mod.rs 107.8 KB
Newer Older
1
// Copyright 2012-2015 The Rust Project Developers. See the COPYRIGHT
2 3 4 5 6 7 8 9 10
// file at the top-level directory of this distribution and at
// http://rust-lang.org/COPYRIGHT.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.

S
Steven Fackler 已提交
11
pub use self::Variance::*;
12
pub use self::AssociatedItemContainer::*;
S
Steven Fackler 已提交
13 14
pub use self::BorrowKind::*;
pub use self::IntVarValue::*;
15
pub use self::fold::TypeFoldable;
S
Steven Fackler 已提交
16

17
use hir::{map as hir_map, FreevarMap, TraitMap};
18
use hir::def::{Def, CtorKind, ExportMap};
19
use hir::def_id::{CrateNum, DefId, LocalDefId, CRATE_DEF_INDEX, LOCAL_CRATE};
20
use hir::map::DefPathData;
21
use rustc_data_structures::svh::Svh;
W
Wesley Wiser 已提交
22
use ich::Fingerprint;
23
use ich::StableHashingContext;
24
use infer::canonical::Canonical;
25
use middle::lang_items::{FnTraitLangItem, FnMutTraitLangItem, FnOnceTraitLangItem};
26
use middle::privacy::AccessLevels;
27
use middle::resolve_lifetime::ObjectLifetimeDefault;
28
use mir::Mir;
29
use mir::interpret::GlobalId;
J
John Kåre Alsaker 已提交
30
use mir::GeneratorLayout;
31
use session::CrateDisambiguator;
32
use traits::{self, Reveal};
33
use ty;
34
use ty::subst::{Subst, Substs};
O
Oliver Schneider 已提交
35
use ty::util::{IntTypeExt, Discr};
36
use ty::walk::TypeWalker;
37
use util::captures::Captures;
38
use util::nodemap::{NodeSet, DefIdMap, FxHashMap};
J
John Kåre Alsaker 已提交
39
use arena::SyncDroplessArena;
40
use session::DataTypeKind;
41

42
use serialize::{self, Encodable, Encoder};
W
Wesley Wiser 已提交
43
use std::cell::RefCell;
44
use std::cmp::{self, Ordering};
45
use std::fmt;
46
use std::hash::{Hash, Hasher};
47
use std::ops::Deref;
J
John Kåre Alsaker 已提交
48
use rustc_data_structures::sync::{self, Lrc, ParallelIterator, par_iter};
49
use std::slice;
50
use std::vec::IntoIter;
51
use std::{mem, ptr};
J
Jeffrey Seyfried 已提交
52
use syntax::ast::{self, DUMMY_NODE_ID, Name, Ident, NodeId};
53
use syntax::attr;
54
use syntax::ext::hygiene::Mark;
55
use syntax::symbol::{keywords, Symbol, LocalInternedString, InternedString};
56
use syntax_pos::{DUMMY_SP, Span};
57

58
use rustc_data_structures::accumulate_vec::IntoIter as AccIntoIter;
59 60
use rustc_data_structures::stable_hasher::{StableHasher, StableHasherResult,
                                           HashStable};
O
Oliver Schneider 已提交
61

62
use hir;
63

64
pub use self::sty::{Binder, CanonicalVar, DebruijnIndex, INNERMOST};
J
John Kåre Alsaker 已提交
65
pub use self::sty::{FnSig, GenSig, PolyFnSig, PolyGenSig};
66
pub use self::sty::{InferTy, ParamTy, ProjectionTy, ExistentialPredicate};
67
pub use self::sty::{ClosureSubsts, GeneratorSubsts, UpvarSubsts, TypeAndMut};
V
varkor 已提交
68
pub use self::sty::{TraitRef, TyKind, PolyTraitRef};
69
pub use self::sty::{ExistentialTraitRef, PolyExistentialTraitRef};
70
pub use self::sty::{ExistentialProjection, PolyExistentialProjection, Const};
71
pub use self::sty::{BoundRegion, EarlyBoundRegion, FreeRegion, Region};
N
Niko Matsakis 已提交
72
pub use self::sty::RegionKind;
73
pub use self::sty::{TyVid, IntVid, FloatVid, RegionVid};
74 75
pub use self::sty::BoundRegion::*;
pub use self::sty::InferTy::*;
N
Niko Matsakis 已提交
76
pub use self::sty::RegionKind::*;
V
varkor 已提交
77
pub use self::sty::TyKind::*;
78

79 80 81
pub use self::binding::BindingMode;
pub use self::binding::BindingMode::*;

82
pub use self::context::{TyCtxt, GlobalArenas, AllArenas, tls, keep_local};
83
pub use self::context::{Lift, TypeckTables};
84

85 86
pub use self::instance::{Instance, InstanceDef};

87
pub use self::trait_def::TraitDef;
88

89
pub use self::query::queries;
90

91
pub mod adjustment;
92
pub mod binding;
93
pub mod cast;
94
#[macro_use]
95
pub mod codec;
96
pub mod error;
97
mod erase_regions;
98 99
pub mod fast_reject;
pub mod fold;
A
Andrew Cann 已提交
100
pub mod inhabitedness;
101
pub mod item_path;
102
pub mod layout;
103 104
pub mod _match;
pub mod outlives;
105
pub mod query;
106
pub mod relate;
107
pub mod steal;
108
pub mod subst;
109
pub mod trait_def;
110 111
pub mod walk;
pub mod wf;
112
pub mod util;
113

114 115
mod context;
mod flags;
116
mod instance;
117 118 119
mod structural_impls;
mod sty;

120
// Data types
121

122
/// The complete set of all analyses described in this module. This is
I
Irina Popa 已提交
123
/// produced by the driver and fed to codegen and later passes.
124 125 126
///
/// NB: These contents are being migrated into queries using the
/// *on-demand* infrastructure.
J
Jeffrey Seyfried 已提交
127
#[derive(Clone)]
128
pub struct CrateAnalysis {
129
    pub access_levels: Lrc<AccessLevels>,
130
    pub name: String,
131
    pub glob_map: Option<hir::GlobMap>,
132 133
}

134 135 136 137 138
#[derive(Clone)]
pub struct Resolutions {
    pub freevars: FreevarMap,
    pub trait_map: TraitMap,
    pub maybe_unused_trait_imports: NodeSet,
139
    pub maybe_unused_extern_crates: Vec<(NodeId, Span)>,
N
Niko Matsakis 已提交
140
    pub export_map: ExportMap,
141 142
}

143
#[derive(Clone, Copy, PartialEq, Eq, Debug)]
144
pub enum AssociatedItemContainer {
N
Niko Matsakis 已提交
145 146
    TraitContainer(DefId),
    ImplContainer(DefId),
147 148
}

149
impl AssociatedItemContainer {
150 151 152 153 154 155 156 157 158
    /// Asserts that this is the def-id of an associated item declared
    /// in a trait, and returns the trait def-id.
    pub fn assert_trait(&self) -> DefId {
        match *self {
            TraitContainer(id) => id,
            _ => bug!("associated item has wrong container type: {:?}", self)
        }
    }

N
Niko Matsakis 已提交
159
    pub fn id(&self) -> DefId {
160 161 162 163 164 165 166
        match *self {
            TraitContainer(id) => id,
            ImplContainer(id) => id,
        }
    }
}

A
Aaron Turon 已提交
167 168 169 170 171 172 173 174 175 176 177
/// The "header" of an impl is everything outside the body: a Self type, a trait
/// ref (in the case of a trait impl), and a set of predicates (from the
/// bounds/where clauses).
#[derive(Clone, PartialEq, Eq, Hash, Debug)]
pub struct ImplHeader<'tcx> {
    pub impl_def_id: DefId,
    pub self_ty: Ty<'tcx>,
    pub trait_ref: Option<TraitRef<'tcx>>,
    pub predicates: Vec<Predicate<'tcx>>,
}

178
#[derive(Copy, Clone, Debug, PartialEq)]
179 180
pub struct AssociatedItem {
    pub def_id: DefId,
181
    pub ident: Ident,
182 183 184 185
    pub kind: AssociatedKind,
    pub vis: Visibility,
    pub defaultness: hir::Defaultness,
    pub container: AssociatedItemContainer,
186

187 188 189 190
    /// Whether this is a method with an explicit self
    /// as its first argument, allowing method calls.
    pub method_has_self_argument: bool,
}
191

192
#[derive(Copy, Clone, PartialEq, Eq, Debug, Hash, RustcEncodable, RustcDecodable)]
193 194 195
pub enum AssociatedKind {
    Const,
    Method,
O
Oliver Schneider 已提交
196
    Existential,
197 198
    Type
}
199

200 201 202 203 204 205
impl AssociatedItem {
    pub fn def(&self) -> Def {
        match self.kind {
            AssociatedKind::Const => Def::AssociatedConst(self.def_id),
            AssociatedKind::Method => Def::Method(self.def_id),
            AssociatedKind::Type => Def::AssociatedTy(self.def_id),
O
Oliver Schneider 已提交
206
            AssociatedKind::Existential => Def::AssociatedExistential(self.def_id),
207 208
        }
    }
A
Andrew Cann 已提交
209 210 211 212 213

    /// Tests whether the associated item admits a non-trivial implementation
    /// for !
    pub fn relevant_for_never<'tcx>(&self) -> bool {
        match self.kind {
O
Oliver Schneider 已提交
214 215
            AssociatedKind::Existential |
            AssociatedKind::Const |
A
Andrew Cann 已提交
216
            AssociatedKind::Type => true,
A
Andrew Cann 已提交
217
            // FIXME(canndrew): Be more thorough here, check if any argument is uninhabited.
A
Andrew Cann 已提交
218 219 220
            AssociatedKind::Method => !self.method_has_self_argument,
        }
    }
221 222 223 224 225 226 227 228

    pub fn signature<'a, 'tcx>(&self, tcx: &TyCtxt<'a, 'tcx, 'tcx>) -> String {
        match self.kind {
            ty::AssociatedKind::Method => {
                // We skip the binder here because the binder would deanonymize all
                // late-bound regions, and we don't want method signatures to show up
                // `as for<'r> fn(&'r MyType)`.  Pretty-printing handles late-bound
                // regions just fine, showing `fn(&MyType)`.
L
ljedrz 已提交
229
                tcx.fn_sig(self.def_id).skip_binder().to_string()
230
            }
231
            ty::AssociatedKind::Type => format!("type {};", self.ident),
O
Oliver Schneider 已提交
232
            ty::AssociatedKind::Existential => format!("existential type {};", self.ident),
233
            ty::AssociatedKind::Const => {
234
                format!("const {}: {:?};", self.ident, tcx.type_of(self.def_id))
235 236 237
            }
        }
    }
238 239
}

240
#[derive(Clone, Debug, PartialEq, Eq, Copy, RustcEncodable, RustcDecodable)]
241 242 243 244
pub enum Visibility {
    /// Visible everywhere (including in other crates).
    Public,
    /// Visible only in the given crate-local module.
245
    Restricted(DefId),
246
    /// Not visible anywhere in the local crate. This is the visibility of private external items.
247
    Invisible,
248 249
}

250 251
pub trait DefIdTree: Copy {
    fn parent(self, id: DefId) -> Option<DefId>;
A
Andrew Cann 已提交
252 253 254 255 256 257 258 259 260 261 262 263 264 265

    fn is_descendant_of(self, mut descendant: DefId, ancestor: DefId) -> bool {
        if descendant.krate != ancestor.krate {
            return false;
        }

        while descendant != ancestor {
            match self.parent(descendant) {
                Some(parent) => descendant = parent,
                None => return false,
            }
        }
        true
    }
266 267
}

268 269 270
impl<'a, 'gcx, 'tcx> DefIdTree for TyCtxt<'a, 'gcx, 'tcx> {
    fn parent(self, id: DefId) -> Option<DefId> {
        self.def_key(id).parent.map(|index| DefId { index: index, ..id })
271 272 273
    }
}

274
impl Visibility {
275
    pub fn from_hir(visibility: &hir::Visibility, id: NodeId, tcx: TyCtxt) -> Self {
276
        match visibility.node {
277 278 279
            hir::VisibilityKind::Public => Visibility::Public,
            hir::VisibilityKind::Crate(_) => Visibility::Restricted(DefId::local(CRATE_DEF_INDEX)),
            hir::VisibilityKind::Restricted { ref path, .. } => match path.def {
280 281
                // If there is no resolution, `resolve` will have already reported an error, so
                // assume that the visibility is public to avoid reporting more privacy errors.
282
                Def::Err => Visibility::Public,
283
                def => Visibility::Restricted(def.def_id()),
284
            },
285
            hir::VisibilityKind::Inherited => {
J
Jeffrey Seyfried 已提交
286
                Visibility::Restricted(tcx.hir.get_module_parent(id))
287
            }
288 289
        }
    }
290 291

    /// Returns true if an item with this visibility is accessible from the given block.
A
Andrew Cann 已提交
292
    pub fn is_accessible_from<T: DefIdTree>(self, module: DefId, tree: T) -> bool {
293 294 295 296
        let restriction = match self {
            // Public items are visible everywhere.
            Visibility::Public => return true,
            // Private items from other crates are visible nowhere.
297
            Visibility::Invisible => return false,
298
            // Restricted items are visible in an arbitrary local module.
299
            Visibility::Restricted(other) if other.krate != module.krate => return false,
300 301 302
            Visibility::Restricted(module) => module,
        };

A
Andrew Cann 已提交
303
        tree.is_descendant_of(module, restriction)
304
    }
305 306

    /// Returns true if this visibility is at least as accessible as the given visibility
307
    pub fn is_at_least<T: DefIdTree>(self, vis: Visibility, tree: T) -> bool {
308 309
        let vis_restriction = match vis {
            Visibility::Public => return self == Visibility::Public,
310
            Visibility::Invisible => return true,
311 312 313
            Visibility::Restricted(module) => module,
        };

314
        self.is_accessible_from(vis_restriction, tree)
315
    }
316 317 318 319 320 321 322 323 324

    // Returns true if this item is visible anywhere in the local crate.
    pub fn is_visible_locally(self) -> bool {
        match self {
            Visibility::Public => true,
            Visibility::Restricted(def_id) => def_id.is_local(),
            Visibility::Invisible => false,
        }
    }
325 326
}

327
#[derive(Clone, PartialEq, RustcDecodable, RustcEncodable, Copy)]
328
pub enum Variance {
329 330 331 332
    Covariant,      // T<A> <: T<B> iff A <: B -- e.g., function return type
    Invariant,      // T<A> <: T<B> iff B == A -- e.g., type of mutable cell
    Contravariant,  // T<A> <: T<B> iff B <: A -- e.g., function param type
    Bivariant,      // T<A> <: T<B>            -- e.g., unused type parameter
333
}
334

335 336 337 338
/// The crate variances map is computed during typeck and contains the
/// variance of every item in the local crate. You should not use it
/// directly, because to do so will make your pass dependent on the
/// HIR of every item in the local crate. Instead, use
339
/// `tcx.variances_of()` to get the variance for a *particular*
340 341 342 343 344
/// item.
pub struct CrateVariancesMap {
    /// For each item with generics, maps to a vector of the variance
    /// of its generics.  If an item has no generics, it will have no
    /// entry.
345
    pub variances: FxHashMap<DefId, Lrc<Vec<ty::Variance>>>,
346 347

    /// An empty vector, useful for cloning.
348
    pub empty_variance: Lrc<Vec<ty::Variance>>,
349 350
}

351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410
impl Variance {
    /// `a.xform(b)` combines the variance of a context with the
    /// variance of a type with the following meaning.  If we are in a
    /// context with variance `a`, and we encounter a type argument in
    /// a position with variance `b`, then `a.xform(b)` is the new
    /// variance with which the argument appears.
    ///
    /// Example 1:
    ///
    ///     *mut Vec<i32>
    ///
    /// Here, the "ambient" variance starts as covariant. `*mut T` is
    /// invariant with respect to `T`, so the variance in which the
    /// `Vec<i32>` appears is `Covariant.xform(Invariant)`, which
    /// yields `Invariant`. Now, the type `Vec<T>` is covariant with
    /// respect to its type argument `T`, and hence the variance of
    /// the `i32` here is `Invariant.xform(Covariant)`, which results
    /// (again) in `Invariant`.
    ///
    /// Example 2:
    ///
    ///     fn(*const Vec<i32>, *mut Vec<i32)
    ///
    /// The ambient variance is covariant. A `fn` type is
    /// contravariant with respect to its parameters, so the variance
    /// within which both pointer types appear is
    /// `Covariant.xform(Contravariant)`, or `Contravariant`.  `*const
    /// T` is covariant with respect to `T`, so the variance within
    /// which the first `Vec<i32>` appears is
    /// `Contravariant.xform(Covariant)` or `Contravariant`.  The same
    /// is true for its `i32` argument. In the `*mut T` case, the
    /// variance of `Vec<i32>` is `Contravariant.xform(Invariant)`,
    /// and hence the outermost type is `Invariant` with respect to
    /// `Vec<i32>` (and its `i32` argument).
    ///
    /// Source: Figure 1 of "Taming the Wildcards:
    /// Combining Definition- and Use-Site Variance" published in PLDI'11.
    pub fn xform(self, v: ty::Variance) -> ty::Variance {
        match (self, v) {
            // Figure 1, column 1.
            (ty::Covariant, ty::Covariant) => ty::Covariant,
            (ty::Covariant, ty::Contravariant) => ty::Contravariant,
            (ty::Covariant, ty::Invariant) => ty::Invariant,
            (ty::Covariant, ty::Bivariant) => ty::Bivariant,

            // Figure 1, column 2.
            (ty::Contravariant, ty::Covariant) => ty::Contravariant,
            (ty::Contravariant, ty::Contravariant) => ty::Covariant,
            (ty::Contravariant, ty::Invariant) => ty::Invariant,
            (ty::Contravariant, ty::Bivariant) => ty::Bivariant,

            // Figure 1, column 3.
            (ty::Invariant, _) => ty::Invariant,

            // Figure 1, column 4.
            (ty::Bivariant, _) => ty::Bivariant,
        }
    }
}

411 412 413
// Contains information needed to resolve types and (in the future) look up
// the types of AST nodes.
#[derive(Copy, Clone, PartialEq, Eq, Hash)]
414
pub struct CReaderCacheKey {
415 416 417 418
    pub cnum: CrateNum,
    pub pos: usize,
}

419 420 421 422
// Flags that we track on types. These flags are propagated upwards
// through the type during type construction, so that we can quickly
// check whether the type has various kinds of types in it without
// recursing over the type itself.
423
bitflags! {
424 425 426 427 428 429
    pub struct TypeFlags: u32 {
        const HAS_PARAMS         = 1 << 0;
        const HAS_SELF           = 1 << 1;
        const HAS_TY_INFER       = 1 << 2;
        const HAS_RE_INFER       = 1 << 3;
        const HAS_RE_SKOL        = 1 << 4;
430 431 432 433 434

        /// Does this have any `ReEarlyBound` regions? Used to
        /// determine whether substitition is required, since those
        /// represent regions that are bound in a `ty::Generics` and
        /// hence may be substituted.
435
        const HAS_RE_EARLY_BOUND = 1 << 5;
436 437 438

        /// Does this have any region that "appears free" in the type?
        /// Basically anything but `ReLateBound` and `ReErased`.
439
        const HAS_FREE_REGIONS   = 1 << 6;
440 441

        /// Is an error type reachable?
442 443
        const HAS_TY_ERR         = 1 << 7;
        const HAS_PROJECTION     = 1 << 8;
J
John Kåre Alsaker 已提交
444 445

        // FIXME: Rename this to the actual property since it's used for generators too
446
        const HAS_TY_CLOSURE     = 1 << 9;
447 448 449

        // true if there are "names" of types and regions and so forth
        // that are local to a particular fn
450
        const HAS_FREE_LOCAL_NAMES    = 1 << 10;
451

452
        // Present if the type belongs in a local type context.
V
varkor 已提交
453
        // Only set for Infer other than Fresh.
454
        const KEEP_IN_LOCAL_TCX  = 1 << 11;
455

456 457
        // Is there a projection that does not involve a bound region?
        // Currently we can't normalize projections w/ bound regions.
458
        const HAS_NORMALIZABLE_PROJECTION = 1 << 12;
459

460 461 462 463
        // Set if this includes a "canonical" type or region var --
        // ought to be true only for the results of canonicalization.
        const HAS_CANONICAL_VARS = 1 << 13;

464 465 466 467
        /// Does this have any `ReLateBound` regions? Used to check
        /// if a global bound is safe to evaluate.
        const HAS_RE_LATE_BOUND = 1 << 14;

468 469
        const NEEDS_SUBST        = TypeFlags::HAS_PARAMS.bits |
                                   TypeFlags::HAS_SELF.bits |
470
                                   TypeFlags::HAS_RE_EARLY_BOUND.bits;
471 472

        // Flags representing the nominal content of a type,
473 474
        // computed by FlagsComputation. If you add a new nominal
        // flag, it should be added here too.
475 476 477 478
        const NOMINAL_FLAGS     = TypeFlags::HAS_PARAMS.bits |
                                  TypeFlags::HAS_SELF.bits |
                                  TypeFlags::HAS_TY_INFER.bits |
                                  TypeFlags::HAS_RE_INFER.bits |
479
                                  TypeFlags::HAS_RE_SKOL.bits |
480 481
                                  TypeFlags::HAS_RE_EARLY_BOUND.bits |
                                  TypeFlags::HAS_FREE_REGIONS.bits |
482
                                  TypeFlags::HAS_TY_ERR.bits |
483
                                  TypeFlags::HAS_PROJECTION.bits |
484
                                  TypeFlags::HAS_TY_CLOSURE.bits |
485
                                  TypeFlags::HAS_FREE_LOCAL_NAMES.bits |
486
                                  TypeFlags::KEEP_IN_LOCAL_TCX.bits |
487 488
                                  TypeFlags::HAS_CANONICAL_VARS.bits |
                                  TypeFlags::HAS_RE_LATE_BOUND.bits;
489
    }
490 491
}

492
pub struct TyS<'tcx> {
V
varkor 已提交
493
    pub sty: TyKind<'tcx>,
494
    pub flags: TypeFlags,
495

496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513
    /// This is a kind of confusing thing: it stores the smallest
    /// binder such that
    ///
    /// (a) the binder itself captures nothing but
    /// (b) all the late-bound things within the type are captured
    ///     by some sub-binder.
    ///
    /// So, for a type without any late-bound things, like `u32`, this
    /// will be INNERMOST, because that is the innermost binder that
    /// captures nothing. But for a type `&'D u32`, where `'D` is a
    /// late-bound region with debruijn index D, this would be D+1 --
    /// the binder itself does not capture D, but D is captured by an
    /// inner binder.
    ///
    /// We call this concept an "exclusive" binder D (because all
    /// debruijn indices within the type are contained within `0..D`
    /// (exclusive)).
    outer_exclusive_binder: ty::DebruijnIndex,
514 515
}

516 517 518 519 520 521 522 523 524 525 526 527
impl<'tcx> Ord for TyS<'tcx> {
    fn cmp(&self, other: &TyS<'tcx>) -> Ordering {
        self.sty.cmp(&other.sty)
    }
}

impl<'tcx> PartialOrd for TyS<'tcx> {
    fn partial_cmp(&self, other: &TyS<'tcx>) -> Option<Ordering> {
        Some(self.sty.cmp(&other.sty))
    }
}

528
impl<'tcx> PartialEq for TyS<'tcx> {
529
    #[inline]
530
    fn eq(&self, other: &TyS<'tcx>) -> bool {
531
        ptr::eq(self, other)
532 533
    }
}
534
impl<'tcx> Eq for TyS<'tcx> {}
535

A
Alex Crichton 已提交
536 537
impl<'tcx> Hash for TyS<'tcx> {
    fn hash<H: Hasher>(&self, s: &mut H) {
N
Nick Cameron 已提交
538
        (self as *const TyS).hash(s)
A
Alex Crichton 已提交
539 540
    }
}
541

G
Guillaume Gomez 已提交
542 543 544
impl<'tcx> TyS<'tcx> {
    pub fn is_primitive_ty(&self) -> bool {
        match self.sty {
V
varkor 已提交
545 546 547 548 549
            TyKind::TyBool |
                TyKind::TyChar |
                TyKind::TyInt(_) |
                TyKind::TyUint(_) |
                TyKind::TyFloat(_) |
V
varkor 已提交
550 551 552 553 554
                TyKind::Infer(InferTy::IntVar(_)) |
                TyKind::Infer(InferTy::FloatVar(_)) |
                TyKind::Infer(InferTy::FreshIntTy(_)) |
                TyKind::Infer(InferTy::FreshFloatTy(_)) => true,
            TyKind::Ref(_, x, _) => x.is_primitive_ty(),
G
Guillaume Gomez 已提交
555 556 557
            _ => false,
        }
    }
558 559 560

    pub fn is_suggestable(&self) -> bool {
        match self.sty {
V
varkor 已提交
561 562 563 564 565 566 567
            TyKind::Anon(..) |
            TyKind::FnDef(..) |
            TyKind::FnPtr(..) |
            TyKind::Dynamic(..) |
            TyKind::Closure(..) |
            TyKind::Infer(..) |
            TyKind::Projection(..) => false,
568 569 570
            _ => true,
        }
    }
G
Guillaume Gomez 已提交
571 572
}

573
impl<'a, 'gcx> HashStable<StableHashingContext<'a>> for ty::TyS<'gcx> {
574
    fn hash_stable<W: StableHasherResult>(&self,
575
                                          hcx: &mut StableHashingContext<'a>,
576 577 578 579 580 581 582
                                          hasher: &mut StableHasher<W>) {
        let ty::TyS {
            ref sty,

            // The other fields just provide fast access to information that is
            // also contained in `sty`, so no need to hash them.
            flags: _,
583 584

            outer_exclusive_binder: _,
585 586 587 588 589 590
        } = *self;

        sty.hash_stable(hcx, hasher);
    }
}

591
pub type Ty<'tcx> = &'tcx TyS<'tcx>;
592

593 594
impl<'tcx> serialize::UseSpecializedEncodable for Ty<'tcx> {}
impl<'tcx> serialize::UseSpecializedDecodable for Ty<'tcx> {}
595

596 597
pub type CanonicalTy<'gcx> = Canonical<'gcx, Ty<'gcx>>;

J
John Kåre Alsaker 已提交
598
extern {
V
varkor 已提交
599 600
    /// A dummy type used to force List to by unsized without requiring fat pointers
    type OpaqueListContents;
J
John Kåre Alsaker 已提交
601 602
}

A
Adam Perry 已提交
603
/// A wrapper for slices with the additional invariant
604 605
/// that the slice is interned and no other slice with
/// the same contents can exist in the same context.
J
John Kåre Alsaker 已提交
606
/// This means we can use pointer for both
607
/// equality comparisons and hashing.
V
varkor 已提交
608
/// Note: `Slice` was already taken by the `Ty`.
J
John Kåre Alsaker 已提交
609
#[repr(C)]
V
varkor 已提交
610
pub struct List<T> {
J
John Kåre Alsaker 已提交
611 612
    len: usize,
    data: [T; 0],
V
varkor 已提交
613
    opaque: OpaqueListContents,
J
John Kåre Alsaker 已提交
614 615
}

V
varkor 已提交
616
unsafe impl<T: Sync> Sync for List<T> {}
J
John Kåre Alsaker 已提交
617

V
varkor 已提交
618
impl<T: Copy> List<T> {
J
John Kåre Alsaker 已提交
619
    #[inline]
V
varkor 已提交
620
    fn from_arena<'tcx>(arena: &'tcx SyncDroplessArena, slice: &[T]) -> &'tcx List<T> {
J
John Kåre Alsaker 已提交
621 622 623 624
        assert!(!mem::needs_drop::<T>());
        assert!(mem::size_of::<T>() != 0);
        assert!(slice.len() != 0);

J
John Kåre Alsaker 已提交
625 626 627 628 629 630
        // Align up the size of the len (usize) field
        let align = mem::align_of::<T>();
        let align_mask = align - 1;
        let offset = mem::size_of::<usize>();
        let offset = (offset + align_mask) & !align_mask;

J
John Kåre Alsaker 已提交
631 632
        let size = offset + slice.len() * mem::size_of::<T>();

J
John Kåre Alsaker 已提交
633
        let mem = arena.alloc_raw(
J
John Kåre Alsaker 已提交
634
            size,
J
John Kåre Alsaker 已提交
635
            cmp::max(mem::align_of::<T>(), mem::align_of::<usize>()));
J
John Kåre Alsaker 已提交
636
        unsafe {
V
varkor 已提交
637
            let result = &mut *(mem.as_mut_ptr() as *mut List<T>);
J
John Kåre Alsaker 已提交
638
            // Write the length
J
John Kåre Alsaker 已提交
639
            result.len = slice.len();
J
John Kåre Alsaker 已提交
640 641

            // Write the elements
J
John Kåre Alsaker 已提交
642
            let arena_slice = slice::from_raw_parts_mut(result.data.as_mut_ptr(), result.len);
J
John Kåre Alsaker 已提交
643 644
            arena_slice.copy_from_slice(slice);

J
John Kåre Alsaker 已提交
645
            result
J
John Kåre Alsaker 已提交
646 647 648 649
        }
    }
}

V
varkor 已提交
650
impl<T: fmt::Debug> fmt::Debug for List<T> {
J
John Kåre Alsaker 已提交
651 652 653 654 655
    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
        (**self).fmt(f)
    }
}

V
varkor 已提交
656
impl<T: Encodable> Encodable for List<T> {
J
John Kåre Alsaker 已提交
657 658 659 660 661
    #[inline]
    fn encode<S: Encoder>(&self, s: &mut S) -> Result<(), S::Error> {
        (**self).encode(s)
    }
}
662

V
varkor 已提交
663 664
impl<T> Ord for List<T> where T: Ord {
    fn cmp(&self, other: &List<T>) -> Ordering {
665
        if self == other { Ordering::Equal } else {
J
John Kåre Alsaker 已提交
666
            <[T] as Ord>::cmp(&**self, &**other)
667 668 669 670
        }
    }
}

V
varkor 已提交
671 672
impl<T> PartialOrd for List<T> where T: PartialOrd {
    fn partial_cmp(&self, other: &List<T>) -> Option<Ordering> {
673
        if self == other { Some(Ordering::Equal) } else {
J
John Kåre Alsaker 已提交
674
            <[T] as PartialOrd>::partial_cmp(&**self, &**other)
675 676 677 678
        }
    }
}

V
varkor 已提交
679
impl<T: PartialEq> PartialEq for List<T> {
680
    #[inline]
V
varkor 已提交
681
    fn eq(&self, other: &List<T>) -> bool {
682
        ptr::eq(self, other)
683 684
    }
}
V
varkor 已提交
685
impl<T: Eq> Eq for List<T> {}
686

V
varkor 已提交
687
impl<T> Hash for List<T> {
J
John Kåre Alsaker 已提交
688
    #[inline]
689
    fn hash<H: Hasher>(&self, s: &mut H) {
V
varkor 已提交
690
        (self as *const List<T>).hash(s)
691 692 693
    }
}

V
varkor 已提交
694
impl<T> Deref for List<T> {
695
    type Target = [T];
J
John Kåre Alsaker 已提交
696
    #[inline(always)]
697
    fn deref(&self) -> &[T] {
J
John Kåre Alsaker 已提交
698
        unsafe {
J
John Kåre Alsaker 已提交
699
            slice::from_raw_parts(self.data.as_ptr(), self.len)
J
John Kåre Alsaker 已提交
700
        }
701 702 703
    }
}

V
varkor 已提交
704
impl<'a, T> IntoIterator for &'a List<T> {
705 706
    type Item = &'a T;
    type IntoIter = <&'a [T] as IntoIterator>::IntoIter;
J
John Kåre Alsaker 已提交
707
    #[inline(always)]
708 709 710 711 712
    fn into_iter(self) -> Self::IntoIter {
        self[..].iter()
    }
}

V
varkor 已提交
713
impl<'tcx> serialize::UseSpecializedDecodable for &'tcx List<Ty<'tcx>> {}
714

V
varkor 已提交
715
impl<T> List<T> {
J
John Kåre Alsaker 已提交
716
    #[inline(always)]
V
varkor 已提交
717
    pub fn empty<'a>() -> &'a List<T> {
J
John Kåre Alsaker 已提交
718 719 720 721
        #[repr(align(64), C)]
        struct EmptySlice([u8; 64]);
        static EMPTY_SLICE: EmptySlice = EmptySlice([0; 64]);
        assert!(mem::align_of::<T>() <= 64);
722
        unsafe {
V
varkor 已提交
723
            &*(&EMPTY_SLICE as *const _ as *const List<T>)
724 725 726 727
        }
    }
}

S
Steve Klabnik 已提交
728 729 730
/// Upvars do not get their own node-id. Instead, we use the pair of
/// the original var id (that is, the root variable that is referenced
/// by the upvar) and the id of the closure expression.
731
#[derive(Clone, Copy, PartialEq, Eq, Hash, RustcEncodable, RustcDecodable)]
732
pub struct UpvarId {
733
    pub var_id: hir::HirId,
734
    pub closure_expr_id: LocalDefId,
735 736
}

J
Jorge Aparicio 已提交
737
#[derive(Clone, PartialEq, Eq, Hash, Debug, RustcEncodable, RustcDecodable, Copy)]
738 739 740 741 742 743
pub enum BorrowKind {
    /// Data must be immutable and is aliasable.
    ImmBorrow,

    /// Data must be immutable but not aliasable.  This kind of borrow
    /// cannot currently be expressed by the user and is used only in
K
king6cong 已提交
744
    /// implicit closure bindings. It is needed when the closure
745 746
    /// is borrowing or mutating a mutable referent, e.g.:
    ///
747
    ///    let x: &mut isize = ...;
748 749 750 751 752
    ///    let y = || *x += 5;
    ///
    /// If we were to try to translate this closure into a more explicit
    /// form, we'd encounter an error with the code as written:
    ///
753 754
    ///    struct Env { x: & &mut isize }
    ///    let x: &mut isize = ...;
755 756 757 758 759 760 761
    ///    let y = (&mut Env { &x }, fn_ptr);  // Closure is pair of env and fn
    ///    fn fn_ptr(env: &mut Env) { **env.x += 5; }
    ///
    /// This is then illegal because you cannot mutate a `&mut` found
    /// in an aliasable location. To solve, you'd have to translate with
    /// an `&mut` borrow:
    ///
762 763
    ///    struct Env { x: & &mut isize }
    ///    let x: &mut isize = ...;
764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782
    ///    let y = (&mut Env { &mut x }, fn_ptr); // changed from &x to &mut x
    ///    fn fn_ptr(env: &mut Env) { **env.x += 5; }
    ///
    /// Now the assignment to `**env.x` is legal, but creating a
    /// mutable pointer to `x` is not because `x` is not mutable. We
    /// could fix this by declaring `x` as `let mut x`. This is ok in
    /// user code, if awkward, but extra weird for closures, since the
    /// borrow is hidden.
    ///
    /// So we introduce a "unique imm" borrow -- the referent is
    /// immutable, but not aliasable. This solves the problem. For
    /// simplicity, we don't give users the way to express this
    /// borrow, it's just used when translating closures.
    UniqueImmBorrow,

    /// Data is mutable and not aliasable.
    MutBorrow
}

783 784
/// Information describing the capture of an upvar. This is computed
/// during `typeck`, specifically by `regionck`.
785
#[derive(PartialEq, Clone, Debug, Copy, RustcEncodable, RustcDecodable)]
786
pub enum UpvarCapture<'tcx> {
787 788 789 790 791 792
    /// Upvar is captured by value. This is always true when the
    /// closure is labeled `move`, but can also be true in other cases
    /// depending on inference.
    ByValue,

    /// Upvar is captured by reference.
793
    ByRef(UpvarBorrow<'tcx>),
794 795
}

796
#[derive(PartialEq, Clone, Copy, RustcEncodable, RustcDecodable)]
797
pub struct UpvarBorrow<'tcx> {
798 799 800
    /// The kind of borrow: by-ref upvars have access to shared
    /// immutable borrows, which are not part of the normal language
    /// syntax.
801
    pub kind: BorrowKind,
802 803

    /// Region of the resulting reference.
N
Niko Matsakis 已提交
804
    pub region: ty::Region<'tcx>,
805 806
}

807
pub type UpvarCaptureMap<'tcx> = FxHashMap<UpvarId, UpvarCapture<'tcx>>;
808

809 810
#[derive(Copy, Clone)]
pub struct ClosureUpvar<'tcx> {
811
    pub def: Def,
812 813 814 815
    pub span: Span,
    pub ty: Ty<'tcx>,
}

816
#[derive(Clone, Copy, PartialEq, Eq)]
817
pub enum IntVarValue {
818 819
    IntType(ast::IntTy),
    UintType(ast::UintTy),
820 821
}

822 823 824
#[derive(Clone, Copy, PartialEq, Eq)]
pub struct FloatVarValue(pub ast::FloatTy);

825
impl ty::EarlyBoundRegion {
826
    pub fn to_bound_region(&self) -> ty::BoundRegion {
827
        ty::BoundRegion::BrNamed(self.def_id, self.name)
828
    }
829 830 831 832 833 834

    /// Does this early bound region have a name? Early bound regions normally
    /// always have names except when using anonymous lifetimes (`'_`).
    pub fn has_name(&self) -> bool {
        self.name != keywords::UnderscoreLifetime.name().as_interned_str()
    }
835 836
}

V
varkor 已提交
837
#[derive(Clone, Debug, RustcEncodable, RustcDecodable)]
838
pub enum GenericParamDefKind {
V
varkor 已提交
839
    Lifetime,
840 841 842 843 844
    Type {
        has_default: bool,
        object_lifetime_default: ObjectLifetimeDefault,
        synthetic: Option<hir::SyntheticTyParamKind>,
    }
V
varkor 已提交
845 846
}

847 848 849 850 851
#[derive(Clone, RustcEncodable, RustcDecodable)]
pub struct GenericParamDef {
    pub name: InternedString,
    pub def_id: DefId,
    pub index: u32,
V
varkor 已提交
852 853 854 855 856 857

    /// `pure_wrt_drop`, set by the (unsafe) `#[may_dangle]` attribute
    /// on generic parameter `'a`/`T`, asserts data behind the parameter
    /// `'a`/`T` won't be accessed during the parent type's `Drop` impl.
    pub pure_wrt_drop: bool,

858 859 860
    pub kind: GenericParamDefKind,
}

V
varkor 已提交
861
impl GenericParamDef {
862 863
    pub fn to_early_bound_region_data(&self) -> ty::EarlyBoundRegion {
        match self.kind {
V
varkor 已提交
864
            GenericParamDefKind::Lifetime => {
865 866 867 868 869 870 871 872 873 874 875 876
                ty::EarlyBoundRegion {
                    def_id: self.def_id,
                    index: self.index,
                    name: self.name,
                }
            }
            _ => bug!("cannot convert a non-lifetime parameter def to an early bound region")
        }
    }

    pub fn to_bound_region(&self) -> ty::BoundRegion {
        match self.kind {
V
varkor 已提交
877
            GenericParamDefKind::Lifetime => {
878 879 880
                self.to_early_bound_region_data().to_bound_region()
            }
            _ => bug!("cannot convert a non-lifetime parameter def to an early bound region")
V
varkor 已提交
881 882 883 884
        }
    }
}

V
varkor 已提交
885
#[derive(Default)]
886 887 888 889 890
pub struct GenericParamCount {
    pub lifetimes: usize,
    pub types: usize,
}

891
/// Information about the formal type/lifetime parameters associated
892
/// with an item or method. Analogous to hir::Generics.
A
Ariel Ben-Yehuda 已提交
893
///
894 895
/// The ordering of parameters is the same as in Subst (excluding child generics):
/// Self (optionally), Lifetime params..., Type params...
896
#[derive(Clone, Debug, RustcEncodable, RustcDecodable)]
897
pub struct Generics {
898
    pub parent: Option<DefId>,
V
varkor 已提交
899
    pub parent_count: usize,
V
varkor 已提交
900
    pub params: Vec<GenericParamDef>,
901

V
varkor 已提交
902
    /// Reverse map to the `index` field of each `GenericParamDef`
903
    pub param_def_id_to_index: FxHashMap<DefId, u32>,
904

905
    pub has_self: bool,
906
    pub has_late_bound_regions: Option<Span>,
907 908
}

909
impl<'a, 'gcx, 'tcx> Generics {
910
    pub fn count(&self) -> usize {
V
varkor 已提交
911
        self.parent_count + self.params.len()
912
    }
913

V
varkor 已提交
914
    pub fn own_counts(&self) -> GenericParamCount {
915 916 917
        // We could cache this as a property of `GenericParamCount`, but
        // the aim is to refactor this away entirely eventually and the
        // presence of this method will be a constant reminder.
V
varkor 已提交
918
        let mut own_counts: GenericParamCount = Default::default();
919

V
varkor 已提交
920
        for param in &self.params {
921
            match param.kind {
V
varkor 已提交
922
                GenericParamDefKind::Lifetime => own_counts.lifetimes += 1,
923
                GenericParamDefKind::Type { .. } => own_counts.types += 1,
924 925 926
            };
        }

V
varkor 已提交
927
        own_counts
928 929
    }

930
    pub fn requires_monomorphization(&self, tcx: TyCtxt<'a, 'gcx, 'tcx>) -> bool {
V
varkor 已提交
931
        for param in &self.params {
932
            match param.kind {
V
varkor 已提交
933
                GenericParamDefKind::Type { .. } => return true,
V
varkor 已提交
934
                GenericParamDefKind::Lifetime => {}
V
varkor 已提交
935
            }
V
varkor 已提交
936 937 938
        }
        if let Some(parent_def_id) = self.parent {
            let parent = tcx.generics_of(parent_def_id);
939
            parent.requires_monomorphization(tcx)
V
varkor 已提交
940 941 942
        } else {
            false
        }
V
varkor 已提交
943 944
    }

945 946 947
    pub fn region_param(&'tcx self,
                        param: &EarlyBoundRegion,
                        tcx: TyCtxt<'a, 'gcx, 'tcx>)
948
                        -> &'tcx GenericParamDef
949
    {
V
varkor 已提交
950
        if let Some(index) = param.index.checked_sub(self.parent_count as u32) {
V
varkor 已提交
951
            let param = &self.params[index as usize];
952
            match param.kind {
V
varkor 已提交
953
                ty::GenericParamDefKind::Lifetime => param,
V
varkor 已提交
954
                _ => bug!("expected lifetime parameter, but found another generic parameter")
V
varkor 已提交
955
            }
956 957 958 959
        } else {
            tcx.generics_of(self.parent.expect("parent_count>0 but no parent?"))
                .region_param(param, tcx)
        }
960 961
    }

962
    /// Returns the `GenericParamDef` associated with this `ParamTy`.
963 964
    pub fn type_param(&'tcx self,
                      param: &ParamTy,
A
Ariel Ben-Yehuda 已提交
965
                      tcx: TyCtxt<'a, 'gcx, 'tcx>)
966
                      -> &'tcx GenericParamDef {
967
        if let Some(index) = param.idx.checked_sub(self.parent_count as u32) {
V
varkor 已提交
968 969
            let param = &self.params[index as usize];
            match param.kind {
970
                ty::GenericParamDefKind::Type {..} => param,
V
varkor 已提交
971 972
                _ => bug!("expected type parameter, but found another generic parameter")
            }
973 974 975 976
        } else {
            tcx.generics_of(self.parent.expect("parent_count>0 but no parent?"))
                .type_param(param, tcx)
        }
977
    }
978 979
}

980
/// Bounds on generics.
981
#[derive(Clone, Default)]
982
pub struct GenericPredicates<'tcx> {
983
    pub parent: Option<DefId>,
984
    pub predicates: Vec<Predicate<'tcx>>,
985 986
}

987 988 989
impl<'tcx> serialize::UseSpecializedEncodable for GenericPredicates<'tcx> {}
impl<'tcx> serialize::UseSpecializedDecodable for GenericPredicates<'tcx> {}

990 991
impl<'a, 'gcx, 'tcx> GenericPredicates<'tcx> {
    pub fn instantiate(&self, tcx: TyCtxt<'a, 'gcx, 'tcx>, substs: &Substs<'tcx>)
992
                       -> InstantiatedPredicates<'tcx> {
993 994 995 996 997 998
        let mut instantiated = InstantiatedPredicates::empty();
        self.instantiate_into(tcx, &mut instantiated, substs);
        instantiated
    }
    pub fn instantiate_own(&self, tcx: TyCtxt<'a, 'gcx, 'tcx>, substs: &Substs<'tcx>)
                           -> InstantiatedPredicates<'tcx> {
999
        InstantiatedPredicates {
1000 1001 1002 1003 1004 1005 1006 1007
            predicates: self.predicates.subst(tcx, substs)
        }
    }

    fn instantiate_into(&self, tcx: TyCtxt<'a, 'gcx, 'tcx>,
                        instantiated: &mut InstantiatedPredicates<'tcx>,
                        substs: &Substs<'tcx>) {
        if let Some(def_id) = self.parent {
1008
            tcx.predicates_of(def_id).instantiate_into(tcx, instantiated, substs);
1009
        }
1010
        instantiated.predicates.extend(self.predicates.iter().map(|p| p.subst(tcx, substs)))
1011
    }
1012

1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027
    pub fn instantiate_identity(&self, tcx: TyCtxt<'a, 'gcx, 'tcx>)
                                -> InstantiatedPredicates<'tcx> {
        let mut instantiated = InstantiatedPredicates::empty();
        self.instantiate_identity_into(tcx, &mut instantiated);
        instantiated
    }

    fn instantiate_identity_into(&self, tcx: TyCtxt<'a, 'gcx, 'tcx>,
                                 instantiated: &mut InstantiatedPredicates<'tcx>) {
        if let Some(def_id) = self.parent {
            tcx.predicates_of(def_id).instantiate_identity_into(tcx, instantiated);
        }
        instantiated.predicates.extend(&self.predicates)
    }

1028
    pub fn instantiate_supertrait(&self, tcx: TyCtxt<'a, 'gcx, 'tcx>,
1029 1030 1031
                                  poly_trait_ref: &ty::PolyTraitRef<'tcx>)
                                  -> InstantiatedPredicates<'tcx>
    {
1032
        assert_eq!(self.parent, None);
1033
        InstantiatedPredicates {
1034
            predicates: self.predicates.iter().map(|pred| {
1035
                pred.subst_supertrait(tcx, poly_trait_ref)
1036
            }).collect()
1037 1038
        }
    }
1039 1040
}

1041
#[derive(Clone, Copy, PartialEq, Eq, Hash, RustcEncodable, RustcDecodable)]
1042
pub enum Predicate<'tcx> {
N
Niko Matsakis 已提交
1043 1044
    /// Corresponds to `where Foo : Bar<A,B,C>`. `Foo` here would be
    /// the `Self` type of the trait reference and `A`, `B`, and `C`
1045
    /// would be the type parameters.
1046
    Trait(PolyTraitPredicate<'tcx>),
1047 1048

    /// where 'a : 'b
1049
    RegionOutlives(PolyRegionOutlivesPredicate<'tcx>),
1050 1051

    /// where T : 'a
1052
    TypeOutlives(PolyTypeOutlivesPredicate<'tcx>),
1053

N
Niko Matsakis 已提交
1054 1055
    /// where <T as TraitRef>::Name == X, approximately.
    /// See `ProjectionPredicate` struct for details.
1056
    Projection(PolyProjectionPredicate<'tcx>),
1057 1058 1059 1060 1061

    /// no syntax: T WF
    WellFormed(Ty<'tcx>),

    /// trait must be object-safe
N
Niko Matsakis 已提交
1062
    ObjectSafe(DefId),
1063

1064 1065 1066
    /// No direct syntax. May be thought of as `where T : FnFoo<...>`
    /// for some substitutions `...` and T being a closure type.
    /// Satisfied (or refuted) once we know the closure's kind.
1067
    ClosureKind(DefId, ClosureSubsts<'tcx>, ClosureKind),
N
Niko Matsakis 已提交
1068 1069 1070

    /// `T1 <: T2`
    Subtype(PolySubtypePredicate<'tcx>),
1071 1072 1073

    /// Constant initializer must evaluate successfully.
    ConstEvaluatable(DefId, &'tcx Substs<'tcx>),
1074 1075
}

1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091
/// The crate outlives map is computed during typeck and contains the
/// outlives of every item in the local crate. You should not use it
/// directly, because to do so will make your pass dependent on the
/// HIR of every item in the local crate. Instead, use
/// `tcx.inferred_outlives_of()` to get the outlives for a *particular*
/// item.
pub struct CratePredicatesMap<'tcx> {
    /// For each struct with outlive bounds, maps to a vector of the
    /// predicate of its outlive bounds. If an item has no outlives
    /// bounds, it will have no entry.
    pub predicates: FxHashMap<DefId, Lrc<Vec<ty::Predicate<'tcx>>>>,

    /// An empty vector, useful for cloning.
    pub empty_predicate: Lrc<Vec<ty::Predicate<'tcx>>>,
}

1092 1093 1094 1095 1096 1097
impl<'tcx> AsRef<Predicate<'tcx>> for Predicate<'tcx> {
    fn as_ref(&self) -> &Predicate<'tcx> {
        self
    }
}

1098
impl<'a, 'gcx, 'tcx> Predicate<'tcx> {
1099
    /// Performs a substitution suitable for going from a
1100 1101 1102 1103
    /// poly-trait-ref to supertraits that must hold if that
    /// poly-trait-ref holds. This is slightly different from a normal
    /// substitution in terms of what happens with bound regions.  See
    /// lengthy comment below for details.
1104
    pub fn subst_supertrait(&self, tcx: TyCtxt<'a, 'gcx, 'tcx>,
1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167
                            trait_ref: &ty::PolyTraitRef<'tcx>)
                            -> ty::Predicate<'tcx>
    {
        // The interaction between HRTB and supertraits is not entirely
        // obvious. Let me walk you (and myself) through an example.
        //
        // Let's start with an easy case. Consider two traits:
        //
        //     trait Foo<'a> : Bar<'a,'a> { }
        //     trait Bar<'b,'c> { }
        //
        // Now, if we have a trait reference `for<'x> T : Foo<'x>`, then
        // we can deduce that `for<'x> T : Bar<'x,'x>`. Basically, if we
        // knew that `Foo<'x>` (for any 'x) then we also know that
        // `Bar<'x,'x>` (for any 'x). This more-or-less falls out from
        // normal substitution.
        //
        // In terms of why this is sound, the idea is that whenever there
        // is an impl of `T:Foo<'a>`, it must show that `T:Bar<'a,'a>`
        // holds.  So if there is an impl of `T:Foo<'a>` that applies to
        // all `'a`, then we must know that `T:Bar<'a,'a>` holds for all
        // `'a`.
        //
        // Another example to be careful of is this:
        //
        //     trait Foo1<'a> : for<'b> Bar1<'a,'b> { }
        //     trait Bar1<'b,'c> { }
        //
        // Here, if we have `for<'x> T : Foo1<'x>`, then what do we know?
        // The answer is that we know `for<'x,'b> T : Bar1<'x,'b>`. The
        // reason is similar to the previous example: any impl of
        // `T:Foo1<'x>` must show that `for<'b> T : Bar1<'x, 'b>`.  So
        // basically we would want to collapse the bound lifetimes from
        // the input (`trait_ref`) and the supertraits.
        //
        // To achieve this in practice is fairly straightforward. Let's
        // consider the more complicated scenario:
        //
        // - We start out with `for<'x> T : Foo1<'x>`. In this case, `'x`
        //   has a De Bruijn index of 1. We want to produce `for<'x,'b> T : Bar1<'x,'b>`,
        //   where both `'x` and `'b` would have a DB index of 1.
        //   The substitution from the input trait-ref is therefore going to be
        //   `'a => 'x` (where `'x` has a DB index of 1).
        // - The super-trait-ref is `for<'b> Bar1<'a,'b>`, where `'a` is an
        //   early-bound parameter and `'b' is a late-bound parameter with a
        //   DB index of 1.
        // - If we replace `'a` with `'x` from the input, it too will have
        //   a DB index of 1, and thus we'll have `for<'x,'b> Bar1<'x,'b>`
        //   just as we wanted.
        //
        // There is only one catch. If we just apply the substitution `'a
        // => 'x` to `for<'b> Bar1<'a,'b>`, the substitution code will
        // adjust the DB index because we substituting into a binder (it
        // tries to be so smart...) resulting in `for<'x> for<'b>
        // Bar1<'x,'b>` (we have no syntax for this, so use your
        // imagination). Basically the 'x will have DB index of 2 and 'b
        // will have DB index of 1. Not quite what we want. So we apply
        // the substitution to the *contents* of the trait reference,
        // rather than the trait reference itself (put another way, the
        // substitution code expects equal binding levels in the values
        // from the substitution and the value being substituted into, and
        // this trick achieves that).

1168
        let substs = &trait_ref.skip_binder().substs;
1169
        match *self {
1170 1171 1172 1173 1174 1175 1176 1177 1178 1179
            Predicate::Trait(ref binder) =>
                Predicate::Trait(binder.map_bound(|data| data.subst(tcx, substs))),
            Predicate::Subtype(ref binder) =>
                Predicate::Subtype(binder.map_bound(|data| data.subst(tcx, substs))),
            Predicate::RegionOutlives(ref binder) =>
                Predicate::RegionOutlives(binder.map_bound(|data| data.subst(tcx, substs))),
            Predicate::TypeOutlives(ref binder) =>
                Predicate::TypeOutlives(binder.map_bound(|data| data.subst(tcx, substs))),
            Predicate::Projection(ref binder) =>
                Predicate::Projection(binder.map_bound(|data| data.subst(tcx, substs))),
1180 1181 1182 1183
            Predicate::WellFormed(data) =>
                Predicate::WellFormed(data.subst(tcx, substs)),
            Predicate::ObjectSafe(trait_def_id) =>
                Predicate::ObjectSafe(trait_def_id),
1184 1185
            Predicate::ClosureKind(closure_def_id, closure_substs, kind) =>
                Predicate::ClosureKind(closure_def_id, closure_substs.subst(tcx, substs), kind),
1186 1187
            Predicate::ConstEvaluatable(def_id, const_substs) =>
                Predicate::ConstEvaluatable(def_id, const_substs.subst(tcx, substs)),
1188 1189 1190 1191
        }
    }
}

1192
#[derive(Clone, Copy, PartialEq, Eq, Hash, RustcEncodable, RustcDecodable)]
1193
pub struct TraitPredicate<'tcx> {
1194
    pub trait_ref: TraitRef<'tcx>
1195 1196 1197 1198
}
pub type PolyTraitPredicate<'tcx> = ty::Binder<TraitPredicate<'tcx>>;

impl<'tcx> TraitPredicate<'tcx> {
N
Niko Matsakis 已提交
1199
    pub fn def_id(&self) -> DefId {
1200 1201 1202
        self.trait_ref.def_id
    }

1203
    pub fn input_types<'a>(&'a self) -> impl DoubleEndedIterator<Item=Ty<'tcx>> + 'a {
1204
        self.trait_ref.input_types()
1205 1206 1207 1208 1209 1210 1211 1212
    }

    pub fn self_ty(&self) -> Ty<'tcx> {
        self.trait_ref.self_ty()
    }
}

impl<'tcx> PolyTraitPredicate<'tcx> {
N
Niko Matsakis 已提交
1213
    pub fn def_id(&self) -> DefId {
1214
        // ok to skip binder since trait def-id does not care about regions
1215
        self.skip_binder().def_id()
1216
    }
1217 1218
}

1219
#[derive(Clone, Copy, PartialEq, Eq, PartialOrd, Ord, Hash, Debug, RustcEncodable, RustcDecodable)]
1220 1221
pub struct OutlivesPredicate<A,B>(pub A, pub B); // `A : B`
pub type PolyOutlivesPredicate<A,B> = ty::Binder<OutlivesPredicate<A,B>>;
S
scalexm 已提交
1222 1223 1224 1225 1226 1227
pub type RegionOutlivesPredicate<'tcx> = OutlivesPredicate<ty::Region<'tcx>,
                                                           ty::Region<'tcx>>;
pub type TypeOutlivesPredicate<'tcx> = OutlivesPredicate<Ty<'tcx>,
                                                         ty::Region<'tcx>>;
pub type PolyRegionOutlivesPredicate<'tcx> = ty::Binder<RegionOutlivesPredicate<'tcx>>;
pub type PolyTypeOutlivesPredicate<'tcx> = ty::Binder<TypeOutlivesPredicate<'tcx>>;
1228

1229
#[derive(Clone, Copy, PartialEq, Eq, Hash, Debug, RustcEncodable, RustcDecodable)]
N
Niko Matsakis 已提交
1230 1231 1232 1233 1234 1235 1236
pub struct SubtypePredicate<'tcx> {
    pub a_is_expected: bool,
    pub a: Ty<'tcx>,
    pub b: Ty<'tcx>
}
pub type PolySubtypePredicate<'tcx> = ty::Binder<SubtypePredicate<'tcx>>;

1237 1238 1239 1240 1241 1242 1243 1244 1245
/// This kind of predicate has no *direct* correspondent in the
/// syntax, but it roughly corresponds to the syntactic forms:
///
/// 1. `T : TraitRef<..., Item=Type>`
/// 2. `<T as TraitRef<...>>::Item == Type` (NYI)
///
/// In particular, form #1 is "desugared" to the combination of a
/// normal trait predicate (`T : TraitRef<...>`) and one of these
/// predicates. Form #2 is a broader form in that it also permits
1246 1247
/// equality between arbitrary types. Processing an instance of
/// Form #2 eventually yields one of these `ProjectionPredicate`
1248
/// instances to normalize the LHS.
1249
#[derive(Copy, Clone, PartialEq, Eq, Hash, RustcEncodable, RustcDecodable)]
1250 1251 1252 1253 1254 1255 1256
pub struct ProjectionPredicate<'tcx> {
    pub projection_ty: ProjectionTy<'tcx>,
    pub ty: Ty<'tcx>,
}

pub type PolyProjectionPredicate<'tcx> = Binder<ProjectionPredicate<'tcx>>;

1257
impl<'tcx> PolyProjectionPredicate<'tcx> {
1258 1259 1260 1261 1262
    /// Returns the def-id of the associated item being projected.
    pub fn item_def_id(&self) -> DefId {
        self.skip_binder().projection_ty.item_def_id
    }

1263 1264 1265 1266 1267 1268
    pub fn to_poly_trait_ref(&self, tcx: TyCtxt) -> PolyTraitRef<'tcx> {
        // Note: unlike with TraitRef::to_poly_trait_ref(),
        // self.0.trait_ref is permitted to have escaping regions.
        // This is because here `self` has a `Binder` and so does our
        // return value, so we are preserving the number of binding
        // levels.
1269
        self.map_bound(|predicate| predicate.projection_ty.trait_ref(tcx))
1270
    }
1271 1272

    pub fn ty(&self) -> Binder<Ty<'tcx>> {
1273 1274 1275 1276 1277 1278 1279 1280 1281 1282
        self.map_bound(|predicate| predicate.ty)
    }

    /// The DefId of the TraitItem for the associated type.
    ///
    /// Note that this is not the DefId of the TraitRef containing this
    /// associated type, which is in tcx.associated_item(projection_def_id()).container.
    pub fn projection_def_id(&self) -> DefId {
        // ok to skip binder since trait def-id does not care about regions
        self.skip_binder().projection_ty.item_def_id
1283
    }
1284 1285
}

1286 1287 1288 1289
pub trait ToPolyTraitRef<'tcx> {
    fn to_poly_trait_ref(&self) -> PolyTraitRef<'tcx>;
}

1290
impl<'tcx> ToPolyTraitRef<'tcx> for TraitRef<'tcx> {
1291
    fn to_poly_trait_ref(&self) -> PolyTraitRef<'tcx> {
1292
        ty::Binder::dummy(self.clone())
1293 1294 1295 1296 1297
    }
}

impl<'tcx> ToPolyTraitRef<'tcx> for PolyTraitPredicate<'tcx> {
    fn to_poly_trait_ref(&self) -> PolyTraitRef<'tcx> {
1298
        self.map_bound_ref(|trait_pred| trait_pred.trait_ref)
1299 1300 1301
    }
}

1302 1303
pub trait ToPredicate<'tcx> {
    fn to_predicate(&self) -> Predicate<'tcx>;
1304 1305
}

1306 1307
impl<'tcx> ToPredicate<'tcx> for TraitRef<'tcx> {
    fn to_predicate(&self) -> Predicate<'tcx> {
1308
        ty::Predicate::Trait(ty::Binder::dummy(ty::TraitPredicate {
1309 1310 1311 1312 1313
            trait_ref: self.clone()
        }))
    }
}

1314 1315
impl<'tcx> ToPredicate<'tcx> for PolyTraitRef<'tcx> {
    fn to_predicate(&self) -> Predicate<'tcx> {
1316
        ty::Predicate::Trait(self.to_poly_trait_predicate())
1317 1318 1319
    }
}

1320
impl<'tcx> ToPredicate<'tcx> for PolyRegionOutlivesPredicate<'tcx> {
1321
    fn to_predicate(&self) -> Predicate<'tcx> {
1322 1323 1324 1325
        Predicate::RegionOutlives(self.clone())
    }
}

1326 1327
impl<'tcx> ToPredicate<'tcx> for PolyTypeOutlivesPredicate<'tcx> {
    fn to_predicate(&self) -> Predicate<'tcx> {
1328 1329
        Predicate::TypeOutlives(self.clone())
    }
1330 1331
}

1332 1333
impl<'tcx> ToPredicate<'tcx> for PolyProjectionPredicate<'tcx> {
    fn to_predicate(&self) -> Predicate<'tcx> {
1334 1335 1336 1337
        Predicate::Projection(self.clone())
    }
}

1338
impl<'tcx> Predicate<'tcx> {
1339 1340 1341 1342 1343 1344
    /// Iterates over the types in this predicate. Note that in all
    /// cases this is skipping over a binder, so late-bound regions
    /// with depth 0 are bound by the predicate.
    pub fn walk_tys(&self) -> IntoIter<Ty<'tcx>> {
        let vec: Vec<_> = match *self {
            ty::Predicate::Trait(ref data) => {
1345
                data.skip_binder().input_types().collect()
1346
            }
1347 1348
            ty::Predicate::Subtype(binder) => {
                let SubtypePredicate { a, b, a_is_expected: _ } = binder.skip_binder();
N
Niko Matsakis 已提交
1349 1350
                vec![a, b]
            }
1351 1352
            ty::Predicate::TypeOutlives(binder) => {
                vec![binder.skip_binder().0]
1353 1354 1355 1356 1357
            }
            ty::Predicate::RegionOutlives(..) => {
                vec![]
            }
            ty::Predicate::Projection(ref data) => {
1358 1359
                let inner = data.skip_binder();
                inner.projection_ty.substs.types().chain(Some(inner.ty)).collect()
1360
            }
1361 1362 1363 1364 1365 1366
            ty::Predicate::WellFormed(data) => {
                vec![data]
            }
            ty::Predicate::ObjectSafe(_trait_def_id) => {
                vec![]
            }
1367 1368
            ty::Predicate::ClosureKind(_closure_def_id, closure_substs, _kind) => {
                closure_substs.substs.types().collect()
1369
            }
1370 1371 1372
            ty::Predicate::ConstEvaluatable(_, substs) => {
                substs.types().collect()
            }
1373 1374 1375 1376 1377 1378 1379 1380 1381 1382
        };

        // The only reason to collect into a vector here is that I was
        // too lazy to make the full (somewhat complicated) iterator
        // type that would be needed here. But I wanted this fn to
        // return an iterator conceptually, rather than a `Vec`, so as
        // to be closer to `Ty::walk`.
        vec.into_iter()
    }

1383
    pub fn to_opt_poly_trait_ref(&self) -> Option<PolyTraitRef<'tcx>> {
1384 1385
        match *self {
            Predicate::Trait(ref t) => {
1386
                Some(t.to_poly_trait_ref())
1387
            }
1388
            Predicate::Projection(..) |
N
Niko Matsakis 已提交
1389
            Predicate::Subtype(..) |
1390
            Predicate::RegionOutlives(..) |
1391 1392
            Predicate::WellFormed(..) |
            Predicate::ObjectSafe(..) |
1393
            Predicate::ClosureKind(..) |
1394 1395
            Predicate::TypeOutlives(..) |
            Predicate::ConstEvaluatable(..) => {
1396 1397
                None
            }
1398 1399
        }
    }
1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417

    pub fn to_opt_type_outlives(&self) -> Option<PolyTypeOutlivesPredicate<'tcx>> {
        match *self {
            Predicate::TypeOutlives(data) => {
                Some(data)
            }
            Predicate::Trait(..) |
            Predicate::Projection(..) |
            Predicate::Subtype(..) |
            Predicate::RegionOutlives(..) |
            Predicate::WellFormed(..) |
            Predicate::ObjectSafe(..) |
            Predicate::ClosureKind(..) |
            Predicate::ConstEvaluatable(..) => {
                None
            }
        }
    }
1418 1419
}

S
Steve Klabnik 已提交
1420 1421
/// Represents the bounds declared on a particular set of type
/// parameters.  Should eventually be generalized into a flag list of
1422 1423 1424 1425 1426
/// where clauses.  You can obtain a `InstantiatedPredicates` list from a
/// `GenericPredicates` by using the `instantiate` method. Note that this method
/// reflects an important semantic invariant of `InstantiatedPredicates`: while
/// the `GenericPredicates` are expressed in terms of the bound type
/// parameters of the impl/trait/whatever, an `InstantiatedPredicates` instance
S
Steve Klabnik 已提交
1427 1428 1429 1430 1431 1432 1433 1434
/// represented a set of bounds for some particular instantiation,
/// meaning that the generic parameters have been substituted with
/// their values.
///
/// Example:
///
///     struct Foo<T,U:Bar<T>> { ... }
///
1435
/// Here, the `GenericPredicates` for `Foo` would contain a list of bounds like
J
Jorge Aparicio 已提交
1436
/// `[[], [U:Bar<T>]]`.  Now if there were some particular reference
1437 1438
/// like `Foo<isize,usize>`, then the `InstantiatedPredicates` would be `[[],
/// [usize:Bar<isize>]]`.
1439
#[derive(Clone)]
1440
pub struct InstantiatedPredicates<'tcx> {
1441
    pub predicates: Vec<Predicate<'tcx>>,
1442 1443
}

1444 1445
impl<'tcx> InstantiatedPredicates<'tcx> {
    pub fn empty() -> InstantiatedPredicates<'tcx> {
1446
        InstantiatedPredicates { predicates: vec![] }
1447 1448
    }

1449 1450
    pub fn is_empty(&self) -> bool {
        self.predicates.is_empty()
1451
    }
1452 1453
}

N
Niko Matsakis 已提交
1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489
/// "Universes" are used during type- and trait-checking in the
/// presence of `for<..>` binders to control what sets of names are
/// visible. Universes are arranged into a tree: the root universe
/// contains names that are always visible. But when you enter into
/// some subuniverse, then it may add names that are only visible
/// within that subtree (but it can still name the names of its
/// ancestor universes).
///
/// To make this more concrete, consider this program:
///
/// ```
/// struct Foo { }
/// fn bar<T>(x: T) {
///   let y: for<'a> fn(&'a u8, Foo) = ...;
/// }
/// ```
///
/// The struct name `Foo` is in the root universe U0. But the type
/// parameter `T`, introduced on `bar`, is in a subuniverse U1 --
/// i.e., within `bar`, we can name both `T` and `Foo`, but outside of
/// `bar`, we cannot name `T`. Then, within the type of `y`, the
/// region `'a` is in a subuniverse U2 of U1, because we can name it
/// inside the fn type but not outside.
///
/// Universes are related to **skolemization** -- which is a way of
/// doing type- and trait-checking around these "forall" binders (also
/// called **universal quantification**). The idea is that when, in
/// the body of `bar`, we refer to `T` as a type, we aren't referring
/// to any type in particular, but rather a kind of "fresh" type that
/// is distinct from all other types we have actually declared. This
/// is called a **skolemized** type, and we use universes to talk
/// about this. In other words, a type name in universe 0 always
/// corresponds to some "ground" type that the user declared, but a
/// type name in a non-zero universe is a skolemized type -- an
/// idealized representative of "types in general" that we use for
/// checking generic functions.
N
Niko Matsakis 已提交
1490
#[derive(Copy, Clone, PartialEq, Eq, PartialOrd, Ord, Hash, RustcEncodable, RustcDecodable)]
N
Niko Matsakis 已提交
1491 1492 1493 1494 1495
pub struct UniverseIndex(u32);

impl UniverseIndex {
    /// The root universe, where things that the user defined are
    /// visible.
1496
    pub const ROOT: Self = UniverseIndex(0);
N
Niko Matsakis 已提交
1497

N
Niko Matsakis 已提交
1498 1499 1500 1501 1502 1503 1504
    /// The "max universe" -- this isn't really a valid universe, but
    /// it's useful sometimes as a "starting value" when you are
    /// taking the minimum of a (non-empty!) set of universes.
    pub const MAX: Self = UniverseIndex(::std::u32::MAX);

    /// Creates a universe index from the given integer.  Not to be
    /// used lightly lest you pick a bad value. But sometimes we
M
Matthias Krüger 已提交
1505
    /// convert universe indices into integers and back for various
N
Niko Matsakis 已提交
1506 1507 1508 1509 1510
    /// reasons.
    pub fn from_u32(index: u32) -> Self {
        UniverseIndex(index)
    }

N
Niko Matsakis 已提交
1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522
    /// A "subuniverse" corresponds to being inside a `forall` quantifier.
    /// So, for example, suppose we have this type in universe `U`:
    ///
    /// ```
    /// for<'a> fn(&'a u32)
    /// ```
    ///
    /// Once we "enter" into this `for<'a>` quantifier, we are in a
    /// subuniverse of `U` -- in this new universe, we can name the
    /// region `'a`, but that region was not nameable from `U` because
    /// it was not in scope there.
    pub fn subuniverse(self) -> UniverseIndex {
1523 1524 1525
        UniverseIndex(self.0.checked_add(1).unwrap())
    }

N
Niko Matsakis 已提交
1526 1527 1528 1529 1530
    /// True if the names in this universe are a subset of the names in `other`.
    pub fn is_subset_of(self, other: UniverseIndex) -> bool {
        self.0 <= other.0
    }

1531 1532 1533 1534 1535 1536 1537 1538 1539
    pub fn as_u32(&self) -> u32 {
        self.0
    }

    pub fn as_usize(&self) -> usize {
        self.0 as usize
    }
}

N
Niko Matsakis 已提交
1540 1541 1542 1543 1544 1545
impl fmt::Debug for UniverseIndex {
    fn fmt(&self, fmt: &mut fmt::Formatter) -> fmt::Result {
        write!(fmt, "U{}", self.as_u32())
    }
}

1546 1547 1548
impl From<u32> for UniverseIndex {
    fn from(index: u32) -> Self {
        UniverseIndex(index)
1549
    }
N
Niko Matsakis 已提交
1550 1551
}

1552
/// When type checking, we use the `ParamEnv` to track
1553 1554 1555
/// details about the set of where-clauses that are in scope at this
/// particular point.
#[derive(Copy, Clone, Debug, PartialEq, Eq, Hash)]
1556
pub struct ParamEnv<'tcx> {
1557 1558
    /// Obligations that the caller must satisfy. This is basically
    /// the set of bounds on the in-scope type parameters, translated
1559
    /// into Obligations, and elaborated and normalized.
V
varkor 已提交
1560
    pub caller_bounds: &'tcx List<ty::Predicate<'tcx>>,
1561

I
Irina Popa 已提交
1562
    /// Typically, this is `Reveal::UserFacing`, but during codegen we
1563 1564 1565
    /// want `Reveal::All` -- note that this is always paired with an
    /// empty environment. To get that, use `ParamEnv::reveal()`.
    pub reveal: traits::Reveal,
1566
}
1567

1568
impl<'tcx> ParamEnv<'tcx> {
1569 1570 1571 1572 1573
    /// Construct a trait environment suitable for contexts where
    /// there are no where clauses in scope. Hidden types (like `impl
    /// Trait`) are left hidden, so this is suitable for ordinary
    /// type-checking.
    pub fn empty() -> Self {
V
varkor 已提交
1574
        Self::new(List::empty(), Reveal::UserFacing)
1575 1576 1577 1578 1579
    }

    /// Construct a trait environment with no where clauses in scope
    /// where the values of all `impl Trait` and other hidden types
    /// are revealed. This is suitable for monomorphized, post-typeck
I
Irina Popa 已提交
1580
    /// environments like codegen or doing optimizations.
1581 1582 1583 1584
    ///
    /// NB. If you want to have predicates in scope, use `ParamEnv::new`,
    /// or invoke `param_env.with_reveal_all()`.
    pub fn reveal_all() -> Self {
V
varkor 已提交
1585
        Self::new(List::empty(), Reveal::All)
1586 1587 1588
    }

    /// Construct a trait environment with the given set of predicates.
V
varkor 已提交
1589
    pub fn new(caller_bounds: &'tcx List<ty::Predicate<'tcx>>,
S
Sean Griffin 已提交
1590
               reveal: Reveal)
1591
               -> Self {
S
Sean Griffin 已提交
1592
        ty::ParamEnv { caller_bounds, reveal }
1593 1594 1595 1596 1597
    }

    /// Returns a new parameter environment with the same clauses, but
    /// which "reveals" the true results of projections in all cases
    /// (even for associated types that are specializable).  This is
I
Irina Popa 已提交
1598
    /// the desired behavior during codegen and certain other special
1599 1600 1601 1602 1603 1604 1605 1606
    /// contexts; normally though we want to use `Reveal::UserFacing`,
    /// which is the default.
    pub fn with_reveal_all(self) -> Self {
        ty::ParamEnv { reveal: Reveal::All, ..self }
    }

    /// Returns this same environment but with no caller bounds.
    pub fn without_caller_bounds(self) -> Self {
V
varkor 已提交
1607
        ty::ParamEnv { caller_bounds: List::empty(), ..self }
1608 1609
    }

1610
    /// Creates a suitable environment in which to perform trait
1611 1612 1613 1614 1615
    /// queries on the given value. When type-checking, this is simply
    /// the pair of the environment plus value. But when reveal is set to
    /// All, then if `value` does not reference any type parameters, we will
    /// pair it with the empty environment. This improves caching and is generally
    /// invisible.
1616
    ///
1617 1618
    /// NB: We preserve the environment when type-checking because it
    /// is possible for the user to have wacky where-clauses like
1619
    /// `where Box<u32>: Copy`, which are clearly never
1620 1621
    /// satisfiable. We generally want to behave as if they were true,
    /// although the surrounding function is never reachable.
1622
    pub fn and<T: TypeFoldable<'tcx>>(self, value: T) -> ParamEnvAnd<'tcx, T> {
1623 1624 1625 1626 1627 1628
        match self.reveal {
            Reveal::UserFacing => {
                ParamEnvAnd {
                    param_env: self,
                    value,
                }
1629
            }
1630 1631

            Reveal::All => {
1632 1633 1634 1635 1636
                if value.has_skol()
                    || value.needs_infer()
                    || value.has_param_types()
                    || value.has_self_ty()
                {
1637 1638 1639 1640 1641 1642 1643 1644 1645 1646
                    ParamEnvAnd {
                        param_env: self,
                        value,
                    }
                } else {
                    ParamEnvAnd {
                        param_env: self.without_caller_bounds(),
                        value,
                    }
                }
1647
            }
1648 1649 1650
        }
    }
}
1651

1652
#[derive(Copy, Clone, Debug, PartialEq, Eq, Hash)]
1653 1654
pub struct ParamEnvAnd<'tcx, T> {
    pub param_env: ParamEnv<'tcx>,
1655
    pub value: T,
1656 1657
}

1658 1659
impl<'tcx, T> ParamEnvAnd<'tcx, T> {
    pub fn into_parts(self) -> (ParamEnv<'tcx>, T) {
1660
        (self.param_env, self.value)
1661
    }
1662 1663
}

1664 1665
impl<'a, 'gcx, T> HashStable<StableHashingContext<'a>> for ParamEnvAnd<'gcx, T>
    where T: HashStable<StableHashingContext<'a>>
1666 1667
{
    fn hash_stable<W: StableHasherResult>(&self,
1668
                                          hcx: &mut StableHashingContext<'a>,
1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679
                                          hasher: &mut StableHasher<W>) {
        let ParamEnvAnd {
            ref param_env,
            ref value
        } = *self;

        param_env.hash_stable(hcx, hasher);
        value.hash_stable(hcx, hasher);
    }
}

1680 1681 1682 1683 1684 1685
#[derive(Copy, Clone, Debug)]
pub struct Destructor {
    /// The def-id of the destructor method
    pub did: DefId,
}

1686
bitflags! {
1687 1688 1689 1690 1691 1692 1693
    pub struct AdtFlags: u32 {
        const NO_ADT_FLAGS        = 0;
        const IS_ENUM             = 1 << 0;
        const IS_PHANTOM_DATA     = 1 << 1;
        const IS_FUNDAMENTAL      = 1 << 2;
        const IS_UNION            = 1 << 3;
        const IS_BOX              = 1 << 4;
1694 1695 1696 1697
        /// Indicates whether this abstract data type will be expanded on in future (new
        /// fields/variants) and as such, whether downstream crates must match exhaustively on the
        /// fields/variants of this data type.
        ///
1698
        /// See RFC 2008 (<https://github.com/rust-lang/rfcs/pull/2008>).
1699
        const IS_NON_EXHAUSTIVE   = 1 << 5;
1700 1701 1702
    }
}

1703
#[derive(Debug)]
1704
pub struct VariantDef {
1705 1706
    /// The variant's DefId. If this is a tuple-like struct,
    /// this is the DefId of the struct's ctor.
1707 1708
    pub did: DefId,
    pub name: Name, // struct's name if this is a struct
1709
    pub discr: VariantDiscr,
1710
    pub fields: Vec<FieldDef>,
1711
    pub ctor_kind: CtorKind,
1712 1713
}

1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726
#[derive(Copy, Clone, Debug, PartialEq, Eq, RustcEncodable, RustcDecodable)]
pub enum VariantDiscr {
    /// Explicit value for this variant, i.e. `X = 123`.
    /// The `DefId` corresponds to the embedded constant.
    Explicit(DefId),

    /// The previous variant's discriminant plus one.
    /// For efficiency reasons, the distance from the
    /// last `Explicit` discriminant is being stored,
    /// or `0` for the first variant, if it has none.
    Relative(usize),
}

1727
#[derive(Debug)]
1728
pub struct FieldDef {
1729
    pub did: DefId,
1730
    pub ident: Ident,
1731
    pub vis: Visibility,
1732 1733
}

A
Ariel Ben-Yehuda 已提交
1734 1735 1736 1737
/// The definition of an abstract data type - a struct or enum.
///
/// These are all interned (by intern_adt_def) into the adt_defs
/// table.
1738
pub struct AdtDef {
1739
    pub did: DefId,
1740
    pub variants: Vec<VariantDef>,
1741
    flags: AdtFlags,
1742
    pub repr: ReprOptions,
1743 1744
}

1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758
impl PartialOrd for AdtDef {
    fn partial_cmp(&self, other: &AdtDef) -> Option<Ordering> {
        Some(self.cmp(&other))
    }
}

/// There should be only one AdtDef for each `did`, therefore
/// it is fine to implement `Ord` only based on `did`.
impl Ord for AdtDef {
    fn cmp(&self, other: &AdtDef) -> Ordering {
        self.did.cmp(&other.did)
    }
}

1759 1760
impl PartialEq for AdtDef {
    // AdtDef are always interned and this is part of TyS equality
1761
    #[inline]
1762
    fn eq(&self, other: &Self) -> bool { ptr::eq(self, other) }
1763 1764
}

1765
impl Eq for AdtDef {}
1766

1767
impl Hash for AdtDef {
1768 1769
    #[inline]
    fn hash<H: Hasher>(&self, s: &mut H) {
1770
        (self as *const AdtDef).hash(s)
1771 1772 1773
    }
}

1774
impl<'tcx> serialize::UseSpecializedEncodable for &'tcx AdtDef {
1775
    fn default_encode<S: Encoder>(&self, s: &mut S) -> Result<(), S::Error> {
1776 1777 1778 1779
        self.did.encode(s)
    }
}

1780
impl<'tcx> serialize::UseSpecializedDecodable for &'tcx AdtDef {}
1781

1782

1783
impl<'a> HashStable<StableHashingContext<'a>> for AdtDef {
1784
    fn hash_stable<W: StableHasherResult>(&self,
1785
                                          hcx: &mut StableHashingContext<'a>,
1786
                                          hasher: &mut StableHasher<W>) {
W
Wesley Wiser 已提交
1787 1788 1789 1790
        thread_local! {
            static CACHE: RefCell<FxHashMap<usize, Fingerprint>> =
                RefCell::new(FxHashMap());
        }
1791

W
Wesley Wiser 已提交
1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812
        let hash: Fingerprint = CACHE.with(|cache| {
            let addr = self as *const AdtDef as usize;
            *cache.borrow_mut().entry(addr).or_insert_with(|| {
                let ty::AdtDef {
                    did,
                    ref variants,
                    ref flags,
                    ref repr,
                } = *self;

                let mut hasher = StableHasher::new();
                did.hash_stable(hcx, &mut hasher);
                variants.hash_stable(hcx, &mut hasher);
                flags.hash_stable(hcx, &mut hasher);
                repr.hash_stable(hcx, &mut hasher);

                hasher.finish()
           })
        });

        hash.hash_stable(hcx, hasher);
1813 1814 1815
    }
}

1816
#[derive(Copy, Clone, Debug, Eq, PartialEq, Hash)]
1817
pub enum AdtKind { Struct, Union, Enum }
1818

1819 1820 1821 1822 1823 1824 1825 1826 1827 1828
impl Into<DataTypeKind> for AdtKind {
    fn into(self) -> DataTypeKind {
        match self {
            AdtKind::Struct => DataTypeKind::Struct,
            AdtKind::Union => DataTypeKind::Union,
            AdtKind::Enum => DataTypeKind::Enum,
        }
    }
}

1829 1830
bitflags! {
    #[derive(RustcEncodable, RustcDecodable, Default)]
1831 1832
    pub struct ReprFlags: u8 {
        const IS_C               = 1 << 0;
1833 1834
        const IS_SIMD            = 1 << 1;
        const IS_TRANSPARENT     = 1 << 2;
1835
        // Internal only for now. If true, don't reorder fields.
1836
        const IS_LINEAR          = 1 << 3;
1837 1838 1839 1840

        // Any of these flags being set prevent field reordering optimisation.
        const IS_UNOPTIMISABLE   = ReprFlags::IS_C.bits |
                                   ReprFlags::IS_SIMD.bits |
1841
                                   ReprFlags::IS_LINEAR.bits;
1842 1843 1844 1845 1846 1847 1848 1849 1850
    }
}

impl_stable_hash_for!(struct ReprFlags {
    bits
});



1851 1852 1853 1854
/// Represents the repr options provided by the user,
#[derive(Copy, Clone, Eq, PartialEq, RustcEncodable, RustcDecodable, Default)]
pub struct ReprOptions {
    pub int: Option<attr::IntType>,
1855
    pub align: u32,
1856
    pub pack: u32,
1857
    pub flags: ReprFlags,
1858 1859
}

1860
impl_stable_hash_for!(struct ReprOptions {
1861
    align,
1862
    pack,
1863
    int,
1864
    flags
1865 1866
});

1867
impl ReprOptions {
1868
    pub fn new(tcx: TyCtxt, did: DefId) -> ReprOptions {
1869 1870
        let mut flags = ReprFlags::empty();
        let mut size = None;
1871
        let mut max_align = 0;
1872
        let mut min_pack = 0;
1873 1874
        for attr in tcx.get_attrs(did).iter() {
            for r in attr::find_repr_attrs(tcx.sess.diagnostic(), attr) {
1875
                flags.insert(match r {
1876
                    attr::ReprC => ReprFlags::IS_C,
1877 1878 1879 1880 1881 1882 1883 1884
                    attr::ReprPacked(pack) => {
                        min_pack = if min_pack > 0 {
                            cmp::min(pack, min_pack)
                        } else {
                            pack
                        };
                        ReprFlags::empty()
                    },
R
Robin Kruppe 已提交
1885
                    attr::ReprTransparent => ReprFlags::IS_TRANSPARENT,
1886 1887 1888 1889 1890
                    attr::ReprSimd => ReprFlags::IS_SIMD,
                    attr::ReprInt(i) => {
                        size = Some(i);
                        ReprFlags::empty()
                    },
1891 1892 1893 1894
                    attr::ReprAlign(align) => {
                        max_align = cmp::max(align, max_align);
                        ReprFlags::empty()
                    },
1895
                });
1896 1897
            }
        }
1898

1899
        // This is here instead of layout because the choice must make it into metadata.
1900 1901 1902
        if !tcx.consider_optimizing(|| format!("Reorder fields of {:?}", tcx.item_path_str(did))) {
            flags.insert(ReprFlags::IS_LINEAR);
        }
1903
        ReprOptions { int: size, align: max_align, pack: min_pack, flags: flags }
1904
    }
1905

1906 1907 1908 1909 1910
    #[inline]
    pub fn simd(&self) -> bool { self.flags.contains(ReprFlags::IS_SIMD) }
    #[inline]
    pub fn c(&self) -> bool { self.flags.contains(ReprFlags::IS_C) }
    #[inline]
1911
    pub fn packed(&self) -> bool { self.pack > 0 }
1912
    #[inline]
R
Robin Kruppe 已提交
1913 1914
    pub fn transparent(&self) -> bool { self.flags.contains(ReprFlags::IS_TRANSPARENT) }
    #[inline]
1915 1916
    pub fn linear(&self) -> bool { self.flags.contains(ReprFlags::IS_LINEAR) }

1917
    pub fn discr_type(&self) -> attr::IntType {
1918
        self.int.unwrap_or(attr::SignedInt(ast::IntTy::Isize))
1919
    }
1920 1921 1922 1923 1924

    /// Returns true if this `#[repr()]` should inhabit "smart enum
    /// layout" optimizations, such as representing `Foo<&T>` as a
    /// single pointer.
    pub fn inhibit_enum_layout_opt(&self) -> bool {
1925
        self.c() || self.int.is_some()
1926
    }
1927 1928 1929 1930 1931 1932

    /// Returns true if this `#[repr()]` should inhibit struct field reordering
    /// optimizations, such as with repr(C) or repr(packed(1)).
    pub fn inhibit_struct_field_reordering_opt(&self) -> bool {
        !(self.flags & ReprFlags::IS_UNOPTIMISABLE).is_empty() || (self.pack == 1)
    }
1933 1934
}

1935
impl<'a, 'gcx, 'tcx> AdtDef {
1936
    fn new(tcx: TyCtxt,
1937
           did: DefId,
A
Ariel Ben-Yehuda 已提交
1938
           kind: AdtKind,
1939 1940
           variants: Vec<VariantDef>,
           repr: ReprOptions) -> Self {
A
Ariel Ben-Yehuda 已提交
1941
        let mut flags = AdtFlags::NO_ADT_FLAGS;
A
Ariel Ben-Yehuda 已提交
1942
        let attrs = tcx.get_attrs(did);
1943
        if attr::contains_name(&attrs, "fundamental") {
A
Ariel Ben-Yehuda 已提交
1944
            flags = flags | AdtFlags::IS_FUNDAMENTAL;
1945
        }
1946
        if Some(did) == tcx.lang_items().phantom_data() {
A
Ariel Ben-Yehuda 已提交
1947
            flags = flags | AdtFlags::IS_PHANTOM_DATA;
1948
        }
1949
        if Some(did) == tcx.lang_items().owned_box() {
1950 1951
            flags = flags | AdtFlags::IS_BOX;
        }
1952 1953 1954
        if tcx.has_attr(did, "non_exhaustive") {
            flags = flags | AdtFlags::IS_NON_EXHAUSTIVE;
        }
1955 1956 1957 1958
        match kind {
            AdtKind::Enum => flags = flags | AdtFlags::IS_ENUM,
            AdtKind::Union => flags = flags | AdtFlags::IS_UNION,
            AdtKind::Struct => {}
1959
        }
1960
        AdtDef {
1961 1962 1963 1964
            did,
            variants,
            flags,
            repr,
1965 1966 1967
        }
    }

1968 1969 1970 1971 1972 1973 1974
    #[inline]
    pub fn is_struct(&self) -> bool {
        !self.is_union() && !self.is_enum()
    }

    #[inline]
    pub fn is_union(&self) -> bool {
1975
        self.flags.intersects(AdtFlags::IS_UNION)
1976 1977 1978 1979
    }

    #[inline]
    pub fn is_enum(&self) -> bool {
1980
        self.flags.intersects(AdtFlags::IS_ENUM)
1981 1982
    }

1983 1984 1985 1986 1987
    #[inline]
    pub fn is_non_exhaustive(&self) -> bool {
        self.flags.intersects(AdtFlags::IS_NON_EXHAUSTIVE)
    }

A
Ariel Ben-Yehuda 已提交
1988
    /// Returns the kind of the ADT - Struct or Enum.
1989
    #[inline]
A
Ariel Ben-Yehuda 已提交
1990
    pub fn adt_kind(&self) -> AdtKind {
1991
        if self.is_enum() {
A
Ariel Ben-Yehuda 已提交
1992
            AdtKind::Enum
1993
        } else if self.is_union() {
1994
            AdtKind::Union
1995
        } else {
A
Ariel Ben-Yehuda 已提交
1996
            AdtKind::Struct
1997 1998 1999
        }
    }

2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015
    pub fn descr(&self) -> &'static str {
        match self.adt_kind() {
            AdtKind::Struct => "struct",
            AdtKind::Union => "union",
            AdtKind::Enum => "enum",
        }
    }

    pub fn variant_descr(&self) -> &'static str {
        match self.adt_kind() {
            AdtKind::Struct => "struct",
            AdtKind::Union => "union",
            AdtKind::Enum => "variant",
        }
    }

A
Ariel Ben-Yehuda 已提交
2016 2017
    /// Returns whether this type is #[fundamental] for the purposes
    /// of coherence checking.
2018 2019
    #[inline]
    pub fn is_fundamental(&self) -> bool {
2020
        self.flags.intersects(AdtFlags::IS_FUNDAMENTAL)
2021 2022
    }

A
Ariel Ben-Yehuda 已提交
2023
    /// Returns true if this is PhantomData<T>.
2024 2025
    #[inline]
    pub fn is_phantom_data(&self) -> bool {
2026
        self.flags.intersects(AdtFlags::IS_PHANTOM_DATA)
2027 2028
    }

2029 2030 2031
    /// Returns true if this is Box<T>.
    #[inline]
    pub fn is_box(&self) -> bool {
2032
        self.flags.intersects(AdtFlags::IS_BOX)
2033 2034
    }

A
Ariel Ben-Yehuda 已提交
2035
    /// Returns whether this type has a destructor.
2036 2037
    pub fn has_dtor(&self, tcx: TyCtxt<'a, 'gcx, 'tcx>) -> bool {
        self.destructor(tcx).is_some()
2038 2039
    }

2040 2041 2042
    /// Asserts this is a struct or union and returns its unique variant.
    pub fn non_enum_variant(&self) -> &VariantDef {
        assert!(self.is_struct() || self.is_union());
2043
        &self.variants[0]
2044 2045 2046
    }

    #[inline]
2047
    pub fn predicates(&self, tcx: TyCtxt<'a, 'gcx, 'tcx>) -> GenericPredicates<'gcx> {
2048
        tcx.predicates_of(self.did)
2049
    }
2050

A
Ariel Ben-Yehuda 已提交
2051 2052
    /// Returns an iterator over all fields contained
    /// by this ADT.
2053
    #[inline]
2054 2055
    pub fn all_fields<'s>(&'s self) -> impl Iterator<Item = &'s FieldDef> {
        self.variants.iter().flat_map(|v| v.fields.iter())
2056 2057 2058 2059 2060 2061 2062
    }

    pub fn is_payloadfree(&self) -> bool {
        !self.variants.is_empty() &&
            self.variants.iter().all(|v| v.fields.is_empty())
    }

2063
    pub fn variant_with_id(&self, vid: DefId) -> &VariantDef {
2064 2065 2066 2067 2068 2069
        self.variants
            .iter()
            .find(|v| v.did == vid)
            .expect("variant_with_id: unknown variant")
    }

N
Niko Matsakis 已提交
2070 2071 2072 2073 2074 2075 2076
    pub fn variant_index_with_id(&self, vid: DefId) -> usize {
        self.variants
            .iter()
            .position(|v| v.did == vid)
            .expect("variant_index_with_id: unknown variant")
    }

2077
    pub fn variant_of_def(&self, def: Def) -> &VariantDef {
2078
        match def {
2079 2080
            Def::Variant(vid) | Def::VariantCtor(vid, ..) => self.variant_with_id(vid),
            Def::Struct(..) | Def::StructCtor(..) | Def::Union(..) |
2081
            Def::TyAlias(..) | Def::AssociatedTy(..) | Def::SelfTy(..) => self.non_enum_variant(),
2082
            _ => bug!("unexpected def {:?} in variant_of_def", def)
2083 2084
        }
    }
2085

O
Oliver Schneider 已提交
2086
    #[inline]
2087
    pub fn eval_explicit_discr(
O
Oliver Schneider 已提交
2088 2089 2090 2091
        &self,
        tcx: TyCtxt<'a, 'gcx, 'tcx>,
        expr_did: DefId,
    ) -> Option<Discr<'tcx>> {
2092
        let param_env = ParamEnv::empty();
O
Oliver Schneider 已提交
2093 2094 2095 2096 2097 2098 2099 2100
        let repr_type = self.repr.discr_type();
        let substs = Substs::identity_for_item(tcx.global_tcx(), expr_did);
        let instance = ty::Instance::new(expr_did, substs);
        let cid = GlobalId {
            instance,
            promoted: None
        };
        match tcx.const_eval(param_env.and(cid)) {
2101 2102
            Ok(val) => {
                // FIXME: Find the right type and use it instead of `val.ty` here
O
Oliver Schneider 已提交
2103
                if let Some(b) = val.assert_bits(tcx.global_tcx(), param_env.and(val.ty)) {
2104 2105 2106 2107 2108 2109 2110
                    trace!("discriminants: {} ({:?})", b, repr_type);
                    Some(Discr {
                        val: b,
                        ty: val.ty,
                    })
                } else {
                    info!("invalid enum discriminant: {:#?}", val);
2111
                    ::mir::interpret::struct_error(
2112
                        tcx.at(tcx.def_span(expr_did)),
2113 2114 2115 2116
                        "constant evaluation of enum discriminant resulted in non-integer",
                    ).emit();
                    None
                }
O
Oliver Schneider 已提交
2117
            }
2118
            Err(err) => {
2119 2120 2121 2122
                err.report_as_error(
                    tcx.at(tcx.def_span(expr_did)),
                    "could not evaluate enum discriminant",
                );
O
Oliver Schneider 已提交
2123 2124 2125 2126 2127 2128 2129 2130 2131 2132
                if !expr_did.is_local() {
                    span_bug!(tcx.def_span(expr_did),
                        "variant discriminant evaluation succeeded \
                            in its crate but failed locally");
                }
                None
            }
        }
    }

2133
    #[inline]
2134 2135 2136 2137
    pub fn discriminants(
        &'a self,
        tcx: TyCtxt<'a, 'gcx, 'tcx>,
    ) -> impl Iterator<Item=Discr<'tcx>> + Captures<'gcx> + 'a {
2138
        let repr_type = self.repr.discr_type();
2139
        let initial = repr_type.initial_discriminant(tcx.global_tcx());
O
Oliver Schneider 已提交
2140
        let mut prev_discr = None::<Discr<'tcx>>;
2141
        self.variants.iter().map(move |v| {
O
Oliver Schneider 已提交
2142
            let mut discr = prev_discr.map_or(initial, |d| d.wrap_incr(tcx));
2143
            if let VariantDiscr::Explicit(expr_did) = v.discr {
O
Oliver Schneider 已提交
2144 2145
                if let Some(new_discr) = self.eval_explicit_discr(tcx, expr_did) {
                    discr = new_discr;
2146 2147 2148 2149 2150 2151 2152 2153
                }
            }
            prev_discr = Some(discr);

            discr
        })
    }

2154 2155 2156 2157 2158 2159 2160 2161
    /// Compute the discriminant value used by a specific variant.
    /// Unlike `discriminants`, this is (amortized) constant-time,
    /// only doing at most one query for evaluating an explicit
    /// discriminant (the last one before the requested variant),
    /// assuming there are no constant-evaluation errors there.
    pub fn discriminant_for_variant(&self,
                                    tcx: TyCtxt<'a, 'gcx, 'tcx>,
                                    variant_index: usize)
O
Oliver Schneider 已提交
2162
                                    -> Discr<'tcx> {
2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176
        let (val, offset) = self.discriminant_def_for_variant(variant_index);
        let explicit_value = val
            .and_then(|expr_did| self.eval_explicit_discr(tcx, expr_did))
            .unwrap_or_else(|| self.repr.discr_type().initial_discriminant(tcx.global_tcx()));
        explicit_value.checked_add(tcx, offset as u128).0
    }

    /// Yields a DefId for the discriminant and an offset to add to it
    /// Alternatively, if there is no explicit discriminant, returns the
    /// inferred discriminant directly
    pub fn discriminant_def_for_variant(
        &self,
        variant_index: usize,
    ) -> (Option<DefId>, usize) {
2177
        let mut explicit_index = variant_index;
2178
        let expr_did;
2179 2180
        loop {
            match self.variants[explicit_index].discr {
2181 2182 2183 2184
                ty::VariantDiscr::Relative(0) => {
                    expr_did = None;
                    break;
                },
2185 2186 2187
                ty::VariantDiscr::Relative(distance) => {
                    explicit_index -= distance;
                }
2188 2189 2190
                ty::VariantDiscr::Explicit(did) => {
                    expr_did = Some(did);
                    break;
2191 2192 2193
                }
            }
        }
2194
        (expr_did, variant_index - explicit_index)
2195 2196
    }

2197
    pub fn destructor(&self, tcx: TyCtxt<'a, 'gcx, 'tcx>) -> Option<Destructor> {
2198
        tcx.adt_destructor(self.did)
2199 2200
    }

2201
    /// Returns a list of types such that `Self: Sized` if and only
2202
    /// if that type is Sized, or `TyErr` if this type is recursive.
A
Ariel Ben-Yehuda 已提交
2203 2204 2205 2206 2207 2208 2209 2210
    ///
    /// Oddly enough, checking that the sized-constraint is Sized is
    /// actually more expressive than checking all members:
    /// the Sized trait is inductive, so an associated type that references
    /// Self would prevent its containing ADT from being Sized.
    ///
    /// Due to normalization being eager, this applies even if
    /// the associated type is behind a pointer, e.g. issue #31299.
2211
    pub fn sized_constraint(&self, tcx: TyCtxt<'a, 'gcx, 'tcx>) -> &'tcx [Ty<'tcx>] {
2212
        match tcx.try_adt_sized_constraint(DUMMY_SP, self.did) {
2213
            Ok(tys) => tys,
2214
            Err(mut bug) => {
2215 2216 2217 2218
                debug!("adt_sized_constraint: {:?} is recursive", self);
                // This should be reported as an error by `check_representable`.
                //
                // Consider the type as Sized in the meanwhile to avoid
2219 2220 2221 2222
                // further errors. Delay our `bug` diagnostic here to get
                // emitted later as well in case we accidentally otherwise don't
                // emit an error.
                bug.delay_as_bug();
2223
                tcx.intern_type_list(&[tcx.types.err])
A
Ariel Ben-Yehuda 已提交
2224
            }
2225 2226
        }
    }
2227

2228 2229 2230 2231
    fn sized_constraint_for_ty(&self,
                               tcx: TyCtxt<'a, 'tcx, 'tcx>,
                               ty: Ty<'tcx>)
                               -> Vec<Ty<'tcx>> {
2232 2233
        let result = match ty.sty {
            TyBool | TyChar | TyInt(..) | TyUint(..) | TyFloat(..) |
V
varkor 已提交
2234 2235
            RawPtr(..) | Ref(..) | FnDef(..) | FnPtr(_) |
            Array(..) | Closure(..) | Generator(..) | Never => {
A
Ariel Ben-Yehuda 已提交
2236
                vec![]
2237 2238
            }

2239
            TyStr |
V
varkor 已提交
2240 2241
            Dynamic(..) |
            Slice(_) |
2242
            TyForeign(..) |
V
varkor 已提交
2243 2244
            Error |
            GeneratorWitness(..) => {
2245
                // these are never sized - return the target type
A
Ariel Ben-Yehuda 已提交
2246
                vec![ty]
2247 2248
            }

V
varkor 已提交
2249
            Tuple(ref tys) => {
2250 2251
                match tys.last() {
                    None => vec![],
2252
                    Some(ty) => self.sized_constraint_for_ty(tcx, ty)
2253
                }
2254 2255
            }

V
varkor 已提交
2256
            Adt(adt, substs) => {
2257
                // recursive case
2258
                let adt_tys = adt.sized_constraint(tcx);
2259
                debug!("sized_constraint_for_ty({:?}) intermediate = {:?}",
2260 2261 2262 2263 2264
                       ty, adt_tys);
                adt_tys.iter()
                    .map(|ty| ty.subst(tcx, substs))
                    .flat_map(|ty| self.sized_constraint_for_ty(tcx, ty))
                    .collect()
2265 2266
            }

V
varkor 已提交
2267
            Projection(..) | Anon(..) => {
2268 2269
                // must calculate explicitly.
                // FIXME: consider special-casing always-Sized projections
A
Ariel Ben-Yehuda 已提交
2270
                vec![ty]
2271 2272 2273
            }

            TyParam(..) => {
A
Ariel Ben-Yehuda 已提交
2274 2275 2276 2277
                // perf hack: if there is a `T: Sized` bound, then
                // we know that `T` is Sized and do not need to check
                // it on the impl.

2278
                let sized_trait = match tcx.lang_items().sized_trait() {
2279
                    Some(x) => x,
A
Ariel Ben-Yehuda 已提交
2280
                    _ => return vec![ty]
2281
                };
2282
                let sized_predicate = Binder::dummy(TraitRef {
2283
                    def_id: sized_trait,
2284
                    substs: tcx.mk_substs_trait(ty, &[])
2285
                }).to_predicate();
2286
                let predicates = tcx.predicates_of(self.did).predicates;
2287
                if predicates.into_iter().any(|p| p == sized_predicate) {
A
Ariel Ben-Yehuda 已提交
2288
                    vec![]
2289
                } else {
A
Ariel Ben-Yehuda 已提交
2290
                    vec![ty]
2291 2292 2293
                }
            }

V
varkor 已提交
2294
            Infer(..) => {
2295 2296 2297 2298 2299 2300 2301
                bug!("unexpected type `{:?}` in sized_constraint_for_ty",
                     ty)
            }
        };
        debug!("sized_constraint_for_ty({:?}) = {:?}", ty, result);
        result
    }
2302 2303
}

2304
impl<'a, 'gcx, 'tcx> FieldDef {
2305
    pub fn ty(&self, tcx: TyCtxt<'a, 'gcx, 'tcx>, subst: &Substs<'tcx>) -> Ty<'tcx> {
2306
        tcx.type_of(self.did).subst(tcx, subst)
2307
    }
2308 2309
}

2310 2311 2312 2313 2314 2315
/// Represents the various closure traits in the Rust language. This
/// will determine the type of the environment (`self`, in the
/// desuaring) argument that the closure expects.
///
/// You can get the environment type of a closure using
/// `tcx.closure_env_ty()`.
2316
#[derive(Clone, Copy, PartialOrd, Ord, PartialEq, Eq, Hash, Debug, RustcEncodable, RustcDecodable)]
2317
pub enum ClosureKind {
2318 2319 2320
    // Warning: Ordering is significant here! The ordering is chosen
    // because the trait Fn is a subtrait of FnMut and so in turn, and
    // hence we order it so that Fn < FnMut < FnOnce.
2321 2322 2323
    Fn,
    FnMut,
    FnOnce,
2324 2325
}

2326
impl<'a, 'tcx> ClosureKind {
2327 2328 2329
    // This is the initial value used when doing upvar inference.
    pub const LATTICE_BOTTOM: ClosureKind = ClosureKind::Fn;

2330
    pub fn trait_did(&self, tcx: TyCtxt<'a, 'tcx, 'tcx>) -> DefId {
2331 2332
        match *self {
            ClosureKind::Fn => tcx.require_lang_item(FnTraitLangItem),
2333
            ClosureKind::FnMut => {
2334
                tcx.require_lang_item(FnMutTraitLangItem)
2335
            }
2336
            ClosureKind::FnOnce => {
2337
                tcx.require_lang_item(FnOnceTraitLangItem)
2338 2339 2340
            }
        }
    }
2341 2342 2343 2344 2345

    /// True if this a type that impls this closure kind
    /// must also implement `other`.
    pub fn extends(self, other: ty::ClosureKind) -> bool {
        match (self, other) {
2346 2347 2348 2349 2350 2351
            (ClosureKind::Fn, ClosureKind::Fn) => true,
            (ClosureKind::Fn, ClosureKind::FnMut) => true,
            (ClosureKind::Fn, ClosureKind::FnOnce) => true,
            (ClosureKind::FnMut, ClosureKind::FnMut) => true,
            (ClosureKind::FnMut, ClosureKind::FnOnce) => true,
            (ClosureKind::FnOnce, ClosureKind::FnOnce) => true,
2352 2353 2354
            _ => false,
        }
    }
2355 2356 2357 2358 2359 2360 2361 2362 2363

    /// Returns the representative scalar type for this closure kind.
    /// See `TyS::to_opt_closure_kind` for more details.
    pub fn to_ty(self, tcx: TyCtxt<'_, '_, 'tcx>) -> Ty<'tcx> {
        match self {
            ty::ClosureKind::Fn => tcx.types.i8,
            ty::ClosureKind::FnMut => tcx.types.i16,
            ty::ClosureKind::FnOnce => tcx.types.i32,
        }
2364
    }
2365 2366
}

2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379
impl<'tcx> TyS<'tcx> {
    /// Iterator that walks `self` and any types reachable from
    /// `self`, in depth-first order. Note that just walks the types
    /// that appear in `self`, it does not descend into the fields of
    /// structs or variants. For example:
    ///
    /// ```notrust
    /// isize => { isize }
    /// Foo<Bar<isize>> => { Foo<Bar<isize>>, Bar<isize>, isize }
    /// [isize] => { [isize], isize }
    /// ```
    pub fn walk(&'tcx self) -> TypeWalker<'tcx> {
        TypeWalker::new(self)
2380 2381
    }

2382 2383 2384
    /// Iterator that walks the immediate children of `self`.  Hence
    /// `Foo<Bar<i32>, u32>` yields the sequence `[Bar<i32>, u32]`
    /// (but not `i32`, like `walk`).
2385
    pub fn walk_shallow(&'tcx self) -> AccIntoIter<walk::TypeWalkerArray<'tcx>> {
2386
        walk::walk_shallow(self)
2387 2388
    }

2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402
    /// Walks `ty` and any types appearing within `ty`, invoking the
    /// callback `f` on each type. If the callback returns false, then the
    /// children of the current type are ignored.
    ///
    /// Note: prefer `ty.walk()` where possible.
    pub fn maybe_walk<F>(&'tcx self, mut f: F)
        where F : FnMut(Ty<'tcx>) -> bool
    {
        let mut walker = self.walk();
        while let Some(ty) = walker.next() {
            if !f(ty) {
                walker.skip_current_subtree();
            }
        }
2403
    }
2404
}
2405

2406
impl BorrowKind {
2407
    pub fn from_mutbl(m: hir::Mutability) -> BorrowKind {
2408
        match m {
2409 2410
            hir::MutMutable => MutBorrow,
            hir::MutImmutable => ImmBorrow,
2411 2412
        }
    }
2413

2414 2415 2416 2417
    /// Returns a mutability `m` such that an `&m T` pointer could be used to obtain this borrow
    /// kind. Because borrow kinds are richer than mutabilities, we sometimes have to pick a
    /// mutability that is stronger than necessary so that it at least *would permit* the borrow in
    /// question.
2418
    pub fn to_mutbl_lossy(self) -> hir::Mutability {
2419
        match self {
2420 2421
            MutBorrow => hir::MutMutable,
            ImmBorrow => hir::MutImmutable,
2422 2423 2424 2425

            // We have no type corresponding to a unique imm borrow, so
            // use `&mut`. It gives all the capabilities of an `&uniq`
            // and hence is a safe "over approximation".
2426
            UniqueImmBorrow => hir::MutMutable,
2427
        }
2428
    }
2429

2430 2431 2432 2433 2434 2435
    pub fn to_user_str(&self) -> &'static str {
        match *self {
            MutBorrow => "mutable",
            ImmBorrow => "immutable",
            UniqueImmBorrow => "uniquely immutable",
        }
2436 2437 2438
    }
}

2439 2440
#[derive(Debug, Clone)]
pub enum Attributes<'gcx> {
2441
    Owned(Lrc<[ast::Attribute]>),
2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455
    Borrowed(&'gcx [ast::Attribute])
}

impl<'gcx> ::std::ops::Deref for Attributes<'gcx> {
    type Target = [ast::Attribute];

    fn deref(&self) -> &[ast::Attribute] {
        match self {
            &Attributes::Owned(ref data) => &data,
            &Attributes::Borrowed(data) => data
        }
    }
}

2456
impl<'a, 'gcx, 'tcx> TyCtxt<'a, 'gcx, 'tcx> {
2457
    pub fn body_tables(self, body: hir::BodyId) -> &'gcx TypeckTables<'gcx> {
2458
        self.typeck_tables_of(self.hir.body_owner_def_id(body))
2459 2460
    }

N
Niko Matsakis 已提交
2461 2462 2463
    /// Returns an iterator of the def-ids for all body-owners in this
    /// crate. If you would prefer to iterate over the bodies
    /// themselves, you can do `self.hir.krate().body_ids.iter()`.
2464 2465 2466
    pub fn body_owners(
        self,
    ) -> impl Iterator<Item = DefId> + Captures<'tcx> + Captures<'gcx> + 'a {
N
Niko Matsakis 已提交
2467 2468 2469 2470 2471 2472
        self.hir.krate()
                .body_ids
                .iter()
                .map(move |&body_id| self.hir.body_owner_def_id(body_id))
    }

J
John Kåre Alsaker 已提交
2473 2474 2475 2476 2477 2478
    pub fn par_body_owners<F: Fn(DefId) + sync::Sync + sync::Send>(self, f: F) {
        par_iter(&self.hir.krate().body_ids).for_each(|&body_id| {
            f(self.hir.body_owner_def_id(body_id))
        });
    }

2479
    pub fn expr_span(self, id: NodeId) -> Span {
2480
        match self.hir.find(id) {
2481
            Some(hir_map::NodeExpr(e)) => {
2482 2483 2484
                e.span
            }
            Some(f) => {
2485
                bug!("Node id {} is not an expr: {:?}", id, f);
2486 2487
            }
            None => {
2488
                bug!("Node id {} is not present in the node map", id);
2489
            }
2490
        }
2491 2492
    }

2493 2494
    pub fn provided_trait_methods(self, id: DefId) -> Vec<AssociatedItem> {
        self.associated_items(id)
2495
            .filter(|item| item.kind == AssociatedKind::Method && item.defaultness.has_value())
2496
            .collect()
2497 2498
    }

A
Andrew Cann 已提交
2499 2500 2501 2502 2503 2504
    pub fn trait_relevant_for_never(self, did: DefId) -> bool {
        self.associated_items(did).any(|item| {
            item.relevant_for_never()
        })
    }

2505 2506 2507 2508 2509 2510 2511
    pub fn opt_associated_item(self, def_id: DefId) -> Option<AssociatedItem> {
        let is_associated_item = if let Some(node_id) = self.hir.as_local_node_id(def_id) {
            match self.hir.get(node_id) {
                hir_map::NodeTraitItem(_) | hir_map::NodeImplItem(_) => true,
                _ => false,
            }
        } else {
2512
            match self.describe_def(def_id).expect("no def for def-id") {
2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524
                Def::AssociatedConst(_) | Def::Method(_) | Def::AssociatedTy(_) => true,
                _ => false,
            }
        };

        if is_associated_item {
            Some(self.associated_item(def_id))
        } else {
            None
        }
    }

2525 2526
    fn associated_item_from_trait_item_ref(self,
                                           parent_def_id: DefId,
2527
                                           parent_vis: &hir::Visibility,
2528
                                           trait_item_ref: &hir::TraitItemRef)
2529
                                           -> AssociatedItem {
2530
        let def_id = self.hir.local_def_id(trait_item_ref.id.node_id);
2531 2532 2533 2534
        let (kind, has_self) = match trait_item_ref.kind {
            hir::AssociatedItemKind::Const => (ty::AssociatedKind::Const, false),
            hir::AssociatedItemKind::Method { has_self } => {
                (ty::AssociatedKind::Method, has_self)
2535
            }
2536
            hir::AssociatedItemKind::Type => (ty::AssociatedKind::Type, false),
O
Oliver Schneider 已提交
2537
            hir::AssociatedItemKind::Existential => bug!("only impls can have existentials"),
2538 2539 2540
        };

        AssociatedItem {
2541
            ident: trait_item_ref.ident,
2542
            kind,
2543 2544
            // Visibility of trait items is inherited from their traits.
            vis: Visibility::from_hir(parent_vis, trait_item_ref.id.node_id, self),
2545
            defaultness: trait_item_ref.defaultness,
2546
            def_id,
2547 2548 2549 2550 2551 2552 2553 2554 2555
            container: TraitContainer(parent_def_id),
            method_has_self_argument: has_self
        }
    }

    fn associated_item_from_impl_item_ref(self,
                                          parent_def_id: DefId,
                                          impl_item_ref: &hir::ImplItemRef)
                                          -> AssociatedItem {
2556
        let def_id = self.hir.local_def_id(impl_item_ref.id.node_id);
2557 2558 2559 2560 2561 2562
        let (kind, has_self) = match impl_item_ref.kind {
            hir::AssociatedItemKind::Const => (ty::AssociatedKind::Const, false),
            hir::AssociatedItemKind::Method { has_self } => {
                (ty::AssociatedKind::Method, has_self)
            }
            hir::AssociatedItemKind::Type => (ty::AssociatedKind::Type, false),
O
Oliver Schneider 已提交
2563
            hir::AssociatedItemKind::Existential => (ty::AssociatedKind::Existential, false),
2564 2565
        };

2566 2567
        AssociatedItem {
            ident: impl_item_ref.ident,
2568
            kind,
2569 2570
            // Visibility of trait impl items doesn't matter.
            vis: ty::Visibility::from_hir(&impl_item_ref.vis, impl_item_ref.id.node_id, self),
2571
            defaultness: impl_item_ref.defaultness,
2572
            def_id,
2573 2574 2575 2576 2577
            container: ImplContainer(parent_def_id),
            method_has_self_argument: has_self
        }
    }

2578 2579 2580 2581 2582 2583 2584
    pub fn field_index(self, node_id: NodeId, tables: &TypeckTables) -> usize {
        let hir_id = self.hir.node_to_hir_id(node_id);
        tables.field_indices().get(hir_id).cloned().expect("no index for a field")
    }

    pub fn find_field_index(self, ident: Ident, variant: &VariantDef) -> Option<usize> {
        variant.fields.iter().position(|field| {
2585
            self.adjust_ident(ident, variant.did, DUMMY_NODE_ID).0 == field.ident.modern()
2586 2587 2588
        })
    }

2589 2590 2591
    pub fn associated_items(
        self,
        def_id: DefId,
2592
    ) -> impl Iterator<Item = AssociatedItem> + 'a {
2593
        let def_ids = self.associated_item_def_ids(def_id);
2594
        Box::new((0..def_ids.len()).map(move |i| self.associated_item(def_ids[i])))
2595
            as Box<dyn Iterator<Item = AssociatedItem> + 'a>
2596 2597
    }

2598 2599 2600
    /// Returns true if the impls are the same polarity and are implementing
    /// a trait which contains no items
    pub fn impls_are_allowed_to_overlap(self, def_id1: DefId, def_id2: DefId) -> bool {
2601
        if !self.features().overlapping_marker_traits {
2602 2603
            return false;
        }
2604 2605 2606 2607 2608 2609 2610 2611
        let trait1_is_empty = self.impl_trait_ref(def_id1)
            .map_or(false, |trait_ref| {
                self.associated_item_def_ids(trait_ref.def_id).is_empty()
            });
        let trait2_is_empty = self.impl_trait_ref(def_id2)
            .map_or(false, |trait_ref| {
                self.associated_item_def_ids(trait_ref.def_id).is_empty()
            });
2612
        self.impl_polarity(def_id1) == self.impl_polarity(def_id2)
2613 2614
            && trait1_is_empty
            && trait2_is_empty
S
Sean Griffin 已提交
2615 2616
    }

2617 2618
    // Returns `ty::VariantDef` if `def` refers to a struct,
    // or variant or their constructors, panics otherwise.
2619
    pub fn expect_variant_def(self, def: Def) -> &'tcx VariantDef {
2620
        match def {
2621
            Def::Variant(did) | Def::VariantCtor(did, ..) => {
2622
                let enum_did = self.parent_def_id(did).unwrap();
2623
                self.adt_def(enum_did).variant_with_id(did)
2624
            }
2625
            Def::Struct(did) | Def::Union(did) => {
2626
                self.adt_def(did).non_enum_variant()
2627 2628 2629
            }
            Def::StructCtor(ctor_did, ..) => {
                let did = self.parent_def_id(ctor_did).expect("struct ctor has no parent");
2630
                self.adt_def(did).non_enum_variant()
2631 2632 2633 2634 2635
            }
            _ => bug!("expect_variant_def used with unexpected def {:?}", def)
        }
    }

2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649
    /// Given a `VariantDef`, returns the def-id of the `AdtDef` of which it is a part.
    pub fn adt_def_id_of_variant(self, variant_def: &'tcx VariantDef) -> DefId {
        let def_key = self.def_key(variant_def.did);
        match def_key.disambiguated_data.data {
            // for enum variants and tuple structs, the def-id of the ADT itself
            // is the *parent* of the variant
            DefPathData::EnumVariant(..) | DefPathData::StructCtor =>
                DefId { krate: variant_def.did.krate, index: def_key.parent.unwrap() },

            // otherwise, for structs and unions, they share a def-id
            _ => variant_def.did,
        }
    }

2650
    pub fn item_name(self, id: DefId) -> InternedString {
2651
        if id.index == CRATE_DEF_INDEX {
2652
            self.original_crate_name(id.krate).as_interned_str()
2653
        } else {
2654
            let def_key = self.def_key(id);
2655
            // The name of a StructCtor is that of its struct parent.
2656
            if let hir_map::DefPathData::StructCtor = def_key.disambiguated_data.data {
2657 2658 2659 2660 2661 2662 2663 2664 2665
                self.item_name(DefId {
                    krate: id.krate,
                    index: def_key.parent.unwrap()
                })
            } else {
                def_key.disambiguated_data.data.get_opt_name().unwrap_or_else(|| {
                    bug!("item_name: no name for {:?}", self.def_path(id));
                })
            }
2666 2667 2668
        }
    }

2669 2670
    /// Return the possibly-auto-generated MIR of a (DefId, Subst) pair.
    pub fn instance_mir(self, instance: ty::InstanceDef<'gcx>)
2671
                        -> &'gcx Mir<'gcx>
2672 2673
    {
        match instance {
N
Niko Matsakis 已提交
2674
            ty::InstanceDef::Item(did) => {
2675
                self.optimized_mir(did)
N
Niko Matsakis 已提交
2676 2677 2678 2679 2680
            }
            ty::InstanceDef::Intrinsic(..) |
            ty::InstanceDef::FnPtrShim(..) |
            ty::InstanceDef::Virtual(..) |
            ty::InstanceDef::ClosureOnceShim { .. } |
2681
            ty::InstanceDef::DropGlue(..) |
S
scalexm 已提交
2682
            ty::InstanceDef::CloneShim(..) => {
2683
                self.mir_shims(instance)
N
Niko Matsakis 已提交
2684
            }
2685 2686 2687
        }
    }

2688 2689
    /// Given the DefId of an item, returns its MIR, borrowed immutably.
    /// Returns None if there is no MIR for the DefId
2690 2691 2692 2693 2694
    pub fn maybe_optimized_mir(self, did: DefId) -> Option<&'gcx Mir<'gcx>> {
        if self.is_mir_available(did) {
            Some(self.optimized_mir(did))
        } else {
            None
2695 2696 2697
        }
    }

2698
    /// Get the attributes of a definition.
2699
    pub fn get_attrs(self, did: DefId) -> Attributes<'gcx> {
2700
        if let Some(id) = self.hir.as_local_node_id(did) {
2701
            Attributes::Borrowed(self.hir.attrs(id))
2702
        } else {
A
achernyak 已提交
2703
            Attributes::Owned(self.item_attrs(did))
2704
        }
2705 2706
    }

2707
    /// Determine whether an item is annotated with an attribute
2708
    pub fn has_attr(self, did: DefId, attr: &str) -> bool {
2709
        attr::contains_name(&self.get_attrs(did), attr)
2710
    }
2711

2712 2713
    /// Returns true if this is an `auto trait`.
    pub fn trait_is_auto(self, trait_def_id: DefId) -> bool {
2714
        self.trait_def(trait_def_id).has_auto_impl
2715
    }
2716

J
John Kåre Alsaker 已提交
2717 2718 2719 2720
    pub fn generator_layout(self, def_id: DefId) -> &'tcx GeneratorLayout<'tcx> {
        self.optimized_mir(def_id).generator_layout.as_ref().unwrap()
    }

2721 2722
    /// Given the def_id of an impl, return the def_id of the trait it implements.
    /// If it implements no trait, return `None`.
2723
    pub fn trait_id_of_impl(self, def_id: DefId) -> Option<DefId> {
2724
        self.impl_trait_ref(def_id).map(|tr| tr.def_id)
2725
    }
2726 2727 2728

    /// If the given def ID describes a method belonging to an impl, return the
    /// ID of the impl that the method belongs to. Otherwise, return `None`.
2729
    pub fn impl_of_method(self, def_id: DefId) -> Option<DefId> {
2730
        let item = if def_id.krate != LOCAL_CRATE {
A
achernyak 已提交
2731
            if let Some(Def::Method(_)) = self.describe_def(def_id) {
2732 2733 2734 2735 2736
                Some(self.associated_item(def_id))
            } else {
                None
            }
        } else {
2737
            self.opt_associated_item(def_id)
2738 2739
        };

2740 2741 2742 2743
        item.and_then(|trait_item|
            match trait_item.container {
                TraitContainer(_) => None,
                ImplContainer(def_id) => Some(def_id),
2744
            }
2745
        )
2746 2747
    }

2748 2749
    /// Looks up the span of `impl_did` if the impl is local; otherwise returns `Err`
    /// with the name of the crate containing the impl.
2750
    pub fn span_of_impl(self, impl_did: DefId) -> Result<Span, Symbol> {
2751
        if impl_did.is_local() {
2752 2753
            let node_id = self.hir.as_local_node_id(impl_did).unwrap();
            Ok(self.hir.span(node_id))
2754
        } else {
2755
            Err(self.crate_name(impl_did.krate))
2756 2757
        }
    }
J
Jeffrey Seyfried 已提交
2758

2759 2760 2761
    // Hygienically compare a use-site name (`use_name`) for a field or an associated item with its
    // supposed definition name (`def_name`). The method also needs `DefId` of the supposed
    // definition's parent/scope to perform comparison.
2762 2763
    pub fn hygienic_eq(self, use_name: Ident, def_name: Ident, def_parent_def_id: DefId) -> bool {
        self.adjust_ident(use_name, def_parent_def_id, DUMMY_NODE_ID).0 == def_name.modern()
J
Jeffrey Seyfried 已提交
2764 2765 2766
    }

    pub fn adjust_ident(self, mut ident: Ident, scope: DefId, block: NodeId) -> (Ident, DefId) {
2767 2768
        ident = ident.modern();
        let target_expansion = match scope.krate {
2769
            LOCAL_CRATE => self.hir.definitions().expansion_that_defined(scope.index),
J
Jeffrey Seyfried 已提交
2770 2771
            _ => Mark::root(),
        };
2772 2773 2774
        let scope = match ident.span.adjust(target_expansion) {
            Some(actual_expansion) =>
                self.hir.definitions().parent_module_of_macro_def(actual_expansion),
2775
            None if block == DUMMY_NODE_ID => DefId::local(CRATE_DEF_INDEX), // Dummy DefId
J
Jeffrey Seyfried 已提交
2776 2777 2778 2779
            None => self.hir.get_module_parent(block),
        };
        (ident, scope)
    }
2780
}
2781

2782
impl<'a, 'gcx, 'tcx> TyCtxt<'a, 'gcx, 'tcx> {
2783
    pub fn with_freevars<T, F>(self, fid: NodeId, f: F) -> T where
2784
        F: FnOnce(&[hir::Freevar]) -> T,
2785
    {
A
Alex Crichton 已提交
2786 2787
        let def_id = self.hir.local_def_id(fid);
        match self.freevars(def_id) {
2788
            None => f(&[]),
2789
            Some(d) => f(&d),
2790 2791
        }
    }
2792
}
2793 2794 2795 2796 2797 2798 2799 2800 2801

fn associated_item<'a, 'tcx>(tcx: TyCtxt<'a, 'tcx, 'tcx>, def_id: DefId)
    -> AssociatedItem
{
    let id = tcx.hir.as_local_node_id(def_id).unwrap();
    let parent_id = tcx.hir.get_parent(id);
    let parent_def_id = tcx.hir.local_def_id(parent_id);
    let parent_item = tcx.hir.expect_item(parent_id);
    match parent_item.node {
C
csmoe 已提交
2802
        hir::ItemKind::Impl(.., ref impl_item_refs) => {
2803
            if let Some(impl_item_ref) = impl_item_refs.iter().find(|i| i.id.node_id == id) {
2804 2805
                let assoc_item = tcx.associated_item_from_impl_item_ref(parent_def_id,
                                                                        impl_item_ref);
2806 2807
                debug_assert_eq!(assoc_item.def_id, def_id);
                return assoc_item;
2808 2809 2810
            }
        }

C
csmoe 已提交
2811
        hir::ItemKind::Trait(.., ref trait_item_refs) => {
2812
            if let Some(trait_item_ref) = trait_item_refs.iter().find(|i| i.id.node_id == id) {
2813 2814 2815
                let assoc_item = tcx.associated_item_from_trait_item_ref(parent_def_id,
                                                                         &parent_item.vis,
                                                                         trait_item_ref);
2816 2817
                debug_assert_eq!(assoc_item.def_id, def_id);
                return assoc_item;
2818 2819 2820
            }
        }

2821
        _ => { }
2822
    }
2823 2824 2825 2826

    span_bug!(parent_item.span,
              "unexpected parent of trait or impl item or item not found: {:?}",
              parent_item.node)
2827 2828
}

2829 2830
/// Calculates the Sized-constraint.
///
2831
/// In fact, there are only a few options for the types in the constraint:
2832 2833 2834 2835
///     - an obviously-unsized type
///     - a type parameter or projection whose Sizedness can't be known
///     - a tuple of type parameters or projections, if there are multiple
///       such.
V
varkor 已提交
2836
///     - a Error, if a type contained itself. The representability
2837 2838 2839
///       check should catch this case.
fn adt_sized_constraint<'a, 'tcx>(tcx: TyCtxt<'a, 'tcx, 'tcx>,
                                  def_id: DefId)
2840
                                  -> &'tcx [Ty<'tcx>] {
2841
    let def = tcx.adt_def(def_id);
2842

2843
    let result = tcx.mk_type_list(def.variants.iter().flat_map(|v| {
2844 2845
        v.fields.last()
    }).flat_map(|f| {
2846
        def.sized_constraint_for_ty(tcx, tcx.type_of(f.did))
2847
    }));
2848

2849
    debug!("adt_sized_constraint: {:?} => {:?}", def, result);
2850

2851
    result
2852 2853
}

2854 2855
fn associated_item_def_ids<'a, 'tcx>(tcx: TyCtxt<'a, 'tcx, 'tcx>,
                                     def_id: DefId)
2856
                                     -> Lrc<Vec<DefId>> {
2857 2858 2859
    let id = tcx.hir.as_local_node_id(def_id).unwrap();
    let item = tcx.hir.expect_item(id);
    let vec: Vec<_> = match item.node {
C
csmoe 已提交
2860
        hir::ItemKind::Trait(.., ref trait_item_refs) => {
2861 2862 2863 2864 2865
            trait_item_refs.iter()
                           .map(|trait_item_ref| trait_item_ref.id)
                           .map(|id| tcx.hir.local_def_id(id.node_id))
                           .collect()
        }
C
csmoe 已提交
2866
        hir::ItemKind::Impl(.., ref impl_item_refs) => {
2867 2868 2869 2870 2871
            impl_item_refs.iter()
                          .map(|impl_item_ref| impl_item_ref.id)
                          .map(|id| tcx.hir.local_def_id(id.node_id))
                          .collect()
        }
C
csmoe 已提交
2872
        hir::ItemKind::TraitAlias(..) => vec![],
2873 2874
        _ => span_bug!(item.span, "associated_item_def_ids: not impl or trait")
    };
2875
    Lrc::new(vec)
2876 2877
}

A
achernyak 已提交
2878
fn def_span<'a, 'tcx>(tcx: TyCtxt<'a, 'tcx, 'tcx>, def_id: DefId) -> Span {
A
achernyak 已提交
2879
    tcx.hir.span_if_local(def_id).unwrap()
A
achernyak 已提交
2880 2881
}

A
achernyak 已提交
2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894
/// If the given def ID describes an item belonging to a trait,
/// return the ID of the trait that the trait item belongs to.
/// Otherwise, return `None`.
fn trait_of_item<'a, 'tcx>(tcx: TyCtxt<'a, 'tcx, 'tcx>, def_id: DefId) -> Option<DefId> {
    tcx.opt_associated_item(def_id)
        .and_then(|associated_item| {
            match associated_item.container {
                TraitContainer(def_id) => Some(def_id),
                ImplContainer(_) => None
            }
        })
}

2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906
/// Yields the parent function's `DefId` if `def_id` is an `impl Trait` definition
pub fn is_impl_trait_defn(tcx: TyCtxt, def_id: DefId) -> Option<DefId> {
    if let Some(node_id) = tcx.hir.as_local_node_id(def_id) {
        if let hir::map::NodeItem(item) = tcx.hir.get(node_id) {
            if let hir::ItemKind::Existential(ref exist_ty) = item.node {
                return exist_ty.impl_trait_fn;
            }
        }
    }
    None
}

2907
/// See `ParamEnv` struct def'n for details.
2908
fn param_env<'a, 'tcx>(tcx: TyCtxt<'a, 'tcx, 'tcx>,
2909 2910
                       def_id: DefId)
                       -> ParamEnv<'tcx> {
2911

O
Oliver Schneider 已提交
2912
    // The param_env of an impl Trait type is its defining function's param_env
2913 2914
    if let Some(parent) = is_impl_trait_defn(tcx, def_id) {
        return param_env(tcx, parent);
2915
    }
2916 2917
    // Compute the bounds on Self and the type parameters.

N
Niko Matsakis 已提交
2918 2919
    let InstantiatedPredicates { predicates } =
        tcx.predicates_of(def_id).instantiate_identity(tcx);
2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932

    // Finally, we have to normalize the bounds in the environment, in
    // case they contain any associated type projections. This process
    // can yield errors if the put in illegal associated types, like
    // `<i32 as Foo>::Bar` where `i32` does not implement `Foo`. We
    // report these errors right here; this doesn't actually feel
    // right to me, because constructing the environment feels like a
    // kind of a "idempotent" action, but I'm not sure where would be
    // a better place. In practice, we construct environments for
    // every fn once during type checking, and we'll abort if there
    // are any errors at that point, so after type checking you can be
    // sure that this will succeed without errors anyway.

2933
    let unnormalized_env = ty::ParamEnv::new(tcx.intern_predicates(&predicates),
2934
                                             traits::Reveal::UserFacing);
2935 2936 2937 2938 2939 2940 2941

    let body_id = tcx.hir.as_local_node_id(def_id).map_or(DUMMY_NODE_ID, |id| {
        tcx.hir.maybe_body_owned_by(id).map_or(id, |body| body.node_id)
    });
    let cause = traits::ObligationCause::misc(tcx.def_span(def_id), body_id);
    traits::normalize_param_env_or_error(tcx, def_id, unnormalized_env, cause)
}
A
achernyak 已提交
2942

2943
fn crate_disambiguator<'a, 'tcx>(tcx: TyCtxt<'a, 'tcx, 'tcx>,
2944
                                 crate_num: CrateNum) -> CrateDisambiguator {
2945 2946 2947 2948
    assert_eq!(crate_num, LOCAL_CRATE);
    tcx.sess.local_crate_disambiguator()
}

2949 2950 2951 2952 2953 2954
fn original_crate_name<'a, 'tcx>(tcx: TyCtxt<'a, 'tcx, 'tcx>,
                                 crate_num: CrateNum) -> Symbol {
    assert_eq!(crate_num, LOCAL_CRATE);
    tcx.crate_name.clone()
}

2955 2956 2957 2958 2959 2960 2961
fn crate_hash<'a, 'tcx>(tcx: TyCtxt<'a, 'tcx, 'tcx>,
                        crate_num: CrateNum)
                        -> Svh {
    assert_eq!(crate_num, LOCAL_CRATE);
    tcx.hir.crate_hash
}

V
varkor 已提交
2962 2963 2964 2965
fn instance_def_size_estimate<'a, 'tcx>(tcx: TyCtxt<'a, 'tcx, 'tcx>,
                                        instance_def: InstanceDef<'tcx>)
                                        -> usize {
    match instance_def {
2966 2967 2968
        InstanceDef::Item(..) |
        InstanceDef::DropGlue(..) => {
            let mir = tcx.instance_mir(instance_def);
V
varkor 已提交
2969 2970
            mir.basic_blocks().iter().map(|bb| bb.statements.len()).sum()
        },
2971
        // Estimate the size of other compiler-generated shims to be 1.
V
varkor 已提交
2972 2973 2974 2975
        _ => 1
    }
}

2976
pub fn provide(providers: &mut ty::query::Providers) {
2977
    context::provide(providers);
2978
    erase_regions::provide(providers);
2979 2980
    layout::provide(providers);
    util::provide(providers);
2981
    *providers = ty::query::Providers {
2982
        associated_item,
2983
        associated_item_def_ids,
2984
        adt_sized_constraint,
A
achernyak 已提交
2985
        def_span,
2986
        param_env,
A
achernyak 已提交
2987
        trait_of_item,
2988
        crate_disambiguator,
2989
        original_crate_name,
2990
        crate_hash,
2991
        trait_impls_of: trait_def::trait_impls_of_provider,
V
varkor 已提交
2992
        instance_def_size_estimate,
2993 2994 2995 2996
        ..*providers
    };
}

2997 2998 2999
/// A map for the local crate mapping each type to a vector of its
/// inherent impls. This is not meant to be used outside of coherence;
/// rather, you should request the vector for a specific type via
3000 3001
/// `tcx.inherent_impls(def_id)` so as to minimize your dependencies
/// (constructing this map requires touching the entire crate).
3002 3003
#[derive(Clone, Debug)]
pub struct CrateInherentImpls {
3004
    pub inherent_impls: DefIdMap<Lrc<Vec<DefId>>>,
3005
}
A
Ariel Ben-Yehuda 已提交
3006

3007
#[derive(Clone, Copy, PartialEq, Eq, PartialOrd, Ord, RustcEncodable, RustcDecodable)]
3008 3009 3010 3011 3012 3013
pub struct SymbolName {
    // FIXME: we don't rely on interning or equality here - better have
    // this be a `&'tcx str`.
    pub name: InternedString
}

3014 3015 3016 3017
impl_stable_hash_for!(struct self::SymbolName {
    name
});

3018 3019 3020
impl SymbolName {
    pub fn new(name: &str) -> SymbolName {
        SymbolName {
3021
            name: Symbol::intern(name).as_interned_str()
3022 3023
        }
    }
3024

3025 3026 3027
    pub fn as_str(&self) -> LocalInternedString {
        self.name.as_str()
    }
3028 3029 3030 3031 3032 3033 3034
}

impl fmt::Display for SymbolName {
    fn fmt(&self, fmt: &mut fmt::Formatter) -> fmt::Result {
        fmt::Display::fmt(&self.name, fmt)
    }
}
3035 3036 3037 3038 3039 3040

impl fmt::Debug for SymbolName {
    fn fmt(&self, fmt: &mut fmt::Formatter) -> fmt::Result {
        fmt::Display::fmt(&self.name, fmt)
    }
}