Lrc, ParallelIterator, par_iter};
50
use std::slice;
51
use std::vec::IntoIter;
52
use std::{mem, ptr};
J
Jeffrey Seyfried 已提交
53
use syntax::ast::{self, DUMMY_NODE_ID, Name, Ident, NodeId};
54
use syntax::attr;
55
use syntax::ext::hygiene::Mark;
56
use syntax::symbol::{keywords, Symbol, LocalInternedString, InternedString};
57
use syntax_pos::{DUMMY_SP, Span};
58

59
use smallvec;
60
use rustc_data_structures::indexed_vec::Idx;
61 62
use rustc_data_structures::stable_hasher::{StableHasher, StableHasherResult,
                                           HashStable};
O
Oliver Schneider 已提交
63

64
use hir;
65

S
scalexm 已提交
66
pub use self::sty::{Binder, BoundTy, BoundTyKind, BoundVar, DebruijnIndex, INNERMOST};
67
pub use self::sty::{FnSig, GenSig, CanonicalPolyFnSig, PolyFnSig, PolyGenSig};
68
pub use self::sty::{InferTy, ParamTy, ProjectionTy, ExistentialPredicate};
69
pub use self::sty::{ClosureSubsts, GeneratorSubsts, UpvarSubsts, TypeAndMut};
V
varkor 已提交
70
pub use self::sty::{TraitRef, TyKind, PolyTraitRef};
71
pub use self::sty::{ExistentialTraitRef, PolyExistentialTraitRef};
72
pub use self::sty::{ExistentialProjection, PolyExistentialProjection, Const};
73
pub use self::sty::{BoundRegion, EarlyBoundRegion, FreeRegion, Region};
N
Niko Matsakis 已提交
74
pub use self::sty::RegionKind;
75
pub use self::sty::{TyVid, IntVid, FloatVid, RegionVid};
76 77
pub use self::sty::BoundRegion::*;
pub use self::sty::InferTy::*;
N
Niko Matsakis 已提交
78
pub use self::sty::RegionKind::*;
V
varkor 已提交
79
pub use self::sty::TyKind::*;
80

81 82 83
pub use self::binding::BindingMode;
pub use self::binding::BindingMode::*;

84
pub use self::context::{TyCtxt, FreeRegionInfo, GlobalArenas, AllArenas, tls, keep_local};
85
pub use self::context::{Lift, TypeckTables};
86

87 88
pub use self::instance::{Instance, InstanceDef};

89
pub use self::trait_def::TraitDef;
90

91
pub use self::query::queries;
92

93
pub mod adjustment;
94
pub mod binding;
95
pub mod cast;
96
#[macro_use]
97
pub mod codec;
98
mod constness;
99
pub mod error;
100
mod erase_regions;
101 102
pub mod fast_reject;
pub mod fold;
A
Andrew Cann 已提交
103
pub mod inhabitedness;
104
pub mod item_path;
105
pub mod layout;
106 107
pub mod _match;
pub mod outlives;
108
pub mod query;
109
pub mod relate;
110
pub mod steal;
111
pub mod subst;
112
pub mod trait_def;
113 114
pub mod walk;
pub mod wf;
115
pub mod util;
116

117 118
mod context;
mod flags;
119
mod instance;
120 121 122
mod structural_impls;
mod sty;

123
// Data types
124

125
/// The complete set of all analyses described in this module. This is
I
Irina Popa 已提交
126
/// produced by the driver and fed to codegen and later passes.
127 128 129
///
/// NB: These contents are being migrated into queries using the
/// *on-demand* infrastructure.
J
Jeffrey Seyfried 已提交
130
#[derive(Clone)]
131
pub struct CrateAnalysis {
132
    pub access_levels: Lrc<AccessLevels>,
133
    pub name: String,
134
    pub glob_map: Option<hir::GlobMap>,
135 136
}

137 138 139 140 141
#[derive(Clone)]
pub struct Resolutions {
    pub freevars: FreevarMap,
    pub trait_map: TraitMap,
    pub maybe_unused_trait_imports: NodeSet,
142
    pub maybe_unused_extern_crates: Vec<(NodeId, Span)>,
N
Niko Matsakis 已提交
143
    pub export_map: ExportMap,
V
Vadim Petrochenkov 已提交
144 145 146
    /// Extern prelude entries. The value is `true` if the entry was introduced
    /// via `extern crate` item and not `--extern` option or compiler built-in.
    pub extern_prelude: FxHashMap<Name, bool>,
147 148
}

149
#[derive(Clone, Copy, PartialEq, Eq, Debug)]
150
pub enum AssociatedItemContainer {
N
Niko Matsakis 已提交
151 152
    TraitContainer(DefId),
    ImplContainer(DefId),
153 154
}

155
impl AssociatedItemContainer {
156 157 158 159 160 161 162 163 164
    /// Asserts that this is the def-id of an associated item declared
    /// in a trait, and returns the trait def-id.
    pub fn assert_trait(&self) -> DefId {
        match *self {
            TraitContainer(id) => id,
            _ => bug!("associated item has wrong container type: {:?}", self)
        }
    }

N
Niko Matsakis 已提交
165
    pub fn id(&self) -> DefId {
166 167 168 169 170 171 172
        match *self {
            TraitContainer(id) => id,
            ImplContainer(id) => id,
        }
    }
}

A
Aaron Turon 已提交
173 174 175 176 177 178 179 180 181 182 183
/// The "header" of an impl is everything outside the body: a Self type, a trait
/// ref (in the case of a trait impl), and a set of predicates (from the
/// bounds/where clauses).
#[derive(Clone, PartialEq, Eq, Hash, Debug)]
pub struct ImplHeader<'tcx> {
    pub impl_def_id: DefId,
    pub self_ty: Ty<'tcx>,
    pub trait_ref: Option<TraitRef<'tcx>>,
    pub predicates: Vec<Predicate<'tcx>>,
}

184
#[derive(Copy, Clone, Debug, PartialEq)]
185 186
pub struct AssociatedItem {
    pub def_id: DefId,
187
    pub ident: Ident,
188 189 190 191
    pub kind: AssociatedKind,
    pub vis: Visibility,
    pub defaultness: hir::Defaultness,
    pub container: AssociatedItemContainer,
192

193 194 195 196
    /// Whether this is a method with an explicit self
    /// as its first argument, allowing method calls.
    pub method_has_self_argument: bool,
}
197

198
#[derive(Copy, Clone, PartialEq, Eq, Debug, Hash, RustcEncodable, RustcDecodable)]
199 200 201
pub enum AssociatedKind {
    Const,
    Method,
O
Oliver Schneider 已提交
202
    Existential,
203 204
    Type
}
205

206 207 208 209 210 211
impl AssociatedItem {
    pub fn def(&self) -> Def {
        match self.kind {
            AssociatedKind::Const => Def::AssociatedConst(self.def_id),
            AssociatedKind::Method => Def::Method(self.def_id),
            AssociatedKind::Type => Def::AssociatedTy(self.def_id),
O
Oliver Schneider 已提交
212
            AssociatedKind::Existential => Def::AssociatedExistential(self.def_id),
213 214
        }
    }
A
Andrew Cann 已提交
215 216 217 218 219

    /// Tests whether the associated item admits a non-trivial implementation
    /// for !
    pub fn relevant_for_never<'tcx>(&self) -> bool {
        match self.kind {
O
Oliver Schneider 已提交
220 221
            AssociatedKind::Existential |
            AssociatedKind::Const |
A
Andrew Cann 已提交
222
            AssociatedKind::Type => true,
A
Andrew Cann 已提交
223
            // FIXME(canndrew): Be more thorough here, check if any argument is uninhabited.
A
Andrew Cann 已提交
224 225 226
            AssociatedKind::Method => !self.method_has_self_argument,
        }
    }
227 228 229 230 231 232 233 234

    pub fn signature<'a, 'tcx>(&self, tcx: &TyCtxt<'a, 'tcx, 'tcx>) -> String {
        match self.kind {
            ty::AssociatedKind::Method => {
                // We skip the binder here because the binder would deanonymize all
                // late-bound regions, and we don't want method signatures to show up
                // `as for<'r> fn(&'r MyType)`.  Pretty-printing handles late-bound
                // regions just fine, showing `fn(&MyType)`.
L
ljedrz 已提交
235
                tcx.fn_sig(self.def_id).skip_binder().to_string()
236
            }
237
            ty::AssociatedKind::Type => format!("type {};", self.ident),
O
Oliver Schneider 已提交
238
            ty::AssociatedKind::Existential => format!("existential type {};", self.ident),
239
            ty::AssociatedKind::Const => {
240
                format!("const {}: {:?};", self.ident, tcx.type_of(self.def_id))
241 242 243
            }
        }
    }
244 245
}

246
#[derive(Clone, Debug, PartialEq, Eq, Copy, RustcEncodable, RustcDecodable)]
247 248 249 250
pub enum Visibility {
    /// Visible everywhere (including in other crates).
    Public,
    /// Visible only in the given crate-local module.
251
    Restricted(DefId),
252
    /// Not visible anywhere in the local crate. This is the visibility of private external items.
253
    Invisible,
254 255
}

256 257
pub trait DefIdTree: Copy {
    fn parent(self, id: DefId) -> Option<DefId>;
A
Andrew Cann 已提交
258 259 260 261 262 263 264 265 266 267 268 269 270 271

    fn is_descendant_of(self, mut descendant: DefId, ancestor: DefId) -> bool {
        if descendant.krate != ancestor.krate {
            return false;
        }

        while descendant != ancestor {
            match self.parent(descendant) {
                Some(parent) => descendant = parent,
                None => return false,
            }
        }
        true
    }
272 273
}

274 275 276
impl<'a, 'gcx, 'tcx> DefIdTree for TyCtxt<'a, 'gcx, 'tcx> {
    fn parent(self, id: DefId) -> Option<DefId> {
        self.def_key(id).parent.map(|index| DefId { index: index, ..id })
277 278 279
    }
}

280
impl Visibility {
281
    pub fn from_hir(visibility: &hir::Visibility, id: NodeId, tcx: TyCtxt<'_, '_, '_>) -> Self {
282
        match visibility.node {
283 284 285
            hir::VisibilityKind::Public => Visibility::Public,
            hir::VisibilityKind::Crate(_) => Visibility::Restricted(DefId::local(CRATE_DEF_INDEX)),
            hir::VisibilityKind::Restricted { ref path, .. } => match path.def {
286 287
                // If there is no resolution, `resolve` will have already reported an error, so
                // assume that the visibility is public to avoid reporting more privacy errors.
288
                Def::Err => Visibility::Public,
289
                def => Visibility::Restricted(def.def_id()),
290
            },
291
            hir::VisibilityKind::Inherited => {
J
Jeffrey Seyfried 已提交
292
                Visibility::Restricted(tcx.hir.get_module_parent(id))
293
            }
294 295
        }
    }
296

297
    /// Returns `true` if an item with this visibility is accessible from the given block.
A
Andrew Cann 已提交
298
    pub fn is_accessible_from<T: DefIdTree>(self, module: DefId, tree: T) -> bool {
299 300 301 302
        let restriction = match self {
            // Public items are visible everywhere.
            Visibility::Public => return true,
            // Private items from other crates are visible nowhere.
303
            Visibility::Invisible => return false,
304
            // Restricted items are visible in an arbitrary local module.
305
            Visibility::Restricted(other) if other.krate != module.krate => return false,
306 307 308
            Visibility::Restricted(module) => module,
        };

A
Andrew Cann 已提交
309
        tree.is_descendant_of(module, restriction)
310
    }
311

312
    /// Returns `true` if this visibility is at least as accessible as the given visibility
313
    pub fn is_at_least<T: DefIdTree>(self, vis: Visibility, tree: T) -> bool {
314 315
        let vis_restriction = match vis {
            Visibility::Public => return self == Visibility::Public,
316
            Visibility::Invisible => return true,
317 318 319
            Visibility::Restricted(module) => module,
        };

320
        self.is_accessible_from(vis_restriction, tree)
321
    }
322

323
    // Returns `true` if this item is visible anywhere in the local crate.
324 325 326 327 328 329 330
    pub fn is_visible_locally(self) -> bool {
        match self {
            Visibility::Public => true,
            Visibility::Restricted(def_id) => def_id.is_local(),
            Visibility::Invisible => false,
        }
    }
331 332
}

333
#[derive(Copy, Clone, PartialEq, Eq, RustcDecodable, RustcEncodable, Hash)]
334
pub enum Variance {
335 336 337 338
    Covariant,      // T<A> <: T<B> iff A <: B -- e.g., function return type
    Invariant,      // T<A> <: T<B> iff B == A -- e.g., type of mutable cell
    Contravariant,  // T<A> <: T<B> iff B <: A -- e.g., function param type
    Bivariant,      // T<A> <: T<B>            -- e.g., unused type parameter
339
}
340

341 342 343 344
/// The crate variances map is computed during typeck and contains the
/// variance of every item in the local crate. You should not use it
/// directly, because to do so will make your pass dependent on the
/// HIR of every item in the local crate. Instead, use
345
/// `tcx.variances_of()` to get the variance for a *particular*
346 347 348 349 350
/// item.
pub struct CrateVariancesMap {
    /// For each item with generics, maps to a vector of the variance
    /// of its generics.  If an item has no generics, it will have no
    /// entry.
351
    pub variances: FxHashMap<DefId, Lrc<Vec<ty::Variance>>>,
352 353

    /// An empty vector, useful for cloning.
354
    pub empty_variance: Lrc<Vec<ty::Variance>>,
355 356
}

357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416
impl Variance {
    /// `a.xform(b)` combines the variance of a context with the
    /// variance of a type with the following meaning.  If we are in a
    /// context with variance `a`, and we encounter a type argument in
    /// a position with variance `b`, then `a.xform(b)` is the new
    /// variance with which the argument appears.
    ///
    /// Example 1:
    ///
    ///     *mut Vec<i32>
    ///
    /// Here, the "ambient" variance starts as covariant. `*mut T` is
    /// invariant with respect to `T`, so the variance in which the
    /// `Vec<i32>` appears is `Covariant.xform(Invariant)`, which
    /// yields `Invariant`. Now, the type `Vec<T>` is covariant with
    /// respect to its type argument `T`, and hence the variance of
    /// the `i32` here is `Invariant.xform(Covariant)`, which results
    /// (again) in `Invariant`.
    ///
    /// Example 2:
    ///
    ///     fn(*const Vec<i32>, *mut Vec<i32)
    ///
    /// The ambient variance is covariant. A `fn` type is
    /// contravariant with respect to its parameters, so the variance
    /// within which both pointer types appear is
    /// `Covariant.xform(Contravariant)`, or `Contravariant`.  `*const
    /// T` is covariant with respect to `T`, so the variance within
    /// which the first `Vec<i32>` appears is
    /// `Contravariant.xform(Covariant)` or `Contravariant`.  The same
    /// is true for its `i32` argument. In the `*mut T` case, the
    /// variance of `Vec<i32>` is `Contravariant.xform(Invariant)`,
    /// and hence the outermost type is `Invariant` with respect to
    /// `Vec<i32>` (and its `i32` argument).
    ///
    /// Source: Figure 1 of "Taming the Wildcards:
    /// Combining Definition- and Use-Site Variance" published in PLDI'11.
    pub fn xform(self, v: ty::Variance) -> ty::Variance {
        match (self, v) {
            // Figure 1, column 1.
            (ty::Covariant, ty::Covariant) => ty::Covariant,
            (ty::Covariant, ty::Contravariant) => ty::Contravariant,
            (ty::Covariant, ty::Invariant) => ty::Invariant,
            (ty::Covariant, ty::Bivariant) => ty::Bivariant,

            // Figure 1, column 2.
            (ty::Contravariant, ty::Covariant) => ty::Contravariant,
            (ty::Contravariant, ty::Contravariant) => ty::Covariant,
            (ty::Contravariant, ty::Invariant) => ty::Invariant,
            (ty::Contravariant, ty::Bivariant) => ty::Bivariant,

            // Figure 1, column 3.
            (ty::Invariant, _) => ty::Invariant,

            // Figure 1, column 4.
            (ty::Bivariant, _) => ty::Bivariant,
        }
    }
}

417 418 419
// Contains information needed to resolve types and (in the future) look up
// the types of AST nodes.
#[derive(Copy, Clone, PartialEq, Eq, Hash)]
420
pub struct CReaderCacheKey {
421 422 423 424
    pub cnum: CrateNum,
    pub pos: usize,
}

425 426 427 428
// Flags that we track on types. These flags are propagated upwards
// through the type during type construction, so that we can quickly
// check whether the type has various kinds of types in it without
// recursing over the type itself.
429
bitflags! {
430 431 432 433 434 435
    pub struct TypeFlags: u32 {
        const HAS_PARAMS         = 1 << 0;
        const HAS_SELF           = 1 << 1;
        const HAS_TY_INFER       = 1 << 2;
        const HAS_RE_INFER       = 1 << 3;
        const HAS_RE_SKOL        = 1 << 4;
436 437 438 439 440

        /// Does this have any `ReEarlyBound` regions? Used to
        /// determine whether substitition is required, since those
        /// represent regions that are bound in a `ty::Generics` and
        /// hence may be substituted.
441
        const HAS_RE_EARLY_BOUND = 1 << 5;
442 443 444

        /// Does this have any region that "appears free" in the type?
        /// Basically anything but `ReLateBound` and `ReErased`.
445
        const HAS_FREE_REGIONS   = 1 << 6;
446 447

        /// Is an error type reachable?
448 449
        const HAS_TY_ERR         = 1 << 7;
        const HAS_PROJECTION     = 1 << 8;
J
John Kåre Alsaker 已提交
450 451

        // FIXME: Rename this to the actual property since it's used for generators too
452
        const HAS_TY_CLOSURE     = 1 << 9;
453

454
        // `true` if there are "names" of types and regions and so forth
455
        // that are local to a particular fn
456
        const HAS_FREE_LOCAL_NAMES    = 1 << 10;
457

458
        // Present if the type belongs in a local type context.
V
varkor 已提交
459
        // Only set for Infer other than Fresh.
460
        const KEEP_IN_LOCAL_TCX  = 1 << 11;
461

462 463
        // Is there a projection that does not involve a bound region?
        // Currently we can't normalize projections w/ bound regions.
464
        const HAS_NORMALIZABLE_PROJECTION = 1 << 12;
465

466 467
        /// Does this have any `ReLateBound` regions? Used to check
        /// if a global bound is safe to evaluate.
468
        const HAS_RE_LATE_BOUND = 1 << 13;
469

470 471
        const NEEDS_SUBST        = TypeFlags::HAS_PARAMS.bits |
                                   TypeFlags::HAS_SELF.bits |
472
                                   TypeFlags::HAS_RE_EARLY_BOUND.bits;
473 474

        // Flags representing the nominal content of a type,
475 476
        // computed by FlagsComputation. If you add a new nominal
        // flag, it should be added here too.
477 478 479 480
        const NOMINAL_FLAGS     = TypeFlags::HAS_PARAMS.bits |
                                  TypeFlags::HAS_SELF.bits |
                                  TypeFlags::HAS_TY_INFER.bits |
                                  TypeFlags::HAS_RE_INFER.bits |
481
                                  TypeFlags::HAS_RE_SKOL.bits |
482 483
                                  TypeFlags::HAS_RE_EARLY_BOUND.bits |
                                  TypeFlags::HAS_FREE_REGIONS.bits |
484
                                  TypeFlags::HAS_TY_ERR.bits |
485
                                  TypeFlags::HAS_PROJECTION.bits |
486
                                  TypeFlags::HAS_TY_CLOSURE.bits |
487
                                  TypeFlags::HAS_FREE_LOCAL_NAMES.bits |
488
                                  TypeFlags::KEEP_IN_LOCAL_TCX.bits |
489
                                  TypeFlags::HAS_RE_LATE_BOUND.bits;
490
    }
491 492
}

493
pub struct TyS<'tcx> {
V
varkor 已提交
494
    pub sty: TyKind<'tcx>,
495
    pub flags: TypeFlags,
496

497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514
    /// This is a kind of confusing thing: it stores the smallest
    /// binder such that
    ///
    /// (a) the binder itself captures nothing but
    /// (b) all the late-bound things within the type are captured
    ///     by some sub-binder.
    ///
    /// So, for a type without any late-bound things, like `u32`, this
    /// will be INNERMOST, because that is the innermost binder that
    /// captures nothing. But for a type `&'D u32`, where `'D` is a
    /// late-bound region with debruijn index D, this would be D+1 --
    /// the binder itself does not capture D, but D is captured by an
    /// inner binder.
    ///
    /// We call this concept an "exclusive" binder D (because all
    /// debruijn indices within the type are contained within `0..D`
    /// (exclusive)).
    outer_exclusive_binder: ty::DebruijnIndex,
515 516
}

517 518 519 520 521 522 523 524 525 526 527 528
impl<'tcx> Ord for TyS<'tcx> {
    fn cmp(&self, other: &TyS<'tcx>) -> Ordering {
        self.sty.cmp(&other.sty)
    }
}

impl<'tcx> PartialOrd for TyS<'tcx> {
    fn partial_cmp(&self, other: &TyS<'tcx>) -> Option<Ordering> {
        Some(self.sty.cmp(&other.sty))
    }
}

529
impl<'tcx> PartialEq for TyS<'tcx> {
530
    #[inline]
531
    fn eq(&self, other: &TyS<'tcx>) -> bool {
532
        ptr::eq(self, other)
533 534
    }
}
535
impl<'tcx> Eq for TyS<'tcx> {}
536

A
Alex Crichton 已提交
537 538
impl<'tcx> Hash for TyS<'tcx> {
    fn hash<H: Hasher>(&self, s: &mut H) {
539
        (self as *const TyS<'_>).hash(s)
A
Alex Crichton 已提交
540 541
    }
}
542

G
Guillaume Gomez 已提交
543 544 545
impl<'tcx> TyS<'tcx> {
    pub fn is_primitive_ty(&self) -> bool {
        match self.sty {
546
            TyKind::Bool |
547 548 549 550 551 552 553 554
            TyKind::Char |
            TyKind::Int(_) |
            TyKind::Uint(_) |
            TyKind::Float(_) |
            TyKind::Infer(InferTy::IntVar(_)) |
            TyKind::Infer(InferTy::FloatVar(_)) |
            TyKind::Infer(InferTy::FreshIntTy(_)) |
            TyKind::Infer(InferTy::FreshFloatTy(_)) => true,
V
varkor 已提交
555
            TyKind::Ref(_, x, _) => x.is_primitive_ty(),
G
Guillaume Gomez 已提交
556 557 558
            _ => false,
        }
    }
559 560 561

    pub fn is_suggestable(&self) -> bool {
        match self.sty {
562
            TyKind::Opaque(..) |
V
varkor 已提交
563 564 565 566 567 568
            TyKind::FnDef(..) |
            TyKind::FnPtr(..) |
            TyKind::Dynamic(..) |
            TyKind::Closure(..) |
            TyKind::Infer(..) |
            TyKind::Projection(..) => false,
569 570 571
            _ => true,
        }
    }
G
Guillaume Gomez 已提交
572 573
}

574
impl<'a, 'gcx> HashStable<StableHashingContext<'a>> for ty::TyS<'gcx> {
575
    fn hash_stable<W: StableHasherResult>(&self,
576
                                          hcx: &mut StableHashingContext<'a>,
577 578 579 580 581 582 583
                                          hasher: &mut StableHasher<W>) {
        let ty::TyS {
            ref sty,

            // The other fields just provide fast access to information that is
            // also contained in `sty`, so no need to hash them.
            flags: _,
584 585

            outer_exclusive_binder: _,
586 587 588 589 590 591
        } = *self;

        sty.hash_stable(hcx, hasher);
    }
}

592
pub type Ty<'tcx> = &'tcx TyS<'tcx>;
593

594 595
impl<'tcx> serialize::UseSpecializedEncodable for Ty<'tcx> {}
impl<'tcx> serialize::UseSpecializedDecodable for Ty<'tcx> {}
596

597 598
pub type CanonicalTy<'gcx> = Canonical<'gcx, Ty<'gcx>>;

J
John Kåre Alsaker 已提交
599
extern {
V
varkor 已提交
600 601
    /// A dummy type used to force List to by unsized without requiring fat pointers
    type OpaqueListContents;
J
John Kåre Alsaker 已提交
602 603
}

A
Adam Perry 已提交
604
/// A wrapper for slices with the additional invariant
605 606
/// that the slice is interned and no other slice with
/// the same contents can exist in the same context.
J
John Kåre Alsaker 已提交
607
/// This means we can use pointer for both
608
/// equality comparisons and hashing.
V
varkor 已提交
609
/// Note: `Slice` was already taken by the `Ty`.
J
John Kåre Alsaker 已提交
610
#[repr(C)]
V
varkor 已提交
611
pub struct List<T> {
J
John Kåre Alsaker 已提交
612 613
    len: usize,
    data: [T; 0],
V
varkor 已提交
614
    opaque: OpaqueListContents,
J
John Kåre Alsaker 已提交
615 616
}

V
varkor 已提交
617
unsafe impl<T: Sync> Sync for List<T> {}
J
John Kåre Alsaker 已提交
618

V
varkor 已提交
619
impl<T: Copy> List<T> {
J
John Kåre Alsaker 已提交
620
    #[inline]
V
varkor 已提交
621
    fn from_arena<'tcx>(arena: &'tcx SyncDroplessArena, slice: &[T]) -> &'tcx List<T> {
J
John Kåre Alsaker 已提交
622 623 624 625
        assert!(!mem::needs_drop::<T>());
        assert!(mem::size_of::<T>() != 0);
        assert!(slice.len() != 0);

J
John Kåre Alsaker 已提交
626 627 628 629 630 631
        // Align up the size of the len (usize) field
        let align = mem::align_of::<T>();
        let align_mask = align - 1;
        let offset = mem::size_of::<usize>();
        let offset = (offset + align_mask) & !align_mask;

J
John Kåre Alsaker 已提交
632 633
        let size = offset + slice.len() * mem::size_of::<T>();

J
John Kåre Alsaker 已提交
634
        let mem = arena.alloc_raw(
J
John Kåre Alsaker 已提交
635
            size,
J
John Kåre Alsaker 已提交
636
            cmp::max(mem::align_of::<T>(), mem::align_of::<usize>()));
J
John Kåre Alsaker 已提交
637
        unsafe {
V
varkor 已提交
638
            let result = &mut *(mem.as_mut_ptr() as *mut List<T>);
J
John Kåre Alsaker 已提交
639
            // Write the length
J
John Kåre Alsaker 已提交
640
            result.len = slice.len();
J
John Kåre Alsaker 已提交
641 642

            // Write the elements
J
John Kåre Alsaker 已提交
643
            let arena_slice = slice::from_raw_parts_mut(result.data.as_mut_ptr(), result.len);
J
John Kåre Alsaker 已提交
644 645
            arena_slice.copy_from_slice(slice);

J
John Kåre Alsaker 已提交
646
            result
J
John Kåre Alsaker 已提交
647 648 649 650
        }
    }
}

V
varkor 已提交
651
impl<T: fmt::Debug> fmt::Debug for List<T> {
652
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
J
John Kåre Alsaker 已提交
653 654 655 656
        (**self).fmt(f)
    }
}

V
varkor 已提交
657
impl<T: Encodable> Encodable for List<T> {
J
John Kåre Alsaker 已提交
658 659 660 661 662
    #[inline]
    fn encode<S: Encoder>(&self, s: &mut S) -> Result<(), S::Error> {
        (**self).encode(s)
    }
}
663

V
varkor 已提交
664 665
impl<T> Ord for List<T> where T: Ord {
    fn cmp(&self, other: &List<T>) -> Ordering {
666
        if self == other { Ordering::Equal } else {
J
John Kåre Alsaker 已提交
667
            <[T] as Ord>::cmp(&**self, &**other)
668 669 670 671
        }
    }
}

V
varkor 已提交
672 673
impl<T> PartialOrd for List<T> where T: PartialOrd {
    fn partial_cmp(&self, other: &List<T>) -> Option<Ordering> {
674
        if self == other { Some(Ordering::Equal) } else {
J
John Kåre Alsaker 已提交
675
            <[T] as PartialOrd>::partial_cmp(&**self, &**other)
676 677 678 679
        }
    }
}

V
varkor 已提交
680
impl<T: PartialEq> PartialEq for List<T> {
681
    #[inline]
V
varkor 已提交
682
    fn eq(&self, other: &List<T>) -> bool {
683
        ptr::eq(self, other)
684 685
    }
}
V
varkor 已提交
686
impl<T: Eq> Eq for List<T> {}
687

V
varkor 已提交
688
impl<T> Hash for List<T> {
J
John Kåre Alsaker 已提交
689
    #[inline]
690
    fn hash<H: Hasher>(&self, s: &mut H) {
V
varkor 已提交
691
        (self as *const List<T>).hash(s)
692 693 694
    }
}

V
varkor 已提交
695
impl<T> Deref for List<T> {
696
    type Target = [T];
J
John Kåre Alsaker 已提交
697
    #[inline(always)]
698
    fn deref(&self) -> &[T] {
J
John Kåre Alsaker 已提交
699
        unsafe {
J
John Kåre Alsaker 已提交
700
            slice::from_raw_parts(self.data.as_ptr(), self.len)
J
John Kåre Alsaker 已提交
701
        }
702 703 704
    }
}

V
varkor 已提交
705
impl<'a, T> IntoIterator for &'a List<T> {
706 707
    type Item = &'a T;
    type IntoIter = <&'a [T] as IntoIterator>::IntoIter;
J
John Kåre Alsaker 已提交
708
    #[inline(always)]
709 710 711 712 713
    fn into_iter(self) -> Self::IntoIter {
        self[..].iter()
    }
}

V
varkor 已提交
714
impl<'tcx> serialize::UseSpecializedDecodable for &'tcx List<Ty<'tcx>> {}
715

V
varkor 已提交
716
impl<T> List<T> {
J
John Kåre Alsaker 已提交
717
    #[inline(always)]
V
varkor 已提交
718
    pub fn empty<'a>() -> &'a List<T> {
J
John Kåre Alsaker 已提交
719 720 721 722
        #[repr(align(64), C)]
        struct EmptySlice([u8; 64]);
        static EMPTY_SLICE: EmptySlice = EmptySlice([0; 64]);
        assert!(mem::align_of::<T>() <= 64);
723
        unsafe {
V
varkor 已提交
724
            &*(&EMPTY_SLICE as *const _ as *const List<T>)
725 726 727 728
        }
    }
}

S
Steve Klabnik 已提交
729 730 731
/// Upvars do not get their own node-id. Instead, we use the pair of
/// the original var id (that is, the root variable that is referenced
/// by the upvar) and the id of the closure expression.
732
#[derive(Clone, Copy, PartialEq, Eq, Hash, RustcEncodable, RustcDecodable)]
733
pub struct UpvarId {
734
    pub var_id: hir::HirId,
735
    pub closure_expr_id: LocalDefId,
736 737
}

J
Jorge Aparicio 已提交
738
#[derive(Clone, PartialEq, Eq, Hash, Debug, RustcEncodable, RustcDecodable, Copy)]
739 740 741 742 743 744
pub enum BorrowKind {
    /// Data must be immutable and is aliasable.
    ImmBorrow,

    /// Data must be immutable but not aliasable.  This kind of borrow
    /// cannot currently be expressed by the user and is used only in
K
king6cong 已提交
745
    /// implicit closure bindings. It is needed when the closure
746 747
    /// is borrowing or mutating a mutable referent, e.g.:
    ///
748
    ///    let x: &mut isize = ...;
749 750 751 752 753
    ///    let y = || *x += 5;
    ///
    /// If we were to try to translate this closure into a more explicit
    /// form, we'd encounter an error with the code as written:
    ///
754 755
    ///    struct Env { x: & &mut isize }
    ///    let x: &mut isize = ...;
756 757 758 759 760 761 762
    ///    let y = (&mut Env { &x }, fn_ptr);  // Closure is pair of env and fn
    ///    fn fn_ptr(env: &mut Env) { **env.x += 5; }
    ///
    /// This is then illegal because you cannot mutate a `&mut` found
    /// in an aliasable location. To solve, you'd have to translate with
    /// an `&mut` borrow:
    ///
763 764
    ///    struct Env { x: & &mut isize }
    ///    let x: &mut isize = ...;
765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783
    ///    let y = (&mut Env { &mut x }, fn_ptr); // changed from &x to &mut x
    ///    fn fn_ptr(env: &mut Env) { **env.x += 5; }
    ///
    /// Now the assignment to `**env.x` is legal, but creating a
    /// mutable pointer to `x` is not because `x` is not mutable. We
    /// could fix this by declaring `x` as `let mut x`. This is ok in
    /// user code, if awkward, but extra weird for closures, since the
    /// borrow is hidden.
    ///
    /// So we introduce a "unique imm" borrow -- the referent is
    /// immutable, but not aliasable. This solves the problem. For
    /// simplicity, we don't give users the way to express this
    /// borrow, it's just used when translating closures.
    UniqueImmBorrow,

    /// Data is mutable and not aliasable.
    MutBorrow
}

784 785
/// Information describing the capture of an upvar. This is computed
/// during `typeck`, specifically by `regionck`.
786
#[derive(PartialEq, Clone, Debug, Copy, RustcEncodable, RustcDecodable)]
787
pub enum UpvarCapture<'tcx> {
788 789 790 791 792 793
    /// Upvar is captured by value. This is always true when the
    /// closure is labeled `move`, but can also be true in other cases
    /// depending on inference.
    ByValue,

    /// Upvar is captured by reference.
794
    ByRef(UpvarBorrow<'tcx>),
795 796
}

797
#[derive(PartialEq, Clone, Copy, RustcEncodable, RustcDecodable)]
798
pub struct UpvarBorrow<'tcx> {
799 800 801
    /// The kind of borrow: by-ref upvars have access to shared
    /// immutable borrows, which are not part of the normal language
    /// syntax.
802
    pub kind: BorrowKind,
803 804

    /// Region of the resulting reference.
N
Niko Matsakis 已提交
805
    pub region: ty::Region<'tcx>,
806 807
}

808
pub type UpvarCaptureMap<'tcx> = FxHashMap<UpvarId, UpvarCapture<'tcx>>;
809

810 811
#[derive(Copy, Clone)]
pub struct ClosureUpvar<'tcx> {
812
    pub def: Def,
813 814 815 816
    pub span: Span,
    pub ty: Ty<'tcx>,
}

817
#[derive(Clone, Copy, PartialEq, Eq)]
818
pub enum IntVarValue {
819 820
    IntType(ast::IntTy),
    UintType(ast::UintTy),
821 822
}

823 824 825
#[derive(Clone, Copy, PartialEq, Eq)]
pub struct FloatVarValue(pub ast::FloatTy);

826
impl ty::EarlyBoundRegion {
827
    pub fn to_bound_region(&self) -> ty::BoundRegion {
828
        ty::BoundRegion::BrNamed(self.def_id, self.name)
829
    }
830 831 832 833 834 835

    /// Does this early bound region have a name? Early bound regions normally
    /// always have names except when using anonymous lifetimes (`'_`).
    pub fn has_name(&self) -> bool {
        self.name != keywords::UnderscoreLifetime.name().as_interned_str()
    }
836 837
}

V
varkor 已提交
838
#[derive(Clone, Debug, RustcEncodable, RustcDecodable)]
839
pub enum GenericParamDefKind {
V
varkor 已提交
840
    Lifetime,
841 842 843 844 845
    Type {
        has_default: bool,
        object_lifetime_default: ObjectLifetimeDefault,
        synthetic: Option<hir::SyntheticTyParamKind>,
    }
V
varkor 已提交
846 847
}

848 849 850 851 852
#[derive(Clone, RustcEncodable, RustcDecodable)]
pub struct GenericParamDef {
    pub name: InternedString,
    pub def_id: DefId,
    pub index: u32,
V
varkor 已提交
853 854 855 856 857 858

    /// `pure_wrt_drop`, set by the (unsafe) `#[may_dangle]` attribute
    /// on generic parameter `'a`/`T`, asserts data behind the parameter
    /// `'a`/`T` won't be accessed during the parent type's `Drop` impl.
    pub pure_wrt_drop: bool,

859 860 861
    pub kind: GenericParamDefKind,
}

V
varkor 已提交
862
impl GenericParamDef {
863
    pub fn to_early_bound_region_data(&self) -> ty::EarlyBoundRegion {
L
ljedrz 已提交
864 865 866 867 868
        if let GenericParamDefKind::Lifetime = self.kind {
            ty::EarlyBoundRegion {
                def_id: self.def_id,
                index: self.index,
                name: self.name,
869
            }
L
ljedrz 已提交
870 871
        } else {
            bug!("cannot convert a non-lifetime parameter def to an early bound region")
872 873 874 875
        }
    }

    pub fn to_bound_region(&self) -> ty::BoundRegion {
L
ljedrz 已提交
876 877 878 879
        if let GenericParamDefKind::Lifetime = self.kind {
            self.to_early_bound_region_data().to_bound_region()
        } else {
            bug!("cannot convert a non-lifetime parameter def to an early bound region")
V
varkor 已提交
880 881 882 883
        }
    }
}

V
varkor 已提交
884
#[derive(Default)]
885 886 887 888 889
pub struct GenericParamCount {
    pub lifetimes: usize,
    pub types: usize,
}

890
/// Information about the formal type/lifetime parameters associated
891
/// with an item or method. Analogous to hir::Generics.
A
Ariel Ben-Yehuda 已提交
892
///
893 894
/// The ordering of parameters is the same as in Subst (excluding child generics):
/// Self (optionally), Lifetime params..., Type params...
895
#[derive(Clone, Debug, RustcEncodable, RustcDecodable)]
896
pub struct Generics {
897
    pub parent: Option<DefId>,
V
varkor 已提交
898
    pub parent_count: usize,
V
varkor 已提交
899
    pub params: Vec<GenericParamDef>,
900

V
varkor 已提交
901
    /// Reverse map to the `index` field of each `GenericParamDef`
902
    pub param_def_id_to_index: FxHashMap<DefId, u32>,
903

904
    pub has_self: bool,
905
    pub has_late_bound_regions: Option<Span>,
906 907
}

908
impl<'a, 'gcx, 'tcx> Generics {
909
    pub fn count(&self) -> usize {
V
varkor 已提交
910
        self.parent_count + self.params.len()
911
    }
912

V
varkor 已提交
913
    pub fn own_counts(&self) -> GenericParamCount {
914 915 916
        // We could cache this as a property of `GenericParamCount`, but
        // the aim is to refactor this away entirely eventually and the
        // presence of this method will be a constant reminder.
V
varkor 已提交
917
        let mut own_counts: GenericParamCount = Default::default();
918

V
varkor 已提交
919
        for param in &self.params {
920
            match param.kind {
V
varkor 已提交
921
                GenericParamDefKind::Lifetime => own_counts.lifetimes += 1,
922
                GenericParamDefKind::Type { .. } => own_counts.types += 1,
923 924 925
            };
        }

V
varkor 已提交
926
        own_counts
927 928
    }

929
    pub fn requires_monomorphization(&self, tcx: TyCtxt<'a, 'gcx, 'tcx>) -> bool {
V
varkor 已提交
930
        for param in &self.params {
931
            match param.kind {
V
varkor 已提交
932
                GenericParamDefKind::Type { .. } => return true,
V
varkor 已提交
933
                GenericParamDefKind::Lifetime => {}
V
varkor 已提交
934
            }
V
varkor 已提交
935 936 937
        }
        if let Some(parent_def_id) = self.parent {
            let parent = tcx.generics_of(parent_def_id);
938
            parent.requires_monomorphization(tcx)
V
varkor 已提交
939 940 941
        } else {
            false
        }
V
varkor 已提交
942 943
    }

944 945 946
    pub fn region_param(&'tcx self,
                        param: &EarlyBoundRegion,
                        tcx: TyCtxt<'a, 'gcx, 'tcx>)
947
                        -> &'tcx GenericParamDef
948
    {
V
varkor 已提交
949
        if let Some(index) = param.index.checked_sub(self.parent_count as u32) {
V
varkor 已提交
950
            let param = &self.params[index as usize];
951
            match param.kind {
V
varkor 已提交
952
                ty::GenericParamDefKind::Lifetime => param,
V
varkor 已提交
953
                _ => bug!("expected lifetime parameter, but found another generic parameter")
V
varkor 已提交
954
            }
955
        } else {
956
            tcx.generics_of(self.parent.expect("parent_count > 0 but no parent?"))
L
ljedrz 已提交
957
               .region_param(param, tcx)
958
        }
959 960
    }

961
    /// Returns the `GenericParamDef` associated with this `ParamTy`.
962 963
    pub fn type_param(&'tcx self,
                      param: &ParamTy,
A
Ariel Ben-Yehuda 已提交
964
                      tcx: TyCtxt<'a, 'gcx, 'tcx>)
965
                      -> &'tcx GenericParamDef {
966
        if let Some(index) = param.idx.checked_sub(self.parent_count as u32) {
V
varkor 已提交
967 968
            let param = &self.params[index as usize];
            match param.kind {
969
                ty::GenericParamDefKind::Type {..} => param,
V
varkor 已提交
970 971
                _ => bug!("expected type parameter, but found another generic parameter")
            }
972
        } else {
973
            tcx.generics_of(self.parent.expect("parent_count > 0 but no parent?"))
L
ljedrz 已提交
974
               .type_param(param, tcx)
975
        }
976
    }
977 978
}

979
/// Bounds on generics.
980
#[derive(Clone, Default)]
981
pub struct GenericPredicates<'tcx> {
982
    pub parent: Option<DefId>,
983
    pub predicates: Vec<(Predicate<'tcx>, Span)>,
984 985
}

986 987 988
impl<'tcx> serialize::UseSpecializedEncodable for GenericPredicates<'tcx> {}
impl<'tcx> serialize::UseSpecializedDecodable for GenericPredicates<'tcx> {}

989 990
impl<'a, 'gcx, 'tcx> GenericPredicates<'tcx> {
    pub fn instantiate(&self, tcx: TyCtxt<'a, 'gcx, 'tcx>, substs: &Substs<'tcx>)
991
                       -> InstantiatedPredicates<'tcx> {
992 993 994 995
        let mut instantiated = InstantiatedPredicates::empty();
        self.instantiate_into(tcx, &mut instantiated, substs);
        instantiated
    }
996

997 998
    pub fn instantiate_own(&self, tcx: TyCtxt<'a, 'gcx, 'tcx>, substs: &Substs<'tcx>)
                           -> InstantiatedPredicates<'tcx> {
999
        InstantiatedPredicates {
1000
            predicates: self.predicates.iter().map(|(p, _)| p.subst(tcx, substs)).collect(),
1001 1002 1003 1004 1005 1006 1007
        }
    }

    fn instantiate_into(&self, tcx: TyCtxt<'a, 'gcx, 'tcx>,
                        instantiated: &mut InstantiatedPredicates<'tcx>,
                        substs: &Substs<'tcx>) {
        if let Some(def_id) = self.parent {
1008
            tcx.predicates_of(def_id).instantiate_into(tcx, instantiated, substs);
1009
        }
1010 1011 1012
        instantiated.predicates.extend(
            self.predicates.iter().map(|(p, _)| p.subst(tcx, substs)),
        );
1013
    }
1014

1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026
    pub fn instantiate_identity(&self, tcx: TyCtxt<'a, 'gcx, 'tcx>)
                                -> InstantiatedPredicates<'tcx> {
        let mut instantiated = InstantiatedPredicates::empty();
        self.instantiate_identity_into(tcx, &mut instantiated);
        instantiated
    }

    fn instantiate_identity_into(&self, tcx: TyCtxt<'a, 'gcx, 'tcx>,
                                 instantiated: &mut InstantiatedPredicates<'tcx>) {
        if let Some(def_id) = self.parent {
            tcx.predicates_of(def_id).instantiate_identity_into(tcx, instantiated);
        }
1027
        instantiated.predicates.extend(self.predicates.iter().map(|&(p, _)| p))
1028 1029
    }

1030
    pub fn instantiate_supertrait(&self, tcx: TyCtxt<'a, 'gcx, 'tcx>,
1031 1032 1033
                                  poly_trait_ref: &ty::PolyTraitRef<'tcx>)
                                  -> InstantiatedPredicates<'tcx>
    {
1034
        assert_eq!(self.parent, None);
1035
        InstantiatedPredicates {
1036
            predicates: self.predicates.iter().map(|(pred, _)| {
1037
                pred.subst_supertrait(tcx, poly_trait_ref)
1038
            }).collect()
1039 1040
        }
    }
1041 1042
}

1043
#[derive(Clone, Copy, PartialEq, Eq, Hash, RustcEncodable, RustcDecodable)]
1044
pub enum Predicate<'tcx> {
1045
    /// Corresponds to `where Foo: Bar<A,B,C>`. `Foo` here would be
N
Niko Matsakis 已提交
1046
    /// the `Self` type of the trait reference and `A`, `B`, and `C`
1047
    /// would be the type parameters.
1048
    Trait(PolyTraitPredicate<'tcx>),
1049

1050
    /// where `'a: 'b`
1051
    RegionOutlives(PolyRegionOutlivesPredicate<'tcx>),
1052

1053
    /// where `T: 'a`
1054
    TypeOutlives(PolyTypeOutlivesPredicate<'tcx>),
1055

1056 1057
    /// where `<T as TraitRef>::Name == X`, approximately.
    /// See the `ProjectionPredicate` struct for details.
1058
    Projection(PolyProjectionPredicate<'tcx>),
1059

1060
    /// no syntax: `T` well-formed
1061 1062 1063
    WellFormed(Ty<'tcx>),

    /// trait must be object-safe
N
Niko Matsakis 已提交
1064
    ObjectSafe(DefId),
1065

1066
    /// No direct syntax. May be thought of as `where T: FnFoo<...>`
1067
    /// for some substitutions `...` and `T` being a closure type.
1068
    /// Satisfied (or refuted) once we know the closure's kind.
1069
    ClosureKind(DefId, ClosureSubsts<'tcx>, ClosureKind),
N
Niko Matsakis 已提交
1070 1071 1072

    /// `T1 <: T2`
    Subtype(PolySubtypePredicate<'tcx>),
1073 1074 1075

    /// Constant initializer must evaluate successfully.
    ConstEvaluatable(DefId, &'tcx Substs<'tcx>),
1076 1077
}

1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093
/// The crate outlives map is computed during typeck and contains the
/// outlives of every item in the local crate. You should not use it
/// directly, because to do so will make your pass dependent on the
/// HIR of every item in the local crate. Instead, use
/// `tcx.inferred_outlives_of()` to get the outlives for a *particular*
/// item.
pub struct CratePredicatesMap<'tcx> {
    /// For each struct with outlive bounds, maps to a vector of the
    /// predicate of its outlive bounds. If an item has no outlives
    /// bounds, it will have no entry.
    pub predicates: FxHashMap<DefId, Lrc<Vec<ty::Predicate<'tcx>>>>,

    /// An empty vector, useful for cloning.
    pub empty_predicate: Lrc<Vec<ty::Predicate<'tcx>>>,
}

1094 1095 1096 1097 1098 1099
impl<'tcx> AsRef<Predicate<'tcx>> for Predicate<'tcx> {
    fn as_ref(&self) -> &Predicate<'tcx> {
        self
    }
}

1100
impl<'a, 'gcx, 'tcx> Predicate<'tcx> {
1101
    /// Performs a substitution suitable for going from a
1102 1103 1104 1105
    /// poly-trait-ref to supertraits that must hold if that
    /// poly-trait-ref holds. This is slightly different from a normal
    /// substitution in terms of what happens with bound regions.  See
    /// lengthy comment below for details.
1106
    pub fn subst_supertrait(&self, tcx: TyCtxt<'a, 'gcx, 'tcx>,
1107 1108 1109 1110 1111 1112 1113 1114
                            trait_ref: &ty::PolyTraitRef<'tcx>)
                            -> ty::Predicate<'tcx>
    {
        // The interaction between HRTB and supertraits is not entirely
        // obvious. Let me walk you (and myself) through an example.
        //
        // Let's start with an easy case. Consider two traits:
        //
1115
        //     trait Foo<'a>: Bar<'a,'a> { }
1116 1117
        //     trait Bar<'b,'c> { }
        //
1118 1119
        // Now, if we have a trait reference `for<'x> T: Foo<'x>`, then
        // we can deduce that `for<'x> T: Bar<'x,'x>`. Basically, if we
1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131
        // knew that `Foo<'x>` (for any 'x) then we also know that
        // `Bar<'x,'x>` (for any 'x). This more-or-less falls out from
        // normal substitution.
        //
        // In terms of why this is sound, the idea is that whenever there
        // is an impl of `T:Foo<'a>`, it must show that `T:Bar<'a,'a>`
        // holds.  So if there is an impl of `T:Foo<'a>` that applies to
        // all `'a`, then we must know that `T:Bar<'a,'a>` holds for all
        // `'a`.
        //
        // Another example to be careful of is this:
        //
1132
        //     trait Foo1<'a>: for<'b> Bar1<'a,'b> { }
1133 1134
        //     trait Bar1<'b,'c> { }
        //
1135 1136
        // Here, if we have `for<'x> T: Foo1<'x>`, then what do we know?
        // The answer is that we know `for<'x,'b> T: Bar1<'x,'b>`. The
1137
        // reason is similar to the previous example: any impl of
1138
        // `T:Foo1<'x>` must show that `for<'b> T: Bar1<'x, 'b>`.  So
1139 1140 1141 1142 1143 1144
        // basically we would want to collapse the bound lifetimes from
        // the input (`trait_ref`) and the supertraits.
        //
        // To achieve this in practice is fairly straightforward. Let's
        // consider the more complicated scenario:
        //
1145 1146
        // - We start out with `for<'x> T: Foo1<'x>`. In this case, `'x`
        //   has a De Bruijn index of 1. We want to produce `for<'x,'b> T: Bar1<'x,'b>`,
1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169
        //   where both `'x` and `'b` would have a DB index of 1.
        //   The substitution from the input trait-ref is therefore going to be
        //   `'a => 'x` (where `'x` has a DB index of 1).
        // - The super-trait-ref is `for<'b> Bar1<'a,'b>`, where `'a` is an
        //   early-bound parameter and `'b' is a late-bound parameter with a
        //   DB index of 1.
        // - If we replace `'a` with `'x` from the input, it too will have
        //   a DB index of 1, and thus we'll have `for<'x,'b> Bar1<'x,'b>`
        //   just as we wanted.
        //
        // There is only one catch. If we just apply the substitution `'a
        // => 'x` to `for<'b> Bar1<'a,'b>`, the substitution code will
        // adjust the DB index because we substituting into a binder (it
        // tries to be so smart...) resulting in `for<'x> for<'b>
        // Bar1<'x,'b>` (we have no syntax for this, so use your
        // imagination). Basically the 'x will have DB index of 2 and 'b
        // will have DB index of 1. Not quite what we want. So we apply
        // the substitution to the *contents* of the trait reference,
        // rather than the trait reference itself (put another way, the
        // substitution code expects equal binding levels in the values
        // from the substitution and the value being substituted into, and
        // this trick achieves that).

1170
        let substs = &trait_ref.skip_binder().substs;
1171
        match *self {
1172 1173 1174 1175 1176 1177 1178 1179 1180 1181
            Predicate::Trait(ref binder) =>
                Predicate::Trait(binder.map_bound(|data| data.subst(tcx, substs))),
            Predicate::Subtype(ref binder) =>
                Predicate::Subtype(binder.map_bound(|data| data.subst(tcx, substs))),
            Predicate::RegionOutlives(ref binder) =>
                Predicate::RegionOutlives(binder.map_bound(|data| data.subst(tcx, substs))),
            Predicate::TypeOutlives(ref binder) =>
                Predicate::TypeOutlives(binder.map_bound(|data| data.subst(tcx, substs))),
            Predicate::Projection(ref binder) =>
                Predicate::Projection(binder.map_bound(|data| data.subst(tcx, substs))),
1182 1183 1184 1185
            Predicate::WellFormed(data) =>
                Predicate::WellFormed(data.subst(tcx, substs)),
            Predicate::ObjectSafe(trait_def_id) =>
                Predicate::ObjectSafe(trait_def_id),
1186 1187
            Predicate::ClosureKind(closure_def_id, closure_substs, kind) =>
                Predicate::ClosureKind(closure_def_id, closure_substs.subst(tcx, substs), kind),
1188 1189
            Predicate::ConstEvaluatable(def_id, const_substs) =>
                Predicate::ConstEvaluatable(def_id, const_substs.subst(tcx, substs)),
1190 1191 1192 1193
        }
    }
}

1194
#[derive(Clone, Copy, PartialEq, Eq, Hash, RustcEncodable, RustcDecodable)]
1195
pub struct TraitPredicate<'tcx> {
1196
    pub trait_ref: TraitRef<'tcx>
1197
}
1198

1199 1200 1201
pub type PolyTraitPredicate<'tcx> = ty::Binder<TraitPredicate<'tcx>>;

impl<'tcx> TraitPredicate<'tcx> {
N
Niko Matsakis 已提交
1202
    pub fn def_id(&self) -> DefId {
1203 1204 1205
        self.trait_ref.def_id
    }

1206
    pub fn input_types<'a>(&'a self) -> impl DoubleEndedIterator<Item=Ty<'tcx>> + 'a {
1207
        self.trait_ref.input_types()
1208 1209 1210 1211 1212 1213 1214 1215
    }

    pub fn self_ty(&self) -> Ty<'tcx> {
        self.trait_ref.self_ty()
    }
}

impl<'tcx> PolyTraitPredicate<'tcx> {
N
Niko Matsakis 已提交
1216
    pub fn def_id(&self) -> DefId {
1217
        // ok to skip binder since trait def-id does not care about regions
1218
        self.skip_binder().def_id()
1219
    }
1220 1221
}

1222
#[derive(Clone, Copy, PartialEq, Eq, PartialOrd, Ord, Hash, Debug, RustcEncodable, RustcDecodable)]
1223
pub struct OutlivesPredicate<A,B>(pub A, pub B); // `A: B`
1224
pub type PolyOutlivesPredicate<A,B> = ty::Binder<OutlivesPredicate<A,B>>;
S
scalexm 已提交
1225 1226 1227 1228 1229 1230
pub type RegionOutlivesPredicate<'tcx> = OutlivesPredicate<ty::Region<'tcx>,
                                                           ty::Region<'tcx>>;
pub type TypeOutlivesPredicate<'tcx> = OutlivesPredicate<Ty<'tcx>,
                                                         ty::Region<'tcx>>;
pub type PolyRegionOutlivesPredicate<'tcx> = ty::Binder<RegionOutlivesPredicate<'tcx>>;
pub type PolyTypeOutlivesPredicate<'tcx> = ty::Binder<TypeOutlivesPredicate<'tcx>>;
1231

1232
#[derive(Clone, Copy, PartialEq, Eq, Hash, Debug, RustcEncodable, RustcDecodable)]
N
Niko Matsakis 已提交
1233 1234 1235 1236 1237 1238 1239
pub struct SubtypePredicate<'tcx> {
    pub a_is_expected: bool,
    pub a: Ty<'tcx>,
    pub b: Ty<'tcx>
}
pub type PolySubtypePredicate<'tcx> = ty::Binder<SubtypePredicate<'tcx>>;

1240 1241 1242
/// This kind of predicate has no *direct* correspondent in the
/// syntax, but it roughly corresponds to the syntactic forms:
///
A
Alexander Regueiro 已提交
1243
/// 1. `T: TraitRef<..., Item=Type>`
1244 1245 1246
/// 2. `<T as TraitRef<...>>::Item == Type` (NYI)
///
/// In particular, form #1 is "desugared" to the combination of a
A
Alexander Regueiro 已提交
1247
/// normal trait predicate (`T: TraitRef<...>`) and one of these
1248
/// predicates. Form #2 is a broader form in that it also permits
1249 1250
/// equality between arbitrary types. Processing an instance of
/// Form #2 eventually yields one of these `ProjectionPredicate`
1251
/// instances to normalize the LHS.
1252
#[derive(Copy, Clone, PartialEq, Eq, Hash, RustcEncodable, RustcDecodable)]
1253 1254 1255 1256 1257 1258 1259
pub struct ProjectionPredicate<'tcx> {
    pub projection_ty: ProjectionTy<'tcx>,
    pub ty: Ty<'tcx>,
}

pub type PolyProjectionPredicate<'tcx> = Binder<ProjectionPredicate<'tcx>>;

1260
impl<'tcx> PolyProjectionPredicate<'tcx> {
1261
    /// Returns the `DefId` of the associated item being projected.
1262 1263 1264 1265
    pub fn item_def_id(&self) -> DefId {
        self.skip_binder().projection_ty.item_def_id
    }

1266
    pub fn to_poly_trait_ref(&self, tcx: TyCtxt<'_, '_, '_>) -> PolyTraitRef<'tcx> {
1267 1268
        // Note: unlike with `TraitRef::to_poly_trait_ref()`,
        // `self.0.trait_ref` is permitted to have escaping regions.
1269 1270 1271
        // This is because here `self` has a `Binder` and so does our
        // return value, so we are preserving the number of binding
        // levels.
1272
        self.map_bound(|predicate| predicate.projection_ty.trait_ref(tcx))
1273
    }
1274 1275

    pub fn ty(&self) -> Binder<Ty<'tcx>> {
1276 1277 1278
        self.map_bound(|predicate| predicate.ty)
    }

1279
    /// The `DefId` of the `TraitItem` for the associated type.
1280
    ///
1281 1282
    /// Note that this is not the `DefId` of the `TraitRef` containing this
    /// associated type, which is in `tcx.associated_item(projection_def_id()).container`.
1283
    pub fn projection_def_id(&self) -> DefId {
1284
        // okay to skip binder since trait def-id does not care about regions
1285
        self.skip_binder().projection_ty.item_def_id
1286
    }
1287 1288
}

1289 1290 1291 1292
pub trait ToPolyTraitRef<'tcx> {
    fn to_poly_trait_ref(&self) -> PolyTraitRef<'tcx>;
}

1293
impl<'tcx> ToPolyTraitRef<'tcx> for TraitRef<'tcx> {
1294
    fn to_poly_trait_ref(&self) -> PolyTraitRef<'tcx> {
1295
        ty::Binder::dummy(self.clone())
1296 1297 1298 1299 1300
    }
}

impl<'tcx> ToPolyTraitRef<'tcx> for PolyTraitPredicate<'tcx> {
    fn to_poly_trait_ref(&self) -> PolyTraitRef<'tcx> {
1301
        self.map_bound_ref(|trait_pred| trait_pred.trait_ref)
1302 1303 1304
    }
}

1305 1306
pub trait ToPredicate<'tcx> {
    fn to_predicate(&self) -> Predicate<'tcx>;
1307 1308
}

1309 1310
impl<'tcx> ToPredicate<'tcx> for TraitRef<'tcx> {
    fn to_predicate(&self) -> Predicate<'tcx> {
1311
        ty::Predicate::Trait(ty::Binder::dummy(ty::TraitPredicate {
1312 1313 1314 1315 1316
            trait_ref: self.clone()
        }))
    }
}

1317 1318
impl<'tcx> ToPredicate<'tcx> for PolyTraitRef<'tcx> {
    fn to_predicate(&self) -> Predicate<'tcx> {
1319
        ty::Predicate::Trait(self.to_poly_trait_predicate())
1320 1321 1322
    }
}

1323
impl<'tcx> ToPredicate<'tcx> for PolyRegionOutlivesPredicate<'tcx> {
1324
    fn to_predicate(&self) -> Predicate<'tcx> {
1325 1326 1327 1328
        Predicate::RegionOutlives(self.clone())
    }
}

1329 1330
impl<'tcx> ToPredicate<'tcx> for PolyTypeOutlivesPredicate<'tcx> {
    fn to_predicate(&self) -> Predicate<'tcx> {
1331 1332
        Predicate::TypeOutlives(self.clone())
    }
1333 1334
}

1335 1336
impl<'tcx> ToPredicate<'tcx> for PolyProjectionPredicate<'tcx> {
    fn to_predicate(&self) -> Predicate<'tcx> {
1337 1338 1339 1340
        Predicate::Projection(self.clone())
    }
}

1341
impl<'tcx> Predicate<'tcx> {
1342 1343 1344 1345 1346 1347
    /// Iterates over the types in this predicate. Note that in all
    /// cases this is skipping over a binder, so late-bound regions
    /// with depth 0 are bound by the predicate.
    pub fn walk_tys(&self) -> IntoIter<Ty<'tcx>> {
        let vec: Vec<_> = match *self {
            ty::Predicate::Trait(ref data) => {
1348
                data.skip_binder().input_types().collect()
1349
            }
1350 1351
            ty::Predicate::Subtype(binder) => {
                let SubtypePredicate { a, b, a_is_expected: _ } = binder.skip_binder();
N
Niko Matsakis 已提交
1352 1353
                vec![a, b]
            }
1354 1355
            ty::Predicate::TypeOutlives(binder) => {
                vec![binder.skip_binder().0]
1356 1357 1358 1359 1360
            }
            ty::Predicate::RegionOutlives(..) => {
                vec![]
            }
            ty::Predicate::Projection(ref data) => {
1361 1362
                let inner = data.skip_binder();
                inner.projection_ty.substs.types().chain(Some(inner.ty)).collect()
1363
            }
1364 1365 1366 1367 1368 1369
            ty::Predicate::WellFormed(data) => {
                vec![data]
            }
            ty::Predicate::ObjectSafe(_trait_def_id) => {
                vec![]
            }
1370 1371
            ty::Predicate::ClosureKind(_closure_def_id, closure_substs, _kind) => {
                closure_substs.substs.types().collect()
1372
            }
1373 1374 1375
            ty::Predicate::ConstEvaluatable(_, substs) => {
                substs.types().collect()
            }
1376 1377
        };

L
ljedrz 已提交
1378
        // FIXME: The only reason to collect into a vector here is that I was
1379 1380 1381 1382 1383 1384 1385
        // too lazy to make the full (somewhat complicated) iterator
        // type that would be needed here. But I wanted this fn to
        // return an iterator conceptually, rather than a `Vec`, so as
        // to be closer to `Ty::walk`.
        vec.into_iter()
    }

1386
    pub fn to_opt_poly_trait_ref(&self) -> Option<PolyTraitRef<'tcx>> {
1387 1388
        match *self {
            Predicate::Trait(ref t) => {
1389
                Some(t.to_poly_trait_ref())
1390
            }
1391
            Predicate::Projection(..) |
N
Niko Matsakis 已提交
1392
            Predicate::Subtype(..) |
1393
            Predicate::RegionOutlives(..) |
1394 1395
            Predicate::WellFormed(..) |
            Predicate::ObjectSafe(..) |
1396
            Predicate::ClosureKind(..) |
1397 1398
            Predicate::TypeOutlives(..) |
            Predicate::ConstEvaluatable(..) => {
1399 1400
                None
            }
1401 1402
        }
    }
1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420

    pub fn to_opt_type_outlives(&self) -> Option<PolyTypeOutlivesPredicate<'tcx>> {
        match *self {
            Predicate::TypeOutlives(data) => {
                Some(data)
            }
            Predicate::Trait(..) |
            Predicate::Projection(..) |
            Predicate::Subtype(..) |
            Predicate::RegionOutlives(..) |
            Predicate::WellFormed(..) |
            Predicate::ObjectSafe(..) |
            Predicate::ClosureKind(..) |
            Predicate::ConstEvaluatable(..) => {
                None
            }
        }
    }
1421 1422
}

S
Steve Klabnik 已提交
1423 1424
/// Represents the bounds declared on a particular set of type
/// parameters.  Should eventually be generalized into a flag list of
1425 1426 1427 1428 1429
/// where clauses.  You can obtain a `InstantiatedPredicates` list from a
/// `GenericPredicates` by using the `instantiate` method. Note that this method
/// reflects an important semantic invariant of `InstantiatedPredicates`: while
/// the `GenericPredicates` are expressed in terms of the bound type
/// parameters of the impl/trait/whatever, an `InstantiatedPredicates` instance
S
Steve Klabnik 已提交
1430 1431 1432 1433 1434 1435 1436 1437
/// represented a set of bounds for some particular instantiation,
/// meaning that the generic parameters have been substituted with
/// their values.
///
/// Example:
///
///     struct Foo<T,U:Bar<T>> { ... }
///
1438
/// Here, the `GenericPredicates` for `Foo` would contain a list of bounds like
J
Jorge Aparicio 已提交
1439
/// `[[], [U:Bar<T>]]`.  Now if there were some particular reference
1440 1441
/// like `Foo<isize,usize>`, then the `InstantiatedPredicates` would be `[[],
/// [usize:Bar<isize>]]`.
1442
#[derive(Clone)]
1443
pub struct InstantiatedPredicates<'tcx> {
1444
    pub predicates: Vec<Predicate<'tcx>>,
1445 1446
}

1447 1448
impl<'tcx> InstantiatedPredicates<'tcx> {
    pub fn empty() -> InstantiatedPredicates<'tcx> {
1449
        InstantiatedPredicates { predicates: vec![] }
1450 1451
    }

1452 1453
    pub fn is_empty(&self) -> bool {
        self.predicates.is_empty()
1454
    }
1455 1456
}

N
Niko Matsakis 已提交
1457 1458 1459
/// "Universes" are used during type- and trait-checking in the
/// presence of `for<..>` binders to control what sets of names are
/// visible. Universes are arranged into a tree: the root universe
1460 1461 1462 1463
/// contains names that are always visible. Each child then adds a new
/// set of names that are visible, in addition to those of its parent.
/// We say that the child universe "extends" the parent universe with
/// new names.
N
Niko Matsakis 已提交
1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474
///
/// To make this more concrete, consider this program:
///
/// ```
/// struct Foo { }
/// fn bar<T>(x: T) {
///   let y: for<'a> fn(&'a u8, Foo) = ...;
/// }
/// ```
///
/// The struct name `Foo` is in the root universe U0. But the type
1475 1476 1477 1478 1479
/// parameter `T`, introduced on `bar`, is in an extended universe U1
/// -- i.e., within `bar`, we can name both `T` and `Foo`, but outside
/// of `bar`, we cannot name `T`. Then, within the type of `y`, the
/// region `'a` is in a universe U2 that extends U1, because we can
/// name it inside the fn type but not outside.
N
Niko Matsakis 已提交
1480
///
1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491
/// Universes are used to do type- and trait-checking around these
/// "forall" binders (also called **universal quantification**). The
/// idea is that when, in the body of `bar`, we refer to `T` as a
/// type, we aren't referring to any type in particular, but rather a
/// kind of "fresh" type that is distinct from all other types we have
/// actually declared. This is called a **placeholder** type, and we
/// use universes to talk about this. In other words, a type name in
/// universe 0 always corresponds to some "ground" type that the user
/// declared, but a type name in a non-zero universe is a placeholder
/// type -- an idealized representative of "types in general" that we
/// use for checking generic functions.
1492 1493 1494 1495 1496
newtype_index! {
    pub struct UniverseIndex {
        DEBUG_FORMAT = "U{}",
    }
}
1497 1498

impl_stable_hash_for!(struct UniverseIndex { private });
N
Niko Matsakis 已提交
1499 1500

impl UniverseIndex {
1501
    pub const ROOT: UniverseIndex = UniverseIndex::from_u32_const(0);
N
Niko Matsakis 已提交
1502

1503 1504 1505 1506
    /// Returns the "next" universe index in order -- this new index
    /// is considered to extend all previous universes. This
    /// corresponds to entering a `forall` quantifier.  So, for
    /// example, suppose we have this type in universe `U`:
N
Niko Matsakis 已提交
1507 1508 1509 1510 1511 1512
    ///
    /// ```
    /// for<'a> fn(&'a u32)
    /// ```
    ///
    /// Once we "enter" into this `for<'a>` quantifier, we are in a
1513 1514 1515 1516
    /// new universe that extends `U` -- in this new universe, we can
    /// name the region `'a`, but that region was not nameable from
    /// `U` because it was not in scope there.
    pub fn next_universe(self) -> UniverseIndex {
1517
        UniverseIndex::from_u32(self.private.checked_add(1).unwrap())
1518 1519
    }

1520
    /// Returns `true` if `self` can name a name from `other` -- in other words,
1521
    /// if the set of names in `self` is a superset of those in
N
Niko Matsakis 已提交
1522
    /// `other` (`self >= other`).
1523 1524
    pub fn can_name(self, other: UniverseIndex) -> bool {
        self.private >= other.private
N
Niko Matsakis 已提交
1525
    }
N
Niko Matsakis 已提交
1526

1527
    /// Returns `true` if `self` cannot name some names from `other` -- in other
N
Niko Matsakis 已提交
1528 1529 1530 1531 1532
    /// words, if the set of names in `self` is a strict subset of
    /// those in `other` (`self < other`).
    pub fn cannot_name(self, other: UniverseIndex) -> bool {
        self.private < other.private
    }
N
Niko Matsakis 已提交
1533 1534
}

1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546
/// The "placeholder index" fully defines a placeholder region.
/// Placeholder regions are identified by both a **universe** as well
/// as a "bound-region" within that universe. The `bound_region` is
/// basically a name -- distinct bound regions within the same
/// universe are just two regions with an unknown relationship to one
/// another.
#[derive(Copy, Clone, Debug, PartialEq, Eq, Hash, RustcEncodable, RustcDecodable, PartialOrd, Ord)]
pub struct Placeholder {
    pub universe: UniverseIndex,
    pub name: BoundRegion,
}

1547 1548
impl_stable_hash_for!(struct Placeholder { universe, name });

1549
/// When type checking, we use the `ParamEnv` to track
1550 1551 1552
/// details about the set of where-clauses that are in scope at this
/// particular point.
#[derive(Copy, Clone, Debug, PartialEq, Eq, Hash)]
1553
pub struct ParamEnv<'tcx> {
1554 1555
    /// Obligations that the caller must satisfy. This is basically
    /// the set of bounds on the in-scope type parameters, translated
1556
    /// into Obligations, and elaborated and normalized.
V
varkor 已提交
1557
    pub caller_bounds: &'tcx List<ty::Predicate<'tcx>>,
1558

I
Irina Popa 已提交
1559
    /// Typically, this is `Reveal::UserFacing`, but during codegen we
1560 1561 1562
    /// want `Reveal::All` -- note that this is always paired with an
    /// empty environment. To get that, use `ParamEnv::reveal()`.
    pub reveal: traits::Reveal,
1563
}
1564

1565
impl<'tcx> ParamEnv<'tcx> {
1566 1567 1568 1569 1570
    /// Construct a trait environment suitable for contexts where
    /// there are no where clauses in scope. Hidden types (like `impl
    /// Trait`) are left hidden, so this is suitable for ordinary
    /// type-checking.
    pub fn empty() -> Self {
V
varkor 已提交
1571
        Self::new(List::empty(), Reveal::UserFacing)
1572 1573 1574 1575 1576
    }

    /// Construct a trait environment with no where clauses in scope
    /// where the values of all `impl Trait` and other hidden types
    /// are revealed. This is suitable for monomorphized, post-typeck
I
Irina Popa 已提交
1577
    /// environments like codegen or doing optimizations.
1578
    ///
1579
    /// N.B. If you want to have predicates in scope, use `ParamEnv::new`,
1580 1581
    /// or invoke `param_env.with_reveal_all()`.
    pub fn reveal_all() -> Self {
V
varkor 已提交
1582
        Self::new(List::empty(), Reveal::All)
1583 1584 1585
    }

    /// Construct a trait environment with the given set of predicates.
V
varkor 已提交
1586
    pub fn new(caller_bounds: &'tcx List<ty::Predicate<'tcx>>,
S
Sean Griffin 已提交
1587
               reveal: Reveal)
1588
               -> Self {
S
Sean Griffin 已提交
1589
        ty::ParamEnv { caller_bounds, reveal }
1590 1591 1592 1593 1594
    }

    /// Returns a new parameter environment with the same clauses, but
    /// which "reveals" the true results of projections in all cases
    /// (even for associated types that are specializable).  This is
I
Irina Popa 已提交
1595
    /// the desired behavior during codegen and certain other special
1596 1597 1598 1599 1600 1601 1602 1603
    /// contexts; normally though we want to use `Reveal::UserFacing`,
    /// which is the default.
    pub fn with_reveal_all(self) -> Self {
        ty::ParamEnv { reveal: Reveal::All, ..self }
    }

    /// Returns this same environment but with no caller bounds.
    pub fn without_caller_bounds(self) -> Self {
V
varkor 已提交
1604
        ty::ParamEnv { caller_bounds: List::empty(), ..self }
1605 1606
    }

1607
    /// Creates a suitable environment in which to perform trait
1608 1609 1610 1611 1612
    /// queries on the given value. When type-checking, this is simply
    /// the pair of the environment plus value. But when reveal is set to
    /// All, then if `value` does not reference any type parameters, we will
    /// pair it with the empty environment. This improves caching and is generally
    /// invisible.
1613
    ///
1614 1615
    /// NB: We preserve the environment when type-checking because it
    /// is possible for the user to have wacky where-clauses like
1616
    /// `where Box<u32>: Copy`, which are clearly never
1617 1618
    /// satisfiable. We generally want to behave as if they were true,
    /// although the surrounding function is never reachable.
1619
    pub fn and<T: TypeFoldable<'tcx>>(self, value: T) -> ParamEnvAnd<'tcx, T> {
1620 1621 1622 1623 1624 1625
        match self.reveal {
            Reveal::UserFacing => {
                ParamEnvAnd {
                    param_env: self,
                    value,
                }
1626
            }
1627 1628

            Reveal::All => {
1629 1630 1631 1632 1633
                if value.has_skol()
                    || value.needs_infer()
                    || value.has_param_types()
                    || value.has_self_ty()
                {
1634 1635 1636 1637 1638 1639 1640 1641 1642 1643
                    ParamEnvAnd {
                        param_env: self,
                        value,
                    }
                } else {
                    ParamEnvAnd {
                        param_env: self.without_caller_bounds(),
                        value,
                    }
                }
1644
            }
1645 1646 1647
        }
    }
}
1648

1649
#[derive(Copy, Clone, Debug, PartialEq, Eq, Hash)]
1650 1651
pub struct ParamEnvAnd<'tcx, T> {
    pub param_env: ParamEnv<'tcx>,
1652
    pub value: T,
1653 1654
}

1655 1656
impl<'tcx, T> ParamEnvAnd<'tcx, T> {
    pub fn into_parts(self) -> (ParamEnv<'tcx>, T) {
1657
        (self.param_env, self.value)
1658
    }
1659 1660
}

1661 1662
impl<'a, 'gcx, T> HashStable<StableHashingContext<'a>> for ParamEnvAnd<'gcx, T>
    where T: HashStable<StableHashingContext<'a>>
1663 1664
{
    fn hash_stable<W: StableHasherResult>(&self,
1665
                                          hcx: &mut StableHashingContext<'a>,
1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676
                                          hasher: &mut StableHasher<W>) {
        let ParamEnvAnd {
            ref param_env,
            ref value
        } = *self;

        param_env.hash_stable(hcx, hasher);
        value.hash_stable(hcx, hasher);
    }
}

1677 1678 1679 1680 1681 1682
#[derive(Copy, Clone, Debug)]
pub struct Destructor {
    /// The def-id of the destructor method
    pub did: DefId,
}

1683
bitflags! {
1684 1685 1686 1687 1688 1689 1690
    pub struct AdtFlags: u32 {
        const NO_ADT_FLAGS        = 0;
        const IS_ENUM             = 1 << 0;
        const IS_PHANTOM_DATA     = 1 << 1;
        const IS_FUNDAMENTAL      = 1 << 2;
        const IS_UNION            = 1 << 3;
        const IS_BOX              = 1 << 4;
1691 1692 1693 1694
        /// Indicates whether the type is an `Arc`.
        const IS_ARC              = 1 << 5;
        /// Indicates whether the type is an `Rc`.
        const IS_RC               = 1 << 6;
1695 1696
        /// Indicates whether the variant list of this ADT is `#[non_exhaustive]`.
        /// (i.e., this flag is never set unless this ADT is an enum).
1697
        const IS_VARIANT_LIST_NON_EXHAUSTIVE   = 1 << 7;
1698 1699 1700 1701 1702 1703 1704 1705
    }
}

bitflags! {
    pub struct VariantFlags: u32 {
        const NO_VARIANT_FLAGS        = 0;
        /// Indicates whether the field list of this variant is `#[non_exhaustive]`.
        const IS_FIELD_LIST_NON_EXHAUSTIVE = 1 << 0;
1706 1707 1708
    }
}

1709
#[derive(Debug)]
1710
pub struct VariantDef {
1711 1712
    /// The variant's DefId. If this is a tuple-like struct,
    /// this is the DefId of the struct's ctor.
1713 1714
    pub did: DefId,
    pub name: Name, // struct's name if this is a struct
1715
    pub discr: VariantDiscr,
1716
    pub fields: Vec<FieldDef>,
1717
    pub ctor_kind: CtorKind,
1718
    flags: VariantFlags,
1719 1720
}

1721 1722 1723 1724 1725 1726
impl<'a, 'gcx, 'tcx> VariantDef {
    /// Create a new `VariantDef`.
    ///
    /// - `did` is the DefId used for the variant - for tuple-structs, it is the constructor DefId,
    /// and for everything else, it is the variant DefId.
    /// - `attribute_def_id` is the DefId that has the variant's attributes.
1727 1728 1729 1730 1731 1732 1733 1734 1735
    /// this is the struct DefId for structs, and the variant DefId for variants.
    ///
    /// Note that we *could* use the constructor DefId, because the constructor attributes
    /// redirect to the base attributes, but compiling a small crate requires
    /// loading the AdtDefs for all the structs in the universe (e.g. coherence for any
    /// built-in trait), and we do not want to load attributes twice.
    ///
    /// If someone speeds up attribute loading to not be a performance concern, they can
    /// remove this hack and use the constructor DefId everywhere.
1736 1737 1738 1739 1740 1741
    pub fn new(tcx: TyCtxt<'a, 'gcx, 'tcx>,
               did: DefId,
               name: Name,
               discr: VariantDiscr,
               fields: Vec<FieldDef>,
               adt_kind: AdtKind,
1742 1743
               ctor_kind: CtorKind,
               attribute_def_id: DefId)
1744 1745
               -> Self
    {
1746 1747
        debug!("VariantDef::new({:?}, {:?}, {:?}, {:?}, {:?}, {:?}, {:?})", did, name, discr,
               fields, adt_kind, ctor_kind, attribute_def_id);
1748
        let mut flags = VariantFlags::NO_VARIANT_FLAGS;
1749
        if adt_kind == AdtKind::Struct && tcx.has_attr(attribute_def_id, "non_exhaustive") {
1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766
            debug!("found non-exhaustive field list for {:?}", did);
            flags = flags | VariantFlags::IS_FIELD_LIST_NON_EXHAUSTIVE;
        }
        VariantDef {
            did,
            name,
            discr,
            fields,
            ctor_kind,
            flags
        }
    }

    #[inline]
    pub fn is_field_list_non_exhaustive(&self) -> bool {
        self.flags.intersects(VariantFlags::IS_FIELD_LIST_NON_EXHAUSTIVE)
    }
1767 1768
}

1769 1770 1771 1772 1773 1774 1775 1776 1777
impl_stable_hash_for!(struct VariantDef {
    did,
    name,
    discr,
    fields,
    ctor_kind,
    flags
});

1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790
#[derive(Copy, Clone, Debug, PartialEq, Eq, RustcEncodable, RustcDecodable)]
pub enum VariantDiscr {
    /// Explicit value for this variant, i.e. `X = 123`.
    /// The `DefId` corresponds to the embedded constant.
    Explicit(DefId),

    /// The previous variant's discriminant plus one.
    /// For efficiency reasons, the distance from the
    /// last `Explicit` discriminant is being stored,
    /// or `0` for the first variant, if it has none.
    Relative(usize),
}

1791
#[derive(Debug)]
1792
pub struct FieldDef {
1793
    pub did: DefId,
1794
    pub ident: Ident,
1795
    pub vis: Visibility,
1796 1797
}

A
Ariel Ben-Yehuda 已提交
1798 1799 1800 1801
/// The definition of an abstract data type - a struct or enum.
///
/// These are all interned (by intern_adt_def) into the adt_defs
/// table.
1802
pub struct AdtDef {
1803
    pub did: DefId,
1804
    pub variants: Vec<VariantDef>,
1805
    flags: AdtFlags,
1806
    pub repr: ReprOptions,
1807 1808
}

1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822
impl PartialOrd for AdtDef {
    fn partial_cmp(&self, other: &AdtDef) -> Option<Ordering> {
        Some(self.cmp(&other))
    }
}

/// There should be only one AdtDef for each `did`, therefore
/// it is fine to implement `Ord` only based on `did`.
impl Ord for AdtDef {
    fn cmp(&self, other: &AdtDef) -> Ordering {
        self.did.cmp(&other.did)
    }
}

1823 1824
impl PartialEq for AdtDef {
    // AdtDef are always interned and this is part of TyS equality
1825
    #[inline]
1826
    fn eq(&self, other: &Self) -> bool { ptr::eq(self, other) }
1827 1828
}

1829
impl Eq for AdtDef {}
1830

1831
impl Hash for AdtDef {
1832 1833
    #[inline]
    fn hash<H: Hasher>(&self, s: &mut H) {
1834
        (self as *const AdtDef).hash(s)
1835 1836 1837
    }
}

1838
impl<'tcx> serialize::UseSpecializedEncodable for &'tcx AdtDef {
1839
    fn default_encode<S: Encoder>(&self, s: &mut S) -> Result<(), S::Error> {
1840 1841 1842 1843
        self.did.encode(s)
    }
}

1844
impl<'tcx> serialize::UseSpecializedDecodable for &'tcx AdtDef {}
1845

1846

1847
impl<'a> HashStable<StableHashingContext<'a>> for AdtDef {
1848
    fn hash_stable<W: StableHasherResult>(&self,
1849
                                          hcx: &mut StableHashingContext<'a>,
1850
                                          hasher: &mut StableHasher<W>) {
W
Wesley Wiser 已提交
1851
        thread_local! {
1852
            static CACHE: RefCell<FxHashMap<usize, Fingerprint>> = Default::default();
W
Wesley Wiser 已提交
1853
        }
1854

W
Wesley Wiser 已提交
1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875
        let hash: Fingerprint = CACHE.with(|cache| {
            let addr = self as *const AdtDef as usize;
            *cache.borrow_mut().entry(addr).or_insert_with(|| {
                let ty::AdtDef {
                    did,
                    ref variants,
                    ref flags,
                    ref repr,
                } = *self;

                let mut hasher = StableHasher::new();
                did.hash_stable(hcx, &mut hasher);
                variants.hash_stable(hcx, &mut hasher);
                flags.hash_stable(hcx, &mut hasher);
                repr.hash_stable(hcx, &mut hasher);

                hasher.finish()
           })
        });

        hash.hash_stable(hcx, hasher);
1876 1877 1878
    }
}

1879
#[derive(Copy, Clone, Debug, Eq, PartialEq, Hash)]
1880
pub enum AdtKind { Struct, Union, Enum }
1881

1882 1883 1884 1885 1886 1887 1888 1889 1890 1891
impl Into<DataTypeKind> for AdtKind {
    fn into(self) -> DataTypeKind {
        match self {
            AdtKind::Struct => DataTypeKind::Struct,
            AdtKind::Union => DataTypeKind::Union,
            AdtKind::Enum => DataTypeKind::Enum,
        }
    }
}

1892 1893
bitflags! {
    #[derive(RustcEncodable, RustcDecodable, Default)]
1894 1895
    pub struct ReprFlags: u8 {
        const IS_C               = 1 << 0;
1896 1897
        const IS_SIMD            = 1 << 1;
        const IS_TRANSPARENT     = 1 << 2;
1898
        // Internal only for now. If true, don't reorder fields.
1899
        const IS_LINEAR          = 1 << 3;
1900 1901 1902 1903

        // Any of these flags being set prevent field reordering optimisation.
        const IS_UNOPTIMISABLE   = ReprFlags::IS_C.bits |
                                   ReprFlags::IS_SIMD.bits |
1904
                                   ReprFlags::IS_LINEAR.bits;
1905 1906 1907 1908 1909 1910 1911 1912 1913
    }
}

impl_stable_hash_for!(struct ReprFlags {
    bits
});



1914
/// Represents the repr options provided by the user,
1915
#[derive(Copy, Clone, Debug, Eq, PartialEq, RustcEncodable, RustcDecodable, Default)]
1916 1917
pub struct ReprOptions {
    pub int: Option<attr::IntType>,
1918
    pub align: u32,
1919
    pub pack: u32,
1920
    pub flags: ReprFlags,
1921 1922
}

1923
impl_stable_hash_for!(struct ReprOptions {
1924
    align,
1925
    pack,
1926
    int,
1927
    flags
1928 1929
});

1930
impl ReprOptions {
1931
    pub fn new(tcx: TyCtxt<'_, '_, '_>, did: DefId) -> ReprOptions {
1932 1933
        let mut flags = ReprFlags::empty();
        let mut size = None;
1934
        let mut max_align = 0;
1935
        let mut min_pack = 0;
1936
        for attr in tcx.get_attrs(did).iter() {
C
csmoe 已提交
1937
            for r in attr::find_repr_attrs(&tcx.sess.parse_sess, attr) {
1938
                flags.insert(match r {
1939
                    attr::ReprC => ReprFlags::IS_C,
1940 1941 1942 1943 1944 1945 1946 1947
                    attr::ReprPacked(pack) => {
                        min_pack = if min_pack > 0 {
                            cmp::min(pack, min_pack)
                        } else {
                            pack
                        };
                        ReprFlags::empty()
                    },
R
Robin Kruppe 已提交
1948
                    attr::ReprTransparent => ReprFlags::IS_TRANSPARENT,
1949 1950 1951 1952 1953
                    attr::ReprSimd => ReprFlags::IS_SIMD,
                    attr::ReprInt(i) => {
                        size = Some(i);
                        ReprFlags::empty()
                    },
1954 1955 1956 1957
                    attr::ReprAlign(align) => {
                        max_align = cmp::max(align, max_align);
                        ReprFlags::empty()
                    },
1958
                });
1959 1960
            }
        }
1961

1962
        // This is here instead of layout because the choice must make it into metadata.
1963 1964 1965
        if !tcx.consider_optimizing(|| format!("Reorder fields of {:?}", tcx.item_path_str(did))) {
            flags.insert(ReprFlags::IS_LINEAR);
        }
1966
        ReprOptions { int: size, align: max_align, pack: min_pack, flags: flags }
1967
    }
1968

1969 1970 1971 1972 1973
    #[inline]
    pub fn simd(&self) -> bool { self.flags.contains(ReprFlags::IS_SIMD) }
    #[inline]
    pub fn c(&self) -> bool { self.flags.contains(ReprFlags::IS_C) }
    #[inline]
1974
    pub fn packed(&self) -> bool { self.pack > 0 }
1975
    #[inline]
R
Robin Kruppe 已提交
1976 1977
    pub fn transparent(&self) -> bool { self.flags.contains(ReprFlags::IS_TRANSPARENT) }
    #[inline]
1978 1979
    pub fn linear(&self) -> bool { self.flags.contains(ReprFlags::IS_LINEAR) }

1980
    pub fn discr_type(&self) -> attr::IntType {
1981
        self.int.unwrap_or(attr::SignedInt(ast::IntTy::Isize))
1982
    }
1983

1984
    /// Returns `true` if this `#[repr()]` should inhabit "smart enum
1985 1986 1987
    /// layout" optimizations, such as representing `Foo<&T>` as a
    /// single pointer.
    pub fn inhibit_enum_layout_opt(&self) -> bool {
1988
        self.c() || self.int.is_some()
1989
    }
1990

1991
    /// Returns `true` if this `#[repr()]` should inhibit struct field reordering
1992 1993 1994 1995
    /// optimizations, such as with repr(C) or repr(packed(1)).
    pub fn inhibit_struct_field_reordering_opt(&self) -> bool {
        !(self.flags & ReprFlags::IS_UNOPTIMISABLE).is_empty() || (self.pack == 1)
    }
1996 1997
}

1998
impl<'a, 'gcx, 'tcx> AdtDef {
1999
    fn new(tcx: TyCtxt<'_, '_, '_>,
2000
           did: DefId,
A
Ariel Ben-Yehuda 已提交
2001
           kind: AdtKind,
2002 2003
           variants: Vec<VariantDef>,
           repr: ReprOptions) -> Self {
2004
        debug!("AdtDef::new({:?}, {:?}, {:?}, {:?})", did, kind, variants, repr);
A
Ariel Ben-Yehuda 已提交
2005
        let mut flags = AdtFlags::NO_ADT_FLAGS;
A
Ariel Ben-Yehuda 已提交
2006
        let attrs = tcx.get_attrs(did);
2007
        if attr::contains_name(&attrs, "fundamental") {
A
Ariel Ben-Yehuda 已提交
2008
            flags = flags | AdtFlags::IS_FUNDAMENTAL;
2009
        }
2010
        if Some(did) == tcx.lang_items().phantom_data() {
A
Ariel Ben-Yehuda 已提交
2011
            flags = flags | AdtFlags::IS_PHANTOM_DATA;
2012
        }
2013
        if Some(did) == tcx.lang_items().owned_box() {
2014 2015
            flags = flags | AdtFlags::IS_BOX;
        }
2016 2017 2018 2019 2020 2021
        if Some(did) == tcx.lang_items().arc() {
            flags = flags | AdtFlags::IS_ARC;
        }
        if Some(did) == tcx.lang_items().rc() {
            flags = flags | AdtFlags::IS_RC;
        }
2022 2023 2024
        if kind == AdtKind::Enum && tcx.has_attr(did, "non_exhaustive") {
            debug!("found non-exhaustive variant list for {:?}", did);
            flags = flags | AdtFlags::IS_VARIANT_LIST_NON_EXHAUSTIVE;
2025
        }
2026 2027 2028 2029
        match kind {
            AdtKind::Enum => flags = flags | AdtFlags::IS_ENUM,
            AdtKind::Union => flags = flags | AdtFlags::IS_UNION,
            AdtKind::Struct => {}
2030
        }
2031
        AdtDef {
2032 2033 2034 2035
            did,
            variants,
            flags,
            repr,
2036 2037 2038
        }
    }

2039 2040 2041 2042 2043 2044 2045
    #[inline]
    pub fn is_struct(&self) -> bool {
        !self.is_union() && !self.is_enum()
    }

    #[inline]
    pub fn is_union(&self) -> bool {
2046
        self.flags.intersects(AdtFlags::IS_UNION)
2047 2048 2049 2050
    }

    #[inline]
    pub fn is_enum(&self) -> bool {
2051
        self.flags.intersects(AdtFlags::IS_ENUM)
2052 2053
    }

2054
    #[inline]
2055 2056
    pub fn is_variant_list_non_exhaustive(&self) -> bool {
        self.flags.intersects(AdtFlags::IS_VARIANT_LIST_NON_EXHAUSTIVE)
2057 2058
    }

A
Ariel Ben-Yehuda 已提交
2059
    /// Returns the kind of the ADT - Struct or Enum.
2060
    #[inline]
A
Ariel Ben-Yehuda 已提交
2061
    pub fn adt_kind(&self) -> AdtKind {
2062
        if self.is_enum() {
A
Ariel Ben-Yehuda 已提交
2063
            AdtKind::Enum
2064
        } else if self.is_union() {
2065
            AdtKind::Union
2066
        } else {
A
Ariel Ben-Yehuda 已提交
2067
            AdtKind::Struct
2068 2069 2070
        }
    }

2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086
    pub fn descr(&self) -> &'static str {
        match self.adt_kind() {
            AdtKind::Struct => "struct",
            AdtKind::Union => "union",
            AdtKind::Enum => "enum",
        }
    }

    pub fn variant_descr(&self) -> &'static str {
        match self.adt_kind() {
            AdtKind::Struct => "struct",
            AdtKind::Union => "union",
            AdtKind::Enum => "variant",
        }
    }

A
Ariel Ben-Yehuda 已提交
2087 2088
    /// Returns whether this type is #[fundamental] for the purposes
    /// of coherence checking.
2089 2090
    #[inline]
    pub fn is_fundamental(&self) -> bool {
2091
        self.flags.intersects(AdtFlags::IS_FUNDAMENTAL)
2092 2093
    }

2094
    /// Returns `true` if this is PhantomData<T>.
2095 2096
    #[inline]
    pub fn is_phantom_data(&self) -> bool {
2097
        self.flags.intersects(AdtFlags::IS_PHANTOM_DATA)
2098 2099
    }

2100 2101 2102 2103 2104 2105 2106 2107 2108 2109
    /// Returns `true` if this is `Arc<T>`.
    pub fn is_arc(&self) -> bool {
        self.flags.intersects(AdtFlags::IS_ARC)
    }

    /// Returns `true` if this is `Rc<T>`.
    pub fn is_rc(&self) -> bool {
        self.flags.intersects(AdtFlags::IS_RC)
    }

2110
    /// Returns `true` if this is Box<T>.
2111 2112
    #[inline]
    pub fn is_box(&self) -> bool {
2113
        self.flags.intersects(AdtFlags::IS_BOX)
2114 2115
    }

A
Ariel Ben-Yehuda 已提交
2116
    /// Returns whether this type has a destructor.
2117 2118
    pub fn has_dtor(&self, tcx: TyCtxt<'a, 'gcx, 'tcx>) -> bool {
        self.destructor(tcx).is_some()
2119 2120
    }

2121 2122 2123
    /// Asserts this is a struct or union and returns its unique variant.
    pub fn non_enum_variant(&self) -> &VariantDef {
        assert!(self.is_struct() || self.is_union());
2124
        &self.variants[0]
2125 2126 2127
    }

    #[inline]
2128
    pub fn predicates(&self, tcx: TyCtxt<'a, 'gcx, 'tcx>) -> GenericPredicates<'gcx> {
2129
        tcx.predicates_of(self.did)
2130
    }
2131

A
Ariel Ben-Yehuda 已提交
2132 2133
    /// Returns an iterator over all fields contained
    /// by this ADT.
2134
    #[inline]
2135 2136
    pub fn all_fields<'s>(&'s self) -> impl Iterator<Item = &'s FieldDef> {
        self.variants.iter().flat_map(|v| v.fields.iter())
2137 2138 2139 2140 2141 2142 2143
    }

    pub fn is_payloadfree(&self) -> bool {
        !self.variants.is_empty() &&
            self.variants.iter().all(|v| v.fields.is_empty())
    }

2144
    pub fn variant_with_id(&self, vid: DefId) -> &VariantDef {
2145 2146 2147 2148 2149 2150
        self.variants
            .iter()
            .find(|v| v.did == vid)
            .expect("variant_with_id: unknown variant")
    }

N
Niko Matsakis 已提交
2151 2152 2153 2154 2155 2156 2157
    pub fn variant_index_with_id(&self, vid: DefId) -> usize {
        self.variants
            .iter()
            .position(|v| v.did == vid)
            .expect("variant_index_with_id: unknown variant")
    }

2158
    pub fn variant_of_def(&self, def: Def) -> &VariantDef {
2159
        match def {
2160 2161
            Def::Variant(vid) | Def::VariantCtor(vid, ..) => self.variant_with_id(vid),
            Def::Struct(..) | Def::StructCtor(..) | Def::Union(..) |
F
F001 已提交
2162 2163
            Def::TyAlias(..) | Def::AssociatedTy(..) | Def::SelfTy(..) |
            Def::SelfCtor(..) => self.non_enum_variant(),
2164
            _ => bug!("unexpected def {:?} in variant_of_def", def)
2165 2166
        }
    }
2167

O
Oliver Schneider 已提交
2168
    #[inline]
2169
    pub fn eval_explicit_discr(
O
Oliver Schneider 已提交
2170 2171 2172 2173
        &self,
        tcx: TyCtxt<'a, 'gcx, 'tcx>,
        expr_did: DefId,
    ) -> Option<Discr<'tcx>> {
2174
        let param_env = ParamEnv::empty();
O
Oliver Schneider 已提交
2175 2176 2177 2178 2179 2180 2181 2182
        let repr_type = self.repr.discr_type();
        let substs = Substs::identity_for_item(tcx.global_tcx(), expr_did);
        let instance = ty::Instance::new(expr_did, substs);
        let cid = GlobalId {
            instance,
            promoted: None
        };
        match tcx.const_eval(param_env.and(cid)) {
2183 2184
            Ok(val) => {
                // FIXME: Find the right type and use it instead of `val.ty` here
O
Oliver Schneider 已提交
2185
                if let Some(b) = val.assert_bits(tcx.global_tcx(), param_env.and(val.ty)) {
2186 2187 2188 2189 2190 2191 2192
                    trace!("discriminants: {} ({:?})", b, repr_type);
                    Some(Discr {
                        val: b,
                        ty: val.ty,
                    })
                } else {
                    info!("invalid enum discriminant: {:#?}", val);
2193
                    ::mir::interpret::struct_error(
2194
                        tcx.at(tcx.def_span(expr_did)),
2195 2196 2197 2198
                        "constant evaluation of enum discriminant resulted in non-integer",
                    ).emit();
                    None
                }
O
Oliver Schneider 已提交
2199
            }
2200
            Err(ErrorHandled::Reported) => {
O
Oliver Schneider 已提交
2201 2202 2203
                if !expr_did.is_local() {
                    span_bug!(tcx.def_span(expr_did),
                        "variant discriminant evaluation succeeded \
L
ljedrz 已提交
2204
                         in its crate but failed locally");
O
Oliver Schneider 已提交
2205 2206 2207
                }
                None
            }
2208 2209 2210 2211
            Err(ErrorHandled::TooGeneric) => span_bug!(
                tcx.def_span(expr_did),
                "enum discriminant depends on generic arguments",
            ),
O
Oliver Schneider 已提交
2212 2213 2214
        }
    }

2215
    #[inline]
2216 2217 2218 2219
    pub fn discriminants(
        &'a self,
        tcx: TyCtxt<'a, 'gcx, 'tcx>,
    ) -> impl Iterator<Item=Discr<'tcx>> + Captures<'gcx> + 'a {
2220
        let repr_type = self.repr.discr_type();
2221
        let initial = repr_type.initial_discriminant(tcx.global_tcx());
O
Oliver Schneider 已提交
2222
        let mut prev_discr = None::<Discr<'tcx>>;
2223
        self.variants.iter().map(move |v| {
O
Oliver Schneider 已提交
2224
            let mut discr = prev_discr.map_or(initial, |d| d.wrap_incr(tcx));
2225
            if let VariantDiscr::Explicit(expr_did) = v.discr {
O
Oliver Schneider 已提交
2226 2227
                if let Some(new_discr) = self.eval_explicit_discr(tcx, expr_did) {
                    discr = new_discr;
2228 2229 2230 2231 2232 2233 2234 2235
                }
            }
            prev_discr = Some(discr);

            discr
        })
    }

2236 2237 2238 2239 2240 2241 2242 2243
    /// Compute the discriminant value used by a specific variant.
    /// Unlike `discriminants`, this is (amortized) constant-time,
    /// only doing at most one query for evaluating an explicit
    /// discriminant (the last one before the requested variant),
    /// assuming there are no constant-evaluation errors there.
    pub fn discriminant_for_variant(&self,
                                    tcx: TyCtxt<'a, 'gcx, 'tcx>,
                                    variant_index: usize)
O
Oliver Schneider 已提交
2244
                                    -> Discr<'tcx> {
2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258
        let (val, offset) = self.discriminant_def_for_variant(variant_index);
        let explicit_value = val
            .and_then(|expr_did| self.eval_explicit_discr(tcx, expr_did))
            .unwrap_or_else(|| self.repr.discr_type().initial_discriminant(tcx.global_tcx()));
        explicit_value.checked_add(tcx, offset as u128).0
    }

    /// Yields a DefId for the discriminant and an offset to add to it
    /// Alternatively, if there is no explicit discriminant, returns the
    /// inferred discriminant directly
    pub fn discriminant_def_for_variant(
        &self,
        variant_index: usize,
    ) -> (Option<DefId>, usize) {
2259
        let mut explicit_index = variant_index;
2260
        let expr_did;
2261 2262
        loop {
            match self.variants[explicit_index].discr {
2263 2264 2265 2266
                ty::VariantDiscr::Relative(0) => {
                    expr_did = None;
                    break;
                },
2267 2268 2269
                ty::VariantDiscr::Relative(distance) => {
                    explicit_index -= distance;
                }
2270 2271 2272
                ty::VariantDiscr::Explicit(did) => {
                    expr_did = Some(did);
                    break;
2273 2274 2275
                }
            }
        }
2276
        (expr_did, variant_index - explicit_index)
2277 2278
    }

2279
    pub fn destructor(&self, tcx: TyCtxt<'a, 'gcx, 'tcx>) -> Option<Destructor> {
2280
        tcx.adt_destructor(self.did)
2281 2282
    }

2283
    /// Returns a list of types such that `Self: Sized` if and only
2284
    /// if that type is Sized, or `TyErr` if this type is recursive.
A
Ariel Ben-Yehuda 已提交
2285 2286 2287 2288 2289 2290 2291 2292
    ///
    /// Oddly enough, checking that the sized-constraint is Sized is
    /// actually more expressive than checking all members:
    /// the Sized trait is inductive, so an associated type that references
    /// Self would prevent its containing ADT from being Sized.
    ///
    /// Due to normalization being eager, this applies even if
    /// the associated type is behind a pointer, e.g. issue #31299.
2293
    pub fn sized_constraint(&self, tcx: TyCtxt<'a, 'gcx, 'tcx>) -> &'tcx [Ty<'tcx>] {
2294
        match tcx.try_adt_sized_constraint(DUMMY_SP, self.did) {
2295
            Ok(tys) => tys,
2296
            Err(mut bug) => {
2297 2298 2299 2300
                debug!("adt_sized_constraint: {:?} is recursive", self);
                // This should be reported as an error by `check_representable`.
                //
                // Consider the type as Sized in the meanwhile to avoid
2301 2302 2303 2304
                // further errors. Delay our `bug` diagnostic here to get
                // emitted later as well in case we accidentally otherwise don't
                // emit an error.
                bug.delay_as_bug();
2305
                tcx.intern_type_list(&[tcx.types.err])
A
Ariel Ben-Yehuda 已提交
2306
            }
2307 2308
        }
    }
2309

2310 2311 2312 2313
    fn sized_constraint_for_ty(&self,
                               tcx: TyCtxt<'a, 'tcx, 'tcx>,
                               ty: Ty<'tcx>)
                               -> Vec<Ty<'tcx>> {
2314
        let result = match ty.sty {
2315
            Bool | Char | Int(..) | Uint(..) | Float(..) |
V
varkor 已提交
2316 2317
            RawPtr(..) | Ref(..) | FnDef(..) | FnPtr(_) |
            Array(..) | Closure(..) | Generator(..) | Never => {
A
Ariel Ben-Yehuda 已提交
2318
                vec![]
2319 2320
            }

2321
            Str |
V
varkor 已提交
2322 2323
            Dynamic(..) |
            Slice(_) |
V
varkor 已提交
2324
            Foreign(..) |
V
varkor 已提交
2325 2326
            Error |
            GeneratorWitness(..) => {
2327
                // these are never sized - return the target type
A
Ariel Ben-Yehuda 已提交
2328
                vec![ty]
2329 2330
            }

V
varkor 已提交
2331
            Tuple(ref tys) => {
2332 2333
                match tys.last() {
                    None => vec![],
2334
                    Some(ty) => self.sized_constraint_for_ty(tcx, ty)
2335
                }
2336 2337
            }

V
varkor 已提交
2338
            Adt(adt, substs) => {
2339
                // recursive case
2340
                let adt_tys = adt.sized_constraint(tcx);
2341
                debug!("sized_constraint_for_ty({:?}) intermediate = {:?}",
2342 2343
                       ty, adt_tys);
                adt_tys.iter()
L
ljedrz 已提交
2344 2345 2346
                       .map(|ty| ty.subst(tcx, substs))
                       .flat_map(|ty| self.sized_constraint_for_ty(tcx, ty))
                       .collect()
2347 2348
            }

2349
            Projection(..) | Opaque(..) => {
2350 2351
                // must calculate explicitly.
                // FIXME: consider special-casing always-Sized projections
A
Ariel Ben-Yehuda 已提交
2352
                vec![ty]
2353 2354
            }

2355 2356
            UnnormalizedProjection(..) => bug!("only used with chalk-engine"),

V
varkor 已提交
2357
            Param(..) => {
A
Ariel Ben-Yehuda 已提交
2358 2359 2360 2361
                // perf hack: if there is a `T: Sized` bound, then
                // we know that `T` is Sized and do not need to check
                // it on the impl.

2362
                let sized_trait = match tcx.lang_items().sized_trait() {
2363
                    Some(x) => x,
A
Ariel Ben-Yehuda 已提交
2364
                    _ => return vec![ty]
2365
                };
2366
                let sized_predicate = Binder::dummy(TraitRef {
2367
                    def_id: sized_trait,
2368
                    substs: tcx.mk_substs_trait(ty, &[])
2369
                }).to_predicate();
2370
                let predicates = tcx.predicates_of(self.did).predicates;
2371
                if predicates.into_iter().any(|(p, _)| p == sized_predicate) {
A
Ariel Ben-Yehuda 已提交
2372
                    vec![]
2373
                } else {
A
Ariel Ben-Yehuda 已提交
2374
                    vec![ty]
2375 2376 2377
                }
            }

S
scalexm 已提交
2378
            Bound(..) |
V
varkor 已提交
2379
            Infer(..) => {
2380 2381 2382 2383 2384 2385 2386
                bug!("unexpected type `{:?}` in sized_constraint_for_ty",
                     ty)
            }
        };
        debug!("sized_constraint_for_ty({:?}) = {:?}", ty, result);
        result
    }
2387 2388
}

2389
impl<'a, 'gcx, 'tcx> FieldDef {
2390
    pub fn ty(&self, tcx: TyCtxt<'a, 'gcx, 'tcx>, subst: &Substs<'tcx>) -> Ty<'tcx> {
2391
        tcx.type_of(self.did).subst(tcx, subst)
2392
    }
2393 2394
}

2395 2396 2397 2398 2399 2400
/// Represents the various closure traits in the Rust language. This
/// will determine the type of the environment (`self`, in the
/// desuaring) argument that the closure expects.
///
/// You can get the environment type of a closure using
/// `tcx.closure_env_ty()`.
2401
#[derive(Clone, Copy, PartialOrd, Ord, PartialEq, Eq, Hash, Debug, RustcEncodable, RustcDecodable)]
2402
pub enum ClosureKind {
2403 2404 2405
    // Warning: Ordering is significant here! The ordering is chosen
    // because the trait Fn is a subtrait of FnMut and so in turn, and
    // hence we order it so that Fn < FnMut < FnOnce.
2406 2407 2408
    Fn,
    FnMut,
    FnOnce,
2409 2410
}

2411
impl<'a, 'tcx> ClosureKind {
2412 2413 2414
    // This is the initial value used when doing upvar inference.
    pub const LATTICE_BOTTOM: ClosureKind = ClosureKind::Fn;

2415
    pub fn trait_did(&self, tcx: TyCtxt<'a, 'tcx, 'tcx>) -> DefId {
2416 2417
        match *self {
            ClosureKind::Fn => tcx.require_lang_item(FnTraitLangItem),
2418
            ClosureKind::FnMut => {
2419
                tcx.require_lang_item(FnMutTraitLangItem)
2420
            }
2421
            ClosureKind::FnOnce => {
2422
                tcx.require_lang_item(FnOnceTraitLangItem)
2423 2424 2425
            }
        }
    }
2426

2427
    /// Returns `true` if this a type that impls this closure kind
2428 2429 2430
    /// must also implement `other`.
    pub fn extends(self, other: ty::ClosureKind) -> bool {
        match (self, other) {
2431 2432 2433 2434 2435 2436
            (ClosureKind::Fn, ClosureKind::Fn) => true,
            (ClosureKind::Fn, ClosureKind::FnMut) => true,
            (ClosureKind::Fn, ClosureKind::FnOnce) => true,
            (ClosureKind::FnMut, ClosureKind::FnMut) => true,
            (ClosureKind::FnMut, ClosureKind::FnOnce) => true,
            (ClosureKind::FnOnce, ClosureKind::FnOnce) => true,
2437 2438 2439
            _ => false,
        }
    }
2440 2441 2442 2443 2444 2445 2446 2447 2448

    /// Returns the representative scalar type for this closure kind.
    /// See `TyS::to_opt_closure_kind` for more details.
    pub fn to_ty(self, tcx: TyCtxt<'_, '_, 'tcx>) -> Ty<'tcx> {
        match self {
            ty::ClosureKind::Fn => tcx.types.i8,
            ty::ClosureKind::FnMut => tcx.types.i16,
            ty::ClosureKind::FnOnce => tcx.types.i32,
        }
2449
    }
2450 2451
}

2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464
impl<'tcx> TyS<'tcx> {
    /// Iterator that walks `self` and any types reachable from
    /// `self`, in depth-first order. Note that just walks the types
    /// that appear in `self`, it does not descend into the fields of
    /// structs or variants. For example:
    ///
    /// ```notrust
    /// isize => { isize }
    /// Foo<Bar<isize>> => { Foo<Bar<isize>>, Bar<isize>, isize }
    /// [isize] => { [isize], isize }
    /// ```
    pub fn walk(&'tcx self) -> TypeWalker<'tcx> {
        TypeWalker::new(self)
2465 2466
    }

2467 2468 2469
    /// Iterator that walks the immediate children of `self`.  Hence
    /// `Foo<Bar<i32>, u32>` yields the sequence `[Bar<i32>, u32]`
    /// (but not `i32`, like `walk`).
2470
    pub fn walk_shallow(&'tcx self) -> smallvec::IntoIter<walk::TypeWalkerArray<'tcx>> {
2471
        walk::walk_shallow(self)
2472 2473
    }

2474 2475 2476 2477 2478 2479
    /// Walks `ty` and any types appearing within `ty`, invoking the
    /// callback `f` on each type. If the callback returns false, then the
    /// children of the current type are ignored.
    ///
    /// Note: prefer `ty.walk()` where possible.
    pub fn maybe_walk<F>(&'tcx self, mut f: F)
2480
        where F: FnMut(Ty<'tcx>) -> bool
2481 2482 2483 2484 2485 2486 2487
    {
        let mut walker = self.walk();
        while let Some(ty) = walker.next() {
            if !f(ty) {
                walker.skip_current_subtree();
            }
        }
2488
    }
2489
}
2490

2491
impl BorrowKind {
2492
    pub fn from_mutbl(m: hir::Mutability) -> BorrowKind {
2493
        match m {
2494 2495
            hir::MutMutable => MutBorrow,
            hir::MutImmutable => ImmBorrow,
2496 2497
        }
    }
2498

2499 2500 2501 2502
    /// Returns a mutability `m` such that an `&m T` pointer could be used to obtain this borrow
    /// kind. Because borrow kinds are richer than mutabilities, we sometimes have to pick a
    /// mutability that is stronger than necessary so that it at least *would permit* the borrow in
    /// question.
2503
    pub fn to_mutbl_lossy(self) -> hir::Mutability {
2504
        match self {
2505 2506
            MutBorrow => hir::MutMutable,
            ImmBorrow => hir::MutImmutable,
2507 2508 2509 2510

            // We have no type corresponding to a unique imm borrow, so
            // use `&mut`. It gives all the capabilities of an `&uniq`
            // and hence is a safe "over approximation".
2511
            UniqueImmBorrow => hir::MutMutable,
2512
        }
2513
    }
2514

2515 2516 2517 2518 2519 2520
    pub fn to_user_str(&self) -> &'static str {
        match *self {
            MutBorrow => "mutable",
            ImmBorrow => "immutable",
            UniqueImmBorrow => "uniquely immutable",
        }
2521 2522 2523
    }
}

2524 2525
#[derive(Debug, Clone)]
pub enum Attributes<'gcx> {
2526
    Owned(Lrc<[ast::Attribute]>),
2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540
    Borrowed(&'gcx [ast::Attribute])
}

impl<'gcx> ::std::ops::Deref for Attributes<'gcx> {
    type Target = [ast::Attribute];

    fn deref(&self) -> &[ast::Attribute] {
        match self {
            &Attributes::Owned(ref data) => &data,
            &Attributes::Borrowed(data) => data
        }
    }
}

2541
impl<'a, 'gcx, 'tcx> TyCtxt<'a, 'gcx, 'tcx> {
2542
    pub fn body_tables(self, body: hir::BodyId) -> &'gcx TypeckTables<'gcx> {
2543
        self.typeck_tables_of(self.hir.body_owner_def_id(body))
2544 2545
    }

N
Niko Matsakis 已提交
2546 2547 2548
    /// Returns an iterator of the def-ids for all body-owners in this
    /// crate. If you would prefer to iterate over the bodies
    /// themselves, you can do `self.hir.krate().body_ids.iter()`.
2549 2550 2551
    pub fn body_owners(
        self,
    ) -> impl Iterator<Item = DefId> + Captures<'tcx> + Captures<'gcx> + 'a {
N
Niko Matsakis 已提交
2552 2553 2554 2555 2556 2557
        self.hir.krate()
                .body_ids
                .iter()
                .map(move |&body_id| self.hir.body_owner_def_id(body_id))
    }

J
John Kåre Alsaker 已提交
2558 2559 2560 2561 2562 2563
    pub fn par_body_owners<F: Fn(DefId) + sync::Sync + sync::Send>(self, f: F) {
        par_iter(&self.hir.krate().body_ids).for_each(|&body_id| {
            f(self.hir.body_owner_def_id(body_id))
        });
    }

2564
    pub fn expr_span(self, id: NodeId) -> Span {
2565
        match self.hir.find(id) {
V
varkor 已提交
2566
            Some(Node::Expr(e)) => {
2567 2568 2569
                e.span
            }
            Some(f) => {
2570
                bug!("Node id {} is not an expr: {:?}", id, f);
2571 2572
            }
            None => {
2573
                bug!("Node id {} is not present in the node map", id);
2574
            }
2575
        }
2576 2577
    }

2578 2579
    pub fn provided_trait_methods(self, id: DefId) -> Vec<AssociatedItem> {
        self.associated_items(id)
2580
            .filter(|item| item.kind == AssociatedKind::Method && item.defaultness.has_value())
2581
            .collect()
2582 2583
    }

A
Andrew Cann 已提交
2584 2585 2586 2587 2588 2589
    pub fn trait_relevant_for_never(self, did: DefId) -> bool {
        self.associated_items(did).any(|item| {
            item.relevant_for_never()
        })
    }

2590 2591 2592
    pub fn opt_associated_item(self, def_id: DefId) -> Option<AssociatedItem> {
        let is_associated_item = if let Some(node_id) = self.hir.as_local_node_id(def_id) {
            match self.hir.get(node_id) {
V
varkor 已提交
2593
                Node::TraitItem(_) | Node::ImplItem(_) => true,
2594 2595 2596
                _ => false,
            }
        } else {
2597
            match self.describe_def(def_id).expect("no def for def-id") {
2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609
                Def::AssociatedConst(_) | Def::Method(_) | Def::AssociatedTy(_) => true,
                _ => false,
            }
        };

        if is_associated_item {
            Some(self.associated_item(def_id))
        } else {
            None
        }
    }

2610 2611
    fn associated_item_from_trait_item_ref(self,
                                           parent_def_id: DefId,
2612
                                           parent_vis: &hir::Visibility,
2613
                                           trait_item_ref: &hir::TraitItemRef)
2614
                                           -> AssociatedItem {
2615
        let def_id = self.hir.local_def_id(trait_item_ref.id.node_id);
2616 2617 2618 2619
        let (kind, has_self) = match trait_item_ref.kind {
            hir::AssociatedItemKind::Const => (ty::AssociatedKind::Const, false),
            hir::AssociatedItemKind::Method { has_self } => {
                (ty::AssociatedKind::Method, has_self)
2620
            }
2621
            hir::AssociatedItemKind::Type => (ty::AssociatedKind::Type, false),
O
Oliver Schneider 已提交
2622
            hir::AssociatedItemKind::Existential => bug!("only impls can have existentials"),
2623 2624 2625
        };

        AssociatedItem {
2626
            ident: trait_item_ref.ident,
2627
            kind,
2628 2629
            // Visibility of trait items is inherited from their traits.
            vis: Visibility::from_hir(parent_vis, trait_item_ref.id.node_id, self),
2630
            defaultness: trait_item_ref.defaultness,
2631
            def_id,
2632 2633 2634 2635 2636 2637 2638 2639 2640
            container: TraitContainer(parent_def_id),
            method_has_self_argument: has_self
        }
    }

    fn associated_item_from_impl_item_ref(self,
                                          parent_def_id: DefId,
                                          impl_item_ref: &hir::ImplItemRef)
                                          -> AssociatedItem {
2641
        let def_id = self.hir.local_def_id(impl_item_ref.id.node_id);
2642 2643 2644 2645 2646 2647
        let (kind, has_self) = match impl_item_ref.kind {
            hir::AssociatedItemKind::Const => (ty::AssociatedKind::Const, false),
            hir::AssociatedItemKind::Method { has_self } => {
                (ty::AssociatedKind::Method, has_self)
            }
            hir::AssociatedItemKind::Type => (ty::AssociatedKind::Type, false),
O
Oliver Schneider 已提交
2648
            hir::AssociatedItemKind::Existential => (ty::AssociatedKind::Existential, false),
2649 2650
        };

2651 2652
        AssociatedItem {
            ident: impl_item_ref.ident,
2653
            kind,
2654 2655
            // Visibility of trait impl items doesn't matter.
            vis: ty::Visibility::from_hir(&impl_item_ref.vis, impl_item_ref.id.node_id, self),
2656
            defaultness: impl_item_ref.defaultness,
2657
            def_id,
2658 2659 2660 2661 2662
            container: ImplContainer(parent_def_id),
            method_has_self_argument: has_self
        }
    }

2663
    pub fn field_index(self, node_id: NodeId, tables: &TypeckTables<'_>) -> usize {
2664 2665 2666 2667 2668 2669
        let hir_id = self.hir.node_to_hir_id(node_id);
        tables.field_indices().get(hir_id).cloned().expect("no index for a field")
    }

    pub fn find_field_index(self, ident: Ident, variant: &VariantDef) -> Option<usize> {
        variant.fields.iter().position(|field| {
2670
            self.adjust_ident(ident, variant.did, DUMMY_NODE_ID).0 == field.ident.modern()
2671 2672 2673
        })
    }

2674 2675 2676
    pub fn associated_items(
        self,
        def_id: DefId,
2677
    ) -> impl Iterator<Item = AssociatedItem> + 'a {
2678
        let def_ids = self.associated_item_def_ids(def_id);
2679
        Box::new((0..def_ids.len()).map(move |i| self.associated_item(def_ids[i])))
2680
            as Box<dyn Iterator<Item = AssociatedItem> + 'a>
2681 2682
    }

2683
    /// Returns `true` if the impls are the same polarity and the trait either
2684
    /// has no items or is annotated #[marker] and prevents item overrides.
2685
    pub fn impls_are_allowed_to_overlap(self, def_id1: DefId, def_id2: DefId) -> bool {
2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707
        if self.features().overlapping_marker_traits {
            let trait1_is_empty = self.impl_trait_ref(def_id1)
                .map_or(false, |trait_ref| {
                    self.associated_item_def_ids(trait_ref.def_id).is_empty()
                });
            let trait2_is_empty = self.impl_trait_ref(def_id2)
                .map_or(false, |trait_ref| {
                    self.associated_item_def_ids(trait_ref.def_id).is_empty()
                });
            self.impl_polarity(def_id1) == self.impl_polarity(def_id2)
                && trait1_is_empty
                && trait2_is_empty
        } else if self.features().marker_trait_attr {
            let is_marker_impl = |def_id: DefId| -> bool {
                let trait_ref = self.impl_trait_ref(def_id);
                trait_ref.map_or(false, |tr| self.trait_def(tr.def_id).is_marker)
            };
            self.impl_polarity(def_id1) == self.impl_polarity(def_id2)
                && is_marker_impl(def_id1)
                && is_marker_impl(def_id2)
        } else {
            false
2708
        }
S
Sean Griffin 已提交
2709 2710
    }

2711 2712
    // Returns `ty::VariantDef` if `def` refers to a struct,
    // or variant or their constructors, panics otherwise.
2713
    pub fn expect_variant_def(self, def: Def) -> &'tcx VariantDef {
2714
        match def {
2715
            Def::Variant(did) | Def::VariantCtor(did, ..) => {
2716
                let enum_did = self.parent_def_id(did).unwrap();
2717
                self.adt_def(enum_did).variant_with_id(did)
2718
            }
2719
            Def::Struct(did) | Def::Union(did) => {
2720
                self.adt_def(did).non_enum_variant()
2721 2722 2723
            }
            Def::StructCtor(ctor_did, ..) => {
                let did = self.parent_def_id(ctor_did).expect("struct ctor has no parent");
2724
                self.adt_def(did).non_enum_variant()
2725 2726 2727 2728 2729
            }
            _ => bug!("expect_variant_def used with unexpected def {:?}", def)
        }
    }

2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743
    /// Given a `VariantDef`, returns the def-id of the `AdtDef` of which it is a part.
    pub fn adt_def_id_of_variant(self, variant_def: &'tcx VariantDef) -> DefId {
        let def_key = self.def_key(variant_def.did);
        match def_key.disambiguated_data.data {
            // for enum variants and tuple structs, the def-id of the ADT itself
            // is the *parent* of the variant
            DefPathData::EnumVariant(..) | DefPathData::StructCtor =>
                DefId { krate: variant_def.did.krate, index: def_key.parent.unwrap() },

            // otherwise, for structs and unions, they share a def-id
            _ => variant_def.did,
        }
    }

2744
    pub fn item_name(self, id: DefId) -> InternedString {
2745
        if id.index == CRATE_DEF_INDEX {
2746
            self.original_crate_name(id.krate).as_interned_str()
2747
        } else {
2748
            let def_key = self.def_key(id);
2749
            // The name of a StructCtor is that of its struct parent.
2750
            if let hir_map::DefPathData::StructCtor = def_key.disambiguated_data.data {
2751 2752 2753 2754 2755 2756 2757 2758 2759
                self.item_name(DefId {
                    krate: id.krate,
                    index: def_key.parent.unwrap()
                })
            } else {
                def_key.disambiguated_data.data.get_opt_name().unwrap_or_else(|| {
                    bug!("item_name: no name for {:?}", self.def_path(id));
                })
            }
2760 2761 2762
        }
    }

2763 2764
    /// Return the possibly-auto-generated MIR of a (DefId, Subst) pair.
    pub fn instance_mir(self, instance: ty::InstanceDef<'gcx>)
2765
                        -> &'gcx Mir<'gcx>
2766 2767
    {
        match instance {
N
Niko Matsakis 已提交
2768
            ty::InstanceDef::Item(did) => {
2769
                self.optimized_mir(did)
N
Niko Matsakis 已提交
2770
            }
M
Masaki Hara 已提交
2771
            ty::InstanceDef::VtableShim(..) |
N
Niko Matsakis 已提交
2772 2773 2774 2775
            ty::InstanceDef::Intrinsic(..) |
            ty::InstanceDef::FnPtrShim(..) |
            ty::InstanceDef::Virtual(..) |
            ty::InstanceDef::ClosureOnceShim { .. } |
2776
            ty::InstanceDef::DropGlue(..) |
S
scalexm 已提交
2777
            ty::InstanceDef::CloneShim(..) => {
2778
                self.mir_shims(instance)
N
Niko Matsakis 已提交
2779
            }
2780 2781 2782
        }
    }

2783 2784
    /// Given the DefId of an item, returns its MIR, borrowed immutably.
    /// Returns None if there is no MIR for the DefId
2785 2786 2787 2788 2789
    pub fn maybe_optimized_mir(self, did: DefId) -> Option<&'gcx Mir<'gcx>> {
        if self.is_mir_available(did) {
            Some(self.optimized_mir(did))
        } else {
            None
2790 2791 2792
        }
    }

2793
    /// Get the attributes of a definition.
2794
    pub fn get_attrs(self, did: DefId) -> Attributes<'gcx> {
2795
        if let Some(id) = self.hir.as_local_node_id(did) {
2796
            Attributes::Borrowed(self.hir.attrs(id))
2797
        } else {
A
achernyak 已提交
2798
            Attributes::Owned(self.item_attrs(did))
2799
        }
2800 2801
    }

2802
    /// Determine whether an item is annotated with an attribute.
2803
    pub fn has_attr(self, did: DefId, attr: &str) -> bool {
2804
        attr::contains_name(&self.get_attrs(did), attr)
2805
    }
2806

2807
    /// Returns `true` if this is an `auto trait`.
2808
    pub fn trait_is_auto(self, trait_def_id: DefId) -> bool {
2809
        self.trait_def(trait_def_id).has_auto_impl
2810
    }
2811

J
John Kåre Alsaker 已提交
2812 2813 2814 2815
    pub fn generator_layout(self, def_id: DefId) -> &'tcx GeneratorLayout<'tcx> {
        self.optimized_mir(def_id).generator_layout.as_ref().unwrap()
    }

2816
    /// Given the def-id of an impl, return the def_id of the trait it implements.
2817
    /// If it implements no trait, return `None`.
2818
    pub fn trait_id_of_impl(self, def_id: DefId) -> Option<DefId> {
2819
        self.impl_trait_ref(def_id).map(|tr| tr.def_id)
2820
    }
2821

2822 2823
    /// If the given defid describes a method belonging to an impl, return the
    /// def-id of the impl that the method belongs to. Otherwise, return `None`.
2824
    pub fn impl_of_method(self, def_id: DefId) -> Option<DefId> {
2825
        let item = if def_id.krate != LOCAL_CRATE {
A
achernyak 已提交
2826
            if let Some(Def::Method(_)) = self.describe_def(def_id) {
2827 2828 2829 2830 2831
                Some(self.associated_item(def_id))
            } else {
                None
            }
        } else {
2832
            self.opt_associated_item(def_id)
2833 2834
        };

2835 2836 2837 2838
        item.and_then(|trait_item|
            match trait_item.container {
                TraitContainer(_) => None,
                ImplContainer(def_id) => Some(def_id),
2839
            }
2840
        )
2841 2842
    }

2843 2844
    /// Looks up the span of `impl_did` if the impl is local; otherwise returns `Err`
    /// with the name of the crate containing the impl.
2845
    pub fn span_of_impl(self, impl_did: DefId) -> Result<Span, Symbol> {
2846
        if impl_did.is_local() {
2847 2848
            let node_id = self.hir.as_local_node_id(impl_did).unwrap();
            Ok(self.hir.span(node_id))
2849
        } else {
2850
            Err(self.crate_name(impl_did.krate))
2851 2852
        }
    }
J
Jeffrey Seyfried 已提交
2853

2854 2855 2856
    // Hygienically compare a use-site name (`use_name`) for a field or an associated item with its
    // supposed definition name (`def_name`). The method also needs `DefId` of the supposed
    // definition's parent/scope to perform comparison.
2857 2858
    pub fn hygienic_eq(self, use_name: Ident, def_name: Ident, def_parent_def_id: DefId) -> bool {
        self.adjust_ident(use_name, def_parent_def_id, DUMMY_NODE_ID).0 == def_name.modern()
J
Jeffrey Seyfried 已提交
2859 2860 2861
    }

    pub fn adjust_ident(self, mut ident: Ident, scope: DefId, block: NodeId) -> (Ident, DefId) {
2862 2863
        ident = ident.modern();
        let target_expansion = match scope.krate {
2864
            LOCAL_CRATE => self.hir.definitions().expansion_that_defined(scope.index),
J
Jeffrey Seyfried 已提交
2865 2866
            _ => Mark::root(),
        };
2867 2868 2869
        let scope = match ident.span.adjust(target_expansion) {
            Some(actual_expansion) =>
                self.hir.definitions().parent_module_of_macro_def(actual_expansion),
2870
            None if block == DUMMY_NODE_ID => DefId::local(CRATE_DEF_INDEX), // Dummy DefId
J
Jeffrey Seyfried 已提交
2871 2872 2873 2874
            None => self.hir.get_module_parent(block),
        };
        (ident, scope)
    }
2875
}
2876

2877
impl<'a, 'gcx, 'tcx> TyCtxt<'a, 'gcx, 'tcx> {
2878
    pub fn with_freevars<T, F>(self, fid: NodeId, f: F) -> T where
2879
        F: FnOnce(&[hir::Freevar]) -> T,
2880
    {
A
Alex Crichton 已提交
2881 2882
        let def_id = self.hir.local_def_id(fid);
        match self.freevars(def_id) {
2883
            None => f(&[]),
2884
            Some(d) => f(&d),
2885 2886
        }
    }
2887
}
2888

L
ljedrz 已提交
2889
fn associated_item<'a, 'tcx>(tcx: TyCtxt<'a, 'tcx, 'tcx>, def_id: DefId) -> AssociatedItem {
2890 2891 2892 2893 2894
    let id = tcx.hir.as_local_node_id(def_id).unwrap();
    let parent_id = tcx.hir.get_parent(id);
    let parent_def_id = tcx.hir.local_def_id(parent_id);
    let parent_item = tcx.hir.expect_item(parent_id);
    match parent_item.node {
C
csmoe 已提交
2895
        hir::ItemKind::Impl(.., ref impl_item_refs) => {
2896
            if let Some(impl_item_ref) = impl_item_refs.iter().find(|i| i.id.node_id == id) {
2897 2898
                let assoc_item = tcx.associated_item_from_impl_item_ref(parent_def_id,
                                                                        impl_item_ref);
2899 2900
                debug_assert_eq!(assoc_item.def_id, def_id);
                return assoc_item;
2901 2902 2903
            }
        }

C
csmoe 已提交
2904
        hir::ItemKind::Trait(.., ref trait_item_refs) => {
2905
            if let Some(trait_item_ref) = trait_item_refs.iter().find(|i| i.id.node_id == id) {
2906 2907 2908
                let assoc_item = tcx.associated_item_from_trait_item_ref(parent_def_id,
                                                                         &parent_item.vis,
                                                                         trait_item_ref);
2909 2910
                debug_assert_eq!(assoc_item.def_id, def_id);
                return assoc_item;
2911 2912 2913
            }
        }

2914
        _ => { }
2915
    }
2916 2917 2918 2919

    span_bug!(parent_item.span,
              "unexpected parent of trait or impl item or item not found: {:?}",
              parent_item.node)
2920 2921
}

2922 2923
/// Calculates the Sized-constraint.
///
2924
/// In fact, there are only a few options for the types in the constraint:
2925 2926 2927 2928
///     - an obviously-unsized type
///     - a type parameter or projection whose Sizedness can't be known
///     - a tuple of type parameters or projections, if there are multiple
///       such.
V
varkor 已提交
2929
///     - a Error, if a type contained itself. The representability
2930 2931 2932
///       check should catch this case.
fn adt_sized_constraint<'a, 'tcx>(tcx: TyCtxt<'a, 'tcx, 'tcx>,
                                  def_id: DefId)
2933
                                  -> &'tcx [Ty<'tcx>] {
2934
    let def = tcx.adt_def(def_id);
2935

2936
    let result = tcx.mk_type_list(def.variants.iter().flat_map(|v| {
2937 2938
        v.fields.last()
    }).flat_map(|f| {
2939
        def.sized_constraint_for_ty(tcx, tcx.type_of(f.did))
2940
    }));
2941

2942
    debug!("adt_sized_constraint: {:?} => {:?}", def, result);
2943

2944
    result
2945 2946
}

2947 2948
fn associated_item_def_ids<'a, 'tcx>(tcx: TyCtxt<'a, 'tcx, 'tcx>,
                                     def_id: DefId)
2949
                                     -> Lrc<Vec<DefId>> {
2950 2951 2952
    let id = tcx.hir.as_local_node_id(def_id).unwrap();
    let item = tcx.hir.expect_item(id);
    let vec: Vec<_> = match item.node {
C
csmoe 已提交
2953
        hir::ItemKind::Trait(.., ref trait_item_refs) => {
2954 2955 2956 2957 2958
            trait_item_refs.iter()
                           .map(|trait_item_ref| trait_item_ref.id)
                           .map(|id| tcx.hir.local_def_id(id.node_id))
                           .collect()
        }
C
csmoe 已提交
2959
        hir::ItemKind::Impl(.., ref impl_item_refs) => {
2960 2961 2962 2963 2964
            impl_item_refs.iter()
                          .map(|impl_item_ref| impl_item_ref.id)
                          .map(|id| tcx.hir.local_def_id(id.node_id))
                          .collect()
        }
C
csmoe 已提交
2965
        hir::ItemKind::TraitAlias(..) => vec![],
2966 2967
        _ => span_bug!(item.span, "associated_item_def_ids: not impl or trait")
    };
2968
    Lrc::new(vec)
2969 2970
}

A
achernyak 已提交
2971
fn def_span<'a, 'tcx>(tcx: TyCtxt<'a, 'tcx, 'tcx>, def_id: DefId) -> Span {
A
achernyak 已提交
2972
    tcx.hir.span_if_local(def_id).unwrap()
A
achernyak 已提交
2973 2974
}

A
achernyak 已提交
2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987
/// If the given def ID describes an item belonging to a trait,
/// return the ID of the trait that the trait item belongs to.
/// Otherwise, return `None`.
fn trait_of_item<'a, 'tcx>(tcx: TyCtxt<'a, 'tcx, 'tcx>, def_id: DefId) -> Option<DefId> {
    tcx.opt_associated_item(def_id)
        .and_then(|associated_item| {
            match associated_item.container {
                TraitContainer(def_id) => Some(def_id),
                ImplContainer(_) => None
            }
        })
}

2988
/// Yields the parent function's `DefId` if `def_id` is an `impl Trait` definition.
2989
pub fn is_impl_trait_defn(tcx: TyCtxt<'_, '_, '_>, def_id: DefId) -> Option<DefId> {
2990
    if let Some(node_id) = tcx.hir.as_local_node_id(def_id) {
V
varkor 已提交
2991
        if let Node::Item(item) = tcx.hir.get(node_id) {
2992 2993 2994 2995 2996 2997 2998 2999
            if let hir::ItemKind::Existential(ref exist_ty) = item.node {
                return exist_ty.impl_trait_fn;
            }
        }
    }
    None
}

3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012
/// Returns `true` if `def_id` is a trait alias.
pub fn is_trait_alias(tcx: TyCtxt<'_, '_, '_>, def_id: DefId) -> bool {
    if let Some(node_id) = tcx.hir.as_local_node_id(def_id) {
        if let Node::Item(item) = tcx.hir.get(node_id) {
            if let hir::ItemKind::TraitAlias(..) = item.node {
                return true;
            }
        }
    }
    false
}

/// See `ParamEnv` struct definition for details.
3013
fn param_env<'a, 'tcx>(tcx: TyCtxt<'a, 'tcx, 'tcx>,
3014
                       def_id: DefId)
L
ljedrz 已提交
3015 3016
                       -> ParamEnv<'tcx>
{
O
Oliver Schneider 已提交
3017
    // The param_env of an impl Trait type is its defining function's param_env
3018 3019
    if let Some(parent) = is_impl_trait_defn(tcx, def_id) {
        return param_env(tcx, parent);
3020
    }
3021 3022
    // Compute the bounds on Self and the type parameters.

N
Niko Matsakis 已提交
3023 3024
    let InstantiatedPredicates { predicates } =
        tcx.predicates_of(def_id).instantiate_identity(tcx);
3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037

    // Finally, we have to normalize the bounds in the environment, in
    // case they contain any associated type projections. This process
    // can yield errors if the put in illegal associated types, like
    // `<i32 as Foo>::Bar` where `i32` does not implement `Foo`. We
    // report these errors right here; this doesn't actually feel
    // right to me, because constructing the environment feels like a
    // kind of a "idempotent" action, but I'm not sure where would be
    // a better place. In practice, we construct environments for
    // every fn once during type checking, and we'll abort if there
    // are any errors at that point, so after type checking you can be
    // sure that this will succeed without errors anyway.

3038
    let unnormalized_env = ty::ParamEnv::new(tcx.intern_predicates(&predicates),
3039
                                             traits::Reveal::UserFacing);
3040 3041 3042 3043 3044 3045 3046

    let body_id = tcx.hir.as_local_node_id(def_id).map_or(DUMMY_NODE_ID, |id| {
        tcx.hir.maybe_body_owned_by(id).map_or(id, |body| body.node_id)
    });
    let cause = traits::ObligationCause::misc(tcx.def_span(def_id), body_id);
    traits::normalize_param_env_or_error(tcx, def_id, unnormalized_env, cause)
}
A
achernyak 已提交
3047

3048
fn crate_disambiguator<'a, 'tcx>(tcx: TyCtxt<'a, 'tcx, 'tcx>,
3049
                                 crate_num: CrateNum) -> CrateDisambiguator {
3050 3051 3052 3053
    assert_eq!(crate_num, LOCAL_CRATE);
    tcx.sess.local_crate_disambiguator()
}

3054 3055 3056 3057 3058 3059
fn original_crate_name<'a, 'tcx>(tcx: TyCtxt<'a, 'tcx, 'tcx>,
                                 crate_num: CrateNum) -> Symbol {
    assert_eq!(crate_num, LOCAL_CRATE);
    tcx.crate_name.clone()
}

3060 3061 3062 3063 3064 3065 3066
fn crate_hash<'a, 'tcx>(tcx: TyCtxt<'a, 'tcx, 'tcx>,
                        crate_num: CrateNum)
                        -> Svh {
    assert_eq!(crate_num, LOCAL_CRATE);
    tcx.hir.crate_hash
}

V
varkor 已提交
3067 3068 3069 3070
fn instance_def_size_estimate<'a, 'tcx>(tcx: TyCtxt<'a, 'tcx, 'tcx>,
                                        instance_def: InstanceDef<'tcx>)
                                        -> usize {
    match instance_def {
3071 3072 3073
        InstanceDef::Item(..) |
        InstanceDef::DropGlue(..) => {
            let mir = tcx.instance_mir(instance_def);
V
varkor 已提交
3074 3075
            mir.basic_blocks().iter().map(|bb| bb.statements.len()).sum()
        },
3076
        // Estimate the size of other compiler-generated shims to be 1.
V
varkor 已提交
3077 3078 3079 3080
        _ => 1
    }
}

3081
pub fn provide(providers: &mut ty::query::Providers<'_>) {
3082
    context::provide(providers);
3083
    erase_regions::provide(providers);
3084 3085
    layout::provide(providers);
    util::provide(providers);
3086
    constness::provide(providers);
3087
    *providers = ty::query::Providers {
3088
        associated_item,
3089
        associated_item_def_ids,
3090
        adt_sized_constraint,
A
achernyak 已提交
3091
        def_span,
3092
        param_env,
A
achernyak 已提交
3093
        trait_of_item,
3094
        crate_disambiguator,
3095
        original_crate_name,
3096
        crate_hash,
3097
        trait_impls_of: trait_def::trait_impls_of_provider,
V
varkor 已提交
3098
        instance_def_size_estimate,
3099 3100 3101 3102
        ..*providers
    };
}

3103 3104 3105
/// A map for the local crate mapping each type to a vector of its
/// inherent impls. This is not meant to be used outside of coherence;
/// rather, you should request the vector for a specific type via
3106 3107
/// `tcx.inherent_impls(def_id)` so as to minimize your dependencies
/// (constructing this map requires touching the entire crate).
3108 3109
#[derive(Clone, Debug)]
pub struct CrateInherentImpls {
3110
    pub inherent_impls: DefIdMap<Lrc<Vec<DefId>>>,
3111
}
A
Ariel Ben-Yehuda 已提交
3112

3113
#[derive(Clone, Copy, PartialEq, Eq, PartialOrd, Ord, RustcEncodable, RustcDecodable)]
3114 3115 3116 3117 3118 3119
pub struct SymbolName {
    // FIXME: we don't rely on interning or equality here - better have
    // this be a `&'tcx str`.
    pub name: InternedString
}

3120 3121 3122 3123
impl_stable_hash_for!(struct self::SymbolName {
    name
});

3124 3125 3126
impl SymbolName {
    pub fn new(name: &str) -> SymbolName {
        SymbolName {
3127
            name: Symbol::intern(name).as_interned_str()
3128 3129
        }
    }
3130

3131 3132 3133
    pub fn as_str(&self) -> LocalInternedString {
        self.name.as_str()
    }
3134 3135 3136
}

impl fmt::Display for SymbolName {
3137
    fn fmt(&self, fmt: &mut fmt::Formatter<'_>) -> fmt::Result {
3138 3139 3140
        fmt::Display::fmt(&self.name, fmt)
    }
}
3141 3142

impl fmt::Debug for SymbolName {
3143
    fn fmt(&self, fmt: &mut fmt::Formatter<'_>) -> fmt::Result {
3144 3145 3146
        fmt::Display::fmt(&self.name, fmt)
    }
}