mod.rs 101.6 KB
Newer Older
1
// Copyright 2012-2015 The Rust Project Developers. See the COPYRIGHT
2 3 4 5 6 7 8 9 10
// file at the top-level directory of this distribution and at
// http://rust-lang.org/COPYRIGHT.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.

S
Steven Fackler 已提交
11
pub use self::Variance::*;
12
pub use self::AssociatedItemContainer::*;
S
Steven Fackler 已提交
13 14
pub use self::BorrowKind::*;
pub use self::IntVarValue::*;
15
pub use self::fold::TypeFoldable;
S
Steven Fackler 已提交
16

17
use hir::{map as hir_map, FreevarMap, TraitMap};
18
use hir::def::{Def, CtorKind, ExportMap};
19
use hir::def_id::{CrateNum, DefId, LocalDefId, CRATE_DEF_INDEX, LOCAL_CRATE};
20
use hir::map::DefPathData;
21
use hir::svh::Svh;
W
Wesley Wiser 已提交
22
use ich::Fingerprint;
23
use ich::StableHashingContext;
24
use infer::canonical::{Canonical, Canonicalize};
25
use middle::lang_items::{FnTraitLangItem, FnMutTraitLangItem, FnOnceTraitLangItem};
26
use middle::privacy::AccessLevels;
27
use middle::resolve_lifetime::ObjectLifetimeDefault;
28
use mir::Mir;
29
use mir::interpret::GlobalId;
J
John Kåre Alsaker 已提交
30
use mir::GeneratorLayout;
31
use session::CrateDisambiguator;
32
use traits::{self, Reveal};
33
use ty;
34
use ty::subst::{Subst, Substs};
O
Oliver Schneider 已提交
35
use ty::util::{IntTypeExt, Discr};
36
use ty::walk::TypeWalker;
37
use util::captures::Captures;
38
use util::nodemap::{NodeSet, DefIdMap, FxHashMap};
39

40
use serialize::{self, Encodable, Encoder};
W
Wesley Wiser 已提交
41
use std::cell::RefCell;
42
use std::cmp;
43
use std::fmt;
44
use std::hash::{Hash, Hasher};
45
use std::ops::Deref;
46
use rustc_data_structures::sync::Lrc;
47
use std::slice;
48
use std::vec::IntoIter;
49
use std::mem;
J
Jeffrey Seyfried 已提交
50
use syntax::ast::{self, DUMMY_NODE_ID, Name, Ident, NodeId};
51
use syntax::attr;
52
use syntax::ext::hygiene::Mark;
53
use syntax::symbol::{Symbol, LocalInternedString, InternedString};
54
use syntax_pos::{DUMMY_SP, Span};
55

56
use rustc_data_structures::accumulate_vec::IntoIter as AccIntoIter;
57 58
use rustc_data_structures::stable_hasher::{StableHasher, StableHasherResult,
                                           HashStable};
O
Oliver Schneider 已提交
59

60
use hir;
61

62
pub use self::sty::{Binder, CanonicalVar, DebruijnIndex};
J
John Kåre Alsaker 已提交
63
pub use self::sty::{FnSig, GenSig, PolyFnSig, PolyGenSig};
64
pub use self::sty::{InferTy, ParamTy, ProjectionTy, ExistentialPredicate};
65
pub use self::sty::{ClosureSubsts, GeneratorSubsts, UpvarSubsts, TypeAndMut};
66
pub use self::sty::{TraitRef, TypeVariants, PolyTraitRef};
67
pub use self::sty::{ExistentialTraitRef, PolyExistentialTraitRef};
68
pub use self::sty::{ExistentialProjection, PolyExistentialProjection, Const};
69
pub use self::sty::{BoundRegion, EarlyBoundRegion, FreeRegion, Region};
N
Niko Matsakis 已提交
70
pub use self::sty::RegionKind;
71
pub use self::sty::{TyVid, IntVid, FloatVid, RegionVid};
72 73
pub use self::sty::BoundRegion::*;
pub use self::sty::InferTy::*;
N
Niko Matsakis 已提交
74
pub use self::sty::RegionKind::*;
75 76
pub use self::sty::TypeVariants::*;

77 78 79
pub use self::binding::BindingMode;
pub use self::binding::BindingMode::*;

80
pub use self::context::{TyCtxt, GlobalArenas, AllArenas, tls, keep_local};
81
pub use self::context::{Lift, TypeckTables, InterpretInterner};
82

83 84
pub use self::instance::{Instance, InstanceDef};

85
pub use self::trait_def::TraitDef;
86

87 88
pub use self::maps::queries;

89
pub mod adjustment;
90
pub mod binding;
91
pub mod cast;
92
#[macro_use]
93
pub mod codec;
94
pub mod error;
95
mod erase_regions;
96 97
pub mod fast_reject;
pub mod fold;
A
Andrew Cann 已提交
98
pub mod inhabitedness;
99
pub mod item_path;
100
pub mod layout;
101
pub mod _match;
102
pub mod maps;
103 104
pub mod outlives;
pub mod relate;
105
pub mod steal;
106
pub mod subst;
107
pub mod trait_def;
108 109
pub mod walk;
pub mod wf;
110
pub mod util;
111

112 113
mod context;
mod flags;
114
mod instance;
115 116 117
mod structural_impls;
mod sty;

118
// Data types
119

120 121
/// The complete set of all analyses described in this module. This is
/// produced by the driver and fed to trans and later passes.
122 123 124
///
/// NB: These contents are being migrated into queries using the
/// *on-demand* infrastructure.
J
Jeffrey Seyfried 已提交
125
#[derive(Clone)]
126
pub struct CrateAnalysis {
127
    pub access_levels: Lrc<AccessLevels>,
128
    pub name: String,
129
    pub glob_map: Option<hir::GlobMap>,
130 131
}

132 133 134 135 136
#[derive(Clone)]
pub struct Resolutions {
    pub freevars: FreevarMap,
    pub trait_map: TraitMap,
    pub maybe_unused_trait_imports: NodeSet,
137
    pub maybe_unused_extern_crates: Vec<(NodeId, Span)>,
N
Niko Matsakis 已提交
138
    pub export_map: ExportMap,
139 140
}

141
#[derive(Clone, Copy, PartialEq, Eq, Debug)]
142
pub enum AssociatedItemContainer {
N
Niko Matsakis 已提交
143 144
    TraitContainer(DefId),
    ImplContainer(DefId),
145 146
}

147
impl AssociatedItemContainer {
148 149 150 151 152 153 154 155 156
    /// Asserts that this is the def-id of an associated item declared
    /// in a trait, and returns the trait def-id.
    pub fn assert_trait(&self) -> DefId {
        match *self {
            TraitContainer(id) => id,
            _ => bug!("associated item has wrong container type: {:?}", self)
        }
    }

N
Niko Matsakis 已提交
157
    pub fn id(&self) -> DefId {
158 159 160 161 162 163 164
        match *self {
            TraitContainer(id) => id,
            ImplContainer(id) => id,
        }
    }
}

A
Aaron Turon 已提交
165 166 167 168 169 170 171 172 173 174 175
/// The "header" of an impl is everything outside the body: a Self type, a trait
/// ref (in the case of a trait impl), and a set of predicates (from the
/// bounds/where clauses).
#[derive(Clone, PartialEq, Eq, Hash, Debug)]
pub struct ImplHeader<'tcx> {
    pub impl_def_id: DefId,
    pub self_ty: Ty<'tcx>,
    pub trait_ref: Option<TraitRef<'tcx>>,
    pub predicates: Vec<Predicate<'tcx>>,
}

S
scalexm 已提交
176
#[derive(Copy, Clone, Debug, PartialEq, Eq)]
177 178 179 180 181 182 183
pub struct AssociatedItem {
    pub def_id: DefId,
    pub name: Name,
    pub kind: AssociatedKind,
    pub vis: Visibility,
    pub defaultness: hir::Defaultness,
    pub container: AssociatedItemContainer,
184

185 186 187 188
    /// Whether this is a method with an explicit self
    /// as its first argument, allowing method calls.
    pub method_has_self_argument: bool,
}
189

190
#[derive(Copy, Clone, PartialEq, Eq, Debug, Hash, RustcEncodable, RustcDecodable)]
191 192 193 194 195
pub enum AssociatedKind {
    Const,
    Method,
    Type
}
196

197 198 199 200 201 202
impl AssociatedItem {
    pub fn def(&self) -> Def {
        match self.kind {
            AssociatedKind::Const => Def::AssociatedConst(self.def_id),
            AssociatedKind::Method => Def::Method(self.def_id),
            AssociatedKind::Type => Def::AssociatedTy(self.def_id),
203 204
        }
    }
A
Andrew Cann 已提交
205 206 207 208 209 210 211

    /// Tests whether the associated item admits a non-trivial implementation
    /// for !
    pub fn relevant_for_never<'tcx>(&self) -> bool {
        match self.kind {
            AssociatedKind::Const => true,
            AssociatedKind::Type => true,
A
Andrew Cann 已提交
212
            // FIXME(canndrew): Be more thorough here, check if any argument is uninhabited.
A
Andrew Cann 已提交
213 214 215
            AssociatedKind::Method => !self.method_has_self_argument,
        }
    }
216 217 218 219 220 221 222 223

    pub fn signature<'a, 'tcx>(&self, tcx: &TyCtxt<'a, 'tcx, 'tcx>) -> String {
        match self.kind {
            ty::AssociatedKind::Method => {
                // We skip the binder here because the binder would deanonymize all
                // late-bound regions, and we don't want method signatures to show up
                // `as for<'r> fn(&'r MyType)`.  Pretty-printing handles late-bound
                // regions just fine, showing `fn(&MyType)`.
224
                format!("{}", tcx.fn_sig(self.def_id).skip_binder())
225 226 227 228 229 230 231
            }
            ty::AssociatedKind::Type => format!("type {};", self.name.to_string()),
            ty::AssociatedKind::Const => {
                format!("const {}: {:?};", self.name.to_string(), tcx.type_of(self.def_id))
            }
        }
    }
232 233
}

234
#[derive(Clone, Debug, PartialEq, Eq, Copy, RustcEncodable, RustcDecodable)]
235 236 237 238
pub enum Visibility {
    /// Visible everywhere (including in other crates).
    Public,
    /// Visible only in the given crate-local module.
239
    Restricted(DefId),
240
    /// Not visible anywhere in the local crate. This is the visibility of private external items.
241
    Invisible,
242 243
}

244 245
pub trait DefIdTree: Copy {
    fn parent(self, id: DefId) -> Option<DefId>;
A
Andrew Cann 已提交
246 247 248 249 250 251 252 253 254 255 256 257 258 259

    fn is_descendant_of(self, mut descendant: DefId, ancestor: DefId) -> bool {
        if descendant.krate != ancestor.krate {
            return false;
        }

        while descendant != ancestor {
            match self.parent(descendant) {
                Some(parent) => descendant = parent,
                None => return false,
            }
        }
        true
    }
260 261
}

262 263 264
impl<'a, 'gcx, 'tcx> DefIdTree for TyCtxt<'a, 'gcx, 'tcx> {
    fn parent(self, id: DefId) -> Option<DefId> {
        self.def_key(id).parent.map(|index| DefId { index: index, ..id })
265 266 267
    }
}

268
impl Visibility {
269
    pub fn from_hir(visibility: &hir::Visibility, id: NodeId, tcx: TyCtxt) -> Self {
270 271
        match *visibility {
            hir::Public => Visibility::Public,
272
            hir::Visibility::Crate => Visibility::Restricted(DefId::local(CRATE_DEF_INDEX)),
273
            hir::Visibility::Restricted { ref path, .. } => match path.def {
274 275
                // If there is no resolution, `resolve` will have already reported an error, so
                // assume that the visibility is public to avoid reporting more privacy errors.
276
                Def::Err => Visibility::Public,
277
                def => Visibility::Restricted(def.def_id()),
278
            },
279
            hir::Inherited => {
J
Jeffrey Seyfried 已提交
280
                Visibility::Restricted(tcx.hir.get_module_parent(id))
281
            }
282 283
        }
    }
284 285

    /// Returns true if an item with this visibility is accessible from the given block.
A
Andrew Cann 已提交
286
    pub fn is_accessible_from<T: DefIdTree>(self, module: DefId, tree: T) -> bool {
287 288 289 290
        let restriction = match self {
            // Public items are visible everywhere.
            Visibility::Public => return true,
            // Private items from other crates are visible nowhere.
291
            Visibility::Invisible => return false,
292
            // Restricted items are visible in an arbitrary local module.
293
            Visibility::Restricted(other) if other.krate != module.krate => return false,
294 295 296
            Visibility::Restricted(module) => module,
        };

A
Andrew Cann 已提交
297
        tree.is_descendant_of(module, restriction)
298
    }
299 300

    /// Returns true if this visibility is at least as accessible as the given visibility
301
    pub fn is_at_least<T: DefIdTree>(self, vis: Visibility, tree: T) -> bool {
302 303
        let vis_restriction = match vis {
            Visibility::Public => return self == Visibility::Public,
304
            Visibility::Invisible => return true,
305 306 307
            Visibility::Restricted(module) => module,
        };

308
        self.is_accessible_from(vis_restriction, tree)
309
    }
310 311 312 313 314 315 316 317 318

    // Returns true if this item is visible anywhere in the local crate.
    pub fn is_visible_locally(self) -> bool {
        match self {
            Visibility::Public => true,
            Visibility::Restricted(def_id) => def_id.is_local(),
            Visibility::Invisible => false,
        }
    }
319 320
}

321
#[derive(Clone, PartialEq, RustcDecodable, RustcEncodable, Copy)]
322
pub enum Variance {
323 324 325 326
    Covariant,      // T<A> <: T<B> iff A <: B -- e.g., function return type
    Invariant,      // T<A> <: T<B> iff B == A -- e.g., type of mutable cell
    Contravariant,  // T<A> <: T<B> iff B <: A -- e.g., function param type
    Bivariant,      // T<A> <: T<B>            -- e.g., unused type parameter
327
}
328

329 330 331 332
/// The crate variances map is computed during typeck and contains the
/// variance of every item in the local crate. You should not use it
/// directly, because to do so will make your pass dependent on the
/// HIR of every item in the local crate. Instead, use
333
/// `tcx.variances_of()` to get the variance for a *particular*
334 335 336 337 338
/// item.
pub struct CrateVariancesMap {
    /// For each item with generics, maps to a vector of the variance
    /// of its generics.  If an item has no generics, it will have no
    /// entry.
339
    pub variances: FxHashMap<DefId, Lrc<Vec<ty::Variance>>>,
340 341

    /// An empty vector, useful for cloning.
342
    pub empty_variance: Lrc<Vec<ty::Variance>>,
343 344
}

345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404
impl Variance {
    /// `a.xform(b)` combines the variance of a context with the
    /// variance of a type with the following meaning.  If we are in a
    /// context with variance `a`, and we encounter a type argument in
    /// a position with variance `b`, then `a.xform(b)` is the new
    /// variance with which the argument appears.
    ///
    /// Example 1:
    ///
    ///     *mut Vec<i32>
    ///
    /// Here, the "ambient" variance starts as covariant. `*mut T` is
    /// invariant with respect to `T`, so the variance in which the
    /// `Vec<i32>` appears is `Covariant.xform(Invariant)`, which
    /// yields `Invariant`. Now, the type `Vec<T>` is covariant with
    /// respect to its type argument `T`, and hence the variance of
    /// the `i32` here is `Invariant.xform(Covariant)`, which results
    /// (again) in `Invariant`.
    ///
    /// Example 2:
    ///
    ///     fn(*const Vec<i32>, *mut Vec<i32)
    ///
    /// The ambient variance is covariant. A `fn` type is
    /// contravariant with respect to its parameters, so the variance
    /// within which both pointer types appear is
    /// `Covariant.xform(Contravariant)`, or `Contravariant`.  `*const
    /// T` is covariant with respect to `T`, so the variance within
    /// which the first `Vec<i32>` appears is
    /// `Contravariant.xform(Covariant)` or `Contravariant`.  The same
    /// is true for its `i32` argument. In the `*mut T` case, the
    /// variance of `Vec<i32>` is `Contravariant.xform(Invariant)`,
    /// and hence the outermost type is `Invariant` with respect to
    /// `Vec<i32>` (and its `i32` argument).
    ///
    /// Source: Figure 1 of "Taming the Wildcards:
    /// Combining Definition- and Use-Site Variance" published in PLDI'11.
    pub fn xform(self, v: ty::Variance) -> ty::Variance {
        match (self, v) {
            // Figure 1, column 1.
            (ty::Covariant, ty::Covariant) => ty::Covariant,
            (ty::Covariant, ty::Contravariant) => ty::Contravariant,
            (ty::Covariant, ty::Invariant) => ty::Invariant,
            (ty::Covariant, ty::Bivariant) => ty::Bivariant,

            // Figure 1, column 2.
            (ty::Contravariant, ty::Covariant) => ty::Contravariant,
            (ty::Contravariant, ty::Contravariant) => ty::Covariant,
            (ty::Contravariant, ty::Invariant) => ty::Invariant,
            (ty::Contravariant, ty::Bivariant) => ty::Bivariant,

            // Figure 1, column 3.
            (ty::Invariant, _) => ty::Invariant,

            // Figure 1, column 4.
            (ty::Bivariant, _) => ty::Bivariant,
        }
    }
}

405 406 407
// Contains information needed to resolve types and (in the future) look up
// the types of AST nodes.
#[derive(Copy, Clone, PartialEq, Eq, Hash)]
408
pub struct CReaderCacheKey {
409 410 411 412
    pub cnum: CrateNum,
    pub pos: usize,
}

413 414 415 416
// Flags that we track on types. These flags are propagated upwards
// through the type during type construction, so that we can quickly
// check whether the type has various kinds of types in it without
// recursing over the type itself.
417
bitflags! {
418 419 420 421 422 423
    pub struct TypeFlags: u32 {
        const HAS_PARAMS         = 1 << 0;
        const HAS_SELF           = 1 << 1;
        const HAS_TY_INFER       = 1 << 2;
        const HAS_RE_INFER       = 1 << 3;
        const HAS_RE_SKOL        = 1 << 4;
424 425 426 427 428

        /// Does this have any `ReEarlyBound` regions? Used to
        /// determine whether substitition is required, since those
        /// represent regions that are bound in a `ty::Generics` and
        /// hence may be substituted.
429
        const HAS_RE_EARLY_BOUND = 1 << 5;
430 431 432

        /// Does this have any region that "appears free" in the type?
        /// Basically anything but `ReLateBound` and `ReErased`.
433
        const HAS_FREE_REGIONS   = 1 << 6;
434 435

        /// Is an error type reachable?
436 437
        const HAS_TY_ERR         = 1 << 7;
        const HAS_PROJECTION     = 1 << 8;
J
John Kåre Alsaker 已提交
438 439

        // FIXME: Rename this to the actual property since it's used for generators too
440
        const HAS_TY_CLOSURE     = 1 << 9;
441 442 443

        // true if there are "names" of types and regions and so forth
        // that are local to a particular fn
444
        const HAS_LOCAL_NAMES    = 1 << 10;
445

446 447
        // Present if the type belongs in a local type context.
        // Only set for TyInfer other than Fresh.
448
        const KEEP_IN_LOCAL_TCX  = 1 << 11;
449

450 451
        // Is there a projection that does not involve a bound region?
        // Currently we can't normalize projections w/ bound regions.
452
        const HAS_NORMALIZABLE_PROJECTION = 1 << 12;
453

454 455 456 457
        // Set if this includes a "canonical" type or region var --
        // ought to be true only for the results of canonicalization.
        const HAS_CANONICAL_VARS = 1 << 13;

458 459
        const NEEDS_SUBST        = TypeFlags::HAS_PARAMS.bits |
                                   TypeFlags::HAS_SELF.bits |
460
                                   TypeFlags::HAS_RE_EARLY_BOUND.bits;
461 462

        // Flags representing the nominal content of a type,
463 464
        // computed by FlagsComputation. If you add a new nominal
        // flag, it should be added here too.
465 466 467 468
        const NOMINAL_FLAGS     = TypeFlags::HAS_PARAMS.bits |
                                  TypeFlags::HAS_SELF.bits |
                                  TypeFlags::HAS_TY_INFER.bits |
                                  TypeFlags::HAS_RE_INFER.bits |
469
                                  TypeFlags::HAS_RE_SKOL.bits |
470 471
                                  TypeFlags::HAS_RE_EARLY_BOUND.bits |
                                  TypeFlags::HAS_FREE_REGIONS.bits |
472
                                  TypeFlags::HAS_TY_ERR.bits |
473
                                  TypeFlags::HAS_PROJECTION.bits |
474
                                  TypeFlags::HAS_TY_CLOSURE.bits |
475
                                  TypeFlags::HAS_LOCAL_NAMES.bits |
476 477
                                  TypeFlags::KEEP_IN_LOCAL_TCX.bits |
                                  TypeFlags::HAS_CANONICAL_VARS.bits;
478
    }
479 480
}

481
pub struct TyS<'tcx> {
482
    pub sty: TypeVariants<'tcx>,
483
    pub flags: TypeFlags,
484 485

    // the maximal depth of any bound regions appearing in this type.
486
    region_depth: u32,
487 488
}

489
impl<'tcx> PartialEq for TyS<'tcx> {
490
    #[inline]
491 492 493 494 495
    fn eq(&self, other: &TyS<'tcx>) -> bool {
        // (self as *const _) == (other as *const _)
        (self as *const TyS<'tcx>) == (other as *const TyS<'tcx>)
    }
}
496
impl<'tcx> Eq for TyS<'tcx> {}
497

A
Alex Crichton 已提交
498 499
impl<'tcx> Hash for TyS<'tcx> {
    fn hash<H: Hasher>(&self, s: &mut H) {
N
Nick Cameron 已提交
500
        (self as *const TyS).hash(s)
A
Alex Crichton 已提交
501 502
    }
}
503

G
Guillaume Gomez 已提交
504 505 506 507 508 509 510 511 512 513 514 515
impl<'tcx> TyS<'tcx> {
    pub fn is_primitive_ty(&self) -> bool {
        match self.sty {
            TypeVariants::TyBool |
                TypeVariants::TyChar |
                TypeVariants::TyInt(_) |
                TypeVariants::TyUint(_) |
                TypeVariants::TyFloat(_) |
                TypeVariants::TyInfer(InferTy::IntVar(_)) |
                TypeVariants::TyInfer(InferTy::FloatVar(_)) |
                TypeVariants::TyInfer(InferTy::FreshIntTy(_)) |
                TypeVariants::TyInfer(InferTy::FreshFloatTy(_)) => true,
516
            TypeVariants::TyRef(_, x, _) => x.is_primitive_ty(),
G
Guillaume Gomez 已提交
517 518 519
            _ => false,
        }
    }
520 521 522 523 524 525 526 527

    pub fn is_suggestable(&self) -> bool {
        match self.sty {
            TypeVariants::TyAnon(..) |
            TypeVariants::TyFnDef(..) |
            TypeVariants::TyFnPtr(..) |
            TypeVariants::TyDynamic(..) |
            TypeVariants::TyClosure(..) |
528
            TypeVariants::TyInfer(..) |
529 530 531 532
            TypeVariants::TyProjection(..) => false,
            _ => true,
        }
    }
G
Guillaume Gomez 已提交
533 534
}

535
impl<'a, 'gcx> HashStable<StableHashingContext<'a>> for ty::TyS<'gcx> {
536
    fn hash_stable<W: StableHasherResult>(&self,
537
                                          hcx: &mut StableHashingContext<'a>,
538 539 540 541 542 543 544 545 546 547 548 549 550 551
                                          hasher: &mut StableHasher<W>) {
        let ty::TyS {
            ref sty,

            // The other fields just provide fast access to information that is
            // also contained in `sty`, so no need to hash them.
            flags: _,
            region_depth: _,
        } = *self;

        sty.hash_stable(hcx, hasher);
    }
}

552
pub type Ty<'tcx> = &'tcx TyS<'tcx>;
553

554 555
impl<'tcx> serialize::UseSpecializedEncodable for Ty<'tcx> {}
impl<'tcx> serialize::UseSpecializedDecodable for Ty<'tcx> {}
556

557 558 559 560 561 562 563 564 565 566 567
pub type CanonicalTy<'gcx> = Canonical<'gcx, Ty<'gcx>>;

impl <'gcx: 'tcx, 'tcx> Canonicalize<'gcx, 'tcx> for Ty<'tcx> {
    type Canonicalized = CanonicalTy<'gcx>;

    fn intern(_gcx: TyCtxt<'_, 'gcx, 'gcx>,
              value: Canonical<'gcx, Self::Lifted>) -> Self::Canonicalized {
        value
    }
}

A
Adam Perry 已提交
568
/// A wrapper for slices with the additional invariant
569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606
/// that the slice is interned and no other slice with
/// the same contents can exist in the same context.
/// This means we can use pointer + length for both
/// equality comparisons and hashing.
#[derive(Debug, RustcEncodable)]
pub struct Slice<T>([T]);

impl<T> PartialEq for Slice<T> {
    #[inline]
    fn eq(&self, other: &Slice<T>) -> bool {
        (&self.0 as *const [T]) == (&other.0 as *const [T])
    }
}
impl<T> Eq for Slice<T> {}

impl<T> Hash for Slice<T> {
    fn hash<H: Hasher>(&self, s: &mut H) {
        (self.as_ptr(), self.len()).hash(s)
    }
}

impl<T> Deref for Slice<T> {
    type Target = [T];
    fn deref(&self) -> &[T] {
        &self.0
    }
}

impl<'a, T> IntoIterator for &'a Slice<T> {
    type Item = &'a T;
    type IntoIter = <&'a [T] as IntoIterator>::IntoIter;
    fn into_iter(self) -> Self::IntoIter {
        self[..].iter()
    }
}

impl<'tcx> serialize::UseSpecializedDecodable for &'tcx Slice<Ty<'tcx>> {}

607 608 609 610 611 612 613 614
impl<T> Slice<T> {
    pub fn empty<'a>() -> &'a Slice<T> {
        unsafe {
            mem::transmute(slice::from_raw_parts(0x1 as *const T, 0))
        }
    }
}

S
Steve Klabnik 已提交
615 616 617
/// Upvars do not get their own node-id. Instead, we use the pair of
/// the original var id (that is, the root variable that is referenced
/// by the upvar) and the id of the closure expression.
618
#[derive(Clone, Copy, PartialEq, Eq, Hash, RustcEncodable, RustcDecodable)]
619
pub struct UpvarId {
620
    pub var_id: hir::HirId,
621
    pub closure_expr_id: LocalDefId,
622 623
}

J
Jorge Aparicio 已提交
624
#[derive(Clone, PartialEq, Eq, Hash, Debug, RustcEncodable, RustcDecodable, Copy)]
625 626 627 628 629 630
pub enum BorrowKind {
    /// Data must be immutable and is aliasable.
    ImmBorrow,

    /// Data must be immutable but not aliasable.  This kind of borrow
    /// cannot currently be expressed by the user and is used only in
K
king6cong 已提交
631
    /// implicit closure bindings. It is needed when the closure
632 633
    /// is borrowing or mutating a mutable referent, e.g.:
    ///
634
    ///    let x: &mut isize = ...;
635 636 637 638 639
    ///    let y = || *x += 5;
    ///
    /// If we were to try to translate this closure into a more explicit
    /// form, we'd encounter an error with the code as written:
    ///
640 641
    ///    struct Env { x: & &mut isize }
    ///    let x: &mut isize = ...;
642 643 644 645 646 647 648
    ///    let y = (&mut Env { &x }, fn_ptr);  // Closure is pair of env and fn
    ///    fn fn_ptr(env: &mut Env) { **env.x += 5; }
    ///
    /// This is then illegal because you cannot mutate a `&mut` found
    /// in an aliasable location. To solve, you'd have to translate with
    /// an `&mut` borrow:
    ///
649 650
    ///    struct Env { x: & &mut isize }
    ///    let x: &mut isize = ...;
651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669
    ///    let y = (&mut Env { &mut x }, fn_ptr); // changed from &x to &mut x
    ///    fn fn_ptr(env: &mut Env) { **env.x += 5; }
    ///
    /// Now the assignment to `**env.x` is legal, but creating a
    /// mutable pointer to `x` is not because `x` is not mutable. We
    /// could fix this by declaring `x` as `let mut x`. This is ok in
    /// user code, if awkward, but extra weird for closures, since the
    /// borrow is hidden.
    ///
    /// So we introduce a "unique imm" borrow -- the referent is
    /// immutable, but not aliasable. This solves the problem. For
    /// simplicity, we don't give users the way to express this
    /// borrow, it's just used when translating closures.
    UniqueImmBorrow,

    /// Data is mutable and not aliasable.
    MutBorrow
}

670 671
/// Information describing the capture of an upvar. This is computed
/// during `typeck`, specifically by `regionck`.
672
#[derive(PartialEq, Clone, Debug, Copy, RustcEncodable, RustcDecodable)]
673
pub enum UpvarCapture<'tcx> {
674 675 676 677 678 679
    /// Upvar is captured by value. This is always true when the
    /// closure is labeled `move`, but can also be true in other cases
    /// depending on inference.
    ByValue,

    /// Upvar is captured by reference.
680
    ByRef(UpvarBorrow<'tcx>),
681 682
}

683
#[derive(PartialEq, Clone, Copy, RustcEncodable, RustcDecodable)]
684
pub struct UpvarBorrow<'tcx> {
685 686 687
    /// The kind of borrow: by-ref upvars have access to shared
    /// immutable borrows, which are not part of the normal language
    /// syntax.
688
    pub kind: BorrowKind,
689 690

    /// Region of the resulting reference.
N
Niko Matsakis 已提交
691
    pub region: ty::Region<'tcx>,
692 693
}

694
pub type UpvarCaptureMap<'tcx> = FxHashMap<UpvarId, UpvarCapture<'tcx>>;
695

696 697
#[derive(Copy, Clone)]
pub struct ClosureUpvar<'tcx> {
698
    pub def: Def,
699 700 701 702
    pub span: Span,
    pub ty: Ty<'tcx>,
}

703
#[derive(Clone, Copy, PartialEq, Eq)]
704
pub enum IntVarValue {
705 706
    IntType(ast::IntTy),
    UintType(ast::UintTy),
707 708
}

709 710 711
#[derive(Clone, Copy, PartialEq, Eq)]
pub struct FloatVarValue(pub ast::FloatTy);

712
#[derive(Copy, Clone, Debug, RustcEncodable, RustcDecodable)]
713
pub struct TypeParamDef {
714 715
    pub has_default: bool,
    pub object_lifetime_default: ObjectLifetimeDefault,
716
    pub synthetic: Option<hir::SyntheticTyParamKind>,
717 718
}

719
impl ty::EarlyBoundRegion {
720
    pub fn to_bound_region(&self) -> ty::BoundRegion {
721
        ty::BoundRegion::BrNamed(self.def_id, self.name)
722
    }
723 724
}

V
varkor 已提交
725
#[derive(Clone, Debug, RustcEncodable, RustcDecodable)]
726
pub enum GenericParamDefKind {
V
varkor 已提交
727
    Lifetime,
728
    Type(TypeParamDef),
V
varkor 已提交
729 730
}

731 732 733 734 735
#[derive(Clone, RustcEncodable, RustcDecodable)]
pub struct GenericParamDef {
    pub name: InternedString,
    pub def_id: DefId,
    pub index: u32,
V
varkor 已提交
736 737 738 739 740 741

    /// `pure_wrt_drop`, set by the (unsafe) `#[may_dangle]` attribute
    /// on generic parameter `'a`/`T`, asserts data behind the parameter
    /// `'a`/`T` won't be accessed during the parent type's `Drop` impl.
    pub pure_wrt_drop: bool,

742 743 744
    pub kind: GenericParamDefKind,
}

V
varkor 已提交
745
impl GenericParamDef {
746 747
    pub fn to_early_bound_region_data(&self) -> ty::EarlyBoundRegion {
        match self.kind {
V
varkor 已提交
748
            GenericParamDefKind::Lifetime => {
749 750 751 752 753 754 755 756 757 758 759 760
                ty::EarlyBoundRegion {
                    def_id: self.def_id,
                    index: self.index,
                    name: self.name,
                }
            }
            _ => bug!("cannot convert a non-lifetime parameter def to an early bound region")
        }
    }

    pub fn to_bound_region(&self) -> ty::BoundRegion {
        match self.kind {
V
varkor 已提交
761
            GenericParamDefKind::Lifetime => {
762 763 764
                self.to_early_bound_region_data().to_bound_region()
            }
            _ => bug!("cannot convert a non-lifetime parameter def to an early bound region")
V
varkor 已提交
765 766 767 768
        }
    }
}

769 770 771 772 773
pub struct GenericParamCount {
    pub lifetimes: usize,
    pub types: usize,
}

774
/// Information about the formal type/lifetime parameters associated
775
/// with an item or method. Analogous to hir::Generics.
A
Ariel Ben-Yehuda 已提交
776
///
777 778
/// The ordering of parameters is the same as in Subst (excluding child generics):
/// Self (optionally), Lifetime params..., Type params...
779
#[derive(Clone, Debug, RustcEncodable, RustcDecodable)]
780
pub struct Generics {
781
    pub parent: Option<DefId>,
V
varkor 已提交
782
    pub parent_count: usize,
V
varkor 已提交
783
    pub params: Vec<GenericParamDef>,
784

V
varkor 已提交
785
    /// Reverse map to the `index` field of each `GenericParamDef`
786
    pub param_def_id_to_index: FxHashMap<DefId, u32>,
787

788
    pub has_self: bool,
789
    pub has_late_bound_regions: Option<Span>,
790 791
}

792
impl<'a, 'gcx, 'tcx> Generics {
793
    pub fn count(&self) -> usize {
V
varkor 已提交
794
        self.parent_count + self.params.len()
795
    }
796

V
varkor 已提交
797
    pub fn own_counts(&self) -> GenericParamCount {
798 799 800
        // We could cache this as a property of `GenericParamCount`, but
        // the aim is to refactor this away entirely eventually and the
        // presence of this method will be a constant reminder.
V
varkor 已提交
801
        let mut own_counts = GenericParamCount {
802 803 804
            lifetimes: 0,
            types: 0,
        };
805 806

        for param in self.params.iter() {
807
            match param.kind {
V
varkor 已提交
808 809
                GenericParamDefKind::Lifetime => own_counts.lifetimes += 1,
                GenericParamDefKind::Type(_) => own_counts.types += 1,
810 811 812
            };
        }

V
varkor 已提交
813
        own_counts
814 815
    }

816
    pub fn requires_monomorphization(&self, tcx: TyCtxt<'a, 'gcx, 'tcx>) -> bool {
V
varkor 已提交
817
        for param in self.params.iter() {
818
            match param.kind {
V
varkor 已提交
819
                GenericParamDefKind::Type(_) => return true,
V
varkor 已提交
820
                GenericParamDefKind::Lifetime => {}
V
varkor 已提交
821
            }
V
varkor 已提交
822 823 824
        }
        if let Some(parent_def_id) = self.parent {
            let parent = tcx.generics_of(parent_def_id);
825
            parent.requires_monomorphization(tcx)
V
varkor 已提交
826 827 828
        } else {
            false
        }
V
varkor 已提交
829 830
    }

831 832 833
    pub fn region_param(&'tcx self,
                        param: &EarlyBoundRegion,
                        tcx: TyCtxt<'a, 'gcx, 'tcx>)
834
                        -> &'tcx GenericParamDef
835
    {
V
varkor 已提交
836
        if let Some(index) = param.index.checked_sub(self.parent_count as u32) {
V
varkor 已提交
837
            let param = &self.params[index as usize];
838
            match param.kind {
V
varkor 已提交
839
                ty::GenericParamDefKind::Lifetime => param,
V
varkor 已提交
840 841
                _ => bug!("expected region parameter, but found another generic parameter")
            }
842 843 844 845
        } else {
            tcx.generics_of(self.parent.expect("parent_count>0 but no parent?"))
                .region_param(param, tcx)
        }
846 847
    }

848
    /// Returns the `TypeParamDef` associated with this `ParamTy`.
849 850
    pub fn type_param(&'tcx self,
                      param: &ParamTy,
A
Ariel Ben-Yehuda 已提交
851
                      tcx: TyCtxt<'a, 'gcx, 'tcx>)
852
                      -> &'tcx GenericParamDef {
853
        if let Some(index) = param.idx.checked_sub(self.parent_count as u32) {
V
varkor 已提交
854
            &self.params[index as usize]
855 856 857 858
        } else {
            tcx.generics_of(self.parent.expect("parent_count>0 but no parent?"))
                .type_param(param, tcx)
        }
859
    }
860 861
}

862
/// Bounds on generics.
863
#[derive(Clone, Default)]
864
pub struct GenericPredicates<'tcx> {
865
    pub parent: Option<DefId>,
866
    pub predicates: Vec<Predicate<'tcx>>,
867 868
}

869 870 871
impl<'tcx> serialize::UseSpecializedEncodable for GenericPredicates<'tcx> {}
impl<'tcx> serialize::UseSpecializedDecodable for GenericPredicates<'tcx> {}

872 873
impl<'a, 'gcx, 'tcx> GenericPredicates<'tcx> {
    pub fn instantiate(&self, tcx: TyCtxt<'a, 'gcx, 'tcx>, substs: &Substs<'tcx>)
874
                       -> InstantiatedPredicates<'tcx> {
875 876 877 878 879 880
        let mut instantiated = InstantiatedPredicates::empty();
        self.instantiate_into(tcx, &mut instantiated, substs);
        instantiated
    }
    pub fn instantiate_own(&self, tcx: TyCtxt<'a, 'gcx, 'tcx>, substs: &Substs<'tcx>)
                           -> InstantiatedPredicates<'tcx> {
881
        InstantiatedPredicates {
882 883 884 885 886 887 888 889
            predicates: self.predicates.subst(tcx, substs)
        }
    }

    fn instantiate_into(&self, tcx: TyCtxt<'a, 'gcx, 'tcx>,
                        instantiated: &mut InstantiatedPredicates<'tcx>,
                        substs: &Substs<'tcx>) {
        if let Some(def_id) = self.parent {
890
            tcx.predicates_of(def_id).instantiate_into(tcx, instantiated, substs);
891
        }
892
        instantiated.predicates.extend(self.predicates.iter().map(|p| p.subst(tcx, substs)))
893
    }
894

895 896 897 898 899 900 901 902 903 904 905 906 907 908 909
    pub fn instantiate_identity(&self, tcx: TyCtxt<'a, 'gcx, 'tcx>)
                                -> InstantiatedPredicates<'tcx> {
        let mut instantiated = InstantiatedPredicates::empty();
        self.instantiate_identity_into(tcx, &mut instantiated);
        instantiated
    }

    fn instantiate_identity_into(&self, tcx: TyCtxt<'a, 'gcx, 'tcx>,
                                 instantiated: &mut InstantiatedPredicates<'tcx>) {
        if let Some(def_id) = self.parent {
            tcx.predicates_of(def_id).instantiate_identity_into(tcx, instantiated);
        }
        instantiated.predicates.extend(&self.predicates)
    }

910
    pub fn instantiate_supertrait(&self, tcx: TyCtxt<'a, 'gcx, 'tcx>,
911 912 913
                                  poly_trait_ref: &ty::PolyTraitRef<'tcx>)
                                  -> InstantiatedPredicates<'tcx>
    {
914
        assert_eq!(self.parent, None);
915
        InstantiatedPredicates {
916
            predicates: self.predicates.iter().map(|pred| {
917
                pred.subst_supertrait(tcx, poly_trait_ref)
918
            }).collect()
919 920
        }
    }
921 922
}

923
#[derive(Clone, Copy, PartialEq, Eq, Hash, RustcEncodable, RustcDecodable)]
924
pub enum Predicate<'tcx> {
N
Niko Matsakis 已提交
925 926
    /// Corresponds to `where Foo : Bar<A,B,C>`. `Foo` here would be
    /// the `Self` type of the trait reference and `A`, `B`, and `C`
927
    /// would be the type parameters.
928
    Trait(PolyTraitPredicate<'tcx>),
929 930

    /// where 'a : 'b
931
    RegionOutlives(PolyRegionOutlivesPredicate<'tcx>),
932 933

    /// where T : 'a
934
    TypeOutlives(PolyTypeOutlivesPredicate<'tcx>),
935

N
Niko Matsakis 已提交
936 937
    /// where <T as TraitRef>::Name == X, approximately.
    /// See `ProjectionPredicate` struct for details.
938
    Projection(PolyProjectionPredicate<'tcx>),
939 940 941 942 943

    /// no syntax: T WF
    WellFormed(Ty<'tcx>),

    /// trait must be object-safe
N
Niko Matsakis 已提交
944
    ObjectSafe(DefId),
945

946 947 948
    /// No direct syntax. May be thought of as `where T : FnFoo<...>`
    /// for some substitutions `...` and T being a closure type.
    /// Satisfied (or refuted) once we know the closure's kind.
949
    ClosureKind(DefId, ClosureSubsts<'tcx>, ClosureKind),
N
Niko Matsakis 已提交
950 951 952

    /// `T1 <: T2`
    Subtype(PolySubtypePredicate<'tcx>),
953 954 955

    /// Constant initializer must evaluate successfully.
    ConstEvaluatable(DefId, &'tcx Substs<'tcx>),
956 957
}

958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973
/// The crate outlives map is computed during typeck and contains the
/// outlives of every item in the local crate. You should not use it
/// directly, because to do so will make your pass dependent on the
/// HIR of every item in the local crate. Instead, use
/// `tcx.inferred_outlives_of()` to get the outlives for a *particular*
/// item.
pub struct CratePredicatesMap<'tcx> {
    /// For each struct with outlive bounds, maps to a vector of the
    /// predicate of its outlive bounds. If an item has no outlives
    /// bounds, it will have no entry.
    pub predicates: FxHashMap<DefId, Lrc<Vec<ty::Predicate<'tcx>>>>,

    /// An empty vector, useful for cloning.
    pub empty_predicate: Lrc<Vec<ty::Predicate<'tcx>>>,
}

974 975 976 977 978 979
impl<'tcx> AsRef<Predicate<'tcx>> for Predicate<'tcx> {
    fn as_ref(&self) -> &Predicate<'tcx> {
        self
    }
}

980
impl<'a, 'gcx, 'tcx> Predicate<'tcx> {
981
    /// Performs a substitution suitable for going from a
982 983 984 985
    /// poly-trait-ref to supertraits that must hold if that
    /// poly-trait-ref holds. This is slightly different from a normal
    /// substitution in terms of what happens with bound regions.  See
    /// lengthy comment below for details.
986
    pub fn subst_supertrait(&self, tcx: TyCtxt<'a, 'gcx, 'tcx>,
987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049
                            trait_ref: &ty::PolyTraitRef<'tcx>)
                            -> ty::Predicate<'tcx>
    {
        // The interaction between HRTB and supertraits is not entirely
        // obvious. Let me walk you (and myself) through an example.
        //
        // Let's start with an easy case. Consider two traits:
        //
        //     trait Foo<'a> : Bar<'a,'a> { }
        //     trait Bar<'b,'c> { }
        //
        // Now, if we have a trait reference `for<'x> T : Foo<'x>`, then
        // we can deduce that `for<'x> T : Bar<'x,'x>`. Basically, if we
        // knew that `Foo<'x>` (for any 'x) then we also know that
        // `Bar<'x,'x>` (for any 'x). This more-or-less falls out from
        // normal substitution.
        //
        // In terms of why this is sound, the idea is that whenever there
        // is an impl of `T:Foo<'a>`, it must show that `T:Bar<'a,'a>`
        // holds.  So if there is an impl of `T:Foo<'a>` that applies to
        // all `'a`, then we must know that `T:Bar<'a,'a>` holds for all
        // `'a`.
        //
        // Another example to be careful of is this:
        //
        //     trait Foo1<'a> : for<'b> Bar1<'a,'b> { }
        //     trait Bar1<'b,'c> { }
        //
        // Here, if we have `for<'x> T : Foo1<'x>`, then what do we know?
        // The answer is that we know `for<'x,'b> T : Bar1<'x,'b>`. The
        // reason is similar to the previous example: any impl of
        // `T:Foo1<'x>` must show that `for<'b> T : Bar1<'x, 'b>`.  So
        // basically we would want to collapse the bound lifetimes from
        // the input (`trait_ref`) and the supertraits.
        //
        // To achieve this in practice is fairly straightforward. Let's
        // consider the more complicated scenario:
        //
        // - We start out with `for<'x> T : Foo1<'x>`. In this case, `'x`
        //   has a De Bruijn index of 1. We want to produce `for<'x,'b> T : Bar1<'x,'b>`,
        //   where both `'x` and `'b` would have a DB index of 1.
        //   The substitution from the input trait-ref is therefore going to be
        //   `'a => 'x` (where `'x` has a DB index of 1).
        // - The super-trait-ref is `for<'b> Bar1<'a,'b>`, where `'a` is an
        //   early-bound parameter and `'b' is a late-bound parameter with a
        //   DB index of 1.
        // - If we replace `'a` with `'x` from the input, it too will have
        //   a DB index of 1, and thus we'll have `for<'x,'b> Bar1<'x,'b>`
        //   just as we wanted.
        //
        // There is only one catch. If we just apply the substitution `'a
        // => 'x` to `for<'b> Bar1<'a,'b>`, the substitution code will
        // adjust the DB index because we substituting into a binder (it
        // tries to be so smart...) resulting in `for<'x> for<'b>
        // Bar1<'x,'b>` (we have no syntax for this, so use your
        // imagination). Basically the 'x will have DB index of 2 and 'b
        // will have DB index of 1. Not quite what we want. So we apply
        // the substitution to the *contents* of the trait reference,
        // rather than the trait reference itself (put another way, the
        // substitution code expects equal binding levels in the values
        // from the substitution and the value being substituted into, and
        // this trick achieves that).

1050
        let substs = &trait_ref.skip_binder().substs;
1051
        match *self {
1052 1053 1054 1055 1056 1057 1058 1059 1060 1061
            Predicate::Trait(ref binder) =>
                Predicate::Trait(binder.map_bound(|data| data.subst(tcx, substs))),
            Predicate::Subtype(ref binder) =>
                Predicate::Subtype(binder.map_bound(|data| data.subst(tcx, substs))),
            Predicate::RegionOutlives(ref binder) =>
                Predicate::RegionOutlives(binder.map_bound(|data| data.subst(tcx, substs))),
            Predicate::TypeOutlives(ref binder) =>
                Predicate::TypeOutlives(binder.map_bound(|data| data.subst(tcx, substs))),
            Predicate::Projection(ref binder) =>
                Predicate::Projection(binder.map_bound(|data| data.subst(tcx, substs))),
1062 1063 1064 1065
            Predicate::WellFormed(data) =>
                Predicate::WellFormed(data.subst(tcx, substs)),
            Predicate::ObjectSafe(trait_def_id) =>
                Predicate::ObjectSafe(trait_def_id),
1066 1067
            Predicate::ClosureKind(closure_def_id, closure_substs, kind) =>
                Predicate::ClosureKind(closure_def_id, closure_substs.subst(tcx, substs), kind),
1068 1069
            Predicate::ConstEvaluatable(def_id, const_substs) =>
                Predicate::ConstEvaluatable(def_id, const_substs.subst(tcx, substs)),
1070 1071 1072 1073
        }
    }
}

1074
#[derive(Clone, Copy, PartialEq, Eq, Hash, RustcEncodable, RustcDecodable)]
1075
pub struct TraitPredicate<'tcx> {
1076
    pub trait_ref: TraitRef<'tcx>
1077 1078 1079 1080
}
pub type PolyTraitPredicate<'tcx> = ty::Binder<TraitPredicate<'tcx>>;

impl<'tcx> TraitPredicate<'tcx> {
N
Niko Matsakis 已提交
1081
    pub fn def_id(&self) -> DefId {
1082 1083 1084
        self.trait_ref.def_id
    }

1085
    pub fn input_types<'a>(&'a self) -> impl DoubleEndedIterator<Item=Ty<'tcx>> + 'a {
1086
        self.trait_ref.input_types()
1087 1088 1089 1090 1091 1092 1093 1094
    }

    pub fn self_ty(&self) -> Ty<'tcx> {
        self.trait_ref.self_ty()
    }
}

impl<'tcx> PolyTraitPredicate<'tcx> {
N
Niko Matsakis 已提交
1095
    pub fn def_id(&self) -> DefId {
1096
        // ok to skip binder since trait def-id does not care about regions
1097
        self.skip_binder().def_id()
1098
    }
1099 1100
}

1101
#[derive(Clone, Copy, PartialEq, Eq, Hash, Debug, RustcEncodable, RustcDecodable)]
1102 1103
pub struct OutlivesPredicate<A,B>(pub A, pub B); // `A : B`
pub type PolyOutlivesPredicate<A,B> = ty::Binder<OutlivesPredicate<A,B>>;
S
scalexm 已提交
1104 1105 1106 1107 1108 1109
pub type RegionOutlivesPredicate<'tcx> = OutlivesPredicate<ty::Region<'tcx>,
                                                           ty::Region<'tcx>>;
pub type TypeOutlivesPredicate<'tcx> = OutlivesPredicate<Ty<'tcx>,
                                                         ty::Region<'tcx>>;
pub type PolyRegionOutlivesPredicate<'tcx> = ty::Binder<RegionOutlivesPredicate<'tcx>>;
pub type PolyTypeOutlivesPredicate<'tcx> = ty::Binder<TypeOutlivesPredicate<'tcx>>;
1110

1111
#[derive(Clone, Copy, PartialEq, Eq, Hash, Debug, RustcEncodable, RustcDecodable)]
N
Niko Matsakis 已提交
1112 1113 1114 1115 1116 1117 1118
pub struct SubtypePredicate<'tcx> {
    pub a_is_expected: bool,
    pub a: Ty<'tcx>,
    pub b: Ty<'tcx>
}
pub type PolySubtypePredicate<'tcx> = ty::Binder<SubtypePredicate<'tcx>>;

1119 1120 1121 1122 1123 1124 1125 1126 1127
/// This kind of predicate has no *direct* correspondent in the
/// syntax, but it roughly corresponds to the syntactic forms:
///
/// 1. `T : TraitRef<..., Item=Type>`
/// 2. `<T as TraitRef<...>>::Item == Type` (NYI)
///
/// In particular, form #1 is "desugared" to the combination of a
/// normal trait predicate (`T : TraitRef<...>`) and one of these
/// predicates. Form #2 is a broader form in that it also permits
1128 1129
/// equality between arbitrary types. Processing an instance of
/// Form #2 eventually yields one of these `ProjectionPredicate`
1130
/// instances to normalize the LHS.
1131
#[derive(Copy, Clone, PartialEq, Eq, Hash, RustcEncodable, RustcDecodable)]
1132 1133 1134 1135 1136 1137 1138
pub struct ProjectionPredicate<'tcx> {
    pub projection_ty: ProjectionTy<'tcx>,
    pub ty: Ty<'tcx>,
}

pub type PolyProjectionPredicate<'tcx> = Binder<ProjectionPredicate<'tcx>>;

1139
impl<'tcx> PolyProjectionPredicate<'tcx> {
1140 1141 1142 1143 1144
    /// Returns the def-id of the associated item being projected.
    pub fn item_def_id(&self) -> DefId {
        self.skip_binder().projection_ty.item_def_id
    }

1145 1146 1147 1148 1149 1150
    pub fn to_poly_trait_ref(&self, tcx: TyCtxt) -> PolyTraitRef<'tcx> {
        // Note: unlike with TraitRef::to_poly_trait_ref(),
        // self.0.trait_ref is permitted to have escaping regions.
        // This is because here `self` has a `Binder` and so does our
        // return value, so we are preserving the number of binding
        // levels.
1151
        self.map_bound(|predicate| predicate.projection_ty.trait_ref(tcx))
1152
    }
1153 1154

    pub fn ty(&self) -> Binder<Ty<'tcx>> {
1155 1156 1157 1158 1159 1160 1161 1162 1163 1164
        self.map_bound(|predicate| predicate.ty)
    }

    /// The DefId of the TraitItem for the associated type.
    ///
    /// Note that this is not the DefId of the TraitRef containing this
    /// associated type, which is in tcx.associated_item(projection_def_id()).container.
    pub fn projection_def_id(&self) -> DefId {
        // ok to skip binder since trait def-id does not care about regions
        self.skip_binder().projection_ty.item_def_id
1165
    }
1166 1167
}

1168 1169 1170 1171
pub trait ToPolyTraitRef<'tcx> {
    fn to_poly_trait_ref(&self) -> PolyTraitRef<'tcx>;
}

1172
impl<'tcx> ToPolyTraitRef<'tcx> for TraitRef<'tcx> {
1173
    fn to_poly_trait_ref(&self) -> PolyTraitRef<'tcx> {
1174
        ty::Binder::dummy(self.clone())
1175 1176 1177 1178 1179
    }
}

impl<'tcx> ToPolyTraitRef<'tcx> for PolyTraitPredicate<'tcx> {
    fn to_poly_trait_ref(&self) -> PolyTraitRef<'tcx> {
1180
        self.map_bound_ref(|trait_pred| trait_pred.trait_ref)
1181 1182 1183
    }
}

1184 1185
pub trait ToPredicate<'tcx> {
    fn to_predicate(&self) -> Predicate<'tcx>;
1186 1187
}

1188 1189
impl<'tcx> ToPredicate<'tcx> for TraitRef<'tcx> {
    fn to_predicate(&self) -> Predicate<'tcx> {
1190
        ty::Predicate::Trait(ty::Binder::dummy(ty::TraitPredicate {
1191 1192 1193 1194 1195
            trait_ref: self.clone()
        }))
    }
}

1196 1197
impl<'tcx> ToPredicate<'tcx> for PolyTraitRef<'tcx> {
    fn to_predicate(&self) -> Predicate<'tcx> {
1198
        ty::Predicate::Trait(self.to_poly_trait_predicate())
1199 1200 1201
    }
}

1202
impl<'tcx> ToPredicate<'tcx> for PolyRegionOutlivesPredicate<'tcx> {
1203
    fn to_predicate(&self) -> Predicate<'tcx> {
1204 1205 1206 1207
        Predicate::RegionOutlives(self.clone())
    }
}

1208 1209
impl<'tcx> ToPredicate<'tcx> for PolyTypeOutlivesPredicate<'tcx> {
    fn to_predicate(&self) -> Predicate<'tcx> {
1210 1211
        Predicate::TypeOutlives(self.clone())
    }
1212 1213
}

1214 1215
impl<'tcx> ToPredicate<'tcx> for PolyProjectionPredicate<'tcx> {
    fn to_predicate(&self) -> Predicate<'tcx> {
1216 1217 1218 1219
        Predicate::Projection(self.clone())
    }
}

1220
impl<'tcx> Predicate<'tcx> {
1221 1222 1223 1224 1225 1226
    /// Iterates over the types in this predicate. Note that in all
    /// cases this is skipping over a binder, so late-bound regions
    /// with depth 0 are bound by the predicate.
    pub fn walk_tys(&self) -> IntoIter<Ty<'tcx>> {
        let vec: Vec<_> = match *self {
            ty::Predicate::Trait(ref data) => {
1227
                data.skip_binder().input_types().collect()
1228
            }
1229 1230
            ty::Predicate::Subtype(binder) => {
                let SubtypePredicate { a, b, a_is_expected: _ } = binder.skip_binder();
N
Niko Matsakis 已提交
1231 1232
                vec![a, b]
            }
1233 1234
            ty::Predicate::TypeOutlives(binder) => {
                vec![binder.skip_binder().0]
1235 1236 1237 1238 1239
            }
            ty::Predicate::RegionOutlives(..) => {
                vec![]
            }
            ty::Predicate::Projection(ref data) => {
1240 1241
                let inner = data.skip_binder();
                inner.projection_ty.substs.types().chain(Some(inner.ty)).collect()
1242
            }
1243 1244 1245 1246 1247 1248
            ty::Predicate::WellFormed(data) => {
                vec![data]
            }
            ty::Predicate::ObjectSafe(_trait_def_id) => {
                vec![]
            }
1249 1250
            ty::Predicate::ClosureKind(_closure_def_id, closure_substs, _kind) => {
                closure_substs.substs.types().collect()
1251
            }
1252 1253 1254
            ty::Predicate::ConstEvaluatable(_, substs) => {
                substs.types().collect()
            }
1255 1256 1257 1258 1259 1260 1261 1262 1263 1264
        };

        // The only reason to collect into a vector here is that I was
        // too lazy to make the full (somewhat complicated) iterator
        // type that would be needed here. But I wanted this fn to
        // return an iterator conceptually, rather than a `Vec`, so as
        // to be closer to `Ty::walk`.
        vec.into_iter()
    }

1265
    pub fn to_opt_poly_trait_ref(&self) -> Option<PolyTraitRef<'tcx>> {
1266 1267
        match *self {
            Predicate::Trait(ref t) => {
1268
                Some(t.to_poly_trait_ref())
1269
            }
1270
            Predicate::Projection(..) |
N
Niko Matsakis 已提交
1271
            Predicate::Subtype(..) |
1272
            Predicate::RegionOutlives(..) |
1273 1274
            Predicate::WellFormed(..) |
            Predicate::ObjectSafe(..) |
1275
            Predicate::ClosureKind(..) |
1276 1277
            Predicate::TypeOutlives(..) |
            Predicate::ConstEvaluatable(..) => {
1278 1279
                None
            }
1280 1281
        }
    }
1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299

    pub fn to_opt_type_outlives(&self) -> Option<PolyTypeOutlivesPredicate<'tcx>> {
        match *self {
            Predicate::TypeOutlives(data) => {
                Some(data)
            }
            Predicate::Trait(..) |
            Predicate::Projection(..) |
            Predicate::Subtype(..) |
            Predicate::RegionOutlives(..) |
            Predicate::WellFormed(..) |
            Predicate::ObjectSafe(..) |
            Predicate::ClosureKind(..) |
            Predicate::ConstEvaluatable(..) => {
                None
            }
        }
    }
1300 1301
}

S
Steve Klabnik 已提交
1302 1303
/// Represents the bounds declared on a particular set of type
/// parameters.  Should eventually be generalized into a flag list of
1304 1305 1306 1307 1308
/// where clauses.  You can obtain a `InstantiatedPredicates` list from a
/// `GenericPredicates` by using the `instantiate` method. Note that this method
/// reflects an important semantic invariant of `InstantiatedPredicates`: while
/// the `GenericPredicates` are expressed in terms of the bound type
/// parameters of the impl/trait/whatever, an `InstantiatedPredicates` instance
S
Steve Klabnik 已提交
1309 1310 1311 1312 1313 1314 1315 1316
/// represented a set of bounds for some particular instantiation,
/// meaning that the generic parameters have been substituted with
/// their values.
///
/// Example:
///
///     struct Foo<T,U:Bar<T>> { ... }
///
1317
/// Here, the `GenericPredicates` for `Foo` would contain a list of bounds like
J
Jorge Aparicio 已提交
1318
/// `[[], [U:Bar<T>]]`.  Now if there were some particular reference
1319 1320
/// like `Foo<isize,usize>`, then the `InstantiatedPredicates` would be `[[],
/// [usize:Bar<isize>]]`.
1321
#[derive(Clone)]
1322
pub struct InstantiatedPredicates<'tcx> {
1323
    pub predicates: Vec<Predicate<'tcx>>,
1324 1325
}

1326 1327
impl<'tcx> InstantiatedPredicates<'tcx> {
    pub fn empty() -> InstantiatedPredicates<'tcx> {
1328
        InstantiatedPredicates { predicates: vec![] }
1329 1330
    }

1331 1332
    pub fn is_empty(&self) -> bool {
        self.predicates.is_empty()
1333
    }
1334 1335
}

N
Niko Matsakis 已提交
1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371
/// "Universes" are used during type- and trait-checking in the
/// presence of `for<..>` binders to control what sets of names are
/// visible. Universes are arranged into a tree: the root universe
/// contains names that are always visible. But when you enter into
/// some subuniverse, then it may add names that are only visible
/// within that subtree (but it can still name the names of its
/// ancestor universes).
///
/// To make this more concrete, consider this program:
///
/// ```
/// struct Foo { }
/// fn bar<T>(x: T) {
///   let y: for<'a> fn(&'a u8, Foo) = ...;
/// }
/// ```
///
/// The struct name `Foo` is in the root universe U0. But the type
/// parameter `T`, introduced on `bar`, is in a subuniverse U1 --
/// i.e., within `bar`, we can name both `T` and `Foo`, but outside of
/// `bar`, we cannot name `T`. Then, within the type of `y`, the
/// region `'a` is in a subuniverse U2 of U1, because we can name it
/// inside the fn type but not outside.
///
/// Universes are related to **skolemization** -- which is a way of
/// doing type- and trait-checking around these "forall" binders (also
/// called **universal quantification**). The idea is that when, in
/// the body of `bar`, we refer to `T` as a type, we aren't referring
/// to any type in particular, but rather a kind of "fresh" type that
/// is distinct from all other types we have actually declared. This
/// is called a **skolemized** type, and we use universes to talk
/// about this. In other words, a type name in universe 0 always
/// corresponds to some "ground" type that the user declared, but a
/// type name in a non-zero universe is a skolemized type -- an
/// idealized representative of "types in general" that we use for
/// checking generic functions.
1372
#[derive(Copy, Clone, Debug, PartialEq, Eq, PartialOrd, Ord, Hash, RustcEncodable, RustcDecodable)]
N
Niko Matsakis 已提交
1373 1374 1375 1376 1377
pub struct UniverseIndex(u32);

impl UniverseIndex {
    /// The root universe, where things that the user defined are
    /// visible.
1378
    pub const ROOT: Self = UniverseIndex(0);
N
Niko Matsakis 已提交
1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391

    /// A "subuniverse" corresponds to being inside a `forall` quantifier.
    /// So, for example, suppose we have this type in universe `U`:
    ///
    /// ```
    /// for<'a> fn(&'a u32)
    /// ```
    ///
    /// Once we "enter" into this `for<'a>` quantifier, we are in a
    /// subuniverse of `U` -- in this new universe, we can name the
    /// region `'a`, but that region was not nameable from `U` because
    /// it was not in scope there.
    pub fn subuniverse(self) -> UniverseIndex {
1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406
        UniverseIndex(self.0.checked_add(1).unwrap())
    }

    pub fn as_u32(&self) -> u32 {
        self.0
    }

    pub fn as_usize(&self) -> usize {
        self.0 as usize
    }
}

impl From<u32> for UniverseIndex {
    fn from(index: u32) -> Self {
        UniverseIndex(index)
1407
    }
N
Niko Matsakis 已提交
1408 1409
}

1410
/// When type checking, we use the `ParamEnv` to track
1411 1412 1413
/// details about the set of where-clauses that are in scope at this
/// particular point.
#[derive(Copy, Clone, Debug, PartialEq, Eq, Hash)]
1414
pub struct ParamEnv<'tcx> {
1415 1416
    /// Obligations that the caller must satisfy. This is basically
    /// the set of bounds on the in-scope type parameters, translated
1417
    /// into Obligations, and elaborated and normalized.
1418
    pub caller_bounds: &'tcx Slice<ty::Predicate<'tcx>>,
1419 1420 1421 1422 1423

    /// Typically, this is `Reveal::UserFacing`, but during trans we
    /// want `Reveal::All` -- note that this is always paired with an
    /// empty environment. To get that, use `ParamEnv::reveal()`.
    pub reveal: traits::Reveal,
1424
}
1425

1426
impl<'tcx> ParamEnv<'tcx> {
1427 1428 1429 1430 1431
    /// Construct a trait environment suitable for contexts where
    /// there are no where clauses in scope. Hidden types (like `impl
    /// Trait`) are left hidden, so this is suitable for ordinary
    /// type-checking.
    pub fn empty() -> Self {
S
Sean Griffin 已提交
1432
        Self::new(ty::Slice::empty(), Reveal::UserFacing)
1433 1434 1435 1436 1437 1438 1439 1440 1441 1442
    }

    /// Construct a trait environment with no where clauses in scope
    /// where the values of all `impl Trait` and other hidden types
    /// are revealed. This is suitable for monomorphized, post-typeck
    /// environments like trans or doing optimizations.
    ///
    /// NB. If you want to have predicates in scope, use `ParamEnv::new`,
    /// or invoke `param_env.with_reveal_all()`.
    pub fn reveal_all() -> Self {
S
Sean Griffin 已提交
1443
        Self::new(ty::Slice::empty(), Reveal::All)
1444 1445 1446 1447
    }

    /// Construct a trait environment with the given set of predicates.
    pub fn new(caller_bounds: &'tcx ty::Slice<ty::Predicate<'tcx>>,
S
Sean Griffin 已提交
1448
               reveal: Reveal)
1449
               -> Self {
S
Sean Griffin 已提交
1450
        ty::ParamEnv { caller_bounds, reveal }
1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467
    }

    /// Returns a new parameter environment with the same clauses, but
    /// which "reveals" the true results of projections in all cases
    /// (even for associated types that are specializable).  This is
    /// the desired behavior during trans and certain other special
    /// contexts; normally though we want to use `Reveal::UserFacing`,
    /// which is the default.
    pub fn with_reveal_all(self) -> Self {
        ty::ParamEnv { reveal: Reveal::All, ..self }
    }

    /// Returns this same environment but with no caller bounds.
    pub fn without_caller_bounds(self) -> Self {
        ty::ParamEnv { caller_bounds: ty::Slice::empty(), ..self }
    }

1468
    /// Creates a suitable environment in which to perform trait
1469 1470 1471 1472 1473
    /// queries on the given value. When type-checking, this is simply
    /// the pair of the environment plus value. But when reveal is set to
    /// All, then if `value` does not reference any type parameters, we will
    /// pair it with the empty environment. This improves caching and is generally
    /// invisible.
1474
    ///
1475 1476
    /// NB: We preserve the environment when type-checking because it
    /// is possible for the user to have wacky where-clauses like
1477
    /// `where Box<u32>: Copy`, which are clearly never
1478 1479
    /// satisfiable. We generally want to behave as if they were true,
    /// although the surrounding function is never reachable.
1480
    pub fn and<T: TypeFoldable<'tcx>>(self, value: T) -> ParamEnvAnd<'tcx, T> {
1481 1482 1483 1484 1485 1486
        match self.reveal {
            Reveal::UserFacing => {
                ParamEnvAnd {
                    param_env: self,
                    value,
                }
1487
            }
1488 1489

            Reveal::All => {
1490 1491 1492 1493 1494
                if value.has_skol()
                    || value.needs_infer()
                    || value.has_param_types()
                    || value.has_self_ty()
                {
1495 1496 1497 1498 1499 1500 1501 1502 1503 1504
                    ParamEnvAnd {
                        param_env: self,
                        value,
                    }
                } else {
                    ParamEnvAnd {
                        param_env: self.without_caller_bounds(),
                        value,
                    }
                }
1505
            }
1506 1507 1508
        }
    }
}
1509

1510
#[derive(Copy, Clone, Debug, PartialEq, Eq, Hash)]
1511 1512
pub struct ParamEnvAnd<'tcx, T> {
    pub param_env: ParamEnv<'tcx>,
1513
    pub value: T,
1514 1515
}

1516 1517
impl<'tcx, T> ParamEnvAnd<'tcx, T> {
    pub fn into_parts(self) -> (ParamEnv<'tcx>, T) {
1518
        (self.param_env, self.value)
1519
    }
1520 1521
}

1522 1523
impl<'a, 'gcx, T> HashStable<StableHashingContext<'a>> for ParamEnvAnd<'gcx, T>
    where T: HashStable<StableHashingContext<'a>>
1524 1525
{
    fn hash_stable<W: StableHasherResult>(&self,
1526
                                          hcx: &mut StableHashingContext<'a>,
1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537
                                          hasher: &mut StableHasher<W>) {
        let ParamEnvAnd {
            ref param_env,
            ref value
        } = *self;

        param_env.hash_stable(hcx, hasher);
        value.hash_stable(hcx, hasher);
    }
}

1538 1539 1540 1541 1542 1543
#[derive(Copy, Clone, Debug)]
pub struct Destructor {
    /// The def-id of the destructor method
    pub did: DefId,
}

1544
bitflags! {
1545 1546 1547 1548 1549 1550 1551
    pub struct AdtFlags: u32 {
        const NO_ADT_FLAGS        = 0;
        const IS_ENUM             = 1 << 0;
        const IS_PHANTOM_DATA     = 1 << 1;
        const IS_FUNDAMENTAL      = 1 << 2;
        const IS_UNION            = 1 << 3;
        const IS_BOX              = 1 << 4;
1552 1553 1554 1555
        /// Indicates whether this abstract data type will be expanded on in future (new
        /// fields/variants) and as such, whether downstream crates must match exhaustively on the
        /// fields/variants of this data type.
        ///
1556
        /// See RFC 2008 (<https://github.com/rust-lang/rfcs/pull/2008>).
1557
        const IS_NON_EXHAUSTIVE   = 1 << 5;
1558 1559 1560
    }
}

1561
#[derive(Debug)]
1562
pub struct VariantDef {
1563 1564
    /// The variant's DefId. If this is a tuple-like struct,
    /// this is the DefId of the struct's ctor.
1565 1566
    pub did: DefId,
    pub name: Name, // struct's name if this is a struct
1567
    pub discr: VariantDiscr,
1568
    pub fields: Vec<FieldDef>,
1569
    pub ctor_kind: CtorKind,
1570 1571
}

1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584
#[derive(Copy, Clone, Debug, PartialEq, Eq, RustcEncodable, RustcDecodable)]
pub enum VariantDiscr {
    /// Explicit value for this variant, i.e. `X = 123`.
    /// The `DefId` corresponds to the embedded constant.
    Explicit(DefId),

    /// The previous variant's discriminant plus one.
    /// For efficiency reasons, the distance from the
    /// last `Explicit` discriminant is being stored,
    /// or `0` for the first variant, if it has none.
    Relative(usize),
}

1585
#[derive(Debug)]
1586
pub struct FieldDef {
1587
    pub did: DefId,
1588
    pub name: Name,
1589
    pub vis: Visibility,
1590 1591
}

A
Ariel Ben-Yehuda 已提交
1592 1593 1594 1595
/// The definition of an abstract data type - a struct or enum.
///
/// These are all interned (by intern_adt_def) into the adt_defs
/// table.
1596
pub struct AdtDef {
1597
    pub did: DefId,
1598
    pub variants: Vec<VariantDef>,
1599
    flags: AdtFlags,
1600
    pub repr: ReprOptions,
1601 1602
}

1603 1604
impl PartialEq for AdtDef {
    // AdtDef are always interned and this is part of TyS equality
1605 1606 1607 1608
    #[inline]
    fn eq(&self, other: &Self) -> bool { self as *const _ == other as *const _ }
}

1609
impl Eq for AdtDef {}
1610

1611
impl Hash for AdtDef {
1612 1613
    #[inline]
    fn hash<H: Hasher>(&self, s: &mut H) {
1614
        (self as *const AdtDef).hash(s)
1615 1616 1617
    }
}

1618
impl<'tcx> serialize::UseSpecializedEncodable for &'tcx AdtDef {
1619
    fn default_encode<S: Encoder>(&self, s: &mut S) -> Result<(), S::Error> {
1620 1621 1622 1623
        self.did.encode(s)
    }
}

1624
impl<'tcx> serialize::UseSpecializedDecodable for &'tcx AdtDef {}
1625

1626

1627
impl<'a> HashStable<StableHashingContext<'a>> for AdtDef {
1628
    fn hash_stable<W: StableHasherResult>(&self,
1629
                                          hcx: &mut StableHashingContext<'a>,
1630
                                          hasher: &mut StableHasher<W>) {
W
Wesley Wiser 已提交
1631 1632 1633 1634
        thread_local! {
            static CACHE: RefCell<FxHashMap<usize, Fingerprint>> =
                RefCell::new(FxHashMap());
        }
1635

W
Wesley Wiser 已提交
1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656
        let hash: Fingerprint = CACHE.with(|cache| {
            let addr = self as *const AdtDef as usize;
            *cache.borrow_mut().entry(addr).or_insert_with(|| {
                let ty::AdtDef {
                    did,
                    ref variants,
                    ref flags,
                    ref repr,
                } = *self;

                let mut hasher = StableHasher::new();
                did.hash_stable(hcx, &mut hasher);
                variants.hash_stable(hcx, &mut hasher);
                flags.hash_stable(hcx, &mut hasher);
                repr.hash_stable(hcx, &mut hasher);

                hasher.finish()
           })
        });

        hash.hash_stable(hcx, hasher);
1657 1658 1659
    }
}

1660
#[derive(Copy, Clone, Debug, Eq, PartialEq, Hash)]
1661
pub enum AdtKind { Struct, Union, Enum }
1662

1663 1664
bitflags! {
    #[derive(RustcEncodable, RustcDecodable, Default)]
1665 1666
    pub struct ReprFlags: u8 {
        const IS_C               = 1 << 0;
1667 1668
        const IS_SIMD            = 1 << 1;
        const IS_TRANSPARENT     = 1 << 2;
1669
        // Internal only for now. If true, don't reorder fields.
1670
        const IS_LINEAR          = 1 << 3;
1671 1672 1673 1674

        // Any of these flags being set prevent field reordering optimisation.
        const IS_UNOPTIMISABLE   = ReprFlags::IS_C.bits |
                                   ReprFlags::IS_SIMD.bits |
1675
                                   ReprFlags::IS_LINEAR.bits;
1676 1677 1678 1679 1680 1681 1682 1683 1684
    }
}

impl_stable_hash_for!(struct ReprFlags {
    bits
});



1685 1686 1687 1688
/// Represents the repr options provided by the user,
#[derive(Copy, Clone, Eq, PartialEq, RustcEncodable, RustcDecodable, Default)]
pub struct ReprOptions {
    pub int: Option<attr::IntType>,
1689
    pub align: u32,
1690
    pub pack: u32,
1691
    pub flags: ReprFlags,
1692 1693
}

1694
impl_stable_hash_for!(struct ReprOptions {
1695
    align,
1696
    pack,
1697
    int,
1698
    flags
1699 1700
});

1701
impl ReprOptions {
1702
    pub fn new(tcx: TyCtxt, did: DefId) -> ReprOptions {
1703 1704
        let mut flags = ReprFlags::empty();
        let mut size = None;
1705
        let mut max_align = 0;
1706
        let mut min_pack = 0;
1707 1708
        for attr in tcx.get_attrs(did).iter() {
            for r in attr::find_repr_attrs(tcx.sess.diagnostic(), attr) {
1709
                flags.insert(match r {
1710
                    attr::ReprC => ReprFlags::IS_C,
1711 1712 1713 1714 1715 1716 1717 1718
                    attr::ReprPacked(pack) => {
                        min_pack = if min_pack > 0 {
                            cmp::min(pack, min_pack)
                        } else {
                            pack
                        };
                        ReprFlags::empty()
                    },
R
Robin Kruppe 已提交
1719
                    attr::ReprTransparent => ReprFlags::IS_TRANSPARENT,
1720 1721 1722 1723 1724
                    attr::ReprSimd => ReprFlags::IS_SIMD,
                    attr::ReprInt(i) => {
                        size = Some(i);
                        ReprFlags::empty()
                    },
1725 1726 1727 1728
                    attr::ReprAlign(align) => {
                        max_align = cmp::max(align, max_align);
                        ReprFlags::empty()
                    },
1729
                });
1730 1731
            }
        }
1732

1733
        // This is here instead of layout because the choice must make it into metadata.
1734 1735 1736
        if !tcx.consider_optimizing(|| format!("Reorder fields of {:?}", tcx.item_path_str(did))) {
            flags.insert(ReprFlags::IS_LINEAR);
        }
1737
        ReprOptions { int: size, align: max_align, pack: min_pack, flags: flags }
1738
    }
1739

1740 1741 1742 1743 1744
    #[inline]
    pub fn simd(&self) -> bool { self.flags.contains(ReprFlags::IS_SIMD) }
    #[inline]
    pub fn c(&self) -> bool { self.flags.contains(ReprFlags::IS_C) }
    #[inline]
1745
    pub fn packed(&self) -> bool { self.pack > 0 }
1746
    #[inline]
R
Robin Kruppe 已提交
1747 1748
    pub fn transparent(&self) -> bool { self.flags.contains(ReprFlags::IS_TRANSPARENT) }
    #[inline]
1749 1750
    pub fn linear(&self) -> bool { self.flags.contains(ReprFlags::IS_LINEAR) }

1751
    pub fn discr_type(&self) -> attr::IntType {
1752
        self.int.unwrap_or(attr::SignedInt(ast::IntTy::Isize))
1753
    }
1754 1755 1756 1757 1758

    /// Returns true if this `#[repr()]` should inhabit "smart enum
    /// layout" optimizations, such as representing `Foo<&T>` as a
    /// single pointer.
    pub fn inhibit_enum_layout_opt(&self) -> bool {
1759
        self.c() || self.int.is_some()
1760
    }
1761 1762 1763 1764 1765 1766

    /// Returns true if this `#[repr()]` should inhibit struct field reordering
    /// optimizations, such as with repr(C) or repr(packed(1)).
    pub fn inhibit_struct_field_reordering_opt(&self) -> bool {
        !(self.flags & ReprFlags::IS_UNOPTIMISABLE).is_empty() || (self.pack == 1)
    }
1767 1768
}

1769
impl<'a, 'gcx, 'tcx> AdtDef {
1770
    fn new(tcx: TyCtxt,
1771
           did: DefId,
A
Ariel Ben-Yehuda 已提交
1772
           kind: AdtKind,
1773 1774
           variants: Vec<VariantDef>,
           repr: ReprOptions) -> Self {
A
Ariel Ben-Yehuda 已提交
1775
        let mut flags = AdtFlags::NO_ADT_FLAGS;
A
Ariel Ben-Yehuda 已提交
1776
        let attrs = tcx.get_attrs(did);
1777
        if attr::contains_name(&attrs, "fundamental") {
A
Ariel Ben-Yehuda 已提交
1778
            flags = flags | AdtFlags::IS_FUNDAMENTAL;
1779
        }
1780
        if Some(did) == tcx.lang_items().phantom_data() {
A
Ariel Ben-Yehuda 已提交
1781
            flags = flags | AdtFlags::IS_PHANTOM_DATA;
1782
        }
1783
        if Some(did) == tcx.lang_items().owned_box() {
1784 1785
            flags = flags | AdtFlags::IS_BOX;
        }
1786 1787 1788
        if tcx.has_attr(did, "non_exhaustive") {
            flags = flags | AdtFlags::IS_NON_EXHAUSTIVE;
        }
1789 1790 1791 1792
        match kind {
            AdtKind::Enum => flags = flags | AdtFlags::IS_ENUM,
            AdtKind::Union => flags = flags | AdtFlags::IS_UNION,
            AdtKind::Struct => {}
1793
        }
1794
        AdtDef {
1795 1796 1797 1798
            did,
            variants,
            flags,
            repr,
1799 1800 1801
        }
    }

1802 1803 1804 1805 1806 1807 1808
    #[inline]
    pub fn is_struct(&self) -> bool {
        !self.is_union() && !self.is_enum()
    }

    #[inline]
    pub fn is_union(&self) -> bool {
1809
        self.flags.intersects(AdtFlags::IS_UNION)
1810 1811 1812 1813
    }

    #[inline]
    pub fn is_enum(&self) -> bool {
1814
        self.flags.intersects(AdtFlags::IS_ENUM)
1815 1816
    }

1817 1818 1819 1820 1821
    #[inline]
    pub fn is_non_exhaustive(&self) -> bool {
        self.flags.intersects(AdtFlags::IS_NON_EXHAUSTIVE)
    }

A
Ariel Ben-Yehuda 已提交
1822
    /// Returns the kind of the ADT - Struct or Enum.
1823
    #[inline]
A
Ariel Ben-Yehuda 已提交
1824
    pub fn adt_kind(&self) -> AdtKind {
1825
        if self.is_enum() {
A
Ariel Ben-Yehuda 已提交
1826
            AdtKind::Enum
1827
        } else if self.is_union() {
1828
            AdtKind::Union
1829
        } else {
A
Ariel Ben-Yehuda 已提交
1830
            AdtKind::Struct
1831 1832 1833
        }
    }

1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849
    pub fn descr(&self) -> &'static str {
        match self.adt_kind() {
            AdtKind::Struct => "struct",
            AdtKind::Union => "union",
            AdtKind::Enum => "enum",
        }
    }

    pub fn variant_descr(&self) -> &'static str {
        match self.adt_kind() {
            AdtKind::Struct => "struct",
            AdtKind::Union => "union",
            AdtKind::Enum => "variant",
        }
    }

A
Ariel Ben-Yehuda 已提交
1850 1851
    /// Returns whether this type is #[fundamental] for the purposes
    /// of coherence checking.
1852 1853
    #[inline]
    pub fn is_fundamental(&self) -> bool {
1854
        self.flags.intersects(AdtFlags::IS_FUNDAMENTAL)
1855 1856
    }

A
Ariel Ben-Yehuda 已提交
1857
    /// Returns true if this is PhantomData<T>.
1858 1859
    #[inline]
    pub fn is_phantom_data(&self) -> bool {
1860
        self.flags.intersects(AdtFlags::IS_PHANTOM_DATA)
1861 1862
    }

1863 1864 1865
    /// Returns true if this is Box<T>.
    #[inline]
    pub fn is_box(&self) -> bool {
1866
        self.flags.intersects(AdtFlags::IS_BOX)
1867 1868
    }

A
Ariel Ben-Yehuda 已提交
1869
    /// Returns whether this type has a destructor.
1870 1871
    pub fn has_dtor(&self, tcx: TyCtxt<'a, 'gcx, 'tcx>) -> bool {
        self.destructor(tcx).is_some()
1872 1873
    }

1874 1875 1876
    /// Asserts this is a struct or union and returns its unique variant.
    pub fn non_enum_variant(&self) -> &VariantDef {
        assert!(self.is_struct() || self.is_union());
1877
        &self.variants[0]
1878 1879 1880
    }

    #[inline]
1881
    pub fn predicates(&self, tcx: TyCtxt<'a, 'gcx, 'tcx>) -> GenericPredicates<'gcx> {
1882
        tcx.predicates_of(self.did)
1883
    }
1884

A
Ariel Ben-Yehuda 已提交
1885 1886
    /// Returns an iterator over all fields contained
    /// by this ADT.
1887
    #[inline]
1888 1889
    pub fn all_fields<'s>(&'s self) -> impl Iterator<Item = &'s FieldDef> {
        self.variants.iter().flat_map(|v| v.fields.iter())
1890 1891 1892 1893 1894 1895 1896
    }

    pub fn is_payloadfree(&self) -> bool {
        !self.variants.is_empty() &&
            self.variants.iter().all(|v| v.fields.is_empty())
    }

1897
    pub fn variant_with_id(&self, vid: DefId) -> &VariantDef {
1898 1899 1900 1901 1902 1903
        self.variants
            .iter()
            .find(|v| v.did == vid)
            .expect("variant_with_id: unknown variant")
    }

N
Niko Matsakis 已提交
1904 1905 1906 1907 1908 1909 1910
    pub fn variant_index_with_id(&self, vid: DefId) -> usize {
        self.variants
            .iter()
            .position(|v| v.did == vid)
            .expect("variant_index_with_id: unknown variant")
    }

1911
    pub fn variant_of_def(&self, def: Def) -> &VariantDef {
1912
        match def {
1913 1914
            Def::Variant(vid) | Def::VariantCtor(vid, ..) => self.variant_with_id(vid),
            Def::Struct(..) | Def::StructCtor(..) | Def::Union(..) |
1915
            Def::TyAlias(..) | Def::AssociatedTy(..) | Def::SelfTy(..) => self.non_enum_variant(),
1916
            _ => bug!("unexpected def {:?} in variant_of_def", def)
1917 1918
        }
    }
1919

O
Oliver Schneider 已提交
1920
    #[inline]
1921
    pub fn eval_explicit_discr(
O
Oliver Schneider 已提交
1922 1923 1924 1925
        &self,
        tcx: TyCtxt<'a, 'gcx, 'tcx>,
        expr_did: DefId,
    ) -> Option<Discr<'tcx>> {
1926
        let param_env = ParamEnv::empty();
O
Oliver Schneider 已提交
1927 1928 1929 1930 1931 1932 1933 1934
        let repr_type = self.repr.discr_type();
        let substs = Substs::identity_for_item(tcx.global_tcx(), expr_did);
        let instance = ty::Instance::new(expr_did, substs);
        let cid = GlobalId {
            instance,
            promoted: None
        };
        match tcx.const_eval(param_env.and(cid)) {
1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951
            Ok(val) => {
                // FIXME: Find the right type and use it instead of `val.ty` here
                if let Some(b) = val.assert_bits(val.ty) {
                    trace!("discriminants: {} ({:?})", b, repr_type);
                    Some(Discr {
                        val: b,
                        ty: val.ty,
                    })
                } else {
                    info!("invalid enum discriminant: {:#?}", val);
                    ::middle::const_val::struct_error(
                        tcx,
                        tcx.def_span(expr_did),
                        "constant evaluation of enum discriminant resulted in non-integer",
                    ).emit();
                    None
                }
O
Oliver Schneider 已提交
1952
            }
1953 1954
            Err(err) => {
                err.report(tcx, tcx.def_span(expr_did), "enum discriminant");
O
Oliver Schneider 已提交
1955 1956 1957 1958 1959 1960 1961 1962 1963 1964
                if !expr_did.is_local() {
                    span_bug!(tcx.def_span(expr_did),
                        "variant discriminant evaluation succeeded \
                            in its crate but failed locally");
                }
                None
            }
        }
    }

1965
    #[inline]
1966 1967 1968 1969
    pub fn discriminants(
        &'a self,
        tcx: TyCtxt<'a, 'gcx, 'tcx>,
    ) -> impl Iterator<Item=Discr<'tcx>> + Captures<'gcx> + 'a {
1970
        let repr_type = self.repr.discr_type();
1971
        let initial = repr_type.initial_discriminant(tcx.global_tcx());
O
Oliver Schneider 已提交
1972
        let mut prev_discr = None::<Discr<'tcx>>;
1973
        self.variants.iter().map(move |v| {
O
Oliver Schneider 已提交
1974
            let mut discr = prev_discr.map_or(initial, |d| d.wrap_incr(tcx));
1975
            if let VariantDiscr::Explicit(expr_did) = v.discr {
O
Oliver Schneider 已提交
1976 1977
                if let Some(new_discr) = self.eval_explicit_discr(tcx, expr_did) {
                    discr = new_discr;
1978 1979 1980 1981 1982 1983 1984 1985
                }
            }
            prev_discr = Some(discr);

            discr
        })
    }

1986 1987 1988 1989 1990 1991 1992 1993
    /// Compute the discriminant value used by a specific variant.
    /// Unlike `discriminants`, this is (amortized) constant-time,
    /// only doing at most one query for evaluating an explicit
    /// discriminant (the last one before the requested variant),
    /// assuming there are no constant-evaluation errors there.
    pub fn discriminant_for_variant(&self,
                                    tcx: TyCtxt<'a, 'gcx, 'tcx>,
                                    variant_index: usize)
O
Oliver Schneider 已提交
1994
                                    -> Discr<'tcx> {
1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008
        let (val, offset) = self.discriminant_def_for_variant(variant_index);
        let explicit_value = val
            .and_then(|expr_did| self.eval_explicit_discr(tcx, expr_did))
            .unwrap_or_else(|| self.repr.discr_type().initial_discriminant(tcx.global_tcx()));
        explicit_value.checked_add(tcx, offset as u128).0
    }

    /// Yields a DefId for the discriminant and an offset to add to it
    /// Alternatively, if there is no explicit discriminant, returns the
    /// inferred discriminant directly
    pub fn discriminant_def_for_variant(
        &self,
        variant_index: usize,
    ) -> (Option<DefId>, usize) {
2009
        let mut explicit_index = variant_index;
2010
        let expr_did;
2011 2012
        loop {
            match self.variants[explicit_index].discr {
2013 2014 2015 2016
                ty::VariantDiscr::Relative(0) => {
                    expr_did = None;
                    break;
                },
2017 2018 2019
                ty::VariantDiscr::Relative(distance) => {
                    explicit_index -= distance;
                }
2020 2021 2022
                ty::VariantDiscr::Explicit(did) => {
                    expr_did = Some(did);
                    break;
2023 2024 2025
                }
            }
        }
2026
        (expr_did, variant_index - explicit_index)
2027 2028
    }

2029
    pub fn destructor(&self, tcx: TyCtxt<'a, 'gcx, 'tcx>) -> Option<Destructor> {
2030
        tcx.adt_destructor(self.did)
2031 2032
    }

2033
    /// Returns a list of types such that `Self: Sized` if and only
2034
    /// if that type is Sized, or `TyErr` if this type is recursive.
A
Ariel Ben-Yehuda 已提交
2035 2036 2037 2038 2039 2040 2041 2042
    ///
    /// Oddly enough, checking that the sized-constraint is Sized is
    /// actually more expressive than checking all members:
    /// the Sized trait is inductive, so an associated type that references
    /// Self would prevent its containing ADT from being Sized.
    ///
    /// Due to normalization being eager, this applies even if
    /// the associated type is behind a pointer, e.g. issue #31299.
2043
    pub fn sized_constraint(&self, tcx: TyCtxt<'a, 'gcx, 'tcx>) -> &'tcx [Ty<'tcx>] {
2044
        match tcx.try_get_query::<queries::adt_sized_constraint>(DUMMY_SP, self.did) {
2045
            Ok(tys) => tys,
2046
            Err(mut bug) => {
2047 2048 2049 2050
                debug!("adt_sized_constraint: {:?} is recursive", self);
                // This should be reported as an error by `check_representable`.
                //
                // Consider the type as Sized in the meanwhile to avoid
2051 2052 2053 2054
                // further errors. Delay our `bug` diagnostic here to get
                // emitted later as well in case we accidentally otherwise don't
                // emit an error.
                bug.delay_as_bug();
2055
                tcx.intern_type_list(&[tcx.types.err])
A
Ariel Ben-Yehuda 已提交
2056
            }
2057 2058
        }
    }
2059

2060 2061 2062 2063
    fn sized_constraint_for_ty(&self,
                               tcx: TyCtxt<'a, 'tcx, 'tcx>,
                               ty: Ty<'tcx>)
                               -> Vec<Ty<'tcx>> {
2064 2065
        let result = match ty.sty {
            TyBool | TyChar | TyInt(..) | TyUint(..) | TyFloat(..) |
2066
            TyRawPtr(..) | TyRef(..) | TyFnDef(..) | TyFnPtr(_) |
J
John Kåre Alsaker 已提交
2067
            TyArray(..) | TyClosure(..) | TyGenerator(..) | TyNever => {
A
Ariel Ben-Yehuda 已提交
2068
                vec![]
2069 2070
            }

2071 2072 2073 2074 2075 2076
            TyStr |
            TyDynamic(..) |
            TySlice(_) |
            TyForeign(..) |
            TyError |
            TyGeneratorWitness(..) => {
2077
                // these are never sized - return the target type
A
Ariel Ben-Yehuda 已提交
2078
                vec![ty]
2079 2080
            }

A
Andrew Cann 已提交
2081
            TyTuple(ref tys) => {
2082 2083
                match tys.last() {
                    None => vec![],
2084
                    Some(ty) => self.sized_constraint_for_ty(tcx, ty)
2085
                }
2086 2087
            }

2088
            TyAdt(adt, substs) => {
2089
                // recursive case
2090
                let adt_tys = adt.sized_constraint(tcx);
2091
                debug!("sized_constraint_for_ty({:?}) intermediate = {:?}",
2092 2093 2094 2095 2096
                       ty, adt_tys);
                adt_tys.iter()
                    .map(|ty| ty.subst(tcx, substs))
                    .flat_map(|ty| self.sized_constraint_for_ty(tcx, ty))
                    .collect()
2097 2098
            }

2099
            TyProjection(..) | TyAnon(..) => {
2100 2101
                // must calculate explicitly.
                // FIXME: consider special-casing always-Sized projections
A
Ariel Ben-Yehuda 已提交
2102
                vec![ty]
2103 2104 2105
            }

            TyParam(..) => {
A
Ariel Ben-Yehuda 已提交
2106 2107 2108 2109
                // perf hack: if there is a `T: Sized` bound, then
                // we know that `T` is Sized and do not need to check
                // it on the impl.

2110
                let sized_trait = match tcx.lang_items().sized_trait() {
2111
                    Some(x) => x,
A
Ariel Ben-Yehuda 已提交
2112
                    _ => return vec![ty]
2113
                };
2114
                let sized_predicate = Binder::dummy(TraitRef {
2115
                    def_id: sized_trait,
2116
                    substs: tcx.mk_substs_trait(ty, &[])
2117
                }).to_predicate();
2118
                let predicates = tcx.predicates_of(self.did).predicates;
2119
                if predicates.into_iter().any(|p| p == sized_predicate) {
A
Ariel Ben-Yehuda 已提交
2120
                    vec![]
2121
                } else {
A
Ariel Ben-Yehuda 已提交
2122
                    vec![ty]
2123 2124 2125
                }
            }

A
Ariel Ben-Yehuda 已提交
2126
            TyInfer(..) => {
2127 2128 2129 2130 2131 2132 2133
                bug!("unexpected type `{:?}` in sized_constraint_for_ty",
                     ty)
            }
        };
        debug!("sized_constraint_for_ty({:?}) = {:?}", ty, result);
        result
    }
2134 2135
}

2136
impl<'a, 'gcx, 'tcx> FieldDef {
2137
    pub fn ty(&self, tcx: TyCtxt<'a, 'gcx, 'tcx>, subst: &Substs<'tcx>) -> Ty<'tcx> {
2138
        tcx.type_of(self.did).subst(tcx, subst)
2139
    }
2140 2141
}

2142 2143 2144 2145 2146 2147
/// Represents the various closure traits in the Rust language. This
/// will determine the type of the environment (`self`, in the
/// desuaring) argument that the closure expects.
///
/// You can get the environment type of a closure using
/// `tcx.closure_env_ty()`.
2148
#[derive(Clone, Copy, PartialOrd, Ord, PartialEq, Eq, Hash, Debug, RustcEncodable, RustcDecodable)]
2149
pub enum ClosureKind {
2150 2151 2152
    // Warning: Ordering is significant here! The ordering is chosen
    // because the trait Fn is a subtrait of FnMut and so in turn, and
    // hence we order it so that Fn < FnMut < FnOnce.
2153 2154 2155
    Fn,
    FnMut,
    FnOnce,
2156 2157
}

2158
impl<'a, 'tcx> ClosureKind {
2159 2160 2161
    // This is the initial value used when doing upvar inference.
    pub const LATTICE_BOTTOM: ClosureKind = ClosureKind::Fn;

2162
    pub fn trait_did(&self, tcx: TyCtxt<'a, 'tcx, 'tcx>) -> DefId {
2163 2164
        match *self {
            ClosureKind::Fn => tcx.require_lang_item(FnTraitLangItem),
2165
            ClosureKind::FnMut => {
2166
                tcx.require_lang_item(FnMutTraitLangItem)
2167
            }
2168
            ClosureKind::FnOnce => {
2169
                tcx.require_lang_item(FnOnceTraitLangItem)
2170 2171 2172
            }
        }
    }
2173 2174 2175 2176 2177

    /// True if this a type that impls this closure kind
    /// must also implement `other`.
    pub fn extends(self, other: ty::ClosureKind) -> bool {
        match (self, other) {
2178 2179 2180 2181 2182 2183
            (ClosureKind::Fn, ClosureKind::Fn) => true,
            (ClosureKind::Fn, ClosureKind::FnMut) => true,
            (ClosureKind::Fn, ClosureKind::FnOnce) => true,
            (ClosureKind::FnMut, ClosureKind::FnMut) => true,
            (ClosureKind::FnMut, ClosureKind::FnOnce) => true,
            (ClosureKind::FnOnce, ClosureKind::FnOnce) => true,
2184 2185 2186
            _ => false,
        }
    }
2187 2188 2189 2190 2191 2192 2193 2194 2195

    /// Returns the representative scalar type for this closure kind.
    /// See `TyS::to_opt_closure_kind` for more details.
    pub fn to_ty(self, tcx: TyCtxt<'_, '_, 'tcx>) -> Ty<'tcx> {
        match self {
            ty::ClosureKind::Fn => tcx.types.i8,
            ty::ClosureKind::FnMut => tcx.types.i16,
            ty::ClosureKind::FnOnce => tcx.types.i32,
        }
2196
    }
2197 2198
}

2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211
impl<'tcx> TyS<'tcx> {
    /// Iterator that walks `self` and any types reachable from
    /// `self`, in depth-first order. Note that just walks the types
    /// that appear in `self`, it does not descend into the fields of
    /// structs or variants. For example:
    ///
    /// ```notrust
    /// isize => { isize }
    /// Foo<Bar<isize>> => { Foo<Bar<isize>>, Bar<isize>, isize }
    /// [isize] => { [isize], isize }
    /// ```
    pub fn walk(&'tcx self) -> TypeWalker<'tcx> {
        TypeWalker::new(self)
2212 2213
    }

2214 2215 2216
    /// Iterator that walks the immediate children of `self`.  Hence
    /// `Foo<Bar<i32>, u32>` yields the sequence `[Bar<i32>, u32]`
    /// (but not `i32`, like `walk`).
2217
    pub fn walk_shallow(&'tcx self) -> AccIntoIter<walk::TypeWalkerArray<'tcx>> {
2218
        walk::walk_shallow(self)
2219 2220
    }

2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234
    /// Walks `ty` and any types appearing within `ty`, invoking the
    /// callback `f` on each type. If the callback returns false, then the
    /// children of the current type are ignored.
    ///
    /// Note: prefer `ty.walk()` where possible.
    pub fn maybe_walk<F>(&'tcx self, mut f: F)
        where F : FnMut(Ty<'tcx>) -> bool
    {
        let mut walker = self.walk();
        while let Some(ty) = walker.next() {
            if !f(ty) {
                walker.skip_current_subtree();
            }
        }
2235
    }
2236
}
2237

2238
impl BorrowKind {
2239
    pub fn from_mutbl(m: hir::Mutability) -> BorrowKind {
2240
        match m {
2241 2242
            hir::MutMutable => MutBorrow,
            hir::MutImmutable => ImmBorrow,
2243 2244
        }
    }
2245

2246 2247 2248 2249
    /// Returns a mutability `m` such that an `&m T` pointer could be used to obtain this borrow
    /// kind. Because borrow kinds are richer than mutabilities, we sometimes have to pick a
    /// mutability that is stronger than necessary so that it at least *would permit* the borrow in
    /// question.
2250
    pub fn to_mutbl_lossy(self) -> hir::Mutability {
2251
        match self {
2252 2253
            MutBorrow => hir::MutMutable,
            ImmBorrow => hir::MutImmutable,
2254 2255 2256 2257

            // We have no type corresponding to a unique imm borrow, so
            // use `&mut`. It gives all the capabilities of an `&uniq`
            // and hence is a safe "over approximation".
2258
            UniqueImmBorrow => hir::MutMutable,
2259
        }
2260
    }
2261

2262 2263 2264 2265 2266 2267
    pub fn to_user_str(&self) -> &'static str {
        match *self {
            MutBorrow => "mutable",
            ImmBorrow => "immutable",
            UniqueImmBorrow => "uniquely immutable",
        }
2268 2269 2270
    }
}

2271 2272
#[derive(Debug, Clone)]
pub enum Attributes<'gcx> {
2273
    Owned(Lrc<[ast::Attribute]>),
2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287
    Borrowed(&'gcx [ast::Attribute])
}

impl<'gcx> ::std::ops::Deref for Attributes<'gcx> {
    type Target = [ast::Attribute];

    fn deref(&self) -> &[ast::Attribute] {
        match self {
            &Attributes::Owned(ref data) => &data,
            &Attributes::Borrowed(data) => data
        }
    }
}

2288
impl<'a, 'gcx, 'tcx> TyCtxt<'a, 'gcx, 'tcx> {
2289
    pub fn body_tables(self, body: hir::BodyId) -> &'gcx TypeckTables<'gcx> {
2290
        self.typeck_tables_of(self.hir.body_owner_def_id(body))
2291 2292
    }

N
Niko Matsakis 已提交
2293 2294 2295
    /// Returns an iterator of the def-ids for all body-owners in this
    /// crate. If you would prefer to iterate over the bodies
    /// themselves, you can do `self.hir.krate().body_ids.iter()`.
2296 2297 2298
    pub fn body_owners(
        self,
    ) -> impl Iterator<Item = DefId> + Captures<'tcx> + Captures<'gcx> + 'a {
N
Niko Matsakis 已提交
2299 2300 2301 2302 2303 2304
        self.hir.krate()
                .body_ids
                .iter()
                .map(move |&body_id| self.hir.body_owner_def_id(body_id))
    }

2305
    pub fn expr_span(self, id: NodeId) -> Span {
2306
        match self.hir.find(id) {
2307
            Some(hir_map::NodeExpr(e)) => {
2308 2309 2310
                e.span
            }
            Some(f) => {
2311
                bug!("Node id {} is not an expr: {:?}", id, f);
2312 2313
            }
            None => {
2314
                bug!("Node id {} is not present in the node map", id);
2315
            }
2316
        }
2317 2318
    }

2319 2320
    pub fn provided_trait_methods(self, id: DefId) -> Vec<AssociatedItem> {
        self.associated_items(id)
2321
            .filter(|item| item.kind == AssociatedKind::Method && item.defaultness.has_value())
2322
            .collect()
2323 2324
    }

A
Andrew Cann 已提交
2325 2326 2327 2328 2329 2330
    pub fn trait_relevant_for_never(self, did: DefId) -> bool {
        self.associated_items(did).any(|item| {
            item.relevant_for_never()
        })
    }

2331 2332 2333 2334 2335 2336 2337
    pub fn opt_associated_item(self, def_id: DefId) -> Option<AssociatedItem> {
        let is_associated_item = if let Some(node_id) = self.hir.as_local_node_id(def_id) {
            match self.hir.get(node_id) {
                hir_map::NodeTraitItem(_) | hir_map::NodeImplItem(_) => true,
                _ => false,
            }
        } else {
2338
            match self.describe_def(def_id).expect("no def for def-id") {
2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350
                Def::AssociatedConst(_) | Def::Method(_) | Def::AssociatedTy(_) => true,
                _ => false,
            }
        };

        if is_associated_item {
            Some(self.associated_item(def_id))
        } else {
            None
        }
    }

2351 2352
    fn associated_item_from_trait_item_ref(self,
                                           parent_def_id: DefId,
2353
                                           parent_vis: &hir::Visibility,
2354
                                           trait_item_ref: &hir::TraitItemRef)
2355
                                           -> AssociatedItem {
2356
        let def_id = self.hir.local_def_id(trait_item_ref.id.node_id);
2357 2358 2359 2360
        let (kind, has_self) = match trait_item_ref.kind {
            hir::AssociatedItemKind::Const => (ty::AssociatedKind::Const, false),
            hir::AssociatedItemKind::Method { has_self } => {
                (ty::AssociatedKind::Method, has_self)
2361
            }
2362
            hir::AssociatedItemKind::Type => (ty::AssociatedKind::Type, false),
2363 2364 2365
        };

        AssociatedItem {
2366
            name: trait_item_ref.name,
2367
            kind,
2368 2369
            // Visibility of trait items is inherited from their traits.
            vis: Visibility::from_hir(parent_vis, trait_item_ref.id.node_id, self),
2370
            defaultness: trait_item_ref.defaultness,
2371
            def_id,
2372 2373 2374 2375 2376 2377 2378 2379 2380
            container: TraitContainer(parent_def_id),
            method_has_self_argument: has_self
        }
    }

    fn associated_item_from_impl_item_ref(self,
                                          parent_def_id: DefId,
                                          impl_item_ref: &hir::ImplItemRef)
                                          -> AssociatedItem {
2381
        let def_id = self.hir.local_def_id(impl_item_ref.id.node_id);
2382 2383 2384 2385 2386 2387 2388 2389 2390 2391
        let (kind, has_self) = match impl_item_ref.kind {
            hir::AssociatedItemKind::Const => (ty::AssociatedKind::Const, false),
            hir::AssociatedItemKind::Method { has_self } => {
                (ty::AssociatedKind::Method, has_self)
            }
            hir::AssociatedItemKind::Type => (ty::AssociatedKind::Type, false),
        };

        ty::AssociatedItem {
            name: impl_item_ref.name,
2392
            kind,
2393 2394
            // Visibility of trait impl items doesn't matter.
            vis: ty::Visibility::from_hir(&impl_item_ref.vis, impl_item_ref.id.node_id, self),
2395
            defaultness: impl_item_ref.defaultness,
2396
            def_id,
2397 2398 2399 2400 2401
            container: ImplContainer(parent_def_id),
            method_has_self_argument: has_self
        }
    }

2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412
    pub fn field_index(self, node_id: NodeId, tables: &TypeckTables) -> usize {
        let hir_id = self.hir.node_to_hir_id(node_id);
        tables.field_indices().get(hir_id).cloned().expect("no index for a field")
    }

    pub fn find_field_index(self, ident: Ident, variant: &VariantDef) -> Option<usize> {
        variant.fields.iter().position(|field| {
            self.adjust_ident(ident.modern(), variant.did, DUMMY_NODE_ID).0 == field.name.to_ident()
        })
    }

2413 2414 2415 2416
    pub fn associated_items(
        self,
        def_id: DefId,
    ) -> impl Iterator<Item = ty::AssociatedItem> + 'a {
2417
        let def_ids = self.associated_item_def_ids(def_id);
2418 2419
        Box::new((0..def_ids.len()).map(move |i| self.associated_item(def_ids[i])))
            as Box<dyn Iterator<Item = ty::AssociatedItem> + 'a>
2420 2421
    }

2422 2423 2424
    /// Returns true if the impls are the same polarity and are implementing
    /// a trait which contains no items
    pub fn impls_are_allowed_to_overlap(self, def_id1: DefId, def_id2: DefId) -> bool {
2425
        if !self.features().overlapping_marker_traits {
2426 2427
            return false;
        }
2428 2429 2430 2431 2432 2433 2434 2435
        let trait1_is_empty = self.impl_trait_ref(def_id1)
            .map_or(false, |trait_ref| {
                self.associated_item_def_ids(trait_ref.def_id).is_empty()
            });
        let trait2_is_empty = self.impl_trait_ref(def_id2)
            .map_or(false, |trait_ref| {
                self.associated_item_def_ids(trait_ref.def_id).is_empty()
            });
2436
        self.impl_polarity(def_id1) == self.impl_polarity(def_id2)
2437 2438
            && trait1_is_empty
            && trait2_is_empty
S
Sean Griffin 已提交
2439 2440
    }

2441 2442
    // Returns `ty::VariantDef` if `def` refers to a struct,
    // or variant or their constructors, panics otherwise.
2443
    pub fn expect_variant_def(self, def: Def) -> &'tcx VariantDef {
2444
        match def {
2445
            Def::Variant(did) | Def::VariantCtor(did, ..) => {
2446
                let enum_did = self.parent_def_id(did).unwrap();
2447
                self.adt_def(enum_did).variant_with_id(did)
2448
            }
2449
            Def::Struct(did) | Def::Union(did) => {
2450
                self.adt_def(did).non_enum_variant()
2451 2452 2453
            }
            Def::StructCtor(ctor_did, ..) => {
                let did = self.parent_def_id(ctor_did).expect("struct ctor has no parent");
2454
                self.adt_def(did).non_enum_variant()
2455 2456 2457 2458 2459
            }
            _ => bug!("expect_variant_def used with unexpected def {:?}", def)
        }
    }

2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473
    /// Given a `VariantDef`, returns the def-id of the `AdtDef` of which it is a part.
    pub fn adt_def_id_of_variant(self, variant_def: &'tcx VariantDef) -> DefId {
        let def_key = self.def_key(variant_def.did);
        match def_key.disambiguated_data.data {
            // for enum variants and tuple structs, the def-id of the ADT itself
            // is the *parent* of the variant
            DefPathData::EnumVariant(..) | DefPathData::StructCtor =>
                DefId { krate: variant_def.did.krate, index: def_key.parent.unwrap() },

            // otherwise, for structs and unions, they share a def-id
            _ => variant_def.did,
        }
    }

2474
    pub fn item_name(self, id: DefId) -> InternedString {
2475
        if id.index == CRATE_DEF_INDEX {
2476
            self.original_crate_name(id.krate).as_interned_str()
2477
        } else {
2478
            let def_key = self.def_key(id);
2479
            // The name of a StructCtor is that of its struct parent.
2480
            if let hir_map::DefPathData::StructCtor = def_key.disambiguated_data.data {
2481 2482 2483 2484 2485 2486 2487 2488 2489
                self.item_name(DefId {
                    krate: id.krate,
                    index: def_key.parent.unwrap()
                })
            } else {
                def_key.disambiguated_data.data.get_opt_name().unwrap_or_else(|| {
                    bug!("item_name: no name for {:?}", self.def_path(id));
                })
            }
2490 2491 2492
        }
    }

2493 2494
    /// Return the possibly-auto-generated MIR of a (DefId, Subst) pair.
    pub fn instance_mir(self, instance: ty::InstanceDef<'gcx>)
2495
                        -> &'gcx Mir<'gcx>
2496 2497
    {
        match instance {
N
Niko Matsakis 已提交
2498
            ty::InstanceDef::Item(did) => {
2499
                self.optimized_mir(did)
N
Niko Matsakis 已提交
2500 2501 2502 2503 2504
            }
            ty::InstanceDef::Intrinsic(..) |
            ty::InstanceDef::FnPtrShim(..) |
            ty::InstanceDef::Virtual(..) |
            ty::InstanceDef::ClosureOnceShim { .. } |
2505
            ty::InstanceDef::DropGlue(..) |
S
scalexm 已提交
2506
            ty::InstanceDef::CloneShim(..) => {
2507
                self.mir_shims(instance)
N
Niko Matsakis 已提交
2508
            }
2509 2510 2511
        }
    }

2512 2513
    /// Given the DefId of an item, returns its MIR, borrowed immutably.
    /// Returns None if there is no MIR for the DefId
2514 2515 2516 2517 2518
    pub fn maybe_optimized_mir(self, did: DefId) -> Option<&'gcx Mir<'gcx>> {
        if self.is_mir_available(did) {
            Some(self.optimized_mir(did))
        } else {
            None
2519 2520 2521
        }
    }

2522
    /// Get the attributes of a definition.
2523
    pub fn get_attrs(self, did: DefId) -> Attributes<'gcx> {
2524
        if let Some(id) = self.hir.as_local_node_id(did) {
2525
            Attributes::Borrowed(self.hir.attrs(id))
2526
        } else {
A
achernyak 已提交
2527
            Attributes::Owned(self.item_attrs(did))
2528
        }
2529 2530
    }

2531
    /// Determine whether an item is annotated with an attribute
2532
    pub fn has_attr(self, did: DefId, attr: &str) -> bool {
2533
        attr::contains_name(&self.get_attrs(did), attr)
2534
    }
2535

2536 2537
    /// Returns true if this is an `auto trait`.
    pub fn trait_is_auto(self, trait_def_id: DefId) -> bool {
2538
        self.trait_def(trait_def_id).has_auto_impl
2539
    }
2540

J
John Kåre Alsaker 已提交
2541 2542 2543 2544
    pub fn generator_layout(self, def_id: DefId) -> &'tcx GeneratorLayout<'tcx> {
        self.optimized_mir(def_id).generator_layout.as_ref().unwrap()
    }

2545 2546
    /// Given the def_id of an impl, return the def_id of the trait it implements.
    /// If it implements no trait, return `None`.
2547
    pub fn trait_id_of_impl(self, def_id: DefId) -> Option<DefId> {
2548
        self.impl_trait_ref(def_id).map(|tr| tr.def_id)
2549
    }
2550 2551 2552

    /// If the given def ID describes a method belonging to an impl, return the
    /// ID of the impl that the method belongs to. Otherwise, return `None`.
2553
    pub fn impl_of_method(self, def_id: DefId) -> Option<DefId> {
2554
        let item = if def_id.krate != LOCAL_CRATE {
A
achernyak 已提交
2555
            if let Some(Def::Method(_)) = self.describe_def(def_id) {
2556 2557 2558 2559 2560
                Some(self.associated_item(def_id))
            } else {
                None
            }
        } else {
2561
            self.opt_associated_item(def_id)
2562 2563 2564
        };

        match item {
2565
            Some(trait_item) => {
2566
                match trait_item.container {
2567 2568 2569
                    TraitContainer(_) => None,
                    ImplContainer(def_id) => Some(def_id),
                }
2570
            }
2571
            None => None
2572 2573 2574
        }
    }

2575 2576
    /// Looks up the span of `impl_did` if the impl is local; otherwise returns `Err`
    /// with the name of the crate containing the impl.
2577
    pub fn span_of_impl(self, impl_did: DefId) -> Result<Span, Symbol> {
2578
        if impl_did.is_local() {
2579 2580
            let node_id = self.hir.as_local_node_id(impl_did).unwrap();
            Ok(self.hir.span(node_id))
2581
        } else {
2582
            Err(self.crate_name(impl_did.krate))
2583 2584
        }
    }
J
Jeffrey Seyfried 已提交
2585

2586 2587 2588 2589 2590 2591 2592
    // Hygienically compare a use-site name (`use_name`) for a field or an associated item with its
    // supposed definition name (`def_name`). The method also needs `DefId` of the supposed
    // definition's parent/scope to perform comparison.
    pub fn hygienic_eq(self, use_name: Name, def_name: Name, def_parent_def_id: DefId) -> bool {
        self.adjust(use_name, def_parent_def_id, DUMMY_NODE_ID).0 == def_name.to_ident()
    }

J
Jeffrey Seyfried 已提交
2593 2594 2595 2596 2597 2598 2599 2600 2601
    pub fn adjust(self, name: Name, scope: DefId, block: NodeId) -> (Ident, DefId) {
        self.adjust_ident(name.to_ident(), scope, block)
    }

    pub fn adjust_ident(self, mut ident: Ident, scope: DefId, block: NodeId) -> (Ident, DefId) {
        let expansion = match scope.krate {
            LOCAL_CRATE => self.hir.definitions().expansion(scope.index),
            _ => Mark::root(),
        };
2602
        let scope = match ident.span.adjust(expansion) {
J
Jeffrey Seyfried 已提交
2603
            Some(macro_def) => self.hir.definitions().macro_def_scope(macro_def),
2604
            None if block == DUMMY_NODE_ID => DefId::local(CRATE_DEF_INDEX), // Dummy DefId
J
Jeffrey Seyfried 已提交
2605 2606 2607 2608
            None => self.hir.get_module_parent(block),
        };
        (ident, scope)
    }
2609
}
2610

2611
impl<'a, 'gcx, 'tcx> TyCtxt<'a, 'gcx, 'tcx> {
2612
    pub fn with_freevars<T, F>(self, fid: NodeId, f: F) -> T where
2613
        F: FnOnce(&[hir::Freevar]) -> T,
2614
    {
A
Alex Crichton 已提交
2615 2616
        let def_id = self.hir.local_def_id(fid);
        match self.freevars(def_id) {
2617
            None => f(&[]),
2618
            Some(d) => f(&d),
2619 2620
        }
    }
2621
}
2622 2623 2624 2625 2626 2627 2628 2629 2630

fn associated_item<'a, 'tcx>(tcx: TyCtxt<'a, 'tcx, 'tcx>, def_id: DefId)
    -> AssociatedItem
{
    let id = tcx.hir.as_local_node_id(def_id).unwrap();
    let parent_id = tcx.hir.get_parent(id);
    let parent_def_id = tcx.hir.local_def_id(parent_id);
    let parent_item = tcx.hir.expect_item(parent_id);
    match parent_item.node {
2631
        hir::ItemImpl(.., ref impl_item_refs) => {
2632
            if let Some(impl_item_ref) = impl_item_refs.iter().find(|i| i.id.node_id == id) {
2633 2634
                let assoc_item = tcx.associated_item_from_impl_item_ref(parent_def_id,
                                                                        impl_item_ref);
2635 2636
                debug_assert_eq!(assoc_item.def_id, def_id);
                return assoc_item;
2637 2638 2639 2640
            }
        }

        hir::ItemTrait(.., ref trait_item_refs) => {
2641
            if let Some(trait_item_ref) = trait_item_refs.iter().find(|i| i.id.node_id == id) {
2642 2643 2644
                let assoc_item = tcx.associated_item_from_trait_item_ref(parent_def_id,
                                                                         &parent_item.vis,
                                                                         trait_item_ref);
2645 2646
                debug_assert_eq!(assoc_item.def_id, def_id);
                return assoc_item;
2647 2648 2649
            }
        }

2650
        _ => { }
2651
    }
2652 2653 2654 2655

    span_bug!(parent_item.span,
              "unexpected parent of trait or impl item or item not found: {:?}",
              parent_item.node)
2656 2657
}

2658 2659
/// Calculates the Sized-constraint.
///
2660
/// In fact, there are only a few options for the types in the constraint:
2661 2662 2663 2664 2665 2666 2667 2668
///     - an obviously-unsized type
///     - a type parameter or projection whose Sizedness can't be known
///     - a tuple of type parameters or projections, if there are multiple
///       such.
///     - a TyError, if a type contained itself. The representability
///       check should catch this case.
fn adt_sized_constraint<'a, 'tcx>(tcx: TyCtxt<'a, 'tcx, 'tcx>,
                                  def_id: DefId)
2669
                                  -> &'tcx [Ty<'tcx>] {
2670
    let def = tcx.adt_def(def_id);
2671

2672
    let result = tcx.intern_type_list(&def.variants.iter().flat_map(|v| {
2673 2674
        v.fields.last()
    }).flat_map(|f| {
2675
        def.sized_constraint_for_ty(tcx, tcx.type_of(f.did))
2676
    }).collect::<Vec<_>>());
2677

2678
    debug!("adt_sized_constraint: {:?} => {:?}", def, result);
2679

2680
    result
2681 2682
}

2683 2684
fn associated_item_def_ids<'a, 'tcx>(tcx: TyCtxt<'a, 'tcx, 'tcx>,
                                     def_id: DefId)
2685
                                     -> Lrc<Vec<DefId>> {
2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700
    let id = tcx.hir.as_local_node_id(def_id).unwrap();
    let item = tcx.hir.expect_item(id);
    let vec: Vec<_> = match item.node {
        hir::ItemTrait(.., ref trait_item_refs) => {
            trait_item_refs.iter()
                           .map(|trait_item_ref| trait_item_ref.id)
                           .map(|id| tcx.hir.local_def_id(id.node_id))
                           .collect()
        }
        hir::ItemImpl(.., ref impl_item_refs) => {
            impl_item_refs.iter()
                          .map(|impl_item_ref| impl_item_ref.id)
                          .map(|id| tcx.hir.local_def_id(id.node_id))
                          .collect()
        }
A
Alex Burka 已提交
2701
        hir::ItemTraitAlias(..) => vec![],
2702 2703
        _ => span_bug!(item.span, "associated_item_def_ids: not impl or trait")
    };
2704
    Lrc::new(vec)
2705 2706
}

A
achernyak 已提交
2707
fn def_span<'a, 'tcx>(tcx: TyCtxt<'a, 'tcx, 'tcx>, def_id: DefId) -> Span {
A
achernyak 已提交
2708
    tcx.hir.span_if_local(def_id).unwrap()
A
achernyak 已提交
2709 2710
}

A
achernyak 已提交
2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723
/// If the given def ID describes an item belonging to a trait,
/// return the ID of the trait that the trait item belongs to.
/// Otherwise, return `None`.
fn trait_of_item<'a, 'tcx>(tcx: TyCtxt<'a, 'tcx, 'tcx>, def_id: DefId) -> Option<DefId> {
    tcx.opt_associated_item(def_id)
        .and_then(|associated_item| {
            match associated_item.container {
                TraitContainer(def_id) => Some(def_id),
                ImplContainer(_) => None
            }
        })
}

2724
/// See `ParamEnv` struct def'n for details.
2725
fn param_env<'a, 'tcx>(tcx: TyCtxt<'a, 'tcx, 'tcx>,
2726 2727
                       def_id: DefId)
                       -> ParamEnv<'tcx> {
2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744
    // Compute the bounds on Self and the type parameters.

    let bounds = tcx.predicates_of(def_id).instantiate_identity(tcx);
    let predicates = bounds.predicates;

    // Finally, we have to normalize the bounds in the environment, in
    // case they contain any associated type projections. This process
    // can yield errors if the put in illegal associated types, like
    // `<i32 as Foo>::Bar` where `i32` does not implement `Foo`. We
    // report these errors right here; this doesn't actually feel
    // right to me, because constructing the environment feels like a
    // kind of a "idempotent" action, but I'm not sure where would be
    // a better place. In practice, we construct environments for
    // every fn once during type checking, and we'll abort if there
    // are any errors at that point, so after type checking you can be
    // sure that this will succeed without errors anyway.

2745
    let unnormalized_env = ty::ParamEnv::new(tcx.intern_predicates(&predicates),
2746
                                             traits::Reveal::UserFacing);
2747 2748 2749 2750 2751 2752 2753

    let body_id = tcx.hir.as_local_node_id(def_id).map_or(DUMMY_NODE_ID, |id| {
        tcx.hir.maybe_body_owned_by(id).map_or(id, |body| body.node_id)
    });
    let cause = traits::ObligationCause::misc(tcx.def_span(def_id), body_id);
    traits::normalize_param_env_or_error(tcx, def_id, unnormalized_env, cause)
}
A
achernyak 已提交
2754

2755
fn crate_disambiguator<'a, 'tcx>(tcx: TyCtxt<'a, 'tcx, 'tcx>,
2756
                                 crate_num: CrateNum) -> CrateDisambiguator {
2757 2758 2759 2760
    assert_eq!(crate_num, LOCAL_CRATE);
    tcx.sess.local_crate_disambiguator()
}

2761 2762 2763 2764 2765 2766
fn original_crate_name<'a, 'tcx>(tcx: TyCtxt<'a, 'tcx, 'tcx>,
                                 crate_num: CrateNum) -> Symbol {
    assert_eq!(crate_num, LOCAL_CRATE);
    tcx.crate_name.clone()
}

2767 2768 2769 2770 2771 2772 2773
fn crate_hash<'a, 'tcx>(tcx: TyCtxt<'a, 'tcx, 'tcx>,
                        crate_num: CrateNum)
                        -> Svh {
    assert_eq!(crate_num, LOCAL_CRATE);
    tcx.hir.crate_hash
}

V
varkor 已提交
2774 2775 2776 2777
fn instance_def_size_estimate<'a, 'tcx>(tcx: TyCtxt<'a, 'tcx, 'tcx>,
                                        instance_def: InstanceDef<'tcx>)
                                        -> usize {
    match instance_def {
2778 2779 2780
        InstanceDef::Item(..) |
        InstanceDef::DropGlue(..) => {
            let mir = tcx.instance_mir(instance_def);
V
varkor 已提交
2781 2782
            mir.basic_blocks().iter().map(|bb| bb.statements.len()).sum()
        },
2783
        // Estimate the size of other compiler-generated shims to be 1.
V
varkor 已提交
2784 2785 2786 2787
        _ => 1
    }
}

2788
pub fn provide(providers: &mut ty::maps::Providers) {
2789
    context::provide(providers);
2790
    erase_regions::provide(providers);
2791 2792
    layout::provide(providers);
    util::provide(providers);
2793 2794
    *providers = ty::maps::Providers {
        associated_item,
2795
        associated_item_def_ids,
2796
        adt_sized_constraint,
A
achernyak 已提交
2797
        def_span,
2798
        param_env,
A
achernyak 已提交
2799
        trait_of_item,
2800
        crate_disambiguator,
2801
        original_crate_name,
2802
        crate_hash,
2803
        trait_impls_of: trait_def::trait_impls_of_provider,
V
varkor 已提交
2804
        instance_def_size_estimate,
2805 2806 2807 2808
        ..*providers
    };
}

2809 2810 2811
/// A map for the local crate mapping each type to a vector of its
/// inherent impls. This is not meant to be used outside of coherence;
/// rather, you should request the vector for a specific type via
2812 2813
/// `tcx.inherent_impls(def_id)` so as to minimize your dependencies
/// (constructing this map requires touching the entire crate).
2814 2815
#[derive(Clone, Debug)]
pub struct CrateInherentImpls {
2816
    pub inherent_impls: DefIdMap<Lrc<Vec<DefId>>>,
2817
}
A
Ariel Ben-Yehuda 已提交
2818

2819
#[derive(Clone, Copy, PartialEq, Eq, PartialOrd, Ord, RustcEncodable, RustcDecodable)]
2820 2821 2822 2823 2824 2825
pub struct SymbolName {
    // FIXME: we don't rely on interning or equality here - better have
    // this be a `&'tcx str`.
    pub name: InternedString
}

2826 2827 2828 2829
impl_stable_hash_for!(struct self::SymbolName {
    name
});

2830 2831 2832
impl SymbolName {
    pub fn new(name: &str) -> SymbolName {
        SymbolName {
2833
            name: Symbol::intern(name).as_interned_str()
2834 2835
        }
    }
2836

2837 2838 2839
    pub fn as_str(&self) -> LocalInternedString {
        self.name.as_str()
    }
2840 2841 2842 2843 2844 2845 2846
}

impl fmt::Display for SymbolName {
    fn fmt(&self, fmt: &mut fmt::Formatter) -> fmt::Result {
        fmt::Display::fmt(&self.name, fmt)
    }
}
2847 2848 2849 2850 2851 2852

impl fmt::Debug for SymbolName {
    fn fmt(&self, fmt: &mut fmt::Formatter) -> fmt::Result {
        fmt::Display::fmt(&self.name, fmt)
    }
}