mod.rs 101.9 KB
Newer Older
1
// Copyright 2012-2015 The Rust Project Developers. See the COPYRIGHT
2 3 4 5 6 7 8 9 10
// file at the top-level directory of this distribution and at
// http://rust-lang.org/COPYRIGHT.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.

S
Steven Fackler 已提交
11
pub use self::Variance::*;
12
pub use self::AssociatedItemContainer::*;
S
Steven Fackler 已提交
13 14
pub use self::BorrowKind::*;
pub use self::IntVarValue::*;
15
pub use self::fold::TypeFoldable;
S
Steven Fackler 已提交
16

17
use hir::{map as hir_map, FreevarMap, TraitMap};
18
use hir::def::{Def, CtorKind, ExportMap};
19
use hir::def_id::{CrateNum, DefId, LocalDefId, CRATE_DEF_INDEX, LOCAL_CRATE};
20
use hir::map::DefPathData;
21
use hir::svh::Svh;
W
Wesley Wiser 已提交
22
use ich::Fingerprint;
23
use ich::StableHashingContext;
24
use infer::canonical::{Canonical, Canonicalize};
25
use middle::lang_items::{FnTraitLangItem, FnMutTraitLangItem, FnOnceTraitLangItem};
26
use middle::privacy::AccessLevels;
27
use middle::resolve_lifetime::ObjectLifetimeDefault;
28
use mir::Mir;
29
use mir::interpret::GlobalId;
J
John Kåre Alsaker 已提交
30
use mir::GeneratorLayout;
31
use session::CrateDisambiguator;
32
use traits::{self, Reveal};
33
use ty;
34
use ty::subst::{Subst, Substs};
O
Oliver Schneider 已提交
35
use ty::util::{IntTypeExt, Discr};
36
use ty::walk::TypeWalker;
37
use util::captures::Captures;
38
use util::nodemap::{NodeSet, DefIdMap, FxHashMap};
39

40
use serialize::{self, Encodable, Encoder};
W
Wesley Wiser 已提交
41
use std::cell::RefCell;
42
use std::cmp;
43
use std::fmt;
44
use std::hash::{Hash, Hasher};
45
use std::ops::Deref;
46
use rustc_data_structures::sync::Lrc;
47
use std::slice;
48
use std::vec::IntoIter;
49
use std::mem;
J
Jeffrey Seyfried 已提交
50
use syntax::ast::{self, DUMMY_NODE_ID, Name, Ident, NodeId};
51
use syntax::attr;
52
use syntax::ext::hygiene::Mark;
53
use syntax::symbol::{Symbol, LocalInternedString, InternedString};
54
use syntax_pos::{DUMMY_SP, Span};
55

56
use rustc_data_structures::accumulate_vec::IntoIter as AccIntoIter;
57 58
use rustc_data_structures::stable_hasher::{StableHasher, StableHasherResult,
                                           HashStable};
O
Oliver Schneider 已提交
59

60
use hir;
61

62
pub use self::sty::{Binder, CanonicalVar, DebruijnIndex};
J
John Kåre Alsaker 已提交
63
pub use self::sty::{FnSig, GenSig, PolyFnSig, PolyGenSig};
64
pub use self::sty::{InferTy, ParamTy, ProjectionTy, ExistentialPredicate};
65
pub use self::sty::{ClosureSubsts, GeneratorSubsts, UpvarSubsts, TypeAndMut};
66
pub use self::sty::{TraitRef, TypeVariants, PolyTraitRef};
67
pub use self::sty::{ExistentialTraitRef, PolyExistentialTraitRef};
68
pub use self::sty::{ExistentialProjection, PolyExistentialProjection, Const};
69
pub use self::sty::{BoundRegion, EarlyBoundRegion, FreeRegion, Region};
N
Niko Matsakis 已提交
70
pub use self::sty::RegionKind;
71
pub use self::sty::{TyVid, IntVid, FloatVid, RegionVid};
72 73
pub use self::sty::BoundRegion::*;
pub use self::sty::InferTy::*;
N
Niko Matsakis 已提交
74
pub use self::sty::RegionKind::*;
75 76
pub use self::sty::TypeVariants::*;

77 78 79
pub use self::binding::BindingMode;
pub use self::binding::BindingMode::*;

80
pub use self::context::{TyCtxt, GlobalArenas, AllArenas, tls, keep_local};
81
pub use self::context::{Lift, TypeckTables, InterpretInterner};
82

83 84
pub use self::instance::{Instance, InstanceDef};

85
pub use self::trait_def::TraitDef;
86

87 88
pub use self::maps::queries;

89
pub mod adjustment;
90
pub mod binding;
91
pub mod cast;
92
#[macro_use]
93
pub mod codec;
94
pub mod error;
95
mod erase_regions;
96 97
pub mod fast_reject;
pub mod fold;
A
Andrew Cann 已提交
98
pub mod inhabitedness;
99
pub mod item_path;
100
pub mod layout;
101
pub mod _match;
102
pub mod maps;
103 104
pub mod outlives;
pub mod relate;
105
pub mod steal;
106
pub mod subst;
107
pub mod trait_def;
108 109
pub mod walk;
pub mod wf;
110
pub mod util;
111

112 113
mod context;
mod flags;
114
mod instance;
115 116 117
mod structural_impls;
mod sty;

118
// Data types
119

120
/// The complete set of all analyses described in this module. This is
I
Irina Popa 已提交
121
/// produced by the driver and fed to codegen and later passes.
122 123 124
///
/// NB: These contents are being migrated into queries using the
/// *on-demand* infrastructure.
J
Jeffrey Seyfried 已提交
125
#[derive(Clone)]
126
pub struct CrateAnalysis {
127
    pub access_levels: Lrc<AccessLevels>,
128
    pub name: String,
129
    pub glob_map: Option<hir::GlobMap>,
130 131
}

132 133 134 135 136
#[derive(Clone)]
pub struct Resolutions {
    pub freevars: FreevarMap,
    pub trait_map: TraitMap,
    pub maybe_unused_trait_imports: NodeSet,
137
    pub maybe_unused_extern_crates: Vec<(NodeId, Span)>,
N
Niko Matsakis 已提交
138
    pub export_map: ExportMap,
139 140
}

141
#[derive(Clone, Copy, PartialEq, Eq, Debug)]
142
pub enum AssociatedItemContainer {
N
Niko Matsakis 已提交
143 144
    TraitContainer(DefId),
    ImplContainer(DefId),
145 146
}

147
impl AssociatedItemContainer {
148 149 150 151 152 153 154 155 156
    /// Asserts that this is the def-id of an associated item declared
    /// in a trait, and returns the trait def-id.
    pub fn assert_trait(&self) -> DefId {
        match *self {
            TraitContainer(id) => id,
            _ => bug!("associated item has wrong container type: {:?}", self)
        }
    }

N
Niko Matsakis 已提交
157
    pub fn id(&self) -> DefId {
158 159 160 161 162 163 164
        match *self {
            TraitContainer(id) => id,
            ImplContainer(id) => id,
        }
    }
}

A
Aaron Turon 已提交
165 166 167 168 169 170 171 172 173 174 175
/// The "header" of an impl is everything outside the body: a Self type, a trait
/// ref (in the case of a trait impl), and a set of predicates (from the
/// bounds/where clauses).
#[derive(Clone, PartialEq, Eq, Hash, Debug)]
pub struct ImplHeader<'tcx> {
    pub impl_def_id: DefId,
    pub self_ty: Ty<'tcx>,
    pub trait_ref: Option<TraitRef<'tcx>>,
    pub predicates: Vec<Predicate<'tcx>>,
}

S
scalexm 已提交
176
#[derive(Copy, Clone, Debug, PartialEq, Eq)]
177 178 179 180 181 182 183
pub struct AssociatedItem {
    pub def_id: DefId,
    pub name: Name,
    pub kind: AssociatedKind,
    pub vis: Visibility,
    pub defaultness: hir::Defaultness,
    pub container: AssociatedItemContainer,
184

185 186 187 188
    /// Whether this is a method with an explicit self
    /// as its first argument, allowing method calls.
    pub method_has_self_argument: bool,
}
189

190
#[derive(Copy, Clone, PartialEq, Eq, Debug, Hash, RustcEncodable, RustcDecodable)]
191 192 193 194 195
pub enum AssociatedKind {
    Const,
    Method,
    Type
}
196

197 198 199 200 201 202
impl AssociatedItem {
    pub fn def(&self) -> Def {
        match self.kind {
            AssociatedKind::Const => Def::AssociatedConst(self.def_id),
            AssociatedKind::Method => Def::Method(self.def_id),
            AssociatedKind::Type => Def::AssociatedTy(self.def_id),
203 204
        }
    }
A
Andrew Cann 已提交
205 206 207 208 209 210 211

    /// Tests whether the associated item admits a non-trivial implementation
    /// for !
    pub fn relevant_for_never<'tcx>(&self) -> bool {
        match self.kind {
            AssociatedKind::Const => true,
            AssociatedKind::Type => true,
A
Andrew Cann 已提交
212
            // FIXME(canndrew): Be more thorough here, check if any argument is uninhabited.
A
Andrew Cann 已提交
213 214 215
            AssociatedKind::Method => !self.method_has_self_argument,
        }
    }
216 217 218 219 220 221 222 223

    pub fn signature<'a, 'tcx>(&self, tcx: &TyCtxt<'a, 'tcx, 'tcx>) -> String {
        match self.kind {
            ty::AssociatedKind::Method => {
                // We skip the binder here because the binder would deanonymize all
                // late-bound regions, and we don't want method signatures to show up
                // `as for<'r> fn(&'r MyType)`.  Pretty-printing handles late-bound
                // regions just fine, showing `fn(&MyType)`.
224
                format!("{}", tcx.fn_sig(self.def_id).skip_binder())
225 226 227 228 229 230 231
            }
            ty::AssociatedKind::Type => format!("type {};", self.name.to_string()),
            ty::AssociatedKind::Const => {
                format!("const {}: {:?};", self.name.to_string(), tcx.type_of(self.def_id))
            }
        }
    }
232 233
}

234
#[derive(Clone, Debug, PartialEq, Eq, Copy, RustcEncodable, RustcDecodable)]
235 236 237 238
pub enum Visibility {
    /// Visible everywhere (including in other crates).
    Public,
    /// Visible only in the given crate-local module.
239
    Restricted(DefId),
240
    /// Not visible anywhere in the local crate. This is the visibility of private external items.
241
    Invisible,
242 243
}

244 245
pub trait DefIdTree: Copy {
    fn parent(self, id: DefId) -> Option<DefId>;
A
Andrew Cann 已提交
246 247 248 249 250 251 252 253 254 255 256 257 258 259

    fn is_descendant_of(self, mut descendant: DefId, ancestor: DefId) -> bool {
        if descendant.krate != ancestor.krate {
            return false;
        }

        while descendant != ancestor {
            match self.parent(descendant) {
                Some(parent) => descendant = parent,
                None => return false,
            }
        }
        true
    }
260 261
}

262 263 264
impl<'a, 'gcx, 'tcx> DefIdTree for TyCtxt<'a, 'gcx, 'tcx> {
    fn parent(self, id: DefId) -> Option<DefId> {
        self.def_key(id).parent.map(|index| DefId { index: index, ..id })
265 266 267
    }
}

268
impl Visibility {
269
    pub fn from_hir(visibility: &hir::Visibility, id: NodeId, tcx: TyCtxt) -> Self {
270 271
        match *visibility {
            hir::Public => Visibility::Public,
272
            hir::Visibility::Crate => Visibility::Restricted(DefId::local(CRATE_DEF_INDEX)),
273
            hir::Visibility::Restricted { ref path, .. } => match path.def {
274 275
                // If there is no resolution, `resolve` will have already reported an error, so
                // assume that the visibility is public to avoid reporting more privacy errors.
276
                Def::Err => Visibility::Public,
277
                def => Visibility::Restricted(def.def_id()),
278
            },
279
            hir::Inherited => {
J
Jeffrey Seyfried 已提交
280
                Visibility::Restricted(tcx.hir.get_module_parent(id))
281
            }
282 283
        }
    }
284 285

    /// Returns true if an item with this visibility is accessible from the given block.
A
Andrew Cann 已提交
286
    pub fn is_accessible_from<T: DefIdTree>(self, module: DefId, tree: T) -> bool {
287 288 289 290
        let restriction = match self {
            // Public items are visible everywhere.
            Visibility::Public => return true,
            // Private items from other crates are visible nowhere.
291
            Visibility::Invisible => return false,
292
            // Restricted items are visible in an arbitrary local module.
293
            Visibility::Restricted(other) if other.krate != module.krate => return false,
294 295 296
            Visibility::Restricted(module) => module,
        };

A
Andrew Cann 已提交
297
        tree.is_descendant_of(module, restriction)
298
    }
299 300

    /// Returns true if this visibility is at least as accessible as the given visibility
301
    pub fn is_at_least<T: DefIdTree>(self, vis: Visibility, tree: T) -> bool {
302 303
        let vis_restriction = match vis {
            Visibility::Public => return self == Visibility::Public,
304
            Visibility::Invisible => return true,
305 306 307
            Visibility::Restricted(module) => module,
        };

308
        self.is_accessible_from(vis_restriction, tree)
309
    }
310 311 312 313 314 315 316 317 318

    // Returns true if this item is visible anywhere in the local crate.
    pub fn is_visible_locally(self) -> bool {
        match self {
            Visibility::Public => true,
            Visibility::Restricted(def_id) => def_id.is_local(),
            Visibility::Invisible => false,
        }
    }
319 320
}

321
#[derive(Clone, PartialEq, RustcDecodable, RustcEncodable, Copy)]
322
pub enum Variance {
323 324 325 326
    Covariant,      // T<A> <: T<B> iff A <: B -- e.g., function return type
    Invariant,      // T<A> <: T<B> iff B == A -- e.g., type of mutable cell
    Contravariant,  // T<A> <: T<B> iff B <: A -- e.g., function param type
    Bivariant,      // T<A> <: T<B>            -- e.g., unused type parameter
327
}
328

329 330 331 332
/// The crate variances map is computed during typeck and contains the
/// variance of every item in the local crate. You should not use it
/// directly, because to do so will make your pass dependent on the
/// HIR of every item in the local crate. Instead, use
333
/// `tcx.variances_of()` to get the variance for a *particular*
334 335 336 337 338
/// item.
pub struct CrateVariancesMap {
    /// For each item with generics, maps to a vector of the variance
    /// of its generics.  If an item has no generics, it will have no
    /// entry.
339
    pub variances: FxHashMap<DefId, Lrc<Vec<ty::Variance>>>,
340 341

    /// An empty vector, useful for cloning.
342
    pub empty_variance: Lrc<Vec<ty::Variance>>,
343 344
}

345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404
impl Variance {
    /// `a.xform(b)` combines the variance of a context with the
    /// variance of a type with the following meaning.  If we are in a
    /// context with variance `a`, and we encounter a type argument in
    /// a position with variance `b`, then `a.xform(b)` is the new
    /// variance with which the argument appears.
    ///
    /// Example 1:
    ///
    ///     *mut Vec<i32>
    ///
    /// Here, the "ambient" variance starts as covariant. `*mut T` is
    /// invariant with respect to `T`, so the variance in which the
    /// `Vec<i32>` appears is `Covariant.xform(Invariant)`, which
    /// yields `Invariant`. Now, the type `Vec<T>` is covariant with
    /// respect to its type argument `T`, and hence the variance of
    /// the `i32` here is `Invariant.xform(Covariant)`, which results
    /// (again) in `Invariant`.
    ///
    /// Example 2:
    ///
    ///     fn(*const Vec<i32>, *mut Vec<i32)
    ///
    /// The ambient variance is covariant. A `fn` type is
    /// contravariant with respect to its parameters, so the variance
    /// within which both pointer types appear is
    /// `Covariant.xform(Contravariant)`, or `Contravariant`.  `*const
    /// T` is covariant with respect to `T`, so the variance within
    /// which the first `Vec<i32>` appears is
    /// `Contravariant.xform(Covariant)` or `Contravariant`.  The same
    /// is true for its `i32` argument. In the `*mut T` case, the
    /// variance of `Vec<i32>` is `Contravariant.xform(Invariant)`,
    /// and hence the outermost type is `Invariant` with respect to
    /// `Vec<i32>` (and its `i32` argument).
    ///
    /// Source: Figure 1 of "Taming the Wildcards:
    /// Combining Definition- and Use-Site Variance" published in PLDI'11.
    pub fn xform(self, v: ty::Variance) -> ty::Variance {
        match (self, v) {
            // Figure 1, column 1.
            (ty::Covariant, ty::Covariant) => ty::Covariant,
            (ty::Covariant, ty::Contravariant) => ty::Contravariant,
            (ty::Covariant, ty::Invariant) => ty::Invariant,
            (ty::Covariant, ty::Bivariant) => ty::Bivariant,

            // Figure 1, column 2.
            (ty::Contravariant, ty::Covariant) => ty::Contravariant,
            (ty::Contravariant, ty::Contravariant) => ty::Covariant,
            (ty::Contravariant, ty::Invariant) => ty::Invariant,
            (ty::Contravariant, ty::Bivariant) => ty::Bivariant,

            // Figure 1, column 3.
            (ty::Invariant, _) => ty::Invariant,

            // Figure 1, column 4.
            (ty::Bivariant, _) => ty::Bivariant,
        }
    }
}

405 406 407
// Contains information needed to resolve types and (in the future) look up
// the types of AST nodes.
#[derive(Copy, Clone, PartialEq, Eq, Hash)]
408
pub struct CReaderCacheKey {
409 410 411 412
    pub cnum: CrateNum,
    pub pos: usize,
}

413 414 415 416
// Flags that we track on types. These flags are propagated upwards
// through the type during type construction, so that we can quickly
// check whether the type has various kinds of types in it without
// recursing over the type itself.
417
bitflags! {
418 419 420 421 422 423
    pub struct TypeFlags: u32 {
        const HAS_PARAMS         = 1 << 0;
        const HAS_SELF           = 1 << 1;
        const HAS_TY_INFER       = 1 << 2;
        const HAS_RE_INFER       = 1 << 3;
        const HAS_RE_SKOL        = 1 << 4;
424 425 426 427 428

        /// Does this have any `ReEarlyBound` regions? Used to
        /// determine whether substitition is required, since those
        /// represent regions that are bound in a `ty::Generics` and
        /// hence may be substituted.
429
        const HAS_RE_EARLY_BOUND = 1 << 5;
430 431 432

        /// Does this have any region that "appears free" in the type?
        /// Basically anything but `ReLateBound` and `ReErased`.
433
        const HAS_FREE_REGIONS   = 1 << 6;
434 435

        /// Is an error type reachable?
436 437
        const HAS_TY_ERR         = 1 << 7;
        const HAS_PROJECTION     = 1 << 8;
J
John Kåre Alsaker 已提交
438 439

        // FIXME: Rename this to the actual property since it's used for generators too
440
        const HAS_TY_CLOSURE     = 1 << 9;
441 442 443

        // true if there are "names" of types and regions and so forth
        // that are local to a particular fn
444
        const HAS_FREE_LOCAL_NAMES    = 1 << 10;
445

446 447
        // Present if the type belongs in a local type context.
        // Only set for TyInfer other than Fresh.
448
        const KEEP_IN_LOCAL_TCX  = 1 << 11;
449

450 451
        // Is there a projection that does not involve a bound region?
        // Currently we can't normalize projections w/ bound regions.
452
        const HAS_NORMALIZABLE_PROJECTION = 1 << 12;
453

454 455 456 457
        // Set if this includes a "canonical" type or region var --
        // ought to be true only for the results of canonicalization.
        const HAS_CANONICAL_VARS = 1 << 13;

458 459 460 461
        /// Does this have any `ReLateBound` regions? Used to check
        /// if a global bound is safe to evaluate.
        const HAS_RE_LATE_BOUND = 1 << 14;

462 463
        const NEEDS_SUBST        = TypeFlags::HAS_PARAMS.bits |
                                   TypeFlags::HAS_SELF.bits |
464
                                   TypeFlags::HAS_RE_EARLY_BOUND.bits;
465 466

        // Flags representing the nominal content of a type,
467 468
        // computed by FlagsComputation. If you add a new nominal
        // flag, it should be added here too.
469 470 471 472
        const NOMINAL_FLAGS     = TypeFlags::HAS_PARAMS.bits |
                                  TypeFlags::HAS_SELF.bits |
                                  TypeFlags::HAS_TY_INFER.bits |
                                  TypeFlags::HAS_RE_INFER.bits |
473
                                  TypeFlags::HAS_RE_SKOL.bits |
474 475
                                  TypeFlags::HAS_RE_EARLY_BOUND.bits |
                                  TypeFlags::HAS_FREE_REGIONS.bits |
476
                                  TypeFlags::HAS_TY_ERR.bits |
477
                                  TypeFlags::HAS_PROJECTION.bits |
478
                                  TypeFlags::HAS_TY_CLOSURE.bits |
479
                                  TypeFlags::HAS_FREE_LOCAL_NAMES.bits |
480
                                  TypeFlags::KEEP_IN_LOCAL_TCX.bits |
481 482
                                  TypeFlags::HAS_CANONICAL_VARS.bits |
                                  TypeFlags::HAS_RE_LATE_BOUND.bits;
483
    }
484 485
}

486
pub struct TyS<'tcx> {
487
    pub sty: TypeVariants<'tcx>,
488
    pub flags: TypeFlags,
489 490

    // the maximal depth of any bound regions appearing in this type.
491
    region_depth: u32,
492 493
}

494
impl<'tcx> PartialEq for TyS<'tcx> {
495
    #[inline]
496 497 498 499 500
    fn eq(&self, other: &TyS<'tcx>) -> bool {
        // (self as *const _) == (other as *const _)
        (self as *const TyS<'tcx>) == (other as *const TyS<'tcx>)
    }
}
501
impl<'tcx> Eq for TyS<'tcx> {}
502

A
Alex Crichton 已提交
503 504
impl<'tcx> Hash for TyS<'tcx> {
    fn hash<H: Hasher>(&self, s: &mut H) {
N
Nick Cameron 已提交
505
        (self as *const TyS).hash(s)
A
Alex Crichton 已提交
506 507
    }
}
508

G
Guillaume Gomez 已提交
509 510 511 512 513 514 515 516 517 518 519 520
impl<'tcx> TyS<'tcx> {
    pub fn is_primitive_ty(&self) -> bool {
        match self.sty {
            TypeVariants::TyBool |
                TypeVariants::TyChar |
                TypeVariants::TyInt(_) |
                TypeVariants::TyUint(_) |
                TypeVariants::TyFloat(_) |
                TypeVariants::TyInfer(InferTy::IntVar(_)) |
                TypeVariants::TyInfer(InferTy::FloatVar(_)) |
                TypeVariants::TyInfer(InferTy::FreshIntTy(_)) |
                TypeVariants::TyInfer(InferTy::FreshFloatTy(_)) => true,
521
            TypeVariants::TyRef(_, x, _) => x.is_primitive_ty(),
G
Guillaume Gomez 已提交
522 523 524
            _ => false,
        }
    }
525 526 527 528 529 530 531 532

    pub fn is_suggestable(&self) -> bool {
        match self.sty {
            TypeVariants::TyAnon(..) |
            TypeVariants::TyFnDef(..) |
            TypeVariants::TyFnPtr(..) |
            TypeVariants::TyDynamic(..) |
            TypeVariants::TyClosure(..) |
533
            TypeVariants::TyInfer(..) |
534 535 536 537
            TypeVariants::TyProjection(..) => false,
            _ => true,
        }
    }
G
Guillaume Gomez 已提交
538 539
}

540
impl<'a, 'gcx> HashStable<StableHashingContext<'a>> for ty::TyS<'gcx> {
541
    fn hash_stable<W: StableHasherResult>(&self,
542
                                          hcx: &mut StableHashingContext<'a>,
543 544 545 546 547 548 549 550 551 552 553 554 555 556
                                          hasher: &mut StableHasher<W>) {
        let ty::TyS {
            ref sty,

            // The other fields just provide fast access to information that is
            // also contained in `sty`, so no need to hash them.
            flags: _,
            region_depth: _,
        } = *self;

        sty.hash_stable(hcx, hasher);
    }
}

557
pub type Ty<'tcx> = &'tcx TyS<'tcx>;
558

559 560
impl<'tcx> serialize::UseSpecializedEncodable for Ty<'tcx> {}
impl<'tcx> serialize::UseSpecializedDecodable for Ty<'tcx> {}
561

562 563 564 565 566 567 568 569 570 571 572
pub type CanonicalTy<'gcx> = Canonical<'gcx, Ty<'gcx>>;

impl <'gcx: 'tcx, 'tcx> Canonicalize<'gcx, 'tcx> for Ty<'tcx> {
    type Canonicalized = CanonicalTy<'gcx>;

    fn intern(_gcx: TyCtxt<'_, 'gcx, 'gcx>,
              value: Canonical<'gcx, Self::Lifted>) -> Self::Canonicalized {
        value
    }
}

A
Adam Perry 已提交
573
/// A wrapper for slices with the additional invariant
574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611
/// that the slice is interned and no other slice with
/// the same contents can exist in the same context.
/// This means we can use pointer + length for both
/// equality comparisons and hashing.
#[derive(Debug, RustcEncodable)]
pub struct Slice<T>([T]);

impl<T> PartialEq for Slice<T> {
    #[inline]
    fn eq(&self, other: &Slice<T>) -> bool {
        (&self.0 as *const [T]) == (&other.0 as *const [T])
    }
}
impl<T> Eq for Slice<T> {}

impl<T> Hash for Slice<T> {
    fn hash<H: Hasher>(&self, s: &mut H) {
        (self.as_ptr(), self.len()).hash(s)
    }
}

impl<T> Deref for Slice<T> {
    type Target = [T];
    fn deref(&self) -> &[T] {
        &self.0
    }
}

impl<'a, T> IntoIterator for &'a Slice<T> {
    type Item = &'a T;
    type IntoIter = <&'a [T] as IntoIterator>::IntoIter;
    fn into_iter(self) -> Self::IntoIter {
        self[..].iter()
    }
}

impl<'tcx> serialize::UseSpecializedDecodable for &'tcx Slice<Ty<'tcx>> {}

612 613 614 615 616 617 618 619
impl<T> Slice<T> {
    pub fn empty<'a>() -> &'a Slice<T> {
        unsafe {
            mem::transmute(slice::from_raw_parts(0x1 as *const T, 0))
        }
    }
}

S
Steve Klabnik 已提交
620 621 622
/// Upvars do not get their own node-id. Instead, we use the pair of
/// the original var id (that is, the root variable that is referenced
/// by the upvar) and the id of the closure expression.
623
#[derive(Clone, Copy, PartialEq, Eq, Hash, RustcEncodable, RustcDecodable)]
624
pub struct UpvarId {
625
    pub var_id: hir::HirId,
626
    pub closure_expr_id: LocalDefId,
627 628
}

J
Jorge Aparicio 已提交
629
#[derive(Clone, PartialEq, Eq, Hash, Debug, RustcEncodable, RustcDecodable, Copy)]
630 631 632 633 634 635
pub enum BorrowKind {
    /// Data must be immutable and is aliasable.
    ImmBorrow,

    /// Data must be immutable but not aliasable.  This kind of borrow
    /// cannot currently be expressed by the user and is used only in
K
king6cong 已提交
636
    /// implicit closure bindings. It is needed when the closure
637 638
    /// is borrowing or mutating a mutable referent, e.g.:
    ///
639
    ///    let x: &mut isize = ...;
640 641 642 643 644
    ///    let y = || *x += 5;
    ///
    /// If we were to try to translate this closure into a more explicit
    /// form, we'd encounter an error with the code as written:
    ///
645 646
    ///    struct Env { x: & &mut isize }
    ///    let x: &mut isize = ...;
647 648 649 650 651 652 653
    ///    let y = (&mut Env { &x }, fn_ptr);  // Closure is pair of env and fn
    ///    fn fn_ptr(env: &mut Env) { **env.x += 5; }
    ///
    /// This is then illegal because you cannot mutate a `&mut` found
    /// in an aliasable location. To solve, you'd have to translate with
    /// an `&mut` borrow:
    ///
654 655
    ///    struct Env { x: & &mut isize }
    ///    let x: &mut isize = ...;
656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674
    ///    let y = (&mut Env { &mut x }, fn_ptr); // changed from &x to &mut x
    ///    fn fn_ptr(env: &mut Env) { **env.x += 5; }
    ///
    /// Now the assignment to `**env.x` is legal, but creating a
    /// mutable pointer to `x` is not because `x` is not mutable. We
    /// could fix this by declaring `x` as `let mut x`. This is ok in
    /// user code, if awkward, but extra weird for closures, since the
    /// borrow is hidden.
    ///
    /// So we introduce a "unique imm" borrow -- the referent is
    /// immutable, but not aliasable. This solves the problem. For
    /// simplicity, we don't give users the way to express this
    /// borrow, it's just used when translating closures.
    UniqueImmBorrow,

    /// Data is mutable and not aliasable.
    MutBorrow
}

675 676
/// Information describing the capture of an upvar. This is computed
/// during `typeck`, specifically by `regionck`.
677
#[derive(PartialEq, Clone, Debug, Copy, RustcEncodable, RustcDecodable)]
678
pub enum UpvarCapture<'tcx> {
679 680 681 682 683 684
    /// Upvar is captured by value. This is always true when the
    /// closure is labeled `move`, but can also be true in other cases
    /// depending on inference.
    ByValue,

    /// Upvar is captured by reference.
685
    ByRef(UpvarBorrow<'tcx>),
686 687
}

688
#[derive(PartialEq, Clone, Copy, RustcEncodable, RustcDecodable)]
689
pub struct UpvarBorrow<'tcx> {
690 691 692
    /// The kind of borrow: by-ref upvars have access to shared
    /// immutable borrows, which are not part of the normal language
    /// syntax.
693
    pub kind: BorrowKind,
694 695

    /// Region of the resulting reference.
N
Niko Matsakis 已提交
696
    pub region: ty::Region<'tcx>,
697 698
}

699
pub type UpvarCaptureMap<'tcx> = FxHashMap<UpvarId, UpvarCapture<'tcx>>;
700

701 702
#[derive(Copy, Clone)]
pub struct ClosureUpvar<'tcx> {
703
    pub def: Def,
704 705 706 707
    pub span: Span,
    pub ty: Ty<'tcx>,
}

708
#[derive(Clone, Copy, PartialEq, Eq)]
709
pub enum IntVarValue {
710 711
    IntType(ast::IntTy),
    UintType(ast::UintTy),
712 713
}

714 715 716
#[derive(Clone, Copy, PartialEq, Eq)]
pub struct FloatVarValue(pub ast::FloatTy);

717
impl ty::EarlyBoundRegion {
718
    pub fn to_bound_region(&self) -> ty::BoundRegion {
719
        ty::BoundRegion::BrNamed(self.def_id, self.name)
720
    }
721 722
}

V
varkor 已提交
723
#[derive(Clone, Debug, RustcEncodable, RustcDecodable)]
724
pub enum GenericParamDefKind {
V
varkor 已提交
725
    Lifetime,
726 727 728 729 730
    Type {
        has_default: bool,
        object_lifetime_default: ObjectLifetimeDefault,
        synthetic: Option<hir::SyntheticTyParamKind>,
    }
V
varkor 已提交
731 732
}

733 734 735 736 737
#[derive(Clone, RustcEncodable, RustcDecodable)]
pub struct GenericParamDef {
    pub name: InternedString,
    pub def_id: DefId,
    pub index: u32,
V
varkor 已提交
738 739 740 741 742 743

    /// `pure_wrt_drop`, set by the (unsafe) `#[may_dangle]` attribute
    /// on generic parameter `'a`/`T`, asserts data behind the parameter
    /// `'a`/`T` won't be accessed during the parent type's `Drop` impl.
    pub pure_wrt_drop: bool,

744 745 746
    pub kind: GenericParamDefKind,
}

V
varkor 已提交
747
impl GenericParamDef {
748 749
    pub fn to_early_bound_region_data(&self) -> ty::EarlyBoundRegion {
        match self.kind {
V
varkor 已提交
750
            GenericParamDefKind::Lifetime => {
751 752 753 754 755 756 757 758 759 760 761 762
                ty::EarlyBoundRegion {
                    def_id: self.def_id,
                    index: self.index,
                    name: self.name,
                }
            }
            _ => bug!("cannot convert a non-lifetime parameter def to an early bound region")
        }
    }

    pub fn to_bound_region(&self) -> ty::BoundRegion {
        match self.kind {
V
varkor 已提交
763
            GenericParamDefKind::Lifetime => {
764 765 766
                self.to_early_bound_region_data().to_bound_region()
            }
            _ => bug!("cannot convert a non-lifetime parameter def to an early bound region")
V
varkor 已提交
767 768 769 770
        }
    }
}

771 772 773 774 775
pub struct GenericParamCount {
    pub lifetimes: usize,
    pub types: usize,
}

776
/// Information about the formal type/lifetime parameters associated
777
/// with an item or method. Analogous to hir::Generics.
A
Ariel Ben-Yehuda 已提交
778
///
779 780
/// The ordering of parameters is the same as in Subst (excluding child generics):
/// Self (optionally), Lifetime params..., Type params...
781
#[derive(Clone, Debug, RustcEncodable, RustcDecodable)]
782
pub struct Generics {
783
    pub parent: Option<DefId>,
V
varkor 已提交
784
    pub parent_count: usize,
V
varkor 已提交
785
    pub params: Vec<GenericParamDef>,
786

V
varkor 已提交
787
    /// Reverse map to the `index` field of each `GenericParamDef`
788
    pub param_def_id_to_index: FxHashMap<DefId, u32>,
789

790
    pub has_self: bool,
791
    pub has_late_bound_regions: Option<Span>,
792 793
}

794
impl<'a, 'gcx, 'tcx> Generics {
795
    pub fn count(&self) -> usize {
V
varkor 已提交
796
        self.parent_count + self.params.len()
797
    }
798

V
varkor 已提交
799
    pub fn own_counts(&self) -> GenericParamCount {
800 801 802
        // We could cache this as a property of `GenericParamCount`, but
        // the aim is to refactor this away entirely eventually and the
        // presence of this method will be a constant reminder.
V
varkor 已提交
803
        let mut own_counts = GenericParamCount {
804 805 806
            lifetimes: 0,
            types: 0,
        };
807

V
varkor 已提交
808
        for param in &self.params {
809
            match param.kind {
V
varkor 已提交
810
                GenericParamDefKind::Lifetime => own_counts.lifetimes += 1,
811
                GenericParamDefKind::Type {..} => own_counts.types += 1,
812 813 814
            };
        }

V
varkor 已提交
815
        own_counts
816 817
    }

818
    pub fn requires_monomorphization(&self, tcx: TyCtxt<'a, 'gcx, 'tcx>) -> bool {
V
varkor 已提交
819
        for param in &self.params {
820
            match param.kind {
821
                GenericParamDefKind::Type {..} => return true,
V
varkor 已提交
822
                GenericParamDefKind::Lifetime => {}
V
varkor 已提交
823
            }
V
varkor 已提交
824 825 826
        }
        if let Some(parent_def_id) = self.parent {
            let parent = tcx.generics_of(parent_def_id);
827
            parent.requires_monomorphization(tcx)
V
varkor 已提交
828 829 830
        } else {
            false
        }
V
varkor 已提交
831 832
    }

833 834 835
    pub fn region_param(&'tcx self,
                        param: &EarlyBoundRegion,
                        tcx: TyCtxt<'a, 'gcx, 'tcx>)
836
                        -> &'tcx GenericParamDef
837
    {
V
varkor 已提交
838
        if let Some(index) = param.index.checked_sub(self.parent_count as u32) {
V
varkor 已提交
839
            let param = &self.params[index as usize];
840
            match param.kind {
V
varkor 已提交
841
                ty::GenericParamDefKind::Lifetime => param,
V
varkor 已提交
842
                _ => bug!("expected lifetime parameter, but found another generic parameter")
V
varkor 已提交
843
            }
844 845 846 847
        } else {
            tcx.generics_of(self.parent.expect("parent_count>0 but no parent?"))
                .region_param(param, tcx)
        }
848 849
    }

850
    /// Returns the `GenericParamDef` associated with this `ParamTy`.
851 852
    pub fn type_param(&'tcx self,
                      param: &ParamTy,
A
Ariel Ben-Yehuda 已提交
853
                      tcx: TyCtxt<'a, 'gcx, 'tcx>)
854
                      -> &'tcx GenericParamDef {
855
        if let Some(index) = param.idx.checked_sub(self.parent_count as u32) {
V
varkor 已提交
856 857
            let param = &self.params[index as usize];
            match param.kind {
858
                ty::GenericParamDefKind::Type {..} => param,
V
varkor 已提交
859 860
                _ => bug!("expected type parameter, but found another generic parameter")
            }
861 862 863 864
        } else {
            tcx.generics_of(self.parent.expect("parent_count>0 but no parent?"))
                .type_param(param, tcx)
        }
865
    }
866 867
}

868
/// Bounds on generics.
869
#[derive(Clone, Default)]
870
pub struct GenericPredicates<'tcx> {
871
    pub parent: Option<DefId>,
872
    pub predicates: Vec<Predicate<'tcx>>,
873 874
}

875 876 877
impl<'tcx> serialize::UseSpecializedEncodable for GenericPredicates<'tcx> {}
impl<'tcx> serialize::UseSpecializedDecodable for GenericPredicates<'tcx> {}

878 879
impl<'a, 'gcx, 'tcx> GenericPredicates<'tcx> {
    pub fn instantiate(&self, tcx: TyCtxt<'a, 'gcx, 'tcx>, substs: &Substs<'tcx>)
880
                       -> InstantiatedPredicates<'tcx> {
881 882 883 884 885 886
        let mut instantiated = InstantiatedPredicates::empty();
        self.instantiate_into(tcx, &mut instantiated, substs);
        instantiated
    }
    pub fn instantiate_own(&self, tcx: TyCtxt<'a, 'gcx, 'tcx>, substs: &Substs<'tcx>)
                           -> InstantiatedPredicates<'tcx> {
887
        InstantiatedPredicates {
888 889 890 891 892 893 894 895
            predicates: self.predicates.subst(tcx, substs)
        }
    }

    fn instantiate_into(&self, tcx: TyCtxt<'a, 'gcx, 'tcx>,
                        instantiated: &mut InstantiatedPredicates<'tcx>,
                        substs: &Substs<'tcx>) {
        if let Some(def_id) = self.parent {
896
            tcx.predicates_of(def_id).instantiate_into(tcx, instantiated, substs);
897
        }
898
        instantiated.predicates.extend(self.predicates.iter().map(|p| p.subst(tcx, substs)))
899
    }
900

901 902 903 904 905 906 907 908 909 910 911 912 913 914 915
    pub fn instantiate_identity(&self, tcx: TyCtxt<'a, 'gcx, 'tcx>)
                                -> InstantiatedPredicates<'tcx> {
        let mut instantiated = InstantiatedPredicates::empty();
        self.instantiate_identity_into(tcx, &mut instantiated);
        instantiated
    }

    fn instantiate_identity_into(&self, tcx: TyCtxt<'a, 'gcx, 'tcx>,
                                 instantiated: &mut InstantiatedPredicates<'tcx>) {
        if let Some(def_id) = self.parent {
            tcx.predicates_of(def_id).instantiate_identity_into(tcx, instantiated);
        }
        instantiated.predicates.extend(&self.predicates)
    }

916
    pub fn instantiate_supertrait(&self, tcx: TyCtxt<'a, 'gcx, 'tcx>,
917 918 919
                                  poly_trait_ref: &ty::PolyTraitRef<'tcx>)
                                  -> InstantiatedPredicates<'tcx>
    {
920
        assert_eq!(self.parent, None);
921
        InstantiatedPredicates {
922
            predicates: self.predicates.iter().map(|pred| {
923
                pred.subst_supertrait(tcx, poly_trait_ref)
924
            }).collect()
925 926
        }
    }
927 928
}

929
#[derive(Clone, Copy, PartialEq, Eq, Hash, RustcEncodable, RustcDecodable)]
930
pub enum Predicate<'tcx> {
N
Niko Matsakis 已提交
931 932
    /// Corresponds to `where Foo : Bar<A,B,C>`. `Foo` here would be
    /// the `Self` type of the trait reference and `A`, `B`, and `C`
933
    /// would be the type parameters.
934
    Trait(PolyTraitPredicate<'tcx>),
935 936

    /// where 'a : 'b
937
    RegionOutlives(PolyRegionOutlivesPredicate<'tcx>),
938 939

    /// where T : 'a
940
    TypeOutlives(PolyTypeOutlivesPredicate<'tcx>),
941

N
Niko Matsakis 已提交
942 943
    /// where <T as TraitRef>::Name == X, approximately.
    /// See `ProjectionPredicate` struct for details.
944
    Projection(PolyProjectionPredicate<'tcx>),
945 946 947 948 949

    /// no syntax: T WF
    WellFormed(Ty<'tcx>),

    /// trait must be object-safe
N
Niko Matsakis 已提交
950
    ObjectSafe(DefId),
951

952 953 954
    /// No direct syntax. May be thought of as `where T : FnFoo<...>`
    /// for some substitutions `...` and T being a closure type.
    /// Satisfied (or refuted) once we know the closure's kind.
955
    ClosureKind(DefId, ClosureSubsts<'tcx>, ClosureKind),
N
Niko Matsakis 已提交
956 957 958

    /// `T1 <: T2`
    Subtype(PolySubtypePredicate<'tcx>),
959 960 961

    /// Constant initializer must evaluate successfully.
    ConstEvaluatable(DefId, &'tcx Substs<'tcx>),
962 963
}

964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979
/// The crate outlives map is computed during typeck and contains the
/// outlives of every item in the local crate. You should not use it
/// directly, because to do so will make your pass dependent on the
/// HIR of every item in the local crate. Instead, use
/// `tcx.inferred_outlives_of()` to get the outlives for a *particular*
/// item.
pub struct CratePredicatesMap<'tcx> {
    /// For each struct with outlive bounds, maps to a vector of the
    /// predicate of its outlive bounds. If an item has no outlives
    /// bounds, it will have no entry.
    pub predicates: FxHashMap<DefId, Lrc<Vec<ty::Predicate<'tcx>>>>,

    /// An empty vector, useful for cloning.
    pub empty_predicate: Lrc<Vec<ty::Predicate<'tcx>>>,
}

980 981 982 983 984 985
impl<'tcx> AsRef<Predicate<'tcx>> for Predicate<'tcx> {
    fn as_ref(&self) -> &Predicate<'tcx> {
        self
    }
}

986
impl<'a, 'gcx, 'tcx> Predicate<'tcx> {
987
    /// Performs a substitution suitable for going from a
988 989 990 991
    /// poly-trait-ref to supertraits that must hold if that
    /// poly-trait-ref holds. This is slightly different from a normal
    /// substitution in terms of what happens with bound regions.  See
    /// lengthy comment below for details.
992
    pub fn subst_supertrait(&self, tcx: TyCtxt<'a, 'gcx, 'tcx>,
993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055
                            trait_ref: &ty::PolyTraitRef<'tcx>)
                            -> ty::Predicate<'tcx>
    {
        // The interaction between HRTB and supertraits is not entirely
        // obvious. Let me walk you (and myself) through an example.
        //
        // Let's start with an easy case. Consider two traits:
        //
        //     trait Foo<'a> : Bar<'a,'a> { }
        //     trait Bar<'b,'c> { }
        //
        // Now, if we have a trait reference `for<'x> T : Foo<'x>`, then
        // we can deduce that `for<'x> T : Bar<'x,'x>`. Basically, if we
        // knew that `Foo<'x>` (for any 'x) then we also know that
        // `Bar<'x,'x>` (for any 'x). This more-or-less falls out from
        // normal substitution.
        //
        // In terms of why this is sound, the idea is that whenever there
        // is an impl of `T:Foo<'a>`, it must show that `T:Bar<'a,'a>`
        // holds.  So if there is an impl of `T:Foo<'a>` that applies to
        // all `'a`, then we must know that `T:Bar<'a,'a>` holds for all
        // `'a`.
        //
        // Another example to be careful of is this:
        //
        //     trait Foo1<'a> : for<'b> Bar1<'a,'b> { }
        //     trait Bar1<'b,'c> { }
        //
        // Here, if we have `for<'x> T : Foo1<'x>`, then what do we know?
        // The answer is that we know `for<'x,'b> T : Bar1<'x,'b>`. The
        // reason is similar to the previous example: any impl of
        // `T:Foo1<'x>` must show that `for<'b> T : Bar1<'x, 'b>`.  So
        // basically we would want to collapse the bound lifetimes from
        // the input (`trait_ref`) and the supertraits.
        //
        // To achieve this in practice is fairly straightforward. Let's
        // consider the more complicated scenario:
        //
        // - We start out with `for<'x> T : Foo1<'x>`. In this case, `'x`
        //   has a De Bruijn index of 1. We want to produce `for<'x,'b> T : Bar1<'x,'b>`,
        //   where both `'x` and `'b` would have a DB index of 1.
        //   The substitution from the input trait-ref is therefore going to be
        //   `'a => 'x` (where `'x` has a DB index of 1).
        // - The super-trait-ref is `for<'b> Bar1<'a,'b>`, where `'a` is an
        //   early-bound parameter and `'b' is a late-bound parameter with a
        //   DB index of 1.
        // - If we replace `'a` with `'x` from the input, it too will have
        //   a DB index of 1, and thus we'll have `for<'x,'b> Bar1<'x,'b>`
        //   just as we wanted.
        //
        // There is only one catch. If we just apply the substitution `'a
        // => 'x` to `for<'b> Bar1<'a,'b>`, the substitution code will
        // adjust the DB index because we substituting into a binder (it
        // tries to be so smart...) resulting in `for<'x> for<'b>
        // Bar1<'x,'b>` (we have no syntax for this, so use your
        // imagination). Basically the 'x will have DB index of 2 and 'b
        // will have DB index of 1. Not quite what we want. So we apply
        // the substitution to the *contents* of the trait reference,
        // rather than the trait reference itself (put another way, the
        // substitution code expects equal binding levels in the values
        // from the substitution and the value being substituted into, and
        // this trick achieves that).

1056
        let substs = &trait_ref.skip_binder().substs;
1057
        match *self {
1058 1059 1060 1061 1062 1063 1064 1065 1066 1067
            Predicate::Trait(ref binder) =>
                Predicate::Trait(binder.map_bound(|data| data.subst(tcx, substs))),
            Predicate::Subtype(ref binder) =>
                Predicate::Subtype(binder.map_bound(|data| data.subst(tcx, substs))),
            Predicate::RegionOutlives(ref binder) =>
                Predicate::RegionOutlives(binder.map_bound(|data| data.subst(tcx, substs))),
            Predicate::TypeOutlives(ref binder) =>
                Predicate::TypeOutlives(binder.map_bound(|data| data.subst(tcx, substs))),
            Predicate::Projection(ref binder) =>
                Predicate::Projection(binder.map_bound(|data| data.subst(tcx, substs))),
1068 1069 1070 1071
            Predicate::WellFormed(data) =>
                Predicate::WellFormed(data.subst(tcx, substs)),
            Predicate::ObjectSafe(trait_def_id) =>
                Predicate::ObjectSafe(trait_def_id),
1072 1073
            Predicate::ClosureKind(closure_def_id, closure_substs, kind) =>
                Predicate::ClosureKind(closure_def_id, closure_substs.subst(tcx, substs), kind),
1074 1075
            Predicate::ConstEvaluatable(def_id, const_substs) =>
                Predicate::ConstEvaluatable(def_id, const_substs.subst(tcx, substs)),
1076 1077 1078 1079
        }
    }
}

1080
#[derive(Clone, Copy, PartialEq, Eq, Hash, RustcEncodable, RustcDecodable)]
1081
pub struct TraitPredicate<'tcx> {
1082
    pub trait_ref: TraitRef<'tcx>
1083 1084 1085 1086
}
pub type PolyTraitPredicate<'tcx> = ty::Binder<TraitPredicate<'tcx>>;

impl<'tcx> TraitPredicate<'tcx> {
N
Niko Matsakis 已提交
1087
    pub fn def_id(&self) -> DefId {
1088 1089 1090
        self.trait_ref.def_id
    }

1091
    pub fn input_types<'a>(&'a self) -> impl DoubleEndedIterator<Item=Ty<'tcx>> + 'a {
1092
        self.trait_ref.input_types()
1093 1094 1095 1096 1097 1098 1099 1100
    }

    pub fn self_ty(&self) -> Ty<'tcx> {
        self.trait_ref.self_ty()
    }
}

impl<'tcx> PolyTraitPredicate<'tcx> {
N
Niko Matsakis 已提交
1101
    pub fn def_id(&self) -> DefId {
1102
        // ok to skip binder since trait def-id does not care about regions
1103
        self.skip_binder().def_id()
1104
    }
1105 1106
}

1107
#[derive(Clone, Copy, PartialEq, Eq, Hash, Debug, RustcEncodable, RustcDecodable)]
1108 1109
pub struct OutlivesPredicate<A,B>(pub A, pub B); // `A : B`
pub type PolyOutlivesPredicate<A,B> = ty::Binder<OutlivesPredicate<A,B>>;
S
scalexm 已提交
1110 1111 1112 1113 1114 1115
pub type RegionOutlivesPredicate<'tcx> = OutlivesPredicate<ty::Region<'tcx>,
                                                           ty::Region<'tcx>>;
pub type TypeOutlivesPredicate<'tcx> = OutlivesPredicate<Ty<'tcx>,
                                                         ty::Region<'tcx>>;
pub type PolyRegionOutlivesPredicate<'tcx> = ty::Binder<RegionOutlivesPredicate<'tcx>>;
pub type PolyTypeOutlivesPredicate<'tcx> = ty::Binder<TypeOutlivesPredicate<'tcx>>;
1116

1117
#[derive(Clone, Copy, PartialEq, Eq, Hash, Debug, RustcEncodable, RustcDecodable)]
N
Niko Matsakis 已提交
1118 1119 1120 1121 1122 1123 1124
pub struct SubtypePredicate<'tcx> {
    pub a_is_expected: bool,
    pub a: Ty<'tcx>,
    pub b: Ty<'tcx>
}
pub type PolySubtypePredicate<'tcx> = ty::Binder<SubtypePredicate<'tcx>>;

1125 1126 1127 1128 1129 1130 1131 1132 1133
/// This kind of predicate has no *direct* correspondent in the
/// syntax, but it roughly corresponds to the syntactic forms:
///
/// 1. `T : TraitRef<..., Item=Type>`
/// 2. `<T as TraitRef<...>>::Item == Type` (NYI)
///
/// In particular, form #1 is "desugared" to the combination of a
/// normal trait predicate (`T : TraitRef<...>`) and one of these
/// predicates. Form #2 is a broader form in that it also permits
1134 1135
/// equality between arbitrary types. Processing an instance of
/// Form #2 eventually yields one of these `ProjectionPredicate`
1136
/// instances to normalize the LHS.
1137
#[derive(Copy, Clone, PartialEq, Eq, Hash, RustcEncodable, RustcDecodable)]
1138 1139 1140 1141 1142 1143 1144
pub struct ProjectionPredicate<'tcx> {
    pub projection_ty: ProjectionTy<'tcx>,
    pub ty: Ty<'tcx>,
}

pub type PolyProjectionPredicate<'tcx> = Binder<ProjectionPredicate<'tcx>>;

1145
impl<'tcx> PolyProjectionPredicate<'tcx> {
1146 1147 1148 1149 1150
    /// Returns the def-id of the associated item being projected.
    pub fn item_def_id(&self) -> DefId {
        self.skip_binder().projection_ty.item_def_id
    }

1151 1152 1153 1154 1155 1156
    pub fn to_poly_trait_ref(&self, tcx: TyCtxt) -> PolyTraitRef<'tcx> {
        // Note: unlike with TraitRef::to_poly_trait_ref(),
        // self.0.trait_ref is permitted to have escaping regions.
        // This is because here `self` has a `Binder` and so does our
        // return value, so we are preserving the number of binding
        // levels.
1157
        self.map_bound(|predicate| predicate.projection_ty.trait_ref(tcx))
1158
    }
1159 1160

    pub fn ty(&self) -> Binder<Ty<'tcx>> {
1161 1162 1163 1164 1165 1166 1167 1168 1169 1170
        self.map_bound(|predicate| predicate.ty)
    }

    /// The DefId of the TraitItem for the associated type.
    ///
    /// Note that this is not the DefId of the TraitRef containing this
    /// associated type, which is in tcx.associated_item(projection_def_id()).container.
    pub fn projection_def_id(&self) -> DefId {
        // ok to skip binder since trait def-id does not care about regions
        self.skip_binder().projection_ty.item_def_id
1171
    }
1172 1173
}

1174 1175 1176 1177
pub trait ToPolyTraitRef<'tcx> {
    fn to_poly_trait_ref(&self) -> PolyTraitRef<'tcx>;
}

1178
impl<'tcx> ToPolyTraitRef<'tcx> for TraitRef<'tcx> {
1179
    fn to_poly_trait_ref(&self) -> PolyTraitRef<'tcx> {
1180
        ty::Binder::dummy(self.clone())
1181 1182 1183 1184 1185
    }
}

impl<'tcx> ToPolyTraitRef<'tcx> for PolyTraitPredicate<'tcx> {
    fn to_poly_trait_ref(&self) -> PolyTraitRef<'tcx> {
1186
        self.map_bound_ref(|trait_pred| trait_pred.trait_ref)
1187 1188 1189
    }
}

1190 1191
pub trait ToPredicate<'tcx> {
    fn to_predicate(&self) -> Predicate<'tcx>;
1192 1193
}

1194 1195
impl<'tcx> ToPredicate<'tcx> for TraitRef<'tcx> {
    fn to_predicate(&self) -> Predicate<'tcx> {
1196
        ty::Predicate::Trait(ty::Binder::dummy(ty::TraitPredicate {
1197 1198 1199 1200 1201
            trait_ref: self.clone()
        }))
    }
}

1202 1203
impl<'tcx> ToPredicate<'tcx> for PolyTraitRef<'tcx> {
    fn to_predicate(&self) -> Predicate<'tcx> {
1204
        ty::Predicate::Trait(self.to_poly_trait_predicate())
1205 1206 1207
    }
}

1208
impl<'tcx> ToPredicate<'tcx> for PolyRegionOutlivesPredicate<'tcx> {
1209
    fn to_predicate(&self) -> Predicate<'tcx> {
1210 1211 1212 1213
        Predicate::RegionOutlives(self.clone())
    }
}

1214 1215
impl<'tcx> ToPredicate<'tcx> for PolyTypeOutlivesPredicate<'tcx> {
    fn to_predicate(&self) -> Predicate<'tcx> {
1216 1217
        Predicate::TypeOutlives(self.clone())
    }
1218 1219
}

1220 1221
impl<'tcx> ToPredicate<'tcx> for PolyProjectionPredicate<'tcx> {
    fn to_predicate(&self) -> Predicate<'tcx> {
1222 1223 1224 1225
        Predicate::Projection(self.clone())
    }
}

1226
impl<'tcx> Predicate<'tcx> {
1227 1228 1229 1230 1231 1232
    /// Iterates over the types in this predicate. Note that in all
    /// cases this is skipping over a binder, so late-bound regions
    /// with depth 0 are bound by the predicate.
    pub fn walk_tys(&self) -> IntoIter<Ty<'tcx>> {
        let vec: Vec<_> = match *self {
            ty::Predicate::Trait(ref data) => {
1233
                data.skip_binder().input_types().collect()
1234
            }
1235 1236
            ty::Predicate::Subtype(binder) => {
                let SubtypePredicate { a, b, a_is_expected: _ } = binder.skip_binder();
N
Niko Matsakis 已提交
1237 1238
                vec![a, b]
            }
1239 1240
            ty::Predicate::TypeOutlives(binder) => {
                vec![binder.skip_binder().0]
1241 1242 1243 1244 1245
            }
            ty::Predicate::RegionOutlives(..) => {
                vec![]
            }
            ty::Predicate::Projection(ref data) => {
1246 1247
                let inner = data.skip_binder();
                inner.projection_ty.substs.types().chain(Some(inner.ty)).collect()
1248
            }
1249 1250 1251 1252 1253 1254
            ty::Predicate::WellFormed(data) => {
                vec![data]
            }
            ty::Predicate::ObjectSafe(_trait_def_id) => {
                vec![]
            }
1255 1256
            ty::Predicate::ClosureKind(_closure_def_id, closure_substs, _kind) => {
                closure_substs.substs.types().collect()
1257
            }
1258 1259 1260
            ty::Predicate::ConstEvaluatable(_, substs) => {
                substs.types().collect()
            }
1261 1262 1263 1264 1265 1266 1267 1268 1269 1270
        };

        // The only reason to collect into a vector here is that I was
        // too lazy to make the full (somewhat complicated) iterator
        // type that would be needed here. But I wanted this fn to
        // return an iterator conceptually, rather than a `Vec`, so as
        // to be closer to `Ty::walk`.
        vec.into_iter()
    }

1271
    pub fn to_opt_poly_trait_ref(&self) -> Option<PolyTraitRef<'tcx>> {
1272 1273
        match *self {
            Predicate::Trait(ref t) => {
1274
                Some(t.to_poly_trait_ref())
1275
            }
1276
            Predicate::Projection(..) |
N
Niko Matsakis 已提交
1277
            Predicate::Subtype(..) |
1278
            Predicate::RegionOutlives(..) |
1279 1280
            Predicate::WellFormed(..) |
            Predicate::ObjectSafe(..) |
1281
            Predicate::ClosureKind(..) |
1282 1283
            Predicate::TypeOutlives(..) |
            Predicate::ConstEvaluatable(..) => {
1284 1285
                None
            }
1286 1287
        }
    }
1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305

    pub fn to_opt_type_outlives(&self) -> Option<PolyTypeOutlivesPredicate<'tcx>> {
        match *self {
            Predicate::TypeOutlives(data) => {
                Some(data)
            }
            Predicate::Trait(..) |
            Predicate::Projection(..) |
            Predicate::Subtype(..) |
            Predicate::RegionOutlives(..) |
            Predicate::WellFormed(..) |
            Predicate::ObjectSafe(..) |
            Predicate::ClosureKind(..) |
            Predicate::ConstEvaluatable(..) => {
                None
            }
        }
    }
1306 1307
}

S
Steve Klabnik 已提交
1308 1309
/// Represents the bounds declared on a particular set of type
/// parameters.  Should eventually be generalized into a flag list of
1310 1311 1312 1313 1314
/// where clauses.  You can obtain a `InstantiatedPredicates` list from a
/// `GenericPredicates` by using the `instantiate` method. Note that this method
/// reflects an important semantic invariant of `InstantiatedPredicates`: while
/// the `GenericPredicates` are expressed in terms of the bound type
/// parameters of the impl/trait/whatever, an `InstantiatedPredicates` instance
S
Steve Klabnik 已提交
1315 1316 1317 1318 1319 1320 1321 1322
/// represented a set of bounds for some particular instantiation,
/// meaning that the generic parameters have been substituted with
/// their values.
///
/// Example:
///
///     struct Foo<T,U:Bar<T>> { ... }
///
1323
/// Here, the `GenericPredicates` for `Foo` would contain a list of bounds like
J
Jorge Aparicio 已提交
1324
/// `[[], [U:Bar<T>]]`.  Now if there were some particular reference
1325 1326
/// like `Foo<isize,usize>`, then the `InstantiatedPredicates` would be `[[],
/// [usize:Bar<isize>]]`.
1327
#[derive(Clone)]
1328
pub struct InstantiatedPredicates<'tcx> {
1329
    pub predicates: Vec<Predicate<'tcx>>,
1330 1331
}

1332 1333
impl<'tcx> InstantiatedPredicates<'tcx> {
    pub fn empty() -> InstantiatedPredicates<'tcx> {
1334
        InstantiatedPredicates { predicates: vec![] }
1335 1336
    }

1337 1338
    pub fn is_empty(&self) -> bool {
        self.predicates.is_empty()
1339
    }
1340 1341
}

N
Niko Matsakis 已提交
1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377
/// "Universes" are used during type- and trait-checking in the
/// presence of `for<..>` binders to control what sets of names are
/// visible. Universes are arranged into a tree: the root universe
/// contains names that are always visible. But when you enter into
/// some subuniverse, then it may add names that are only visible
/// within that subtree (but it can still name the names of its
/// ancestor universes).
///
/// To make this more concrete, consider this program:
///
/// ```
/// struct Foo { }
/// fn bar<T>(x: T) {
///   let y: for<'a> fn(&'a u8, Foo) = ...;
/// }
/// ```
///
/// The struct name `Foo` is in the root universe U0. But the type
/// parameter `T`, introduced on `bar`, is in a subuniverse U1 --
/// i.e., within `bar`, we can name both `T` and `Foo`, but outside of
/// `bar`, we cannot name `T`. Then, within the type of `y`, the
/// region `'a` is in a subuniverse U2 of U1, because we can name it
/// inside the fn type but not outside.
///
/// Universes are related to **skolemization** -- which is a way of
/// doing type- and trait-checking around these "forall" binders (also
/// called **universal quantification**). The idea is that when, in
/// the body of `bar`, we refer to `T` as a type, we aren't referring
/// to any type in particular, but rather a kind of "fresh" type that
/// is distinct from all other types we have actually declared. This
/// is called a **skolemized** type, and we use universes to talk
/// about this. In other words, a type name in universe 0 always
/// corresponds to some "ground" type that the user declared, but a
/// type name in a non-zero universe is a skolemized type -- an
/// idealized representative of "types in general" that we use for
/// checking generic functions.
1378
#[derive(Copy, Clone, Debug, PartialEq, Eq, PartialOrd, Ord, Hash, RustcEncodable, RustcDecodable)]
N
Niko Matsakis 已提交
1379 1380 1381 1382 1383
pub struct UniverseIndex(u32);

impl UniverseIndex {
    /// The root universe, where things that the user defined are
    /// visible.
1384
    pub const ROOT: Self = UniverseIndex(0);
N
Niko Matsakis 已提交
1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397

    /// A "subuniverse" corresponds to being inside a `forall` quantifier.
    /// So, for example, suppose we have this type in universe `U`:
    ///
    /// ```
    /// for<'a> fn(&'a u32)
    /// ```
    ///
    /// Once we "enter" into this `for<'a>` quantifier, we are in a
    /// subuniverse of `U` -- in this new universe, we can name the
    /// region `'a`, but that region was not nameable from `U` because
    /// it was not in scope there.
    pub fn subuniverse(self) -> UniverseIndex {
1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412
        UniverseIndex(self.0.checked_add(1).unwrap())
    }

    pub fn as_u32(&self) -> u32 {
        self.0
    }

    pub fn as_usize(&self) -> usize {
        self.0 as usize
    }
}

impl From<u32> for UniverseIndex {
    fn from(index: u32) -> Self {
        UniverseIndex(index)
1413
    }
N
Niko Matsakis 已提交
1414 1415
}

1416
/// When type checking, we use the `ParamEnv` to track
1417 1418 1419
/// details about the set of where-clauses that are in scope at this
/// particular point.
#[derive(Copy, Clone, Debug, PartialEq, Eq, Hash)]
1420
pub struct ParamEnv<'tcx> {
1421 1422
    /// Obligations that the caller must satisfy. This is basically
    /// the set of bounds on the in-scope type parameters, translated
1423
    /// into Obligations, and elaborated and normalized.
1424
    pub caller_bounds: &'tcx Slice<ty::Predicate<'tcx>>,
1425

I
Irina Popa 已提交
1426
    /// Typically, this is `Reveal::UserFacing`, but during codegen we
1427 1428 1429
    /// want `Reveal::All` -- note that this is always paired with an
    /// empty environment. To get that, use `ParamEnv::reveal()`.
    pub reveal: traits::Reveal,
1430
}
1431

1432
impl<'tcx> ParamEnv<'tcx> {
1433 1434 1435 1436 1437
    /// Construct a trait environment suitable for contexts where
    /// there are no where clauses in scope. Hidden types (like `impl
    /// Trait`) are left hidden, so this is suitable for ordinary
    /// type-checking.
    pub fn empty() -> Self {
S
Sean Griffin 已提交
1438
        Self::new(ty::Slice::empty(), Reveal::UserFacing)
1439 1440 1441 1442 1443
    }

    /// Construct a trait environment with no where clauses in scope
    /// where the values of all `impl Trait` and other hidden types
    /// are revealed. This is suitable for monomorphized, post-typeck
I
Irina Popa 已提交
1444
    /// environments like codegen or doing optimizations.
1445 1446 1447 1448
    ///
    /// NB. If you want to have predicates in scope, use `ParamEnv::new`,
    /// or invoke `param_env.with_reveal_all()`.
    pub fn reveal_all() -> Self {
S
Sean Griffin 已提交
1449
        Self::new(ty::Slice::empty(), Reveal::All)
1450 1451 1452 1453
    }

    /// Construct a trait environment with the given set of predicates.
    pub fn new(caller_bounds: &'tcx ty::Slice<ty::Predicate<'tcx>>,
S
Sean Griffin 已提交
1454
               reveal: Reveal)
1455
               -> Self {
S
Sean Griffin 已提交
1456
        ty::ParamEnv { caller_bounds, reveal }
1457 1458 1459 1460 1461
    }

    /// Returns a new parameter environment with the same clauses, but
    /// which "reveals" the true results of projections in all cases
    /// (even for associated types that are specializable).  This is
I
Irina Popa 已提交
1462
    /// the desired behavior during codegen and certain other special
1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473
    /// contexts; normally though we want to use `Reveal::UserFacing`,
    /// which is the default.
    pub fn with_reveal_all(self) -> Self {
        ty::ParamEnv { reveal: Reveal::All, ..self }
    }

    /// Returns this same environment but with no caller bounds.
    pub fn without_caller_bounds(self) -> Self {
        ty::ParamEnv { caller_bounds: ty::Slice::empty(), ..self }
    }

1474
    /// Creates a suitable environment in which to perform trait
1475 1476 1477 1478 1479
    /// queries on the given value. When type-checking, this is simply
    /// the pair of the environment plus value. But when reveal is set to
    /// All, then if `value` does not reference any type parameters, we will
    /// pair it with the empty environment. This improves caching and is generally
    /// invisible.
1480
    ///
1481 1482
    /// NB: We preserve the environment when type-checking because it
    /// is possible for the user to have wacky where-clauses like
1483
    /// `where Box<u32>: Copy`, which are clearly never
1484 1485
    /// satisfiable. We generally want to behave as if they were true,
    /// although the surrounding function is never reachable.
1486
    pub fn and<T: TypeFoldable<'tcx>>(self, value: T) -> ParamEnvAnd<'tcx, T> {
1487 1488 1489 1490 1491 1492
        match self.reveal {
            Reveal::UserFacing => {
                ParamEnvAnd {
                    param_env: self,
                    value,
                }
1493
            }
1494 1495

            Reveal::All => {
1496 1497 1498 1499 1500
                if value.has_skol()
                    || value.needs_infer()
                    || value.has_param_types()
                    || value.has_self_ty()
                {
1501 1502 1503 1504 1505 1506 1507 1508 1509 1510
                    ParamEnvAnd {
                        param_env: self,
                        value,
                    }
                } else {
                    ParamEnvAnd {
                        param_env: self.without_caller_bounds(),
                        value,
                    }
                }
1511
            }
1512 1513 1514
        }
    }
}
1515

1516
#[derive(Copy, Clone, Debug, PartialEq, Eq, Hash)]
1517 1518
pub struct ParamEnvAnd<'tcx, T> {
    pub param_env: ParamEnv<'tcx>,
1519
    pub value: T,
1520 1521
}

1522 1523
impl<'tcx, T> ParamEnvAnd<'tcx, T> {
    pub fn into_parts(self) -> (ParamEnv<'tcx>, T) {
1524
        (self.param_env, self.value)
1525
    }
1526 1527
}

1528 1529
impl<'a, 'gcx, T> HashStable<StableHashingContext<'a>> for ParamEnvAnd<'gcx, T>
    where T: HashStable<StableHashingContext<'a>>
1530 1531
{
    fn hash_stable<W: StableHasherResult>(&self,
1532
                                          hcx: &mut StableHashingContext<'a>,
1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543
                                          hasher: &mut StableHasher<W>) {
        let ParamEnvAnd {
            ref param_env,
            ref value
        } = *self;

        param_env.hash_stable(hcx, hasher);
        value.hash_stable(hcx, hasher);
    }
}

1544 1545 1546 1547 1548 1549
#[derive(Copy, Clone, Debug)]
pub struct Destructor {
    /// The def-id of the destructor method
    pub did: DefId,
}

1550
bitflags! {
1551 1552 1553 1554 1555 1556 1557
    pub struct AdtFlags: u32 {
        const NO_ADT_FLAGS        = 0;
        const IS_ENUM             = 1 << 0;
        const IS_PHANTOM_DATA     = 1 << 1;
        const IS_FUNDAMENTAL      = 1 << 2;
        const IS_UNION            = 1 << 3;
        const IS_BOX              = 1 << 4;
1558 1559 1560 1561
        /// Indicates whether this abstract data type will be expanded on in future (new
        /// fields/variants) and as such, whether downstream crates must match exhaustively on the
        /// fields/variants of this data type.
        ///
1562
        /// See RFC 2008 (<https://github.com/rust-lang/rfcs/pull/2008>).
1563
        const IS_NON_EXHAUSTIVE   = 1 << 5;
1564 1565 1566
    }
}

1567
#[derive(Debug)]
1568
pub struct VariantDef {
1569 1570
    /// The variant's DefId. If this is a tuple-like struct,
    /// this is the DefId of the struct's ctor.
1571 1572
    pub did: DefId,
    pub name: Name, // struct's name if this is a struct
1573
    pub discr: VariantDiscr,
1574
    pub fields: Vec<FieldDef>,
1575
    pub ctor_kind: CtorKind,
1576 1577
}

1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590
#[derive(Copy, Clone, Debug, PartialEq, Eq, RustcEncodable, RustcDecodable)]
pub enum VariantDiscr {
    /// Explicit value for this variant, i.e. `X = 123`.
    /// The `DefId` corresponds to the embedded constant.
    Explicit(DefId),

    /// The previous variant's discriminant plus one.
    /// For efficiency reasons, the distance from the
    /// last `Explicit` discriminant is being stored,
    /// or `0` for the first variant, if it has none.
    Relative(usize),
}

1591
#[derive(Debug)]
1592
pub struct FieldDef {
1593
    pub did: DefId,
1594
    pub name: Name,
1595
    pub vis: Visibility,
1596 1597
}

A
Ariel Ben-Yehuda 已提交
1598 1599 1600 1601
/// The definition of an abstract data type - a struct or enum.
///
/// These are all interned (by intern_adt_def) into the adt_defs
/// table.
1602
pub struct AdtDef {
1603
    pub did: DefId,
1604
    pub variants: Vec<VariantDef>,
1605
    flags: AdtFlags,
1606
    pub repr: ReprOptions,
1607 1608
}

1609 1610
impl PartialEq for AdtDef {
    // AdtDef are always interned and this is part of TyS equality
1611 1612 1613 1614
    #[inline]
    fn eq(&self, other: &Self) -> bool { self as *const _ == other as *const _ }
}

1615
impl Eq for AdtDef {}
1616

1617
impl Hash for AdtDef {
1618 1619
    #[inline]
    fn hash<H: Hasher>(&self, s: &mut H) {
1620
        (self as *const AdtDef).hash(s)
1621 1622 1623
    }
}

1624
impl<'tcx> serialize::UseSpecializedEncodable for &'tcx AdtDef {
1625
    fn default_encode<S: Encoder>(&self, s: &mut S) -> Result<(), S::Error> {
1626 1627 1628 1629
        self.did.encode(s)
    }
}

1630
impl<'tcx> serialize::UseSpecializedDecodable for &'tcx AdtDef {}
1631

1632

1633
impl<'a> HashStable<StableHashingContext<'a>> for AdtDef {
1634
    fn hash_stable<W: StableHasherResult>(&self,
1635
                                          hcx: &mut StableHashingContext<'a>,
1636
                                          hasher: &mut StableHasher<W>) {
W
Wesley Wiser 已提交
1637 1638 1639 1640
        thread_local! {
            static CACHE: RefCell<FxHashMap<usize, Fingerprint>> =
                RefCell::new(FxHashMap());
        }
1641

W
Wesley Wiser 已提交
1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662
        let hash: Fingerprint = CACHE.with(|cache| {
            let addr = self as *const AdtDef as usize;
            *cache.borrow_mut().entry(addr).or_insert_with(|| {
                let ty::AdtDef {
                    did,
                    ref variants,
                    ref flags,
                    ref repr,
                } = *self;

                let mut hasher = StableHasher::new();
                did.hash_stable(hcx, &mut hasher);
                variants.hash_stable(hcx, &mut hasher);
                flags.hash_stable(hcx, &mut hasher);
                repr.hash_stable(hcx, &mut hasher);

                hasher.finish()
           })
        });

        hash.hash_stable(hcx, hasher);
1663 1664 1665
    }
}

1666
#[derive(Copy, Clone, Debug, Eq, PartialEq, Hash)]
1667
pub enum AdtKind { Struct, Union, Enum }
1668

1669 1670
bitflags! {
    #[derive(RustcEncodable, RustcDecodable, Default)]
1671 1672
    pub struct ReprFlags: u8 {
        const IS_C               = 1 << 0;
1673 1674
        const IS_SIMD            = 1 << 1;
        const IS_TRANSPARENT     = 1 << 2;
1675
        // Internal only for now. If true, don't reorder fields.
1676
        const IS_LINEAR          = 1 << 3;
1677 1678 1679 1680

        // Any of these flags being set prevent field reordering optimisation.
        const IS_UNOPTIMISABLE   = ReprFlags::IS_C.bits |
                                   ReprFlags::IS_SIMD.bits |
1681
                                   ReprFlags::IS_LINEAR.bits;
1682 1683 1684 1685 1686 1687 1688 1689 1690
    }
}

impl_stable_hash_for!(struct ReprFlags {
    bits
});



1691 1692 1693 1694
/// Represents the repr options provided by the user,
#[derive(Copy, Clone, Eq, PartialEq, RustcEncodable, RustcDecodable, Default)]
pub struct ReprOptions {
    pub int: Option<attr::IntType>,
1695
    pub align: u32,
1696
    pub pack: u32,
1697
    pub flags: ReprFlags,
1698 1699
}

1700
impl_stable_hash_for!(struct ReprOptions {
1701
    align,
1702
    pack,
1703
    int,
1704
    flags
1705 1706
});

1707
impl ReprOptions {
1708
    pub fn new(tcx: TyCtxt, did: DefId) -> ReprOptions {
1709 1710
        let mut flags = ReprFlags::empty();
        let mut size = None;
1711
        let mut max_align = 0;
1712
        let mut min_pack = 0;
1713 1714
        for attr in tcx.get_attrs(did).iter() {
            for r in attr::find_repr_attrs(tcx.sess.diagnostic(), attr) {
1715
                flags.insert(match r {
1716
                    attr::ReprC => ReprFlags::IS_C,
1717 1718 1719 1720 1721 1722 1723 1724
                    attr::ReprPacked(pack) => {
                        min_pack = if min_pack > 0 {
                            cmp::min(pack, min_pack)
                        } else {
                            pack
                        };
                        ReprFlags::empty()
                    },
R
Robin Kruppe 已提交
1725
                    attr::ReprTransparent => ReprFlags::IS_TRANSPARENT,
1726 1727 1728 1729 1730
                    attr::ReprSimd => ReprFlags::IS_SIMD,
                    attr::ReprInt(i) => {
                        size = Some(i);
                        ReprFlags::empty()
                    },
1731 1732 1733 1734
                    attr::ReprAlign(align) => {
                        max_align = cmp::max(align, max_align);
                        ReprFlags::empty()
                    },
1735
                });
1736 1737
            }
        }
1738

1739
        // This is here instead of layout because the choice must make it into metadata.
1740 1741 1742
        if !tcx.consider_optimizing(|| format!("Reorder fields of {:?}", tcx.item_path_str(did))) {
            flags.insert(ReprFlags::IS_LINEAR);
        }
1743
        ReprOptions { int: size, align: max_align, pack: min_pack, flags: flags }
1744
    }
1745

1746 1747 1748 1749 1750
    #[inline]
    pub fn simd(&self) -> bool { self.flags.contains(ReprFlags::IS_SIMD) }
    #[inline]
    pub fn c(&self) -> bool { self.flags.contains(ReprFlags::IS_C) }
    #[inline]
1751
    pub fn packed(&self) -> bool { self.pack > 0 }
1752
    #[inline]
R
Robin Kruppe 已提交
1753 1754
    pub fn transparent(&self) -> bool { self.flags.contains(ReprFlags::IS_TRANSPARENT) }
    #[inline]
1755 1756
    pub fn linear(&self) -> bool { self.flags.contains(ReprFlags::IS_LINEAR) }

1757
    pub fn discr_type(&self) -> attr::IntType {
1758
        self.int.unwrap_or(attr::SignedInt(ast::IntTy::Isize))
1759
    }
1760 1761 1762 1763 1764

    /// Returns true if this `#[repr()]` should inhabit "smart enum
    /// layout" optimizations, such as representing `Foo<&T>` as a
    /// single pointer.
    pub fn inhibit_enum_layout_opt(&self) -> bool {
1765
        self.c() || self.int.is_some()
1766
    }
1767 1768 1769 1770 1771 1772

    /// Returns true if this `#[repr()]` should inhibit struct field reordering
    /// optimizations, such as with repr(C) or repr(packed(1)).
    pub fn inhibit_struct_field_reordering_opt(&self) -> bool {
        !(self.flags & ReprFlags::IS_UNOPTIMISABLE).is_empty() || (self.pack == 1)
    }
1773 1774
}

1775
impl<'a, 'gcx, 'tcx> AdtDef {
1776
    fn new(tcx: TyCtxt,
1777
           did: DefId,
A
Ariel Ben-Yehuda 已提交
1778
           kind: AdtKind,
1779 1780
           variants: Vec<VariantDef>,
           repr: ReprOptions) -> Self {
A
Ariel Ben-Yehuda 已提交
1781
        let mut flags = AdtFlags::NO_ADT_FLAGS;
A
Ariel Ben-Yehuda 已提交
1782
        let attrs = tcx.get_attrs(did);
1783
        if attr::contains_name(&attrs, "fundamental") {
A
Ariel Ben-Yehuda 已提交
1784
            flags = flags | AdtFlags::IS_FUNDAMENTAL;
1785
        }
1786
        if Some(did) == tcx.lang_items().phantom_data() {
A
Ariel Ben-Yehuda 已提交
1787
            flags = flags | AdtFlags::IS_PHANTOM_DATA;
1788
        }
1789
        if Some(did) == tcx.lang_items().owned_box() {
1790 1791
            flags = flags | AdtFlags::IS_BOX;
        }
1792 1793 1794
        if tcx.has_attr(did, "non_exhaustive") {
            flags = flags | AdtFlags::IS_NON_EXHAUSTIVE;
        }
1795 1796 1797 1798
        match kind {
            AdtKind::Enum => flags = flags | AdtFlags::IS_ENUM,
            AdtKind::Union => flags = flags | AdtFlags::IS_UNION,
            AdtKind::Struct => {}
1799
        }
1800
        AdtDef {
1801 1802 1803 1804
            did,
            variants,
            flags,
            repr,
1805 1806 1807
        }
    }

1808 1809 1810 1811 1812 1813 1814
    #[inline]
    pub fn is_struct(&self) -> bool {
        !self.is_union() && !self.is_enum()
    }

    #[inline]
    pub fn is_union(&self) -> bool {
1815
        self.flags.intersects(AdtFlags::IS_UNION)
1816 1817 1818 1819
    }

    #[inline]
    pub fn is_enum(&self) -> bool {
1820
        self.flags.intersects(AdtFlags::IS_ENUM)
1821 1822
    }

1823 1824 1825 1826 1827
    #[inline]
    pub fn is_non_exhaustive(&self) -> bool {
        self.flags.intersects(AdtFlags::IS_NON_EXHAUSTIVE)
    }

A
Ariel Ben-Yehuda 已提交
1828
    /// Returns the kind of the ADT - Struct or Enum.
1829
    #[inline]
A
Ariel Ben-Yehuda 已提交
1830
    pub fn adt_kind(&self) -> AdtKind {
1831
        if self.is_enum() {
A
Ariel Ben-Yehuda 已提交
1832
            AdtKind::Enum
1833
        } else if self.is_union() {
1834
            AdtKind::Union
1835
        } else {
A
Ariel Ben-Yehuda 已提交
1836
            AdtKind::Struct
1837 1838 1839
        }
    }

1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855
    pub fn descr(&self) -> &'static str {
        match self.adt_kind() {
            AdtKind::Struct => "struct",
            AdtKind::Union => "union",
            AdtKind::Enum => "enum",
        }
    }

    pub fn variant_descr(&self) -> &'static str {
        match self.adt_kind() {
            AdtKind::Struct => "struct",
            AdtKind::Union => "union",
            AdtKind::Enum => "variant",
        }
    }

A
Ariel Ben-Yehuda 已提交
1856 1857
    /// Returns whether this type is #[fundamental] for the purposes
    /// of coherence checking.
1858 1859
    #[inline]
    pub fn is_fundamental(&self) -> bool {
1860
        self.flags.intersects(AdtFlags::IS_FUNDAMENTAL)
1861 1862
    }

A
Ariel Ben-Yehuda 已提交
1863
    /// Returns true if this is PhantomData<T>.
1864 1865
    #[inline]
    pub fn is_phantom_data(&self) -> bool {
1866
        self.flags.intersects(AdtFlags::IS_PHANTOM_DATA)
1867 1868
    }

1869 1870 1871
    /// Returns true if this is Box<T>.
    #[inline]
    pub fn is_box(&self) -> bool {
1872
        self.flags.intersects(AdtFlags::IS_BOX)
1873 1874
    }

A
Ariel Ben-Yehuda 已提交
1875
    /// Returns whether this type has a destructor.
1876 1877
    pub fn has_dtor(&self, tcx: TyCtxt<'a, 'gcx, 'tcx>) -> bool {
        self.destructor(tcx).is_some()
1878 1879
    }

1880 1881 1882
    /// Asserts this is a struct or union and returns its unique variant.
    pub fn non_enum_variant(&self) -> &VariantDef {
        assert!(self.is_struct() || self.is_union());
1883
        &self.variants[0]
1884 1885 1886
    }

    #[inline]
1887
    pub fn predicates(&self, tcx: TyCtxt<'a, 'gcx, 'tcx>) -> GenericPredicates<'gcx> {
1888
        tcx.predicates_of(self.did)
1889
    }
1890

A
Ariel Ben-Yehuda 已提交
1891 1892
    /// Returns an iterator over all fields contained
    /// by this ADT.
1893
    #[inline]
1894 1895
    pub fn all_fields<'s>(&'s self) -> impl Iterator<Item = &'s FieldDef> {
        self.variants.iter().flat_map(|v| v.fields.iter())
1896 1897 1898 1899 1900 1901 1902
    }

    pub fn is_payloadfree(&self) -> bool {
        !self.variants.is_empty() &&
            self.variants.iter().all(|v| v.fields.is_empty())
    }

1903
    pub fn variant_with_id(&self, vid: DefId) -> &VariantDef {
1904 1905 1906 1907 1908 1909
        self.variants
            .iter()
            .find(|v| v.did == vid)
            .expect("variant_with_id: unknown variant")
    }

N
Niko Matsakis 已提交
1910 1911 1912 1913 1914 1915 1916
    pub fn variant_index_with_id(&self, vid: DefId) -> usize {
        self.variants
            .iter()
            .position(|v| v.did == vid)
            .expect("variant_index_with_id: unknown variant")
    }

1917
    pub fn variant_of_def(&self, def: Def) -> &VariantDef {
1918
        match def {
1919 1920
            Def::Variant(vid) | Def::VariantCtor(vid, ..) => self.variant_with_id(vid),
            Def::Struct(..) | Def::StructCtor(..) | Def::Union(..) |
1921
            Def::TyAlias(..) | Def::AssociatedTy(..) | Def::SelfTy(..) => self.non_enum_variant(),
1922
            _ => bug!("unexpected def {:?} in variant_of_def", def)
1923 1924
        }
    }
1925

O
Oliver Schneider 已提交
1926
    #[inline]
1927
    pub fn eval_explicit_discr(
O
Oliver Schneider 已提交
1928 1929 1930 1931
        &self,
        tcx: TyCtxt<'a, 'gcx, 'tcx>,
        expr_did: DefId,
    ) -> Option<Discr<'tcx>> {
1932
        let param_env = ParamEnv::empty();
O
Oliver Schneider 已提交
1933 1934 1935 1936 1937 1938 1939 1940
        let repr_type = self.repr.discr_type();
        let substs = Substs::identity_for_item(tcx.global_tcx(), expr_did);
        let instance = ty::Instance::new(expr_did, substs);
        let cid = GlobalId {
            instance,
            promoted: None
        };
        match tcx.const_eval(param_env.and(cid)) {
1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957
            Ok(val) => {
                // FIXME: Find the right type and use it instead of `val.ty` here
                if let Some(b) = val.assert_bits(val.ty) {
                    trace!("discriminants: {} ({:?})", b, repr_type);
                    Some(Discr {
                        val: b,
                        ty: val.ty,
                    })
                } else {
                    info!("invalid enum discriminant: {:#?}", val);
                    ::middle::const_val::struct_error(
                        tcx,
                        tcx.def_span(expr_did),
                        "constant evaluation of enum discriminant resulted in non-integer",
                    ).emit();
                    None
                }
O
Oliver Schneider 已提交
1958
            }
1959 1960
            Err(err) => {
                err.report(tcx, tcx.def_span(expr_did), "enum discriminant");
O
Oliver Schneider 已提交
1961 1962 1963 1964 1965 1966 1967 1968 1969 1970
                if !expr_did.is_local() {
                    span_bug!(tcx.def_span(expr_did),
                        "variant discriminant evaluation succeeded \
                            in its crate but failed locally");
                }
                None
            }
        }
    }

1971
    #[inline]
1972 1973 1974 1975
    pub fn discriminants(
        &'a self,
        tcx: TyCtxt<'a, 'gcx, 'tcx>,
    ) -> impl Iterator<Item=Discr<'tcx>> + Captures<'gcx> + 'a {
1976
        let repr_type = self.repr.discr_type();
1977
        let initial = repr_type.initial_discriminant(tcx.global_tcx());
O
Oliver Schneider 已提交
1978
        let mut prev_discr = None::<Discr<'tcx>>;
1979
        self.variants.iter().map(move |v| {
O
Oliver Schneider 已提交
1980
            let mut discr = prev_discr.map_or(initial, |d| d.wrap_incr(tcx));
1981
            if let VariantDiscr::Explicit(expr_did) = v.discr {
O
Oliver Schneider 已提交
1982 1983
                if let Some(new_discr) = self.eval_explicit_discr(tcx, expr_did) {
                    discr = new_discr;
1984 1985 1986 1987 1988 1989 1990 1991
                }
            }
            prev_discr = Some(discr);

            discr
        })
    }

1992 1993 1994 1995 1996 1997 1998 1999
    /// Compute the discriminant value used by a specific variant.
    /// Unlike `discriminants`, this is (amortized) constant-time,
    /// only doing at most one query for evaluating an explicit
    /// discriminant (the last one before the requested variant),
    /// assuming there are no constant-evaluation errors there.
    pub fn discriminant_for_variant(&self,
                                    tcx: TyCtxt<'a, 'gcx, 'tcx>,
                                    variant_index: usize)
O
Oliver Schneider 已提交
2000
                                    -> Discr<'tcx> {
2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014
        let (val, offset) = self.discriminant_def_for_variant(variant_index);
        let explicit_value = val
            .and_then(|expr_did| self.eval_explicit_discr(tcx, expr_did))
            .unwrap_or_else(|| self.repr.discr_type().initial_discriminant(tcx.global_tcx()));
        explicit_value.checked_add(tcx, offset as u128).0
    }

    /// Yields a DefId for the discriminant and an offset to add to it
    /// Alternatively, if there is no explicit discriminant, returns the
    /// inferred discriminant directly
    pub fn discriminant_def_for_variant(
        &self,
        variant_index: usize,
    ) -> (Option<DefId>, usize) {
2015
        let mut explicit_index = variant_index;
2016
        let expr_did;
2017 2018
        loop {
            match self.variants[explicit_index].discr {
2019 2020 2021 2022
                ty::VariantDiscr::Relative(0) => {
                    expr_did = None;
                    break;
                },
2023 2024 2025
                ty::VariantDiscr::Relative(distance) => {
                    explicit_index -= distance;
                }
2026 2027 2028
                ty::VariantDiscr::Explicit(did) => {
                    expr_did = Some(did);
                    break;
2029 2030 2031
                }
            }
        }
2032
        (expr_did, variant_index - explicit_index)
2033 2034
    }

2035
    pub fn destructor(&self, tcx: TyCtxt<'a, 'gcx, 'tcx>) -> Option<Destructor> {
2036
        tcx.adt_destructor(self.did)
2037 2038
    }

2039
    /// Returns a list of types such that `Self: Sized` if and only
2040
    /// if that type is Sized, or `TyErr` if this type is recursive.
A
Ariel Ben-Yehuda 已提交
2041 2042 2043 2044 2045 2046 2047 2048
    ///
    /// Oddly enough, checking that the sized-constraint is Sized is
    /// actually more expressive than checking all members:
    /// the Sized trait is inductive, so an associated type that references
    /// Self would prevent its containing ADT from being Sized.
    ///
    /// Due to normalization being eager, this applies even if
    /// the associated type is behind a pointer, e.g. issue #31299.
2049
    pub fn sized_constraint(&self, tcx: TyCtxt<'a, 'gcx, 'tcx>) -> &'tcx [Ty<'tcx>] {
2050
        match tcx.try_get_query::<queries::adt_sized_constraint>(DUMMY_SP, self.did) {
2051
            Ok(tys) => tys,
2052
            Err(mut bug) => {
2053 2054 2055 2056
                debug!("adt_sized_constraint: {:?} is recursive", self);
                // This should be reported as an error by `check_representable`.
                //
                // Consider the type as Sized in the meanwhile to avoid
2057 2058 2059 2060
                // further errors. Delay our `bug` diagnostic here to get
                // emitted later as well in case we accidentally otherwise don't
                // emit an error.
                bug.delay_as_bug();
2061
                tcx.intern_type_list(&[tcx.types.err])
A
Ariel Ben-Yehuda 已提交
2062
            }
2063 2064
        }
    }
2065

2066 2067 2068 2069
    fn sized_constraint_for_ty(&self,
                               tcx: TyCtxt<'a, 'tcx, 'tcx>,
                               ty: Ty<'tcx>)
                               -> Vec<Ty<'tcx>> {
2070 2071
        let result = match ty.sty {
            TyBool | TyChar | TyInt(..) | TyUint(..) | TyFloat(..) |
2072
            TyRawPtr(..) | TyRef(..) | TyFnDef(..) | TyFnPtr(_) |
J
John Kåre Alsaker 已提交
2073
            TyArray(..) | TyClosure(..) | TyGenerator(..) | TyNever => {
A
Ariel Ben-Yehuda 已提交
2074
                vec![]
2075 2076
            }

2077 2078 2079 2080 2081 2082
            TyStr |
            TyDynamic(..) |
            TySlice(_) |
            TyForeign(..) |
            TyError |
            TyGeneratorWitness(..) => {
2083
                // these are never sized - return the target type
A
Ariel Ben-Yehuda 已提交
2084
                vec![ty]
2085 2086
            }

A
Andrew Cann 已提交
2087
            TyTuple(ref tys) => {
2088 2089
                match tys.last() {
                    None => vec![],
2090
                    Some(ty) => self.sized_constraint_for_ty(tcx, ty)
2091
                }
2092 2093
            }

2094
            TyAdt(adt, substs) => {
2095
                // recursive case
2096
                let adt_tys = adt.sized_constraint(tcx);
2097
                debug!("sized_constraint_for_ty({:?}) intermediate = {:?}",
2098 2099 2100 2101 2102
                       ty, adt_tys);
                adt_tys.iter()
                    .map(|ty| ty.subst(tcx, substs))
                    .flat_map(|ty| self.sized_constraint_for_ty(tcx, ty))
                    .collect()
2103 2104
            }

2105
            TyProjection(..) | TyAnon(..) => {
2106 2107
                // must calculate explicitly.
                // FIXME: consider special-casing always-Sized projections
A
Ariel Ben-Yehuda 已提交
2108
                vec![ty]
2109 2110 2111
            }

            TyParam(..) => {
A
Ariel Ben-Yehuda 已提交
2112 2113 2114 2115
                // perf hack: if there is a `T: Sized` bound, then
                // we know that `T` is Sized and do not need to check
                // it on the impl.

2116
                let sized_trait = match tcx.lang_items().sized_trait() {
2117
                    Some(x) => x,
A
Ariel Ben-Yehuda 已提交
2118
                    _ => return vec![ty]
2119
                };
2120
                let sized_predicate = Binder::dummy(TraitRef {
2121
                    def_id: sized_trait,
2122
                    substs: tcx.mk_substs_trait(ty, &[])
2123
                }).to_predicate();
2124
                let predicates = tcx.predicates_of(self.did).predicates;
2125
                if predicates.into_iter().any(|p| p == sized_predicate) {
A
Ariel Ben-Yehuda 已提交
2126
                    vec![]
2127
                } else {
A
Ariel Ben-Yehuda 已提交
2128
                    vec![ty]
2129 2130 2131
                }
            }

A
Ariel Ben-Yehuda 已提交
2132
            TyInfer(..) => {
2133 2134 2135 2136 2137 2138 2139
                bug!("unexpected type `{:?}` in sized_constraint_for_ty",
                     ty)
            }
        };
        debug!("sized_constraint_for_ty({:?}) = {:?}", ty, result);
        result
    }
2140 2141
}

2142
impl<'a, 'gcx, 'tcx> FieldDef {
2143
    pub fn ty(&self, tcx: TyCtxt<'a, 'gcx, 'tcx>, subst: &Substs<'tcx>) -> Ty<'tcx> {
2144
        tcx.type_of(self.did).subst(tcx, subst)
2145
    }
2146 2147
}

2148 2149 2150 2151 2152 2153
/// Represents the various closure traits in the Rust language. This
/// will determine the type of the environment (`self`, in the
/// desuaring) argument that the closure expects.
///
/// You can get the environment type of a closure using
/// `tcx.closure_env_ty()`.
2154
#[derive(Clone, Copy, PartialOrd, Ord, PartialEq, Eq, Hash, Debug, RustcEncodable, RustcDecodable)]
2155
pub enum ClosureKind {
2156 2157 2158
    // Warning: Ordering is significant here! The ordering is chosen
    // because the trait Fn is a subtrait of FnMut and so in turn, and
    // hence we order it so that Fn < FnMut < FnOnce.
2159 2160 2161
    Fn,
    FnMut,
    FnOnce,
2162 2163
}

2164
impl<'a, 'tcx> ClosureKind {
2165 2166 2167
    // This is the initial value used when doing upvar inference.
    pub const LATTICE_BOTTOM: ClosureKind = ClosureKind::Fn;

2168
    pub fn trait_did(&self, tcx: TyCtxt<'a, 'tcx, 'tcx>) -> DefId {
2169 2170
        match *self {
            ClosureKind::Fn => tcx.require_lang_item(FnTraitLangItem),
2171
            ClosureKind::FnMut => {
2172
                tcx.require_lang_item(FnMutTraitLangItem)
2173
            }
2174
            ClosureKind::FnOnce => {
2175
                tcx.require_lang_item(FnOnceTraitLangItem)
2176 2177 2178
            }
        }
    }
2179 2180 2181 2182 2183

    /// True if this a type that impls this closure kind
    /// must also implement `other`.
    pub fn extends(self, other: ty::ClosureKind) -> bool {
        match (self, other) {
2184 2185 2186 2187 2188 2189
            (ClosureKind::Fn, ClosureKind::Fn) => true,
            (ClosureKind::Fn, ClosureKind::FnMut) => true,
            (ClosureKind::Fn, ClosureKind::FnOnce) => true,
            (ClosureKind::FnMut, ClosureKind::FnMut) => true,
            (ClosureKind::FnMut, ClosureKind::FnOnce) => true,
            (ClosureKind::FnOnce, ClosureKind::FnOnce) => true,
2190 2191 2192
            _ => false,
        }
    }
2193 2194 2195 2196 2197 2198 2199 2200 2201

    /// Returns the representative scalar type for this closure kind.
    /// See `TyS::to_opt_closure_kind` for more details.
    pub fn to_ty(self, tcx: TyCtxt<'_, '_, 'tcx>) -> Ty<'tcx> {
        match self {
            ty::ClosureKind::Fn => tcx.types.i8,
            ty::ClosureKind::FnMut => tcx.types.i16,
            ty::ClosureKind::FnOnce => tcx.types.i32,
        }
2202
    }
2203 2204
}

2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217
impl<'tcx> TyS<'tcx> {
    /// Iterator that walks `self` and any types reachable from
    /// `self`, in depth-first order. Note that just walks the types
    /// that appear in `self`, it does not descend into the fields of
    /// structs or variants. For example:
    ///
    /// ```notrust
    /// isize => { isize }
    /// Foo<Bar<isize>> => { Foo<Bar<isize>>, Bar<isize>, isize }
    /// [isize] => { [isize], isize }
    /// ```
    pub fn walk(&'tcx self) -> TypeWalker<'tcx> {
        TypeWalker::new(self)
2218 2219
    }

2220 2221 2222
    /// Iterator that walks the immediate children of `self`.  Hence
    /// `Foo<Bar<i32>, u32>` yields the sequence `[Bar<i32>, u32]`
    /// (but not `i32`, like `walk`).
2223
    pub fn walk_shallow(&'tcx self) -> AccIntoIter<walk::TypeWalkerArray<'tcx>> {
2224
        walk::walk_shallow(self)
2225 2226
    }

2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240
    /// Walks `ty` and any types appearing within `ty`, invoking the
    /// callback `f` on each type. If the callback returns false, then the
    /// children of the current type are ignored.
    ///
    /// Note: prefer `ty.walk()` where possible.
    pub fn maybe_walk<F>(&'tcx self, mut f: F)
        where F : FnMut(Ty<'tcx>) -> bool
    {
        let mut walker = self.walk();
        while let Some(ty) = walker.next() {
            if !f(ty) {
                walker.skip_current_subtree();
            }
        }
2241
    }
2242
}
2243

2244
impl BorrowKind {
2245
    pub fn from_mutbl(m: hir::Mutability) -> BorrowKind {
2246
        match m {
2247 2248
            hir::MutMutable => MutBorrow,
            hir::MutImmutable => ImmBorrow,
2249 2250
        }
    }
2251

2252 2253 2254 2255
    /// Returns a mutability `m` such that an `&m T` pointer could be used to obtain this borrow
    /// kind. Because borrow kinds are richer than mutabilities, we sometimes have to pick a
    /// mutability that is stronger than necessary so that it at least *would permit* the borrow in
    /// question.
2256
    pub fn to_mutbl_lossy(self) -> hir::Mutability {
2257
        match self {
2258 2259
            MutBorrow => hir::MutMutable,
            ImmBorrow => hir::MutImmutable,
2260 2261 2262 2263

            // We have no type corresponding to a unique imm borrow, so
            // use `&mut`. It gives all the capabilities of an `&uniq`
            // and hence is a safe "over approximation".
2264
            UniqueImmBorrow => hir::MutMutable,
2265
        }
2266
    }
2267

2268 2269 2270 2271 2272 2273
    pub fn to_user_str(&self) -> &'static str {
        match *self {
            MutBorrow => "mutable",
            ImmBorrow => "immutable",
            UniqueImmBorrow => "uniquely immutable",
        }
2274 2275 2276
    }
}

2277 2278
#[derive(Debug, Clone)]
pub enum Attributes<'gcx> {
2279
    Owned(Lrc<[ast::Attribute]>),
2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293
    Borrowed(&'gcx [ast::Attribute])
}

impl<'gcx> ::std::ops::Deref for Attributes<'gcx> {
    type Target = [ast::Attribute];

    fn deref(&self) -> &[ast::Attribute] {
        match self {
            &Attributes::Owned(ref data) => &data,
            &Attributes::Borrowed(data) => data
        }
    }
}

2294
impl<'a, 'gcx, 'tcx> TyCtxt<'a, 'gcx, 'tcx> {
2295
    pub fn body_tables(self, body: hir::BodyId) -> &'gcx TypeckTables<'gcx> {
2296
        self.typeck_tables_of(self.hir.body_owner_def_id(body))
2297 2298
    }

N
Niko Matsakis 已提交
2299 2300 2301
    /// Returns an iterator of the def-ids for all body-owners in this
    /// crate. If you would prefer to iterate over the bodies
    /// themselves, you can do `self.hir.krate().body_ids.iter()`.
2302 2303 2304
    pub fn body_owners(
        self,
    ) -> impl Iterator<Item = DefId> + Captures<'tcx> + Captures<'gcx> + 'a {
N
Niko Matsakis 已提交
2305 2306 2307 2308 2309 2310
        self.hir.krate()
                .body_ids
                .iter()
                .map(move |&body_id| self.hir.body_owner_def_id(body_id))
    }

2311
    pub fn expr_span(self, id: NodeId) -> Span {
2312
        match self.hir.find(id) {
2313
            Some(hir_map::NodeExpr(e)) => {
2314 2315 2316
                e.span
            }
            Some(f) => {
2317
                bug!("Node id {} is not an expr: {:?}", id, f);
2318 2319
            }
            None => {
2320
                bug!("Node id {} is not present in the node map", id);
2321
            }
2322
        }
2323 2324
    }

2325 2326
    pub fn provided_trait_methods(self, id: DefId) -> Vec<AssociatedItem> {
        self.associated_items(id)
2327
            .filter(|item| item.kind == AssociatedKind::Method && item.defaultness.has_value())
2328
            .collect()
2329 2330
    }

A
Andrew Cann 已提交
2331 2332 2333 2334 2335 2336
    pub fn trait_relevant_for_never(self, did: DefId) -> bool {
        self.associated_items(did).any(|item| {
            item.relevant_for_never()
        })
    }

2337 2338 2339 2340 2341 2342 2343
    pub fn opt_associated_item(self, def_id: DefId) -> Option<AssociatedItem> {
        let is_associated_item = if let Some(node_id) = self.hir.as_local_node_id(def_id) {
            match self.hir.get(node_id) {
                hir_map::NodeTraitItem(_) | hir_map::NodeImplItem(_) => true,
                _ => false,
            }
        } else {
2344
            match self.describe_def(def_id).expect("no def for def-id") {
2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356
                Def::AssociatedConst(_) | Def::Method(_) | Def::AssociatedTy(_) => true,
                _ => false,
            }
        };

        if is_associated_item {
            Some(self.associated_item(def_id))
        } else {
            None
        }
    }

2357 2358
    fn associated_item_from_trait_item_ref(self,
                                           parent_def_id: DefId,
2359
                                           parent_vis: &hir::Visibility,
2360
                                           trait_item_ref: &hir::TraitItemRef)
2361
                                           -> AssociatedItem {
2362
        let def_id = self.hir.local_def_id(trait_item_ref.id.node_id);
2363 2364 2365 2366
        let (kind, has_self) = match trait_item_ref.kind {
            hir::AssociatedItemKind::Const => (ty::AssociatedKind::Const, false),
            hir::AssociatedItemKind::Method { has_self } => {
                (ty::AssociatedKind::Method, has_self)
2367
            }
2368
            hir::AssociatedItemKind::Type => (ty::AssociatedKind::Type, false),
2369 2370 2371
        };

        AssociatedItem {
2372
            name: trait_item_ref.name,
2373
            kind,
2374 2375
            // Visibility of trait items is inherited from their traits.
            vis: Visibility::from_hir(parent_vis, trait_item_ref.id.node_id, self),
2376
            defaultness: trait_item_ref.defaultness,
2377
            def_id,
2378 2379 2380 2381 2382 2383 2384 2385 2386
            container: TraitContainer(parent_def_id),
            method_has_self_argument: has_self
        }
    }

    fn associated_item_from_impl_item_ref(self,
                                          parent_def_id: DefId,
                                          impl_item_ref: &hir::ImplItemRef)
                                          -> AssociatedItem {
2387
        let def_id = self.hir.local_def_id(impl_item_ref.id.node_id);
2388 2389 2390 2391 2392 2393 2394 2395 2396 2397
        let (kind, has_self) = match impl_item_ref.kind {
            hir::AssociatedItemKind::Const => (ty::AssociatedKind::Const, false),
            hir::AssociatedItemKind::Method { has_self } => {
                (ty::AssociatedKind::Method, has_self)
            }
            hir::AssociatedItemKind::Type => (ty::AssociatedKind::Type, false),
        };

        ty::AssociatedItem {
            name: impl_item_ref.name,
2398
            kind,
2399 2400
            // Visibility of trait impl items doesn't matter.
            vis: ty::Visibility::from_hir(&impl_item_ref.vis, impl_item_ref.id.node_id, self),
2401
            defaultness: impl_item_ref.defaultness,
2402
            def_id,
2403 2404 2405 2406 2407
            container: ImplContainer(parent_def_id),
            method_has_self_argument: has_self
        }
    }

2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418
    pub fn field_index(self, node_id: NodeId, tables: &TypeckTables) -> usize {
        let hir_id = self.hir.node_to_hir_id(node_id);
        tables.field_indices().get(hir_id).cloned().expect("no index for a field")
    }

    pub fn find_field_index(self, ident: Ident, variant: &VariantDef) -> Option<usize> {
        variant.fields.iter().position(|field| {
            self.adjust_ident(ident.modern(), variant.did, DUMMY_NODE_ID).0 == field.name.to_ident()
        })
    }

2419 2420 2421 2422
    pub fn associated_items(
        self,
        def_id: DefId,
    ) -> impl Iterator<Item = ty::AssociatedItem> + 'a {
2423
        let def_ids = self.associated_item_def_ids(def_id);
2424 2425
        Box::new((0..def_ids.len()).map(move |i| self.associated_item(def_ids[i])))
            as Box<dyn Iterator<Item = ty::AssociatedItem> + 'a>
2426 2427
    }

2428 2429 2430
    /// Returns true if the impls are the same polarity and are implementing
    /// a trait which contains no items
    pub fn impls_are_allowed_to_overlap(self, def_id1: DefId, def_id2: DefId) -> bool {
2431
        if !self.features().overlapping_marker_traits {
2432 2433
            return false;
        }
2434 2435 2436 2437 2438 2439 2440 2441
        let trait1_is_empty = self.impl_trait_ref(def_id1)
            .map_or(false, |trait_ref| {
                self.associated_item_def_ids(trait_ref.def_id).is_empty()
            });
        let trait2_is_empty = self.impl_trait_ref(def_id2)
            .map_or(false, |trait_ref| {
                self.associated_item_def_ids(trait_ref.def_id).is_empty()
            });
2442
        self.impl_polarity(def_id1) == self.impl_polarity(def_id2)
2443 2444
            && trait1_is_empty
            && trait2_is_empty
S
Sean Griffin 已提交
2445 2446
    }

2447 2448
    // Returns `ty::VariantDef` if `def` refers to a struct,
    // or variant or their constructors, panics otherwise.
2449
    pub fn expect_variant_def(self, def: Def) -> &'tcx VariantDef {
2450
        match def {
2451
            Def::Variant(did) | Def::VariantCtor(did, ..) => {
2452
                let enum_did = self.parent_def_id(did).unwrap();
2453
                self.adt_def(enum_did).variant_with_id(did)
2454
            }
2455
            Def::Struct(did) | Def::Union(did) => {
2456
                self.adt_def(did).non_enum_variant()
2457 2458 2459
            }
            Def::StructCtor(ctor_did, ..) => {
                let did = self.parent_def_id(ctor_did).expect("struct ctor has no parent");
2460
                self.adt_def(did).non_enum_variant()
2461 2462 2463 2464 2465
            }
            _ => bug!("expect_variant_def used with unexpected def {:?}", def)
        }
    }

2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479
    /// Given a `VariantDef`, returns the def-id of the `AdtDef` of which it is a part.
    pub fn adt_def_id_of_variant(self, variant_def: &'tcx VariantDef) -> DefId {
        let def_key = self.def_key(variant_def.did);
        match def_key.disambiguated_data.data {
            // for enum variants and tuple structs, the def-id of the ADT itself
            // is the *parent* of the variant
            DefPathData::EnumVariant(..) | DefPathData::StructCtor =>
                DefId { krate: variant_def.did.krate, index: def_key.parent.unwrap() },

            // otherwise, for structs and unions, they share a def-id
            _ => variant_def.did,
        }
    }

2480
    pub fn item_name(self, id: DefId) -> InternedString {
2481
        if id.index == CRATE_DEF_INDEX {
2482
            self.original_crate_name(id.krate).as_interned_str()
2483
        } else {
2484
            let def_key = self.def_key(id);
2485
            // The name of a StructCtor is that of its struct parent.
2486
            if let hir_map::DefPathData::StructCtor = def_key.disambiguated_data.data {
2487 2488 2489 2490 2491 2492 2493 2494 2495
                self.item_name(DefId {
                    krate: id.krate,
                    index: def_key.parent.unwrap()
                })
            } else {
                def_key.disambiguated_data.data.get_opt_name().unwrap_or_else(|| {
                    bug!("item_name: no name for {:?}", self.def_path(id));
                })
            }
2496 2497 2498
        }
    }

2499 2500
    /// Return the possibly-auto-generated MIR of a (DefId, Subst) pair.
    pub fn instance_mir(self, instance: ty::InstanceDef<'gcx>)
2501
                        -> &'gcx Mir<'gcx>
2502 2503
    {
        match instance {
N
Niko Matsakis 已提交
2504
            ty::InstanceDef::Item(did) => {
2505
                self.optimized_mir(did)
N
Niko Matsakis 已提交
2506 2507 2508 2509 2510
            }
            ty::InstanceDef::Intrinsic(..) |
            ty::InstanceDef::FnPtrShim(..) |
            ty::InstanceDef::Virtual(..) |
            ty::InstanceDef::ClosureOnceShim { .. } |
2511
            ty::InstanceDef::DropGlue(..) |
S
scalexm 已提交
2512
            ty::InstanceDef::CloneShim(..) => {
2513
                self.mir_shims(instance)
N
Niko Matsakis 已提交
2514
            }
2515 2516 2517
        }
    }

2518 2519
    /// Given the DefId of an item, returns its MIR, borrowed immutably.
    /// Returns None if there is no MIR for the DefId
2520 2521 2522 2523 2524
    pub fn maybe_optimized_mir(self, did: DefId) -> Option<&'gcx Mir<'gcx>> {
        if self.is_mir_available(did) {
            Some(self.optimized_mir(did))
        } else {
            None
2525 2526 2527
        }
    }

2528
    /// Get the attributes of a definition.
2529
    pub fn get_attrs(self, did: DefId) -> Attributes<'gcx> {
2530
        if let Some(id) = self.hir.as_local_node_id(did) {
2531
            Attributes::Borrowed(self.hir.attrs(id))
2532
        } else {
A
achernyak 已提交
2533
            Attributes::Owned(self.item_attrs(did))
2534
        }
2535 2536
    }

2537
    /// Determine whether an item is annotated with an attribute
2538
    pub fn has_attr(self, did: DefId, attr: &str) -> bool {
2539
        attr::contains_name(&self.get_attrs(did), attr)
2540
    }
2541

2542 2543
    /// Returns true if this is an `auto trait`.
    pub fn trait_is_auto(self, trait_def_id: DefId) -> bool {
2544
        self.trait_def(trait_def_id).has_auto_impl
2545
    }
2546

J
John Kåre Alsaker 已提交
2547 2548 2549 2550
    pub fn generator_layout(self, def_id: DefId) -> &'tcx GeneratorLayout<'tcx> {
        self.optimized_mir(def_id).generator_layout.as_ref().unwrap()
    }

2551 2552
    /// Given the def_id of an impl, return the def_id of the trait it implements.
    /// If it implements no trait, return `None`.
2553
    pub fn trait_id_of_impl(self, def_id: DefId) -> Option<DefId> {
2554
        self.impl_trait_ref(def_id).map(|tr| tr.def_id)
2555
    }
2556 2557 2558

    /// If the given def ID describes a method belonging to an impl, return the
    /// ID of the impl that the method belongs to. Otherwise, return `None`.
2559
    pub fn impl_of_method(self, def_id: DefId) -> Option<DefId> {
2560
        let item = if def_id.krate != LOCAL_CRATE {
A
achernyak 已提交
2561
            if let Some(Def::Method(_)) = self.describe_def(def_id) {
2562 2563 2564 2565 2566
                Some(self.associated_item(def_id))
            } else {
                None
            }
        } else {
2567
            self.opt_associated_item(def_id)
2568 2569 2570
        };

        match item {
2571
            Some(trait_item) => {
2572
                match trait_item.container {
2573 2574 2575
                    TraitContainer(_) => None,
                    ImplContainer(def_id) => Some(def_id),
                }
2576
            }
2577
            None => None
2578 2579 2580
        }
    }

2581 2582
    /// Looks up the span of `impl_did` if the impl is local; otherwise returns `Err`
    /// with the name of the crate containing the impl.
2583
    pub fn span_of_impl(self, impl_did: DefId) -> Result<Span, Symbol> {
2584
        if impl_did.is_local() {
2585 2586
            let node_id = self.hir.as_local_node_id(impl_did).unwrap();
            Ok(self.hir.span(node_id))
2587
        } else {
2588
            Err(self.crate_name(impl_did.krate))
2589 2590
        }
    }
J
Jeffrey Seyfried 已提交
2591

2592 2593 2594 2595 2596 2597 2598
    // Hygienically compare a use-site name (`use_name`) for a field or an associated item with its
    // supposed definition name (`def_name`). The method also needs `DefId` of the supposed
    // definition's parent/scope to perform comparison.
    pub fn hygienic_eq(self, use_name: Name, def_name: Name, def_parent_def_id: DefId) -> bool {
        self.adjust(use_name, def_parent_def_id, DUMMY_NODE_ID).0 == def_name.to_ident()
    }

J
Jeffrey Seyfried 已提交
2599 2600 2601 2602 2603 2604 2605 2606 2607
    pub fn adjust(self, name: Name, scope: DefId, block: NodeId) -> (Ident, DefId) {
        self.adjust_ident(name.to_ident(), scope, block)
    }

    pub fn adjust_ident(self, mut ident: Ident, scope: DefId, block: NodeId) -> (Ident, DefId) {
        let expansion = match scope.krate {
            LOCAL_CRATE => self.hir.definitions().expansion(scope.index),
            _ => Mark::root(),
        };
2608
        let scope = match ident.span.adjust(expansion) {
J
Jeffrey Seyfried 已提交
2609
            Some(macro_def) => self.hir.definitions().macro_def_scope(macro_def),
2610
            None if block == DUMMY_NODE_ID => DefId::local(CRATE_DEF_INDEX), // Dummy DefId
J
Jeffrey Seyfried 已提交
2611 2612 2613 2614
            None => self.hir.get_module_parent(block),
        };
        (ident, scope)
    }
2615
}
2616

2617
impl<'a, 'gcx, 'tcx> TyCtxt<'a, 'gcx, 'tcx> {
2618
    pub fn with_freevars<T, F>(self, fid: NodeId, f: F) -> T where
2619
        F: FnOnce(&[hir::Freevar]) -> T,
2620
    {
A
Alex Crichton 已提交
2621 2622
        let def_id = self.hir.local_def_id(fid);
        match self.freevars(def_id) {
2623
            None => f(&[]),
2624
            Some(d) => f(&d),
2625 2626
        }
    }
2627
}
2628 2629 2630 2631 2632 2633 2634 2635 2636

fn associated_item<'a, 'tcx>(tcx: TyCtxt<'a, 'tcx, 'tcx>, def_id: DefId)
    -> AssociatedItem
{
    let id = tcx.hir.as_local_node_id(def_id).unwrap();
    let parent_id = tcx.hir.get_parent(id);
    let parent_def_id = tcx.hir.local_def_id(parent_id);
    let parent_item = tcx.hir.expect_item(parent_id);
    match parent_item.node {
2637
        hir::ItemImpl(.., ref impl_item_refs) => {
2638
            if let Some(impl_item_ref) = impl_item_refs.iter().find(|i| i.id.node_id == id) {
2639 2640
                let assoc_item = tcx.associated_item_from_impl_item_ref(parent_def_id,
                                                                        impl_item_ref);
2641 2642
                debug_assert_eq!(assoc_item.def_id, def_id);
                return assoc_item;
2643 2644 2645 2646
            }
        }

        hir::ItemTrait(.., ref trait_item_refs) => {
2647
            if let Some(trait_item_ref) = trait_item_refs.iter().find(|i| i.id.node_id == id) {
2648 2649 2650
                let assoc_item = tcx.associated_item_from_trait_item_ref(parent_def_id,
                                                                         &parent_item.vis,
                                                                         trait_item_ref);
2651 2652
                debug_assert_eq!(assoc_item.def_id, def_id);
                return assoc_item;
2653 2654 2655
            }
        }

2656
        _ => { }
2657
    }
2658 2659 2660 2661

    span_bug!(parent_item.span,
              "unexpected parent of trait or impl item or item not found: {:?}",
              parent_item.node)
2662 2663
}

2664 2665
/// Calculates the Sized-constraint.
///
2666
/// In fact, there are only a few options for the types in the constraint:
2667 2668 2669 2670 2671 2672 2673 2674
///     - an obviously-unsized type
///     - a type parameter or projection whose Sizedness can't be known
///     - a tuple of type parameters or projections, if there are multiple
///       such.
///     - a TyError, if a type contained itself. The representability
///       check should catch this case.
fn adt_sized_constraint<'a, 'tcx>(tcx: TyCtxt<'a, 'tcx, 'tcx>,
                                  def_id: DefId)
2675
                                  -> &'tcx [Ty<'tcx>] {
2676
    let def = tcx.adt_def(def_id);
2677

2678
    let result = tcx.mk_type_list(def.variants.iter().flat_map(|v| {
2679 2680
        v.fields.last()
    }).flat_map(|f| {
2681
        def.sized_constraint_for_ty(tcx, tcx.type_of(f.did))
2682
    }));
2683

2684
    debug!("adt_sized_constraint: {:?} => {:?}", def, result);
2685

2686
    result
2687 2688
}

2689 2690
fn associated_item_def_ids<'a, 'tcx>(tcx: TyCtxt<'a, 'tcx, 'tcx>,
                                     def_id: DefId)
2691
                                     -> Lrc<Vec<DefId>> {
2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706
    let id = tcx.hir.as_local_node_id(def_id).unwrap();
    let item = tcx.hir.expect_item(id);
    let vec: Vec<_> = match item.node {
        hir::ItemTrait(.., ref trait_item_refs) => {
            trait_item_refs.iter()
                           .map(|trait_item_ref| trait_item_ref.id)
                           .map(|id| tcx.hir.local_def_id(id.node_id))
                           .collect()
        }
        hir::ItemImpl(.., ref impl_item_refs) => {
            impl_item_refs.iter()
                          .map(|impl_item_ref| impl_item_ref.id)
                          .map(|id| tcx.hir.local_def_id(id.node_id))
                          .collect()
        }
A
Alex Burka 已提交
2707
        hir::ItemTraitAlias(..) => vec![],
2708 2709
        _ => span_bug!(item.span, "associated_item_def_ids: not impl or trait")
    };
2710
    Lrc::new(vec)
2711 2712
}

A
achernyak 已提交
2713
fn def_span<'a, 'tcx>(tcx: TyCtxt<'a, 'tcx, 'tcx>, def_id: DefId) -> Span {
A
achernyak 已提交
2714
    tcx.hir.span_if_local(def_id).unwrap()
A
achernyak 已提交
2715 2716
}

A
achernyak 已提交
2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729
/// If the given def ID describes an item belonging to a trait,
/// return the ID of the trait that the trait item belongs to.
/// Otherwise, return `None`.
fn trait_of_item<'a, 'tcx>(tcx: TyCtxt<'a, 'tcx, 'tcx>, def_id: DefId) -> Option<DefId> {
    tcx.opt_associated_item(def_id)
        .and_then(|associated_item| {
            match associated_item.container {
                TraitContainer(def_id) => Some(def_id),
                ImplContainer(_) => None
            }
        })
}

2730
/// See `ParamEnv` struct def'n for details.
2731
fn param_env<'a, 'tcx>(tcx: TyCtxt<'a, 'tcx, 'tcx>,
2732 2733
                       def_id: DefId)
                       -> ParamEnv<'tcx> {
2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750
    // Compute the bounds on Self and the type parameters.

    let bounds = tcx.predicates_of(def_id).instantiate_identity(tcx);
    let predicates = bounds.predicates;

    // Finally, we have to normalize the bounds in the environment, in
    // case they contain any associated type projections. This process
    // can yield errors if the put in illegal associated types, like
    // `<i32 as Foo>::Bar` where `i32` does not implement `Foo`. We
    // report these errors right here; this doesn't actually feel
    // right to me, because constructing the environment feels like a
    // kind of a "idempotent" action, but I'm not sure where would be
    // a better place. In practice, we construct environments for
    // every fn once during type checking, and we'll abort if there
    // are any errors at that point, so after type checking you can be
    // sure that this will succeed without errors anyway.

2751
    let unnormalized_env = ty::ParamEnv::new(tcx.intern_predicates(&predicates),
2752
                                             traits::Reveal::UserFacing);
2753 2754 2755 2756 2757 2758 2759

    let body_id = tcx.hir.as_local_node_id(def_id).map_or(DUMMY_NODE_ID, |id| {
        tcx.hir.maybe_body_owned_by(id).map_or(id, |body| body.node_id)
    });
    let cause = traits::ObligationCause::misc(tcx.def_span(def_id), body_id);
    traits::normalize_param_env_or_error(tcx, def_id, unnormalized_env, cause)
}
A
achernyak 已提交
2760

2761
fn crate_disambiguator<'a, 'tcx>(tcx: TyCtxt<'a, 'tcx, 'tcx>,
2762
                                 crate_num: CrateNum) -> CrateDisambiguator {
2763 2764 2765 2766
    assert_eq!(crate_num, LOCAL_CRATE);
    tcx.sess.local_crate_disambiguator()
}

2767 2768 2769 2770 2771 2772
fn original_crate_name<'a, 'tcx>(tcx: TyCtxt<'a, 'tcx, 'tcx>,
                                 crate_num: CrateNum) -> Symbol {
    assert_eq!(crate_num, LOCAL_CRATE);
    tcx.crate_name.clone()
}

2773 2774 2775 2776 2777 2778 2779
fn crate_hash<'a, 'tcx>(tcx: TyCtxt<'a, 'tcx, 'tcx>,
                        crate_num: CrateNum)
                        -> Svh {
    assert_eq!(crate_num, LOCAL_CRATE);
    tcx.hir.crate_hash
}

V
varkor 已提交
2780 2781 2782 2783
fn instance_def_size_estimate<'a, 'tcx>(tcx: TyCtxt<'a, 'tcx, 'tcx>,
                                        instance_def: InstanceDef<'tcx>)
                                        -> usize {
    match instance_def {
2784 2785 2786
        InstanceDef::Item(..) |
        InstanceDef::DropGlue(..) => {
            let mir = tcx.instance_mir(instance_def);
V
varkor 已提交
2787 2788
            mir.basic_blocks().iter().map(|bb| bb.statements.len()).sum()
        },
2789
        // Estimate the size of other compiler-generated shims to be 1.
V
varkor 已提交
2790 2791 2792 2793
        _ => 1
    }
}

2794
pub fn provide(providers: &mut ty::maps::Providers) {
2795
    context::provide(providers);
2796
    erase_regions::provide(providers);
2797 2798
    layout::provide(providers);
    util::provide(providers);
2799 2800
    *providers = ty::maps::Providers {
        associated_item,
2801
        associated_item_def_ids,
2802
        adt_sized_constraint,
A
achernyak 已提交
2803
        def_span,
2804
        param_env,
A
achernyak 已提交
2805
        trait_of_item,
2806
        crate_disambiguator,
2807
        original_crate_name,
2808
        crate_hash,
2809
        trait_impls_of: trait_def::trait_impls_of_provider,
V
varkor 已提交
2810
        instance_def_size_estimate,
2811 2812 2813 2814
        ..*providers
    };
}

2815 2816 2817
/// A map for the local crate mapping each type to a vector of its
/// inherent impls. This is not meant to be used outside of coherence;
/// rather, you should request the vector for a specific type via
2818 2819
/// `tcx.inherent_impls(def_id)` so as to minimize your dependencies
/// (constructing this map requires touching the entire crate).
2820 2821
#[derive(Clone, Debug)]
pub struct CrateInherentImpls {
2822
    pub inherent_impls: DefIdMap<Lrc<Vec<DefId>>>,
2823
}
A
Ariel Ben-Yehuda 已提交
2824

2825
#[derive(Clone, Copy, PartialEq, Eq, PartialOrd, Ord, RustcEncodable, RustcDecodable)]
2826 2827 2828 2829 2830 2831
pub struct SymbolName {
    // FIXME: we don't rely on interning or equality here - better have
    // this be a `&'tcx str`.
    pub name: InternedString
}

2832 2833 2834 2835
impl_stable_hash_for!(struct self::SymbolName {
    name
});

2836 2837 2838
impl SymbolName {
    pub fn new(name: &str) -> SymbolName {
        SymbolName {
2839
            name: Symbol::intern(name).as_interned_str()
2840 2841
        }
    }
2842

2843 2844 2845
    pub fn as_str(&self) -> LocalInternedString {
        self.name.as_str()
    }
2846 2847 2848 2849 2850 2851 2852
}

impl fmt::Display for SymbolName {
    fn fmt(&self, fmt: &mut fmt::Formatter) -> fmt::Result {
        fmt::Display::fmt(&self.name, fmt)
    }
}
2853 2854 2855 2856 2857 2858

impl fmt::Debug for SymbolName {
    fn fmt(&self, fmt: &mut fmt::Formatter) -> fmt::Result {
        fmt::Display::fmt(&self.name, fmt)
    }
}