mod.rs 101.5 KB
Newer Older
1
// Copyright 2012-2015 The Rust Project Developers. See the COPYRIGHT
2 3 4 5 6 7 8 9 10
// file at the top-level directory of this distribution and at
// http://rust-lang.org/COPYRIGHT.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.

S
Steven Fackler 已提交
11
pub use self::Variance::*;
12
pub use self::AssociatedItemContainer::*;
S
Steven Fackler 已提交
13 14
pub use self::BorrowKind::*;
pub use self::IntVarValue::*;
15
pub use self::fold::TypeFoldable;
S
Steven Fackler 已提交
16

17
use hir::{map as hir_map, FreevarMap, TraitMap};
18
use hir::def::{Def, CtorKind, ExportMap};
19
use hir::def_id::{CrateNum, DefId, LocalDefId, CRATE_DEF_INDEX, LOCAL_CRATE};
20
use hir::map::DefPathData;
21
use hir::svh::Svh;
W
Wesley Wiser 已提交
22
use ich::Fingerprint;
23
use ich::StableHashingContext;
24
use middle::const_val::ConstVal;
25
use middle::lang_items::{FnTraitLangItem, FnMutTraitLangItem, FnOnceTraitLangItem};
26
use middle::privacy::AccessLevels;
27
use middle::resolve_lifetime::ObjectLifetimeDefault;
28
use mir::Mir;
29
use mir::interpret::{GlobalId, Value, PrimVal};
J
John Kåre Alsaker 已提交
30
use mir::GeneratorLayout;
31
use session::CrateDisambiguator;
32
use traits::{self, Reveal};
33
use ty;
34
use ty::subst::{Subst, Substs};
O
Oliver Schneider 已提交
35
use ty::util::{IntTypeExt, Discr};
36
use ty::walk::TypeWalker;
37
use util::nodemap::{NodeSet, DefIdMap, FxHashMap};
38

39
use serialize::{self, Encodable, Encoder};
W
Wesley Wiser 已提交
40
use std::cell::RefCell;
41
use std::cmp;
42
use std::fmt;
43
use std::hash::{Hash, Hasher};
44
use std::ops::Deref;
45
use rustc_data_structures::sync::Lrc;
46
use std::slice;
47
use std::vec::IntoIter;
48
use std::mem;
J
Jeffrey Seyfried 已提交
49
use syntax::ast::{self, DUMMY_NODE_ID, Name, Ident, NodeId};
50
use syntax::attr;
J
Jeffrey Seyfried 已提交
51
use syntax::ext::hygiene::{Mark, SyntaxContext};
52
use syntax::symbol::{Symbol, InternedString};
53
use syntax_pos::{DUMMY_SP, Span};
54

55
use rustc_data_structures::accumulate_vec::IntoIter as AccIntoIter;
56 57
use rustc_data_structures::stable_hasher::{StableHasher, StableHasherResult,
                                           HashStable};
O
Oliver Schneider 已提交
58

59
use hir;
60

61
pub use self::sty::{Binder, CanonicalVar, DebruijnIndex};
J
John Kåre Alsaker 已提交
62
pub use self::sty::{FnSig, GenSig, PolyFnSig, PolyGenSig};
63
pub use self::sty::{InferTy, ParamTy, ProjectionTy, ExistentialPredicate};
J
John Kåre Alsaker 已提交
64
pub use self::sty::{ClosureSubsts, GeneratorInterior, TypeAndMut};
65
pub use self::sty::{TraitRef, TypeVariants, PolyTraitRef};
66
pub use self::sty::{ExistentialTraitRef, PolyExistentialTraitRef};
67
pub use self::sty::{ExistentialProjection, PolyExistentialProjection, Const};
68
pub use self::sty::{BoundRegion, EarlyBoundRegion, FreeRegion, Region};
N
Niko Matsakis 已提交
69
pub use self::sty::RegionKind;
70
pub use self::sty::{TyVid, IntVid, FloatVid, RegionVid};
71 72
pub use self::sty::BoundRegion::*;
pub use self::sty::InferTy::*;
N
Niko Matsakis 已提交
73
pub use self::sty::RegionKind::*;
74 75
pub use self::sty::TypeVariants::*;

76 77 78
pub use self::binding::BindingMode;
pub use self::binding::BindingMode::*;

79
pub use self::context::{TyCtxt, GlobalArenas, AllArenas, tls, keep_local};
80
pub use self::context::{Lift, TypeckTables, InterpretInterner};
81

82 83
pub use self::instance::{Instance, InstanceDef};

84
pub use self::trait_def::TraitDef;
85

86 87
pub use self::maps::queries;

88
pub mod adjustment;
89
pub mod binding;
90
pub mod cast;
91
#[macro_use]
92
pub mod codec;
93
pub mod error;
94
mod erase_regions;
95 96
pub mod fast_reject;
pub mod fold;
A
Andrew Cann 已提交
97
pub mod inhabitedness;
98
pub mod item_path;
99
pub mod layout;
100
pub mod _match;
101
pub mod maps;
102 103
pub mod outlives;
pub mod relate;
104
pub mod steal;
105
pub mod subst;
106
pub mod trait_def;
107 108
pub mod walk;
pub mod wf;
109
pub mod util;
110

111 112
mod context;
mod flags;
113
mod instance;
114 115 116
mod structural_impls;
mod sty;

117
// Data types
118

119 120
/// The complete set of all analyses described in this module. This is
/// produced by the driver and fed to trans and later passes.
121 122 123
///
/// NB: These contents are being migrated into queries using the
/// *on-demand* infrastructure.
J
Jeffrey Seyfried 已提交
124
#[derive(Clone)]
125
pub struct CrateAnalysis {
126
    pub access_levels: Lrc<AccessLevels>,
127
    pub name: String,
128
    pub glob_map: Option<hir::GlobMap>,
129 130
}

131 132 133 134 135
#[derive(Clone)]
pub struct Resolutions {
    pub freevars: FreevarMap,
    pub trait_map: TraitMap,
    pub maybe_unused_trait_imports: NodeSet,
136
    pub maybe_unused_extern_crates: Vec<(NodeId, Span)>,
N
Niko Matsakis 已提交
137
    pub export_map: ExportMap,
138 139
}

140
#[derive(Clone, Copy, PartialEq, Eq, Debug)]
141
pub enum AssociatedItemContainer {
N
Niko Matsakis 已提交
142 143
    TraitContainer(DefId),
    ImplContainer(DefId),
144 145
}

146
impl AssociatedItemContainer {
147 148 149 150 151 152 153 154 155
    /// Asserts that this is the def-id of an associated item declared
    /// in a trait, and returns the trait def-id.
    pub fn assert_trait(&self) -> DefId {
        match *self {
            TraitContainer(id) => id,
            _ => bug!("associated item has wrong container type: {:?}", self)
        }
    }

N
Niko Matsakis 已提交
156
    pub fn id(&self) -> DefId {
157 158 159 160 161 162 163
        match *self {
            TraitContainer(id) => id,
            ImplContainer(id) => id,
        }
    }
}

A
Aaron Turon 已提交
164 165 166 167 168 169 170 171 172 173 174
/// The "header" of an impl is everything outside the body: a Self type, a trait
/// ref (in the case of a trait impl), and a set of predicates (from the
/// bounds/where clauses).
#[derive(Clone, PartialEq, Eq, Hash, Debug)]
pub struct ImplHeader<'tcx> {
    pub impl_def_id: DefId,
    pub self_ty: Ty<'tcx>,
    pub trait_ref: Option<TraitRef<'tcx>>,
    pub predicates: Vec<Predicate<'tcx>>,
}

S
scalexm 已提交
175
#[derive(Copy, Clone, Debug, PartialEq, Eq)]
176 177 178 179 180 181 182
pub struct AssociatedItem {
    pub def_id: DefId,
    pub name: Name,
    pub kind: AssociatedKind,
    pub vis: Visibility,
    pub defaultness: hir::Defaultness,
    pub container: AssociatedItemContainer,
183

184 185 186 187
    /// Whether this is a method with an explicit self
    /// as its first argument, allowing method calls.
    pub method_has_self_argument: bool,
}
188

189
#[derive(Copy, Clone, PartialEq, Eq, Debug, Hash, RustcEncodable, RustcDecodable)]
190 191 192 193 194
pub enum AssociatedKind {
    Const,
    Method,
    Type
}
195

196 197 198 199 200 201
impl AssociatedItem {
    pub fn def(&self) -> Def {
        match self.kind {
            AssociatedKind::Const => Def::AssociatedConst(self.def_id),
            AssociatedKind::Method => Def::Method(self.def_id),
            AssociatedKind::Type => Def::AssociatedTy(self.def_id),
202 203
        }
    }
A
Andrew Cann 已提交
204 205 206 207 208 209 210

    /// Tests whether the associated item admits a non-trivial implementation
    /// for !
    pub fn relevant_for_never<'tcx>(&self) -> bool {
        match self.kind {
            AssociatedKind::Const => true,
            AssociatedKind::Type => true,
A
Andrew Cann 已提交
211
            // FIXME(canndrew): Be more thorough here, check if any argument is uninhabited.
A
Andrew Cann 已提交
212 213 214
            AssociatedKind::Method => !self.method_has_self_argument,
        }
    }
215 216 217 218 219 220 221 222

    pub fn signature<'a, 'tcx>(&self, tcx: &TyCtxt<'a, 'tcx, 'tcx>) -> String {
        match self.kind {
            ty::AssociatedKind::Method => {
                // We skip the binder here because the binder would deanonymize all
                // late-bound regions, and we don't want method signatures to show up
                // `as for<'r> fn(&'r MyType)`.  Pretty-printing handles late-bound
                // regions just fine, showing `fn(&MyType)`.
223
                format!("{}", tcx.fn_sig(self.def_id).skip_binder())
224 225 226 227 228 229 230
            }
            ty::AssociatedKind::Type => format!("type {};", self.name.to_string()),
            ty::AssociatedKind::Const => {
                format!("const {}: {:?};", self.name.to_string(), tcx.type_of(self.def_id))
            }
        }
    }
231 232
}

233
#[derive(Clone, Debug, PartialEq, Eq, Copy, RustcEncodable, RustcDecodable)]
234 235 236 237
pub enum Visibility {
    /// Visible everywhere (including in other crates).
    Public,
    /// Visible only in the given crate-local module.
238
    Restricted(DefId),
239
    /// Not visible anywhere in the local crate. This is the visibility of private external items.
240
    Invisible,
241 242
}

243 244
pub trait DefIdTree: Copy {
    fn parent(self, id: DefId) -> Option<DefId>;
A
Andrew Cann 已提交
245 246 247 248 249 250 251 252 253 254 255 256 257 258

    fn is_descendant_of(self, mut descendant: DefId, ancestor: DefId) -> bool {
        if descendant.krate != ancestor.krate {
            return false;
        }

        while descendant != ancestor {
            match self.parent(descendant) {
                Some(parent) => descendant = parent,
                None => return false,
            }
        }
        true
    }
259 260
}

261 262 263
impl<'a, 'gcx, 'tcx> DefIdTree for TyCtxt<'a, 'gcx, 'tcx> {
    fn parent(self, id: DefId) -> Option<DefId> {
        self.def_key(id).parent.map(|index| DefId { index: index, ..id })
264 265 266
    }
}

267
impl Visibility {
268
    pub fn from_hir(visibility: &hir::Visibility, id: NodeId, tcx: TyCtxt) -> Self {
269 270
        match *visibility {
            hir::Public => Visibility::Public,
271
            hir::Visibility::Crate => Visibility::Restricted(DefId::local(CRATE_DEF_INDEX)),
272
            hir::Visibility::Restricted { ref path, .. } => match path.def {
273 274
                // If there is no resolution, `resolve` will have already reported an error, so
                // assume that the visibility is public to avoid reporting more privacy errors.
275
                Def::Err => Visibility::Public,
276
                def => Visibility::Restricted(def.def_id()),
277
            },
278
            hir::Inherited => {
J
Jeffrey Seyfried 已提交
279
                Visibility::Restricted(tcx.hir.get_module_parent(id))
280
            }
281 282
        }
    }
283 284

    /// Returns true if an item with this visibility is accessible from the given block.
A
Andrew Cann 已提交
285
    pub fn is_accessible_from<T: DefIdTree>(self, module: DefId, tree: T) -> bool {
286 287 288 289
        let restriction = match self {
            // Public items are visible everywhere.
            Visibility::Public => return true,
            // Private items from other crates are visible nowhere.
290
            Visibility::Invisible => return false,
291
            // Restricted items are visible in an arbitrary local module.
292
            Visibility::Restricted(other) if other.krate != module.krate => return false,
293 294 295
            Visibility::Restricted(module) => module,
        };

A
Andrew Cann 已提交
296
        tree.is_descendant_of(module, restriction)
297
    }
298 299

    /// Returns true if this visibility is at least as accessible as the given visibility
300
    pub fn is_at_least<T: DefIdTree>(self, vis: Visibility, tree: T) -> bool {
301 302
        let vis_restriction = match vis {
            Visibility::Public => return self == Visibility::Public,
303
            Visibility::Invisible => return true,
304 305 306
            Visibility::Restricted(module) => module,
        };

307
        self.is_accessible_from(vis_restriction, tree)
308
    }
309 310 311 312 313 314 315 316 317

    // Returns true if this item is visible anywhere in the local crate.
    pub fn is_visible_locally(self) -> bool {
        match self {
            Visibility::Public => true,
            Visibility::Restricted(def_id) => def_id.is_local(),
            Visibility::Invisible => false,
        }
    }
318 319
}

320
#[derive(Clone, PartialEq, RustcDecodable, RustcEncodable, Copy)]
321
pub enum Variance {
322 323 324 325
    Covariant,      // T<A> <: T<B> iff A <: B -- e.g., function return type
    Invariant,      // T<A> <: T<B> iff B == A -- e.g., type of mutable cell
    Contravariant,  // T<A> <: T<B> iff B <: A -- e.g., function param type
    Bivariant,      // T<A> <: T<B>            -- e.g., unused type parameter
326
}
327

328 329 330 331
/// The crate variances map is computed during typeck and contains the
/// variance of every item in the local crate. You should not use it
/// directly, because to do so will make your pass dependent on the
/// HIR of every item in the local crate. Instead, use
332
/// `tcx.variances_of()` to get the variance for a *particular*
333 334 335 336 337
/// item.
pub struct CrateVariancesMap {
    /// For each item with generics, maps to a vector of the variance
    /// of its generics.  If an item has no generics, it will have no
    /// entry.
338
    pub variances: FxHashMap<DefId, Lrc<Vec<ty::Variance>>>,
339 340

    /// An empty vector, useful for cloning.
341
    pub empty_variance: Lrc<Vec<ty::Variance>>,
342 343
}

344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403
impl Variance {
    /// `a.xform(b)` combines the variance of a context with the
    /// variance of a type with the following meaning.  If we are in a
    /// context with variance `a`, and we encounter a type argument in
    /// a position with variance `b`, then `a.xform(b)` is the new
    /// variance with which the argument appears.
    ///
    /// Example 1:
    ///
    ///     *mut Vec<i32>
    ///
    /// Here, the "ambient" variance starts as covariant. `*mut T` is
    /// invariant with respect to `T`, so the variance in which the
    /// `Vec<i32>` appears is `Covariant.xform(Invariant)`, which
    /// yields `Invariant`. Now, the type `Vec<T>` is covariant with
    /// respect to its type argument `T`, and hence the variance of
    /// the `i32` here is `Invariant.xform(Covariant)`, which results
    /// (again) in `Invariant`.
    ///
    /// Example 2:
    ///
    ///     fn(*const Vec<i32>, *mut Vec<i32)
    ///
    /// The ambient variance is covariant. A `fn` type is
    /// contravariant with respect to its parameters, so the variance
    /// within which both pointer types appear is
    /// `Covariant.xform(Contravariant)`, or `Contravariant`.  `*const
    /// T` is covariant with respect to `T`, so the variance within
    /// which the first `Vec<i32>` appears is
    /// `Contravariant.xform(Covariant)` or `Contravariant`.  The same
    /// is true for its `i32` argument. In the `*mut T` case, the
    /// variance of `Vec<i32>` is `Contravariant.xform(Invariant)`,
    /// and hence the outermost type is `Invariant` with respect to
    /// `Vec<i32>` (and its `i32` argument).
    ///
    /// Source: Figure 1 of "Taming the Wildcards:
    /// Combining Definition- and Use-Site Variance" published in PLDI'11.
    pub fn xform(self, v: ty::Variance) -> ty::Variance {
        match (self, v) {
            // Figure 1, column 1.
            (ty::Covariant, ty::Covariant) => ty::Covariant,
            (ty::Covariant, ty::Contravariant) => ty::Contravariant,
            (ty::Covariant, ty::Invariant) => ty::Invariant,
            (ty::Covariant, ty::Bivariant) => ty::Bivariant,

            // Figure 1, column 2.
            (ty::Contravariant, ty::Covariant) => ty::Contravariant,
            (ty::Contravariant, ty::Contravariant) => ty::Covariant,
            (ty::Contravariant, ty::Invariant) => ty::Invariant,
            (ty::Contravariant, ty::Bivariant) => ty::Bivariant,

            // Figure 1, column 3.
            (ty::Invariant, _) => ty::Invariant,

            // Figure 1, column 4.
            (ty::Bivariant, _) => ty::Bivariant,
        }
    }
}

404 405 406
// Contains information needed to resolve types and (in the future) look up
// the types of AST nodes.
#[derive(Copy, Clone, PartialEq, Eq, Hash)]
407
pub struct CReaderCacheKey {
408 409 410 411
    pub cnum: CrateNum,
    pub pos: usize,
}

412 413 414 415
// Flags that we track on types. These flags are propagated upwards
// through the type during type construction, so that we can quickly
// check whether the type has various kinds of types in it without
// recursing over the type itself.
416
bitflags! {
417 418 419 420 421 422
    pub struct TypeFlags: u32 {
        const HAS_PARAMS         = 1 << 0;
        const HAS_SELF           = 1 << 1;
        const HAS_TY_INFER       = 1 << 2;
        const HAS_RE_INFER       = 1 << 3;
        const HAS_RE_SKOL        = 1 << 4;
423 424 425 426 427

        /// Does this have any `ReEarlyBound` regions? Used to
        /// determine whether substitition is required, since those
        /// represent regions that are bound in a `ty::Generics` and
        /// hence may be substituted.
428
        const HAS_RE_EARLY_BOUND = 1 << 5;
429 430 431

        /// Does this have any region that "appears free" in the type?
        /// Basically anything but `ReLateBound` and `ReErased`.
432
        const HAS_FREE_REGIONS   = 1 << 6;
433 434

        /// Is an error type reachable?
435 436
        const HAS_TY_ERR         = 1 << 7;
        const HAS_PROJECTION     = 1 << 8;
J
John Kåre Alsaker 已提交
437 438

        // FIXME: Rename this to the actual property since it's used for generators too
439
        const HAS_TY_CLOSURE     = 1 << 9;
440 441 442

        // true if there are "names" of types and regions and so forth
        // that are local to a particular fn
443
        const HAS_LOCAL_NAMES    = 1 << 10;
444

445 446
        // Present if the type belongs in a local type context.
        // Only set for TyInfer other than Fresh.
447
        const KEEP_IN_LOCAL_TCX  = 1 << 11;
448

449 450
        // Is there a projection that does not involve a bound region?
        // Currently we can't normalize projections w/ bound regions.
451
        const HAS_NORMALIZABLE_PROJECTION = 1 << 12;
452

453 454 455 456
        // Set if this includes a "canonical" type or region var --
        // ought to be true only for the results of canonicalization.
        const HAS_CANONICAL_VARS = 1 << 13;

457 458
        const NEEDS_SUBST        = TypeFlags::HAS_PARAMS.bits |
                                   TypeFlags::HAS_SELF.bits |
459
                                   TypeFlags::HAS_RE_EARLY_BOUND.bits;
460 461

        // Flags representing the nominal content of a type,
462 463
        // computed by FlagsComputation. If you add a new nominal
        // flag, it should be added here too.
464 465 466 467
        const NOMINAL_FLAGS     = TypeFlags::HAS_PARAMS.bits |
                                  TypeFlags::HAS_SELF.bits |
                                  TypeFlags::HAS_TY_INFER.bits |
                                  TypeFlags::HAS_RE_INFER.bits |
468
                                  TypeFlags::HAS_RE_SKOL.bits |
469 470
                                  TypeFlags::HAS_RE_EARLY_BOUND.bits |
                                  TypeFlags::HAS_FREE_REGIONS.bits |
471
                                  TypeFlags::HAS_TY_ERR.bits |
472
                                  TypeFlags::HAS_PROJECTION.bits |
473
                                  TypeFlags::HAS_TY_CLOSURE.bits |
474
                                  TypeFlags::HAS_LOCAL_NAMES.bits |
475 476
                                  TypeFlags::KEEP_IN_LOCAL_TCX.bits |
                                  TypeFlags::HAS_CANONICAL_VARS.bits;
477
    }
478 479
}

480
pub struct TyS<'tcx> {
481
    pub sty: TypeVariants<'tcx>,
482
    pub flags: TypeFlags,
483 484

    // the maximal depth of any bound regions appearing in this type.
485
    region_depth: u32,
486 487
}

488
impl<'tcx> PartialEq for TyS<'tcx> {
489
    #[inline]
490 491 492 493 494
    fn eq(&self, other: &TyS<'tcx>) -> bool {
        // (self as *const _) == (other as *const _)
        (self as *const TyS<'tcx>) == (other as *const TyS<'tcx>)
    }
}
495
impl<'tcx> Eq for TyS<'tcx> {}
496

A
Alex Crichton 已提交
497 498
impl<'tcx> Hash for TyS<'tcx> {
    fn hash<H: Hasher>(&self, s: &mut H) {
N
Nick Cameron 已提交
499
        (self as *const TyS).hash(s)
A
Alex Crichton 已提交
500 501
    }
}
502

G
Guillaume Gomez 已提交
503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518
impl<'tcx> TyS<'tcx> {
    pub fn is_primitive_ty(&self) -> bool {
        match self.sty {
            TypeVariants::TyBool |
                TypeVariants::TyChar |
                TypeVariants::TyInt(_) |
                TypeVariants::TyUint(_) |
                TypeVariants::TyFloat(_) |
                TypeVariants::TyInfer(InferTy::IntVar(_)) |
                TypeVariants::TyInfer(InferTy::FloatVar(_)) |
                TypeVariants::TyInfer(InferTy::FreshIntTy(_)) |
                TypeVariants::TyInfer(InferTy::FreshFloatTy(_)) => true,
            TypeVariants::TyRef(_, x) => x.ty.is_primitive_ty(),
            _ => false,
        }
    }
519 520 521 522 523 524 525 526

    pub fn is_suggestable(&self) -> bool {
        match self.sty {
            TypeVariants::TyAnon(..) |
            TypeVariants::TyFnDef(..) |
            TypeVariants::TyFnPtr(..) |
            TypeVariants::TyDynamic(..) |
            TypeVariants::TyClosure(..) |
527
            TypeVariants::TyInfer(..) |
528 529 530 531
            TypeVariants::TyProjection(..) => false,
            _ => true,
        }
    }
G
Guillaume Gomez 已提交
532 533
}

534
impl<'a, 'gcx> HashStable<StableHashingContext<'a>> for ty::TyS<'gcx> {
535
    fn hash_stable<W: StableHasherResult>(&self,
536
                                          hcx: &mut StableHashingContext<'a>,
537 538 539 540 541 542 543 544 545 546 547 548 549 550
                                          hasher: &mut StableHasher<W>) {
        let ty::TyS {
            ref sty,

            // The other fields just provide fast access to information that is
            // also contained in `sty`, so no need to hash them.
            flags: _,
            region_depth: _,
        } = *self;

        sty.hash_stable(hcx, hasher);
    }
}

551
pub type Ty<'tcx> = &'tcx TyS<'tcx>;
552

553 554
impl<'tcx> serialize::UseSpecializedEncodable for Ty<'tcx> {}
impl<'tcx> serialize::UseSpecializedDecodable for Ty<'tcx> {}
555

A
Adam Perry 已提交
556
/// A wrapper for slices with the additional invariant
557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594
/// that the slice is interned and no other slice with
/// the same contents can exist in the same context.
/// This means we can use pointer + length for both
/// equality comparisons and hashing.
#[derive(Debug, RustcEncodable)]
pub struct Slice<T>([T]);

impl<T> PartialEq for Slice<T> {
    #[inline]
    fn eq(&self, other: &Slice<T>) -> bool {
        (&self.0 as *const [T]) == (&other.0 as *const [T])
    }
}
impl<T> Eq for Slice<T> {}

impl<T> Hash for Slice<T> {
    fn hash<H: Hasher>(&self, s: &mut H) {
        (self.as_ptr(), self.len()).hash(s)
    }
}

impl<T> Deref for Slice<T> {
    type Target = [T];
    fn deref(&self) -> &[T] {
        &self.0
    }
}

impl<'a, T> IntoIterator for &'a Slice<T> {
    type Item = &'a T;
    type IntoIter = <&'a [T] as IntoIterator>::IntoIter;
    fn into_iter(self) -> Self::IntoIter {
        self[..].iter()
    }
}

impl<'tcx> serialize::UseSpecializedDecodable for &'tcx Slice<Ty<'tcx>> {}

595 596 597 598 599 600 601 602
impl<T> Slice<T> {
    pub fn empty<'a>() -> &'a Slice<T> {
        unsafe {
            mem::transmute(slice::from_raw_parts(0x1 as *const T, 0))
        }
    }
}

S
Steve Klabnik 已提交
603 604 605
/// Upvars do not get their own node-id. Instead, we use the pair of
/// the original var id (that is, the root variable that is referenced
/// by the upvar) and the id of the closure expression.
606
#[derive(Clone, Copy, PartialEq, Eq, Hash, RustcEncodable, RustcDecodable)]
607
pub struct UpvarId {
608
    pub var_id: hir::HirId,
609
    pub closure_expr_id: LocalDefId,
610 611
}

J
Jorge Aparicio 已提交
612
#[derive(Clone, PartialEq, Eq, Hash, Debug, RustcEncodable, RustcDecodable, Copy)]
613 614 615 616 617 618
pub enum BorrowKind {
    /// Data must be immutable and is aliasable.
    ImmBorrow,

    /// Data must be immutable but not aliasable.  This kind of borrow
    /// cannot currently be expressed by the user and is used only in
K
king6cong 已提交
619
    /// implicit closure bindings. It is needed when the closure
620 621
    /// is borrowing or mutating a mutable referent, e.g.:
    ///
622
    ///    let x: &mut isize = ...;
623 624 625 626 627
    ///    let y = || *x += 5;
    ///
    /// If we were to try to translate this closure into a more explicit
    /// form, we'd encounter an error with the code as written:
    ///
628 629
    ///    struct Env { x: & &mut isize }
    ///    let x: &mut isize = ...;
630 631 632 633 634 635 636
    ///    let y = (&mut Env { &x }, fn_ptr);  // Closure is pair of env and fn
    ///    fn fn_ptr(env: &mut Env) { **env.x += 5; }
    ///
    /// This is then illegal because you cannot mutate a `&mut` found
    /// in an aliasable location. To solve, you'd have to translate with
    /// an `&mut` borrow:
    ///
637 638
    ///    struct Env { x: & &mut isize }
    ///    let x: &mut isize = ...;
639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657
    ///    let y = (&mut Env { &mut x }, fn_ptr); // changed from &x to &mut x
    ///    fn fn_ptr(env: &mut Env) { **env.x += 5; }
    ///
    /// Now the assignment to `**env.x` is legal, but creating a
    /// mutable pointer to `x` is not because `x` is not mutable. We
    /// could fix this by declaring `x` as `let mut x`. This is ok in
    /// user code, if awkward, but extra weird for closures, since the
    /// borrow is hidden.
    ///
    /// So we introduce a "unique imm" borrow -- the referent is
    /// immutable, but not aliasable. This solves the problem. For
    /// simplicity, we don't give users the way to express this
    /// borrow, it's just used when translating closures.
    UniqueImmBorrow,

    /// Data is mutable and not aliasable.
    MutBorrow
}

658 659
/// Information describing the capture of an upvar. This is computed
/// during `typeck`, specifically by `regionck`.
660
#[derive(PartialEq, Clone, Debug, Copy, RustcEncodable, RustcDecodable)]
661
pub enum UpvarCapture<'tcx> {
662 663 664 665 666 667
    /// Upvar is captured by value. This is always true when the
    /// closure is labeled `move`, but can also be true in other cases
    /// depending on inference.
    ByValue,

    /// Upvar is captured by reference.
668
    ByRef(UpvarBorrow<'tcx>),
669 670
}

671
#[derive(PartialEq, Clone, Copy, RustcEncodable, RustcDecodable)]
672
pub struct UpvarBorrow<'tcx> {
673 674 675
    /// The kind of borrow: by-ref upvars have access to shared
    /// immutable borrows, which are not part of the normal language
    /// syntax.
676
    pub kind: BorrowKind,
677 678

    /// Region of the resulting reference.
N
Niko Matsakis 已提交
679
    pub region: ty::Region<'tcx>,
680 681
}

682
pub type UpvarCaptureMap<'tcx> = FxHashMap<UpvarId, UpvarCapture<'tcx>>;
683

684 685
#[derive(Copy, Clone)]
pub struct ClosureUpvar<'tcx> {
686
    pub def: Def,
687 688 689 690
    pub span: Span,
    pub ty: Ty<'tcx>,
}

691
#[derive(Clone, Copy, PartialEq, Eq)]
692
pub enum IntVarValue {
693 694
    IntType(ast::IntTy),
    UintType(ast::UintTy),
695 696
}

697 698 699
#[derive(Clone, Copy, PartialEq, Eq)]
pub struct FloatVarValue(pub ast::FloatTy);

700 701
#[derive(Copy, Clone, RustcEncodable, RustcDecodable)]
pub struct TypeParameterDef {
702
    pub name: Name,
N
Niko Matsakis 已提交
703
    pub def_id: DefId,
704
    pub index: u32,
705 706
    pub has_default: bool,
    pub object_lifetime_default: ObjectLifetimeDefault,
707 708 709 710 711

    /// `pure_wrt_drop`, set by the (unsafe) `#[may_dangle]` attribute
    /// on generic parameter `T`, asserts data behind the parameter
    /// `T` won't be accessed during the parent type's `Drop` impl.
    pub pure_wrt_drop: bool,
712 713

    pub synthetic: Option<hir::SyntheticTyParamKind>,
714 715
}

716 717
#[derive(Copy, Clone, RustcEncodable, RustcDecodable)]
pub struct RegionParameterDef {
718
    pub name: Name,
N
Niko Matsakis 已提交
719
    pub def_id: DefId,
720
    pub index: u32,
721 722 723 724 725

    /// `pure_wrt_drop`, set by the (unsafe) `#[may_dangle]` attribute
    /// on generic parameter `'a`, asserts data of lifetime `'a`
    /// won't be accessed during the parent type's `Drop` impl.
    pub pure_wrt_drop: bool,
726 727
}

728
impl RegionParameterDef {
729 730
    pub fn to_early_bound_region_data(&self) -> ty::EarlyBoundRegion {
        ty::EarlyBoundRegion {
731
            def_id: self.def_id,
732 733
            index: self.index,
            name: self.name,
734
        }
735
    }
736

737 738 739 740 741 742
    pub fn to_bound_region(&self) -> ty::BoundRegion {
        self.to_early_bound_region_data().to_bound_region()
    }
}

impl ty::EarlyBoundRegion {
743
    pub fn to_bound_region(&self) -> ty::BoundRegion {
744
        ty::BoundRegion::BrNamed(self.def_id, self.name)
745
    }
746 747 748
}

/// Information about the formal type/lifetime parameters associated
749
/// with an item or method. Analogous to hir::Generics.
A
Ariel Ben-Yehuda 已提交
750 751 752 753 754 755 756
///
/// Note that in the presence of a `Self` parameter, the ordering here
/// is different from the ordering in a Substs. Substs are ordered as
///     Self, *Regions, *Other Type Params, (...child generics)
/// while this struct is ordered as
///     regions = Regions
///     types = [Self, *Other Type Params]
757
#[derive(Clone, Debug, RustcEncodable, RustcDecodable)]
758
pub struct Generics {
759 760 761
    pub parent: Option<DefId>,
    pub parent_regions: u32,
    pub parent_types: u32,
762
    pub regions: Vec<RegionParameterDef>,
763 764
    pub types: Vec<TypeParameterDef>,

765 766
    /// Reverse map to each `TypeParameterDef`'s `index` field
    pub type_param_to_index: FxHashMap<DefId, u32>,
767

768
    pub has_self: bool,
769
    pub has_late_bound_regions: Option<Span>,
770 771
}

772
impl<'a, 'gcx, 'tcx> Generics {
773 774 775 776 777 778 779 780 781 782 783
    pub fn parent_count(&self) -> usize {
        self.parent_regions as usize + self.parent_types as usize
    }

    pub fn own_count(&self) -> usize {
        self.regions.len() + self.types.len()
    }

    pub fn count(&self) -> usize {
        self.parent_count() + self.own_count()
    }
784

785 786 787 788 789 790 791 792 793 794 795
    pub fn region_param(&'tcx self,
                        param: &EarlyBoundRegion,
                        tcx: TyCtxt<'a, 'gcx, 'tcx>)
                        -> &'tcx RegionParameterDef
    {
        if let Some(index) = param.index.checked_sub(self.parent_count() as u32) {
            &self.regions[index as usize - self.has_self as usize]
        } else {
            tcx.generics_of(self.parent.expect("parent_count>0 but no parent?"))
                .region_param(param, tcx)
        }
796 797
    }

A
Ariel Ben-Yehuda 已提交
798
    /// Returns the `TypeParameterDef` associated with this `ParamTy`.
799 800
    pub fn type_param(&'tcx self,
                      param: &ParamTy,
A
Ariel Ben-Yehuda 已提交
801
                      tcx: TyCtxt<'a, 'gcx, 'tcx>)
A
Ariel Ben-Yehuda 已提交
802
                      -> &TypeParameterDef {
803
        if let Some(idx) = param.idx.checked_sub(self.parent_count() as u32) {
A
Ariel Ben-Yehuda 已提交
804 805
            // non-Self type parameters are always offset by exactly
            // `self.regions.len()`. In the absence of a Self, this is obvious,
806
            // but even in the presence of a `Self` we just have to "compensate"
A
Ariel Ben-Yehuda 已提交
807 808
            // for the regions:
            //
809 810 811 812 813 814 815 816 817 818 819
            // Without a `Self` (or in a nested generics that doesn't have
            // a `Self` in itself, even through it parent does), for example
            // for `fn foo<'a, T1, T2>()`, the situation is:
            //     Substs:
            //         0  1  2
            //         'a T1 T2
            //     generics.types:
            //         0  1
            //         T1 T2
            //
            // And with a `Self`, for example for `trait Foo<'a, 'b, T1, T2>`, the
A
Ariel Ben-Yehuda 已提交
820 821 822 823 824 825 826
            // situation is:
            //     Substs:
            //         0   1  2  3  4
            //       Self 'a 'b  T1 T2
            //     generics.types:
            //         0  1  2
            //       Self T1 T2
827 828 829 830
            //
            // And it can be seen that in both cases, to move from a substs
            // offset to a generics offset you just have to offset by the
            // number of regions.
A
Ariel Ben-Yehuda 已提交
831
            let type_param_offset = self.regions.len();
832 833 834 835

            let has_self = self.has_self && self.parent.is_none();
            let is_separated_self = type_param_offset != 0 && idx == 0 && has_self;

A
Ariel Ben-Yehuda 已提交
836
            if let Some(idx) = (idx as usize).checked_sub(type_param_offset) {
837
                assert!(!is_separated_self, "found a Self after type_param_offset");
A
Ariel Ben-Yehuda 已提交
838
                &self.types[idx]
A
Ariel Ben-Yehuda 已提交
839
            } else {
840
                assert!(is_separated_self, "non-Self param before type_param_offset");
A
Ariel Ben-Yehuda 已提交
841
                &self.types[0]
A
Ariel Ben-Yehuda 已提交
842
            }
843 844 845 846
        } else {
            tcx.generics_of(self.parent.expect("parent_count>0 but no parent?"))
                .type_param(param, tcx)
        }
847
    }
848 849
}

850
/// Bounds on generics.
851
#[derive(Clone, Default)]
852
pub struct GenericPredicates<'tcx> {
853
    pub parent: Option<DefId>,
854
    pub predicates: Vec<Predicate<'tcx>>,
855 856
}

857 858 859
impl<'tcx> serialize::UseSpecializedEncodable for GenericPredicates<'tcx> {}
impl<'tcx> serialize::UseSpecializedDecodable for GenericPredicates<'tcx> {}

860 861
impl<'a, 'gcx, 'tcx> GenericPredicates<'tcx> {
    pub fn instantiate(&self, tcx: TyCtxt<'a, 'gcx, 'tcx>, substs: &Substs<'tcx>)
862
                       -> InstantiatedPredicates<'tcx> {
863 864 865 866 867 868
        let mut instantiated = InstantiatedPredicates::empty();
        self.instantiate_into(tcx, &mut instantiated, substs);
        instantiated
    }
    pub fn instantiate_own(&self, tcx: TyCtxt<'a, 'gcx, 'tcx>, substs: &Substs<'tcx>)
                           -> InstantiatedPredicates<'tcx> {
869
        InstantiatedPredicates {
870 871 872 873 874 875 876 877
            predicates: self.predicates.subst(tcx, substs)
        }
    }

    fn instantiate_into(&self, tcx: TyCtxt<'a, 'gcx, 'tcx>,
                        instantiated: &mut InstantiatedPredicates<'tcx>,
                        substs: &Substs<'tcx>) {
        if let Some(def_id) = self.parent {
878
            tcx.predicates_of(def_id).instantiate_into(tcx, instantiated, substs);
879
        }
880
        instantiated.predicates.extend(self.predicates.iter().map(|p| p.subst(tcx, substs)))
881
    }
882

883 884 885 886 887 888 889 890 891 892 893 894 895 896 897
    pub fn instantiate_identity(&self, tcx: TyCtxt<'a, 'gcx, 'tcx>)
                                -> InstantiatedPredicates<'tcx> {
        let mut instantiated = InstantiatedPredicates::empty();
        self.instantiate_identity_into(tcx, &mut instantiated);
        instantiated
    }

    fn instantiate_identity_into(&self, tcx: TyCtxt<'a, 'gcx, 'tcx>,
                                 instantiated: &mut InstantiatedPredicates<'tcx>) {
        if let Some(def_id) = self.parent {
            tcx.predicates_of(def_id).instantiate_identity_into(tcx, instantiated);
        }
        instantiated.predicates.extend(&self.predicates)
    }

898
    pub fn instantiate_supertrait(&self, tcx: TyCtxt<'a, 'gcx, 'tcx>,
899 900 901
                                  poly_trait_ref: &ty::PolyTraitRef<'tcx>)
                                  -> InstantiatedPredicates<'tcx>
    {
902
        assert_eq!(self.parent, None);
903
        InstantiatedPredicates {
904
            predicates: self.predicates.iter().map(|pred| {
905
                pred.subst_supertrait(tcx, poly_trait_ref)
906
            }).collect()
907 908
        }
    }
909 910
}

911
#[derive(Clone, Copy, PartialEq, Eq, Hash, RustcEncodable, RustcDecodable)]
912
pub enum Predicate<'tcx> {
N
Niko Matsakis 已提交
913 914
    /// Corresponds to `where Foo : Bar<A,B,C>`. `Foo` here would be
    /// the `Self` type of the trait reference and `A`, `B`, and `C`
915
    /// would be the type parameters.
916
    Trait(PolyTraitPredicate<'tcx>),
917 918

    /// where 'a : 'b
919
    RegionOutlives(PolyRegionOutlivesPredicate<'tcx>),
920 921

    /// where T : 'a
922
    TypeOutlives(PolyTypeOutlivesPredicate<'tcx>),
923

N
Niko Matsakis 已提交
924 925
    /// where <T as TraitRef>::Name == X, approximately.
    /// See `ProjectionPredicate` struct for details.
926
    Projection(PolyProjectionPredicate<'tcx>),
927 928 929 930 931

    /// no syntax: T WF
    WellFormed(Ty<'tcx>),

    /// trait must be object-safe
N
Niko Matsakis 已提交
932
    ObjectSafe(DefId),
933

934 935 936
    /// No direct syntax. May be thought of as `where T : FnFoo<...>`
    /// for some substitutions `...` and T being a closure type.
    /// Satisfied (or refuted) once we know the closure's kind.
937
    ClosureKind(DefId, ClosureSubsts<'tcx>, ClosureKind),
N
Niko Matsakis 已提交
938 939 940

    /// `T1 <: T2`
    Subtype(PolySubtypePredicate<'tcx>),
941 942 943

    /// Constant initializer must evaluate successfully.
    ConstEvaluatable(DefId, &'tcx Substs<'tcx>),
944 945
}

946 947 948 949 950 951
impl<'tcx> AsRef<Predicate<'tcx>> for Predicate<'tcx> {
    fn as_ref(&self) -> &Predicate<'tcx> {
        self
    }
}

952
impl<'a, 'gcx, 'tcx> Predicate<'tcx> {
953
    /// Performs a substitution suitable for going from a
954 955 956 957
    /// poly-trait-ref to supertraits that must hold if that
    /// poly-trait-ref holds. This is slightly different from a normal
    /// substitution in terms of what happens with bound regions.  See
    /// lengthy comment below for details.
958
    pub fn subst_supertrait(&self, tcx: TyCtxt<'a, 'gcx, 'tcx>,
959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025
                            trait_ref: &ty::PolyTraitRef<'tcx>)
                            -> ty::Predicate<'tcx>
    {
        // The interaction between HRTB and supertraits is not entirely
        // obvious. Let me walk you (and myself) through an example.
        //
        // Let's start with an easy case. Consider two traits:
        //
        //     trait Foo<'a> : Bar<'a,'a> { }
        //     trait Bar<'b,'c> { }
        //
        // Now, if we have a trait reference `for<'x> T : Foo<'x>`, then
        // we can deduce that `for<'x> T : Bar<'x,'x>`. Basically, if we
        // knew that `Foo<'x>` (for any 'x) then we also know that
        // `Bar<'x,'x>` (for any 'x). This more-or-less falls out from
        // normal substitution.
        //
        // In terms of why this is sound, the idea is that whenever there
        // is an impl of `T:Foo<'a>`, it must show that `T:Bar<'a,'a>`
        // holds.  So if there is an impl of `T:Foo<'a>` that applies to
        // all `'a`, then we must know that `T:Bar<'a,'a>` holds for all
        // `'a`.
        //
        // Another example to be careful of is this:
        //
        //     trait Foo1<'a> : for<'b> Bar1<'a,'b> { }
        //     trait Bar1<'b,'c> { }
        //
        // Here, if we have `for<'x> T : Foo1<'x>`, then what do we know?
        // The answer is that we know `for<'x,'b> T : Bar1<'x,'b>`. The
        // reason is similar to the previous example: any impl of
        // `T:Foo1<'x>` must show that `for<'b> T : Bar1<'x, 'b>`.  So
        // basically we would want to collapse the bound lifetimes from
        // the input (`trait_ref`) and the supertraits.
        //
        // To achieve this in practice is fairly straightforward. Let's
        // consider the more complicated scenario:
        //
        // - We start out with `for<'x> T : Foo1<'x>`. In this case, `'x`
        //   has a De Bruijn index of 1. We want to produce `for<'x,'b> T : Bar1<'x,'b>`,
        //   where both `'x` and `'b` would have a DB index of 1.
        //   The substitution from the input trait-ref is therefore going to be
        //   `'a => 'x` (where `'x` has a DB index of 1).
        // - The super-trait-ref is `for<'b> Bar1<'a,'b>`, where `'a` is an
        //   early-bound parameter and `'b' is a late-bound parameter with a
        //   DB index of 1.
        // - If we replace `'a` with `'x` from the input, it too will have
        //   a DB index of 1, and thus we'll have `for<'x,'b> Bar1<'x,'b>`
        //   just as we wanted.
        //
        // There is only one catch. If we just apply the substitution `'a
        // => 'x` to `for<'b> Bar1<'a,'b>`, the substitution code will
        // adjust the DB index because we substituting into a binder (it
        // tries to be so smart...) resulting in `for<'x> for<'b>
        // Bar1<'x,'b>` (we have no syntax for this, so use your
        // imagination). Basically the 'x will have DB index of 2 and 'b
        // will have DB index of 1. Not quite what we want. So we apply
        // the substitution to the *contents* of the trait reference,
        // rather than the trait reference itself (put another way, the
        // substitution code expects equal binding levels in the values
        // from the substitution and the value being substituted into, and
        // this trick achieves that).

        let substs = &trait_ref.0.substs;
        match *self {
            Predicate::Trait(ty::Binder(ref data)) =>
                Predicate::Trait(ty::Binder(data.subst(tcx, substs))),
N
Niko Matsakis 已提交
1026 1027
            Predicate::Subtype(ty::Binder(ref data)) =>
                Predicate::Subtype(ty::Binder(data.subst(tcx, substs))),
1028 1029 1030 1031 1032 1033
            Predicate::RegionOutlives(ty::Binder(ref data)) =>
                Predicate::RegionOutlives(ty::Binder(data.subst(tcx, substs))),
            Predicate::TypeOutlives(ty::Binder(ref data)) =>
                Predicate::TypeOutlives(ty::Binder(data.subst(tcx, substs))),
            Predicate::Projection(ty::Binder(ref data)) =>
                Predicate::Projection(ty::Binder(data.subst(tcx, substs))),
1034 1035 1036 1037
            Predicate::WellFormed(data) =>
                Predicate::WellFormed(data.subst(tcx, substs)),
            Predicate::ObjectSafe(trait_def_id) =>
                Predicate::ObjectSafe(trait_def_id),
1038 1039
            Predicate::ClosureKind(closure_def_id, closure_substs, kind) =>
                Predicate::ClosureKind(closure_def_id, closure_substs.subst(tcx, substs), kind),
1040 1041
            Predicate::ConstEvaluatable(def_id, const_substs) =>
                Predicate::ConstEvaluatable(def_id, const_substs.subst(tcx, substs)),
1042 1043 1044 1045
        }
    }
}

1046
#[derive(Clone, Copy, PartialEq, Eq, Hash, RustcEncodable, RustcDecodable)]
1047
pub struct TraitPredicate<'tcx> {
1048
    pub trait_ref: TraitRef<'tcx>
1049 1050 1051 1052
}
pub type PolyTraitPredicate<'tcx> = ty::Binder<TraitPredicate<'tcx>>;

impl<'tcx> TraitPredicate<'tcx> {
N
Niko Matsakis 已提交
1053
    pub fn def_id(&self) -> DefId {
1054 1055 1056
        self.trait_ref.def_id
    }

1057
    pub fn input_types<'a>(&'a self) -> impl DoubleEndedIterator<Item=Ty<'tcx>> + 'a {
1058
        self.trait_ref.input_types()
1059 1060 1061 1062 1063 1064 1065 1066
    }

    pub fn self_ty(&self) -> Ty<'tcx> {
        self.trait_ref.self_ty()
    }
}

impl<'tcx> PolyTraitPredicate<'tcx> {
N
Niko Matsakis 已提交
1067
    pub fn def_id(&self) -> DefId {
1068
        // ok to skip binder since trait def-id does not care about regions
1069 1070
        self.0.def_id()
    }
1071 1072
}

1073
#[derive(Clone, Copy, PartialEq, Eq, Hash, Debug, RustcEncodable, RustcDecodable)]
1074 1075
pub struct OutlivesPredicate<A,B>(pub A, pub B); // `A : B`
pub type PolyOutlivesPredicate<A,B> = ty::Binder<OutlivesPredicate<A,B>>;
S
scalexm 已提交
1076 1077 1078 1079 1080 1081
pub type RegionOutlivesPredicate<'tcx> = OutlivesPredicate<ty::Region<'tcx>,
                                                           ty::Region<'tcx>>;
pub type TypeOutlivesPredicate<'tcx> = OutlivesPredicate<Ty<'tcx>,
                                                         ty::Region<'tcx>>;
pub type PolyRegionOutlivesPredicate<'tcx> = ty::Binder<RegionOutlivesPredicate<'tcx>>;
pub type PolyTypeOutlivesPredicate<'tcx> = ty::Binder<TypeOutlivesPredicate<'tcx>>;
1082

1083
#[derive(Clone, Copy, PartialEq, Eq, Hash, Debug, RustcEncodable, RustcDecodable)]
N
Niko Matsakis 已提交
1084 1085 1086 1087 1088 1089 1090
pub struct SubtypePredicate<'tcx> {
    pub a_is_expected: bool,
    pub a: Ty<'tcx>,
    pub b: Ty<'tcx>
}
pub type PolySubtypePredicate<'tcx> = ty::Binder<SubtypePredicate<'tcx>>;

1091 1092 1093 1094 1095 1096 1097 1098 1099
/// This kind of predicate has no *direct* correspondent in the
/// syntax, but it roughly corresponds to the syntactic forms:
///
/// 1. `T : TraitRef<..., Item=Type>`
/// 2. `<T as TraitRef<...>>::Item == Type` (NYI)
///
/// In particular, form #1 is "desugared" to the combination of a
/// normal trait predicate (`T : TraitRef<...>`) and one of these
/// predicates. Form #2 is a broader form in that it also permits
1100 1101
/// equality between arbitrary types. Processing an instance of
/// Form #2 eventually yields one of these `ProjectionPredicate`
1102
/// instances to normalize the LHS.
1103
#[derive(Copy, Clone, PartialEq, Eq, Hash, RustcEncodable, RustcDecodable)]
1104 1105 1106 1107 1108 1109 1110
pub struct ProjectionPredicate<'tcx> {
    pub projection_ty: ProjectionTy<'tcx>,
    pub ty: Ty<'tcx>,
}

pub type PolyProjectionPredicate<'tcx> = Binder<ProjectionPredicate<'tcx>>;

1111
impl<'tcx> PolyProjectionPredicate<'tcx> {
1112 1113 1114 1115 1116 1117 1118
    pub fn to_poly_trait_ref(&self, tcx: TyCtxt) -> PolyTraitRef<'tcx> {
        // Note: unlike with TraitRef::to_poly_trait_ref(),
        // self.0.trait_ref is permitted to have escaping regions.
        // This is because here `self` has a `Binder` and so does our
        // return value, so we are preserving the number of binding
        // levels.
        ty::Binder(self.0.projection_ty.trait_ref(tcx))
1119
    }
1120 1121 1122 1123

    pub fn ty(&self) -> Binder<Ty<'tcx>> {
        Binder(self.skip_binder().ty) // preserves binding levels
    }
1124 1125
}

1126 1127 1128 1129
pub trait ToPolyTraitRef<'tcx> {
    fn to_poly_trait_ref(&self) -> PolyTraitRef<'tcx>;
}

1130
impl<'tcx> ToPolyTraitRef<'tcx> for TraitRef<'tcx> {
1131 1132 1133 1134 1135 1136 1137 1138
    fn to_poly_trait_ref(&self) -> PolyTraitRef<'tcx> {
        assert!(!self.has_escaping_regions());
        ty::Binder(self.clone())
    }
}

impl<'tcx> ToPolyTraitRef<'tcx> for PolyTraitPredicate<'tcx> {
    fn to_poly_trait_ref(&self) -> PolyTraitRef<'tcx> {
1139
        self.map_bound_ref(|trait_pred| trait_pred.trait_ref)
1140 1141 1142
    }
}

1143 1144
pub trait ToPredicate<'tcx> {
    fn to_predicate(&self) -> Predicate<'tcx>;
1145 1146
}

1147 1148
impl<'tcx> ToPredicate<'tcx> for TraitRef<'tcx> {
    fn to_predicate(&self) -> Predicate<'tcx> {
1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159
        // we're about to add a binder, so let's check that we don't
        // accidentally capture anything, or else that might be some
        // weird debruijn accounting.
        assert!(!self.has_escaping_regions());

        ty::Predicate::Trait(ty::Binder(ty::TraitPredicate {
            trait_ref: self.clone()
        }))
    }
}

1160 1161
impl<'tcx> ToPredicate<'tcx> for PolyTraitRef<'tcx> {
    fn to_predicate(&self) -> Predicate<'tcx> {
1162
        ty::Predicate::Trait(self.to_poly_trait_predicate())
1163 1164 1165
    }
}

1166
impl<'tcx> ToPredicate<'tcx> for PolyRegionOutlivesPredicate<'tcx> {
1167
    fn to_predicate(&self) -> Predicate<'tcx> {
1168 1169 1170 1171
        Predicate::RegionOutlives(self.clone())
    }
}

1172 1173
impl<'tcx> ToPredicate<'tcx> for PolyTypeOutlivesPredicate<'tcx> {
    fn to_predicate(&self) -> Predicate<'tcx> {
1174 1175
        Predicate::TypeOutlives(self.clone())
    }
1176 1177
}

1178 1179
impl<'tcx> ToPredicate<'tcx> for PolyProjectionPredicate<'tcx> {
    fn to_predicate(&self) -> Predicate<'tcx> {
1180 1181 1182 1183
        Predicate::Projection(self.clone())
    }
}

1184
impl<'tcx> Predicate<'tcx> {
1185 1186 1187 1188 1189 1190
    /// Iterates over the types in this predicate. Note that in all
    /// cases this is skipping over a binder, so late-bound regions
    /// with depth 0 are bound by the predicate.
    pub fn walk_tys(&self) -> IntoIter<Ty<'tcx>> {
        let vec: Vec<_> = match *self {
            ty::Predicate::Trait(ref data) => {
1191
                data.skip_binder().input_types().collect()
1192
            }
N
Niko Matsakis 已提交
1193 1194 1195
            ty::Predicate::Subtype(ty::Binder(SubtypePredicate { a, b, a_is_expected: _ })) => {
                vec![a, b]
            }
1196 1197 1198 1199 1200 1201 1202
            ty::Predicate::TypeOutlives(ty::Binder(ref data)) => {
                vec![data.0]
            }
            ty::Predicate::RegionOutlives(..) => {
                vec![]
            }
            ty::Predicate::Projection(ref data) => {
1203
                data.0.projection_ty.substs.types().chain(Some(data.0.ty)).collect()
1204
            }
1205 1206 1207 1208 1209 1210
            ty::Predicate::WellFormed(data) => {
                vec![data]
            }
            ty::Predicate::ObjectSafe(_trait_def_id) => {
                vec![]
            }
1211 1212
            ty::Predicate::ClosureKind(_closure_def_id, closure_substs, _kind) => {
                closure_substs.substs.types().collect()
1213
            }
1214 1215 1216
            ty::Predicate::ConstEvaluatable(_, substs) => {
                substs.types().collect()
            }
1217 1218 1219 1220 1221 1222 1223 1224 1225 1226
        };

        // The only reason to collect into a vector here is that I was
        // too lazy to make the full (somewhat complicated) iterator
        // type that would be needed here. But I wanted this fn to
        // return an iterator conceptually, rather than a `Vec`, so as
        // to be closer to `Ty::walk`.
        vec.into_iter()
    }

1227
    pub fn to_opt_poly_trait_ref(&self) -> Option<PolyTraitRef<'tcx>> {
1228 1229
        match *self {
            Predicate::Trait(ref t) => {
1230
                Some(t.to_poly_trait_ref())
1231
            }
1232
            Predicate::Projection(..) |
N
Niko Matsakis 已提交
1233
            Predicate::Subtype(..) |
1234
            Predicate::RegionOutlives(..) |
1235 1236
            Predicate::WellFormed(..) |
            Predicate::ObjectSafe(..) |
1237
            Predicate::ClosureKind(..) |
1238 1239
            Predicate::TypeOutlives(..) |
            Predicate::ConstEvaluatable(..) => {
1240 1241
                None
            }
1242 1243
        }
    }
1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261

    pub fn to_opt_type_outlives(&self) -> Option<PolyTypeOutlivesPredicate<'tcx>> {
        match *self {
            Predicate::TypeOutlives(data) => {
                Some(data)
            }
            Predicate::Trait(..) |
            Predicate::Projection(..) |
            Predicate::Subtype(..) |
            Predicate::RegionOutlives(..) |
            Predicate::WellFormed(..) |
            Predicate::ObjectSafe(..) |
            Predicate::ClosureKind(..) |
            Predicate::ConstEvaluatable(..) => {
                None
            }
        }
    }
1262 1263
}

S
Steve Klabnik 已提交
1264 1265
/// Represents the bounds declared on a particular set of type
/// parameters.  Should eventually be generalized into a flag list of
1266 1267 1268 1269 1270
/// where clauses.  You can obtain a `InstantiatedPredicates` list from a
/// `GenericPredicates` by using the `instantiate` method. Note that this method
/// reflects an important semantic invariant of `InstantiatedPredicates`: while
/// the `GenericPredicates` are expressed in terms of the bound type
/// parameters of the impl/trait/whatever, an `InstantiatedPredicates` instance
S
Steve Klabnik 已提交
1271 1272 1273 1274 1275 1276 1277 1278
/// represented a set of bounds for some particular instantiation,
/// meaning that the generic parameters have been substituted with
/// their values.
///
/// Example:
///
///     struct Foo<T,U:Bar<T>> { ... }
///
1279
/// Here, the `GenericPredicates` for `Foo` would contain a list of bounds like
J
Jorge Aparicio 已提交
1280
/// `[[], [U:Bar<T>]]`.  Now if there were some particular reference
1281 1282
/// like `Foo<isize,usize>`, then the `InstantiatedPredicates` would be `[[],
/// [usize:Bar<isize>]]`.
1283
#[derive(Clone)]
1284
pub struct InstantiatedPredicates<'tcx> {
1285
    pub predicates: Vec<Predicate<'tcx>>,
1286 1287
}

1288 1289
impl<'tcx> InstantiatedPredicates<'tcx> {
    pub fn empty() -> InstantiatedPredicates<'tcx> {
1290
        InstantiatedPredicates { predicates: vec![] }
1291 1292
    }

1293 1294
    pub fn is_empty(&self) -> bool {
        self.predicates.is_empty()
1295
    }
1296 1297
}

N
Niko Matsakis 已提交
1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333
/// "Universes" are used during type- and trait-checking in the
/// presence of `for<..>` binders to control what sets of names are
/// visible. Universes are arranged into a tree: the root universe
/// contains names that are always visible. But when you enter into
/// some subuniverse, then it may add names that are only visible
/// within that subtree (but it can still name the names of its
/// ancestor universes).
///
/// To make this more concrete, consider this program:
///
/// ```
/// struct Foo { }
/// fn bar<T>(x: T) {
///   let y: for<'a> fn(&'a u8, Foo) = ...;
/// }
/// ```
///
/// The struct name `Foo` is in the root universe U0. But the type
/// parameter `T`, introduced on `bar`, is in a subuniverse U1 --
/// i.e., within `bar`, we can name both `T` and `Foo`, but outside of
/// `bar`, we cannot name `T`. Then, within the type of `y`, the
/// region `'a` is in a subuniverse U2 of U1, because we can name it
/// inside the fn type but not outside.
///
/// Universes are related to **skolemization** -- which is a way of
/// doing type- and trait-checking around these "forall" binders (also
/// called **universal quantification**). The idea is that when, in
/// the body of `bar`, we refer to `T` as a type, we aren't referring
/// to any type in particular, but rather a kind of "fresh" type that
/// is distinct from all other types we have actually declared. This
/// is called a **skolemized** type, and we use universes to talk
/// about this. In other words, a type name in universe 0 always
/// corresponds to some "ground" type that the user declared, but a
/// type name in a non-zero universe is a skolemized type -- an
/// idealized representative of "types in general" that we use for
/// checking generic functions.
1334
#[derive(Copy, Clone, Debug, PartialEq, Eq, PartialOrd, Ord, Hash, RustcEncodable, RustcDecodable)]
N
Niko Matsakis 已提交
1335 1336 1337 1338 1339
pub struct UniverseIndex(u32);

impl UniverseIndex {
    /// The root universe, where things that the user defined are
    /// visible.
1340
    pub const ROOT: UniverseIndex = UniverseIndex(0);
N
Niko Matsakis 已提交
1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353

    /// A "subuniverse" corresponds to being inside a `forall` quantifier.
    /// So, for example, suppose we have this type in universe `U`:
    ///
    /// ```
    /// for<'a> fn(&'a u32)
    /// ```
    ///
    /// Once we "enter" into this `for<'a>` quantifier, we are in a
    /// subuniverse of `U` -- in this new universe, we can name the
    /// region `'a`, but that region was not nameable from `U` because
    /// it was not in scope there.
    pub fn subuniverse(self) -> UniverseIndex {
1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366
        UniverseIndex(self.0.checked_add(1).unwrap())
    }

    pub fn from(v: u32) -> UniverseIndex {
        UniverseIndex(v)
    }

    pub fn as_u32(&self) -> u32 {
        self.0
    }

    pub fn as_usize(&self) -> usize {
        self.0 as usize
N
Niko Matsakis 已提交
1367
    }
1368 1369 1370 1371 1372 1373 1374

    /// Gets the "depth" of this universe in the universe tree. This
    /// is not really useful except for e.g. the `HashStable`
    /// implementation
    pub fn depth(&self) -> u32 {
        self.0
    }
N
Niko Matsakis 已提交
1375 1376
}

1377
/// When type checking, we use the `ParamEnv` to track
1378 1379 1380
/// details about the set of where-clauses that are in scope at this
/// particular point.
#[derive(Copy, Clone, Debug, PartialEq, Eq, Hash)]
1381
pub struct ParamEnv<'tcx> {
1382 1383
    /// Obligations that the caller must satisfy. This is basically
    /// the set of bounds on the in-scope type parameters, translated
1384
    /// into Obligations, and elaborated and normalized.
1385
    pub caller_bounds: &'tcx Slice<ty::Predicate<'tcx>>,
1386 1387 1388 1389 1390

    /// Typically, this is `Reveal::UserFacing`, but during trans we
    /// want `Reveal::All` -- note that this is always paired with an
    /// empty environment. To get that, use `ParamEnv::reveal()`.
    pub reveal: traits::Reveal,
1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401

    /// What is the innermost universe we have created? Starts out as
    /// `UniverseIndex::root()` but grows from there as we enter
    /// universal quantifiers.
    ///
    /// NB: At present, we exclude the universal quantifiers on the
    /// item we are type-checking, and just consider those names as
    /// part of the root universe. So this would only get incremented
    /// when we enter into a higher-ranked (`for<..>`) type or trait
    /// bound.
    pub universe: UniverseIndex,
1402
}
1403

1404
impl<'tcx> ParamEnv<'tcx> {
1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446
    /// Construct a trait environment suitable for contexts where
    /// there are no where clauses in scope. Hidden types (like `impl
    /// Trait`) are left hidden, so this is suitable for ordinary
    /// type-checking.
    pub fn empty() -> Self {
        Self::new(ty::Slice::empty(), Reveal::UserFacing, ty::UniverseIndex::ROOT)
    }

    /// Construct a trait environment with no where clauses in scope
    /// where the values of all `impl Trait` and other hidden types
    /// are revealed. This is suitable for monomorphized, post-typeck
    /// environments like trans or doing optimizations.
    ///
    /// NB. If you want to have predicates in scope, use `ParamEnv::new`,
    /// or invoke `param_env.with_reveal_all()`.
    pub fn reveal_all() -> Self {
        Self::new(ty::Slice::empty(), Reveal::All, ty::UniverseIndex::ROOT)
    }

    /// Construct a trait environment with the given set of predicates.
    pub fn new(caller_bounds: &'tcx ty::Slice<ty::Predicate<'tcx>>,
               reveal: Reveal,
               universe: ty::UniverseIndex)
               -> Self {
        ty::ParamEnv { caller_bounds, reveal, universe }
    }

    /// Returns a new parameter environment with the same clauses, but
    /// which "reveals" the true results of projections in all cases
    /// (even for associated types that are specializable).  This is
    /// the desired behavior during trans and certain other special
    /// contexts; normally though we want to use `Reveal::UserFacing`,
    /// which is the default.
    pub fn with_reveal_all(self) -> Self {
        ty::ParamEnv { reveal: Reveal::All, ..self }
    }

    /// Returns this same environment but with no caller bounds.
    pub fn without_caller_bounds(self) -> Self {
        ty::ParamEnv { caller_bounds: ty::Slice::empty(), ..self }
    }

1447
    /// Creates a suitable environment in which to perform trait
1448 1449 1450 1451 1452
    /// queries on the given value. When type-checking, this is simply
    /// the pair of the environment plus value. But when reveal is set to
    /// All, then if `value` does not reference any type parameters, we will
    /// pair it with the empty environment. This improves caching and is generally
    /// invisible.
1453
    ///
1454 1455
    /// NB: We preserve the environment when type-checking because it
    /// is possible for the user to have wacky where-clauses like
1456
    /// `where Box<u32>: Copy`, which are clearly never
1457 1458
    /// satisfiable. We generally want to behave as if they were true,
    /// although the surrounding function is never reachable.
1459
    pub fn and<T: TypeFoldable<'tcx>>(self, value: T) -> ParamEnvAnd<'tcx, T> {
1460 1461 1462 1463 1464 1465
        match self.reveal {
            Reveal::UserFacing => {
                ParamEnvAnd {
                    param_env: self,
                    value,
                }
1466
            }
1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479

            Reveal::All => {
                if value.needs_infer() || value.has_param_types() || value.has_self_ty() {
                    ParamEnvAnd {
                        param_env: self,
                        value,
                    }
                } else {
                    ParamEnvAnd {
                        param_env: self.without_caller_bounds(),
                        value,
                    }
                }
1480
            }
1481 1482 1483
        }
    }
}
1484

1485
#[derive(Copy, Clone, Debug, PartialEq, Eq, Hash)]
1486 1487
pub struct ParamEnvAnd<'tcx, T> {
    pub param_env: ParamEnv<'tcx>,
1488
    pub value: T,
1489 1490
}

1491 1492
impl<'tcx, T> ParamEnvAnd<'tcx, T> {
    pub fn into_parts(self) -> (ParamEnv<'tcx>, T) {
1493
        (self.param_env, self.value)
1494
    }
1495 1496
}

1497 1498
impl<'a, 'gcx, T> HashStable<StableHashingContext<'a>> for ParamEnvAnd<'gcx, T>
    where T: HashStable<StableHashingContext<'a>>
1499 1500
{
    fn hash_stable<W: StableHasherResult>(&self,
1501
                                          hcx: &mut StableHashingContext<'a>,
1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512
                                          hasher: &mut StableHasher<W>) {
        let ParamEnvAnd {
            ref param_env,
            ref value
        } = *self;

        param_env.hash_stable(hcx, hasher);
        value.hash_stable(hcx, hasher);
    }
}

1513 1514 1515 1516 1517 1518
#[derive(Copy, Clone, Debug)]
pub struct Destructor {
    /// The def-id of the destructor method
    pub did: DefId,
}

1519
bitflags! {
1520 1521 1522 1523 1524 1525 1526
    pub struct AdtFlags: u32 {
        const NO_ADT_FLAGS        = 0;
        const IS_ENUM             = 1 << 0;
        const IS_PHANTOM_DATA     = 1 << 1;
        const IS_FUNDAMENTAL      = 1 << 2;
        const IS_UNION            = 1 << 3;
        const IS_BOX              = 1 << 4;
1527 1528 1529 1530
        /// Indicates whether this abstract data type will be expanded on in future (new
        /// fields/variants) and as such, whether downstream crates must match exhaustively on the
        /// fields/variants of this data type.
        ///
1531
        /// See RFC 2008 (<https://github.com/rust-lang/rfcs/pull/2008>).
1532
        const IS_NON_EXHAUSTIVE   = 1 << 5;
1533 1534 1535
    }
}

1536
#[derive(Debug)]
1537
pub struct VariantDef {
1538 1539
    /// The variant's DefId. If this is a tuple-like struct,
    /// this is the DefId of the struct's ctor.
1540 1541
    pub did: DefId,
    pub name: Name, // struct's name if this is a struct
1542
    pub discr: VariantDiscr,
1543
    pub fields: Vec<FieldDef>,
1544
    pub ctor_kind: CtorKind,
1545 1546
}

1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559
#[derive(Copy, Clone, Debug, PartialEq, Eq, RustcEncodable, RustcDecodable)]
pub enum VariantDiscr {
    /// Explicit value for this variant, i.e. `X = 123`.
    /// The `DefId` corresponds to the embedded constant.
    Explicit(DefId),

    /// The previous variant's discriminant plus one.
    /// For efficiency reasons, the distance from the
    /// last `Explicit` discriminant is being stored,
    /// or `0` for the first variant, if it has none.
    Relative(usize),
}

1560
#[derive(Debug)]
1561
pub struct FieldDef {
1562
    pub did: DefId,
1563
    pub name: Name,
1564
    pub vis: Visibility,
1565 1566
}

A
Ariel Ben-Yehuda 已提交
1567 1568 1569 1570
/// The definition of an abstract data type - a struct or enum.
///
/// These are all interned (by intern_adt_def) into the adt_defs
/// table.
1571
pub struct AdtDef {
1572
    pub did: DefId,
1573
    pub variants: Vec<VariantDef>,
1574
    flags: AdtFlags,
1575
    pub repr: ReprOptions,
1576 1577
}

1578 1579
impl PartialEq for AdtDef {
    // AdtDef are always interned and this is part of TyS equality
1580 1581 1582 1583
    #[inline]
    fn eq(&self, other: &Self) -> bool { self as *const _ == other as *const _ }
}

1584
impl Eq for AdtDef {}
1585

1586
impl Hash for AdtDef {
1587 1588
    #[inline]
    fn hash<H: Hasher>(&self, s: &mut H) {
1589
        (self as *const AdtDef).hash(s)
1590 1591 1592
    }
}

1593
impl<'tcx> serialize::UseSpecializedEncodable for &'tcx AdtDef {
1594
    fn default_encode<S: Encoder>(&self, s: &mut S) -> Result<(), S::Error> {
1595 1596 1597 1598
        self.did.encode(s)
    }
}

1599
impl<'tcx> serialize::UseSpecializedDecodable for &'tcx AdtDef {}
1600

1601

1602
impl<'a> HashStable<StableHashingContext<'a>> for AdtDef {
1603
    fn hash_stable<W: StableHasherResult>(&self,
1604
                                          hcx: &mut StableHashingContext<'a>,
1605
                                          hasher: &mut StableHasher<W>) {
W
Wesley Wiser 已提交
1606 1607 1608 1609
        thread_local! {
            static CACHE: RefCell<FxHashMap<usize, Fingerprint>> =
                RefCell::new(FxHashMap());
        }
1610

W
Wesley Wiser 已提交
1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631
        let hash: Fingerprint = CACHE.with(|cache| {
            let addr = self as *const AdtDef as usize;
            *cache.borrow_mut().entry(addr).or_insert_with(|| {
                let ty::AdtDef {
                    did,
                    ref variants,
                    ref flags,
                    ref repr,
                } = *self;

                let mut hasher = StableHasher::new();
                did.hash_stable(hcx, &mut hasher);
                variants.hash_stable(hcx, &mut hasher);
                flags.hash_stable(hcx, &mut hasher);
                repr.hash_stable(hcx, &mut hasher);

                hasher.finish()
           })
        });

        hash.hash_stable(hcx, hasher);
1632 1633 1634
    }
}

1635
#[derive(Copy, Clone, Debug, Eq, PartialEq, Hash)]
1636
pub enum AdtKind { Struct, Union, Enum }
1637

1638 1639
bitflags! {
    #[derive(RustcEncodable, RustcDecodable, Default)]
1640 1641 1642 1643
    pub struct ReprFlags: u8 {
        const IS_C               = 1 << 0;
        const IS_PACKED          = 1 << 1;
        const IS_SIMD            = 1 << 2;
R
Robin Kruppe 已提交
1644
        const IS_TRANSPARENT     = 1 << 3;
1645
        // Internal only for now. If true, don't reorder fields.
R
Robin Kruppe 已提交
1646
        const IS_LINEAR          = 1 << 4;
1647 1648 1649 1650 1651

        // Any of these flags being set prevent field reordering optimisation.
        const IS_UNOPTIMISABLE   = ReprFlags::IS_C.bits |
                                   ReprFlags::IS_PACKED.bits |
                                   ReprFlags::IS_SIMD.bits |
1652
                                   ReprFlags::IS_LINEAR.bits;
1653 1654 1655 1656 1657 1658 1659 1660 1661
    }
}

impl_stable_hash_for!(struct ReprFlags {
    bits
});



1662 1663 1664 1665
/// Represents the repr options provided by the user,
#[derive(Copy, Clone, Eq, PartialEq, RustcEncodable, RustcDecodable, Default)]
pub struct ReprOptions {
    pub int: Option<attr::IntType>,
1666
    pub align: u32,
1667
    pub flags: ReprFlags,
1668 1669
}

1670
impl_stable_hash_for!(struct ReprOptions {
1671
    align,
1672
    int,
1673
    flags
1674 1675
});

1676
impl ReprOptions {
1677
    pub fn new(tcx: TyCtxt, did: DefId) -> ReprOptions {
1678 1679
        let mut flags = ReprFlags::empty();
        let mut size = None;
1680
        let mut max_align = 0;
1681 1682
        for attr in tcx.get_attrs(did).iter() {
            for r in attr::find_repr_attrs(tcx.sess.diagnostic(), attr) {
1683
                flags.insert(match r {
1684
                    attr::ReprC => ReprFlags::IS_C,
1685
                    attr::ReprPacked => ReprFlags::IS_PACKED,
R
Robin Kruppe 已提交
1686
                    attr::ReprTransparent => ReprFlags::IS_TRANSPARENT,
1687 1688 1689 1690 1691
                    attr::ReprSimd => ReprFlags::IS_SIMD,
                    attr::ReprInt(i) => {
                        size = Some(i);
                        ReprFlags::empty()
                    },
1692 1693 1694 1695
                    attr::ReprAlign(align) => {
                        max_align = cmp::max(align, max_align);
                        ReprFlags::empty()
                    },
1696
                });
1697 1698
            }
        }
1699

1700
        // This is here instead of layout because the choice must make it into metadata.
1701 1702 1703
        if !tcx.consider_optimizing(|| format!("Reorder fields of {:?}", tcx.item_path_str(did))) {
            flags.insert(ReprFlags::IS_LINEAR);
        }
1704
        ReprOptions { int: size, align: max_align, flags: flags }
1705
    }
1706

1707 1708 1709 1710 1711 1712 1713
    #[inline]
    pub fn simd(&self) -> bool { self.flags.contains(ReprFlags::IS_SIMD) }
    #[inline]
    pub fn c(&self) -> bool { self.flags.contains(ReprFlags::IS_C) }
    #[inline]
    pub fn packed(&self) -> bool { self.flags.contains(ReprFlags::IS_PACKED) }
    #[inline]
R
Robin Kruppe 已提交
1714 1715
    pub fn transparent(&self) -> bool { self.flags.contains(ReprFlags::IS_TRANSPARENT) }
    #[inline]
1716 1717
    pub fn linear(&self) -> bool { self.flags.contains(ReprFlags::IS_LINEAR) }

1718
    pub fn discr_type(&self) -> attr::IntType {
1719
        self.int.unwrap_or(attr::SignedInt(ast::IntTy::Isize))
1720
    }
1721 1722 1723 1724 1725

    /// Returns true if this `#[repr()]` should inhabit "smart enum
    /// layout" optimizations, such as representing `Foo<&T>` as a
    /// single pointer.
    pub fn inhibit_enum_layout_opt(&self) -> bool {
1726
        self.c() || self.int.is_some()
1727
    }
1728 1729
}

1730
impl<'a, 'gcx, 'tcx> AdtDef {
1731
    fn new(tcx: TyCtxt,
1732
           did: DefId,
A
Ariel Ben-Yehuda 已提交
1733
           kind: AdtKind,
1734 1735
           variants: Vec<VariantDef>,
           repr: ReprOptions) -> Self {
A
Ariel Ben-Yehuda 已提交
1736
        let mut flags = AdtFlags::NO_ADT_FLAGS;
A
Ariel Ben-Yehuda 已提交
1737
        let attrs = tcx.get_attrs(did);
1738
        if attr::contains_name(&attrs, "fundamental") {
A
Ariel Ben-Yehuda 已提交
1739
            flags = flags | AdtFlags::IS_FUNDAMENTAL;
1740
        }
1741
        if Some(did) == tcx.lang_items().phantom_data() {
A
Ariel Ben-Yehuda 已提交
1742
            flags = flags | AdtFlags::IS_PHANTOM_DATA;
1743
        }
1744
        if Some(did) == tcx.lang_items().owned_box() {
1745 1746
            flags = flags | AdtFlags::IS_BOX;
        }
1747 1748 1749
        if tcx.has_attr(did, "non_exhaustive") {
            flags = flags | AdtFlags::IS_NON_EXHAUSTIVE;
        }
1750 1751 1752 1753
        match kind {
            AdtKind::Enum => flags = flags | AdtFlags::IS_ENUM,
            AdtKind::Union => flags = flags | AdtFlags::IS_UNION,
            AdtKind::Struct => {}
1754
        }
1755
        AdtDef {
1756 1757 1758 1759
            did,
            variants,
            flags,
            repr,
1760 1761 1762
        }
    }

1763 1764 1765 1766 1767 1768 1769
    #[inline]
    pub fn is_struct(&self) -> bool {
        !self.is_union() && !self.is_enum()
    }

    #[inline]
    pub fn is_union(&self) -> bool {
1770
        self.flags.intersects(AdtFlags::IS_UNION)
1771 1772 1773 1774
    }

    #[inline]
    pub fn is_enum(&self) -> bool {
1775
        self.flags.intersects(AdtFlags::IS_ENUM)
1776 1777
    }

1778 1779 1780 1781 1782
    #[inline]
    pub fn is_non_exhaustive(&self) -> bool {
        self.flags.intersects(AdtFlags::IS_NON_EXHAUSTIVE)
    }

A
Ariel Ben-Yehuda 已提交
1783
    /// Returns the kind of the ADT - Struct or Enum.
1784
    #[inline]
A
Ariel Ben-Yehuda 已提交
1785
    pub fn adt_kind(&self) -> AdtKind {
1786
        if self.is_enum() {
A
Ariel Ben-Yehuda 已提交
1787
            AdtKind::Enum
1788
        } else if self.is_union() {
1789
            AdtKind::Union
1790
        } else {
A
Ariel Ben-Yehuda 已提交
1791
            AdtKind::Struct
1792 1793 1794
        }
    }

1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810
    pub fn descr(&self) -> &'static str {
        match self.adt_kind() {
            AdtKind::Struct => "struct",
            AdtKind::Union => "union",
            AdtKind::Enum => "enum",
        }
    }

    pub fn variant_descr(&self) -> &'static str {
        match self.adt_kind() {
            AdtKind::Struct => "struct",
            AdtKind::Union => "union",
            AdtKind::Enum => "variant",
        }
    }

A
Ariel Ben-Yehuda 已提交
1811 1812
    /// Returns whether this type is #[fundamental] for the purposes
    /// of coherence checking.
1813 1814
    #[inline]
    pub fn is_fundamental(&self) -> bool {
1815
        self.flags.intersects(AdtFlags::IS_FUNDAMENTAL)
1816 1817
    }

A
Ariel Ben-Yehuda 已提交
1818
    /// Returns true if this is PhantomData<T>.
1819 1820
    #[inline]
    pub fn is_phantom_data(&self) -> bool {
1821
        self.flags.intersects(AdtFlags::IS_PHANTOM_DATA)
1822 1823
    }

1824 1825 1826
    /// Returns true if this is Box<T>.
    #[inline]
    pub fn is_box(&self) -> bool {
1827
        self.flags.intersects(AdtFlags::IS_BOX)
1828 1829
    }

A
Ariel Ben-Yehuda 已提交
1830
    /// Returns whether this type has a destructor.
1831 1832
    pub fn has_dtor(&self, tcx: TyCtxt<'a, 'gcx, 'tcx>) -> bool {
        self.destructor(tcx).is_some()
1833 1834
    }

1835 1836 1837
    /// Asserts this is a struct or union and returns its unique variant.
    pub fn non_enum_variant(&self) -> &VariantDef {
        assert!(self.is_struct() || self.is_union());
1838
        &self.variants[0]
1839 1840 1841
    }

    #[inline]
1842
    pub fn predicates(&self, tcx: TyCtxt<'a, 'gcx, 'tcx>) -> GenericPredicates<'gcx> {
1843
        tcx.predicates_of(self.did)
1844
    }
1845

A
Ariel Ben-Yehuda 已提交
1846 1847
    /// Returns an iterator over all fields contained
    /// by this ADT.
1848
    #[inline]
1849 1850
    pub fn all_fields<'s>(&'s self) -> impl Iterator<Item = &'s FieldDef> {
        self.variants.iter().flat_map(|v| v.fields.iter())
1851 1852 1853 1854 1855 1856 1857
    }

    pub fn is_payloadfree(&self) -> bool {
        !self.variants.is_empty() &&
            self.variants.iter().all(|v| v.fields.is_empty())
    }

1858
    pub fn variant_with_id(&self, vid: DefId) -> &VariantDef {
1859 1860 1861 1862 1863 1864
        self.variants
            .iter()
            .find(|v| v.did == vid)
            .expect("variant_with_id: unknown variant")
    }

N
Niko Matsakis 已提交
1865 1866 1867 1868 1869 1870 1871
    pub fn variant_index_with_id(&self, vid: DefId) -> usize {
        self.variants
            .iter()
            .position(|v| v.did == vid)
            .expect("variant_index_with_id: unknown variant")
    }

1872
    pub fn variant_of_def(&self, def: Def) -> &VariantDef {
1873
        match def {
1874 1875
            Def::Variant(vid) | Def::VariantCtor(vid, ..) => self.variant_with_id(vid),
            Def::Struct(..) | Def::StructCtor(..) | Def::Union(..) |
1876
            Def::TyAlias(..) | Def::AssociatedTy(..) | Def::SelfTy(..) => self.non_enum_variant(),
1877
            _ => bug!("unexpected def {:?} in variant_of_def", def)
1878 1879
        }
    }
1880

O
Oliver Schneider 已提交
1881
    #[inline]
1882
    pub fn eval_explicit_discr(
O
Oliver Schneider 已提交
1883 1884 1885 1886
        &self,
        tcx: TyCtxt<'a, 'gcx, 'tcx>,
        expr_did: DefId,
    ) -> Option<Discr<'tcx>> {
1887
        let param_env = ParamEnv::empty();
O
Oliver Schneider 已提交
1888
        let repr_type = self.repr.discr_type();
O
Oliver Schneider 已提交
1889
        let bit_size = layout::Integer::from_attr(tcx, repr_type).size().bits();
O
Oliver Schneider 已提交
1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902
        let substs = Substs::identity_for_item(tcx.global_tcx(), expr_did);
        let instance = ty::Instance::new(expr_did, substs);
        let cid = GlobalId {
            instance,
            promoted: None
        };
        match tcx.const_eval(param_env.and(cid)) {
            Ok(&ty::Const {
                val: ConstVal::Value(Value::ByVal(PrimVal::Bytes(b))),
                ..
            }) => {
                trace!("discriminants: {} ({:?})", b, repr_type);
                let ty = repr_type.to_ty(tcx);
O
Oliver Schneider 已提交
1903
                if repr_type.is_signed() {
O
Oliver Schneider 已提交
1904 1905
                    let val = b as i128;
                    // sign extend to i128
O
Oliver Schneider 已提交
1906
                    let amt = 128 - bit_size;
O
Oliver Schneider 已提交
1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917
                    let val = (val << amt) >> amt;
                    Some(Discr {
                        val: val as u128,
                        ty,
                    })
                } else {
                    Some(Discr {
                        val: b,
                        ty,
                    })
                }
1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929
            },
            Ok(&ty::Const {
                val: ConstVal::Value(other),
                ..
            }) => {
                info!("invalid enum discriminant: {:#?}", other);
                ::middle::const_val::struct_error(
                    tcx,
                    tcx.def_span(expr_did),
                    "constant evaluation of enum discriminant resulted in non-integer",
                ).emit();
                None
O
Oliver Schneider 已提交
1930
            }
1931 1932
            Err(err) => {
                err.report(tcx, tcx.def_span(expr_did), "enum discriminant");
O
Oliver Schneider 已提交
1933 1934 1935 1936 1937 1938 1939
                if !expr_did.is_local() {
                    span_bug!(tcx.def_span(expr_did),
                        "variant discriminant evaluation succeeded \
                            in its crate but failed locally");
                }
                None
            }
1940
            _ => span_bug!(tcx.def_span(expr_did), "const eval "),
O
Oliver Schneider 已提交
1941 1942 1943
        }
    }

1944
    #[inline]
1945
    pub fn discriminants(&'a self, tcx: TyCtxt<'a, 'gcx, 'tcx>)
O
Oliver Schneider 已提交
1946
                         -> impl Iterator<Item=Discr<'tcx>> + 'a {
1947
        let repr_type = self.repr.discr_type();
1948
        let initial = repr_type.initial_discriminant(tcx.global_tcx());
O
Oliver Schneider 已提交
1949
        let mut prev_discr = None::<Discr<'tcx>>;
1950
        self.variants.iter().map(move |v| {
O
Oliver Schneider 已提交
1951
            let mut discr = prev_discr.map_or(initial, |d| d.wrap_incr(tcx));
1952
            if let VariantDiscr::Explicit(expr_did) = v.discr {
O
Oliver Schneider 已提交
1953 1954
                if let Some(new_discr) = self.eval_explicit_discr(tcx, expr_did) {
                    discr = new_discr;
1955 1956 1957 1958 1959 1960 1961 1962
                }
            }
            prev_discr = Some(discr);

            discr
        })
    }

1963 1964 1965 1966 1967 1968 1969 1970
    /// Compute the discriminant value used by a specific variant.
    /// Unlike `discriminants`, this is (amortized) constant-time,
    /// only doing at most one query for evaluating an explicit
    /// discriminant (the last one before the requested variant),
    /// assuming there are no constant-evaluation errors there.
    pub fn discriminant_for_variant(&self,
                                    tcx: TyCtxt<'a, 'gcx, 'tcx>,
                                    variant_index: usize)
O
Oliver Schneider 已提交
1971
                                    -> Discr<'tcx> {
1972 1973 1974 1975 1976 1977 1978 1979 1980 1981
        let repr_type = self.repr.discr_type();
        let mut explicit_value = repr_type.initial_discriminant(tcx.global_tcx());
        let mut explicit_index = variant_index;
        loop {
            match self.variants[explicit_index].discr {
                ty::VariantDiscr::Relative(0) => break,
                ty::VariantDiscr::Relative(distance) => {
                    explicit_index -= distance;
                }
                ty::VariantDiscr::Explicit(expr_did) => {
O
Oliver Schneider 已提交
1982 1983 1984
                    match self.eval_explicit_discr(tcx, expr_did) {
                        Some(discr) => {
                            explicit_value = discr;
O
Oliver Schneider 已提交
1985
                            break;
O
Oliver Schneider 已提交
1986 1987
                        },
                        None => {
1988 1989 1990
                            if explicit_index == 0 {
                                break;
                            }
1991 1992 1993 1994 1995 1996
                            explicit_index -= 1;
                        }
                    }
                }
            }
        }
O
Oliver Schneider 已提交
1997
        explicit_value.checked_add(tcx, (variant_index - explicit_index) as u128).0
1998 1999
    }

2000
    pub fn destructor(&self, tcx: TyCtxt<'a, 'gcx, 'tcx>) -> Option<Destructor> {
2001
        tcx.adt_destructor(self.did)
2002 2003
    }

2004
    /// Returns a list of types such that `Self: Sized` if and only
2005
    /// if that type is Sized, or `TyErr` if this type is recursive.
A
Ariel Ben-Yehuda 已提交
2006 2007 2008 2009 2010 2011 2012 2013
    ///
    /// Oddly enough, checking that the sized-constraint is Sized is
    /// actually more expressive than checking all members:
    /// the Sized trait is inductive, so an associated type that references
    /// Self would prevent its containing ADT from being Sized.
    ///
    /// Due to normalization being eager, this applies even if
    /// the associated type is behind a pointer, e.g. issue #31299.
2014
    pub fn sized_constraint(&self, tcx: TyCtxt<'a, 'gcx, 'tcx>) -> &'tcx [Ty<'tcx>] {
2015
        match queries::adt_sized_constraint::try_get(tcx, DUMMY_SP, self.did) {
2016
            Ok(tys) => tys,
2017
            Err(mut bug) => {
2018 2019 2020 2021
                debug!("adt_sized_constraint: {:?} is recursive", self);
                // This should be reported as an error by `check_representable`.
                //
                // Consider the type as Sized in the meanwhile to avoid
2022 2023 2024 2025
                // further errors. Delay our `bug` diagnostic here to get
                // emitted later as well in case we accidentally otherwise don't
                // emit an error.
                bug.delay_as_bug();
2026
                tcx.intern_type_list(&[tcx.types.err])
A
Ariel Ben-Yehuda 已提交
2027
            }
2028 2029
        }
    }
2030

2031 2032 2033 2034
    fn sized_constraint_for_ty(&self,
                               tcx: TyCtxt<'a, 'tcx, 'tcx>,
                               ty: Ty<'tcx>)
                               -> Vec<Ty<'tcx>> {
2035 2036
        let result = match ty.sty {
            TyBool | TyChar | TyInt(..) | TyUint(..) | TyFloat(..) |
2037
            TyRawPtr(..) | TyRef(..) | TyFnDef(..) | TyFnPtr(_) |
J
John Kåre Alsaker 已提交
2038
            TyArray(..) | TyClosure(..) | TyGenerator(..) | TyNever => {
A
Ariel Ben-Yehuda 已提交
2039
                vec![]
2040 2041
            }

2042 2043 2044 2045 2046 2047
            TyStr |
            TyDynamic(..) |
            TySlice(_) |
            TyForeign(..) |
            TyError |
            TyGeneratorWitness(..) => {
2048
                // these are never sized - return the target type
A
Ariel Ben-Yehuda 已提交
2049
                vec![ty]
2050 2051
            }

A
Andrew Cann 已提交
2052
            TyTuple(ref tys) => {
2053 2054
                match tys.last() {
                    None => vec![],
2055
                    Some(ty) => self.sized_constraint_for_ty(tcx, ty)
2056
                }
2057 2058
            }

2059
            TyAdt(adt, substs) => {
2060
                // recursive case
2061
                let adt_tys = adt.sized_constraint(tcx);
2062
                debug!("sized_constraint_for_ty({:?}) intermediate = {:?}",
2063 2064 2065 2066 2067
                       ty, adt_tys);
                adt_tys.iter()
                    .map(|ty| ty.subst(tcx, substs))
                    .flat_map(|ty| self.sized_constraint_for_ty(tcx, ty))
                    .collect()
2068 2069
            }

2070
            TyProjection(..) | TyAnon(..) => {
2071 2072
                // must calculate explicitly.
                // FIXME: consider special-casing always-Sized projections
A
Ariel Ben-Yehuda 已提交
2073
                vec![ty]
2074 2075 2076
            }

            TyParam(..) => {
A
Ariel Ben-Yehuda 已提交
2077 2078 2079 2080
                // perf hack: if there is a `T: Sized` bound, then
                // we know that `T` is Sized and do not need to check
                // it on the impl.

2081
                let sized_trait = match tcx.lang_items().sized_trait() {
2082
                    Some(x) => x,
A
Ariel Ben-Yehuda 已提交
2083
                    _ => return vec![ty]
2084 2085 2086
                };
                let sized_predicate = Binder(TraitRef {
                    def_id: sized_trait,
2087
                    substs: tcx.mk_substs_trait(ty, &[])
2088
                }).to_predicate();
2089
                let predicates = tcx.predicates_of(self.did).predicates;
2090
                if predicates.into_iter().any(|p| p == sized_predicate) {
A
Ariel Ben-Yehuda 已提交
2091
                    vec![]
2092
                } else {
A
Ariel Ben-Yehuda 已提交
2093
                    vec![ty]
2094 2095 2096
                }
            }

A
Ariel Ben-Yehuda 已提交
2097
            TyInfer(..) => {
2098 2099 2100 2101 2102 2103 2104
                bug!("unexpected type `{:?}` in sized_constraint_for_ty",
                     ty)
            }
        };
        debug!("sized_constraint_for_ty({:?}) = {:?}", ty, result);
        result
    }
2105 2106
}

2107
impl<'a, 'gcx, 'tcx> VariantDef {
2108
    #[inline]
J
Jeffrey Seyfried 已提交
2109 2110
    pub fn find_field_named(&self, name: ast::Name) -> Option<&FieldDef> {
        self.index_of_field_named(name).map(|index| &self.fields[index])
2111 2112
    }

J
Jeffrey Seyfried 已提交
2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124
    pub fn index_of_field_named(&self, name: ast::Name) -> Option<usize> {
        if let Some(index) = self.fields.iter().position(|f| f.name == name) {
            return Some(index);
        }
        let mut ident = name.to_ident();
        while ident.ctxt != SyntaxContext::empty() {
            ident.ctxt.remove_mark();
            if let Some(field) = self.fields.iter().position(|f| f.name.to_ident() == ident) {
                return Some(field);
            }
        }
        None
2125 2126
    }

2127
    #[inline]
2128
    pub fn field_named(&self, name: ast::Name) -> &FieldDef {
2129 2130
        self.find_field_named(name).unwrap()
    }
2131 2132
}

2133
impl<'a, 'gcx, 'tcx> FieldDef {
2134
    pub fn ty(&self, tcx: TyCtxt<'a, 'gcx, 'tcx>, subst: &Substs<'tcx>) -> Ty<'tcx> {
2135
        tcx.type_of(self.did).subst(tcx, subst)
2136
    }
2137 2138
}

2139 2140 2141 2142 2143 2144
/// Represents the various closure traits in the Rust language. This
/// will determine the type of the environment (`self`, in the
/// desuaring) argument that the closure expects.
///
/// You can get the environment type of a closure using
/// `tcx.closure_env_ty()`.
2145
#[derive(Clone, Copy, PartialOrd, Ord, PartialEq, Eq, Hash, Debug, RustcEncodable, RustcDecodable)]
2146
pub enum ClosureKind {
2147 2148 2149
    // Warning: Ordering is significant here! The ordering is chosen
    // because the trait Fn is a subtrait of FnMut and so in turn, and
    // hence we order it so that Fn < FnMut < FnOnce.
2150 2151 2152
    Fn,
    FnMut,
    FnOnce,
2153 2154
}

2155
impl<'a, 'tcx> ClosureKind {
2156 2157 2158
    // This is the initial value used when doing upvar inference.
    pub const LATTICE_BOTTOM: ClosureKind = ClosureKind::Fn;

2159
    pub fn trait_did(&self, tcx: TyCtxt<'a, 'tcx, 'tcx>) -> DefId {
2160 2161
        match *self {
            ClosureKind::Fn => tcx.require_lang_item(FnTraitLangItem),
2162
            ClosureKind::FnMut => {
2163
                tcx.require_lang_item(FnMutTraitLangItem)
2164
            }
2165
            ClosureKind::FnOnce => {
2166
                tcx.require_lang_item(FnOnceTraitLangItem)
2167 2168 2169
            }
        }
    }
2170 2171 2172 2173 2174

    /// True if this a type that impls this closure kind
    /// must also implement `other`.
    pub fn extends(self, other: ty::ClosureKind) -> bool {
        match (self, other) {
2175 2176 2177 2178 2179 2180
            (ClosureKind::Fn, ClosureKind::Fn) => true,
            (ClosureKind::Fn, ClosureKind::FnMut) => true,
            (ClosureKind::Fn, ClosureKind::FnOnce) => true,
            (ClosureKind::FnMut, ClosureKind::FnMut) => true,
            (ClosureKind::FnMut, ClosureKind::FnOnce) => true,
            (ClosureKind::FnOnce, ClosureKind::FnOnce) => true,
2181 2182 2183
            _ => false,
        }
    }
2184 2185 2186 2187 2188 2189 2190 2191 2192

    /// Returns the representative scalar type for this closure kind.
    /// See `TyS::to_opt_closure_kind` for more details.
    pub fn to_ty(self, tcx: TyCtxt<'_, '_, 'tcx>) -> Ty<'tcx> {
        match self {
            ty::ClosureKind::Fn => tcx.types.i8,
            ty::ClosureKind::FnMut => tcx.types.i16,
            ty::ClosureKind::FnOnce => tcx.types.i32,
        }
2193
    }
2194 2195
}

2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208
impl<'tcx> TyS<'tcx> {
    /// Iterator that walks `self` and any types reachable from
    /// `self`, in depth-first order. Note that just walks the types
    /// that appear in `self`, it does not descend into the fields of
    /// structs or variants. For example:
    ///
    /// ```notrust
    /// isize => { isize }
    /// Foo<Bar<isize>> => { Foo<Bar<isize>>, Bar<isize>, isize }
    /// [isize] => { [isize], isize }
    /// ```
    pub fn walk(&'tcx self) -> TypeWalker<'tcx> {
        TypeWalker::new(self)
2209 2210
    }

2211 2212 2213
    /// Iterator that walks the immediate children of `self`.  Hence
    /// `Foo<Bar<i32>, u32>` yields the sequence `[Bar<i32>, u32]`
    /// (but not `i32`, like `walk`).
2214
    pub fn walk_shallow(&'tcx self) -> AccIntoIter<walk::TypeWalkerArray<'tcx>> {
2215
        walk::walk_shallow(self)
2216 2217
    }

2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231
    /// Walks `ty` and any types appearing within `ty`, invoking the
    /// callback `f` on each type. If the callback returns false, then the
    /// children of the current type are ignored.
    ///
    /// Note: prefer `ty.walk()` where possible.
    pub fn maybe_walk<F>(&'tcx self, mut f: F)
        where F : FnMut(Ty<'tcx>) -> bool
    {
        let mut walker = self.walk();
        while let Some(ty) = walker.next() {
            if !f(ty) {
                walker.skip_current_subtree();
            }
        }
2232
    }
2233
}
2234

2235
impl BorrowKind {
2236
    pub fn from_mutbl(m: hir::Mutability) -> BorrowKind {
2237
        match m {
2238 2239
            hir::MutMutable => MutBorrow,
            hir::MutImmutable => ImmBorrow,
2240 2241
        }
    }
2242

2243 2244 2245 2246
    /// Returns a mutability `m` such that an `&m T` pointer could be used to obtain this borrow
    /// kind. Because borrow kinds are richer than mutabilities, we sometimes have to pick a
    /// mutability that is stronger than necessary so that it at least *would permit* the borrow in
    /// question.
2247
    pub fn to_mutbl_lossy(self) -> hir::Mutability {
2248
        match self {
2249 2250
            MutBorrow => hir::MutMutable,
            ImmBorrow => hir::MutImmutable,
2251 2252 2253 2254

            // We have no type corresponding to a unique imm borrow, so
            // use `&mut`. It gives all the capabilities of an `&uniq`
            // and hence is a safe "over approximation".
2255
            UniqueImmBorrow => hir::MutMutable,
2256
        }
2257
    }
2258

2259 2260 2261 2262 2263 2264
    pub fn to_user_str(&self) -> &'static str {
        match *self {
            MutBorrow => "mutable",
            ImmBorrow => "immutable",
            UniqueImmBorrow => "uniquely immutable",
        }
2265 2266 2267
    }
}

2268 2269
#[derive(Debug, Clone)]
pub enum Attributes<'gcx> {
2270
    Owned(Lrc<[ast::Attribute]>),
2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284
    Borrowed(&'gcx [ast::Attribute])
}

impl<'gcx> ::std::ops::Deref for Attributes<'gcx> {
    type Target = [ast::Attribute];

    fn deref(&self) -> &[ast::Attribute] {
        match self {
            &Attributes::Owned(ref data) => &data,
            &Attributes::Borrowed(data) => data
        }
    }
}

2285
impl<'a, 'gcx, 'tcx> TyCtxt<'a, 'gcx, 'tcx> {
2286
    pub fn body_tables(self, body: hir::BodyId) -> &'gcx TypeckTables<'gcx> {
2287
        self.typeck_tables_of(self.hir.body_owner_def_id(body))
2288 2289
    }

N
Niko Matsakis 已提交
2290 2291 2292 2293 2294 2295 2296 2297 2298 2299
    /// Returns an iterator of the def-ids for all body-owners in this
    /// crate. If you would prefer to iterate over the bodies
    /// themselves, you can do `self.hir.krate().body_ids.iter()`.
    pub fn body_owners(self) -> impl Iterator<Item = DefId> + 'a {
        self.hir.krate()
                .body_ids
                .iter()
                .map(move |&body_id| self.hir.body_owner_def_id(body_id))
    }

2300
    pub fn expr_span(self, id: NodeId) -> Span {
2301
        match self.hir.find(id) {
2302
            Some(hir_map::NodeExpr(e)) => {
2303 2304 2305
                e.span
            }
            Some(f) => {
2306
                bug!("Node id {} is not an expr: {:?}", id, f);
2307 2308
            }
            None => {
2309
                bug!("Node id {} is not present in the node map", id);
2310
            }
2311
        }
2312 2313
    }

2314 2315
    pub fn provided_trait_methods(self, id: DefId) -> Vec<AssociatedItem> {
        self.associated_items(id)
2316
            .filter(|item| item.kind == AssociatedKind::Method && item.defaultness.has_value())
2317
            .collect()
2318 2319
    }

A
Andrew Cann 已提交
2320 2321 2322 2323 2324 2325
    pub fn trait_relevant_for_never(self, did: DefId) -> bool {
        self.associated_items(did).any(|item| {
            item.relevant_for_never()
        })
    }

2326 2327 2328 2329 2330 2331 2332
    pub fn opt_associated_item(self, def_id: DefId) -> Option<AssociatedItem> {
        let is_associated_item = if let Some(node_id) = self.hir.as_local_node_id(def_id) {
            match self.hir.get(node_id) {
                hir_map::NodeTraitItem(_) | hir_map::NodeImplItem(_) => true,
                _ => false,
            }
        } else {
2333
            match self.describe_def(def_id).expect("no def for def-id") {
2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345
                Def::AssociatedConst(_) | Def::Method(_) | Def::AssociatedTy(_) => true,
                _ => false,
            }
        };

        if is_associated_item {
            Some(self.associated_item(def_id))
        } else {
            None
        }
    }

2346 2347
    fn associated_item_from_trait_item_ref(self,
                                           parent_def_id: DefId,
2348
                                           parent_vis: &hir::Visibility,
2349
                                           trait_item_ref: &hir::TraitItemRef)
2350
                                           -> AssociatedItem {
2351
        let def_id = self.hir.local_def_id(trait_item_ref.id.node_id);
2352 2353 2354 2355
        let (kind, has_self) = match trait_item_ref.kind {
            hir::AssociatedItemKind::Const => (ty::AssociatedKind::Const, false),
            hir::AssociatedItemKind::Method { has_self } => {
                (ty::AssociatedKind::Method, has_self)
2356
            }
2357
            hir::AssociatedItemKind::Type => (ty::AssociatedKind::Type, false),
2358 2359 2360
        };

        AssociatedItem {
2361
            name: trait_item_ref.name,
2362
            kind,
2363 2364
            // Visibility of trait items is inherited from their traits.
            vis: Visibility::from_hir(parent_vis, trait_item_ref.id.node_id, self),
2365
            defaultness: trait_item_ref.defaultness,
2366
            def_id,
2367 2368 2369 2370 2371 2372 2373 2374 2375
            container: TraitContainer(parent_def_id),
            method_has_self_argument: has_self
        }
    }

    fn associated_item_from_impl_item_ref(self,
                                          parent_def_id: DefId,
                                          impl_item_ref: &hir::ImplItemRef)
                                          -> AssociatedItem {
2376
        let def_id = self.hir.local_def_id(impl_item_ref.id.node_id);
2377 2378 2379 2380 2381 2382 2383 2384 2385 2386
        let (kind, has_self) = match impl_item_ref.kind {
            hir::AssociatedItemKind::Const => (ty::AssociatedKind::Const, false),
            hir::AssociatedItemKind::Method { has_self } => {
                (ty::AssociatedKind::Method, has_self)
            }
            hir::AssociatedItemKind::Type => (ty::AssociatedKind::Type, false),
        };

        ty::AssociatedItem {
            name: impl_item_ref.name,
2387
            kind,
2388 2389
            // Visibility of trait impl items doesn't matter.
            vis: ty::Visibility::from_hir(&impl_item_ref.vis, impl_item_ref.id.node_id, self),
2390
            defaultness: impl_item_ref.defaultness,
2391
            def_id,
2392 2393 2394 2395 2396
            container: ImplContainer(parent_def_id),
            method_has_self_argument: has_self
        }
    }

2397 2398 2399 2400 2401
    #[inline] // FIXME(#35870) Avoid closures being unexported due to impl Trait.
    pub fn associated_items(self, def_id: DefId)
                            -> impl Iterator<Item = ty::AssociatedItem> + 'a {
        let def_ids = self.associated_item_def_ids(def_id);
        (0..def_ids.len()).map(move |i| self.associated_item(def_ids[i]))
2402 2403
    }

2404 2405 2406
    /// Returns true if the impls are the same polarity and are implementing
    /// a trait which contains no items
    pub fn impls_are_allowed_to_overlap(self, def_id1: DefId, def_id2: DefId) -> bool {
2407
        if !self.features().overlapping_marker_traits {
2408 2409
            return false;
        }
2410 2411 2412 2413 2414 2415 2416 2417
        let trait1_is_empty = self.impl_trait_ref(def_id1)
            .map_or(false, |trait_ref| {
                self.associated_item_def_ids(trait_ref.def_id).is_empty()
            });
        let trait2_is_empty = self.impl_trait_ref(def_id2)
            .map_or(false, |trait_ref| {
                self.associated_item_def_ids(trait_ref.def_id).is_empty()
            });
2418
        self.impl_polarity(def_id1) == self.impl_polarity(def_id2)
2419 2420
            && trait1_is_empty
            && trait2_is_empty
S
Sean Griffin 已提交
2421 2422
    }

2423 2424
    // Returns `ty::VariantDef` if `def` refers to a struct,
    // or variant or their constructors, panics otherwise.
2425
    pub fn expect_variant_def(self, def: Def) -> &'tcx VariantDef {
2426
        match def {
2427
            Def::Variant(did) | Def::VariantCtor(did, ..) => {
2428
                let enum_did = self.parent_def_id(did).unwrap();
2429
                self.adt_def(enum_did).variant_with_id(did)
2430
            }
2431
            Def::Struct(did) | Def::Union(did) => {
2432
                self.adt_def(did).non_enum_variant()
2433 2434 2435
            }
            Def::StructCtor(ctor_did, ..) => {
                let did = self.parent_def_id(ctor_did).expect("struct ctor has no parent");
2436
                self.adt_def(did).non_enum_variant()
2437 2438 2439 2440 2441
            }
            _ => bug!("expect_variant_def used with unexpected def {:?}", def)
        }
    }

2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455
    /// Given a `VariantDef`, returns the def-id of the `AdtDef` of which it is a part.
    pub fn adt_def_id_of_variant(self, variant_def: &'tcx VariantDef) -> DefId {
        let def_key = self.def_key(variant_def.did);
        match def_key.disambiguated_data.data {
            // for enum variants and tuple structs, the def-id of the ADT itself
            // is the *parent* of the variant
            DefPathData::EnumVariant(..) | DefPathData::StructCtor =>
                DefId { krate: variant_def.did.krate, index: def_key.parent.unwrap() },

            // otherwise, for structs and unions, they share a def-id
            _ => variant_def.did,
        }
    }

2456
    pub fn item_name(self, id: DefId) -> InternedString {
2457
        if id.index == CRATE_DEF_INDEX {
2458
            self.original_crate_name(id.krate).as_str()
2459
        } else {
2460
            let def_key = self.def_key(id);
2461
            // The name of a StructCtor is that of its struct parent.
2462
            if let hir_map::DefPathData::StructCtor = def_key.disambiguated_data.data {
2463 2464 2465 2466 2467 2468 2469 2470 2471
                self.item_name(DefId {
                    krate: id.krate,
                    index: def_key.parent.unwrap()
                })
            } else {
                def_key.disambiguated_data.data.get_opt_name().unwrap_or_else(|| {
                    bug!("item_name: no name for {:?}", self.def_path(id));
                })
            }
2472 2473 2474
        }
    }

2475 2476
    /// Return the possibly-auto-generated MIR of a (DefId, Subst) pair.
    pub fn instance_mir(self, instance: ty::InstanceDef<'gcx>)
2477
                        -> &'gcx Mir<'gcx>
2478 2479
    {
        match instance {
N
Niko Matsakis 已提交
2480
            ty::InstanceDef::Item(did) => {
2481
                self.optimized_mir(did)
N
Niko Matsakis 已提交
2482 2483 2484 2485 2486
            }
            ty::InstanceDef::Intrinsic(..) |
            ty::InstanceDef::FnPtrShim(..) |
            ty::InstanceDef::Virtual(..) |
            ty::InstanceDef::ClosureOnceShim { .. } |
2487
            ty::InstanceDef::DropGlue(..) |
S
scalexm 已提交
2488
            ty::InstanceDef::CloneShim(..) => {
2489
                self.mir_shims(instance)
N
Niko Matsakis 已提交
2490
            }
2491 2492 2493
        }
    }

2494 2495
    /// Given the DefId of an item, returns its MIR, borrowed immutably.
    /// Returns None if there is no MIR for the DefId
2496 2497 2498 2499 2500
    pub fn maybe_optimized_mir(self, did: DefId) -> Option<&'gcx Mir<'gcx>> {
        if self.is_mir_available(did) {
            Some(self.optimized_mir(did))
        } else {
            None
2501 2502 2503
        }
    }

2504
    /// Get the attributes of a definition.
2505
    pub fn get_attrs(self, did: DefId) -> Attributes<'gcx> {
2506
        if let Some(id) = self.hir.as_local_node_id(did) {
2507
            Attributes::Borrowed(self.hir.attrs(id))
2508
        } else {
A
achernyak 已提交
2509
            Attributes::Owned(self.item_attrs(did))
2510
        }
2511 2512
    }

2513
    /// Determine whether an item is annotated with an attribute
2514
    pub fn has_attr(self, did: DefId, attr: &str) -> bool {
2515
        attr::contains_name(&self.get_attrs(did), attr)
2516
    }
2517

2518 2519
    /// Returns true if this is an `auto trait`.
    pub fn trait_is_auto(self, trait_def_id: DefId) -> bool {
2520
        self.trait_def(trait_def_id).has_auto_impl
2521
    }
2522

J
John Kåre Alsaker 已提交
2523 2524 2525 2526
    pub fn generator_layout(self, def_id: DefId) -> &'tcx GeneratorLayout<'tcx> {
        self.optimized_mir(def_id).generator_layout.as_ref().unwrap()
    }

2527 2528
    /// Given the def_id of an impl, return the def_id of the trait it implements.
    /// If it implements no trait, return `None`.
2529
    pub fn trait_id_of_impl(self, def_id: DefId) -> Option<DefId> {
2530
        self.impl_trait_ref(def_id).map(|tr| tr.def_id)
2531
    }
2532 2533 2534

    /// If the given def ID describes a method belonging to an impl, return the
    /// ID of the impl that the method belongs to. Otherwise, return `None`.
2535
    pub fn impl_of_method(self, def_id: DefId) -> Option<DefId> {
2536
        let item = if def_id.krate != LOCAL_CRATE {
A
achernyak 已提交
2537
            if let Some(Def::Method(_)) = self.describe_def(def_id) {
2538 2539 2540 2541 2542
                Some(self.associated_item(def_id))
            } else {
                None
            }
        } else {
2543
            self.opt_associated_item(def_id)
2544 2545 2546
        };

        match item {
2547
            Some(trait_item) => {
2548
                match trait_item.container {
2549 2550 2551
                    TraitContainer(_) => None,
                    ImplContainer(def_id) => Some(def_id),
                }
2552
            }
2553
            None => None
2554 2555 2556
        }
    }

2557 2558
    /// Looks up the span of `impl_did` if the impl is local; otherwise returns `Err`
    /// with the name of the crate containing the impl.
2559
    pub fn span_of_impl(self, impl_did: DefId) -> Result<Span, Symbol> {
2560
        if impl_did.is_local() {
2561 2562
            let node_id = self.hir.as_local_node_id(impl_did).unwrap();
            Ok(self.hir.span(node_id))
2563
        } else {
2564
            Err(self.crate_name(impl_did.krate))
2565 2566
        }
    }
J
Jeffrey Seyfried 已提交
2567

2568 2569 2570 2571 2572 2573 2574
    // Hygienically compare a use-site name (`use_name`) for a field or an associated item with its
    // supposed definition name (`def_name`). The method also needs `DefId` of the supposed
    // definition's parent/scope to perform comparison.
    pub fn hygienic_eq(self, use_name: Name, def_name: Name, def_parent_def_id: DefId) -> bool {
        self.adjust(use_name, def_parent_def_id, DUMMY_NODE_ID).0 == def_name.to_ident()
    }

J
Jeffrey Seyfried 已提交
2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585
    pub fn adjust(self, name: Name, scope: DefId, block: NodeId) -> (Ident, DefId) {
        self.adjust_ident(name.to_ident(), scope, block)
    }

    pub fn adjust_ident(self, mut ident: Ident, scope: DefId, block: NodeId) -> (Ident, DefId) {
        let expansion = match scope.krate {
            LOCAL_CRATE => self.hir.definitions().expansion(scope.index),
            _ => Mark::root(),
        };
        let scope = match ident.ctxt.adjust(expansion) {
            Some(macro_def) => self.hir.definitions().macro_def_scope(macro_def),
2586
            None if block == DUMMY_NODE_ID => DefId::local(CRATE_DEF_INDEX), // Dummy DefId
J
Jeffrey Seyfried 已提交
2587 2588 2589 2590
            None => self.hir.get_module_parent(block),
        };
        (ident, scope)
    }
2591
}
2592

2593
impl<'a, 'gcx, 'tcx> TyCtxt<'a, 'gcx, 'tcx> {
2594
    pub fn with_freevars<T, F>(self, fid: NodeId, f: F) -> T where
2595
        F: FnOnce(&[hir::Freevar]) -> T,
2596
    {
A
Alex Crichton 已提交
2597 2598
        let def_id = self.hir.local_def_id(fid);
        match self.freevars(def_id) {
2599
            None => f(&[]),
2600
            Some(d) => f(&d),
2601 2602
        }
    }
2603
}
2604 2605 2606 2607 2608 2609 2610 2611 2612

fn associated_item<'a, 'tcx>(tcx: TyCtxt<'a, 'tcx, 'tcx>, def_id: DefId)
    -> AssociatedItem
{
    let id = tcx.hir.as_local_node_id(def_id).unwrap();
    let parent_id = tcx.hir.get_parent(id);
    let parent_def_id = tcx.hir.local_def_id(parent_id);
    let parent_item = tcx.hir.expect_item(parent_id);
    match parent_item.node {
2613
        hir::ItemImpl(.., ref impl_item_refs) => {
2614
            if let Some(impl_item_ref) = impl_item_refs.iter().find(|i| i.id.node_id == id) {
2615 2616
                let assoc_item = tcx.associated_item_from_impl_item_ref(parent_def_id,
                                                                        impl_item_ref);
2617 2618
                debug_assert_eq!(assoc_item.def_id, def_id);
                return assoc_item;
2619 2620 2621 2622
            }
        }

        hir::ItemTrait(.., ref trait_item_refs) => {
2623
            if let Some(trait_item_ref) = trait_item_refs.iter().find(|i| i.id.node_id == id) {
2624 2625 2626
                let assoc_item = tcx.associated_item_from_trait_item_ref(parent_def_id,
                                                                         &parent_item.vis,
                                                                         trait_item_ref);
2627 2628
                debug_assert_eq!(assoc_item.def_id, def_id);
                return assoc_item;
2629 2630 2631
            }
        }

2632
        _ => { }
2633
    }
2634 2635 2636 2637

    span_bug!(parent_item.span,
              "unexpected parent of trait or impl item or item not found: {:?}",
              parent_item.node)
2638 2639
}

2640 2641
/// Calculates the Sized-constraint.
///
2642
/// In fact, there are only a few options for the types in the constraint:
2643 2644 2645 2646 2647 2648 2649 2650
///     - an obviously-unsized type
///     - a type parameter or projection whose Sizedness can't be known
///     - a tuple of type parameters or projections, if there are multiple
///       such.
///     - a TyError, if a type contained itself. The representability
///       check should catch this case.
fn adt_sized_constraint<'a, 'tcx>(tcx: TyCtxt<'a, 'tcx, 'tcx>,
                                  def_id: DefId)
2651
                                  -> &'tcx [Ty<'tcx>] {
2652
    let def = tcx.adt_def(def_id);
2653

2654
    let result = tcx.intern_type_list(&def.variants.iter().flat_map(|v| {
2655 2656
        v.fields.last()
    }).flat_map(|f| {
2657
        def.sized_constraint_for_ty(tcx, tcx.type_of(f.did))
2658
    }).collect::<Vec<_>>());
2659

2660
    debug!("adt_sized_constraint: {:?} => {:?}", def, result);
2661

2662
    result
2663 2664
}

2665 2666
fn associated_item_def_ids<'a, 'tcx>(tcx: TyCtxt<'a, 'tcx, 'tcx>,
                                     def_id: DefId)
2667
                                     -> Lrc<Vec<DefId>> {
2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682
    let id = tcx.hir.as_local_node_id(def_id).unwrap();
    let item = tcx.hir.expect_item(id);
    let vec: Vec<_> = match item.node {
        hir::ItemTrait(.., ref trait_item_refs) => {
            trait_item_refs.iter()
                           .map(|trait_item_ref| trait_item_ref.id)
                           .map(|id| tcx.hir.local_def_id(id.node_id))
                           .collect()
        }
        hir::ItemImpl(.., ref impl_item_refs) => {
            impl_item_refs.iter()
                          .map(|impl_item_ref| impl_item_ref.id)
                          .map(|id| tcx.hir.local_def_id(id.node_id))
                          .collect()
        }
A
Alex Burka 已提交
2683
        hir::ItemTraitAlias(..) => vec![],
2684 2685
        _ => span_bug!(item.span, "associated_item_def_ids: not impl or trait")
    };
2686
    Lrc::new(vec)
2687 2688
}

A
achernyak 已提交
2689
fn def_span<'a, 'tcx>(tcx: TyCtxt<'a, 'tcx, 'tcx>, def_id: DefId) -> Span {
A
achernyak 已提交
2690
    tcx.hir.span_if_local(def_id).unwrap()
A
achernyak 已提交
2691 2692
}

A
achernyak 已提交
2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705
/// If the given def ID describes an item belonging to a trait,
/// return the ID of the trait that the trait item belongs to.
/// Otherwise, return `None`.
fn trait_of_item<'a, 'tcx>(tcx: TyCtxt<'a, 'tcx, 'tcx>, def_id: DefId) -> Option<DefId> {
    tcx.opt_associated_item(def_id)
        .and_then(|associated_item| {
            match associated_item.container {
                TraitContainer(def_id) => Some(def_id),
                ImplContainer(_) => None
            }
        })
}

2706
/// See `ParamEnv` struct def'n for details.
2707
fn param_env<'a, 'tcx>(tcx: TyCtxt<'a, 'tcx, 'tcx>,
2708 2709
                       def_id: DefId)
                       -> ParamEnv<'tcx> {
2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726
    // Compute the bounds on Self and the type parameters.

    let bounds = tcx.predicates_of(def_id).instantiate_identity(tcx);
    let predicates = bounds.predicates;

    // Finally, we have to normalize the bounds in the environment, in
    // case they contain any associated type projections. This process
    // can yield errors if the put in illegal associated types, like
    // `<i32 as Foo>::Bar` where `i32` does not implement `Foo`. We
    // report these errors right here; this doesn't actually feel
    // right to me, because constructing the environment feels like a
    // kind of a "idempotent" action, but I'm not sure where would be
    // a better place. In practice, we construct environments for
    // every fn once during type checking, and we'll abort if there
    // are any errors at that point, so after type checking you can be
    // sure that this will succeed without errors anyway.

2727
    let unnormalized_env = ty::ParamEnv::new(tcx.intern_predicates(&predicates),
2728 2729
                                             traits::Reveal::UserFacing,
                                             ty::UniverseIndex::ROOT);
2730 2731 2732 2733 2734 2735 2736

    let body_id = tcx.hir.as_local_node_id(def_id).map_or(DUMMY_NODE_ID, |id| {
        tcx.hir.maybe_body_owned_by(id).map_or(id, |body| body.node_id)
    });
    let cause = traits::ObligationCause::misc(tcx.def_span(def_id), body_id);
    traits::normalize_param_env_or_error(tcx, def_id, unnormalized_env, cause)
}
A
achernyak 已提交
2737

2738
fn crate_disambiguator<'a, 'tcx>(tcx: TyCtxt<'a, 'tcx, 'tcx>,
2739
                                 crate_num: CrateNum) -> CrateDisambiguator {
2740 2741 2742 2743
    assert_eq!(crate_num, LOCAL_CRATE);
    tcx.sess.local_crate_disambiguator()
}

2744 2745 2746 2747 2748 2749
fn original_crate_name<'a, 'tcx>(tcx: TyCtxt<'a, 'tcx, 'tcx>,
                                 crate_num: CrateNum) -> Symbol {
    assert_eq!(crate_num, LOCAL_CRATE);
    tcx.crate_name.clone()
}

2750 2751 2752 2753 2754 2755 2756
fn crate_hash<'a, 'tcx>(tcx: TyCtxt<'a, 'tcx, 'tcx>,
                        crate_num: CrateNum)
                        -> Svh {
    assert_eq!(crate_num, LOCAL_CRATE);
    tcx.hir.crate_hash
}

V
varkor 已提交
2757 2758 2759 2760
fn instance_def_size_estimate<'a, 'tcx>(tcx: TyCtxt<'a, 'tcx, 'tcx>,
                                        instance_def: InstanceDef<'tcx>)
                                        -> usize {
    match instance_def {
2761 2762 2763
        InstanceDef::Item(..) |
        InstanceDef::DropGlue(..) => {
            let mir = tcx.instance_mir(instance_def);
V
varkor 已提交
2764 2765
            mir.basic_blocks().iter().map(|bb| bb.statements.len()).sum()
        },
2766
        // Estimate the size of other compiler-generated shims to be 1.
V
varkor 已提交
2767 2768 2769 2770
        _ => 1
    }
}

2771
pub fn provide(providers: &mut ty::maps::Providers) {
2772
    context::provide(providers);
2773
    erase_regions::provide(providers);
2774 2775
    layout::provide(providers);
    util::provide(providers);
2776 2777
    *providers = ty::maps::Providers {
        associated_item,
2778
        associated_item_def_ids,
2779
        adt_sized_constraint,
A
achernyak 已提交
2780
        def_span,
2781
        param_env,
A
achernyak 已提交
2782
        trait_of_item,
2783
        crate_disambiguator,
2784
        original_crate_name,
2785
        crate_hash,
2786
        trait_impls_of: trait_def::trait_impls_of_provider,
V
varkor 已提交
2787
        instance_def_size_estimate,
2788 2789 2790 2791
        ..*providers
    };
}

2792 2793 2794
/// A map for the local crate mapping each type to a vector of its
/// inherent impls. This is not meant to be used outside of coherence;
/// rather, you should request the vector for a specific type via
2795 2796
/// `tcx.inherent_impls(def_id)` so as to minimize your dependencies
/// (constructing this map requires touching the entire crate).
2797 2798
#[derive(Clone, Debug)]
pub struct CrateInherentImpls {
2799
    pub inherent_impls: DefIdMap<Lrc<Vec<DefId>>>,
2800
}
A
Ariel Ben-Yehuda 已提交
2801

2802
#[derive(Clone, Copy, PartialEq, Eq, PartialOrd, Ord, RustcEncodable, RustcDecodable)]
2803 2804 2805 2806 2807 2808
pub struct SymbolName {
    // FIXME: we don't rely on interning or equality here - better have
    // this be a `&'tcx str`.
    pub name: InternedString
}

2809 2810 2811 2812
impl_stable_hash_for!(struct self::SymbolName {
    name
});

2813 2814 2815 2816 2817 2818 2819 2820
impl SymbolName {
    pub fn new(name: &str) -> SymbolName {
        SymbolName {
            name: Symbol::intern(name).as_str()
        }
    }
}

2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831
impl Deref for SymbolName {
    type Target = str;

    fn deref(&self) -> &str { &self.name }
}

impl fmt::Display for SymbolName {
    fn fmt(&self, fmt: &mut fmt::Formatter) -> fmt::Result {
        fmt::Display::fmt(&self.name, fmt)
    }
}
2832 2833 2834 2835 2836 2837

impl fmt::Debug for SymbolName {
    fn fmt(&self, fmt: &mut fmt::Formatter) -> fmt::Result {
        fmt::Display::fmt(&self.name, fmt)
    }
}