mod.rs 110.8 KB
Newer Older
1
// Copyright 2012-2015 The Rust Project Developers. See the COPYRIGHT
2 3 4 5 6 7 8 9 10
// file at the top-level directory of this distribution and at
// http://rust-lang.org/COPYRIGHT.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.

S
Steven Fackler 已提交
11
pub use self::Variance::*;
12
pub use self::AssociatedItemContainer::*;
S
Steven Fackler 已提交
13 14
pub use self::BorrowKind::*;
pub use self::IntVarValue::*;
15
pub use self::fold::TypeFoldable;
S
Steven Fackler 已提交
16

17
use hir::{map as hir_map, FreevarMap, TraitMap};
V
varkor 已提交
18
use hir::Node;
19
use hir::def::{Def, CtorKind, ExportMap};
20
use hir::def_id::{CrateNum, DefId, LocalDefId, CRATE_DEF_INDEX, LOCAL_CRATE};
21
use hir::map::DefPathData;
22
use rustc_data_structures::svh::Svh;
W
Wesley Wiser 已提交
23
use ich::Fingerprint;
24
use ich::StableHashingContext;
25
use infer::canonical::Canonical;
26
use middle::lang_items::{FnTraitLangItem, FnMutTraitLangItem, FnOnceTraitLangItem};
27
use middle::privacy::AccessLevels;
28
use middle::resolve_lifetime::ObjectLifetimeDefault;
29
use mir::Mir;
30
use mir::interpret::GlobalId;
J
John Kåre Alsaker 已提交
31
use mir::GeneratorLayout;
32
use session::CrateDisambiguator;
33
use traits::{self, Reveal};
34
use ty;
35
use ty::subst::{Subst, Substs};
O
Oliver Schneider 已提交
36
use ty::util::{IntTypeExt, Discr};
37
use ty::walk::TypeWalker;
38
use util::captures::Captures;
39
use util::nodemap::{NodeSet, DefIdMap, FxHashMap};
J
John Kåre Alsaker 已提交
40
use arena::SyncDroplessArena;
41
use session::DataTypeKind;
42

43
use serialize::{self, Encodable, Encoder};
W
Wesley Wiser 已提交
44
use std::cell::RefCell;
45
use std::cmp::{self, Ordering};
46
use std::fmt;
47
use std::hash::{Hash, Hasher};
48
use std::ops::Deref;
J
John Kåre Alsaker 已提交
49
use rustc_data_structures::sync::{self, Lrc, ParallelIterator, par_iter};
50
use std::slice;
51
use std::vec::IntoIter;
52
use std::{mem, ptr};
J
Jeffrey Seyfried 已提交
53
use syntax::ast::{self, DUMMY_NODE_ID, Name, Ident, NodeId};
54
use syntax::attr;
55
use syntax::ext::hygiene::Mark;
56
use syntax::symbol::{keywords, Symbol, LocalInternedString, InternedString};
57
use syntax_pos::{DUMMY_SP, Span};
58

59
use smallvec;
60 61
use rustc_data_structures::stable_hasher::{StableHasher, StableHasherResult,
                                           HashStable};
O
Oliver Schneider 已提交
62

63
use hir;
64

65
pub use self::sty::{Binder, CanonicalVar, DebruijnIndex, INNERMOST};
J
John Kåre Alsaker 已提交
66
pub use self::sty::{FnSig, GenSig, PolyFnSig, PolyGenSig};
67
pub use self::sty::{InferTy, ParamTy, ProjectionTy, ExistentialPredicate};
68
pub use self::sty::{ClosureSubsts, GeneratorSubsts, UpvarSubsts, TypeAndMut};
V
varkor 已提交
69
pub use self::sty::{TraitRef, TyKind, PolyTraitRef};
70
pub use self::sty::{ExistentialTraitRef, PolyExistentialTraitRef};
71
pub use self::sty::{ExistentialProjection, PolyExistentialProjection, Const};
72
pub use self::sty::{BoundRegion, EarlyBoundRegion, FreeRegion, Region};
N
Niko Matsakis 已提交
73
pub use self::sty::RegionKind;
74
pub use self::sty::{TyVid, IntVid, FloatVid, RegionVid};
75 76
pub use self::sty::BoundRegion::*;
pub use self::sty::InferTy::*;
N
Niko Matsakis 已提交
77
pub use self::sty::RegionKind::*;
V
varkor 已提交
78
pub use self::sty::TyKind::*;
79

80 81 82
pub use self::binding::BindingMode;
pub use self::binding::BindingMode::*;

83
pub use self::context::{TyCtxt, FreeRegionInfo, GlobalArenas, AllArenas, tls, keep_local};
84
pub use self::context::{Lift, TypeckTables};
85

86 87
pub use self::instance::{Instance, InstanceDef};

88
pub use self::trait_def::TraitDef;
89

90
pub use self::query::queries;
91

92
pub mod adjustment;
93
pub mod binding;
94
pub mod cast;
95
#[macro_use]
96
pub mod codec;
97
pub mod error;
98
mod erase_regions;
99 100
pub mod fast_reject;
pub mod fold;
A
Andrew Cann 已提交
101
pub mod inhabitedness;
102
pub mod item_path;
103
pub mod layout;
104 105
pub mod _match;
pub mod outlives;
106
pub mod query;
107
pub mod relate;
108
pub mod steal;
109
pub mod subst;
110
pub mod trait_def;
111 112
pub mod walk;
pub mod wf;
113
pub mod util;
114

115 116
mod context;
mod flags;
117
mod instance;
118 119 120
mod structural_impls;
mod sty;

121
// Data types
122

123
/// The complete set of all analyses described in this module. This is
I
Irina Popa 已提交
124
/// produced by the driver and fed to codegen and later passes.
125 126 127
///
/// NB: These contents are being migrated into queries using the
/// *on-demand* infrastructure.
J
Jeffrey Seyfried 已提交
128
#[derive(Clone)]
129
pub struct CrateAnalysis {
130
    pub access_levels: Lrc<AccessLevels>,
131
    pub name: String,
132
    pub glob_map: Option<hir::GlobMap>,
133 134
}

135 136 137 138 139
#[derive(Clone)]
pub struct Resolutions {
    pub freevars: FreevarMap,
    pub trait_map: TraitMap,
    pub maybe_unused_trait_imports: NodeSet,
140
    pub maybe_unused_extern_crates: Vec<(NodeId, Span)>,
N
Niko Matsakis 已提交
141
    pub export_map: ExportMap,
142 143
}

144
#[derive(Clone, Copy, PartialEq, Eq, Debug)]
145
pub enum AssociatedItemContainer {
N
Niko Matsakis 已提交
146 147
    TraitContainer(DefId),
    ImplContainer(DefId),
148 149
}

150
impl AssociatedItemContainer {
151 152 153 154 155 156 157 158 159
    /// Asserts that this is the def-id of an associated item declared
    /// in a trait, and returns the trait def-id.
    pub fn assert_trait(&self) -> DefId {
        match *self {
            TraitContainer(id) => id,
            _ => bug!("associated item has wrong container type: {:?}", self)
        }
    }

N
Niko Matsakis 已提交
160
    pub fn id(&self) -> DefId {
161 162 163 164 165 166 167
        match *self {
            TraitContainer(id) => id,
            ImplContainer(id) => id,
        }
    }
}

A
Aaron Turon 已提交
168 169 170 171 172 173 174 175 176 177 178
/// The "header" of an impl is everything outside the body: a Self type, a trait
/// ref (in the case of a trait impl), and a set of predicates (from the
/// bounds/where clauses).
#[derive(Clone, PartialEq, Eq, Hash, Debug)]
pub struct ImplHeader<'tcx> {
    pub impl_def_id: DefId,
    pub self_ty: Ty<'tcx>,
    pub trait_ref: Option<TraitRef<'tcx>>,
    pub predicates: Vec<Predicate<'tcx>>,
}

179
#[derive(Copy, Clone, Debug, PartialEq)]
180 181
pub struct AssociatedItem {
    pub def_id: DefId,
182
    pub ident: Ident,
183 184 185 186
    pub kind: AssociatedKind,
    pub vis: Visibility,
    pub defaultness: hir::Defaultness,
    pub container: AssociatedItemContainer,
187

188 189 190 191
    /// Whether this is a method with an explicit self
    /// as its first argument, allowing method calls.
    pub method_has_self_argument: bool,
}
192

193
#[derive(Copy, Clone, PartialEq, Eq, Debug, Hash, RustcEncodable, RustcDecodable)]
194 195 196
pub enum AssociatedKind {
    Const,
    Method,
O
Oliver Schneider 已提交
197
    Existential,
198 199
    Type
}
200

201 202 203 204 205 206
impl AssociatedItem {
    pub fn def(&self) -> Def {
        match self.kind {
            AssociatedKind::Const => Def::AssociatedConst(self.def_id),
            AssociatedKind::Method => Def::Method(self.def_id),
            AssociatedKind::Type => Def::AssociatedTy(self.def_id),
O
Oliver Schneider 已提交
207
            AssociatedKind::Existential => Def::AssociatedExistential(self.def_id),
208 209
        }
    }
A
Andrew Cann 已提交
210 211 212 213 214

    /// Tests whether the associated item admits a non-trivial implementation
    /// for !
    pub fn relevant_for_never<'tcx>(&self) -> bool {
        match self.kind {
O
Oliver Schneider 已提交
215 216
            AssociatedKind::Existential |
            AssociatedKind::Const |
A
Andrew Cann 已提交
217
            AssociatedKind::Type => true,
A
Andrew Cann 已提交
218
            // FIXME(canndrew): Be more thorough here, check if any argument is uninhabited.
A
Andrew Cann 已提交
219 220 221
            AssociatedKind::Method => !self.method_has_self_argument,
        }
    }
222 223 224 225 226 227 228 229

    pub fn signature<'a, 'tcx>(&self, tcx: &TyCtxt<'a, 'tcx, 'tcx>) -> String {
        match self.kind {
            ty::AssociatedKind::Method => {
                // We skip the binder here because the binder would deanonymize all
                // late-bound regions, and we don't want method signatures to show up
                // `as for<'r> fn(&'r MyType)`.  Pretty-printing handles late-bound
                // regions just fine, showing `fn(&MyType)`.
L
ljedrz 已提交
230
                tcx.fn_sig(self.def_id).skip_binder().to_string()
231
            }
232
            ty::AssociatedKind::Type => format!("type {};", self.ident),
O
Oliver Schneider 已提交
233
            ty::AssociatedKind::Existential => format!("existential type {};", self.ident),
234
            ty::AssociatedKind::Const => {
235
                format!("const {}: {:?};", self.ident, tcx.type_of(self.def_id))
236 237 238
            }
        }
    }
239 240
}

241
#[derive(Clone, Debug, PartialEq, Eq, Copy, RustcEncodable, RustcDecodable)]
242 243 244 245
pub enum Visibility {
    /// Visible everywhere (including in other crates).
    Public,
    /// Visible only in the given crate-local module.
246
    Restricted(DefId),
247
    /// Not visible anywhere in the local crate. This is the visibility of private external items.
248
    Invisible,
249 250
}

251 252
pub trait DefIdTree: Copy {
    fn parent(self, id: DefId) -> Option<DefId>;
A
Andrew Cann 已提交
253 254 255 256 257 258 259 260 261 262 263 264 265 266

    fn is_descendant_of(self, mut descendant: DefId, ancestor: DefId) -> bool {
        if descendant.krate != ancestor.krate {
            return false;
        }

        while descendant != ancestor {
            match self.parent(descendant) {
                Some(parent) => descendant = parent,
                None => return false,
            }
        }
        true
    }
267 268
}

269 270 271
impl<'a, 'gcx, 'tcx> DefIdTree for TyCtxt<'a, 'gcx, 'tcx> {
    fn parent(self, id: DefId) -> Option<DefId> {
        self.def_key(id).parent.map(|index| DefId { index: index, ..id })
272 273 274
    }
}

275
impl Visibility {
276
    pub fn from_hir(visibility: &hir::Visibility, id: NodeId, tcx: TyCtxt<'_, '_, '_>) -> Self {
277
        match visibility.node {
278 279 280
            hir::VisibilityKind::Public => Visibility::Public,
            hir::VisibilityKind::Crate(_) => Visibility::Restricted(DefId::local(CRATE_DEF_INDEX)),
            hir::VisibilityKind::Restricted { ref path, .. } => match path.def {
281 282
                // If there is no resolution, `resolve` will have already reported an error, so
                // assume that the visibility is public to avoid reporting more privacy errors.
283
                Def::Err => Visibility::Public,
284
                def => Visibility::Restricted(def.def_id()),
285
            },
286
            hir::VisibilityKind::Inherited => {
J
Jeffrey Seyfried 已提交
287
                Visibility::Restricted(tcx.hir.get_module_parent(id))
288
            }
289 290
        }
    }
291 292

    /// Returns true if an item with this visibility is accessible from the given block.
A
Andrew Cann 已提交
293
    pub fn is_accessible_from<T: DefIdTree>(self, module: DefId, tree: T) -> bool {
294 295 296 297
        let restriction = match self {
            // Public items are visible everywhere.
            Visibility::Public => return true,
            // Private items from other crates are visible nowhere.
298
            Visibility::Invisible => return false,
299
            // Restricted items are visible in an arbitrary local module.
300
            Visibility::Restricted(other) if other.krate != module.krate => return false,
301 302 303
            Visibility::Restricted(module) => module,
        };

A
Andrew Cann 已提交
304
        tree.is_descendant_of(module, restriction)
305
    }
306 307

    /// Returns true if this visibility is at least as accessible as the given visibility
308
    pub fn is_at_least<T: DefIdTree>(self, vis: Visibility, tree: T) -> bool {
309 310
        let vis_restriction = match vis {
            Visibility::Public => return self == Visibility::Public,
311
            Visibility::Invisible => return true,
312 313 314
            Visibility::Restricted(module) => module,
        };

315
        self.is_accessible_from(vis_restriction, tree)
316
    }
317 318 319 320 321 322 323 324 325

    // Returns true if this item is visible anywhere in the local crate.
    pub fn is_visible_locally(self) -> bool {
        match self {
            Visibility::Public => true,
            Visibility::Restricted(def_id) => def_id.is_local(),
            Visibility::Invisible => false,
        }
    }
326 327
}

328
#[derive(Clone, PartialEq, RustcDecodable, RustcEncodable, Copy)]
329
pub enum Variance {
330 331 332 333
    Covariant,      // T<A> <: T<B> iff A <: B -- e.g., function return type
    Invariant,      // T<A> <: T<B> iff B == A -- e.g., type of mutable cell
    Contravariant,  // T<A> <: T<B> iff B <: A -- e.g., function param type
    Bivariant,      // T<A> <: T<B>            -- e.g., unused type parameter
334
}
335

336 337 338 339
/// The crate variances map is computed during typeck and contains the
/// variance of every item in the local crate. You should not use it
/// directly, because to do so will make your pass dependent on the
/// HIR of every item in the local crate. Instead, use
340
/// `tcx.variances_of()` to get the variance for a *particular*
341 342 343 344 345
/// item.
pub struct CrateVariancesMap {
    /// For each item with generics, maps to a vector of the variance
    /// of its generics.  If an item has no generics, it will have no
    /// entry.
346
    pub variances: FxHashMap<DefId, Lrc<Vec<ty::Variance>>>,
347 348

    /// An empty vector, useful for cloning.
349
    pub empty_variance: Lrc<Vec<ty::Variance>>,
350 351
}

352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411
impl Variance {
    /// `a.xform(b)` combines the variance of a context with the
    /// variance of a type with the following meaning.  If we are in a
    /// context with variance `a`, and we encounter a type argument in
    /// a position with variance `b`, then `a.xform(b)` is the new
    /// variance with which the argument appears.
    ///
    /// Example 1:
    ///
    ///     *mut Vec<i32>
    ///
    /// Here, the "ambient" variance starts as covariant. `*mut T` is
    /// invariant with respect to `T`, so the variance in which the
    /// `Vec<i32>` appears is `Covariant.xform(Invariant)`, which
    /// yields `Invariant`. Now, the type `Vec<T>` is covariant with
    /// respect to its type argument `T`, and hence the variance of
    /// the `i32` here is `Invariant.xform(Covariant)`, which results
    /// (again) in `Invariant`.
    ///
    /// Example 2:
    ///
    ///     fn(*const Vec<i32>, *mut Vec<i32)
    ///
    /// The ambient variance is covariant. A `fn` type is
    /// contravariant with respect to its parameters, so the variance
    /// within which both pointer types appear is
    /// `Covariant.xform(Contravariant)`, or `Contravariant`.  `*const
    /// T` is covariant with respect to `T`, so the variance within
    /// which the first `Vec<i32>` appears is
    /// `Contravariant.xform(Covariant)` or `Contravariant`.  The same
    /// is true for its `i32` argument. In the `*mut T` case, the
    /// variance of `Vec<i32>` is `Contravariant.xform(Invariant)`,
    /// and hence the outermost type is `Invariant` with respect to
    /// `Vec<i32>` (and its `i32` argument).
    ///
    /// Source: Figure 1 of "Taming the Wildcards:
    /// Combining Definition- and Use-Site Variance" published in PLDI'11.
    pub fn xform(self, v: ty::Variance) -> ty::Variance {
        match (self, v) {
            // Figure 1, column 1.
            (ty::Covariant, ty::Covariant) => ty::Covariant,
            (ty::Covariant, ty::Contravariant) => ty::Contravariant,
            (ty::Covariant, ty::Invariant) => ty::Invariant,
            (ty::Covariant, ty::Bivariant) => ty::Bivariant,

            // Figure 1, column 2.
            (ty::Contravariant, ty::Covariant) => ty::Contravariant,
            (ty::Contravariant, ty::Contravariant) => ty::Covariant,
            (ty::Contravariant, ty::Invariant) => ty::Invariant,
            (ty::Contravariant, ty::Bivariant) => ty::Bivariant,

            // Figure 1, column 3.
            (ty::Invariant, _) => ty::Invariant,

            // Figure 1, column 4.
            (ty::Bivariant, _) => ty::Bivariant,
        }
    }
}

412 413 414
// Contains information needed to resolve types and (in the future) look up
// the types of AST nodes.
#[derive(Copy, Clone, PartialEq, Eq, Hash)]
415
pub struct CReaderCacheKey {
416 417 418 419
    pub cnum: CrateNum,
    pub pos: usize,
}

420 421 422 423
// Flags that we track on types. These flags are propagated upwards
// through the type during type construction, so that we can quickly
// check whether the type has various kinds of types in it without
// recursing over the type itself.
424
bitflags! {
425 426 427 428 429 430
    pub struct TypeFlags: u32 {
        const HAS_PARAMS         = 1 << 0;
        const HAS_SELF           = 1 << 1;
        const HAS_TY_INFER       = 1 << 2;
        const HAS_RE_INFER       = 1 << 3;
        const HAS_RE_SKOL        = 1 << 4;
431 432 433 434 435

        /// Does this have any `ReEarlyBound` regions? Used to
        /// determine whether substitition is required, since those
        /// represent regions that are bound in a `ty::Generics` and
        /// hence may be substituted.
436
        const HAS_RE_EARLY_BOUND = 1 << 5;
437 438 439

        /// Does this have any region that "appears free" in the type?
        /// Basically anything but `ReLateBound` and `ReErased`.
440
        const HAS_FREE_REGIONS   = 1 << 6;
441 442

        /// Is an error type reachable?
443 444
        const HAS_TY_ERR         = 1 << 7;
        const HAS_PROJECTION     = 1 << 8;
J
John Kåre Alsaker 已提交
445 446

        // FIXME: Rename this to the actual property since it's used for generators too
447
        const HAS_TY_CLOSURE     = 1 << 9;
448 449 450

        // true if there are "names" of types and regions and so forth
        // that are local to a particular fn
451
        const HAS_FREE_LOCAL_NAMES    = 1 << 10;
452

453
        // Present if the type belongs in a local type context.
V
varkor 已提交
454
        // Only set for Infer other than Fresh.
455
        const KEEP_IN_LOCAL_TCX  = 1 << 11;
456

457 458
        // Is there a projection that does not involve a bound region?
        // Currently we can't normalize projections w/ bound regions.
459
        const HAS_NORMALIZABLE_PROJECTION = 1 << 12;
460

461 462 463 464
        // Set if this includes a "canonical" type or region var --
        // ought to be true only for the results of canonicalization.
        const HAS_CANONICAL_VARS = 1 << 13;

465 466 467 468
        /// Does this have any `ReLateBound` regions? Used to check
        /// if a global bound is safe to evaluate.
        const HAS_RE_LATE_BOUND = 1 << 14;

469 470
        const NEEDS_SUBST        = TypeFlags::HAS_PARAMS.bits |
                                   TypeFlags::HAS_SELF.bits |
471
                                   TypeFlags::HAS_RE_EARLY_BOUND.bits;
472 473

        // Flags representing the nominal content of a type,
474 475
        // computed by FlagsComputation. If you add a new nominal
        // flag, it should be added here too.
476 477 478 479
        const NOMINAL_FLAGS     = TypeFlags::HAS_PARAMS.bits |
                                  TypeFlags::HAS_SELF.bits |
                                  TypeFlags::HAS_TY_INFER.bits |
                                  TypeFlags::HAS_RE_INFER.bits |
480
                                  TypeFlags::HAS_RE_SKOL.bits |
481 482
                                  TypeFlags::HAS_RE_EARLY_BOUND.bits |
                                  TypeFlags::HAS_FREE_REGIONS.bits |
483
                                  TypeFlags::HAS_TY_ERR.bits |
484
                                  TypeFlags::HAS_PROJECTION.bits |
485
                                  TypeFlags::HAS_TY_CLOSURE.bits |
486
                                  TypeFlags::HAS_FREE_LOCAL_NAMES.bits |
487
                                  TypeFlags::KEEP_IN_LOCAL_TCX.bits |
488 489
                                  TypeFlags::HAS_CANONICAL_VARS.bits |
                                  TypeFlags::HAS_RE_LATE_BOUND.bits;
490
    }
491 492
}

493
pub struct TyS<'tcx> {
V
varkor 已提交
494
    pub sty: TyKind<'tcx>,
495
    pub flags: TypeFlags,
496

497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514
    /// This is a kind of confusing thing: it stores the smallest
    /// binder such that
    ///
    /// (a) the binder itself captures nothing but
    /// (b) all the late-bound things within the type are captured
    ///     by some sub-binder.
    ///
    /// So, for a type without any late-bound things, like `u32`, this
    /// will be INNERMOST, because that is the innermost binder that
    /// captures nothing. But for a type `&'D u32`, where `'D` is a
    /// late-bound region with debruijn index D, this would be D+1 --
    /// the binder itself does not capture D, but D is captured by an
    /// inner binder.
    ///
    /// We call this concept an "exclusive" binder D (because all
    /// debruijn indices within the type are contained within `0..D`
    /// (exclusive)).
    outer_exclusive_binder: ty::DebruijnIndex,
515 516
}

517 518 519 520 521 522 523 524 525 526 527 528
impl<'tcx> Ord for TyS<'tcx> {
    fn cmp(&self, other: &TyS<'tcx>) -> Ordering {
        self.sty.cmp(&other.sty)
    }
}

impl<'tcx> PartialOrd for TyS<'tcx> {
    fn partial_cmp(&self, other: &TyS<'tcx>) -> Option<Ordering> {
        Some(self.sty.cmp(&other.sty))
    }
}

529
impl<'tcx> PartialEq for TyS<'tcx> {
530
    #[inline]
531
    fn eq(&self, other: &TyS<'tcx>) -> bool {
532
        ptr::eq(self, other)
533 534
    }
}
535
impl<'tcx> Eq for TyS<'tcx> {}
536

A
Alex Crichton 已提交
537 538
impl<'tcx> Hash for TyS<'tcx> {
    fn hash<H: Hasher>(&self, s: &mut H) {
539
        (self as *const TyS<'_>).hash(s)
A
Alex Crichton 已提交
540 541
    }
}
542

G
Guillaume Gomez 已提交
543 544 545
impl<'tcx> TyS<'tcx> {
    pub fn is_primitive_ty(&self) -> bool {
        match self.sty {
546 547 548 549 550
            TyKind::Bool |
                TyKind::Char |
                TyKind::Int(_) |
                TyKind::Uint(_) |
                TyKind::Float(_) |
V
varkor 已提交
551 552 553 554 555
                TyKind::Infer(InferTy::IntVar(_)) |
                TyKind::Infer(InferTy::FloatVar(_)) |
                TyKind::Infer(InferTy::FreshIntTy(_)) |
                TyKind::Infer(InferTy::FreshFloatTy(_)) => true,
            TyKind::Ref(_, x, _) => x.is_primitive_ty(),
G
Guillaume Gomez 已提交
556 557 558
            _ => false,
        }
    }
559 560 561

    pub fn is_suggestable(&self) -> bool {
        match self.sty {
562
            TyKind::Opaque(..) |
V
varkor 已提交
563 564 565 566 567 568
            TyKind::FnDef(..) |
            TyKind::FnPtr(..) |
            TyKind::Dynamic(..) |
            TyKind::Closure(..) |
            TyKind::Infer(..) |
            TyKind::Projection(..) => false,
569 570 571
            _ => true,
        }
    }
G
Guillaume Gomez 已提交
572 573
}

574
impl<'a, 'gcx> HashStable<StableHashingContext<'a>> for ty::TyS<'gcx> {
575
    fn hash_stable<W: StableHasherResult>(&self,
576
                                          hcx: &mut StableHashingContext<'a>,
577 578 579 580 581 582 583
                                          hasher: &mut StableHasher<W>) {
        let ty::TyS {
            ref sty,

            // The other fields just provide fast access to information that is
            // also contained in `sty`, so no need to hash them.
            flags: _,
584 585

            outer_exclusive_binder: _,
586 587 588 589 590 591
        } = *self;

        sty.hash_stable(hcx, hasher);
    }
}

592
pub type Ty<'tcx> = &'tcx TyS<'tcx>;
593

594 595
impl<'tcx> serialize::UseSpecializedEncodable for Ty<'tcx> {}
impl<'tcx> serialize::UseSpecializedDecodable for Ty<'tcx> {}
596

597 598
pub type CanonicalTy<'gcx> = Canonical<'gcx, Ty<'gcx>>;

J
John Kåre Alsaker 已提交
599
extern {
V
varkor 已提交
600 601
    /// A dummy type used to force List to by unsized without requiring fat pointers
    type OpaqueListContents;
J
John Kåre Alsaker 已提交
602 603
}

A
Adam Perry 已提交
604
/// A wrapper for slices with the additional invariant
605 606
/// that the slice is interned and no other slice with
/// the same contents can exist in the same context.
J
John Kåre Alsaker 已提交
607
/// This means we can use pointer for both
608
/// equality comparisons and hashing.
V
varkor 已提交
609
/// Note: `Slice` was already taken by the `Ty`.
J
John Kåre Alsaker 已提交
610
#[repr(C)]
V
varkor 已提交
611
pub struct List<T> {
J
John Kåre Alsaker 已提交
612 613
    len: usize,
    data: [T; 0],
V
varkor 已提交
614
    opaque: OpaqueListContents,
J
John Kåre Alsaker 已提交
615 616
}

V
varkor 已提交
617
unsafe impl<T: Sync> Sync for List<T> {}
J
John Kåre Alsaker 已提交
618

V
varkor 已提交
619
impl<T: Copy> List<T> {
J
John Kåre Alsaker 已提交
620
    #[inline]
V
varkor 已提交
621
    fn from_arena<'tcx>(arena: &'tcx SyncDroplessArena, slice: &[T]) -> &'tcx List<T> {
J
John Kåre Alsaker 已提交
622 623 624 625
        assert!(!mem::needs_drop::<T>());
        assert!(mem::size_of::<T>() != 0);
        assert!(slice.len() != 0);

J
John Kåre Alsaker 已提交
626 627 628 629 630 631
        // Align up the size of the len (usize) field
        let align = mem::align_of::<T>();
        let align_mask = align - 1;
        let offset = mem::size_of::<usize>();
        let offset = (offset + align_mask) & !align_mask;

J
John Kåre Alsaker 已提交
632 633
        let size = offset + slice.len() * mem::size_of::<T>();

J
John Kåre Alsaker 已提交
634
        let mem = arena.alloc_raw(
J
John Kåre Alsaker 已提交
635
            size,
J
John Kåre Alsaker 已提交
636
            cmp::max(mem::align_of::<T>(), mem::align_of::<usize>()));
J
John Kåre Alsaker 已提交
637
        unsafe {
V
varkor 已提交
638
            let result = &mut *(mem.as_mut_ptr() as *mut List<T>);
J
John Kåre Alsaker 已提交
639
            // Write the length
J
John Kåre Alsaker 已提交
640
            result.len = slice.len();
J
John Kåre Alsaker 已提交
641 642

            // Write the elements
J
John Kåre Alsaker 已提交
643
            let arena_slice = slice::from_raw_parts_mut(result.data.as_mut_ptr(), result.len);
J
John Kåre Alsaker 已提交
644 645
            arena_slice.copy_from_slice(slice);

J
John Kåre Alsaker 已提交
646
            result
J
John Kåre Alsaker 已提交
647 648 649 650
        }
    }
}

V
varkor 已提交
651
impl<T: fmt::Debug> fmt::Debug for List<T> {
652
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
J
John Kåre Alsaker 已提交
653 654 655 656
        (**self).fmt(f)
    }
}

V
varkor 已提交
657
impl<T: Encodable> Encodable for List<T> {
J
John Kåre Alsaker 已提交
658 659 660 661 662
    #[inline]
    fn encode<S: Encoder>(&self, s: &mut S) -> Result<(), S::Error> {
        (**self).encode(s)
    }
}
663

V
varkor 已提交
664 665
impl<T> Ord for List<T> where T: Ord {
    fn cmp(&self, other: &List<T>) -> Ordering {
666
        if self == other { Ordering::Equal } else {
J
John Kåre Alsaker 已提交
667
            <[T] as Ord>::cmp(&**self, &**other)
668 669 670 671
        }
    }
}

V
varkor 已提交
672 673
impl<T> PartialOrd for List<T> where T: PartialOrd {
    fn partial_cmp(&self, other: &List<T>) -> Option<Ordering> {
674
        if self == other { Some(Ordering::Equal) } else {
J
John Kåre Alsaker 已提交
675
            <[T] as PartialOrd>::partial_cmp(&**self, &**other)
676 677 678 679
        }
    }
}

V
varkor 已提交
680
impl<T: PartialEq> PartialEq for List<T> {
681
    #[inline]
V
varkor 已提交
682
    fn eq(&self, other: &List<T>) -> bool {
683
        ptr::eq(self, other)
684 685
    }
}
V
varkor 已提交
686
impl<T: Eq> Eq for List<T> {}
687

V
varkor 已提交
688
impl<T> Hash for List<T> {
J
John Kåre Alsaker 已提交
689
    #[inline]
690
    fn hash<H: Hasher>(&self, s: &mut H) {
V
varkor 已提交
691
        (self as *const List<T>).hash(s)
692 693 694
    }
}

V
varkor 已提交
695
impl<T> Deref for List<T> {
696
    type Target = [T];
J
John Kåre Alsaker 已提交
697
    #[inline(always)]
698
    fn deref(&self) -> &[T] {
J
John Kåre Alsaker 已提交
699
        unsafe {
J
John Kåre Alsaker 已提交
700
            slice::from_raw_parts(self.data.as_ptr(), self.len)
J
John Kåre Alsaker 已提交
701
        }
702 703 704
    }
}

V
varkor 已提交
705
impl<'a, T> IntoIterator for &'a List<T> {
706 707
    type Item = &'a T;
    type IntoIter = <&'a [T] as IntoIterator>::IntoIter;
J
John Kåre Alsaker 已提交
708
    #[inline(always)]
709 710 711 712 713
    fn into_iter(self) -> Self::IntoIter {
        self[..].iter()
    }
}

V
varkor 已提交
714
impl<'tcx> serialize::UseSpecializedDecodable for &'tcx List<Ty<'tcx>> {}
715

V
varkor 已提交
716
impl<T> List<T> {
J
John Kåre Alsaker 已提交
717
    #[inline(always)]
V
varkor 已提交
718
    pub fn empty<'a>() -> &'a List<T> {
J
John Kåre Alsaker 已提交
719 720 721 722
        #[repr(align(64), C)]
        struct EmptySlice([u8; 64]);
        static EMPTY_SLICE: EmptySlice = EmptySlice([0; 64]);
        assert!(mem::align_of::<T>() <= 64);
723
        unsafe {
V
varkor 已提交
724
            &*(&EMPTY_SLICE as *const _ as *const List<T>)
725 726 727 728
        }
    }
}

S
Steve Klabnik 已提交
729 730 731
/// Upvars do not get their own node-id. Instead, we use the pair of
/// the original var id (that is, the root variable that is referenced
/// by the upvar) and the id of the closure expression.
732
#[derive(Clone, Copy, PartialEq, Eq, Hash, RustcEncodable, RustcDecodable)]
733
pub struct UpvarId {
734
    pub var_id: hir::HirId,
735
    pub closure_expr_id: LocalDefId,
736 737
}

J
Jorge Aparicio 已提交
738
#[derive(Clone, PartialEq, Eq, Hash, Debug, RustcEncodable, RustcDecodable, Copy)]
739 740 741 742 743 744
pub enum BorrowKind {
    /// Data must be immutable and is aliasable.
    ImmBorrow,

    /// Data must be immutable but not aliasable.  This kind of borrow
    /// cannot currently be expressed by the user and is used only in
K
king6cong 已提交
745
    /// implicit closure bindings. It is needed when the closure
746 747
    /// is borrowing or mutating a mutable referent, e.g.:
    ///
748
    ///    let x: &mut isize = ...;
749 750 751 752 753
    ///    let y = || *x += 5;
    ///
    /// If we were to try to translate this closure into a more explicit
    /// form, we'd encounter an error with the code as written:
    ///
754 755
    ///    struct Env { x: & &mut isize }
    ///    let x: &mut isize = ...;
756 757 758 759 760 761 762
    ///    let y = (&mut Env { &x }, fn_ptr);  // Closure is pair of env and fn
    ///    fn fn_ptr(env: &mut Env) { **env.x += 5; }
    ///
    /// This is then illegal because you cannot mutate a `&mut` found
    /// in an aliasable location. To solve, you'd have to translate with
    /// an `&mut` borrow:
    ///
763 764
    ///    struct Env { x: & &mut isize }
    ///    let x: &mut isize = ...;
765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783
    ///    let y = (&mut Env { &mut x }, fn_ptr); // changed from &x to &mut x
    ///    fn fn_ptr(env: &mut Env) { **env.x += 5; }
    ///
    /// Now the assignment to `**env.x` is legal, but creating a
    /// mutable pointer to `x` is not because `x` is not mutable. We
    /// could fix this by declaring `x` as `let mut x`. This is ok in
    /// user code, if awkward, but extra weird for closures, since the
    /// borrow is hidden.
    ///
    /// So we introduce a "unique imm" borrow -- the referent is
    /// immutable, but not aliasable. This solves the problem. For
    /// simplicity, we don't give users the way to express this
    /// borrow, it's just used when translating closures.
    UniqueImmBorrow,

    /// Data is mutable and not aliasable.
    MutBorrow
}

784 785
/// Information describing the capture of an upvar. This is computed
/// during `typeck`, specifically by `regionck`.
786
#[derive(PartialEq, Clone, Debug, Copy, RustcEncodable, RustcDecodable)]
787
pub enum UpvarCapture<'tcx> {
788 789 790 791 792 793
    /// Upvar is captured by value. This is always true when the
    /// closure is labeled `move`, but can also be true in other cases
    /// depending on inference.
    ByValue,

    /// Upvar is captured by reference.
794
    ByRef(UpvarBorrow<'tcx>),
795 796
}

797
#[derive(PartialEq, Clone, Copy, RustcEncodable, RustcDecodable)]
798
pub struct UpvarBorrow<'tcx> {
799 800 801
    /// The kind of borrow: by-ref upvars have access to shared
    /// immutable borrows, which are not part of the normal language
    /// syntax.
802
    pub kind: BorrowKind,
803 804

    /// Region of the resulting reference.
N
Niko Matsakis 已提交
805
    pub region: ty::Region<'tcx>,
806 807
}

808
pub type UpvarCaptureMap<'tcx> = FxHashMap<UpvarId, UpvarCapture<'tcx>>;
809

810 811
#[derive(Copy, Clone)]
pub struct ClosureUpvar<'tcx> {
812
    pub def: Def,
813 814 815 816
    pub span: Span,
    pub ty: Ty<'tcx>,
}

817
#[derive(Clone, Copy, PartialEq, Eq)]
818
pub enum IntVarValue {
819 820
    IntType(ast::IntTy),
    UintType(ast::UintTy),
821 822
}

823 824 825
#[derive(Clone, Copy, PartialEq, Eq)]
pub struct FloatVarValue(pub ast::FloatTy);

826
impl ty::EarlyBoundRegion {
827
    pub fn to_bound_region(&self) -> ty::BoundRegion {
828
        ty::BoundRegion::BrNamed(self.def_id, self.name)
829
    }
830 831 832 833 834 835

    /// Does this early bound region have a name? Early bound regions normally
    /// always have names except when using anonymous lifetimes (`'_`).
    pub fn has_name(&self) -> bool {
        self.name != keywords::UnderscoreLifetime.name().as_interned_str()
    }
836 837
}

V
varkor 已提交
838
#[derive(Clone, Debug, RustcEncodable, RustcDecodable)]
839
pub enum GenericParamDefKind {
V
varkor 已提交
840
    Lifetime,
841 842 843 844 845
    Type {
        has_default: bool,
        object_lifetime_default: ObjectLifetimeDefault,
        synthetic: Option<hir::SyntheticTyParamKind>,
    }
V
varkor 已提交
846 847
}

848 849 850 851 852
#[derive(Clone, RustcEncodable, RustcDecodable)]
pub struct GenericParamDef {
    pub name: InternedString,
    pub def_id: DefId,
    pub index: u32,
V
varkor 已提交
853 854 855 856 857 858

    /// `pure_wrt_drop`, set by the (unsafe) `#[may_dangle]` attribute
    /// on generic parameter `'a`/`T`, asserts data behind the parameter
    /// `'a`/`T` won't be accessed during the parent type's `Drop` impl.
    pub pure_wrt_drop: bool,

859 860 861
    pub kind: GenericParamDefKind,
}

V
varkor 已提交
862
impl GenericParamDef {
863 864
    pub fn to_early_bound_region_data(&self) -> ty::EarlyBoundRegion {
        match self.kind {
V
varkor 已提交
865
            GenericParamDefKind::Lifetime => {
866 867 868 869 870 871 872 873 874 875 876 877
                ty::EarlyBoundRegion {
                    def_id: self.def_id,
                    index: self.index,
                    name: self.name,
                }
            }
            _ => bug!("cannot convert a non-lifetime parameter def to an early bound region")
        }
    }

    pub fn to_bound_region(&self) -> ty::BoundRegion {
        match self.kind {
V
varkor 已提交
878
            GenericParamDefKind::Lifetime => {
879 880 881
                self.to_early_bound_region_data().to_bound_region()
            }
            _ => bug!("cannot convert a non-lifetime parameter def to an early bound region")
V
varkor 已提交
882 883 884 885
        }
    }
}

V
varkor 已提交
886
#[derive(Default)]
887 888 889 890 891
pub struct GenericParamCount {
    pub lifetimes: usize,
    pub types: usize,
}

892
/// Information about the formal type/lifetime parameters associated
893
/// with an item or method. Analogous to hir::Generics.
A
Ariel Ben-Yehuda 已提交
894
///
895 896
/// The ordering of parameters is the same as in Subst (excluding child generics):
/// Self (optionally), Lifetime params..., Type params...
897
#[derive(Clone, Debug, RustcEncodable, RustcDecodable)]
898
pub struct Generics {
899
    pub parent: Option<DefId>,
V
varkor 已提交
900
    pub parent_count: usize,
V
varkor 已提交
901
    pub params: Vec<GenericParamDef>,
902

V
varkor 已提交
903
    /// Reverse map to the `index` field of each `GenericParamDef`
904
    pub param_def_id_to_index: FxHashMap<DefId, u32>,
905

906
    pub has_self: bool,
907
    pub has_late_bound_regions: Option<Span>,
908 909
}

910
impl<'a, 'gcx, 'tcx> Generics {
911
    pub fn count(&self) -> usize {
V
varkor 已提交
912
        self.parent_count + self.params.len()
913
    }
914

V
varkor 已提交
915
    pub fn own_counts(&self) -> GenericParamCount {
916 917 918
        // We could cache this as a property of `GenericParamCount`, but
        // the aim is to refactor this away entirely eventually and the
        // presence of this method will be a constant reminder.
V
varkor 已提交
919
        let mut own_counts: GenericParamCount = Default::default();
920

V
varkor 已提交
921
        for param in &self.params {
922
            match param.kind {
V
varkor 已提交
923
                GenericParamDefKind::Lifetime => own_counts.lifetimes += 1,
924
                GenericParamDefKind::Type { .. } => own_counts.types += 1,
925 926 927
            };
        }

V
varkor 已提交
928
        own_counts
929 930
    }

931
    pub fn requires_monomorphization(&self, tcx: TyCtxt<'a, 'gcx, 'tcx>) -> bool {
V
varkor 已提交
932
        for param in &self.params {
933
            match param.kind {
V
varkor 已提交
934
                GenericParamDefKind::Type { .. } => return true,
V
varkor 已提交
935
                GenericParamDefKind::Lifetime => {}
V
varkor 已提交
936
            }
V
varkor 已提交
937 938 939
        }
        if let Some(parent_def_id) = self.parent {
            let parent = tcx.generics_of(parent_def_id);
940
            parent.requires_monomorphization(tcx)
V
varkor 已提交
941 942 943
        } else {
            false
        }
V
varkor 已提交
944 945
    }

946 947 948
    pub fn region_param(&'tcx self,
                        param: &EarlyBoundRegion,
                        tcx: TyCtxt<'a, 'gcx, 'tcx>)
949
                        -> &'tcx GenericParamDef
950
    {
V
varkor 已提交
951
        if let Some(index) = param.index.checked_sub(self.parent_count as u32) {
V
varkor 已提交
952
            let param = &self.params[index as usize];
953
            match param.kind {
V
varkor 已提交
954
                ty::GenericParamDefKind::Lifetime => param,
V
varkor 已提交
955
                _ => bug!("expected lifetime parameter, but found another generic parameter")
V
varkor 已提交
956
            }
957 958
        } else {
            tcx.generics_of(self.parent.expect("parent_count>0 but no parent?"))
L
ljedrz 已提交
959
               .region_param(param, tcx)
960
        }
961 962
    }

963
    /// Returns the `GenericParamDef` associated with this `ParamTy`.
964 965
    pub fn type_param(&'tcx self,
                      param: &ParamTy,
A
Ariel Ben-Yehuda 已提交
966
                      tcx: TyCtxt<'a, 'gcx, 'tcx>)
967
                      -> &'tcx GenericParamDef {
968
        if let Some(index) = param.idx.checked_sub(self.parent_count as u32) {
V
varkor 已提交
969 970
            let param = &self.params[index as usize];
            match param.kind {
971
                ty::GenericParamDefKind::Type {..} => param,
V
varkor 已提交
972 973
                _ => bug!("expected type parameter, but found another generic parameter")
            }
974 975
        } else {
            tcx.generics_of(self.parent.expect("parent_count>0 but no parent?"))
L
ljedrz 已提交
976
               .type_param(param, tcx)
977
        }
978
    }
979 980
}

981
/// Bounds on generics.
982
#[derive(Clone, Default)]
983
pub struct GenericPredicates<'tcx> {
984
    pub parent: Option<DefId>,
985
    pub predicates: Vec<(Predicate<'tcx>, Span)>,
986 987
}

988 989 990
impl<'tcx> serialize::UseSpecializedEncodable for GenericPredicates<'tcx> {}
impl<'tcx> serialize::UseSpecializedDecodable for GenericPredicates<'tcx> {}

991 992
impl<'a, 'gcx, 'tcx> GenericPredicates<'tcx> {
    pub fn instantiate(&self, tcx: TyCtxt<'a, 'gcx, 'tcx>, substs: &Substs<'tcx>)
993
                       -> InstantiatedPredicates<'tcx> {
994 995 996 997 998 999
        let mut instantiated = InstantiatedPredicates::empty();
        self.instantiate_into(tcx, &mut instantiated, substs);
        instantiated
    }
    pub fn instantiate_own(&self, tcx: TyCtxt<'a, 'gcx, 'tcx>, substs: &Substs<'tcx>)
                           -> InstantiatedPredicates<'tcx> {
1000
        InstantiatedPredicates {
1001
            predicates: self.predicates.iter().map(|(p, _)| p.subst(tcx, substs)).collect(),
1002 1003 1004 1005 1006 1007 1008
        }
    }

    fn instantiate_into(&self, tcx: TyCtxt<'a, 'gcx, 'tcx>,
                        instantiated: &mut InstantiatedPredicates<'tcx>,
                        substs: &Substs<'tcx>) {
        if let Some(def_id) = self.parent {
1009
            tcx.predicates_of(def_id).instantiate_into(tcx, instantiated, substs);
1010
        }
1011 1012 1013
        instantiated.predicates.extend(
            self.predicates.iter().map(|(p, _)| p.subst(tcx, substs)),
        );
1014
    }
1015

1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027
    pub fn instantiate_identity(&self, tcx: TyCtxt<'a, 'gcx, 'tcx>)
                                -> InstantiatedPredicates<'tcx> {
        let mut instantiated = InstantiatedPredicates::empty();
        self.instantiate_identity_into(tcx, &mut instantiated);
        instantiated
    }

    fn instantiate_identity_into(&self, tcx: TyCtxt<'a, 'gcx, 'tcx>,
                                 instantiated: &mut InstantiatedPredicates<'tcx>) {
        if let Some(def_id) = self.parent {
            tcx.predicates_of(def_id).instantiate_identity_into(tcx, instantiated);
        }
1028
        instantiated.predicates.extend(self.predicates.iter().map(|&(p, _)| p))
1029 1030
    }

1031
    pub fn instantiate_supertrait(&self, tcx: TyCtxt<'a, 'gcx, 'tcx>,
1032 1033 1034
                                  poly_trait_ref: &ty::PolyTraitRef<'tcx>)
                                  -> InstantiatedPredicates<'tcx>
    {
1035
        assert_eq!(self.parent, None);
1036
        InstantiatedPredicates {
1037
            predicates: self.predicates.iter().map(|(pred, _)| {
1038
                pred.subst_supertrait(tcx, poly_trait_ref)
1039
            }).collect()
1040 1041
        }
    }
1042 1043
}

1044
#[derive(Clone, Copy, PartialEq, Eq, Hash, RustcEncodable, RustcDecodable)]
1045
pub enum Predicate<'tcx> {
N
Niko Matsakis 已提交
1046 1047
    /// Corresponds to `where Foo : Bar<A,B,C>`. `Foo` here would be
    /// the `Self` type of the trait reference and `A`, `B`, and `C`
1048
    /// would be the type parameters.
1049
    Trait(PolyTraitPredicate<'tcx>),
1050 1051

    /// where 'a : 'b
1052
    RegionOutlives(PolyRegionOutlivesPredicate<'tcx>),
1053 1054

    /// where T : 'a
1055
    TypeOutlives(PolyTypeOutlivesPredicate<'tcx>),
1056

N
Niko Matsakis 已提交
1057 1058
    /// where <T as TraitRef>::Name == X, approximately.
    /// See `ProjectionPredicate` struct for details.
1059
    Projection(PolyProjectionPredicate<'tcx>),
1060 1061 1062 1063 1064

    /// no syntax: T WF
    WellFormed(Ty<'tcx>),

    /// trait must be object-safe
N
Niko Matsakis 已提交
1065
    ObjectSafe(DefId),
1066

1067 1068 1069
    /// No direct syntax. May be thought of as `where T : FnFoo<...>`
    /// for some substitutions `...` and T being a closure type.
    /// Satisfied (or refuted) once we know the closure's kind.
1070
    ClosureKind(DefId, ClosureSubsts<'tcx>, ClosureKind),
N
Niko Matsakis 已提交
1071 1072 1073

    /// `T1 <: T2`
    Subtype(PolySubtypePredicate<'tcx>),
1074 1075 1076

    /// Constant initializer must evaluate successfully.
    ConstEvaluatable(DefId, &'tcx Substs<'tcx>),
1077 1078
}

1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094
/// The crate outlives map is computed during typeck and contains the
/// outlives of every item in the local crate. You should not use it
/// directly, because to do so will make your pass dependent on the
/// HIR of every item in the local crate. Instead, use
/// `tcx.inferred_outlives_of()` to get the outlives for a *particular*
/// item.
pub struct CratePredicatesMap<'tcx> {
    /// For each struct with outlive bounds, maps to a vector of the
    /// predicate of its outlive bounds. If an item has no outlives
    /// bounds, it will have no entry.
    pub predicates: FxHashMap<DefId, Lrc<Vec<ty::Predicate<'tcx>>>>,

    /// An empty vector, useful for cloning.
    pub empty_predicate: Lrc<Vec<ty::Predicate<'tcx>>>,
}

1095 1096 1097 1098 1099 1100
impl<'tcx> AsRef<Predicate<'tcx>> for Predicate<'tcx> {
    fn as_ref(&self) -> &Predicate<'tcx> {
        self
    }
}

1101
impl<'a, 'gcx, 'tcx> Predicate<'tcx> {
1102
    /// Performs a substitution suitable for going from a
1103 1104 1105 1106
    /// poly-trait-ref to supertraits that must hold if that
    /// poly-trait-ref holds. This is slightly different from a normal
    /// substitution in terms of what happens with bound regions.  See
    /// lengthy comment below for details.
1107
    pub fn subst_supertrait(&self, tcx: TyCtxt<'a, 'gcx, 'tcx>,
1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170
                            trait_ref: &ty::PolyTraitRef<'tcx>)
                            -> ty::Predicate<'tcx>
    {
        // The interaction between HRTB and supertraits is not entirely
        // obvious. Let me walk you (and myself) through an example.
        //
        // Let's start with an easy case. Consider two traits:
        //
        //     trait Foo<'a> : Bar<'a,'a> { }
        //     trait Bar<'b,'c> { }
        //
        // Now, if we have a trait reference `for<'x> T : Foo<'x>`, then
        // we can deduce that `for<'x> T : Bar<'x,'x>`. Basically, if we
        // knew that `Foo<'x>` (for any 'x) then we also know that
        // `Bar<'x,'x>` (for any 'x). This more-or-less falls out from
        // normal substitution.
        //
        // In terms of why this is sound, the idea is that whenever there
        // is an impl of `T:Foo<'a>`, it must show that `T:Bar<'a,'a>`
        // holds.  So if there is an impl of `T:Foo<'a>` that applies to
        // all `'a`, then we must know that `T:Bar<'a,'a>` holds for all
        // `'a`.
        //
        // Another example to be careful of is this:
        //
        //     trait Foo1<'a> : for<'b> Bar1<'a,'b> { }
        //     trait Bar1<'b,'c> { }
        //
        // Here, if we have `for<'x> T : Foo1<'x>`, then what do we know?
        // The answer is that we know `for<'x,'b> T : Bar1<'x,'b>`. The
        // reason is similar to the previous example: any impl of
        // `T:Foo1<'x>` must show that `for<'b> T : Bar1<'x, 'b>`.  So
        // basically we would want to collapse the bound lifetimes from
        // the input (`trait_ref`) and the supertraits.
        //
        // To achieve this in practice is fairly straightforward. Let's
        // consider the more complicated scenario:
        //
        // - We start out with `for<'x> T : Foo1<'x>`. In this case, `'x`
        //   has a De Bruijn index of 1. We want to produce `for<'x,'b> T : Bar1<'x,'b>`,
        //   where both `'x` and `'b` would have a DB index of 1.
        //   The substitution from the input trait-ref is therefore going to be
        //   `'a => 'x` (where `'x` has a DB index of 1).
        // - The super-trait-ref is `for<'b> Bar1<'a,'b>`, where `'a` is an
        //   early-bound parameter and `'b' is a late-bound parameter with a
        //   DB index of 1.
        // - If we replace `'a` with `'x` from the input, it too will have
        //   a DB index of 1, and thus we'll have `for<'x,'b> Bar1<'x,'b>`
        //   just as we wanted.
        //
        // There is only one catch. If we just apply the substitution `'a
        // => 'x` to `for<'b> Bar1<'a,'b>`, the substitution code will
        // adjust the DB index because we substituting into a binder (it
        // tries to be so smart...) resulting in `for<'x> for<'b>
        // Bar1<'x,'b>` (we have no syntax for this, so use your
        // imagination). Basically the 'x will have DB index of 2 and 'b
        // will have DB index of 1. Not quite what we want. So we apply
        // the substitution to the *contents* of the trait reference,
        // rather than the trait reference itself (put another way, the
        // substitution code expects equal binding levels in the values
        // from the substitution and the value being substituted into, and
        // this trick achieves that).

1171
        let substs = &trait_ref.skip_binder().substs;
1172
        match *self {
1173 1174 1175 1176 1177 1178 1179 1180 1181 1182
            Predicate::Trait(ref binder) =>
                Predicate::Trait(binder.map_bound(|data| data.subst(tcx, substs))),
            Predicate::Subtype(ref binder) =>
                Predicate::Subtype(binder.map_bound(|data| data.subst(tcx, substs))),
            Predicate::RegionOutlives(ref binder) =>
                Predicate::RegionOutlives(binder.map_bound(|data| data.subst(tcx, substs))),
            Predicate::TypeOutlives(ref binder) =>
                Predicate::TypeOutlives(binder.map_bound(|data| data.subst(tcx, substs))),
            Predicate::Projection(ref binder) =>
                Predicate::Projection(binder.map_bound(|data| data.subst(tcx, substs))),
1183 1184 1185 1186
            Predicate::WellFormed(data) =>
                Predicate::WellFormed(data.subst(tcx, substs)),
            Predicate::ObjectSafe(trait_def_id) =>
                Predicate::ObjectSafe(trait_def_id),
1187 1188
            Predicate::ClosureKind(closure_def_id, closure_substs, kind) =>
                Predicate::ClosureKind(closure_def_id, closure_substs.subst(tcx, substs), kind),
1189 1190
            Predicate::ConstEvaluatable(def_id, const_substs) =>
                Predicate::ConstEvaluatable(def_id, const_substs.subst(tcx, substs)),
1191 1192 1193 1194
        }
    }
}

1195
#[derive(Clone, Copy, PartialEq, Eq, Hash, RustcEncodable, RustcDecodable)]
1196
pub struct TraitPredicate<'tcx> {
1197
    pub trait_ref: TraitRef<'tcx>
1198 1199 1200 1201
}
pub type PolyTraitPredicate<'tcx> = ty::Binder<TraitPredicate<'tcx>>;

impl<'tcx> TraitPredicate<'tcx> {
N
Niko Matsakis 已提交
1202
    pub fn def_id(&self) -> DefId {
1203 1204 1205
        self.trait_ref.def_id
    }

1206
    pub fn input_types<'a>(&'a self) -> impl DoubleEndedIterator<Item=Ty<'tcx>> + 'a {
1207
        self.trait_ref.input_types()
1208 1209 1210 1211 1212 1213 1214 1215
    }

    pub fn self_ty(&self) -> Ty<'tcx> {
        self.trait_ref.self_ty()
    }
}

impl<'tcx> PolyTraitPredicate<'tcx> {
N
Niko Matsakis 已提交
1216
    pub fn def_id(&self) -> DefId {
1217
        // ok to skip binder since trait def-id does not care about regions
1218
        self.skip_binder().def_id()
1219
    }
1220 1221
}

1222
#[derive(Clone, Copy, PartialEq, Eq, PartialOrd, Ord, Hash, Debug, RustcEncodable, RustcDecodable)]
1223 1224
pub struct OutlivesPredicate<A,B>(pub A, pub B); // `A : B`
pub type PolyOutlivesPredicate<A,B> = ty::Binder<OutlivesPredicate<A,B>>;
S
scalexm 已提交
1225 1226 1227 1228 1229 1230
pub type RegionOutlivesPredicate<'tcx> = OutlivesPredicate<ty::Region<'tcx>,
                                                           ty::Region<'tcx>>;
pub type TypeOutlivesPredicate<'tcx> = OutlivesPredicate<Ty<'tcx>,
                                                         ty::Region<'tcx>>;
pub type PolyRegionOutlivesPredicate<'tcx> = ty::Binder<RegionOutlivesPredicate<'tcx>>;
pub type PolyTypeOutlivesPredicate<'tcx> = ty::Binder<TypeOutlivesPredicate<'tcx>>;
1231

1232
#[derive(Clone, Copy, PartialEq, Eq, Hash, Debug, RustcEncodable, RustcDecodable)]
N
Niko Matsakis 已提交
1233 1234 1235 1236 1237 1238 1239
pub struct SubtypePredicate<'tcx> {
    pub a_is_expected: bool,
    pub a: Ty<'tcx>,
    pub b: Ty<'tcx>
}
pub type PolySubtypePredicate<'tcx> = ty::Binder<SubtypePredicate<'tcx>>;

1240 1241 1242 1243 1244 1245 1246 1247 1248
/// This kind of predicate has no *direct* correspondent in the
/// syntax, but it roughly corresponds to the syntactic forms:
///
/// 1. `T : TraitRef<..., Item=Type>`
/// 2. `<T as TraitRef<...>>::Item == Type` (NYI)
///
/// In particular, form #1 is "desugared" to the combination of a
/// normal trait predicate (`T : TraitRef<...>`) and one of these
/// predicates. Form #2 is a broader form in that it also permits
1249 1250
/// equality between arbitrary types. Processing an instance of
/// Form #2 eventually yields one of these `ProjectionPredicate`
1251
/// instances to normalize the LHS.
1252
#[derive(Copy, Clone, PartialEq, Eq, Hash, RustcEncodable, RustcDecodable)]
1253 1254 1255 1256 1257 1258 1259
pub struct ProjectionPredicate<'tcx> {
    pub projection_ty: ProjectionTy<'tcx>,
    pub ty: Ty<'tcx>,
}

pub type PolyProjectionPredicate<'tcx> = Binder<ProjectionPredicate<'tcx>>;

1260
impl<'tcx> PolyProjectionPredicate<'tcx> {
1261 1262 1263 1264 1265
    /// Returns the def-id of the associated item being projected.
    pub fn item_def_id(&self) -> DefId {
        self.skip_binder().projection_ty.item_def_id
    }

1266
    pub fn to_poly_trait_ref(&self, tcx: TyCtxt<'_, '_, '_>) -> PolyTraitRef<'tcx> {
1267 1268 1269 1270 1271
        // Note: unlike with TraitRef::to_poly_trait_ref(),
        // self.0.trait_ref is permitted to have escaping regions.
        // This is because here `self` has a `Binder` and so does our
        // return value, so we are preserving the number of binding
        // levels.
1272
        self.map_bound(|predicate| predicate.projection_ty.trait_ref(tcx))
1273
    }
1274 1275

    pub fn ty(&self) -> Binder<Ty<'tcx>> {
1276 1277 1278 1279 1280 1281 1282 1283 1284 1285
        self.map_bound(|predicate| predicate.ty)
    }

    /// The DefId of the TraitItem for the associated type.
    ///
    /// Note that this is not the DefId of the TraitRef containing this
    /// associated type, which is in tcx.associated_item(projection_def_id()).container.
    pub fn projection_def_id(&self) -> DefId {
        // ok to skip binder since trait def-id does not care about regions
        self.skip_binder().projection_ty.item_def_id
1286
    }
1287 1288
}

1289 1290 1291 1292
pub trait ToPolyTraitRef<'tcx> {
    fn to_poly_trait_ref(&self) -> PolyTraitRef<'tcx>;
}

1293
impl<'tcx> ToPolyTraitRef<'tcx> for TraitRef<'tcx> {
1294
    fn to_poly_trait_ref(&self) -> PolyTraitRef<'tcx> {
1295
        ty::Binder::dummy(self.clone())
1296 1297 1298 1299 1300
    }
}

impl<'tcx> ToPolyTraitRef<'tcx> for PolyTraitPredicate<'tcx> {
    fn to_poly_trait_ref(&self) -> PolyTraitRef<'tcx> {
1301
        self.map_bound_ref(|trait_pred| trait_pred.trait_ref)
1302 1303 1304
    }
}

1305 1306
pub trait ToPredicate<'tcx> {
    fn to_predicate(&self) -> Predicate<'tcx>;
1307 1308
}

1309 1310
impl<'tcx> ToPredicate<'tcx> for TraitRef<'tcx> {
    fn to_predicate(&self) -> Predicate<'tcx> {
1311
        ty::Predicate::Trait(ty::Binder::dummy(ty::TraitPredicate {
1312 1313 1314 1315 1316
            trait_ref: self.clone()
        }))
    }
}

1317 1318
impl<'tcx> ToPredicate<'tcx> for PolyTraitRef<'tcx> {
    fn to_predicate(&self) -> Predicate<'tcx> {
1319
        ty::Predicate::Trait(self.to_poly_trait_predicate())
1320 1321 1322
    }
}

1323
impl<'tcx> ToPredicate<'tcx> for PolyRegionOutlivesPredicate<'tcx> {
1324
    fn to_predicate(&self) -> Predicate<'tcx> {
1325 1326 1327 1328
        Predicate::RegionOutlives(self.clone())
    }
}

1329 1330
impl<'tcx> ToPredicate<'tcx> for PolyTypeOutlivesPredicate<'tcx> {
    fn to_predicate(&self) -> Predicate<'tcx> {
1331 1332
        Predicate::TypeOutlives(self.clone())
    }
1333 1334
}

1335 1336
impl<'tcx> ToPredicate<'tcx> for PolyProjectionPredicate<'tcx> {
    fn to_predicate(&self) -> Predicate<'tcx> {
1337 1338 1339 1340
        Predicate::Projection(self.clone())
    }
}

1341
impl<'tcx> Predicate<'tcx> {
1342 1343 1344 1345 1346 1347
    /// Iterates over the types in this predicate. Note that in all
    /// cases this is skipping over a binder, so late-bound regions
    /// with depth 0 are bound by the predicate.
    pub fn walk_tys(&self) -> IntoIter<Ty<'tcx>> {
        let vec: Vec<_> = match *self {
            ty::Predicate::Trait(ref data) => {
1348
                data.skip_binder().input_types().collect()
1349
            }
1350 1351
            ty::Predicate::Subtype(binder) => {
                let SubtypePredicate { a, b, a_is_expected: _ } = binder.skip_binder();
N
Niko Matsakis 已提交
1352 1353
                vec![a, b]
            }
1354 1355
            ty::Predicate::TypeOutlives(binder) => {
                vec![binder.skip_binder().0]
1356 1357 1358 1359 1360
            }
            ty::Predicate::RegionOutlives(..) => {
                vec![]
            }
            ty::Predicate::Projection(ref data) => {
1361 1362
                let inner = data.skip_binder();
                inner.projection_ty.substs.types().chain(Some(inner.ty)).collect()
1363
            }
1364 1365 1366 1367 1368 1369
            ty::Predicate::WellFormed(data) => {
                vec![data]
            }
            ty::Predicate::ObjectSafe(_trait_def_id) => {
                vec![]
            }
1370 1371
            ty::Predicate::ClosureKind(_closure_def_id, closure_substs, _kind) => {
                closure_substs.substs.types().collect()
1372
            }
1373 1374 1375
            ty::Predicate::ConstEvaluatable(_, substs) => {
                substs.types().collect()
            }
1376 1377 1378 1379 1380 1381 1382 1383 1384 1385
        };

        // The only reason to collect into a vector here is that I was
        // too lazy to make the full (somewhat complicated) iterator
        // type that would be needed here. But I wanted this fn to
        // return an iterator conceptually, rather than a `Vec`, so as
        // to be closer to `Ty::walk`.
        vec.into_iter()
    }

1386
    pub fn to_opt_poly_trait_ref(&self) -> Option<PolyTraitRef<'tcx>> {
1387 1388
        match *self {
            Predicate::Trait(ref t) => {
1389
                Some(t.to_poly_trait_ref())
1390
            }
1391
            Predicate::Projection(..) |
N
Niko Matsakis 已提交
1392
            Predicate::Subtype(..) |
1393
            Predicate::RegionOutlives(..) |
1394 1395
            Predicate::WellFormed(..) |
            Predicate::ObjectSafe(..) |
1396
            Predicate::ClosureKind(..) |
1397 1398
            Predicate::TypeOutlives(..) |
            Predicate::ConstEvaluatable(..) => {
1399 1400
                None
            }
1401 1402
        }
    }
1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420

    pub fn to_opt_type_outlives(&self) -> Option<PolyTypeOutlivesPredicate<'tcx>> {
        match *self {
            Predicate::TypeOutlives(data) => {
                Some(data)
            }
            Predicate::Trait(..) |
            Predicate::Projection(..) |
            Predicate::Subtype(..) |
            Predicate::RegionOutlives(..) |
            Predicate::WellFormed(..) |
            Predicate::ObjectSafe(..) |
            Predicate::ClosureKind(..) |
            Predicate::ConstEvaluatable(..) => {
                None
            }
        }
    }
1421 1422
}

S
Steve Klabnik 已提交
1423 1424
/// Represents the bounds declared on a particular set of type
/// parameters.  Should eventually be generalized into a flag list of
1425 1426 1427 1428 1429
/// where clauses.  You can obtain a `InstantiatedPredicates` list from a
/// `GenericPredicates` by using the `instantiate` method. Note that this method
/// reflects an important semantic invariant of `InstantiatedPredicates`: while
/// the `GenericPredicates` are expressed in terms of the bound type
/// parameters of the impl/trait/whatever, an `InstantiatedPredicates` instance
S
Steve Klabnik 已提交
1430 1431 1432 1433 1434 1435 1436 1437
/// represented a set of bounds for some particular instantiation,
/// meaning that the generic parameters have been substituted with
/// their values.
///
/// Example:
///
///     struct Foo<T,U:Bar<T>> { ... }
///
1438
/// Here, the `GenericPredicates` for `Foo` would contain a list of bounds like
J
Jorge Aparicio 已提交
1439
/// `[[], [U:Bar<T>]]`.  Now if there were some particular reference
1440 1441
/// like `Foo<isize,usize>`, then the `InstantiatedPredicates` would be `[[],
/// [usize:Bar<isize>]]`.
1442
#[derive(Clone)]
1443
pub struct InstantiatedPredicates<'tcx> {
1444
    pub predicates: Vec<Predicate<'tcx>>,
1445 1446
}

1447 1448
impl<'tcx> InstantiatedPredicates<'tcx> {
    pub fn empty() -> InstantiatedPredicates<'tcx> {
1449
        InstantiatedPredicates { predicates: vec![] }
1450 1451
    }

1452 1453
    pub fn is_empty(&self) -> bool {
        self.predicates.is_empty()
1454
    }
1455 1456
}

N
Niko Matsakis 已提交
1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492
/// "Universes" are used during type- and trait-checking in the
/// presence of `for<..>` binders to control what sets of names are
/// visible. Universes are arranged into a tree: the root universe
/// contains names that are always visible. But when you enter into
/// some subuniverse, then it may add names that are only visible
/// within that subtree (but it can still name the names of its
/// ancestor universes).
///
/// To make this more concrete, consider this program:
///
/// ```
/// struct Foo { }
/// fn bar<T>(x: T) {
///   let y: for<'a> fn(&'a u8, Foo) = ...;
/// }
/// ```
///
/// The struct name `Foo` is in the root universe U0. But the type
/// parameter `T`, introduced on `bar`, is in a subuniverse U1 --
/// i.e., within `bar`, we can name both `T` and `Foo`, but outside of
/// `bar`, we cannot name `T`. Then, within the type of `y`, the
/// region `'a` is in a subuniverse U2 of U1, because we can name it
/// inside the fn type but not outside.
///
/// Universes are related to **skolemization** -- which is a way of
/// doing type- and trait-checking around these "forall" binders (also
/// called **universal quantification**). The idea is that when, in
/// the body of `bar`, we refer to `T` as a type, we aren't referring
/// to any type in particular, but rather a kind of "fresh" type that
/// is distinct from all other types we have actually declared. This
/// is called a **skolemized** type, and we use universes to talk
/// about this. In other words, a type name in universe 0 always
/// corresponds to some "ground" type that the user declared, but a
/// type name in a non-zero universe is a skolemized type -- an
/// idealized representative of "types in general" that we use for
/// checking generic functions.
N
Niko Matsakis 已提交
1493
#[derive(Copy, Clone, PartialEq, Eq, PartialOrd, Ord, Hash, RustcEncodable, RustcDecodable)]
N
Niko Matsakis 已提交
1494 1495 1496 1497 1498
pub struct UniverseIndex(u32);

impl UniverseIndex {
    /// The root universe, where things that the user defined are
    /// visible.
1499
    pub const ROOT: Self = UniverseIndex(0);
N
Niko Matsakis 已提交
1500

N
Niko Matsakis 已提交
1501 1502 1503 1504 1505 1506 1507
    /// The "max universe" -- this isn't really a valid universe, but
    /// it's useful sometimes as a "starting value" when you are
    /// taking the minimum of a (non-empty!) set of universes.
    pub const MAX: Self = UniverseIndex(::std::u32::MAX);

    /// Creates a universe index from the given integer.  Not to be
    /// used lightly lest you pick a bad value. But sometimes we
M
Matthias Krüger 已提交
1508
    /// convert universe indices into integers and back for various
N
Niko Matsakis 已提交
1509 1510 1511 1512 1513
    /// reasons.
    pub fn from_u32(index: u32) -> Self {
        UniverseIndex(index)
    }

N
Niko Matsakis 已提交
1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525
    /// A "subuniverse" corresponds to being inside a `forall` quantifier.
    /// So, for example, suppose we have this type in universe `U`:
    ///
    /// ```
    /// for<'a> fn(&'a u32)
    /// ```
    ///
    /// Once we "enter" into this `for<'a>` quantifier, we are in a
    /// subuniverse of `U` -- in this new universe, we can name the
    /// region `'a`, but that region was not nameable from `U` because
    /// it was not in scope there.
    pub fn subuniverse(self) -> UniverseIndex {
1526 1527 1528
        UniverseIndex(self.0.checked_add(1).unwrap())
    }

N
Niko Matsakis 已提交
1529 1530 1531 1532 1533
    /// True if the names in this universe are a subset of the names in `other`.
    pub fn is_subset_of(self, other: UniverseIndex) -> bool {
        self.0 <= other.0
    }

1534 1535 1536 1537 1538 1539 1540 1541 1542
    pub fn as_u32(&self) -> u32 {
        self.0
    }

    pub fn as_usize(&self) -> usize {
        self.0 as usize
    }
}

N
Niko Matsakis 已提交
1543
impl fmt::Debug for UniverseIndex {
1544
    fn fmt(&self, fmt: &mut fmt::Formatter<'_>) -> fmt::Result {
N
Niko Matsakis 已提交
1545 1546 1547 1548
        write!(fmt, "U{}", self.as_u32())
    }
}

1549 1550 1551
impl From<u32> for UniverseIndex {
    fn from(index: u32) -> Self {
        UniverseIndex(index)
1552
    }
N
Niko Matsakis 已提交
1553 1554
}

1555
/// When type checking, we use the `ParamEnv` to track
1556 1557 1558
/// details about the set of where-clauses that are in scope at this
/// particular point.
#[derive(Copy, Clone, Debug, PartialEq, Eq, Hash)]
1559
pub struct ParamEnv<'tcx> {
1560 1561
    /// Obligations that the caller must satisfy. This is basically
    /// the set of bounds on the in-scope type parameters, translated
1562
    /// into Obligations, and elaborated and normalized.
V
varkor 已提交
1563
    pub caller_bounds: &'tcx List<ty::Predicate<'tcx>>,
1564

I
Irina Popa 已提交
1565
    /// Typically, this is `Reveal::UserFacing`, but during codegen we
1566 1567 1568
    /// want `Reveal::All` -- note that this is always paired with an
    /// empty environment. To get that, use `ParamEnv::reveal()`.
    pub reveal: traits::Reveal,
1569
}
1570

1571
impl<'tcx> ParamEnv<'tcx> {
1572 1573 1574 1575 1576
    /// Construct a trait environment suitable for contexts where
    /// there are no where clauses in scope. Hidden types (like `impl
    /// Trait`) are left hidden, so this is suitable for ordinary
    /// type-checking.
    pub fn empty() -> Self {
V
varkor 已提交
1577
        Self::new(List::empty(), Reveal::UserFacing)
1578 1579 1580 1581 1582
    }

    /// Construct a trait environment with no where clauses in scope
    /// where the values of all `impl Trait` and other hidden types
    /// are revealed. This is suitable for monomorphized, post-typeck
I
Irina Popa 已提交
1583
    /// environments like codegen or doing optimizations.
1584 1585 1586 1587
    ///
    /// NB. If you want to have predicates in scope, use `ParamEnv::new`,
    /// or invoke `param_env.with_reveal_all()`.
    pub fn reveal_all() -> Self {
V
varkor 已提交
1588
        Self::new(List::empty(), Reveal::All)
1589 1590 1591
    }

    /// Construct a trait environment with the given set of predicates.
V
varkor 已提交
1592
    pub fn new(caller_bounds: &'tcx List<ty::Predicate<'tcx>>,
S
Sean Griffin 已提交
1593
               reveal: Reveal)
1594
               -> Self {
S
Sean Griffin 已提交
1595
        ty::ParamEnv { caller_bounds, reveal }
1596 1597 1598 1599 1600
    }

    /// Returns a new parameter environment with the same clauses, but
    /// which "reveals" the true results of projections in all cases
    /// (even for associated types that are specializable).  This is
I
Irina Popa 已提交
1601
    /// the desired behavior during codegen and certain other special
1602 1603 1604 1605 1606 1607 1608 1609
    /// contexts; normally though we want to use `Reveal::UserFacing`,
    /// which is the default.
    pub fn with_reveal_all(self) -> Self {
        ty::ParamEnv { reveal: Reveal::All, ..self }
    }

    /// Returns this same environment but with no caller bounds.
    pub fn without_caller_bounds(self) -> Self {
V
varkor 已提交
1610
        ty::ParamEnv { caller_bounds: List::empty(), ..self }
1611 1612
    }

1613
    /// Creates a suitable environment in which to perform trait
1614 1615 1616 1617 1618
    /// queries on the given value. When type-checking, this is simply
    /// the pair of the environment plus value. But when reveal is set to
    /// All, then if `value` does not reference any type parameters, we will
    /// pair it with the empty environment. This improves caching and is generally
    /// invisible.
1619
    ///
1620 1621
    /// NB: We preserve the environment when type-checking because it
    /// is possible for the user to have wacky where-clauses like
1622
    /// `where Box<u32>: Copy`, which are clearly never
1623 1624
    /// satisfiable. We generally want to behave as if they were true,
    /// although the surrounding function is never reachable.
1625
    pub fn and<T: TypeFoldable<'tcx>>(self, value: T) -> ParamEnvAnd<'tcx, T> {
1626 1627 1628 1629 1630 1631
        match self.reveal {
            Reveal::UserFacing => {
                ParamEnvAnd {
                    param_env: self,
                    value,
                }
1632
            }
1633 1634

            Reveal::All => {
1635 1636 1637 1638 1639
                if value.has_skol()
                    || value.needs_infer()
                    || value.has_param_types()
                    || value.has_self_ty()
                {
1640 1641 1642 1643 1644 1645 1646 1647 1648 1649
                    ParamEnvAnd {
                        param_env: self,
                        value,
                    }
                } else {
                    ParamEnvAnd {
                        param_env: self.without_caller_bounds(),
                        value,
                    }
                }
1650
            }
1651 1652 1653
        }
    }
}
1654

1655
#[derive(Copy, Clone, Debug, PartialEq, Eq, Hash)]
1656 1657
pub struct ParamEnvAnd<'tcx, T> {
    pub param_env: ParamEnv<'tcx>,
1658
    pub value: T,
1659 1660
}

1661 1662
impl<'tcx, T> ParamEnvAnd<'tcx, T> {
    pub fn into_parts(self) -> (ParamEnv<'tcx>, T) {
1663
        (self.param_env, self.value)
1664
    }
1665 1666
}

1667 1668
impl<'a, 'gcx, T> HashStable<StableHashingContext<'a>> for ParamEnvAnd<'gcx, T>
    where T: HashStable<StableHashingContext<'a>>
1669 1670
{
    fn hash_stable<W: StableHasherResult>(&self,
1671
                                          hcx: &mut StableHashingContext<'a>,
1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682
                                          hasher: &mut StableHasher<W>) {
        let ParamEnvAnd {
            ref param_env,
            ref value
        } = *self;

        param_env.hash_stable(hcx, hasher);
        value.hash_stable(hcx, hasher);
    }
}

1683 1684 1685 1686 1687 1688
#[derive(Copy, Clone, Debug)]
pub struct Destructor {
    /// The def-id of the destructor method
    pub did: DefId,
}

1689
bitflags! {
1690 1691 1692 1693 1694 1695 1696
    pub struct AdtFlags: u32 {
        const NO_ADT_FLAGS        = 0;
        const IS_ENUM             = 1 << 0;
        const IS_PHANTOM_DATA     = 1 << 1;
        const IS_FUNDAMENTAL      = 1 << 2;
        const IS_UNION            = 1 << 3;
        const IS_BOX              = 1 << 4;
1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707
        /// Indicates whether the variant list of this ADT is `#[non_exhaustive]`.
        /// (i.e., this flag is never set unless this ADT is an enum).
        const IS_VARIANT_LIST_NON_EXHAUSTIVE   = 1 << 5;
    }
}

bitflags! {
    pub struct VariantFlags: u32 {
        const NO_VARIANT_FLAGS        = 0;
        /// Indicates whether the field list of this variant is `#[non_exhaustive]`.
        const IS_FIELD_LIST_NON_EXHAUSTIVE = 1 << 0;
1708 1709 1710
    }
}

1711
#[derive(Debug)]
1712
pub struct VariantDef {
1713 1714
    /// The variant's DefId. If this is a tuple-like struct,
    /// this is the DefId of the struct's ctor.
1715 1716
    pub did: DefId,
    pub name: Name, // struct's name if this is a struct
1717
    pub discr: VariantDiscr,
1718
    pub fields: Vec<FieldDef>,
1719
    pub ctor_kind: CtorKind,
1720
    flags: VariantFlags,
1721 1722
}

1723 1724 1725 1726 1727 1728
impl<'a, 'gcx, 'tcx> VariantDef {
    /// Create a new `VariantDef`.
    ///
    /// - `did` is the DefId used for the variant - for tuple-structs, it is the constructor DefId,
    /// and for everything else, it is the variant DefId.
    /// - `attribute_def_id` is the DefId that has the variant's attributes.
1729 1730 1731 1732 1733 1734 1735 1736 1737
    /// this is the struct DefId for structs, and the variant DefId for variants.
    ///
    /// Note that we *could* use the constructor DefId, because the constructor attributes
    /// redirect to the base attributes, but compiling a small crate requires
    /// loading the AdtDefs for all the structs in the universe (e.g. coherence for any
    /// built-in trait), and we do not want to load attributes twice.
    ///
    /// If someone speeds up attribute loading to not be a performance concern, they can
    /// remove this hack and use the constructor DefId everywhere.
1738 1739 1740 1741 1742 1743
    pub fn new(tcx: TyCtxt<'a, 'gcx, 'tcx>,
               did: DefId,
               name: Name,
               discr: VariantDiscr,
               fields: Vec<FieldDef>,
               adt_kind: AdtKind,
1744 1745
               ctor_kind: CtorKind,
               attribute_def_id: DefId)
1746 1747
               -> Self
    {
1748 1749
        debug!("VariantDef::new({:?}, {:?}, {:?}, {:?}, {:?}, {:?}, {:?})", did, name, discr,
               fields, adt_kind, ctor_kind, attribute_def_id);
1750
        let mut flags = VariantFlags::NO_VARIANT_FLAGS;
1751
        if adt_kind == AdtKind::Struct && tcx.has_attr(attribute_def_id, "non_exhaustive") {
1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768
            debug!("found non-exhaustive field list for {:?}", did);
            flags = flags | VariantFlags::IS_FIELD_LIST_NON_EXHAUSTIVE;
        }
        VariantDef {
            did,
            name,
            discr,
            fields,
            ctor_kind,
            flags
        }
    }

    #[inline]
    pub fn is_field_list_non_exhaustive(&self) -> bool {
        self.flags.intersects(VariantFlags::IS_FIELD_LIST_NON_EXHAUSTIVE)
    }
1769 1770
}

1771 1772 1773 1774 1775 1776 1777 1778 1779
impl_stable_hash_for!(struct VariantDef {
    did,
    name,
    discr,
    fields,
    ctor_kind,
    flags
});

1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792
#[derive(Copy, Clone, Debug, PartialEq, Eq, RustcEncodable, RustcDecodable)]
pub enum VariantDiscr {
    /// Explicit value for this variant, i.e. `X = 123`.
    /// The `DefId` corresponds to the embedded constant.
    Explicit(DefId),

    /// The previous variant's discriminant plus one.
    /// For efficiency reasons, the distance from the
    /// last `Explicit` discriminant is being stored,
    /// or `0` for the first variant, if it has none.
    Relative(usize),
}

1793
#[derive(Debug)]
1794
pub struct FieldDef {
1795
    pub did: DefId,
1796
    pub ident: Ident,
1797
    pub vis: Visibility,
1798 1799
}

A
Ariel Ben-Yehuda 已提交
1800 1801 1802 1803
/// The definition of an abstract data type - a struct or enum.
///
/// These are all interned (by intern_adt_def) into the adt_defs
/// table.
1804
pub struct AdtDef {
1805
    pub did: DefId,
1806
    pub variants: Vec<VariantDef>,
1807
    flags: AdtFlags,
1808
    pub repr: ReprOptions,
1809 1810
}

1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824
impl PartialOrd for AdtDef {
    fn partial_cmp(&self, other: &AdtDef) -> Option<Ordering> {
        Some(self.cmp(&other))
    }
}

/// There should be only one AdtDef for each `did`, therefore
/// it is fine to implement `Ord` only based on `did`.
impl Ord for AdtDef {
    fn cmp(&self, other: &AdtDef) -> Ordering {
        self.did.cmp(&other.did)
    }
}

1825 1826
impl PartialEq for AdtDef {
    // AdtDef are always interned and this is part of TyS equality
1827
    #[inline]
1828
    fn eq(&self, other: &Self) -> bool { ptr::eq(self, other) }
1829 1830
}

1831
impl Eq for AdtDef {}
1832

1833
impl Hash for AdtDef {
1834 1835
    #[inline]
    fn hash<H: Hasher>(&self, s: &mut H) {
1836
        (self as *const AdtDef).hash(s)
1837 1838 1839
    }
}

1840
impl<'tcx> serialize::UseSpecializedEncodable for &'tcx AdtDef {
1841
    fn default_encode<S: Encoder>(&self, s: &mut S) -> Result<(), S::Error> {
1842 1843 1844 1845
        self.did.encode(s)
    }
}

1846
impl<'tcx> serialize::UseSpecializedDecodable for &'tcx AdtDef {}
1847

1848

1849
impl<'a> HashStable<StableHashingContext<'a>> for AdtDef {
1850
    fn hash_stable<W: StableHasherResult>(&self,
1851
                                          hcx: &mut StableHashingContext<'a>,
1852
                                          hasher: &mut StableHasher<W>) {
W
Wesley Wiser 已提交
1853 1854 1855 1856
        thread_local! {
            static CACHE: RefCell<FxHashMap<usize, Fingerprint>> =
                RefCell::new(FxHashMap());
        }
1857

W
Wesley Wiser 已提交
1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878
        let hash: Fingerprint = CACHE.with(|cache| {
            let addr = self as *const AdtDef as usize;
            *cache.borrow_mut().entry(addr).or_insert_with(|| {
                let ty::AdtDef {
                    did,
                    ref variants,
                    ref flags,
                    ref repr,
                } = *self;

                let mut hasher = StableHasher::new();
                did.hash_stable(hcx, &mut hasher);
                variants.hash_stable(hcx, &mut hasher);
                flags.hash_stable(hcx, &mut hasher);
                repr.hash_stable(hcx, &mut hasher);

                hasher.finish()
           })
        });

        hash.hash_stable(hcx, hasher);
1879 1880 1881
    }
}

1882
#[derive(Copy, Clone, Debug, Eq, PartialEq, Hash)]
1883
pub enum AdtKind { Struct, Union, Enum }
1884

1885 1886 1887 1888 1889 1890 1891 1892 1893 1894
impl Into<DataTypeKind> for AdtKind {
    fn into(self) -> DataTypeKind {
        match self {
            AdtKind::Struct => DataTypeKind::Struct,
            AdtKind::Union => DataTypeKind::Union,
            AdtKind::Enum => DataTypeKind::Enum,
        }
    }
}

1895 1896
bitflags! {
    #[derive(RustcEncodable, RustcDecodable, Default)]
1897 1898
    pub struct ReprFlags: u8 {
        const IS_C               = 1 << 0;
1899 1900
        const IS_SIMD            = 1 << 1;
        const IS_TRANSPARENT     = 1 << 2;
1901
        // Internal only for now. If true, don't reorder fields.
1902
        const IS_LINEAR          = 1 << 3;
1903 1904 1905 1906

        // Any of these flags being set prevent field reordering optimisation.
        const IS_UNOPTIMISABLE   = ReprFlags::IS_C.bits |
                                   ReprFlags::IS_SIMD.bits |
1907
                                   ReprFlags::IS_LINEAR.bits;
1908 1909 1910 1911 1912 1913 1914 1915 1916
    }
}

impl_stable_hash_for!(struct ReprFlags {
    bits
});



1917
/// Represents the repr options provided by the user,
1918
#[derive(Copy, Clone, Debug, Eq, PartialEq, RustcEncodable, RustcDecodable, Default)]
1919 1920
pub struct ReprOptions {
    pub int: Option<attr::IntType>,
1921
    pub align: u32,
1922
    pub pack: u32,
1923
    pub flags: ReprFlags,
1924 1925
}

1926
impl_stable_hash_for!(struct ReprOptions {
1927
    align,
1928
    pack,
1929
    int,
1930
    flags
1931 1932
});

1933
impl ReprOptions {
1934
    pub fn new(tcx: TyCtxt<'_, '_, '_>, did: DefId) -> ReprOptions {
1935 1936
        let mut flags = ReprFlags::empty();
        let mut size = None;
1937
        let mut max_align = 0;
1938
        let mut min_pack = 0;
1939 1940
        for attr in tcx.get_attrs(did).iter() {
            for r in attr::find_repr_attrs(tcx.sess.diagnostic(), attr) {
1941
                flags.insert(match r {
1942
                    attr::ReprC => ReprFlags::IS_C,
1943 1944 1945 1946 1947 1948 1949 1950
                    attr::ReprPacked(pack) => {
                        min_pack = if min_pack > 0 {
                            cmp::min(pack, min_pack)
                        } else {
                            pack
                        };
                        ReprFlags::empty()
                    },
R
Robin Kruppe 已提交
1951
                    attr::ReprTransparent => ReprFlags::IS_TRANSPARENT,
1952 1953 1954 1955 1956
                    attr::ReprSimd => ReprFlags::IS_SIMD,
                    attr::ReprInt(i) => {
                        size = Some(i);
                        ReprFlags::empty()
                    },
1957 1958 1959 1960
                    attr::ReprAlign(align) => {
                        max_align = cmp::max(align, max_align);
                        ReprFlags::empty()
                    },
1961
                });
1962 1963
            }
        }
1964

1965
        // This is here instead of layout because the choice must make it into metadata.
1966 1967 1968
        if !tcx.consider_optimizing(|| format!("Reorder fields of {:?}", tcx.item_path_str(did))) {
            flags.insert(ReprFlags::IS_LINEAR);
        }
1969
        ReprOptions { int: size, align: max_align, pack: min_pack, flags: flags }
1970
    }
1971

1972 1973 1974 1975 1976
    #[inline]
    pub fn simd(&self) -> bool { self.flags.contains(ReprFlags::IS_SIMD) }
    #[inline]
    pub fn c(&self) -> bool { self.flags.contains(ReprFlags::IS_C) }
    #[inline]
1977
    pub fn packed(&self) -> bool { self.pack > 0 }
1978
    #[inline]
R
Robin Kruppe 已提交
1979 1980
    pub fn transparent(&self) -> bool { self.flags.contains(ReprFlags::IS_TRANSPARENT) }
    #[inline]
1981 1982
    pub fn linear(&self) -> bool { self.flags.contains(ReprFlags::IS_LINEAR) }

1983
    pub fn discr_type(&self) -> attr::IntType {
1984
        self.int.unwrap_or(attr::SignedInt(ast::IntTy::Isize))
1985
    }
1986 1987 1988 1989 1990

    /// Returns true if this `#[repr()]` should inhabit "smart enum
    /// layout" optimizations, such as representing `Foo<&T>` as a
    /// single pointer.
    pub fn inhibit_enum_layout_opt(&self) -> bool {
1991
        self.c() || self.int.is_some()
1992
    }
1993 1994 1995 1996 1997 1998

    /// Returns true if this `#[repr()]` should inhibit struct field reordering
    /// optimizations, such as with repr(C) or repr(packed(1)).
    pub fn inhibit_struct_field_reordering_opt(&self) -> bool {
        !(self.flags & ReprFlags::IS_UNOPTIMISABLE).is_empty() || (self.pack == 1)
    }
1999 2000
}

2001
impl<'a, 'gcx, 'tcx> AdtDef {
2002
    fn new(tcx: TyCtxt<'_, '_, '_>,
2003
           did: DefId,
A
Ariel Ben-Yehuda 已提交
2004
           kind: AdtKind,
2005 2006
           variants: Vec<VariantDef>,
           repr: ReprOptions) -> Self {
2007
        debug!("AdtDef::new({:?}, {:?}, {:?}, {:?})", did, kind, variants, repr);
A
Ariel Ben-Yehuda 已提交
2008
        let mut flags = AdtFlags::NO_ADT_FLAGS;
A
Ariel Ben-Yehuda 已提交
2009
        let attrs = tcx.get_attrs(did);
2010
        if attr::contains_name(&attrs, "fundamental") {
A
Ariel Ben-Yehuda 已提交
2011
            flags = flags | AdtFlags::IS_FUNDAMENTAL;
2012
        }
2013
        if Some(did) == tcx.lang_items().phantom_data() {
A
Ariel Ben-Yehuda 已提交
2014
            flags = flags | AdtFlags::IS_PHANTOM_DATA;
2015
        }
2016
        if Some(did) == tcx.lang_items().owned_box() {
2017 2018
            flags = flags | AdtFlags::IS_BOX;
        }
2019 2020 2021
        if kind == AdtKind::Enum && tcx.has_attr(did, "non_exhaustive") {
            debug!("found non-exhaustive variant list for {:?}", did);
            flags = flags | AdtFlags::IS_VARIANT_LIST_NON_EXHAUSTIVE;
2022
        }
2023 2024 2025 2026
        match kind {
            AdtKind::Enum => flags = flags | AdtFlags::IS_ENUM,
            AdtKind::Union => flags = flags | AdtFlags::IS_UNION,
            AdtKind::Struct => {}
2027
        }
2028
        AdtDef {
2029 2030 2031 2032
            did,
            variants,
            flags,
            repr,
2033 2034 2035
        }
    }

2036 2037 2038 2039 2040 2041 2042
    #[inline]
    pub fn is_struct(&self) -> bool {
        !self.is_union() && !self.is_enum()
    }

    #[inline]
    pub fn is_union(&self) -> bool {
2043
        self.flags.intersects(AdtFlags::IS_UNION)
2044 2045 2046 2047
    }

    #[inline]
    pub fn is_enum(&self) -> bool {
2048
        self.flags.intersects(AdtFlags::IS_ENUM)
2049 2050
    }

2051
    #[inline]
2052 2053
    pub fn is_variant_list_non_exhaustive(&self) -> bool {
        self.flags.intersects(AdtFlags::IS_VARIANT_LIST_NON_EXHAUSTIVE)
2054 2055
    }

A
Ariel Ben-Yehuda 已提交
2056
    /// Returns the kind of the ADT - Struct or Enum.
2057
    #[inline]
A
Ariel Ben-Yehuda 已提交
2058
    pub fn adt_kind(&self) -> AdtKind {
2059
        if self.is_enum() {
A
Ariel Ben-Yehuda 已提交
2060
            AdtKind::Enum
2061
        } else if self.is_union() {
2062
            AdtKind::Union
2063
        } else {
A
Ariel Ben-Yehuda 已提交
2064
            AdtKind::Struct
2065 2066 2067
        }
    }

2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083
    pub fn descr(&self) -> &'static str {
        match self.adt_kind() {
            AdtKind::Struct => "struct",
            AdtKind::Union => "union",
            AdtKind::Enum => "enum",
        }
    }

    pub fn variant_descr(&self) -> &'static str {
        match self.adt_kind() {
            AdtKind::Struct => "struct",
            AdtKind::Union => "union",
            AdtKind::Enum => "variant",
        }
    }

A
Ariel Ben-Yehuda 已提交
2084 2085
    /// Returns whether this type is #[fundamental] for the purposes
    /// of coherence checking.
2086 2087
    #[inline]
    pub fn is_fundamental(&self) -> bool {
2088
        self.flags.intersects(AdtFlags::IS_FUNDAMENTAL)
2089 2090
    }

A
Ariel Ben-Yehuda 已提交
2091
    /// Returns true if this is PhantomData<T>.
2092 2093
    #[inline]
    pub fn is_phantom_data(&self) -> bool {
2094
        self.flags.intersects(AdtFlags::IS_PHANTOM_DATA)
2095 2096
    }

2097 2098 2099
    /// Returns true if this is Box<T>.
    #[inline]
    pub fn is_box(&self) -> bool {
2100
        self.flags.intersects(AdtFlags::IS_BOX)
2101 2102
    }

A
Ariel Ben-Yehuda 已提交
2103
    /// Returns whether this type has a destructor.
2104 2105
    pub fn has_dtor(&self, tcx: TyCtxt<'a, 'gcx, 'tcx>) -> bool {
        self.destructor(tcx).is_some()
2106 2107
    }

2108 2109 2110
    /// Asserts this is a struct or union and returns its unique variant.
    pub fn non_enum_variant(&self) -> &VariantDef {
        assert!(self.is_struct() || self.is_union());
2111
        &self.variants[0]
2112 2113 2114
    }

    #[inline]
2115
    pub fn predicates(&self, tcx: TyCtxt<'a, 'gcx, 'tcx>) -> GenericPredicates<'gcx> {
2116
        tcx.predicates_of(self.did)
2117
    }
2118

A
Ariel Ben-Yehuda 已提交
2119 2120
    /// Returns an iterator over all fields contained
    /// by this ADT.
2121
    #[inline]
2122 2123
    pub fn all_fields<'s>(&'s self) -> impl Iterator<Item = &'s FieldDef> {
        self.variants.iter().flat_map(|v| v.fields.iter())
2124 2125 2126 2127 2128 2129 2130
    }

    pub fn is_payloadfree(&self) -> bool {
        !self.variants.is_empty() &&
            self.variants.iter().all(|v| v.fields.is_empty())
    }

2131
    pub fn variant_with_id(&self, vid: DefId) -> &VariantDef {
2132 2133 2134 2135 2136 2137
        self.variants
            .iter()
            .find(|v| v.did == vid)
            .expect("variant_with_id: unknown variant")
    }

N
Niko Matsakis 已提交
2138 2139 2140 2141 2142 2143 2144
    pub fn variant_index_with_id(&self, vid: DefId) -> usize {
        self.variants
            .iter()
            .position(|v| v.did == vid)
            .expect("variant_index_with_id: unknown variant")
    }

2145
    pub fn variant_of_def(&self, def: Def) -> &VariantDef {
2146
        match def {
2147 2148
            Def::Variant(vid) | Def::VariantCtor(vid, ..) => self.variant_with_id(vid),
            Def::Struct(..) | Def::StructCtor(..) | Def::Union(..) |
F
F001 已提交
2149 2150
            Def::TyAlias(..) | Def::AssociatedTy(..) | Def::SelfTy(..) |
            Def::SelfCtor(..) => self.non_enum_variant(),
2151
            _ => bug!("unexpected def {:?} in variant_of_def", def)
2152 2153
        }
    }
2154

O
Oliver Schneider 已提交
2155
    #[inline]
2156
    pub fn eval_explicit_discr(
O
Oliver Schneider 已提交
2157 2158 2159 2160
        &self,
        tcx: TyCtxt<'a, 'gcx, 'tcx>,
        expr_did: DefId,
    ) -> Option<Discr<'tcx>> {
2161
        let param_env = ParamEnv::empty();
O
Oliver Schneider 已提交
2162 2163 2164 2165 2166 2167 2168 2169
        let repr_type = self.repr.discr_type();
        let substs = Substs::identity_for_item(tcx.global_tcx(), expr_did);
        let instance = ty::Instance::new(expr_did, substs);
        let cid = GlobalId {
            instance,
            promoted: None
        };
        match tcx.const_eval(param_env.and(cid)) {
2170 2171
            Ok(val) => {
                // FIXME: Find the right type and use it instead of `val.ty` here
O
Oliver Schneider 已提交
2172
                if let Some(b) = val.assert_bits(tcx.global_tcx(), param_env.and(val.ty)) {
2173 2174 2175 2176 2177 2178 2179
                    trace!("discriminants: {} ({:?})", b, repr_type);
                    Some(Discr {
                        val: b,
                        ty: val.ty,
                    })
                } else {
                    info!("invalid enum discriminant: {:#?}", val);
2180
                    ::mir::interpret::struct_error(
2181
                        tcx.at(tcx.def_span(expr_did)),
2182 2183 2184 2185
                        "constant evaluation of enum discriminant resulted in non-integer",
                    ).emit();
                    None
                }
O
Oliver Schneider 已提交
2186
            }
2187
            Err(err) => {
2188 2189 2190 2191
                err.report_as_error(
                    tcx.at(tcx.def_span(expr_did)),
                    "could not evaluate enum discriminant",
                );
O
Oliver Schneider 已提交
2192 2193 2194
                if !expr_did.is_local() {
                    span_bug!(tcx.def_span(expr_did),
                        "variant discriminant evaluation succeeded \
L
ljedrz 已提交
2195
                         in its crate but failed locally");
O
Oliver Schneider 已提交
2196 2197 2198 2199 2200 2201
                }
                None
            }
        }
    }

2202
    #[inline]
2203 2204 2205 2206
    pub fn discriminants(
        &'a self,
        tcx: TyCtxt<'a, 'gcx, 'tcx>,
    ) -> impl Iterator<Item=Discr<'tcx>> + Captures<'gcx> + 'a {
2207
        let repr_type = self.repr.discr_type();
2208
        let initial = repr_type.initial_discriminant(tcx.global_tcx());
O
Oliver Schneider 已提交
2209
        let mut prev_discr = None::<Discr<'tcx>>;
2210
        self.variants.iter().map(move |v| {
O
Oliver Schneider 已提交
2211
            let mut discr = prev_discr.map_or(initial, |d| d.wrap_incr(tcx));
2212
            if let VariantDiscr::Explicit(expr_did) = v.discr {
O
Oliver Schneider 已提交
2213 2214
                if let Some(new_discr) = self.eval_explicit_discr(tcx, expr_did) {
                    discr = new_discr;
2215 2216 2217 2218 2219 2220 2221 2222
                }
            }
            prev_discr = Some(discr);

            discr
        })
    }

2223 2224 2225 2226 2227 2228 2229 2230
    /// Compute the discriminant value used by a specific variant.
    /// Unlike `discriminants`, this is (amortized) constant-time,
    /// only doing at most one query for evaluating an explicit
    /// discriminant (the last one before the requested variant),
    /// assuming there are no constant-evaluation errors there.
    pub fn discriminant_for_variant(&self,
                                    tcx: TyCtxt<'a, 'gcx, 'tcx>,
                                    variant_index: usize)
O
Oliver Schneider 已提交
2231
                                    -> Discr<'tcx> {
2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245
        let (val, offset) = self.discriminant_def_for_variant(variant_index);
        let explicit_value = val
            .and_then(|expr_did| self.eval_explicit_discr(tcx, expr_did))
            .unwrap_or_else(|| self.repr.discr_type().initial_discriminant(tcx.global_tcx()));
        explicit_value.checked_add(tcx, offset as u128).0
    }

    /// Yields a DefId for the discriminant and an offset to add to it
    /// Alternatively, if there is no explicit discriminant, returns the
    /// inferred discriminant directly
    pub fn discriminant_def_for_variant(
        &self,
        variant_index: usize,
    ) -> (Option<DefId>, usize) {
2246
        let mut explicit_index = variant_index;
2247
        let expr_did;
2248 2249
        loop {
            match self.variants[explicit_index].discr {
2250 2251 2252 2253
                ty::VariantDiscr::Relative(0) => {
                    expr_did = None;
                    break;
                },
2254 2255 2256
                ty::VariantDiscr::Relative(distance) => {
                    explicit_index -= distance;
                }
2257 2258 2259
                ty::VariantDiscr::Explicit(did) => {
                    expr_did = Some(did);
                    break;
2260 2261 2262
                }
            }
        }
2263
        (expr_did, variant_index - explicit_index)
2264 2265
    }

2266
    pub fn destructor(&self, tcx: TyCtxt<'a, 'gcx, 'tcx>) -> Option<Destructor> {
2267
        tcx.adt_destructor(self.did)
2268 2269
    }

2270
    /// Returns a list of types such that `Self: Sized` if and only
2271
    /// if that type is Sized, or `TyErr` if this type is recursive.
A
Ariel Ben-Yehuda 已提交
2272 2273 2274 2275 2276 2277 2278 2279
    ///
    /// Oddly enough, checking that the sized-constraint is Sized is
    /// actually more expressive than checking all members:
    /// the Sized trait is inductive, so an associated type that references
    /// Self would prevent its containing ADT from being Sized.
    ///
    /// Due to normalization being eager, this applies even if
    /// the associated type is behind a pointer, e.g. issue #31299.
2280
    pub fn sized_constraint(&self, tcx: TyCtxt<'a, 'gcx, 'tcx>) -> &'tcx [Ty<'tcx>] {
2281
        match tcx.try_adt_sized_constraint(DUMMY_SP, self.did) {
2282
            Ok(tys) => tys,
2283
            Err(mut bug) => {
2284 2285 2286 2287
                debug!("adt_sized_constraint: {:?} is recursive", self);
                // This should be reported as an error by `check_representable`.
                //
                // Consider the type as Sized in the meanwhile to avoid
2288 2289 2290 2291
                // further errors. Delay our `bug` diagnostic here to get
                // emitted later as well in case we accidentally otherwise don't
                // emit an error.
                bug.delay_as_bug();
2292
                tcx.intern_type_list(&[tcx.types.err])
A
Ariel Ben-Yehuda 已提交
2293
            }
2294 2295
        }
    }
2296

2297 2298 2299 2300
    fn sized_constraint_for_ty(&self,
                               tcx: TyCtxt<'a, 'tcx, 'tcx>,
                               ty: Ty<'tcx>)
                               -> Vec<Ty<'tcx>> {
2301
        let result = match ty.sty {
2302
            Bool | Char | Int(..) | Uint(..) | Float(..) |
V
varkor 已提交
2303 2304
            RawPtr(..) | Ref(..) | FnDef(..) | FnPtr(_) |
            Array(..) | Closure(..) | Generator(..) | Never => {
A
Ariel Ben-Yehuda 已提交
2305
                vec![]
2306 2307
            }

2308
            Str |
V
varkor 已提交
2309 2310
            Dynamic(..) |
            Slice(_) |
V
varkor 已提交
2311
            Foreign(..) |
V
varkor 已提交
2312 2313
            Error |
            GeneratorWitness(..) => {
2314
                // these are never sized - return the target type
A
Ariel Ben-Yehuda 已提交
2315
                vec![ty]
2316 2317
            }

V
varkor 已提交
2318
            Tuple(ref tys) => {
2319 2320
                match tys.last() {
                    None => vec![],
2321
                    Some(ty) => self.sized_constraint_for_ty(tcx, ty)
2322
                }
2323 2324
            }

V
varkor 已提交
2325
            Adt(adt, substs) => {
2326
                // recursive case
2327
                let adt_tys = adt.sized_constraint(tcx);
2328
                debug!("sized_constraint_for_ty({:?}) intermediate = {:?}",
2329 2330
                       ty, adt_tys);
                adt_tys.iter()
L
ljedrz 已提交
2331 2332 2333
                       .map(|ty| ty.subst(tcx, substs))
                       .flat_map(|ty| self.sized_constraint_for_ty(tcx, ty))
                       .collect()
2334 2335
            }

2336
            Projection(..) | Opaque(..) => {
2337 2338
                // must calculate explicitly.
                // FIXME: consider special-casing always-Sized projections
A
Ariel Ben-Yehuda 已提交
2339
                vec![ty]
2340 2341
            }

V
varkor 已提交
2342
            Param(..) => {
A
Ariel Ben-Yehuda 已提交
2343 2344 2345 2346
                // perf hack: if there is a `T: Sized` bound, then
                // we know that `T` is Sized and do not need to check
                // it on the impl.

2347
                let sized_trait = match tcx.lang_items().sized_trait() {
2348
                    Some(x) => x,
A
Ariel Ben-Yehuda 已提交
2349
                    _ => return vec![ty]
2350
                };
2351
                let sized_predicate = Binder::dummy(TraitRef {
2352
                    def_id: sized_trait,
2353
                    substs: tcx.mk_substs_trait(ty, &[])
2354
                }).to_predicate();
2355
                let predicates = tcx.predicates_of(self.did).predicates;
2356
                if predicates.into_iter().any(|(p, _)| p == sized_predicate) {
A
Ariel Ben-Yehuda 已提交
2357
                    vec![]
2358
                } else {
A
Ariel Ben-Yehuda 已提交
2359
                    vec![ty]
2360 2361 2362
                }
            }

V
varkor 已提交
2363
            Infer(..) => {
2364 2365 2366 2367 2368 2369 2370
                bug!("unexpected type `{:?}` in sized_constraint_for_ty",
                     ty)
            }
        };
        debug!("sized_constraint_for_ty({:?}) = {:?}", ty, result);
        result
    }
2371 2372
}

2373
impl<'a, 'gcx, 'tcx> FieldDef {
2374
    pub fn ty(&self, tcx: TyCtxt<'a, 'gcx, 'tcx>, subst: &Substs<'tcx>) -> Ty<'tcx> {
2375
        tcx.type_of(self.did).subst(tcx, subst)
2376
    }
2377 2378
}

2379 2380 2381 2382 2383 2384
/// Represents the various closure traits in the Rust language. This
/// will determine the type of the environment (`self`, in the
/// desuaring) argument that the closure expects.
///
/// You can get the environment type of a closure using
/// `tcx.closure_env_ty()`.
2385
#[derive(Clone, Copy, PartialOrd, Ord, PartialEq, Eq, Hash, Debug, RustcEncodable, RustcDecodable)]
2386
pub enum ClosureKind {
2387 2388 2389
    // Warning: Ordering is significant here! The ordering is chosen
    // because the trait Fn is a subtrait of FnMut and so in turn, and
    // hence we order it so that Fn < FnMut < FnOnce.
2390 2391 2392
    Fn,
    FnMut,
    FnOnce,
2393 2394
}

2395
impl<'a, 'tcx> ClosureKind {
2396 2397 2398
    // This is the initial value used when doing upvar inference.
    pub const LATTICE_BOTTOM: ClosureKind = ClosureKind::Fn;

2399
    pub fn trait_did(&self, tcx: TyCtxt<'a, 'tcx, 'tcx>) -> DefId {
2400 2401
        match *self {
            ClosureKind::Fn => tcx.require_lang_item(FnTraitLangItem),
2402
            ClosureKind::FnMut => {
2403
                tcx.require_lang_item(FnMutTraitLangItem)
2404
            }
2405
            ClosureKind::FnOnce => {
2406
                tcx.require_lang_item(FnOnceTraitLangItem)
2407 2408 2409
            }
        }
    }
2410 2411 2412 2413 2414

    /// True if this a type that impls this closure kind
    /// must also implement `other`.
    pub fn extends(self, other: ty::ClosureKind) -> bool {
        match (self, other) {
2415 2416 2417 2418 2419 2420
            (ClosureKind::Fn, ClosureKind::Fn) => true,
            (ClosureKind::Fn, ClosureKind::FnMut) => true,
            (ClosureKind::Fn, ClosureKind::FnOnce) => true,
            (ClosureKind::FnMut, ClosureKind::FnMut) => true,
            (ClosureKind::FnMut, ClosureKind::FnOnce) => true,
            (ClosureKind::FnOnce, ClosureKind::FnOnce) => true,
2421 2422 2423
            _ => false,
        }
    }
2424 2425 2426 2427 2428 2429 2430 2431 2432

    /// Returns the representative scalar type for this closure kind.
    /// See `TyS::to_opt_closure_kind` for more details.
    pub fn to_ty(self, tcx: TyCtxt<'_, '_, 'tcx>) -> Ty<'tcx> {
        match self {
            ty::ClosureKind::Fn => tcx.types.i8,
            ty::ClosureKind::FnMut => tcx.types.i16,
            ty::ClosureKind::FnOnce => tcx.types.i32,
        }
2433
    }
2434 2435
}

2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448
impl<'tcx> TyS<'tcx> {
    /// Iterator that walks `self` and any types reachable from
    /// `self`, in depth-first order. Note that just walks the types
    /// that appear in `self`, it does not descend into the fields of
    /// structs or variants. For example:
    ///
    /// ```notrust
    /// isize => { isize }
    /// Foo<Bar<isize>> => { Foo<Bar<isize>>, Bar<isize>, isize }
    /// [isize] => { [isize], isize }
    /// ```
    pub fn walk(&'tcx self) -> TypeWalker<'tcx> {
        TypeWalker::new(self)
2449 2450
    }

2451 2452 2453
    /// Iterator that walks the immediate children of `self`.  Hence
    /// `Foo<Bar<i32>, u32>` yields the sequence `[Bar<i32>, u32]`
    /// (but not `i32`, like `walk`).
2454
    pub fn walk_shallow(&'tcx self) -> smallvec::IntoIter<walk::TypeWalkerArray<'tcx>> {
2455
        walk::walk_shallow(self)
2456 2457
    }

2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471
    /// Walks `ty` and any types appearing within `ty`, invoking the
    /// callback `f` on each type. If the callback returns false, then the
    /// children of the current type are ignored.
    ///
    /// Note: prefer `ty.walk()` where possible.
    pub fn maybe_walk<F>(&'tcx self, mut f: F)
        where F : FnMut(Ty<'tcx>) -> bool
    {
        let mut walker = self.walk();
        while let Some(ty) = walker.next() {
            if !f(ty) {
                walker.skip_current_subtree();
            }
        }
2472
    }
2473
}
2474

2475
impl BorrowKind {
2476
    pub fn from_mutbl(m: hir::Mutability) -> BorrowKind {
2477
        match m {
2478 2479
            hir::MutMutable => MutBorrow,
            hir::MutImmutable => ImmBorrow,
2480 2481
        }
    }
2482

2483 2484 2485 2486
    /// Returns a mutability `m` such that an `&m T` pointer could be used to obtain this borrow
    /// kind. Because borrow kinds are richer than mutabilities, we sometimes have to pick a
    /// mutability that is stronger than necessary so that it at least *would permit* the borrow in
    /// question.
2487
    pub fn to_mutbl_lossy(self) -> hir::Mutability {
2488
        match self {
2489 2490
            MutBorrow => hir::MutMutable,
            ImmBorrow => hir::MutImmutable,
2491 2492 2493 2494

            // We have no type corresponding to a unique imm borrow, so
            // use `&mut`. It gives all the capabilities of an `&uniq`
            // and hence is a safe "over approximation".
2495
            UniqueImmBorrow => hir::MutMutable,
2496
        }
2497
    }
2498

2499 2500 2501 2502 2503 2504
    pub fn to_user_str(&self) -> &'static str {
        match *self {
            MutBorrow => "mutable",
            ImmBorrow => "immutable",
            UniqueImmBorrow => "uniquely immutable",
        }
2505 2506 2507
    }
}

2508 2509
#[derive(Debug, Clone)]
pub enum Attributes<'gcx> {
2510
    Owned(Lrc<[ast::Attribute]>),
2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524
    Borrowed(&'gcx [ast::Attribute])
}

impl<'gcx> ::std::ops::Deref for Attributes<'gcx> {
    type Target = [ast::Attribute];

    fn deref(&self) -> &[ast::Attribute] {
        match self {
            &Attributes::Owned(ref data) => &data,
            &Attributes::Borrowed(data) => data
        }
    }
}

2525
impl<'a, 'gcx, 'tcx> TyCtxt<'a, 'gcx, 'tcx> {
2526
    pub fn body_tables(self, body: hir::BodyId) -> &'gcx TypeckTables<'gcx> {
2527
        self.typeck_tables_of(self.hir.body_owner_def_id(body))
2528 2529
    }

N
Niko Matsakis 已提交
2530 2531 2532
    /// Returns an iterator of the def-ids for all body-owners in this
    /// crate. If you would prefer to iterate over the bodies
    /// themselves, you can do `self.hir.krate().body_ids.iter()`.
2533 2534 2535
    pub fn body_owners(
        self,
    ) -> impl Iterator<Item = DefId> + Captures<'tcx> + Captures<'gcx> + 'a {
N
Niko Matsakis 已提交
2536 2537 2538 2539 2540 2541
        self.hir.krate()
                .body_ids
                .iter()
                .map(move |&body_id| self.hir.body_owner_def_id(body_id))
    }

J
John Kåre Alsaker 已提交
2542 2543 2544 2545 2546 2547
    pub fn par_body_owners<F: Fn(DefId) + sync::Sync + sync::Send>(self, f: F) {
        par_iter(&self.hir.krate().body_ids).for_each(|&body_id| {
            f(self.hir.body_owner_def_id(body_id))
        });
    }

2548
    pub fn expr_span(self, id: NodeId) -> Span {
2549
        match self.hir.find(id) {
V
varkor 已提交
2550
            Some(Node::Expr(e)) => {
2551 2552 2553
                e.span
            }
            Some(f) => {
2554
                bug!("Node id {} is not an expr: {:?}", id, f);
2555 2556
            }
            None => {
2557
                bug!("Node id {} is not present in the node map", id);
2558
            }
2559
        }
2560 2561
    }

2562 2563
    pub fn provided_trait_methods(self, id: DefId) -> Vec<AssociatedItem> {
        self.associated_items(id)
2564
            .filter(|item| item.kind == AssociatedKind::Method && item.defaultness.has_value())
2565
            .collect()
2566 2567
    }

A
Andrew Cann 已提交
2568 2569 2570 2571 2572 2573
    pub fn trait_relevant_for_never(self, did: DefId) -> bool {
        self.associated_items(did).any(|item| {
            item.relevant_for_never()
        })
    }

2574 2575 2576
    pub fn opt_associated_item(self, def_id: DefId) -> Option<AssociatedItem> {
        let is_associated_item = if let Some(node_id) = self.hir.as_local_node_id(def_id) {
            match self.hir.get(node_id) {
V
varkor 已提交
2577
                Node::TraitItem(_) | Node::ImplItem(_) => true,
2578 2579 2580
                _ => false,
            }
        } else {
2581
            match self.describe_def(def_id).expect("no def for def-id") {
2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593
                Def::AssociatedConst(_) | Def::Method(_) | Def::AssociatedTy(_) => true,
                _ => false,
            }
        };

        if is_associated_item {
            Some(self.associated_item(def_id))
        } else {
            None
        }
    }

2594 2595
    fn associated_item_from_trait_item_ref(self,
                                           parent_def_id: DefId,
2596
                                           parent_vis: &hir::Visibility,
2597
                                           trait_item_ref: &hir::TraitItemRef)
2598
                                           -> AssociatedItem {
2599
        let def_id = self.hir.local_def_id(trait_item_ref.id.node_id);
2600 2601 2602 2603
        let (kind, has_self) = match trait_item_ref.kind {
            hir::AssociatedItemKind::Const => (ty::AssociatedKind::Const, false),
            hir::AssociatedItemKind::Method { has_self } => {
                (ty::AssociatedKind::Method, has_self)
2604
            }
2605
            hir::AssociatedItemKind::Type => (ty::AssociatedKind::Type, false),
O
Oliver Schneider 已提交
2606
            hir::AssociatedItemKind::Existential => bug!("only impls can have existentials"),
2607 2608 2609
        };

        AssociatedItem {
2610
            ident: trait_item_ref.ident,
2611
            kind,
2612 2613
            // Visibility of trait items is inherited from their traits.
            vis: Visibility::from_hir(parent_vis, trait_item_ref.id.node_id, self),
2614
            defaultness: trait_item_ref.defaultness,
2615
            def_id,
2616 2617 2618 2619 2620 2621 2622 2623 2624
            container: TraitContainer(parent_def_id),
            method_has_self_argument: has_self
        }
    }

    fn associated_item_from_impl_item_ref(self,
                                          parent_def_id: DefId,
                                          impl_item_ref: &hir::ImplItemRef)
                                          -> AssociatedItem {
2625
        let def_id = self.hir.local_def_id(impl_item_ref.id.node_id);
2626 2627 2628 2629 2630 2631
        let (kind, has_self) = match impl_item_ref.kind {
            hir::AssociatedItemKind::Const => (ty::AssociatedKind::Const, false),
            hir::AssociatedItemKind::Method { has_self } => {
                (ty::AssociatedKind::Method, has_self)
            }
            hir::AssociatedItemKind::Type => (ty::AssociatedKind::Type, false),
O
Oliver Schneider 已提交
2632
            hir::AssociatedItemKind::Existential => (ty::AssociatedKind::Existential, false),
2633 2634
        };

2635 2636
        AssociatedItem {
            ident: impl_item_ref.ident,
2637
            kind,
2638 2639
            // Visibility of trait impl items doesn't matter.
            vis: ty::Visibility::from_hir(&impl_item_ref.vis, impl_item_ref.id.node_id, self),
2640
            defaultness: impl_item_ref.defaultness,
2641
            def_id,
2642 2643 2644 2645 2646
            container: ImplContainer(parent_def_id),
            method_has_self_argument: has_self
        }
    }

2647
    pub fn field_index(self, node_id: NodeId, tables: &TypeckTables<'_>) -> usize {
2648 2649 2650 2651 2652 2653
        let hir_id = self.hir.node_to_hir_id(node_id);
        tables.field_indices().get(hir_id).cloned().expect("no index for a field")
    }

    pub fn find_field_index(self, ident: Ident, variant: &VariantDef) -> Option<usize> {
        variant.fields.iter().position(|field| {
2654
            self.adjust_ident(ident, variant.did, DUMMY_NODE_ID).0 == field.ident.modern()
2655 2656 2657
        })
    }

2658 2659 2660
    pub fn associated_items(
        self,
        def_id: DefId,
2661
    ) -> impl Iterator<Item = AssociatedItem> + 'a {
2662
        let def_ids = self.associated_item_def_ids(def_id);
2663
        Box::new((0..def_ids.len()).map(move |i| self.associated_item(def_ids[i])))
2664
            as Box<dyn Iterator<Item = AssociatedItem> + 'a>
2665 2666
    }

2667 2668
    /// Returns true if the impls are the same polarity and the trait either
    /// has no items or is annotated #[marker] and prevents item overrides.
2669
    pub fn impls_are_allowed_to_overlap(self, def_id1: DefId, def_id2: DefId) -> bool {
2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691
        if self.features().overlapping_marker_traits {
            let trait1_is_empty = self.impl_trait_ref(def_id1)
                .map_or(false, |trait_ref| {
                    self.associated_item_def_ids(trait_ref.def_id).is_empty()
                });
            let trait2_is_empty = self.impl_trait_ref(def_id2)
                .map_or(false, |trait_ref| {
                    self.associated_item_def_ids(trait_ref.def_id).is_empty()
                });
            self.impl_polarity(def_id1) == self.impl_polarity(def_id2)
                && trait1_is_empty
                && trait2_is_empty
        } else if self.features().marker_trait_attr {
            let is_marker_impl = |def_id: DefId| -> bool {
                let trait_ref = self.impl_trait_ref(def_id);
                trait_ref.map_or(false, |tr| self.trait_def(tr.def_id).is_marker)
            };
            self.impl_polarity(def_id1) == self.impl_polarity(def_id2)
                && is_marker_impl(def_id1)
                && is_marker_impl(def_id2)
        } else {
            false
2692
        }
S
Sean Griffin 已提交
2693 2694
    }

2695 2696
    // Returns `ty::VariantDef` if `def` refers to a struct,
    // or variant or their constructors, panics otherwise.
2697
    pub fn expect_variant_def(self, def: Def) -> &'tcx VariantDef {
2698
        match def {
2699
            Def::Variant(did) | Def::VariantCtor(did, ..) => {
2700
                let enum_did = self.parent_def_id(did).unwrap();
2701
                self.adt_def(enum_did).variant_with_id(did)
2702
            }
2703
            Def::Struct(did) | Def::Union(did) => {
2704
                self.adt_def(did).non_enum_variant()
2705 2706 2707
            }
            Def::StructCtor(ctor_did, ..) => {
                let did = self.parent_def_id(ctor_did).expect("struct ctor has no parent");
2708
                self.adt_def(did).non_enum_variant()
2709 2710 2711 2712 2713
            }
            _ => bug!("expect_variant_def used with unexpected def {:?}", def)
        }
    }

2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727
    /// Given a `VariantDef`, returns the def-id of the `AdtDef` of which it is a part.
    pub fn adt_def_id_of_variant(self, variant_def: &'tcx VariantDef) -> DefId {
        let def_key = self.def_key(variant_def.did);
        match def_key.disambiguated_data.data {
            // for enum variants and tuple structs, the def-id of the ADT itself
            // is the *parent* of the variant
            DefPathData::EnumVariant(..) | DefPathData::StructCtor =>
                DefId { krate: variant_def.did.krate, index: def_key.parent.unwrap() },

            // otherwise, for structs and unions, they share a def-id
            _ => variant_def.did,
        }
    }

2728
    pub fn item_name(self, id: DefId) -> InternedString {
2729
        if id.index == CRATE_DEF_INDEX {
2730
            self.original_crate_name(id.krate).as_interned_str()
2731
        } else {
2732
            let def_key = self.def_key(id);
2733
            // The name of a StructCtor is that of its struct parent.
2734
            if let hir_map::DefPathData::StructCtor = def_key.disambiguated_data.data {
2735 2736 2737 2738 2739 2740 2741 2742 2743
                self.item_name(DefId {
                    krate: id.krate,
                    index: def_key.parent.unwrap()
                })
            } else {
                def_key.disambiguated_data.data.get_opt_name().unwrap_or_else(|| {
                    bug!("item_name: no name for {:?}", self.def_path(id));
                })
            }
2744 2745 2746
        }
    }

2747 2748
    /// Return the possibly-auto-generated MIR of a (DefId, Subst) pair.
    pub fn instance_mir(self, instance: ty::InstanceDef<'gcx>)
2749
                        -> &'gcx Mir<'gcx>
2750 2751
    {
        match instance {
N
Niko Matsakis 已提交
2752
            ty::InstanceDef::Item(did) => {
2753
                self.optimized_mir(did)
N
Niko Matsakis 已提交
2754 2755 2756 2757 2758
            }
            ty::InstanceDef::Intrinsic(..) |
            ty::InstanceDef::FnPtrShim(..) |
            ty::InstanceDef::Virtual(..) |
            ty::InstanceDef::ClosureOnceShim { .. } |
2759
            ty::InstanceDef::DropGlue(..) |
S
scalexm 已提交
2760
            ty::InstanceDef::CloneShim(..) => {
2761
                self.mir_shims(instance)
N
Niko Matsakis 已提交
2762
            }
2763 2764 2765
        }
    }

2766 2767
    /// Given the DefId of an item, returns its MIR, borrowed immutably.
    /// Returns None if there is no MIR for the DefId
2768 2769 2770 2771 2772
    pub fn maybe_optimized_mir(self, did: DefId) -> Option<&'gcx Mir<'gcx>> {
        if self.is_mir_available(did) {
            Some(self.optimized_mir(did))
        } else {
            None
2773 2774 2775
        }
    }

2776
    /// Get the attributes of a definition.
2777
    pub fn get_attrs(self, did: DefId) -> Attributes<'gcx> {
2778
        if let Some(id) = self.hir.as_local_node_id(did) {
2779
            Attributes::Borrowed(self.hir.attrs(id))
2780
        } else {
A
achernyak 已提交
2781
            Attributes::Owned(self.item_attrs(did))
2782
        }
2783 2784
    }

2785
    /// Determine whether an item is annotated with an attribute
2786
    pub fn has_attr(self, did: DefId, attr: &str) -> bool {
2787
        attr::contains_name(&self.get_attrs(did), attr)
2788
    }
2789

2790 2791
    /// Returns true if this is an `auto trait`.
    pub fn trait_is_auto(self, trait_def_id: DefId) -> bool {
2792
        self.trait_def(trait_def_id).has_auto_impl
2793
    }
2794

J
John Kåre Alsaker 已提交
2795 2796 2797 2798
    pub fn generator_layout(self, def_id: DefId) -> &'tcx GeneratorLayout<'tcx> {
        self.optimized_mir(def_id).generator_layout.as_ref().unwrap()
    }

2799 2800
    /// Given the def_id of an impl, return the def_id of the trait it implements.
    /// If it implements no trait, return `None`.
2801
    pub fn trait_id_of_impl(self, def_id: DefId) -> Option<DefId> {
2802
        self.impl_trait_ref(def_id).map(|tr| tr.def_id)
2803
    }
2804 2805 2806

    /// If the given def ID describes a method belonging to an impl, return the
    /// ID of the impl that the method belongs to. Otherwise, return `None`.
2807
    pub fn impl_of_method(self, def_id: DefId) -> Option<DefId> {
2808
        let item = if def_id.krate != LOCAL_CRATE {
A
achernyak 已提交
2809
            if let Some(Def::Method(_)) = self.describe_def(def_id) {
2810 2811 2812 2813 2814
                Some(self.associated_item(def_id))
            } else {
                None
            }
        } else {
2815
            self.opt_associated_item(def_id)
2816 2817
        };

2818 2819 2820 2821
        item.and_then(|trait_item|
            match trait_item.container {
                TraitContainer(_) => None,
                ImplContainer(def_id) => Some(def_id),
2822
            }
2823
        )
2824 2825
    }

2826 2827
    /// Looks up the span of `impl_did` if the impl is local; otherwise returns `Err`
    /// with the name of the crate containing the impl.
2828
    pub fn span_of_impl(self, impl_did: DefId) -> Result<Span, Symbol> {
2829
        if impl_did.is_local() {
2830 2831
            let node_id = self.hir.as_local_node_id(impl_did).unwrap();
            Ok(self.hir.span(node_id))
2832
        } else {
2833
            Err(self.crate_name(impl_did.krate))
2834 2835
        }
    }
J
Jeffrey Seyfried 已提交
2836

2837 2838 2839
    // Hygienically compare a use-site name (`use_name`) for a field or an associated item with its
    // supposed definition name (`def_name`). The method also needs `DefId` of the supposed
    // definition's parent/scope to perform comparison.
2840 2841
    pub fn hygienic_eq(self, use_name: Ident, def_name: Ident, def_parent_def_id: DefId) -> bool {
        self.adjust_ident(use_name, def_parent_def_id, DUMMY_NODE_ID).0 == def_name.modern()
J
Jeffrey Seyfried 已提交
2842 2843 2844
    }

    pub fn adjust_ident(self, mut ident: Ident, scope: DefId, block: NodeId) -> (Ident, DefId) {
2845 2846
        ident = ident.modern();
        let target_expansion = match scope.krate {
2847
            LOCAL_CRATE => self.hir.definitions().expansion_that_defined(scope.index),
J
Jeffrey Seyfried 已提交
2848 2849
            _ => Mark::root(),
        };
2850 2851 2852
        let scope = match ident.span.adjust(target_expansion) {
            Some(actual_expansion) =>
                self.hir.definitions().parent_module_of_macro_def(actual_expansion),
2853
            None if block == DUMMY_NODE_ID => DefId::local(CRATE_DEF_INDEX), // Dummy DefId
J
Jeffrey Seyfried 已提交
2854 2855 2856 2857
            None => self.hir.get_module_parent(block),
        };
        (ident, scope)
    }
2858
}
2859

2860
impl<'a, 'gcx, 'tcx> TyCtxt<'a, 'gcx, 'tcx> {
2861
    pub fn with_freevars<T, F>(self, fid: NodeId, f: F) -> T where
2862
        F: FnOnce(&[hir::Freevar]) -> T,
2863
    {
A
Alex Crichton 已提交
2864 2865
        let def_id = self.hir.local_def_id(fid);
        match self.freevars(def_id) {
2866
            None => f(&[]),
2867
            Some(d) => f(&d),
2868 2869
        }
    }
2870
}
2871

L
ljedrz 已提交
2872
fn associated_item<'a, 'tcx>(tcx: TyCtxt<'a, 'tcx, 'tcx>, def_id: DefId) -> AssociatedItem {
2873 2874 2875 2876 2877
    let id = tcx.hir.as_local_node_id(def_id).unwrap();
    let parent_id = tcx.hir.get_parent(id);
    let parent_def_id = tcx.hir.local_def_id(parent_id);
    let parent_item = tcx.hir.expect_item(parent_id);
    match parent_item.node {
C
csmoe 已提交
2878
        hir::ItemKind::Impl(.., ref impl_item_refs) => {
2879
            if let Some(impl_item_ref) = impl_item_refs.iter().find(|i| i.id.node_id == id) {
2880 2881
                let assoc_item = tcx.associated_item_from_impl_item_ref(parent_def_id,
                                                                        impl_item_ref);
2882 2883
                debug_assert_eq!(assoc_item.def_id, def_id);
                return assoc_item;
2884 2885 2886
            }
        }

C
csmoe 已提交
2887
        hir::ItemKind::Trait(.., ref trait_item_refs) => {
2888
            if let Some(trait_item_ref) = trait_item_refs.iter().find(|i| i.id.node_id == id) {
2889 2890 2891
                let assoc_item = tcx.associated_item_from_trait_item_ref(parent_def_id,
                                                                         &parent_item.vis,
                                                                         trait_item_ref);
2892 2893
                debug_assert_eq!(assoc_item.def_id, def_id);
                return assoc_item;
2894 2895 2896
            }
        }

2897
        _ => { }
2898
    }
2899 2900 2901 2902

    span_bug!(parent_item.span,
              "unexpected parent of trait or impl item or item not found: {:?}",
              parent_item.node)
2903 2904
}

2905 2906
/// Calculates the Sized-constraint.
///
2907
/// In fact, there are only a few options for the types in the constraint:
2908 2909 2910 2911
///     - an obviously-unsized type
///     - a type parameter or projection whose Sizedness can't be known
///     - a tuple of type parameters or projections, if there are multiple
///       such.
V
varkor 已提交
2912
///     - a Error, if a type contained itself. The representability
2913 2914 2915
///       check should catch this case.
fn adt_sized_constraint<'a, 'tcx>(tcx: TyCtxt<'a, 'tcx, 'tcx>,
                                  def_id: DefId)
2916
                                  -> &'tcx [Ty<'tcx>] {
2917
    let def = tcx.adt_def(def_id);
2918

2919
    let result = tcx.mk_type_list(def.variants.iter().flat_map(|v| {
2920 2921
        v.fields.last()
    }).flat_map(|f| {
2922
        def.sized_constraint_for_ty(tcx, tcx.type_of(f.did))
2923
    }));
2924

2925
    debug!("adt_sized_constraint: {:?} => {:?}", def, result);
2926

2927
    result
2928 2929
}

2930 2931
fn associated_item_def_ids<'a, 'tcx>(tcx: TyCtxt<'a, 'tcx, 'tcx>,
                                     def_id: DefId)
2932
                                     -> Lrc<Vec<DefId>> {
2933 2934 2935
    let id = tcx.hir.as_local_node_id(def_id).unwrap();
    let item = tcx.hir.expect_item(id);
    let vec: Vec<_> = match item.node {
C
csmoe 已提交
2936
        hir::ItemKind::Trait(.., ref trait_item_refs) => {
2937 2938 2939 2940 2941
            trait_item_refs.iter()
                           .map(|trait_item_ref| trait_item_ref.id)
                           .map(|id| tcx.hir.local_def_id(id.node_id))
                           .collect()
        }
C
csmoe 已提交
2942
        hir::ItemKind::Impl(.., ref impl_item_refs) => {
2943 2944 2945 2946 2947
            impl_item_refs.iter()
                          .map(|impl_item_ref| impl_item_ref.id)
                          .map(|id| tcx.hir.local_def_id(id.node_id))
                          .collect()
        }
C
csmoe 已提交
2948
        hir::ItemKind::TraitAlias(..) => vec![],
2949 2950
        _ => span_bug!(item.span, "associated_item_def_ids: not impl or trait")
    };
2951
    Lrc::new(vec)
2952 2953
}

A
achernyak 已提交
2954
fn def_span<'a, 'tcx>(tcx: TyCtxt<'a, 'tcx, 'tcx>, def_id: DefId) -> Span {
A
achernyak 已提交
2955
    tcx.hir.span_if_local(def_id).unwrap()
A
achernyak 已提交
2956 2957
}

A
achernyak 已提交
2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970
/// If the given def ID describes an item belonging to a trait,
/// return the ID of the trait that the trait item belongs to.
/// Otherwise, return `None`.
fn trait_of_item<'a, 'tcx>(tcx: TyCtxt<'a, 'tcx, 'tcx>, def_id: DefId) -> Option<DefId> {
    tcx.opt_associated_item(def_id)
        .and_then(|associated_item| {
            match associated_item.container {
                TraitContainer(def_id) => Some(def_id),
                ImplContainer(_) => None
            }
        })
}

2971
/// Yields the parent function's `DefId` if `def_id` is an `impl Trait` definition
2972
pub fn is_impl_trait_defn(tcx: TyCtxt<'_, '_, '_>, def_id: DefId) -> Option<DefId> {
2973
    if let Some(node_id) = tcx.hir.as_local_node_id(def_id) {
V
varkor 已提交
2974
        if let Node::Item(item) = tcx.hir.get(node_id) {
2975 2976 2977 2978 2979 2980 2981 2982
            if let hir::ItemKind::Existential(ref exist_ty) = item.node {
                return exist_ty.impl_trait_fn;
            }
        }
    }
    None
}

2983
/// See `ParamEnv` struct def'n for details.
2984
fn param_env<'a, 'tcx>(tcx: TyCtxt<'a, 'tcx, 'tcx>,
2985
                       def_id: DefId)
L
ljedrz 已提交
2986 2987
                       -> ParamEnv<'tcx>
{
O
Oliver Schneider 已提交
2988
    // The param_env of an impl Trait type is its defining function's param_env
2989 2990
    if let Some(parent) = is_impl_trait_defn(tcx, def_id) {
        return param_env(tcx, parent);
2991
    }
2992 2993
    // Compute the bounds on Self and the type parameters.

N
Niko Matsakis 已提交
2994 2995
    let InstantiatedPredicates { predicates } =
        tcx.predicates_of(def_id).instantiate_identity(tcx);
2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008

    // Finally, we have to normalize the bounds in the environment, in
    // case they contain any associated type projections. This process
    // can yield errors if the put in illegal associated types, like
    // `<i32 as Foo>::Bar` where `i32` does not implement `Foo`. We
    // report these errors right here; this doesn't actually feel
    // right to me, because constructing the environment feels like a
    // kind of a "idempotent" action, but I'm not sure where would be
    // a better place. In practice, we construct environments for
    // every fn once during type checking, and we'll abort if there
    // are any errors at that point, so after type checking you can be
    // sure that this will succeed without errors anyway.

3009
    let unnormalized_env = ty::ParamEnv::new(tcx.intern_predicates(&predicates),
3010
                                             traits::Reveal::UserFacing);
3011 3012 3013 3014 3015 3016 3017

    let body_id = tcx.hir.as_local_node_id(def_id).map_or(DUMMY_NODE_ID, |id| {
        tcx.hir.maybe_body_owned_by(id).map_or(id, |body| body.node_id)
    });
    let cause = traits::ObligationCause::misc(tcx.def_span(def_id), body_id);
    traits::normalize_param_env_or_error(tcx, def_id, unnormalized_env, cause)
}
A
achernyak 已提交
3018

3019
fn crate_disambiguator<'a, 'tcx>(tcx: TyCtxt<'a, 'tcx, 'tcx>,
3020
                                 crate_num: CrateNum) -> CrateDisambiguator {
3021 3022 3023 3024
    assert_eq!(crate_num, LOCAL_CRATE);
    tcx.sess.local_crate_disambiguator()
}

3025 3026 3027 3028 3029 3030
fn original_crate_name<'a, 'tcx>(tcx: TyCtxt<'a, 'tcx, 'tcx>,
                                 crate_num: CrateNum) -> Symbol {
    assert_eq!(crate_num, LOCAL_CRATE);
    tcx.crate_name.clone()
}

3031 3032 3033 3034 3035 3036 3037
fn crate_hash<'a, 'tcx>(tcx: TyCtxt<'a, 'tcx, 'tcx>,
                        crate_num: CrateNum)
                        -> Svh {
    assert_eq!(crate_num, LOCAL_CRATE);
    tcx.hir.crate_hash
}

V
varkor 已提交
3038 3039 3040 3041
fn instance_def_size_estimate<'a, 'tcx>(tcx: TyCtxt<'a, 'tcx, 'tcx>,
                                        instance_def: InstanceDef<'tcx>)
                                        -> usize {
    match instance_def {
3042 3043 3044
        InstanceDef::Item(..) |
        InstanceDef::DropGlue(..) => {
            let mir = tcx.instance_mir(instance_def);
V
varkor 已提交
3045 3046
            mir.basic_blocks().iter().map(|bb| bb.statements.len()).sum()
        },
3047
        // Estimate the size of other compiler-generated shims to be 1.
V
varkor 已提交
3048 3049 3050 3051
        _ => 1
    }
}

3052
pub fn provide(providers: &mut ty::query::Providers<'_>) {
3053
    context::provide(providers);
3054
    erase_regions::provide(providers);
3055 3056
    layout::provide(providers);
    util::provide(providers);
3057
    *providers = ty::query::Providers {
3058
        associated_item,
3059
        associated_item_def_ids,
3060
        adt_sized_constraint,
A
achernyak 已提交
3061
        def_span,
3062
        param_env,
A
achernyak 已提交
3063
        trait_of_item,
3064
        crate_disambiguator,
3065
        original_crate_name,
3066
        crate_hash,
3067
        trait_impls_of: trait_def::trait_impls_of_provider,
V
varkor 已提交
3068
        instance_def_size_estimate,
3069 3070 3071 3072
        ..*providers
    };
}

3073 3074 3075
/// A map for the local crate mapping each type to a vector of its
/// inherent impls. This is not meant to be used outside of coherence;
/// rather, you should request the vector for a specific type via
3076 3077
/// `tcx.inherent_impls(def_id)` so as to minimize your dependencies
/// (constructing this map requires touching the entire crate).
3078 3079
#[derive(Clone, Debug)]
pub struct CrateInherentImpls {
3080
    pub inherent_impls: DefIdMap<Lrc<Vec<DefId>>>,
3081
}
A
Ariel Ben-Yehuda 已提交
3082

3083
#[derive(Clone, Copy, PartialEq, Eq, PartialOrd, Ord, RustcEncodable, RustcDecodable)]
3084 3085 3086 3087 3088 3089
pub struct SymbolName {
    // FIXME: we don't rely on interning or equality here - better have
    // this be a `&'tcx str`.
    pub name: InternedString
}

3090 3091 3092 3093
impl_stable_hash_for!(struct self::SymbolName {
    name
});

3094 3095 3096
impl SymbolName {
    pub fn new(name: &str) -> SymbolName {
        SymbolName {
3097
            name: Symbol::intern(name).as_interned_str()
3098 3099
        }
    }
3100

3101 3102 3103
    pub fn as_str(&self) -> LocalInternedString {
        self.name.as_str()
    }
3104 3105 3106
}

impl fmt::Display for SymbolName {
3107
    fn fmt(&self, fmt: &mut fmt::Formatter<'_>) -> fmt::Result {
3108 3109 3110
        fmt::Display::fmt(&self.name, fmt)
    }
}
3111 3112

impl fmt::Debug for SymbolName {
3113
    fn fmt(&self, fmt: &mut fmt::Formatter<'_>) -> fmt::Result {
3114 3115 3116
        fmt::Display::fmt(&self.name, fmt)
    }
}