mod.rs 112.0 KB
Newer Older
1
// Copyright 2012-2015 The Rust Project Developers. See the COPYRIGHT
2 3 4 5 6 7 8 9 10
// file at the top-level directory of this distribution and at
// http://rust-lang.org/COPYRIGHT.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.

S
Steven Fackler 已提交
11
pub use self::Variance::*;
12
pub use self::AssociatedItemContainer::*;
S
Steven Fackler 已提交
13 14
pub use self::BorrowKind::*;
pub use self::IntVarValue::*;
15
pub use self::fold::TypeFoldable;
S
Steven Fackler 已提交
16

17
use hir::{map as hir_map, FreevarMap, TraitMap};
V
varkor 已提交
18
use hir::Node;
19
use hir::def::{Def, CtorKind, ExportMap};
20
use hir::def_id::{CrateNum, DefId, LocalDefId, CRATE_DEF_INDEX, LOCAL_CRATE};
21
use hir::map::DefPathData;
22
use rustc_data_structures::svh::Svh;
W
Wesley Wiser 已提交
23
use ich::Fingerprint;
24
use ich::StableHashingContext;
25
use infer::canonical::Canonical;
26
use middle::lang_items::{FnTraitLangItem, FnMutTraitLangItem, FnOnceTraitLangItem};
27
use middle::privacy::AccessLevels;
28
use middle::resolve_lifetime::ObjectLifetimeDefault;
29
use mir::Mir;
30
use mir::interpret::{GlobalId, ErrorHandled};
J
John Kåre Alsaker 已提交
31
use mir::GeneratorLayout;
32
use session::CrateDisambiguator;
33
use traits::{self, Reveal};
34
use ty;
35
use ty::subst::{Subst, Substs};
O
Oliver Schneider 已提交
36
use ty::util::{IntTypeExt, Discr};
37
use ty::walk::TypeWalker;
38
use util::captures::Captures;
39
use util::nodemap::{NodeSet, DefIdMap, FxHashMap};
J
John Kåre Alsaker 已提交
40
use arena::SyncDroplessArena;
41
use session::DataTypeKind;
42

43
use serialize::{self, Encodable, Encoder};
W
Wesley Wiser 已提交
44
use std::cell::RefCell;
45
use std::cmp::{self, Ordering};
46
use std::fmt;
47
use std::hash::{Hash, Hasher};
48
use std::ops::Deref;
J
John Kåre Alsaker 已提交
49
use rustc_data_structures::sync::{self, Lrc, ParallelIterator, par_iter};
50
use std::slice;
51
use std::vec::IntoIter;
52
use std::{mem, ptr};
J
Jeffrey Seyfried 已提交
53
use syntax::ast::{self, DUMMY_NODE_ID, Name, Ident, NodeId};
54
use syntax::attr;
55
use syntax::ext::hygiene::Mark;
56
use syntax::symbol::{keywords, Symbol, LocalInternedString, InternedString};
57
use syntax_pos::{DUMMY_SP, Span};
58

59
use smallvec;
60
use rustc_data_structures::indexed_vec::Idx;
61 62
use rustc_data_structures::stable_hasher::{StableHasher, StableHasherResult,
                                           HashStable};
O
Oliver Schneider 已提交
63

64
use hir;
65

66
pub use self::sty::{Binder, BoundTy, BoundTyIndex, DebruijnIndex, INNERMOST};
67
pub use self::sty::{FnSig, GenSig, CanonicalPolyFnSig, PolyFnSig, PolyGenSig};
68
pub use self::sty::{InferTy, ParamTy, ProjectionTy, ExistentialPredicate};
69
pub use self::sty::{ClosureSubsts, GeneratorSubsts, UpvarSubsts, TypeAndMut};
V
varkor 已提交
70
pub use self::sty::{TraitRef, TyKind, PolyTraitRef};
71
pub use self::sty::{ExistentialTraitRef, PolyExistentialTraitRef};
72
pub use self::sty::{ExistentialProjection, PolyExistentialProjection, Const};
73
pub use self::sty::{BoundRegion, EarlyBoundRegion, FreeRegion, Region};
N
Niko Matsakis 已提交
74
pub use self::sty::RegionKind;
75
pub use self::sty::{TyVid, IntVid, FloatVid, RegionVid};
76 77
pub use self::sty::BoundRegion::*;
pub use self::sty::InferTy::*;
N
Niko Matsakis 已提交
78
pub use self::sty::RegionKind::*;
V
varkor 已提交
79
pub use self::sty::TyKind::*;
80

81 82 83
pub use self::binding::BindingMode;
pub use self::binding::BindingMode::*;

84
pub use self::context::{TyCtxt, FreeRegionInfo, GlobalArenas, AllArenas, tls, keep_local};
85
pub use self::context::{Lift, TypeckTables};
86

87 88
pub use self::instance::{Instance, InstanceDef};

89
pub use self::trait_def::TraitDef;
90

91
pub use self::query::queries;
92

93
pub mod adjustment;
94
pub mod binding;
95
pub mod cast;
96
#[macro_use]
97
pub mod codec;
98
mod constness;
99
pub mod error;
100
mod erase_regions;
101 102
pub mod fast_reject;
pub mod fold;
A
Andrew Cann 已提交
103
pub mod inhabitedness;
104
pub mod item_path;
105
pub mod layout;
106 107
pub mod _match;
pub mod outlives;
108
pub mod query;
109
pub mod relate;
110
pub mod steal;
111
pub mod subst;
112
pub mod trait_def;
113 114
pub mod walk;
pub mod wf;
115
pub mod util;
116

117 118
mod context;
mod flags;
119
mod instance;
120 121 122
mod structural_impls;
mod sty;

123
// Data types
124

125
/// The complete set of all analyses described in this module. This is
I
Irina Popa 已提交
126
/// produced by the driver and fed to codegen and later passes.
127 128 129
///
/// NB: These contents are being migrated into queries using the
/// *on-demand* infrastructure.
J
Jeffrey Seyfried 已提交
130
#[derive(Clone)]
131
pub struct CrateAnalysis {
132
    pub access_levels: Lrc<AccessLevels>,
133
    pub name: String,
134
    pub glob_map: Option<hir::GlobMap>,
135 136
}

137 138 139 140 141
#[derive(Clone)]
pub struct Resolutions {
    pub freevars: FreevarMap,
    pub trait_map: TraitMap,
    pub maybe_unused_trait_imports: NodeSet,
142
    pub maybe_unused_extern_crates: Vec<(NodeId, Span)>,
N
Niko Matsakis 已提交
143
    pub export_map: ExportMap,
V
Vadim Petrochenkov 已提交
144 145 146
    /// Extern prelude entries. The value is `true` if the entry was introduced
    /// via `extern crate` item and not `--extern` option or compiler built-in.
    pub extern_prelude: FxHashMap<Name, bool>,
147 148
}

149
#[derive(Clone, Copy, PartialEq, Eq, Debug)]
150
pub enum AssociatedItemContainer {
N
Niko Matsakis 已提交
151 152
    TraitContainer(DefId),
    ImplContainer(DefId),
153 154
}

155
impl AssociatedItemContainer {
156 157 158 159 160 161 162 163 164
    /// Asserts that this is the def-id of an associated item declared
    /// in a trait, and returns the trait def-id.
    pub fn assert_trait(&self) -> DefId {
        match *self {
            TraitContainer(id) => id,
            _ => bug!("associated item has wrong container type: {:?}", self)
        }
    }

N
Niko Matsakis 已提交
165
    pub fn id(&self) -> DefId {
166 167 168 169 170 171 172
        match *self {
            TraitContainer(id) => id,
            ImplContainer(id) => id,
        }
    }
}

A
Aaron Turon 已提交
173 174 175 176 177 178 179 180 181 182 183
/// The "header" of an impl is everything outside the body: a Self type, a trait
/// ref (in the case of a trait impl), and a set of predicates (from the
/// bounds/where clauses).
#[derive(Clone, PartialEq, Eq, Hash, Debug)]
pub struct ImplHeader<'tcx> {
    pub impl_def_id: DefId,
    pub self_ty: Ty<'tcx>,
    pub trait_ref: Option<TraitRef<'tcx>>,
    pub predicates: Vec<Predicate<'tcx>>,
}

184
#[derive(Copy, Clone, Debug, PartialEq)]
185 186
pub struct AssociatedItem {
    pub def_id: DefId,
187
    pub ident: Ident,
188 189 190 191
    pub kind: AssociatedKind,
    pub vis: Visibility,
    pub defaultness: hir::Defaultness,
    pub container: AssociatedItemContainer,
192

193 194 195 196
    /// Whether this is a method with an explicit self
    /// as its first argument, allowing method calls.
    pub method_has_self_argument: bool,
}
197

198
#[derive(Copy, Clone, PartialEq, Eq, Debug, Hash, RustcEncodable, RustcDecodable)]
199 200 201
pub enum AssociatedKind {
    Const,
    Method,
O
Oliver Schneider 已提交
202
    Existential,
203 204
    Type
}
205

206 207 208 209 210 211
impl AssociatedItem {
    pub fn def(&self) -> Def {
        match self.kind {
            AssociatedKind::Const => Def::AssociatedConst(self.def_id),
            AssociatedKind::Method => Def::Method(self.def_id),
            AssociatedKind::Type => Def::AssociatedTy(self.def_id),
O
Oliver Schneider 已提交
212
            AssociatedKind::Existential => Def::AssociatedExistential(self.def_id),
213 214
        }
    }
A
Andrew Cann 已提交
215 216 217 218 219

    /// Tests whether the associated item admits a non-trivial implementation
    /// for !
    pub fn relevant_for_never<'tcx>(&self) -> bool {
        match self.kind {
O
Oliver Schneider 已提交
220 221
            AssociatedKind::Existential |
            AssociatedKind::Const |
A
Andrew Cann 已提交
222
            AssociatedKind::Type => true,
A
Andrew Cann 已提交
223
            // FIXME(canndrew): Be more thorough here, check if any argument is uninhabited.
A
Andrew Cann 已提交
224 225 226
            AssociatedKind::Method => !self.method_has_self_argument,
        }
    }
227 228 229 230 231 232 233 234

    pub fn signature<'a, 'tcx>(&self, tcx: &TyCtxt<'a, 'tcx, 'tcx>) -> String {
        match self.kind {
            ty::AssociatedKind::Method => {
                // We skip the binder here because the binder would deanonymize all
                // late-bound regions, and we don't want method signatures to show up
                // `as for<'r> fn(&'r MyType)`.  Pretty-printing handles late-bound
                // regions just fine, showing `fn(&MyType)`.
L
ljedrz 已提交
235
                tcx.fn_sig(self.def_id).skip_binder().to_string()
236
            }
237
            ty::AssociatedKind::Type => format!("type {};", self.ident),
O
Oliver Schneider 已提交
238
            ty::AssociatedKind::Existential => format!("existential type {};", self.ident),
239
            ty::AssociatedKind::Const => {
240
                format!("const {}: {:?};", self.ident, tcx.type_of(self.def_id))
241 242 243
            }
        }
    }
244 245
}

246
#[derive(Clone, Debug, PartialEq, Eq, Copy, RustcEncodable, RustcDecodable)]
247 248 249 250
pub enum Visibility {
    /// Visible everywhere (including in other crates).
    Public,
    /// Visible only in the given crate-local module.
251
    Restricted(DefId),
252
    /// Not visible anywhere in the local crate. This is the visibility of private external items.
253
    Invisible,
254 255
}

256 257
pub trait DefIdTree: Copy {
    fn parent(self, id: DefId) -> Option<DefId>;
A
Andrew Cann 已提交
258 259 260 261 262 263 264 265 266 267 268 269 270 271

    fn is_descendant_of(self, mut descendant: DefId, ancestor: DefId) -> bool {
        if descendant.krate != ancestor.krate {
            return false;
        }

        while descendant != ancestor {
            match self.parent(descendant) {
                Some(parent) => descendant = parent,
                None => return false,
            }
        }
        true
    }
272 273
}

274 275 276
impl<'a, 'gcx, 'tcx> DefIdTree for TyCtxt<'a, 'gcx, 'tcx> {
    fn parent(self, id: DefId) -> Option<DefId> {
        self.def_key(id).parent.map(|index| DefId { index: index, ..id })
277 278 279
    }
}

280
impl Visibility {
281
    pub fn from_hir(visibility: &hir::Visibility, id: NodeId, tcx: TyCtxt<'_, '_, '_>) -> Self {
282
        match visibility.node {
283 284 285
            hir::VisibilityKind::Public => Visibility::Public,
            hir::VisibilityKind::Crate(_) => Visibility::Restricted(DefId::local(CRATE_DEF_INDEX)),
            hir::VisibilityKind::Restricted { ref path, .. } => match path.def {
286 287
                // If there is no resolution, `resolve` will have already reported an error, so
                // assume that the visibility is public to avoid reporting more privacy errors.
288
                Def::Err => Visibility::Public,
289
                def => Visibility::Restricted(def.def_id()),
290
            },
291
            hir::VisibilityKind::Inherited => {
J
Jeffrey Seyfried 已提交
292
                Visibility::Restricted(tcx.hir.get_module_parent(id))
293
            }
294 295
        }
    }
296 297

    /// Returns true if an item with this visibility is accessible from the given block.
A
Andrew Cann 已提交
298
    pub fn is_accessible_from<T: DefIdTree>(self, module: DefId, tree: T) -> bool {
299 300 301 302
        let restriction = match self {
            // Public items are visible everywhere.
            Visibility::Public => return true,
            // Private items from other crates are visible nowhere.
303
            Visibility::Invisible => return false,
304
            // Restricted items are visible in an arbitrary local module.
305
            Visibility::Restricted(other) if other.krate != module.krate => return false,
306 307 308
            Visibility::Restricted(module) => module,
        };

A
Andrew Cann 已提交
309
        tree.is_descendant_of(module, restriction)
310
    }
311 312

    /// Returns true if this visibility is at least as accessible as the given visibility
313
    pub fn is_at_least<T: DefIdTree>(self, vis: Visibility, tree: T) -> bool {
314 315
        let vis_restriction = match vis {
            Visibility::Public => return self == Visibility::Public,
316
            Visibility::Invisible => return true,
317 318 319
            Visibility::Restricted(module) => module,
        };

320
        self.is_accessible_from(vis_restriction, tree)
321
    }
322 323 324 325 326 327 328 329 330

    // Returns true if this item is visible anywhere in the local crate.
    pub fn is_visible_locally(self) -> bool {
        match self {
            Visibility::Public => true,
            Visibility::Restricted(def_id) => def_id.is_local(),
            Visibility::Invisible => false,
        }
    }
331 332
}

333
#[derive(Copy, Clone, PartialEq, Eq, RustcDecodable, RustcEncodable, Hash)]
334
pub enum Variance {
335 336 337 338
    Covariant,      // T<A> <: T<B> iff A <: B -- e.g., function return type
    Invariant,      // T<A> <: T<B> iff B == A -- e.g., type of mutable cell
    Contravariant,  // T<A> <: T<B> iff B <: A -- e.g., function param type
    Bivariant,      // T<A> <: T<B>            -- e.g., unused type parameter
339
}
340

341 342 343 344
/// The crate variances map is computed during typeck and contains the
/// variance of every item in the local crate. You should not use it
/// directly, because to do so will make your pass dependent on the
/// HIR of every item in the local crate. Instead, use
345
/// `tcx.variances_of()` to get the variance for a *particular*
346 347 348 349 350
/// item.
pub struct CrateVariancesMap {
    /// For each item with generics, maps to a vector of the variance
    /// of its generics.  If an item has no generics, it will have no
    /// entry.
351
    pub variances: FxHashMap<DefId, Lrc<Vec<ty::Variance>>>,
352 353

    /// An empty vector, useful for cloning.
354
    pub empty_variance: Lrc<Vec<ty::Variance>>,
355 356
}

357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416
impl Variance {
    /// `a.xform(b)` combines the variance of a context with the
    /// variance of a type with the following meaning.  If we are in a
    /// context with variance `a`, and we encounter a type argument in
    /// a position with variance `b`, then `a.xform(b)` is the new
    /// variance with which the argument appears.
    ///
    /// Example 1:
    ///
    ///     *mut Vec<i32>
    ///
    /// Here, the "ambient" variance starts as covariant. `*mut T` is
    /// invariant with respect to `T`, so the variance in which the
    /// `Vec<i32>` appears is `Covariant.xform(Invariant)`, which
    /// yields `Invariant`. Now, the type `Vec<T>` is covariant with
    /// respect to its type argument `T`, and hence the variance of
    /// the `i32` here is `Invariant.xform(Covariant)`, which results
    /// (again) in `Invariant`.
    ///
    /// Example 2:
    ///
    ///     fn(*const Vec<i32>, *mut Vec<i32)
    ///
    /// The ambient variance is covariant. A `fn` type is
    /// contravariant with respect to its parameters, so the variance
    /// within which both pointer types appear is
    /// `Covariant.xform(Contravariant)`, or `Contravariant`.  `*const
    /// T` is covariant with respect to `T`, so the variance within
    /// which the first `Vec<i32>` appears is
    /// `Contravariant.xform(Covariant)` or `Contravariant`.  The same
    /// is true for its `i32` argument. In the `*mut T` case, the
    /// variance of `Vec<i32>` is `Contravariant.xform(Invariant)`,
    /// and hence the outermost type is `Invariant` with respect to
    /// `Vec<i32>` (and its `i32` argument).
    ///
    /// Source: Figure 1 of "Taming the Wildcards:
    /// Combining Definition- and Use-Site Variance" published in PLDI'11.
    pub fn xform(self, v: ty::Variance) -> ty::Variance {
        match (self, v) {
            // Figure 1, column 1.
            (ty::Covariant, ty::Covariant) => ty::Covariant,
            (ty::Covariant, ty::Contravariant) => ty::Contravariant,
            (ty::Covariant, ty::Invariant) => ty::Invariant,
            (ty::Covariant, ty::Bivariant) => ty::Bivariant,

            // Figure 1, column 2.
            (ty::Contravariant, ty::Covariant) => ty::Contravariant,
            (ty::Contravariant, ty::Contravariant) => ty::Covariant,
            (ty::Contravariant, ty::Invariant) => ty::Invariant,
            (ty::Contravariant, ty::Bivariant) => ty::Bivariant,

            // Figure 1, column 3.
            (ty::Invariant, _) => ty::Invariant,

            // Figure 1, column 4.
            (ty::Bivariant, _) => ty::Bivariant,
        }
    }
}

417 418 419
// Contains information needed to resolve types and (in the future) look up
// the types of AST nodes.
#[derive(Copy, Clone, PartialEq, Eq, Hash)]
420
pub struct CReaderCacheKey {
421 422 423 424
    pub cnum: CrateNum,
    pub pos: usize,
}

425 426 427 428
// Flags that we track on types. These flags are propagated upwards
// through the type during type construction, so that we can quickly
// check whether the type has various kinds of types in it without
// recursing over the type itself.
429
bitflags! {
430 431 432 433 434 435
    pub struct TypeFlags: u32 {
        const HAS_PARAMS         = 1 << 0;
        const HAS_SELF           = 1 << 1;
        const HAS_TY_INFER       = 1 << 2;
        const HAS_RE_INFER       = 1 << 3;
        const HAS_RE_SKOL        = 1 << 4;
436 437 438 439 440

        /// Does this have any `ReEarlyBound` regions? Used to
        /// determine whether substitition is required, since those
        /// represent regions that are bound in a `ty::Generics` and
        /// hence may be substituted.
441
        const HAS_RE_EARLY_BOUND = 1 << 5;
442 443 444

        /// Does this have any region that "appears free" in the type?
        /// Basically anything but `ReLateBound` and `ReErased`.
445
        const HAS_FREE_REGIONS   = 1 << 6;
446 447

        /// Is an error type reachable?
448 449
        const HAS_TY_ERR         = 1 << 7;
        const HAS_PROJECTION     = 1 << 8;
J
John Kåre Alsaker 已提交
450 451

        // FIXME: Rename this to the actual property since it's used for generators too
452
        const HAS_TY_CLOSURE     = 1 << 9;
453 454 455

        // true if there are "names" of types and regions and so forth
        // that are local to a particular fn
456
        const HAS_FREE_LOCAL_NAMES    = 1 << 10;
457

458
        // Present if the type belongs in a local type context.
V
varkor 已提交
459
        // Only set for Infer other than Fresh.
460
        const KEEP_IN_LOCAL_TCX  = 1 << 11;
461

462 463
        // Is there a projection that does not involve a bound region?
        // Currently we can't normalize projections w/ bound regions.
464
        const HAS_NORMALIZABLE_PROJECTION = 1 << 12;
465

466 467 468 469
        // Set if this includes a "canonical" type or region var --
        // ought to be true only for the results of canonicalization.
        const HAS_CANONICAL_VARS = 1 << 13;

470 471 472 473
        /// Does this have any `ReLateBound` regions? Used to check
        /// if a global bound is safe to evaluate.
        const HAS_RE_LATE_BOUND = 1 << 14;

474 475
        const NEEDS_SUBST        = TypeFlags::HAS_PARAMS.bits |
                                   TypeFlags::HAS_SELF.bits |
476
                                   TypeFlags::HAS_RE_EARLY_BOUND.bits;
477 478

        // Flags representing the nominal content of a type,
479 480
        // computed by FlagsComputation. If you add a new nominal
        // flag, it should be added here too.
481 482 483 484
        const NOMINAL_FLAGS     = TypeFlags::HAS_PARAMS.bits |
                                  TypeFlags::HAS_SELF.bits |
                                  TypeFlags::HAS_TY_INFER.bits |
                                  TypeFlags::HAS_RE_INFER.bits |
485
                                  TypeFlags::HAS_RE_SKOL.bits |
486 487
                                  TypeFlags::HAS_RE_EARLY_BOUND.bits |
                                  TypeFlags::HAS_FREE_REGIONS.bits |
488
                                  TypeFlags::HAS_TY_ERR.bits |
489
                                  TypeFlags::HAS_PROJECTION.bits |
490
                                  TypeFlags::HAS_TY_CLOSURE.bits |
491
                                  TypeFlags::HAS_FREE_LOCAL_NAMES.bits |
492
                                  TypeFlags::KEEP_IN_LOCAL_TCX.bits |
493 494
                                  TypeFlags::HAS_CANONICAL_VARS.bits |
                                  TypeFlags::HAS_RE_LATE_BOUND.bits;
495
    }
496 497
}

498
pub struct TyS<'tcx> {
V
varkor 已提交
499
    pub sty: TyKind<'tcx>,
500
    pub flags: TypeFlags,
501

502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519
    /// This is a kind of confusing thing: it stores the smallest
    /// binder such that
    ///
    /// (a) the binder itself captures nothing but
    /// (b) all the late-bound things within the type are captured
    ///     by some sub-binder.
    ///
    /// So, for a type without any late-bound things, like `u32`, this
    /// will be INNERMOST, because that is the innermost binder that
    /// captures nothing. But for a type `&'D u32`, where `'D` is a
    /// late-bound region with debruijn index D, this would be D+1 --
    /// the binder itself does not capture D, but D is captured by an
    /// inner binder.
    ///
    /// We call this concept an "exclusive" binder D (because all
    /// debruijn indices within the type are contained within `0..D`
    /// (exclusive)).
    outer_exclusive_binder: ty::DebruijnIndex,
520 521
}

522 523 524 525 526 527 528 529 530 531 532 533
impl<'tcx> Ord for TyS<'tcx> {
    fn cmp(&self, other: &TyS<'tcx>) -> Ordering {
        self.sty.cmp(&other.sty)
    }
}

impl<'tcx> PartialOrd for TyS<'tcx> {
    fn partial_cmp(&self, other: &TyS<'tcx>) -> Option<Ordering> {
        Some(self.sty.cmp(&other.sty))
    }
}

534
impl<'tcx> PartialEq for TyS<'tcx> {
535
    #[inline]
536
    fn eq(&self, other: &TyS<'tcx>) -> bool {
537
        ptr::eq(self, other)
538 539
    }
}
540
impl<'tcx> Eq for TyS<'tcx> {}
541

A
Alex Crichton 已提交
542 543
impl<'tcx> Hash for TyS<'tcx> {
    fn hash<H: Hasher>(&self, s: &mut H) {
544
        (self as *const TyS<'_>).hash(s)
A
Alex Crichton 已提交
545 546
    }
}
547

G
Guillaume Gomez 已提交
548 549 550
impl<'tcx> TyS<'tcx> {
    pub fn is_primitive_ty(&self) -> bool {
        match self.sty {
551 552 553 554 555
            TyKind::Bool |
                TyKind::Char |
                TyKind::Int(_) |
                TyKind::Uint(_) |
                TyKind::Float(_) |
V
varkor 已提交
556 557 558 559 560
                TyKind::Infer(InferTy::IntVar(_)) |
                TyKind::Infer(InferTy::FloatVar(_)) |
                TyKind::Infer(InferTy::FreshIntTy(_)) |
                TyKind::Infer(InferTy::FreshFloatTy(_)) => true,
            TyKind::Ref(_, x, _) => x.is_primitive_ty(),
G
Guillaume Gomez 已提交
561 562 563
            _ => false,
        }
    }
564 565 566

    pub fn is_suggestable(&self) -> bool {
        match self.sty {
567
            TyKind::Opaque(..) |
V
varkor 已提交
568 569 570 571 572 573
            TyKind::FnDef(..) |
            TyKind::FnPtr(..) |
            TyKind::Dynamic(..) |
            TyKind::Closure(..) |
            TyKind::Infer(..) |
            TyKind::Projection(..) => false,
574 575 576
            _ => true,
        }
    }
G
Guillaume Gomez 已提交
577 578
}

579
impl<'a, 'gcx> HashStable<StableHashingContext<'a>> for ty::TyS<'gcx> {
580
    fn hash_stable<W: StableHasherResult>(&self,
581
                                          hcx: &mut StableHashingContext<'a>,
582 583 584 585 586 587 588
                                          hasher: &mut StableHasher<W>) {
        let ty::TyS {
            ref sty,

            // The other fields just provide fast access to information that is
            // also contained in `sty`, so no need to hash them.
            flags: _,
589 590

            outer_exclusive_binder: _,
591 592 593 594 595 596
        } = *self;

        sty.hash_stable(hcx, hasher);
    }
}

597
pub type Ty<'tcx> = &'tcx TyS<'tcx>;
598

599 600
impl<'tcx> serialize::UseSpecializedEncodable for Ty<'tcx> {}
impl<'tcx> serialize::UseSpecializedDecodable for Ty<'tcx> {}
601

602 603
pub type CanonicalTy<'gcx> = Canonical<'gcx, Ty<'gcx>>;

J
John Kåre Alsaker 已提交
604
extern {
V
varkor 已提交
605 606
    /// A dummy type used to force List to by unsized without requiring fat pointers
    type OpaqueListContents;
J
John Kåre Alsaker 已提交
607 608
}

A
Adam Perry 已提交
609
/// A wrapper for slices with the additional invariant
610 611
/// that the slice is interned and no other slice with
/// the same contents can exist in the same context.
J
John Kåre Alsaker 已提交
612
/// This means we can use pointer for both
613
/// equality comparisons and hashing.
V
varkor 已提交
614
/// Note: `Slice` was already taken by the `Ty`.
J
John Kåre Alsaker 已提交
615
#[repr(C)]
V
varkor 已提交
616
pub struct List<T> {
J
John Kåre Alsaker 已提交
617 618
    len: usize,
    data: [T; 0],
V
varkor 已提交
619
    opaque: OpaqueListContents,
J
John Kåre Alsaker 已提交
620 621
}

V
varkor 已提交
622
unsafe impl<T: Sync> Sync for List<T> {}
J
John Kåre Alsaker 已提交
623

V
varkor 已提交
624
impl<T: Copy> List<T> {
J
John Kåre Alsaker 已提交
625
    #[inline]
V
varkor 已提交
626
    fn from_arena<'tcx>(arena: &'tcx SyncDroplessArena, slice: &[T]) -> &'tcx List<T> {
J
John Kåre Alsaker 已提交
627 628 629 630
        assert!(!mem::needs_drop::<T>());
        assert!(mem::size_of::<T>() != 0);
        assert!(slice.len() != 0);

J
John Kåre Alsaker 已提交
631 632 633 634 635 636
        // Align up the size of the len (usize) field
        let align = mem::align_of::<T>();
        let align_mask = align - 1;
        let offset = mem::size_of::<usize>();
        let offset = (offset + align_mask) & !align_mask;

J
John Kåre Alsaker 已提交
637 638
        let size = offset + slice.len() * mem::size_of::<T>();

J
John Kåre Alsaker 已提交
639
        let mem = arena.alloc_raw(
J
John Kåre Alsaker 已提交
640
            size,
J
John Kåre Alsaker 已提交
641
            cmp::max(mem::align_of::<T>(), mem::align_of::<usize>()));
J
John Kåre Alsaker 已提交
642
        unsafe {
V
varkor 已提交
643
            let result = &mut *(mem.as_mut_ptr() as *mut List<T>);
J
John Kåre Alsaker 已提交
644
            // Write the length
J
John Kåre Alsaker 已提交
645
            result.len = slice.len();
J
John Kåre Alsaker 已提交
646 647

            // Write the elements
J
John Kåre Alsaker 已提交
648
            let arena_slice = slice::from_raw_parts_mut(result.data.as_mut_ptr(), result.len);
J
John Kåre Alsaker 已提交
649 650
            arena_slice.copy_from_slice(slice);

J
John Kåre Alsaker 已提交
651
            result
J
John Kåre Alsaker 已提交
652 653 654 655
        }
    }
}

V
varkor 已提交
656
impl<T: fmt::Debug> fmt::Debug for List<T> {
657
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
J
John Kåre Alsaker 已提交
658 659 660 661
        (**self).fmt(f)
    }
}

V
varkor 已提交
662
impl<T: Encodable> Encodable for List<T> {
J
John Kåre Alsaker 已提交
663 664 665 666 667
    #[inline]
    fn encode<S: Encoder>(&self, s: &mut S) -> Result<(), S::Error> {
        (**self).encode(s)
    }
}
668

V
varkor 已提交
669 670
impl<T> Ord for List<T> where T: Ord {
    fn cmp(&self, other: &List<T>) -> Ordering {
671
        if self == other { Ordering::Equal } else {
J
John Kåre Alsaker 已提交
672
            <[T] as Ord>::cmp(&**self, &**other)
673 674 675 676
        }
    }
}

V
varkor 已提交
677 678
impl<T> PartialOrd for List<T> where T: PartialOrd {
    fn partial_cmp(&self, other: &List<T>) -> Option<Ordering> {
679
        if self == other { Some(Ordering::Equal) } else {
J
John Kåre Alsaker 已提交
680
            <[T] as PartialOrd>::partial_cmp(&**self, &**other)
681 682 683 684
        }
    }
}

V
varkor 已提交
685
impl<T: PartialEq> PartialEq for List<T> {
686
    #[inline]
V
varkor 已提交
687
    fn eq(&self, other: &List<T>) -> bool {
688
        ptr::eq(self, other)
689 690
    }
}
V
varkor 已提交
691
impl<T: Eq> Eq for List<T> {}
692

V
varkor 已提交
693
impl<T> Hash for List<T> {
J
John Kåre Alsaker 已提交
694
    #[inline]
695
    fn hash<H: Hasher>(&self, s: &mut H) {
V
varkor 已提交
696
        (self as *const List<T>).hash(s)
697 698 699
    }
}

V
varkor 已提交
700
impl<T> Deref for List<T> {
701
    type Target = [T];
J
John Kåre Alsaker 已提交
702
    #[inline(always)]
703
    fn deref(&self) -> &[T] {
J
John Kåre Alsaker 已提交
704
        unsafe {
J
John Kåre Alsaker 已提交
705
            slice::from_raw_parts(self.data.as_ptr(), self.len)
J
John Kåre Alsaker 已提交
706
        }
707 708 709
    }
}

V
varkor 已提交
710
impl<'a, T> IntoIterator for &'a List<T> {
711 712
    type Item = &'a T;
    type IntoIter = <&'a [T] as IntoIterator>::IntoIter;
J
John Kåre Alsaker 已提交
713
    #[inline(always)]
714 715 716 717 718
    fn into_iter(self) -> Self::IntoIter {
        self[..].iter()
    }
}

V
varkor 已提交
719
impl<'tcx> serialize::UseSpecializedDecodable for &'tcx List<Ty<'tcx>> {}
720

V
varkor 已提交
721
impl<T> List<T> {
J
John Kåre Alsaker 已提交
722
    #[inline(always)]
V
varkor 已提交
723
    pub fn empty<'a>() -> &'a List<T> {
J
John Kåre Alsaker 已提交
724 725 726 727
        #[repr(align(64), C)]
        struct EmptySlice([u8; 64]);
        static EMPTY_SLICE: EmptySlice = EmptySlice([0; 64]);
        assert!(mem::align_of::<T>() <= 64);
728
        unsafe {
V
varkor 已提交
729
            &*(&EMPTY_SLICE as *const _ as *const List<T>)
730 731 732 733
        }
    }
}

S
Steve Klabnik 已提交
734 735 736
/// Upvars do not get their own node-id. Instead, we use the pair of
/// the original var id (that is, the root variable that is referenced
/// by the upvar) and the id of the closure expression.
737
#[derive(Clone, Copy, PartialEq, Eq, Hash, RustcEncodable, RustcDecodable)]
738
pub struct UpvarId {
739
    pub var_id: hir::HirId,
740
    pub closure_expr_id: LocalDefId,
741 742
}

J
Jorge Aparicio 已提交
743
#[derive(Clone, PartialEq, Eq, Hash, Debug, RustcEncodable, RustcDecodable, Copy)]
744 745 746 747 748 749
pub enum BorrowKind {
    /// Data must be immutable and is aliasable.
    ImmBorrow,

    /// Data must be immutable but not aliasable.  This kind of borrow
    /// cannot currently be expressed by the user and is used only in
K
king6cong 已提交
750
    /// implicit closure bindings. It is needed when the closure
751 752
    /// is borrowing or mutating a mutable referent, e.g.:
    ///
753
    ///    let x: &mut isize = ...;
754 755 756 757 758
    ///    let y = || *x += 5;
    ///
    /// If we were to try to translate this closure into a more explicit
    /// form, we'd encounter an error with the code as written:
    ///
759 760
    ///    struct Env { x: & &mut isize }
    ///    let x: &mut isize = ...;
761 762 763 764 765 766 767
    ///    let y = (&mut Env { &x }, fn_ptr);  // Closure is pair of env and fn
    ///    fn fn_ptr(env: &mut Env) { **env.x += 5; }
    ///
    /// This is then illegal because you cannot mutate a `&mut` found
    /// in an aliasable location. To solve, you'd have to translate with
    /// an `&mut` borrow:
    ///
768 769
    ///    struct Env { x: & &mut isize }
    ///    let x: &mut isize = ...;
770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788
    ///    let y = (&mut Env { &mut x }, fn_ptr); // changed from &x to &mut x
    ///    fn fn_ptr(env: &mut Env) { **env.x += 5; }
    ///
    /// Now the assignment to `**env.x` is legal, but creating a
    /// mutable pointer to `x` is not because `x` is not mutable. We
    /// could fix this by declaring `x` as `let mut x`. This is ok in
    /// user code, if awkward, but extra weird for closures, since the
    /// borrow is hidden.
    ///
    /// So we introduce a "unique imm" borrow -- the referent is
    /// immutable, but not aliasable. This solves the problem. For
    /// simplicity, we don't give users the way to express this
    /// borrow, it's just used when translating closures.
    UniqueImmBorrow,

    /// Data is mutable and not aliasable.
    MutBorrow
}

789 790
/// Information describing the capture of an upvar. This is computed
/// during `typeck`, specifically by `regionck`.
791
#[derive(PartialEq, Clone, Debug, Copy, RustcEncodable, RustcDecodable)]
792
pub enum UpvarCapture<'tcx> {
793 794 795 796 797 798
    /// Upvar is captured by value. This is always true when the
    /// closure is labeled `move`, but can also be true in other cases
    /// depending on inference.
    ByValue,

    /// Upvar is captured by reference.
799
    ByRef(UpvarBorrow<'tcx>),
800 801
}

802
#[derive(PartialEq, Clone, Copy, RustcEncodable, RustcDecodable)]
803
pub struct UpvarBorrow<'tcx> {
804 805 806
    /// The kind of borrow: by-ref upvars have access to shared
    /// immutable borrows, which are not part of the normal language
    /// syntax.
807
    pub kind: BorrowKind,
808 809

    /// Region of the resulting reference.
N
Niko Matsakis 已提交
810
    pub region: ty::Region<'tcx>,
811 812
}

813
pub type UpvarCaptureMap<'tcx> = FxHashMap<UpvarId, UpvarCapture<'tcx>>;
814

815 816
#[derive(Copy, Clone)]
pub struct ClosureUpvar<'tcx> {
817
    pub def: Def,
818 819 820 821
    pub span: Span,
    pub ty: Ty<'tcx>,
}

822
#[derive(Clone, Copy, PartialEq, Eq)]
823
pub enum IntVarValue {
824 825
    IntType(ast::IntTy),
    UintType(ast::UintTy),
826 827
}

828 829 830
#[derive(Clone, Copy, PartialEq, Eq)]
pub struct FloatVarValue(pub ast::FloatTy);

831
impl ty::EarlyBoundRegion {
832
    pub fn to_bound_region(&self) -> ty::BoundRegion {
833
        ty::BoundRegion::BrNamed(self.def_id, self.name)
834
    }
835 836 837 838 839 840

    /// Does this early bound region have a name? Early bound regions normally
    /// always have names except when using anonymous lifetimes (`'_`).
    pub fn has_name(&self) -> bool {
        self.name != keywords::UnderscoreLifetime.name().as_interned_str()
    }
841 842
}

V
varkor 已提交
843
#[derive(Clone, Debug, RustcEncodable, RustcDecodable)]
844
pub enum GenericParamDefKind {
V
varkor 已提交
845
    Lifetime,
846 847 848 849 850
    Type {
        has_default: bool,
        object_lifetime_default: ObjectLifetimeDefault,
        synthetic: Option<hir::SyntheticTyParamKind>,
    }
V
varkor 已提交
851 852
}

853 854 855 856 857
#[derive(Clone, RustcEncodable, RustcDecodable)]
pub struct GenericParamDef {
    pub name: InternedString,
    pub def_id: DefId,
    pub index: u32,
V
varkor 已提交
858 859 860 861 862 863

    /// `pure_wrt_drop`, set by the (unsafe) `#[may_dangle]` attribute
    /// on generic parameter `'a`/`T`, asserts data behind the parameter
    /// `'a`/`T` won't be accessed during the parent type's `Drop` impl.
    pub pure_wrt_drop: bool,

864 865 866
    pub kind: GenericParamDefKind,
}

V
varkor 已提交
867
impl GenericParamDef {
868
    pub fn to_early_bound_region_data(&self) -> ty::EarlyBoundRegion {
L
ljedrz 已提交
869 870 871 872 873
        if let GenericParamDefKind::Lifetime = self.kind {
            ty::EarlyBoundRegion {
                def_id: self.def_id,
                index: self.index,
                name: self.name,
874
            }
L
ljedrz 已提交
875 876
        } else {
            bug!("cannot convert a non-lifetime parameter def to an early bound region")
877 878 879 880
        }
    }

    pub fn to_bound_region(&self) -> ty::BoundRegion {
L
ljedrz 已提交
881 882 883 884
        if let GenericParamDefKind::Lifetime = self.kind {
            self.to_early_bound_region_data().to_bound_region()
        } else {
            bug!("cannot convert a non-lifetime parameter def to an early bound region")
V
varkor 已提交
885 886 887 888
        }
    }
}

V
varkor 已提交
889
#[derive(Default)]
890 891 892 893 894
pub struct GenericParamCount {
    pub lifetimes: usize,
    pub types: usize,
}

895
/// Information about the formal type/lifetime parameters associated
896
/// with an item or method. Analogous to hir::Generics.
A
Ariel Ben-Yehuda 已提交
897
///
898 899
/// The ordering of parameters is the same as in Subst (excluding child generics):
/// Self (optionally), Lifetime params..., Type params...
900
#[derive(Clone, Debug, RustcEncodable, RustcDecodable)]
901
pub struct Generics {
902
    pub parent: Option<DefId>,
V
varkor 已提交
903
    pub parent_count: usize,
V
varkor 已提交
904
    pub params: Vec<GenericParamDef>,
905

V
varkor 已提交
906
    /// Reverse map to the `index` field of each `GenericParamDef`
907
    pub param_def_id_to_index: FxHashMap<DefId, u32>,
908

909
    pub has_self: bool,
910
    pub has_late_bound_regions: Option<Span>,
911 912
}

913
impl<'a, 'gcx, 'tcx> Generics {
914
    pub fn count(&self) -> usize {
V
varkor 已提交
915
        self.parent_count + self.params.len()
916
    }
917

V
varkor 已提交
918
    pub fn own_counts(&self) -> GenericParamCount {
919 920 921
        // We could cache this as a property of `GenericParamCount`, but
        // the aim is to refactor this away entirely eventually and the
        // presence of this method will be a constant reminder.
V
varkor 已提交
922
        let mut own_counts: GenericParamCount = Default::default();
923

V
varkor 已提交
924
        for param in &self.params {
925
            match param.kind {
V
varkor 已提交
926
                GenericParamDefKind::Lifetime => own_counts.lifetimes += 1,
927
                GenericParamDefKind::Type { .. } => own_counts.types += 1,
928 929 930
            };
        }

V
varkor 已提交
931
        own_counts
932 933
    }

934
    pub fn requires_monomorphization(&self, tcx: TyCtxt<'a, 'gcx, 'tcx>) -> bool {
V
varkor 已提交
935
        for param in &self.params {
936
            match param.kind {
V
varkor 已提交
937
                GenericParamDefKind::Type { .. } => return true,
V
varkor 已提交
938
                GenericParamDefKind::Lifetime => {}
V
varkor 已提交
939
            }
V
varkor 已提交
940 941 942
        }
        if let Some(parent_def_id) = self.parent {
            let parent = tcx.generics_of(parent_def_id);
943
            parent.requires_monomorphization(tcx)
V
varkor 已提交
944 945 946
        } else {
            false
        }
V
varkor 已提交
947 948
    }

949 950 951
    pub fn region_param(&'tcx self,
                        param: &EarlyBoundRegion,
                        tcx: TyCtxt<'a, 'gcx, 'tcx>)
952
                        -> &'tcx GenericParamDef
953
    {
V
varkor 已提交
954
        if let Some(index) = param.index.checked_sub(self.parent_count as u32) {
V
varkor 已提交
955
            let param = &self.params[index as usize];
956
            match param.kind {
V
varkor 已提交
957
                ty::GenericParamDefKind::Lifetime => param,
V
varkor 已提交
958
                _ => bug!("expected lifetime parameter, but found another generic parameter")
V
varkor 已提交
959
            }
960 961
        } else {
            tcx.generics_of(self.parent.expect("parent_count>0 but no parent?"))
L
ljedrz 已提交
962
               .region_param(param, tcx)
963
        }
964 965
    }

966
    /// Returns the `GenericParamDef` associated with this `ParamTy`.
967 968
    pub fn type_param(&'tcx self,
                      param: &ParamTy,
A
Ariel Ben-Yehuda 已提交
969
                      tcx: TyCtxt<'a, 'gcx, 'tcx>)
970
                      -> &'tcx GenericParamDef {
971
        if let Some(index) = param.idx.checked_sub(self.parent_count as u32) {
V
varkor 已提交
972 973
            let param = &self.params[index as usize];
            match param.kind {
974
                ty::GenericParamDefKind::Type {..} => param,
V
varkor 已提交
975 976
                _ => bug!("expected type parameter, but found another generic parameter")
            }
977 978
        } else {
            tcx.generics_of(self.parent.expect("parent_count>0 but no parent?"))
L
ljedrz 已提交
979
               .type_param(param, tcx)
980
        }
981
    }
982 983
}

984
/// Bounds on generics.
985
#[derive(Clone, Default)]
986
pub struct GenericPredicates<'tcx> {
987
    pub parent: Option<DefId>,
988
    pub predicates: Vec<(Predicate<'tcx>, Span)>,
989 990
}

991 992 993
impl<'tcx> serialize::UseSpecializedEncodable for GenericPredicates<'tcx> {}
impl<'tcx> serialize::UseSpecializedDecodable for GenericPredicates<'tcx> {}

994 995
impl<'a, 'gcx, 'tcx> GenericPredicates<'tcx> {
    pub fn instantiate(&self, tcx: TyCtxt<'a, 'gcx, 'tcx>, substs: &Substs<'tcx>)
996
                       -> InstantiatedPredicates<'tcx> {
997 998 999 1000 1001 1002
        let mut instantiated = InstantiatedPredicates::empty();
        self.instantiate_into(tcx, &mut instantiated, substs);
        instantiated
    }
    pub fn instantiate_own(&self, tcx: TyCtxt<'a, 'gcx, 'tcx>, substs: &Substs<'tcx>)
                           -> InstantiatedPredicates<'tcx> {
1003
        InstantiatedPredicates {
1004
            predicates: self.predicates.iter().map(|(p, _)| p.subst(tcx, substs)).collect(),
1005 1006 1007 1008 1009 1010 1011
        }
    }

    fn instantiate_into(&self, tcx: TyCtxt<'a, 'gcx, 'tcx>,
                        instantiated: &mut InstantiatedPredicates<'tcx>,
                        substs: &Substs<'tcx>) {
        if let Some(def_id) = self.parent {
1012
            tcx.predicates_of(def_id).instantiate_into(tcx, instantiated, substs);
1013
        }
1014 1015 1016
        instantiated.predicates.extend(
            self.predicates.iter().map(|(p, _)| p.subst(tcx, substs)),
        );
1017
    }
1018

1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030
    pub fn instantiate_identity(&self, tcx: TyCtxt<'a, 'gcx, 'tcx>)
                                -> InstantiatedPredicates<'tcx> {
        let mut instantiated = InstantiatedPredicates::empty();
        self.instantiate_identity_into(tcx, &mut instantiated);
        instantiated
    }

    fn instantiate_identity_into(&self, tcx: TyCtxt<'a, 'gcx, 'tcx>,
                                 instantiated: &mut InstantiatedPredicates<'tcx>) {
        if let Some(def_id) = self.parent {
            tcx.predicates_of(def_id).instantiate_identity_into(tcx, instantiated);
        }
1031
        instantiated.predicates.extend(self.predicates.iter().map(|&(p, _)| p))
1032 1033
    }

1034
    pub fn instantiate_supertrait(&self, tcx: TyCtxt<'a, 'gcx, 'tcx>,
1035 1036 1037
                                  poly_trait_ref: &ty::PolyTraitRef<'tcx>)
                                  -> InstantiatedPredicates<'tcx>
    {
1038
        assert_eq!(self.parent, None);
1039
        InstantiatedPredicates {
1040
            predicates: self.predicates.iter().map(|(pred, _)| {
1041
                pred.subst_supertrait(tcx, poly_trait_ref)
1042
            }).collect()
1043 1044
        }
    }
1045 1046
}

1047
#[derive(Clone, Copy, PartialEq, Eq, Hash, RustcEncodable, RustcDecodable)]
1048
pub enum Predicate<'tcx> {
N
Niko Matsakis 已提交
1049 1050
    /// Corresponds to `where Foo : Bar<A,B,C>`. `Foo` here would be
    /// the `Self` type of the trait reference and `A`, `B`, and `C`
1051
    /// would be the type parameters.
1052
    Trait(PolyTraitPredicate<'tcx>),
1053 1054

    /// where 'a : 'b
1055
    RegionOutlives(PolyRegionOutlivesPredicate<'tcx>),
1056 1057

    /// where T : 'a
1058
    TypeOutlives(PolyTypeOutlivesPredicate<'tcx>),
1059

N
Niko Matsakis 已提交
1060 1061
    /// where <T as TraitRef>::Name == X, approximately.
    /// See `ProjectionPredicate` struct for details.
1062
    Projection(PolyProjectionPredicate<'tcx>),
1063 1064 1065 1066 1067

    /// no syntax: T WF
    WellFormed(Ty<'tcx>),

    /// trait must be object-safe
N
Niko Matsakis 已提交
1068
    ObjectSafe(DefId),
1069

1070 1071 1072
    /// No direct syntax. May be thought of as `where T : FnFoo<...>`
    /// for some substitutions `...` and T being a closure type.
    /// Satisfied (or refuted) once we know the closure's kind.
1073
    ClosureKind(DefId, ClosureSubsts<'tcx>, ClosureKind),
N
Niko Matsakis 已提交
1074 1075 1076

    /// `T1 <: T2`
    Subtype(PolySubtypePredicate<'tcx>),
1077 1078 1079

    /// Constant initializer must evaluate successfully.
    ConstEvaluatable(DefId, &'tcx Substs<'tcx>),
1080 1081
}

1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097
/// The crate outlives map is computed during typeck and contains the
/// outlives of every item in the local crate. You should not use it
/// directly, because to do so will make your pass dependent on the
/// HIR of every item in the local crate. Instead, use
/// `tcx.inferred_outlives_of()` to get the outlives for a *particular*
/// item.
pub struct CratePredicatesMap<'tcx> {
    /// For each struct with outlive bounds, maps to a vector of the
    /// predicate of its outlive bounds. If an item has no outlives
    /// bounds, it will have no entry.
    pub predicates: FxHashMap<DefId, Lrc<Vec<ty::Predicate<'tcx>>>>,

    /// An empty vector, useful for cloning.
    pub empty_predicate: Lrc<Vec<ty::Predicate<'tcx>>>,
}

1098 1099 1100 1101 1102 1103
impl<'tcx> AsRef<Predicate<'tcx>> for Predicate<'tcx> {
    fn as_ref(&self) -> &Predicate<'tcx> {
        self
    }
}

1104
impl<'a, 'gcx, 'tcx> Predicate<'tcx> {
1105
    /// Performs a substitution suitable for going from a
1106 1107 1108 1109
    /// poly-trait-ref to supertraits that must hold if that
    /// poly-trait-ref holds. This is slightly different from a normal
    /// substitution in terms of what happens with bound regions.  See
    /// lengthy comment below for details.
1110
    pub fn subst_supertrait(&self, tcx: TyCtxt<'a, 'gcx, 'tcx>,
1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173
                            trait_ref: &ty::PolyTraitRef<'tcx>)
                            -> ty::Predicate<'tcx>
    {
        // The interaction between HRTB and supertraits is not entirely
        // obvious. Let me walk you (and myself) through an example.
        //
        // Let's start with an easy case. Consider two traits:
        //
        //     trait Foo<'a> : Bar<'a,'a> { }
        //     trait Bar<'b,'c> { }
        //
        // Now, if we have a trait reference `for<'x> T : Foo<'x>`, then
        // we can deduce that `for<'x> T : Bar<'x,'x>`. Basically, if we
        // knew that `Foo<'x>` (for any 'x) then we also know that
        // `Bar<'x,'x>` (for any 'x). This more-or-less falls out from
        // normal substitution.
        //
        // In terms of why this is sound, the idea is that whenever there
        // is an impl of `T:Foo<'a>`, it must show that `T:Bar<'a,'a>`
        // holds.  So if there is an impl of `T:Foo<'a>` that applies to
        // all `'a`, then we must know that `T:Bar<'a,'a>` holds for all
        // `'a`.
        //
        // Another example to be careful of is this:
        //
        //     trait Foo1<'a> : for<'b> Bar1<'a,'b> { }
        //     trait Bar1<'b,'c> { }
        //
        // Here, if we have `for<'x> T : Foo1<'x>`, then what do we know?
        // The answer is that we know `for<'x,'b> T : Bar1<'x,'b>`. The
        // reason is similar to the previous example: any impl of
        // `T:Foo1<'x>` must show that `for<'b> T : Bar1<'x, 'b>`.  So
        // basically we would want to collapse the bound lifetimes from
        // the input (`trait_ref`) and the supertraits.
        //
        // To achieve this in practice is fairly straightforward. Let's
        // consider the more complicated scenario:
        //
        // - We start out with `for<'x> T : Foo1<'x>`. In this case, `'x`
        //   has a De Bruijn index of 1. We want to produce `for<'x,'b> T : Bar1<'x,'b>`,
        //   where both `'x` and `'b` would have a DB index of 1.
        //   The substitution from the input trait-ref is therefore going to be
        //   `'a => 'x` (where `'x` has a DB index of 1).
        // - The super-trait-ref is `for<'b> Bar1<'a,'b>`, where `'a` is an
        //   early-bound parameter and `'b' is a late-bound parameter with a
        //   DB index of 1.
        // - If we replace `'a` with `'x` from the input, it too will have
        //   a DB index of 1, and thus we'll have `for<'x,'b> Bar1<'x,'b>`
        //   just as we wanted.
        //
        // There is only one catch. If we just apply the substitution `'a
        // => 'x` to `for<'b> Bar1<'a,'b>`, the substitution code will
        // adjust the DB index because we substituting into a binder (it
        // tries to be so smart...) resulting in `for<'x> for<'b>
        // Bar1<'x,'b>` (we have no syntax for this, so use your
        // imagination). Basically the 'x will have DB index of 2 and 'b
        // will have DB index of 1. Not quite what we want. So we apply
        // the substitution to the *contents* of the trait reference,
        // rather than the trait reference itself (put another way, the
        // substitution code expects equal binding levels in the values
        // from the substitution and the value being substituted into, and
        // this trick achieves that).

1174
        let substs = &trait_ref.skip_binder().substs;
1175
        match *self {
1176 1177 1178 1179 1180 1181 1182 1183 1184 1185
            Predicate::Trait(ref binder) =>
                Predicate::Trait(binder.map_bound(|data| data.subst(tcx, substs))),
            Predicate::Subtype(ref binder) =>
                Predicate::Subtype(binder.map_bound(|data| data.subst(tcx, substs))),
            Predicate::RegionOutlives(ref binder) =>
                Predicate::RegionOutlives(binder.map_bound(|data| data.subst(tcx, substs))),
            Predicate::TypeOutlives(ref binder) =>
                Predicate::TypeOutlives(binder.map_bound(|data| data.subst(tcx, substs))),
            Predicate::Projection(ref binder) =>
                Predicate::Projection(binder.map_bound(|data| data.subst(tcx, substs))),
1186 1187 1188 1189
            Predicate::WellFormed(data) =>
                Predicate::WellFormed(data.subst(tcx, substs)),
            Predicate::ObjectSafe(trait_def_id) =>
                Predicate::ObjectSafe(trait_def_id),
1190 1191
            Predicate::ClosureKind(closure_def_id, closure_substs, kind) =>
                Predicate::ClosureKind(closure_def_id, closure_substs.subst(tcx, substs), kind),
1192 1193
            Predicate::ConstEvaluatable(def_id, const_substs) =>
                Predicate::ConstEvaluatable(def_id, const_substs.subst(tcx, substs)),
1194 1195 1196 1197
        }
    }
}

1198
#[derive(Clone, Copy, PartialEq, Eq, Hash, RustcEncodable, RustcDecodable)]
1199
pub struct TraitPredicate<'tcx> {
1200
    pub trait_ref: TraitRef<'tcx>
1201 1202 1203 1204
}
pub type PolyTraitPredicate<'tcx> = ty::Binder<TraitPredicate<'tcx>>;

impl<'tcx> TraitPredicate<'tcx> {
N
Niko Matsakis 已提交
1205
    pub fn def_id(&self) -> DefId {
1206 1207 1208
        self.trait_ref.def_id
    }

1209
    pub fn input_types<'a>(&'a self) -> impl DoubleEndedIterator<Item=Ty<'tcx>> + 'a {
1210
        self.trait_ref.input_types()
1211 1212 1213 1214 1215 1216 1217 1218
    }

    pub fn self_ty(&self) -> Ty<'tcx> {
        self.trait_ref.self_ty()
    }
}

impl<'tcx> PolyTraitPredicate<'tcx> {
N
Niko Matsakis 已提交
1219
    pub fn def_id(&self) -> DefId {
1220
        // ok to skip binder since trait def-id does not care about regions
1221
        self.skip_binder().def_id()
1222
    }
1223 1224
}

1225
#[derive(Clone, Copy, PartialEq, Eq, PartialOrd, Ord, Hash, Debug, RustcEncodable, RustcDecodable)]
1226 1227
pub struct OutlivesPredicate<A,B>(pub A, pub B); // `A : B`
pub type PolyOutlivesPredicate<A,B> = ty::Binder<OutlivesPredicate<A,B>>;
S
scalexm 已提交
1228 1229 1230 1231 1232 1233
pub type RegionOutlivesPredicate<'tcx> = OutlivesPredicate<ty::Region<'tcx>,
                                                           ty::Region<'tcx>>;
pub type TypeOutlivesPredicate<'tcx> = OutlivesPredicate<Ty<'tcx>,
                                                         ty::Region<'tcx>>;
pub type PolyRegionOutlivesPredicate<'tcx> = ty::Binder<RegionOutlivesPredicate<'tcx>>;
pub type PolyTypeOutlivesPredicate<'tcx> = ty::Binder<TypeOutlivesPredicate<'tcx>>;
1234

1235
#[derive(Clone, Copy, PartialEq, Eq, Hash, Debug, RustcEncodable, RustcDecodable)]
N
Niko Matsakis 已提交
1236 1237 1238 1239 1240 1241 1242
pub struct SubtypePredicate<'tcx> {
    pub a_is_expected: bool,
    pub a: Ty<'tcx>,
    pub b: Ty<'tcx>
}
pub type PolySubtypePredicate<'tcx> = ty::Binder<SubtypePredicate<'tcx>>;

1243 1244 1245 1246 1247 1248 1249 1250 1251
/// This kind of predicate has no *direct* correspondent in the
/// syntax, but it roughly corresponds to the syntactic forms:
///
/// 1. `T : TraitRef<..., Item=Type>`
/// 2. `<T as TraitRef<...>>::Item == Type` (NYI)
///
/// In particular, form #1 is "desugared" to the combination of a
/// normal trait predicate (`T : TraitRef<...>`) and one of these
/// predicates. Form #2 is a broader form in that it also permits
1252 1253
/// equality between arbitrary types. Processing an instance of
/// Form #2 eventually yields one of these `ProjectionPredicate`
1254
/// instances to normalize the LHS.
1255
#[derive(Copy, Clone, PartialEq, Eq, Hash, RustcEncodable, RustcDecodable)]
1256 1257 1258 1259 1260 1261 1262
pub struct ProjectionPredicate<'tcx> {
    pub projection_ty: ProjectionTy<'tcx>,
    pub ty: Ty<'tcx>,
}

pub type PolyProjectionPredicate<'tcx> = Binder<ProjectionPredicate<'tcx>>;

1263
impl<'tcx> PolyProjectionPredicate<'tcx> {
1264 1265 1266 1267 1268
    /// Returns the def-id of the associated item being projected.
    pub fn item_def_id(&self) -> DefId {
        self.skip_binder().projection_ty.item_def_id
    }

1269
    pub fn to_poly_trait_ref(&self, tcx: TyCtxt<'_, '_, '_>) -> PolyTraitRef<'tcx> {
1270 1271 1272 1273 1274
        // Note: unlike with TraitRef::to_poly_trait_ref(),
        // self.0.trait_ref is permitted to have escaping regions.
        // This is because here `self` has a `Binder` and so does our
        // return value, so we are preserving the number of binding
        // levels.
1275
        self.map_bound(|predicate| predicate.projection_ty.trait_ref(tcx))
1276
    }
1277 1278

    pub fn ty(&self) -> Binder<Ty<'tcx>> {
1279 1280 1281 1282 1283 1284 1285 1286 1287 1288
        self.map_bound(|predicate| predicate.ty)
    }

    /// The DefId of the TraitItem for the associated type.
    ///
    /// Note that this is not the DefId of the TraitRef containing this
    /// associated type, which is in tcx.associated_item(projection_def_id()).container.
    pub fn projection_def_id(&self) -> DefId {
        // ok to skip binder since trait def-id does not care about regions
        self.skip_binder().projection_ty.item_def_id
1289
    }
1290 1291
}

1292 1293 1294 1295
pub trait ToPolyTraitRef<'tcx> {
    fn to_poly_trait_ref(&self) -> PolyTraitRef<'tcx>;
}

1296
impl<'tcx> ToPolyTraitRef<'tcx> for TraitRef<'tcx> {
1297
    fn to_poly_trait_ref(&self) -> PolyTraitRef<'tcx> {
1298
        ty::Binder::dummy(self.clone())
1299 1300 1301 1302 1303
    }
}

impl<'tcx> ToPolyTraitRef<'tcx> for PolyTraitPredicate<'tcx> {
    fn to_poly_trait_ref(&self) -> PolyTraitRef<'tcx> {
1304
        self.map_bound_ref(|trait_pred| trait_pred.trait_ref)
1305 1306 1307
    }
}

1308 1309
pub trait ToPredicate<'tcx> {
    fn to_predicate(&self) -> Predicate<'tcx>;
1310 1311
}

1312 1313
impl<'tcx> ToPredicate<'tcx> for TraitRef<'tcx> {
    fn to_predicate(&self) -> Predicate<'tcx> {
1314
        ty::Predicate::Trait(ty::Binder::dummy(ty::TraitPredicate {
1315 1316 1317 1318 1319
            trait_ref: self.clone()
        }))
    }
}

1320 1321
impl<'tcx> ToPredicate<'tcx> for PolyTraitRef<'tcx> {
    fn to_predicate(&self) -> Predicate<'tcx> {
1322
        ty::Predicate::Trait(self.to_poly_trait_predicate())
1323 1324 1325
    }
}

1326
impl<'tcx> ToPredicate<'tcx> for PolyRegionOutlivesPredicate<'tcx> {
1327
    fn to_predicate(&self) -> Predicate<'tcx> {
1328 1329 1330 1331
        Predicate::RegionOutlives(self.clone())
    }
}

1332 1333
impl<'tcx> ToPredicate<'tcx> for PolyTypeOutlivesPredicate<'tcx> {
    fn to_predicate(&self) -> Predicate<'tcx> {
1334 1335
        Predicate::TypeOutlives(self.clone())
    }
1336 1337
}

1338 1339
impl<'tcx> ToPredicate<'tcx> for PolyProjectionPredicate<'tcx> {
    fn to_predicate(&self) -> Predicate<'tcx> {
1340 1341 1342 1343
        Predicate::Projection(self.clone())
    }
}

1344
impl<'tcx> Predicate<'tcx> {
1345 1346 1347 1348 1349 1350
    /// Iterates over the types in this predicate. Note that in all
    /// cases this is skipping over a binder, so late-bound regions
    /// with depth 0 are bound by the predicate.
    pub fn walk_tys(&self) -> IntoIter<Ty<'tcx>> {
        let vec: Vec<_> = match *self {
            ty::Predicate::Trait(ref data) => {
1351
                data.skip_binder().input_types().collect()
1352
            }
1353 1354
            ty::Predicate::Subtype(binder) => {
                let SubtypePredicate { a, b, a_is_expected: _ } = binder.skip_binder();
N
Niko Matsakis 已提交
1355 1356
                vec![a, b]
            }
1357 1358
            ty::Predicate::TypeOutlives(binder) => {
                vec![binder.skip_binder().0]
1359 1360 1361 1362 1363
            }
            ty::Predicate::RegionOutlives(..) => {
                vec![]
            }
            ty::Predicate::Projection(ref data) => {
1364 1365
                let inner = data.skip_binder();
                inner.projection_ty.substs.types().chain(Some(inner.ty)).collect()
1366
            }
1367 1368 1369 1370 1371 1372
            ty::Predicate::WellFormed(data) => {
                vec![data]
            }
            ty::Predicate::ObjectSafe(_trait_def_id) => {
                vec![]
            }
1373 1374
            ty::Predicate::ClosureKind(_closure_def_id, closure_substs, _kind) => {
                closure_substs.substs.types().collect()
1375
            }
1376 1377 1378
            ty::Predicate::ConstEvaluatable(_, substs) => {
                substs.types().collect()
            }
1379 1380
        };

L
ljedrz 已提交
1381
        // FIXME: The only reason to collect into a vector here is that I was
1382 1383 1384 1385 1386 1387 1388
        // too lazy to make the full (somewhat complicated) iterator
        // type that would be needed here. But I wanted this fn to
        // return an iterator conceptually, rather than a `Vec`, so as
        // to be closer to `Ty::walk`.
        vec.into_iter()
    }

1389
    pub fn to_opt_poly_trait_ref(&self) -> Option<PolyTraitRef<'tcx>> {
1390 1391
        match *self {
            Predicate::Trait(ref t) => {
1392
                Some(t.to_poly_trait_ref())
1393
            }
1394
            Predicate::Projection(..) |
N
Niko Matsakis 已提交
1395
            Predicate::Subtype(..) |
1396
            Predicate::RegionOutlives(..) |
1397 1398
            Predicate::WellFormed(..) |
            Predicate::ObjectSafe(..) |
1399
            Predicate::ClosureKind(..) |
1400 1401
            Predicate::TypeOutlives(..) |
            Predicate::ConstEvaluatable(..) => {
1402 1403
                None
            }
1404 1405
        }
    }
1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423

    pub fn to_opt_type_outlives(&self) -> Option<PolyTypeOutlivesPredicate<'tcx>> {
        match *self {
            Predicate::TypeOutlives(data) => {
                Some(data)
            }
            Predicate::Trait(..) |
            Predicate::Projection(..) |
            Predicate::Subtype(..) |
            Predicate::RegionOutlives(..) |
            Predicate::WellFormed(..) |
            Predicate::ObjectSafe(..) |
            Predicate::ClosureKind(..) |
            Predicate::ConstEvaluatable(..) => {
                None
            }
        }
    }
1424 1425
}

S
Steve Klabnik 已提交
1426 1427
/// Represents the bounds declared on a particular set of type
/// parameters.  Should eventually be generalized into a flag list of
1428 1429 1430 1431 1432
/// where clauses.  You can obtain a `InstantiatedPredicates` list from a
/// `GenericPredicates` by using the `instantiate` method. Note that this method
/// reflects an important semantic invariant of `InstantiatedPredicates`: while
/// the `GenericPredicates` are expressed in terms of the bound type
/// parameters of the impl/trait/whatever, an `InstantiatedPredicates` instance
S
Steve Klabnik 已提交
1433 1434 1435 1436 1437 1438 1439 1440
/// represented a set of bounds for some particular instantiation,
/// meaning that the generic parameters have been substituted with
/// their values.
///
/// Example:
///
///     struct Foo<T,U:Bar<T>> { ... }
///
1441
/// Here, the `GenericPredicates` for `Foo` would contain a list of bounds like
J
Jorge Aparicio 已提交
1442
/// `[[], [U:Bar<T>]]`.  Now if there were some particular reference
1443 1444
/// like `Foo<isize,usize>`, then the `InstantiatedPredicates` would be `[[],
/// [usize:Bar<isize>]]`.
1445
#[derive(Clone)]
1446
pub struct InstantiatedPredicates<'tcx> {
1447
    pub predicates: Vec<Predicate<'tcx>>,
1448 1449
}

1450 1451
impl<'tcx> InstantiatedPredicates<'tcx> {
    pub fn empty() -> InstantiatedPredicates<'tcx> {
1452
        InstantiatedPredicates { predicates: vec![] }
1453 1454
    }

1455 1456
    pub fn is_empty(&self) -> bool {
        self.predicates.is_empty()
1457
    }
1458 1459
}

N
Niko Matsakis 已提交
1460 1461 1462
/// "Universes" are used during type- and trait-checking in the
/// presence of `for<..>` binders to control what sets of names are
/// visible. Universes are arranged into a tree: the root universe
1463 1464 1465 1466
/// contains names that are always visible. Each child then adds a new
/// set of names that are visible, in addition to those of its parent.
/// We say that the child universe "extends" the parent universe with
/// new names.
N
Niko Matsakis 已提交
1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477
///
/// To make this more concrete, consider this program:
///
/// ```
/// struct Foo { }
/// fn bar<T>(x: T) {
///   let y: for<'a> fn(&'a u8, Foo) = ...;
/// }
/// ```
///
/// The struct name `Foo` is in the root universe U0. But the type
1478 1479 1480 1481 1482
/// parameter `T`, introduced on `bar`, is in an extended universe U1
/// -- i.e., within `bar`, we can name both `T` and `Foo`, but outside
/// of `bar`, we cannot name `T`. Then, within the type of `y`, the
/// region `'a` is in a universe U2 that extends U1, because we can
/// name it inside the fn type but not outside.
N
Niko Matsakis 已提交
1483
///
1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494
/// Universes are used to do type- and trait-checking around these
/// "forall" binders (also called **universal quantification**). The
/// idea is that when, in the body of `bar`, we refer to `T` as a
/// type, we aren't referring to any type in particular, but rather a
/// kind of "fresh" type that is distinct from all other types we have
/// actually declared. This is called a **placeholder** type, and we
/// use universes to talk about this. In other words, a type name in
/// universe 0 always corresponds to some "ground" type that the user
/// declared, but a type name in a non-zero universe is a placeholder
/// type -- an idealized representative of "types in general" that we
/// use for checking generic functions.
1495 1496 1497 1498 1499
newtype_index! {
    pub struct UniverseIndex {
        DEBUG_FORMAT = "U{}",
    }
}
1500 1501

impl_stable_hash_for!(struct UniverseIndex { private });
N
Niko Matsakis 已提交
1502 1503

impl UniverseIndex {
1504
    pub const ROOT: UniverseIndex = UniverseIndex::from_u32_const(0);
N
Niko Matsakis 已提交
1505

1506 1507 1508 1509
    /// Returns the "next" universe index in order -- this new index
    /// is considered to extend all previous universes. This
    /// corresponds to entering a `forall` quantifier.  So, for
    /// example, suppose we have this type in universe `U`:
N
Niko Matsakis 已提交
1510 1511 1512 1513 1514 1515
    ///
    /// ```
    /// for<'a> fn(&'a u32)
    /// ```
    ///
    /// Once we "enter" into this `for<'a>` quantifier, we are in a
1516 1517 1518 1519
    /// new universe that extends `U` -- in this new universe, we can
    /// name the region `'a`, but that region was not nameable from
    /// `U` because it was not in scope there.
    pub fn next_universe(self) -> UniverseIndex {
1520
        UniverseIndex::from_u32(self.private.checked_add(1).unwrap())
1521 1522
    }

1523 1524
    /// True if `self` can name a name from `other` -- in other words,
    /// if the set of names in `self` is a superset of those in
N
Niko Matsakis 已提交
1525
    /// `other` (`self >= other`).
1526 1527
    pub fn can_name(self, other: UniverseIndex) -> bool {
        self.private >= other.private
N
Niko Matsakis 已提交
1528
    }
N
Niko Matsakis 已提交
1529 1530 1531 1532 1533 1534 1535

    /// True if `self` cannot name some names from `other` -- in other
    /// words, if the set of names in `self` is a strict subset of
    /// those in `other` (`self < other`).
    pub fn cannot_name(self, other: UniverseIndex) -> bool {
        self.private < other.private
    }
N
Niko Matsakis 已提交
1536 1537
}

1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549
/// The "placeholder index" fully defines a placeholder region.
/// Placeholder regions are identified by both a **universe** as well
/// as a "bound-region" within that universe. The `bound_region` is
/// basically a name -- distinct bound regions within the same
/// universe are just two regions with an unknown relationship to one
/// another.
#[derive(Copy, Clone, Debug, PartialEq, Eq, Hash, RustcEncodable, RustcDecodable, PartialOrd, Ord)]
pub struct Placeholder {
    pub universe: UniverseIndex,
    pub name: BoundRegion,
}

1550 1551
impl_stable_hash_for!(struct Placeholder { universe, name });

1552
/// When type checking, we use the `ParamEnv` to track
1553 1554 1555
/// details about the set of where-clauses that are in scope at this
/// particular point.
#[derive(Copy, Clone, Debug, PartialEq, Eq, Hash)]
1556
pub struct ParamEnv<'tcx> {
1557 1558
    /// Obligations that the caller must satisfy. This is basically
    /// the set of bounds on the in-scope type parameters, translated
1559
    /// into Obligations, and elaborated and normalized.
V
varkor 已提交
1560
    pub caller_bounds: &'tcx List<ty::Predicate<'tcx>>,
1561

I
Irina Popa 已提交
1562
    /// Typically, this is `Reveal::UserFacing`, but during codegen we
1563 1564 1565
    /// want `Reveal::All` -- note that this is always paired with an
    /// empty environment. To get that, use `ParamEnv::reveal()`.
    pub reveal: traits::Reveal,
1566
}
1567

1568
impl<'tcx> ParamEnv<'tcx> {
1569 1570 1571 1572 1573
    /// Construct a trait environment suitable for contexts where
    /// there are no where clauses in scope. Hidden types (like `impl
    /// Trait`) are left hidden, so this is suitable for ordinary
    /// type-checking.
    pub fn empty() -> Self {
V
varkor 已提交
1574
        Self::new(List::empty(), Reveal::UserFacing)
1575 1576 1577 1578 1579
    }

    /// Construct a trait environment with no where clauses in scope
    /// where the values of all `impl Trait` and other hidden types
    /// are revealed. This is suitable for monomorphized, post-typeck
I
Irina Popa 已提交
1580
    /// environments like codegen or doing optimizations.
1581 1582 1583 1584
    ///
    /// NB. If you want to have predicates in scope, use `ParamEnv::new`,
    /// or invoke `param_env.with_reveal_all()`.
    pub fn reveal_all() -> Self {
V
varkor 已提交
1585
        Self::new(List::empty(), Reveal::All)
1586 1587 1588
    }

    /// Construct a trait environment with the given set of predicates.
V
varkor 已提交
1589
    pub fn new(caller_bounds: &'tcx List<ty::Predicate<'tcx>>,
S
Sean Griffin 已提交
1590
               reveal: Reveal)
1591
               -> Self {
S
Sean Griffin 已提交
1592
        ty::ParamEnv { caller_bounds, reveal }
1593 1594 1595 1596 1597
    }

    /// Returns a new parameter environment with the same clauses, but
    /// which "reveals" the true results of projections in all cases
    /// (even for associated types that are specializable).  This is
I
Irina Popa 已提交
1598
    /// the desired behavior during codegen and certain other special
1599 1600 1601 1602 1603 1604 1605 1606
    /// contexts; normally though we want to use `Reveal::UserFacing`,
    /// which is the default.
    pub fn with_reveal_all(self) -> Self {
        ty::ParamEnv { reveal: Reveal::All, ..self }
    }

    /// Returns this same environment but with no caller bounds.
    pub fn without_caller_bounds(self) -> Self {
V
varkor 已提交
1607
        ty::ParamEnv { caller_bounds: List::empty(), ..self }
1608 1609
    }

1610
    /// Creates a suitable environment in which to perform trait
1611 1612 1613 1614 1615
    /// queries on the given value. When type-checking, this is simply
    /// the pair of the environment plus value. But when reveal is set to
    /// All, then if `value` does not reference any type parameters, we will
    /// pair it with the empty environment. This improves caching and is generally
    /// invisible.
1616
    ///
1617 1618
    /// NB: We preserve the environment when type-checking because it
    /// is possible for the user to have wacky where-clauses like
1619
    /// `where Box<u32>: Copy`, which are clearly never
1620 1621
    /// satisfiable. We generally want to behave as if they were true,
    /// although the surrounding function is never reachable.
1622
    pub fn and<T: TypeFoldable<'tcx>>(self, value: T) -> ParamEnvAnd<'tcx, T> {
1623 1624 1625 1626 1627 1628
        match self.reveal {
            Reveal::UserFacing => {
                ParamEnvAnd {
                    param_env: self,
                    value,
                }
1629
            }
1630 1631

            Reveal::All => {
1632 1633 1634 1635 1636
                if value.has_skol()
                    || value.needs_infer()
                    || value.has_param_types()
                    || value.has_self_ty()
                {
1637 1638 1639 1640 1641 1642 1643 1644 1645 1646
                    ParamEnvAnd {
                        param_env: self,
                        value,
                    }
                } else {
                    ParamEnvAnd {
                        param_env: self.without_caller_bounds(),
                        value,
                    }
                }
1647
            }
1648 1649 1650
        }
    }
}
1651

1652
#[derive(Copy, Clone, Debug, PartialEq, Eq, Hash)]
1653 1654
pub struct ParamEnvAnd<'tcx, T> {
    pub param_env: ParamEnv<'tcx>,
1655
    pub value: T,
1656 1657
}

1658 1659
impl<'tcx, T> ParamEnvAnd<'tcx, T> {
    pub fn into_parts(self) -> (ParamEnv<'tcx>, T) {
1660
        (self.param_env, self.value)
1661
    }
1662 1663
}

1664 1665
impl<'a, 'gcx, T> HashStable<StableHashingContext<'a>> for ParamEnvAnd<'gcx, T>
    where T: HashStable<StableHashingContext<'a>>
1666 1667
{
    fn hash_stable<W: StableHasherResult>(&self,
1668
                                          hcx: &mut StableHashingContext<'a>,
1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679
                                          hasher: &mut StableHasher<W>) {
        let ParamEnvAnd {
            ref param_env,
            ref value
        } = *self;

        param_env.hash_stable(hcx, hasher);
        value.hash_stable(hcx, hasher);
    }
}

1680 1681 1682 1683 1684 1685
#[derive(Copy, Clone, Debug)]
pub struct Destructor {
    /// The def-id of the destructor method
    pub did: DefId,
}

1686
bitflags! {
1687 1688 1689 1690 1691 1692 1693
    pub struct AdtFlags: u32 {
        const NO_ADT_FLAGS        = 0;
        const IS_ENUM             = 1 << 0;
        const IS_PHANTOM_DATA     = 1 << 1;
        const IS_FUNDAMENTAL      = 1 << 2;
        const IS_UNION            = 1 << 3;
        const IS_BOX              = 1 << 4;
1694 1695 1696 1697
        /// Indicates whether the type is an `Arc`.
        const IS_ARC              = 1 << 5;
        /// Indicates whether the type is an `Rc`.
        const IS_RC               = 1 << 6;
1698 1699
        /// Indicates whether the variant list of this ADT is `#[non_exhaustive]`.
        /// (i.e., this flag is never set unless this ADT is an enum).
1700
        const IS_VARIANT_LIST_NON_EXHAUSTIVE   = 1 << 7;
1701 1702 1703 1704 1705 1706 1707 1708
    }
}

bitflags! {
    pub struct VariantFlags: u32 {
        const NO_VARIANT_FLAGS        = 0;
        /// Indicates whether the field list of this variant is `#[non_exhaustive]`.
        const IS_FIELD_LIST_NON_EXHAUSTIVE = 1 << 0;
1709 1710 1711
    }
}

1712
#[derive(Debug)]
1713
pub struct VariantDef {
1714 1715
    /// The variant's DefId. If this is a tuple-like struct,
    /// this is the DefId of the struct's ctor.
1716 1717
    pub did: DefId,
    pub name: Name, // struct's name if this is a struct
1718
    pub discr: VariantDiscr,
1719
    pub fields: Vec<FieldDef>,
1720
    pub ctor_kind: CtorKind,
1721
    flags: VariantFlags,
1722 1723
}

1724 1725 1726 1727 1728 1729
impl<'a, 'gcx, 'tcx> VariantDef {
    /// Create a new `VariantDef`.
    ///
    /// - `did` is the DefId used for the variant - for tuple-structs, it is the constructor DefId,
    /// and for everything else, it is the variant DefId.
    /// - `attribute_def_id` is the DefId that has the variant's attributes.
1730 1731 1732 1733 1734 1735 1736 1737 1738
    /// this is the struct DefId for structs, and the variant DefId for variants.
    ///
    /// Note that we *could* use the constructor DefId, because the constructor attributes
    /// redirect to the base attributes, but compiling a small crate requires
    /// loading the AdtDefs for all the structs in the universe (e.g. coherence for any
    /// built-in trait), and we do not want to load attributes twice.
    ///
    /// If someone speeds up attribute loading to not be a performance concern, they can
    /// remove this hack and use the constructor DefId everywhere.
1739 1740 1741 1742 1743 1744
    pub fn new(tcx: TyCtxt<'a, 'gcx, 'tcx>,
               did: DefId,
               name: Name,
               discr: VariantDiscr,
               fields: Vec<FieldDef>,
               adt_kind: AdtKind,
1745 1746
               ctor_kind: CtorKind,
               attribute_def_id: DefId)
1747 1748
               -> Self
    {
1749 1750
        debug!("VariantDef::new({:?}, {:?}, {:?}, {:?}, {:?}, {:?}, {:?})", did, name, discr,
               fields, adt_kind, ctor_kind, attribute_def_id);
1751
        let mut flags = VariantFlags::NO_VARIANT_FLAGS;
1752
        if adt_kind == AdtKind::Struct && tcx.has_attr(attribute_def_id, "non_exhaustive") {
1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769
            debug!("found non-exhaustive field list for {:?}", did);
            flags = flags | VariantFlags::IS_FIELD_LIST_NON_EXHAUSTIVE;
        }
        VariantDef {
            did,
            name,
            discr,
            fields,
            ctor_kind,
            flags
        }
    }

    #[inline]
    pub fn is_field_list_non_exhaustive(&self) -> bool {
        self.flags.intersects(VariantFlags::IS_FIELD_LIST_NON_EXHAUSTIVE)
    }
1770 1771
}

1772 1773 1774 1775 1776 1777 1778 1779 1780
impl_stable_hash_for!(struct VariantDef {
    did,
    name,
    discr,
    fields,
    ctor_kind,
    flags
});

1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793
#[derive(Copy, Clone, Debug, PartialEq, Eq, RustcEncodable, RustcDecodable)]
pub enum VariantDiscr {
    /// Explicit value for this variant, i.e. `X = 123`.
    /// The `DefId` corresponds to the embedded constant.
    Explicit(DefId),

    /// The previous variant's discriminant plus one.
    /// For efficiency reasons, the distance from the
    /// last `Explicit` discriminant is being stored,
    /// or `0` for the first variant, if it has none.
    Relative(usize),
}

1794
#[derive(Debug)]
1795
pub struct FieldDef {
1796
    pub did: DefId,
1797
    pub ident: Ident,
1798
    pub vis: Visibility,
1799 1800
}

A
Ariel Ben-Yehuda 已提交
1801 1802 1803 1804
/// The definition of an abstract data type - a struct or enum.
///
/// These are all interned (by intern_adt_def) into the adt_defs
/// table.
1805
pub struct AdtDef {
1806
    pub did: DefId,
1807
    pub variants: Vec<VariantDef>,
1808
    flags: AdtFlags,
1809
    pub repr: ReprOptions,
1810 1811
}

1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825
impl PartialOrd for AdtDef {
    fn partial_cmp(&self, other: &AdtDef) -> Option<Ordering> {
        Some(self.cmp(&other))
    }
}

/// There should be only one AdtDef for each `did`, therefore
/// it is fine to implement `Ord` only based on `did`.
impl Ord for AdtDef {
    fn cmp(&self, other: &AdtDef) -> Ordering {
        self.did.cmp(&other.did)
    }
}

1826 1827
impl PartialEq for AdtDef {
    // AdtDef are always interned and this is part of TyS equality
1828
    #[inline]
1829
    fn eq(&self, other: &Self) -> bool { ptr::eq(self, other) }
1830 1831
}

1832
impl Eq for AdtDef {}
1833

1834
impl Hash for AdtDef {
1835 1836
    #[inline]
    fn hash<H: Hasher>(&self, s: &mut H) {
1837
        (self as *const AdtDef).hash(s)
1838 1839 1840
    }
}

1841
impl<'tcx> serialize::UseSpecializedEncodable for &'tcx AdtDef {
1842
    fn default_encode<S: Encoder>(&self, s: &mut S) -> Result<(), S::Error> {
1843 1844 1845 1846
        self.did.encode(s)
    }
}

1847
impl<'tcx> serialize::UseSpecializedDecodable for &'tcx AdtDef {}
1848

1849

1850
impl<'a> HashStable<StableHashingContext<'a>> for AdtDef {
1851
    fn hash_stable<W: StableHasherResult>(&self,
1852
                                          hcx: &mut StableHashingContext<'a>,
1853
                                          hasher: &mut StableHasher<W>) {
W
Wesley Wiser 已提交
1854
        thread_local! {
1855
            static CACHE: RefCell<FxHashMap<usize, Fingerprint>> = Default::default();
W
Wesley Wiser 已提交
1856
        }
1857

W
Wesley Wiser 已提交
1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878
        let hash: Fingerprint = CACHE.with(|cache| {
            let addr = self as *const AdtDef as usize;
            *cache.borrow_mut().entry(addr).or_insert_with(|| {
                let ty::AdtDef {
                    did,
                    ref variants,
                    ref flags,
                    ref repr,
                } = *self;

                let mut hasher = StableHasher::new();
                did.hash_stable(hcx, &mut hasher);
                variants.hash_stable(hcx, &mut hasher);
                flags.hash_stable(hcx, &mut hasher);
                repr.hash_stable(hcx, &mut hasher);

                hasher.finish()
           })
        });

        hash.hash_stable(hcx, hasher);
1879 1880 1881
    }
}

1882
#[derive(Copy, Clone, Debug, Eq, PartialEq, Hash)]
1883
pub enum AdtKind { Struct, Union, Enum }
1884

1885 1886 1887 1888 1889 1890 1891 1892 1893 1894
impl Into<DataTypeKind> for AdtKind {
    fn into(self) -> DataTypeKind {
        match self {
            AdtKind::Struct => DataTypeKind::Struct,
            AdtKind::Union => DataTypeKind::Union,
            AdtKind::Enum => DataTypeKind::Enum,
        }
    }
}

1895 1896
bitflags! {
    #[derive(RustcEncodable, RustcDecodable, Default)]
1897 1898
    pub struct ReprFlags: u8 {
        const IS_C               = 1 << 0;
1899 1900
        const IS_SIMD            = 1 << 1;
        const IS_TRANSPARENT     = 1 << 2;
1901
        // Internal only for now. If true, don't reorder fields.
1902
        const IS_LINEAR          = 1 << 3;
1903 1904 1905 1906

        // Any of these flags being set prevent field reordering optimisation.
        const IS_UNOPTIMISABLE   = ReprFlags::IS_C.bits |
                                   ReprFlags::IS_SIMD.bits |
1907
                                   ReprFlags::IS_LINEAR.bits;
1908 1909 1910 1911 1912 1913 1914 1915 1916
    }
}

impl_stable_hash_for!(struct ReprFlags {
    bits
});



1917
/// Represents the repr options provided by the user,
1918
#[derive(Copy, Clone, Debug, Eq, PartialEq, RustcEncodable, RustcDecodable, Default)]
1919 1920
pub struct ReprOptions {
    pub int: Option<attr::IntType>,
1921
    pub align: u32,
1922
    pub pack: u32,
1923
    pub flags: ReprFlags,
1924 1925
}

1926
impl_stable_hash_for!(struct ReprOptions {
1927
    align,
1928
    pack,
1929
    int,
1930
    flags
1931 1932
});

1933
impl ReprOptions {
1934
    pub fn new(tcx: TyCtxt<'_, '_, '_>, did: DefId) -> ReprOptions {
1935 1936
        let mut flags = ReprFlags::empty();
        let mut size = None;
1937
        let mut max_align = 0;
1938
        let mut min_pack = 0;
1939
        for attr in tcx.get_attrs(did).iter() {
C
csmoe 已提交
1940
            for r in attr::find_repr_attrs(&tcx.sess.parse_sess, attr) {
1941
                flags.insert(match r {
1942
                    attr::ReprC => ReprFlags::IS_C,
1943 1944 1945 1946 1947 1948 1949 1950
                    attr::ReprPacked(pack) => {
                        min_pack = if min_pack > 0 {
                            cmp::min(pack, min_pack)
                        } else {
                            pack
                        };
                        ReprFlags::empty()
                    },
R
Robin Kruppe 已提交
1951
                    attr::ReprTransparent => ReprFlags::IS_TRANSPARENT,
1952 1953 1954 1955 1956
                    attr::ReprSimd => ReprFlags::IS_SIMD,
                    attr::ReprInt(i) => {
                        size = Some(i);
                        ReprFlags::empty()
                    },
1957 1958 1959 1960
                    attr::ReprAlign(align) => {
                        max_align = cmp::max(align, max_align);
                        ReprFlags::empty()
                    },
1961
                });
1962 1963
            }
        }
1964

1965
        // This is here instead of layout because the choice must make it into metadata.
1966 1967 1968
        if !tcx.consider_optimizing(|| format!("Reorder fields of {:?}", tcx.item_path_str(did))) {
            flags.insert(ReprFlags::IS_LINEAR);
        }
1969
        ReprOptions { int: size, align: max_align, pack: min_pack, flags: flags }
1970
    }
1971

1972 1973 1974 1975 1976
    #[inline]
    pub fn simd(&self) -> bool { self.flags.contains(ReprFlags::IS_SIMD) }
    #[inline]
    pub fn c(&self) -> bool { self.flags.contains(ReprFlags::IS_C) }
    #[inline]
1977
    pub fn packed(&self) -> bool { self.pack > 0 }
1978
    #[inline]
R
Robin Kruppe 已提交
1979 1980
    pub fn transparent(&self) -> bool { self.flags.contains(ReprFlags::IS_TRANSPARENT) }
    #[inline]
1981 1982
    pub fn linear(&self) -> bool { self.flags.contains(ReprFlags::IS_LINEAR) }

1983
    pub fn discr_type(&self) -> attr::IntType {
1984
        self.int.unwrap_or(attr::SignedInt(ast::IntTy::Isize))
1985
    }
1986 1987 1988 1989 1990

    /// Returns true if this `#[repr()]` should inhabit "smart enum
    /// layout" optimizations, such as representing `Foo<&T>` as a
    /// single pointer.
    pub fn inhibit_enum_layout_opt(&self) -> bool {
1991
        self.c() || self.int.is_some()
1992
    }
1993 1994 1995 1996 1997 1998

    /// Returns true if this `#[repr()]` should inhibit struct field reordering
    /// optimizations, such as with repr(C) or repr(packed(1)).
    pub fn inhibit_struct_field_reordering_opt(&self) -> bool {
        !(self.flags & ReprFlags::IS_UNOPTIMISABLE).is_empty() || (self.pack == 1)
    }
1999 2000
}

2001
impl<'a, 'gcx, 'tcx> AdtDef {
2002
    fn new(tcx: TyCtxt<'_, '_, '_>,
2003
           did: DefId,
A
Ariel Ben-Yehuda 已提交
2004
           kind: AdtKind,
2005 2006
           variants: Vec<VariantDef>,
           repr: ReprOptions) -> Self {
2007
        debug!("AdtDef::new({:?}, {:?}, {:?}, {:?})", did, kind, variants, repr);
A
Ariel Ben-Yehuda 已提交
2008
        let mut flags = AdtFlags::NO_ADT_FLAGS;
A
Ariel Ben-Yehuda 已提交
2009
        let attrs = tcx.get_attrs(did);
2010
        if attr::contains_name(&attrs, "fundamental") {
A
Ariel Ben-Yehuda 已提交
2011
            flags = flags | AdtFlags::IS_FUNDAMENTAL;
2012
        }
2013
        if Some(did) == tcx.lang_items().phantom_data() {
A
Ariel Ben-Yehuda 已提交
2014
            flags = flags | AdtFlags::IS_PHANTOM_DATA;
2015
        }
2016
        if Some(did) == tcx.lang_items().owned_box() {
2017 2018
            flags = flags | AdtFlags::IS_BOX;
        }
2019 2020 2021 2022 2023 2024
        if Some(did) == tcx.lang_items().arc() {
            flags = flags | AdtFlags::IS_ARC;
        }
        if Some(did) == tcx.lang_items().rc() {
            flags = flags | AdtFlags::IS_RC;
        }
2025 2026 2027
        if kind == AdtKind::Enum && tcx.has_attr(did, "non_exhaustive") {
            debug!("found non-exhaustive variant list for {:?}", did);
            flags = flags | AdtFlags::IS_VARIANT_LIST_NON_EXHAUSTIVE;
2028
        }
2029 2030 2031 2032
        match kind {
            AdtKind::Enum => flags = flags | AdtFlags::IS_ENUM,
            AdtKind::Union => flags = flags | AdtFlags::IS_UNION,
            AdtKind::Struct => {}
2033
        }
2034
        AdtDef {
2035 2036 2037 2038
            did,
            variants,
            flags,
            repr,
2039 2040 2041
        }
    }

2042 2043 2044 2045 2046 2047 2048
    #[inline]
    pub fn is_struct(&self) -> bool {
        !self.is_union() && !self.is_enum()
    }

    #[inline]
    pub fn is_union(&self) -> bool {
2049
        self.flags.intersects(AdtFlags::IS_UNION)
2050 2051 2052 2053
    }

    #[inline]
    pub fn is_enum(&self) -> bool {
2054
        self.flags.intersects(AdtFlags::IS_ENUM)
2055 2056
    }

2057
    #[inline]
2058 2059
    pub fn is_variant_list_non_exhaustive(&self) -> bool {
        self.flags.intersects(AdtFlags::IS_VARIANT_LIST_NON_EXHAUSTIVE)
2060 2061
    }

A
Ariel Ben-Yehuda 已提交
2062
    /// Returns the kind of the ADT - Struct or Enum.
2063
    #[inline]
A
Ariel Ben-Yehuda 已提交
2064
    pub fn adt_kind(&self) -> AdtKind {
2065
        if self.is_enum() {
A
Ariel Ben-Yehuda 已提交
2066
            AdtKind::Enum
2067
        } else if self.is_union() {
2068
            AdtKind::Union
2069
        } else {
A
Ariel Ben-Yehuda 已提交
2070
            AdtKind::Struct
2071 2072 2073
        }
    }

2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089
    pub fn descr(&self) -> &'static str {
        match self.adt_kind() {
            AdtKind::Struct => "struct",
            AdtKind::Union => "union",
            AdtKind::Enum => "enum",
        }
    }

    pub fn variant_descr(&self) -> &'static str {
        match self.adt_kind() {
            AdtKind::Struct => "struct",
            AdtKind::Union => "union",
            AdtKind::Enum => "variant",
        }
    }

A
Ariel Ben-Yehuda 已提交
2090 2091
    /// Returns whether this type is #[fundamental] for the purposes
    /// of coherence checking.
2092 2093
    #[inline]
    pub fn is_fundamental(&self) -> bool {
2094
        self.flags.intersects(AdtFlags::IS_FUNDAMENTAL)
2095 2096
    }

A
Ariel Ben-Yehuda 已提交
2097
    /// Returns true if this is PhantomData<T>.
2098 2099
    #[inline]
    pub fn is_phantom_data(&self) -> bool {
2100
        self.flags.intersects(AdtFlags::IS_PHANTOM_DATA)
2101 2102
    }

2103 2104 2105 2106 2107 2108 2109 2110 2111 2112
    /// Returns `true` if this is `Arc<T>`.
    pub fn is_arc(&self) -> bool {
        self.flags.intersects(AdtFlags::IS_ARC)
    }

    /// Returns `true` if this is `Rc<T>`.
    pub fn is_rc(&self) -> bool {
        self.flags.intersects(AdtFlags::IS_RC)
    }

2113 2114 2115
    /// Returns true if this is Box<T>.
    #[inline]
    pub fn is_box(&self) -> bool {
2116
        self.flags.intersects(AdtFlags::IS_BOX)
2117 2118
    }

A
Ariel Ben-Yehuda 已提交
2119
    /// Returns whether this type has a destructor.
2120 2121
    pub fn has_dtor(&self, tcx: TyCtxt<'a, 'gcx, 'tcx>) -> bool {
        self.destructor(tcx).is_some()
2122 2123
    }

2124 2125 2126
    /// Asserts this is a struct or union and returns its unique variant.
    pub fn non_enum_variant(&self) -> &VariantDef {
        assert!(self.is_struct() || self.is_union());
2127
        &self.variants[0]
2128 2129 2130
    }

    #[inline]
2131
    pub fn predicates(&self, tcx: TyCtxt<'a, 'gcx, 'tcx>) -> GenericPredicates<'gcx> {
2132
        tcx.predicates_of(self.did)
2133
    }
2134

A
Ariel Ben-Yehuda 已提交
2135 2136
    /// Returns an iterator over all fields contained
    /// by this ADT.
2137
    #[inline]
2138 2139
    pub fn all_fields<'s>(&'s self) -> impl Iterator<Item = &'s FieldDef> {
        self.variants.iter().flat_map(|v| v.fields.iter())
2140 2141 2142 2143 2144 2145 2146
    }

    pub fn is_payloadfree(&self) -> bool {
        !self.variants.is_empty() &&
            self.variants.iter().all(|v| v.fields.is_empty())
    }

2147
    pub fn variant_with_id(&self, vid: DefId) -> &VariantDef {
2148 2149 2150 2151 2152 2153
        self.variants
            .iter()
            .find(|v| v.did == vid)
            .expect("variant_with_id: unknown variant")
    }

N
Niko Matsakis 已提交
2154 2155 2156 2157 2158 2159 2160
    pub fn variant_index_with_id(&self, vid: DefId) -> usize {
        self.variants
            .iter()
            .position(|v| v.did == vid)
            .expect("variant_index_with_id: unknown variant")
    }

2161
    pub fn variant_of_def(&self, def: Def) -> &VariantDef {
2162
        match def {
2163 2164
            Def::Variant(vid) | Def::VariantCtor(vid, ..) => self.variant_with_id(vid),
            Def::Struct(..) | Def::StructCtor(..) | Def::Union(..) |
F
F001 已提交
2165 2166
            Def::TyAlias(..) | Def::AssociatedTy(..) | Def::SelfTy(..) |
            Def::SelfCtor(..) => self.non_enum_variant(),
2167
            _ => bug!("unexpected def {:?} in variant_of_def", def)
2168 2169
        }
    }
2170

O
Oliver Schneider 已提交
2171
    #[inline]
2172
    pub fn eval_explicit_discr(
O
Oliver Schneider 已提交
2173 2174 2175 2176
        &self,
        tcx: TyCtxt<'a, 'gcx, 'tcx>,
        expr_did: DefId,
    ) -> Option<Discr<'tcx>> {
2177
        let param_env = ParamEnv::empty();
O
Oliver Schneider 已提交
2178 2179 2180 2181 2182 2183 2184 2185
        let repr_type = self.repr.discr_type();
        let substs = Substs::identity_for_item(tcx.global_tcx(), expr_did);
        let instance = ty::Instance::new(expr_did, substs);
        let cid = GlobalId {
            instance,
            promoted: None
        };
        match tcx.const_eval(param_env.and(cid)) {
2186 2187
            Ok(val) => {
                // FIXME: Find the right type and use it instead of `val.ty` here
O
Oliver Schneider 已提交
2188
                if let Some(b) = val.assert_bits(tcx.global_tcx(), param_env.and(val.ty)) {
2189 2190 2191 2192 2193 2194 2195
                    trace!("discriminants: {} ({:?})", b, repr_type);
                    Some(Discr {
                        val: b,
                        ty: val.ty,
                    })
                } else {
                    info!("invalid enum discriminant: {:#?}", val);
2196
                    ::mir::interpret::struct_error(
2197
                        tcx.at(tcx.def_span(expr_did)),
2198 2199 2200 2201
                        "constant evaluation of enum discriminant resulted in non-integer",
                    ).emit();
                    None
                }
O
Oliver Schneider 已提交
2202
            }
2203
            Err(ErrorHandled::Reported) => {
O
Oliver Schneider 已提交
2204 2205 2206
                if !expr_did.is_local() {
                    span_bug!(tcx.def_span(expr_did),
                        "variant discriminant evaluation succeeded \
L
ljedrz 已提交
2207
                         in its crate but failed locally");
O
Oliver Schneider 已提交
2208 2209 2210
                }
                None
            }
2211 2212 2213 2214
            Err(ErrorHandled::TooGeneric) => span_bug!(
                tcx.def_span(expr_did),
                "enum discriminant depends on generic arguments",
            ),
O
Oliver Schneider 已提交
2215 2216 2217
        }
    }

2218
    #[inline]
2219 2220 2221 2222
    pub fn discriminants(
        &'a self,
        tcx: TyCtxt<'a, 'gcx, 'tcx>,
    ) -> impl Iterator<Item=Discr<'tcx>> + Captures<'gcx> + 'a {
2223
        let repr_type = self.repr.discr_type();
2224
        let initial = repr_type.initial_discriminant(tcx.global_tcx());
O
Oliver Schneider 已提交
2225
        let mut prev_discr = None::<Discr<'tcx>>;
2226
        self.variants.iter().map(move |v| {
O
Oliver Schneider 已提交
2227
            let mut discr = prev_discr.map_or(initial, |d| d.wrap_incr(tcx));
2228
            if let VariantDiscr::Explicit(expr_did) = v.discr {
O
Oliver Schneider 已提交
2229 2230
                if let Some(new_discr) = self.eval_explicit_discr(tcx, expr_did) {
                    discr = new_discr;
2231 2232 2233 2234 2235 2236 2237 2238
                }
            }
            prev_discr = Some(discr);

            discr
        })
    }

2239 2240 2241 2242 2243 2244 2245 2246
    /// Compute the discriminant value used by a specific variant.
    /// Unlike `discriminants`, this is (amortized) constant-time,
    /// only doing at most one query for evaluating an explicit
    /// discriminant (the last one before the requested variant),
    /// assuming there are no constant-evaluation errors there.
    pub fn discriminant_for_variant(&self,
                                    tcx: TyCtxt<'a, 'gcx, 'tcx>,
                                    variant_index: usize)
O
Oliver Schneider 已提交
2247
                                    -> Discr<'tcx> {
2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261
        let (val, offset) = self.discriminant_def_for_variant(variant_index);
        let explicit_value = val
            .and_then(|expr_did| self.eval_explicit_discr(tcx, expr_did))
            .unwrap_or_else(|| self.repr.discr_type().initial_discriminant(tcx.global_tcx()));
        explicit_value.checked_add(tcx, offset as u128).0
    }

    /// Yields a DefId for the discriminant and an offset to add to it
    /// Alternatively, if there is no explicit discriminant, returns the
    /// inferred discriminant directly
    pub fn discriminant_def_for_variant(
        &self,
        variant_index: usize,
    ) -> (Option<DefId>, usize) {
2262
        let mut explicit_index = variant_index;
2263
        let expr_did;
2264 2265
        loop {
            match self.variants[explicit_index].discr {
2266 2267 2268 2269
                ty::VariantDiscr::Relative(0) => {
                    expr_did = None;
                    break;
                },
2270 2271 2272
                ty::VariantDiscr::Relative(distance) => {
                    explicit_index -= distance;
                }
2273 2274 2275
                ty::VariantDiscr::Explicit(did) => {
                    expr_did = Some(did);
                    break;
2276 2277 2278
                }
            }
        }
2279
        (expr_did, variant_index - explicit_index)
2280 2281
    }

2282
    pub fn destructor(&self, tcx: TyCtxt<'a, 'gcx, 'tcx>) -> Option<Destructor> {
2283
        tcx.adt_destructor(self.did)
2284 2285
    }

2286
    /// Returns a list of types such that `Self: Sized` if and only
2287
    /// if that type is Sized, or `TyErr` if this type is recursive.
A
Ariel Ben-Yehuda 已提交
2288 2289 2290 2291 2292 2293 2294 2295
    ///
    /// Oddly enough, checking that the sized-constraint is Sized is
    /// actually more expressive than checking all members:
    /// the Sized trait is inductive, so an associated type that references
    /// Self would prevent its containing ADT from being Sized.
    ///
    /// Due to normalization being eager, this applies even if
    /// the associated type is behind a pointer, e.g. issue #31299.
2296
    pub fn sized_constraint(&self, tcx: TyCtxt<'a, 'gcx, 'tcx>) -> &'tcx [Ty<'tcx>] {
2297
        match tcx.try_adt_sized_constraint(DUMMY_SP, self.did) {
2298
            Ok(tys) => tys,
2299
            Err(mut bug) => {
2300 2301 2302 2303
                debug!("adt_sized_constraint: {:?} is recursive", self);
                // This should be reported as an error by `check_representable`.
                //
                // Consider the type as Sized in the meanwhile to avoid
2304 2305 2306 2307
                // further errors. Delay our `bug` diagnostic here to get
                // emitted later as well in case we accidentally otherwise don't
                // emit an error.
                bug.delay_as_bug();
2308
                tcx.intern_type_list(&[tcx.types.err])
A
Ariel Ben-Yehuda 已提交
2309
            }
2310 2311
        }
    }
2312

2313 2314 2315 2316
    fn sized_constraint_for_ty(&self,
                               tcx: TyCtxt<'a, 'tcx, 'tcx>,
                               ty: Ty<'tcx>)
                               -> Vec<Ty<'tcx>> {
2317
        let result = match ty.sty {
2318
            Bool | Char | Int(..) | Uint(..) | Float(..) |
V
varkor 已提交
2319 2320
            RawPtr(..) | Ref(..) | FnDef(..) | FnPtr(_) |
            Array(..) | Closure(..) | Generator(..) | Never => {
A
Ariel Ben-Yehuda 已提交
2321
                vec![]
2322 2323
            }

2324
            Str |
V
varkor 已提交
2325 2326
            Dynamic(..) |
            Slice(_) |
V
varkor 已提交
2327
            Foreign(..) |
V
varkor 已提交
2328 2329
            Error |
            GeneratorWitness(..) => {
2330
                // these are never sized - return the target type
A
Ariel Ben-Yehuda 已提交
2331
                vec![ty]
2332 2333
            }

V
varkor 已提交
2334
            Tuple(ref tys) => {
2335 2336
                match tys.last() {
                    None => vec![],
2337
                    Some(ty) => self.sized_constraint_for_ty(tcx, ty)
2338
                }
2339 2340
            }

V
varkor 已提交
2341
            Adt(adt, substs) => {
2342
                // recursive case
2343
                let adt_tys = adt.sized_constraint(tcx);
2344
                debug!("sized_constraint_for_ty({:?}) intermediate = {:?}",
2345 2346
                       ty, adt_tys);
                adt_tys.iter()
L
ljedrz 已提交
2347 2348 2349
                       .map(|ty| ty.subst(tcx, substs))
                       .flat_map(|ty| self.sized_constraint_for_ty(tcx, ty))
                       .collect()
2350 2351
            }

2352
            Projection(..) | Opaque(..) => {
2353 2354
                // must calculate explicitly.
                // FIXME: consider special-casing always-Sized projections
A
Ariel Ben-Yehuda 已提交
2355
                vec![ty]
2356 2357
            }

2358 2359
            UnnormalizedProjection(..) => bug!("only used with chalk-engine"),

V
varkor 已提交
2360
            Param(..) => {
A
Ariel Ben-Yehuda 已提交
2361 2362 2363 2364
                // perf hack: if there is a `T: Sized` bound, then
                // we know that `T` is Sized and do not need to check
                // it on the impl.

2365
                let sized_trait = match tcx.lang_items().sized_trait() {
2366
                    Some(x) => x,
A
Ariel Ben-Yehuda 已提交
2367
                    _ => return vec![ty]
2368
                };
2369
                let sized_predicate = Binder::dummy(TraitRef {
2370
                    def_id: sized_trait,
2371
                    substs: tcx.mk_substs_trait(ty, &[])
2372
                }).to_predicate();
2373
                let predicates = tcx.predicates_of(self.did).predicates;
2374
                if predicates.into_iter().any(|(p, _)| p == sized_predicate) {
A
Ariel Ben-Yehuda 已提交
2375
                    vec![]
2376
                } else {
A
Ariel Ben-Yehuda 已提交
2377
                    vec![ty]
2378 2379 2380
                }
            }

V
varkor 已提交
2381
            Infer(..) => {
2382 2383 2384 2385 2386 2387 2388
                bug!("unexpected type `{:?}` in sized_constraint_for_ty",
                     ty)
            }
        };
        debug!("sized_constraint_for_ty({:?}) = {:?}", ty, result);
        result
    }
2389 2390
}

2391
impl<'a, 'gcx, 'tcx> FieldDef {
2392
    pub fn ty(&self, tcx: TyCtxt<'a, 'gcx, 'tcx>, subst: &Substs<'tcx>) -> Ty<'tcx> {
2393
        tcx.type_of(self.did).subst(tcx, subst)
2394
    }
2395 2396
}

2397 2398 2399 2400 2401 2402
/// Represents the various closure traits in the Rust language. This
/// will determine the type of the environment (`self`, in the
/// desuaring) argument that the closure expects.
///
/// You can get the environment type of a closure using
/// `tcx.closure_env_ty()`.
2403
#[derive(Clone, Copy, PartialOrd, Ord, PartialEq, Eq, Hash, Debug, RustcEncodable, RustcDecodable)]
2404
pub enum ClosureKind {
2405 2406 2407
    // Warning: Ordering is significant here! The ordering is chosen
    // because the trait Fn is a subtrait of FnMut and so in turn, and
    // hence we order it so that Fn < FnMut < FnOnce.
2408 2409 2410
    Fn,
    FnMut,
    FnOnce,
2411 2412
}

2413
impl<'a, 'tcx> ClosureKind {
2414 2415 2416
    // This is the initial value used when doing upvar inference.
    pub const LATTICE_BOTTOM: ClosureKind = ClosureKind::Fn;

2417
    pub fn trait_did(&self, tcx: TyCtxt<'a, 'tcx, 'tcx>) -> DefId {
2418 2419
        match *self {
            ClosureKind::Fn => tcx.require_lang_item(FnTraitLangItem),
2420
            ClosureKind::FnMut => {
2421
                tcx.require_lang_item(FnMutTraitLangItem)
2422
            }
2423
            ClosureKind::FnOnce => {
2424
                tcx.require_lang_item(FnOnceTraitLangItem)
2425 2426 2427
            }
        }
    }
2428 2429 2430 2431 2432

    /// True if this a type that impls this closure kind
    /// must also implement `other`.
    pub fn extends(self, other: ty::ClosureKind) -> bool {
        match (self, other) {
2433 2434 2435 2436 2437 2438
            (ClosureKind::Fn, ClosureKind::Fn) => true,
            (ClosureKind::Fn, ClosureKind::FnMut) => true,
            (ClosureKind::Fn, ClosureKind::FnOnce) => true,
            (ClosureKind::FnMut, ClosureKind::FnMut) => true,
            (ClosureKind::FnMut, ClosureKind::FnOnce) => true,
            (ClosureKind::FnOnce, ClosureKind::FnOnce) => true,
2439 2440 2441
            _ => false,
        }
    }
2442 2443 2444 2445 2446 2447 2448 2449 2450

    /// Returns the representative scalar type for this closure kind.
    /// See `TyS::to_opt_closure_kind` for more details.
    pub fn to_ty(self, tcx: TyCtxt<'_, '_, 'tcx>) -> Ty<'tcx> {
        match self {
            ty::ClosureKind::Fn => tcx.types.i8,
            ty::ClosureKind::FnMut => tcx.types.i16,
            ty::ClosureKind::FnOnce => tcx.types.i32,
        }
2451
    }
2452 2453
}

2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466
impl<'tcx> TyS<'tcx> {
    /// Iterator that walks `self` and any types reachable from
    /// `self`, in depth-first order. Note that just walks the types
    /// that appear in `self`, it does not descend into the fields of
    /// structs or variants. For example:
    ///
    /// ```notrust
    /// isize => { isize }
    /// Foo<Bar<isize>> => { Foo<Bar<isize>>, Bar<isize>, isize }
    /// [isize] => { [isize], isize }
    /// ```
    pub fn walk(&'tcx self) -> TypeWalker<'tcx> {
        TypeWalker::new(self)
2467 2468
    }

2469 2470 2471
    /// Iterator that walks the immediate children of `self`.  Hence
    /// `Foo<Bar<i32>, u32>` yields the sequence `[Bar<i32>, u32]`
    /// (but not `i32`, like `walk`).
2472
    pub fn walk_shallow(&'tcx self) -> smallvec::IntoIter<walk::TypeWalkerArray<'tcx>> {
2473
        walk::walk_shallow(self)
2474 2475
    }

2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489
    /// Walks `ty` and any types appearing within `ty`, invoking the
    /// callback `f` on each type. If the callback returns false, then the
    /// children of the current type are ignored.
    ///
    /// Note: prefer `ty.walk()` where possible.
    pub fn maybe_walk<F>(&'tcx self, mut f: F)
        where F : FnMut(Ty<'tcx>) -> bool
    {
        let mut walker = self.walk();
        while let Some(ty) = walker.next() {
            if !f(ty) {
                walker.skip_current_subtree();
            }
        }
2490
    }
2491
}
2492

2493
impl BorrowKind {
2494
    pub fn from_mutbl(m: hir::Mutability) -> BorrowKind {
2495
        match m {
2496 2497
            hir::MutMutable => MutBorrow,
            hir::MutImmutable => ImmBorrow,
2498 2499
        }
    }
2500

2501 2502 2503 2504
    /// Returns a mutability `m` such that an `&m T` pointer could be used to obtain this borrow
    /// kind. Because borrow kinds are richer than mutabilities, we sometimes have to pick a
    /// mutability that is stronger than necessary so that it at least *would permit* the borrow in
    /// question.
2505
    pub fn to_mutbl_lossy(self) -> hir::Mutability {
2506
        match self {
2507 2508
            MutBorrow => hir::MutMutable,
            ImmBorrow => hir::MutImmutable,
2509 2510 2511 2512

            // We have no type corresponding to a unique imm borrow, so
            // use `&mut`. It gives all the capabilities of an `&uniq`
            // and hence is a safe "over approximation".
2513
            UniqueImmBorrow => hir::MutMutable,
2514
        }
2515
    }
2516

2517 2518 2519 2520 2521 2522
    pub fn to_user_str(&self) -> &'static str {
        match *self {
            MutBorrow => "mutable",
            ImmBorrow => "immutable",
            UniqueImmBorrow => "uniquely immutable",
        }
2523 2524 2525
    }
}

2526 2527
#[derive(Debug, Clone)]
pub enum Attributes<'gcx> {
2528
    Owned(Lrc<[ast::Attribute]>),
2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542
    Borrowed(&'gcx [ast::Attribute])
}

impl<'gcx> ::std::ops::Deref for Attributes<'gcx> {
    type Target = [ast::Attribute];

    fn deref(&self) -> &[ast::Attribute] {
        match self {
            &Attributes::Owned(ref data) => &data,
            &Attributes::Borrowed(data) => data
        }
    }
}

2543
impl<'a, 'gcx, 'tcx> TyCtxt<'a, 'gcx, 'tcx> {
2544
    pub fn body_tables(self, body: hir::BodyId) -> &'gcx TypeckTables<'gcx> {
2545
        self.typeck_tables_of(self.hir.body_owner_def_id(body))
2546 2547
    }

N
Niko Matsakis 已提交
2548 2549 2550
    /// Returns an iterator of the def-ids for all body-owners in this
    /// crate. If you would prefer to iterate over the bodies
    /// themselves, you can do `self.hir.krate().body_ids.iter()`.
2551 2552 2553
    pub fn body_owners(
        self,
    ) -> impl Iterator<Item = DefId> + Captures<'tcx> + Captures<'gcx> + 'a {
N
Niko Matsakis 已提交
2554 2555 2556 2557 2558 2559
        self.hir.krate()
                .body_ids
                .iter()
                .map(move |&body_id| self.hir.body_owner_def_id(body_id))
    }

J
John Kåre Alsaker 已提交
2560 2561 2562 2563 2564 2565
    pub fn par_body_owners<F: Fn(DefId) + sync::Sync + sync::Send>(self, f: F) {
        par_iter(&self.hir.krate().body_ids).for_each(|&body_id| {
            f(self.hir.body_owner_def_id(body_id))
        });
    }

2566
    pub fn expr_span(self, id: NodeId) -> Span {
2567
        match self.hir.find(id) {
V
varkor 已提交
2568
            Some(Node::Expr(e)) => {
2569 2570 2571
                e.span
            }
            Some(f) => {
2572
                bug!("Node id {} is not an expr: {:?}", id, f);
2573 2574
            }
            None => {
2575
                bug!("Node id {} is not present in the node map", id);
2576
            }
2577
        }
2578 2579
    }

2580 2581
    pub fn provided_trait_methods(self, id: DefId) -> Vec<AssociatedItem> {
        self.associated_items(id)
2582
            .filter(|item| item.kind == AssociatedKind::Method && item.defaultness.has_value())
2583
            .collect()
2584 2585
    }

A
Andrew Cann 已提交
2586 2587 2588 2589 2590 2591
    pub fn trait_relevant_for_never(self, did: DefId) -> bool {
        self.associated_items(did).any(|item| {
            item.relevant_for_never()
        })
    }

2592 2593 2594
    pub fn opt_associated_item(self, def_id: DefId) -> Option<AssociatedItem> {
        let is_associated_item = if let Some(node_id) = self.hir.as_local_node_id(def_id) {
            match self.hir.get(node_id) {
V
varkor 已提交
2595
                Node::TraitItem(_) | Node::ImplItem(_) => true,
2596 2597 2598
                _ => false,
            }
        } else {
2599
            match self.describe_def(def_id).expect("no def for def-id") {
2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611
                Def::AssociatedConst(_) | Def::Method(_) | Def::AssociatedTy(_) => true,
                _ => false,
            }
        };

        if is_associated_item {
            Some(self.associated_item(def_id))
        } else {
            None
        }
    }

2612 2613
    fn associated_item_from_trait_item_ref(self,
                                           parent_def_id: DefId,
2614
                                           parent_vis: &hir::Visibility,
2615
                                           trait_item_ref: &hir::TraitItemRef)
2616
                                           -> AssociatedItem {
2617
        let def_id = self.hir.local_def_id(trait_item_ref.id.node_id);
2618 2619 2620 2621
        let (kind, has_self) = match trait_item_ref.kind {
            hir::AssociatedItemKind::Const => (ty::AssociatedKind::Const, false),
            hir::AssociatedItemKind::Method { has_self } => {
                (ty::AssociatedKind::Method, has_self)
2622
            }
2623
            hir::AssociatedItemKind::Type => (ty::AssociatedKind::Type, false),
O
Oliver Schneider 已提交
2624
            hir::AssociatedItemKind::Existential => bug!("only impls can have existentials"),
2625 2626 2627
        };

        AssociatedItem {
2628
            ident: trait_item_ref.ident,
2629
            kind,
2630 2631
            // Visibility of trait items is inherited from their traits.
            vis: Visibility::from_hir(parent_vis, trait_item_ref.id.node_id, self),
2632
            defaultness: trait_item_ref.defaultness,
2633
            def_id,
2634 2635 2636 2637 2638 2639 2640 2641 2642
            container: TraitContainer(parent_def_id),
            method_has_self_argument: has_self
        }
    }

    fn associated_item_from_impl_item_ref(self,
                                          parent_def_id: DefId,
                                          impl_item_ref: &hir::ImplItemRef)
                                          -> AssociatedItem {
2643
        let def_id = self.hir.local_def_id(impl_item_ref.id.node_id);
2644 2645 2646 2647 2648 2649
        let (kind, has_self) = match impl_item_ref.kind {
            hir::AssociatedItemKind::Const => (ty::AssociatedKind::Const, false),
            hir::AssociatedItemKind::Method { has_self } => {
                (ty::AssociatedKind::Method, has_self)
            }
            hir::AssociatedItemKind::Type => (ty::AssociatedKind::Type, false),
O
Oliver Schneider 已提交
2650
            hir::AssociatedItemKind::Existential => (ty::AssociatedKind::Existential, false),
2651 2652
        };

2653 2654
        AssociatedItem {
            ident: impl_item_ref.ident,
2655
            kind,
2656 2657
            // Visibility of trait impl items doesn't matter.
            vis: ty::Visibility::from_hir(&impl_item_ref.vis, impl_item_ref.id.node_id, self),
2658
            defaultness: impl_item_ref.defaultness,
2659
            def_id,
2660 2661 2662 2663 2664
            container: ImplContainer(parent_def_id),
            method_has_self_argument: has_self
        }
    }

2665
    pub fn field_index(self, node_id: NodeId, tables: &TypeckTables<'_>) -> usize {
2666 2667 2668 2669 2670 2671
        let hir_id = self.hir.node_to_hir_id(node_id);
        tables.field_indices().get(hir_id).cloned().expect("no index for a field")
    }

    pub fn find_field_index(self, ident: Ident, variant: &VariantDef) -> Option<usize> {
        variant.fields.iter().position(|field| {
2672
            self.adjust_ident(ident, variant.did, DUMMY_NODE_ID).0 == field.ident.modern()
2673 2674 2675
        })
    }

2676 2677 2678
    pub fn associated_items(
        self,
        def_id: DefId,
2679
    ) -> impl Iterator<Item = AssociatedItem> + 'a {
2680
        let def_ids = self.associated_item_def_ids(def_id);
2681
        Box::new((0..def_ids.len()).map(move |i| self.associated_item(def_ids[i])))
2682
            as Box<dyn Iterator<Item = AssociatedItem> + 'a>
2683 2684
    }

2685 2686
    /// Returns true if the impls are the same polarity and the trait either
    /// has no items or is annotated #[marker] and prevents item overrides.
2687
    pub fn impls_are_allowed_to_overlap(self, def_id1: DefId, def_id2: DefId) -> bool {
2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709
        if self.features().overlapping_marker_traits {
            let trait1_is_empty = self.impl_trait_ref(def_id1)
                .map_or(false, |trait_ref| {
                    self.associated_item_def_ids(trait_ref.def_id).is_empty()
                });
            let trait2_is_empty = self.impl_trait_ref(def_id2)
                .map_or(false, |trait_ref| {
                    self.associated_item_def_ids(trait_ref.def_id).is_empty()
                });
            self.impl_polarity(def_id1) == self.impl_polarity(def_id2)
                && trait1_is_empty
                && trait2_is_empty
        } else if self.features().marker_trait_attr {
            let is_marker_impl = |def_id: DefId| -> bool {
                let trait_ref = self.impl_trait_ref(def_id);
                trait_ref.map_or(false, |tr| self.trait_def(tr.def_id).is_marker)
            };
            self.impl_polarity(def_id1) == self.impl_polarity(def_id2)
                && is_marker_impl(def_id1)
                && is_marker_impl(def_id2)
        } else {
            false
2710
        }
S
Sean Griffin 已提交
2711 2712
    }

2713 2714
    // Returns `ty::VariantDef` if `def` refers to a struct,
    // or variant or their constructors, panics otherwise.
2715
    pub fn expect_variant_def(self, def: Def) -> &'tcx VariantDef {
2716
        match def {
2717
            Def::Variant(did) | Def::VariantCtor(did, ..) => {
2718
                let enum_did = self.parent_def_id(did).unwrap();
2719
                self.adt_def(enum_did).variant_with_id(did)
2720
            }
2721
            Def::Struct(did) | Def::Union(did) => {
2722
                self.adt_def(did).non_enum_variant()
2723 2724 2725
            }
            Def::StructCtor(ctor_did, ..) => {
                let did = self.parent_def_id(ctor_did).expect("struct ctor has no parent");
2726
                self.adt_def(did).non_enum_variant()
2727 2728 2729 2730 2731
            }
            _ => bug!("expect_variant_def used with unexpected def {:?}", def)
        }
    }

2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745
    /// Given a `VariantDef`, returns the def-id of the `AdtDef` of which it is a part.
    pub fn adt_def_id_of_variant(self, variant_def: &'tcx VariantDef) -> DefId {
        let def_key = self.def_key(variant_def.did);
        match def_key.disambiguated_data.data {
            // for enum variants and tuple structs, the def-id of the ADT itself
            // is the *parent* of the variant
            DefPathData::EnumVariant(..) | DefPathData::StructCtor =>
                DefId { krate: variant_def.did.krate, index: def_key.parent.unwrap() },

            // otherwise, for structs and unions, they share a def-id
            _ => variant_def.did,
        }
    }

2746
    pub fn item_name(self, id: DefId) -> InternedString {
2747
        if id.index == CRATE_DEF_INDEX {
2748
            self.original_crate_name(id.krate).as_interned_str()
2749
        } else {
2750
            let def_key = self.def_key(id);
2751
            // The name of a StructCtor is that of its struct parent.
2752
            if let hir_map::DefPathData::StructCtor = def_key.disambiguated_data.data {
2753 2754 2755 2756 2757 2758 2759 2760 2761
                self.item_name(DefId {
                    krate: id.krate,
                    index: def_key.parent.unwrap()
                })
            } else {
                def_key.disambiguated_data.data.get_opt_name().unwrap_or_else(|| {
                    bug!("item_name: no name for {:?}", self.def_path(id));
                })
            }
2762 2763 2764
        }
    }

2765 2766
    /// Return the possibly-auto-generated MIR of a (DefId, Subst) pair.
    pub fn instance_mir(self, instance: ty::InstanceDef<'gcx>)
2767
                        -> &'gcx Mir<'gcx>
2768 2769
    {
        match instance {
N
Niko Matsakis 已提交
2770
            ty::InstanceDef::Item(did) => {
2771
                self.optimized_mir(did)
N
Niko Matsakis 已提交
2772
            }
M
Masaki Hara 已提交
2773
            ty::InstanceDef::VtableShim(..) |
N
Niko Matsakis 已提交
2774 2775 2776 2777
            ty::InstanceDef::Intrinsic(..) |
            ty::InstanceDef::FnPtrShim(..) |
            ty::InstanceDef::Virtual(..) |
            ty::InstanceDef::ClosureOnceShim { .. } |
2778
            ty::InstanceDef::DropGlue(..) |
S
scalexm 已提交
2779
            ty::InstanceDef::CloneShim(..) => {
2780
                self.mir_shims(instance)
N
Niko Matsakis 已提交
2781
            }
2782 2783 2784
        }
    }

2785 2786
    /// Given the DefId of an item, returns its MIR, borrowed immutably.
    /// Returns None if there is no MIR for the DefId
2787 2788 2789 2790 2791
    pub fn maybe_optimized_mir(self, did: DefId) -> Option<&'gcx Mir<'gcx>> {
        if self.is_mir_available(did) {
            Some(self.optimized_mir(did))
        } else {
            None
2792 2793 2794
        }
    }

2795
    /// Get the attributes of a definition.
2796
    pub fn get_attrs(self, did: DefId) -> Attributes<'gcx> {
2797
        if let Some(id) = self.hir.as_local_node_id(did) {
2798
            Attributes::Borrowed(self.hir.attrs(id))
2799
        } else {
A
achernyak 已提交
2800
            Attributes::Owned(self.item_attrs(did))
2801
        }
2802 2803
    }

2804
    /// Determine whether an item is annotated with an attribute
2805
    pub fn has_attr(self, did: DefId, attr: &str) -> bool {
2806
        attr::contains_name(&self.get_attrs(did), attr)
2807
    }
2808

2809 2810
    /// Returns true if this is an `auto trait`.
    pub fn trait_is_auto(self, trait_def_id: DefId) -> bool {
2811
        self.trait_def(trait_def_id).has_auto_impl
2812
    }
2813

J
John Kåre Alsaker 已提交
2814 2815 2816 2817
    pub fn generator_layout(self, def_id: DefId) -> &'tcx GeneratorLayout<'tcx> {
        self.optimized_mir(def_id).generator_layout.as_ref().unwrap()
    }

2818 2819
    /// Given the def_id of an impl, return the def_id of the trait it implements.
    /// If it implements no trait, return `None`.
2820
    pub fn trait_id_of_impl(self, def_id: DefId) -> Option<DefId> {
2821
        self.impl_trait_ref(def_id).map(|tr| tr.def_id)
2822
    }
2823 2824 2825

    /// If the given def ID describes a method belonging to an impl, return the
    /// ID of the impl that the method belongs to. Otherwise, return `None`.
2826
    pub fn impl_of_method(self, def_id: DefId) -> Option<DefId> {
2827
        let item = if def_id.krate != LOCAL_CRATE {
A
achernyak 已提交
2828
            if let Some(Def::Method(_)) = self.describe_def(def_id) {
2829 2830 2831 2832 2833
                Some(self.associated_item(def_id))
            } else {
                None
            }
        } else {
2834
            self.opt_associated_item(def_id)
2835 2836
        };

2837 2838 2839 2840
        item.and_then(|trait_item|
            match trait_item.container {
                TraitContainer(_) => None,
                ImplContainer(def_id) => Some(def_id),
2841
            }
2842
        )
2843 2844
    }

2845 2846
    /// Looks up the span of `impl_did` if the impl is local; otherwise returns `Err`
    /// with the name of the crate containing the impl.
2847
    pub fn span_of_impl(self, impl_did: DefId) -> Result<Span, Symbol> {
2848
        if impl_did.is_local() {
2849 2850
            let node_id = self.hir.as_local_node_id(impl_did).unwrap();
            Ok(self.hir.span(node_id))
2851
        } else {
2852
            Err(self.crate_name(impl_did.krate))
2853 2854
        }
    }
J
Jeffrey Seyfried 已提交
2855

2856 2857 2858
    // Hygienically compare a use-site name (`use_name`) for a field or an associated item with its
    // supposed definition name (`def_name`). The method also needs `DefId` of the supposed
    // definition's parent/scope to perform comparison.
2859 2860
    pub fn hygienic_eq(self, use_name: Ident, def_name: Ident, def_parent_def_id: DefId) -> bool {
        self.adjust_ident(use_name, def_parent_def_id, DUMMY_NODE_ID).0 == def_name.modern()
J
Jeffrey Seyfried 已提交
2861 2862 2863
    }

    pub fn adjust_ident(self, mut ident: Ident, scope: DefId, block: NodeId) -> (Ident, DefId) {
2864 2865
        ident = ident.modern();
        let target_expansion = match scope.krate {
2866
            LOCAL_CRATE => self.hir.definitions().expansion_that_defined(scope.index),
J
Jeffrey Seyfried 已提交
2867 2868
            _ => Mark::root(),
        };
2869 2870 2871
        let scope = match ident.span.adjust(target_expansion) {
            Some(actual_expansion) =>
                self.hir.definitions().parent_module_of_macro_def(actual_expansion),
2872
            None if block == DUMMY_NODE_ID => DefId::local(CRATE_DEF_INDEX), // Dummy DefId
J
Jeffrey Seyfried 已提交
2873 2874 2875 2876
            None => self.hir.get_module_parent(block),
        };
        (ident, scope)
    }
2877
}
2878

2879
impl<'a, 'gcx, 'tcx> TyCtxt<'a, 'gcx, 'tcx> {
2880
    pub fn with_freevars<T, F>(self, fid: NodeId, f: F) -> T where
2881
        F: FnOnce(&[hir::Freevar]) -> T,
2882
    {
A
Alex Crichton 已提交
2883 2884
        let def_id = self.hir.local_def_id(fid);
        match self.freevars(def_id) {
2885
            None => f(&[]),
2886
            Some(d) => f(&d),
2887 2888
        }
    }
2889
}
2890

L
ljedrz 已提交
2891
fn associated_item<'a, 'tcx>(tcx: TyCtxt<'a, 'tcx, 'tcx>, def_id: DefId) -> AssociatedItem {
2892 2893 2894 2895 2896
    let id = tcx.hir.as_local_node_id(def_id).unwrap();
    let parent_id = tcx.hir.get_parent(id);
    let parent_def_id = tcx.hir.local_def_id(parent_id);
    let parent_item = tcx.hir.expect_item(parent_id);
    match parent_item.node {
C
csmoe 已提交
2897
        hir::ItemKind::Impl(.., ref impl_item_refs) => {
2898
            if let Some(impl_item_ref) = impl_item_refs.iter().find(|i| i.id.node_id == id) {
2899 2900
                let assoc_item = tcx.associated_item_from_impl_item_ref(parent_def_id,
                                                                        impl_item_ref);
2901 2902
                debug_assert_eq!(assoc_item.def_id, def_id);
                return assoc_item;
2903 2904 2905
            }
        }

C
csmoe 已提交
2906
        hir::ItemKind::Trait(.., ref trait_item_refs) => {
2907
            if let Some(trait_item_ref) = trait_item_refs.iter().find(|i| i.id.node_id == id) {
2908 2909 2910
                let assoc_item = tcx.associated_item_from_trait_item_ref(parent_def_id,
                                                                         &parent_item.vis,
                                                                         trait_item_ref);
2911 2912
                debug_assert_eq!(assoc_item.def_id, def_id);
                return assoc_item;
2913 2914 2915
            }
        }

2916
        _ => { }
2917
    }
2918 2919 2920 2921

    span_bug!(parent_item.span,
              "unexpected parent of trait or impl item or item not found: {:?}",
              parent_item.node)
2922 2923
}

2924 2925
/// Calculates the Sized-constraint.
///
2926
/// In fact, there are only a few options for the types in the constraint:
2927 2928 2929 2930
///     - an obviously-unsized type
///     - a type parameter or projection whose Sizedness can't be known
///     - a tuple of type parameters or projections, if there are multiple
///       such.
V
varkor 已提交
2931
///     - a Error, if a type contained itself. The representability
2932 2933 2934
///       check should catch this case.
fn adt_sized_constraint<'a, 'tcx>(tcx: TyCtxt<'a, 'tcx, 'tcx>,
                                  def_id: DefId)
2935
                                  -> &'tcx [Ty<'tcx>] {
2936
    let def = tcx.adt_def(def_id);
2937

2938
    let result = tcx.mk_type_list(def.variants.iter().flat_map(|v| {
2939 2940
        v.fields.last()
    }).flat_map(|f| {
2941
        def.sized_constraint_for_ty(tcx, tcx.type_of(f.did))
2942
    }));
2943

2944
    debug!("adt_sized_constraint: {:?} => {:?}", def, result);
2945

2946
    result
2947 2948
}

2949 2950
fn associated_item_def_ids<'a, 'tcx>(tcx: TyCtxt<'a, 'tcx, 'tcx>,
                                     def_id: DefId)
2951
                                     -> Lrc<Vec<DefId>> {
2952 2953 2954
    let id = tcx.hir.as_local_node_id(def_id).unwrap();
    let item = tcx.hir.expect_item(id);
    let vec: Vec<_> = match item.node {
C
csmoe 已提交
2955
        hir::ItemKind::Trait(.., ref trait_item_refs) => {
2956 2957 2958 2959 2960
            trait_item_refs.iter()
                           .map(|trait_item_ref| trait_item_ref.id)
                           .map(|id| tcx.hir.local_def_id(id.node_id))
                           .collect()
        }
C
csmoe 已提交
2961
        hir::ItemKind::Impl(.., ref impl_item_refs) => {
2962 2963 2964 2965 2966
            impl_item_refs.iter()
                          .map(|impl_item_ref| impl_item_ref.id)
                          .map(|id| tcx.hir.local_def_id(id.node_id))
                          .collect()
        }
C
csmoe 已提交
2967
        hir::ItemKind::TraitAlias(..) => vec![],
2968 2969
        _ => span_bug!(item.span, "associated_item_def_ids: not impl or trait")
    };
2970
    Lrc::new(vec)
2971 2972
}

A
achernyak 已提交
2973
fn def_span<'a, 'tcx>(tcx: TyCtxt<'a, 'tcx, 'tcx>, def_id: DefId) -> Span {
A
achernyak 已提交
2974
    tcx.hir.span_if_local(def_id).unwrap()
A
achernyak 已提交
2975 2976
}

A
achernyak 已提交
2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989
/// If the given def ID describes an item belonging to a trait,
/// return the ID of the trait that the trait item belongs to.
/// Otherwise, return `None`.
fn trait_of_item<'a, 'tcx>(tcx: TyCtxt<'a, 'tcx, 'tcx>, def_id: DefId) -> Option<DefId> {
    tcx.opt_associated_item(def_id)
        .and_then(|associated_item| {
            match associated_item.container {
                TraitContainer(def_id) => Some(def_id),
                ImplContainer(_) => None
            }
        })
}

2990
/// Yields the parent function's `DefId` if `def_id` is an `impl Trait` definition
2991
pub fn is_impl_trait_defn(tcx: TyCtxt<'_, '_, '_>, def_id: DefId) -> Option<DefId> {
2992
    if let Some(node_id) = tcx.hir.as_local_node_id(def_id) {
V
varkor 已提交
2993
        if let Node::Item(item) = tcx.hir.get(node_id) {
2994 2995 2996 2997 2998 2999 3000 3001
            if let hir::ItemKind::Existential(ref exist_ty) = item.node {
                return exist_ty.impl_trait_fn;
            }
        }
    }
    None
}

3002
/// See `ParamEnv` struct def'n for details.
3003
fn param_env<'a, 'tcx>(tcx: TyCtxt<'a, 'tcx, 'tcx>,
3004
                       def_id: DefId)
L
ljedrz 已提交
3005 3006
                       -> ParamEnv<'tcx>
{
O
Oliver Schneider 已提交
3007
    // The param_env of an impl Trait type is its defining function's param_env
3008 3009
    if let Some(parent) = is_impl_trait_defn(tcx, def_id) {
        return param_env(tcx, parent);
3010
    }
3011 3012
    // Compute the bounds on Self and the type parameters.

N
Niko Matsakis 已提交
3013 3014
    let InstantiatedPredicates { predicates } =
        tcx.predicates_of(def_id).instantiate_identity(tcx);
3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027

    // Finally, we have to normalize the bounds in the environment, in
    // case they contain any associated type projections. This process
    // can yield errors if the put in illegal associated types, like
    // `<i32 as Foo>::Bar` where `i32` does not implement `Foo`. We
    // report these errors right here; this doesn't actually feel
    // right to me, because constructing the environment feels like a
    // kind of a "idempotent" action, but I'm not sure where would be
    // a better place. In practice, we construct environments for
    // every fn once during type checking, and we'll abort if there
    // are any errors at that point, so after type checking you can be
    // sure that this will succeed without errors anyway.

3028
    let unnormalized_env = ty::ParamEnv::new(tcx.intern_predicates(&predicates),
3029
                                             traits::Reveal::UserFacing);
3030 3031 3032 3033 3034 3035 3036

    let body_id = tcx.hir.as_local_node_id(def_id).map_or(DUMMY_NODE_ID, |id| {
        tcx.hir.maybe_body_owned_by(id).map_or(id, |body| body.node_id)
    });
    let cause = traits::ObligationCause::misc(tcx.def_span(def_id), body_id);
    traits::normalize_param_env_or_error(tcx, def_id, unnormalized_env, cause)
}
A
achernyak 已提交
3037

3038
fn crate_disambiguator<'a, 'tcx>(tcx: TyCtxt<'a, 'tcx, 'tcx>,
3039
                                 crate_num: CrateNum) -> CrateDisambiguator {
3040 3041 3042 3043
    assert_eq!(crate_num, LOCAL_CRATE);
    tcx.sess.local_crate_disambiguator()
}

3044 3045 3046 3047 3048 3049
fn original_crate_name<'a, 'tcx>(tcx: TyCtxt<'a, 'tcx, 'tcx>,
                                 crate_num: CrateNum) -> Symbol {
    assert_eq!(crate_num, LOCAL_CRATE);
    tcx.crate_name.clone()
}

3050 3051 3052 3053 3054 3055 3056
fn crate_hash<'a, 'tcx>(tcx: TyCtxt<'a, 'tcx, 'tcx>,
                        crate_num: CrateNum)
                        -> Svh {
    assert_eq!(crate_num, LOCAL_CRATE);
    tcx.hir.crate_hash
}

V
varkor 已提交
3057 3058 3059 3060
fn instance_def_size_estimate<'a, 'tcx>(tcx: TyCtxt<'a, 'tcx, 'tcx>,
                                        instance_def: InstanceDef<'tcx>)
                                        -> usize {
    match instance_def {
3061 3062 3063
        InstanceDef::Item(..) |
        InstanceDef::DropGlue(..) => {
            let mir = tcx.instance_mir(instance_def);
V
varkor 已提交
3064 3065
            mir.basic_blocks().iter().map(|bb| bb.statements.len()).sum()
        },
3066
        // Estimate the size of other compiler-generated shims to be 1.
V
varkor 已提交
3067 3068 3069 3070
        _ => 1
    }
}

3071
pub fn provide(providers: &mut ty::query::Providers<'_>) {
3072
    context::provide(providers);
3073
    erase_regions::provide(providers);
3074 3075
    layout::provide(providers);
    util::provide(providers);
3076
    constness::provide(providers);
3077
    *providers = ty::query::Providers {
3078
        associated_item,
3079
        associated_item_def_ids,
3080
        adt_sized_constraint,
A
achernyak 已提交
3081
        def_span,
3082
        param_env,
A
achernyak 已提交
3083
        trait_of_item,
3084
        crate_disambiguator,
3085
        original_crate_name,
3086
        crate_hash,
3087
        trait_impls_of: trait_def::trait_impls_of_provider,
V
varkor 已提交
3088
        instance_def_size_estimate,
3089 3090 3091 3092
        ..*providers
    };
}

3093 3094 3095
/// A map for the local crate mapping each type to a vector of its
/// inherent impls. This is not meant to be used outside of coherence;
/// rather, you should request the vector for a specific type via
3096 3097
/// `tcx.inherent_impls(def_id)` so as to minimize your dependencies
/// (constructing this map requires touching the entire crate).
3098 3099
#[derive(Clone, Debug)]
pub struct CrateInherentImpls {
3100
    pub inherent_impls: DefIdMap<Lrc<Vec<DefId>>>,
3101
}
A
Ariel Ben-Yehuda 已提交
3102

3103
#[derive(Clone, Copy, PartialEq, Eq, PartialOrd, Ord, RustcEncodable, RustcDecodable)]
3104 3105 3106 3107 3108 3109
pub struct SymbolName {
    // FIXME: we don't rely on interning or equality here - better have
    // this be a `&'tcx str`.
    pub name: InternedString
}

3110 3111 3112 3113
impl_stable_hash_for!(struct self::SymbolName {
    name
});

3114 3115 3116
impl SymbolName {
    pub fn new(name: &str) -> SymbolName {
        SymbolName {
3117
            name: Symbol::intern(name).as_interned_str()
3118 3119
        }
    }
3120

3121 3122 3123
    pub fn as_str(&self) -> LocalInternedString {
        self.name.as_str()
    }
3124 3125 3126
}

impl fmt::Display for SymbolName {
3127
    fn fmt(&self, fmt: &mut fmt::Formatter<'_>) -> fmt::Result {
3128 3129 3130
        fmt::Display::fmt(&self.name, fmt)
    }
}
3131 3132

impl fmt::Debug for SymbolName {
3133
    fn fmt(&self, fmt: &mut fmt::Formatter<'_>) -> fmt::Result {
3134 3135 3136
        fmt::Display::fmt(&self.name, fmt)
    }
}