mod.rs 111.4 KB
Newer Older
1
// Copyright 2012-2015 The Rust Project Developers. See the COPYRIGHT
2 3 4 5 6 7 8 9 10
// file at the top-level directory of this distribution and at
// http://rust-lang.org/COPYRIGHT.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.

S
Steven Fackler 已提交
11
pub use self::Variance::*;
12
pub use self::AssociatedItemContainer::*;
S
Steven Fackler 已提交
13 14
pub use self::BorrowKind::*;
pub use self::IntVarValue::*;
15
pub use self::fold::TypeFoldable;
S
Steven Fackler 已提交
16

17
use hir::{map as hir_map, FreevarMap, TraitMap};
V
varkor 已提交
18
use hir::Node;
19
use hir::def::{Def, CtorKind, ExportMap};
20
use hir::def_id::{CrateNum, DefId, LocalDefId, CRATE_DEF_INDEX, LOCAL_CRATE};
21
use hir::map::DefPathData;
22
use rustc_data_structures::svh::Svh;
W
Wesley Wiser 已提交
23
use ich::Fingerprint;
24
use ich::StableHashingContext;
25
use infer::canonical::Canonical;
26
use middle::lang_items::{FnTraitLangItem, FnMutTraitLangItem, FnOnceTraitLangItem};
27
use middle::privacy::AccessLevels;
28
use middle::resolve_lifetime::ObjectLifetimeDefault;
29
use mir::Mir;
30
use mir::interpret::GlobalId;
J
John Kåre Alsaker 已提交
31
use mir::GeneratorLayout;
32
use session::CrateDisambiguator;
33
use traits::{self, Reveal};
34
use ty;
35
use ty::subst::{Subst, Substs};
O
Oliver Schneider 已提交
36
use ty::util::{IntTypeExt, Discr};
37
use ty::walk::TypeWalker;
38
use util::captures::Captures;
39
use util::nodemap::{NodeSet, DefIdMap, FxHashMap};
J
John Kåre Alsaker 已提交
40
use arena::SyncDroplessArena;
41
use session::DataTypeKind;
42

43
use serialize::{self, Encodable, Encoder};
W
Wesley Wiser 已提交
44
use std::cell::RefCell;
45
use std::cmp::{self, Ordering};
46
use std::fmt;
47
use std::hash::{Hash, Hasher};
48
use std::ops::Deref;
J
John Kåre Alsaker 已提交
49
use rustc_data_structures::sync::{self, Lrc, ParallelIterator, par_iter};
50
use std::slice;
51
use std::vec::IntoIter;
52
use std::{mem, ptr};
J
Jeffrey Seyfried 已提交
53
use syntax::ast::{self, DUMMY_NODE_ID, Name, Ident, NodeId};
54
use syntax::attr;
55
use syntax::ext::hygiene::Mark;
56
use syntax::symbol::{keywords, Symbol, LocalInternedString, InternedString};
57
use syntax_pos::{DUMMY_SP, Span};
58

59
use smallvec;
60 61
use rustc_data_structures::stable_hasher::{StableHasher, StableHasherResult,
                                           HashStable};
O
Oliver Schneider 已提交
62

63
use hir;
64

65
pub use self::sty::{Binder, CanonicalVar, DebruijnIndex, INNERMOST};
J
John Kåre Alsaker 已提交
66
pub use self::sty::{FnSig, GenSig, PolyFnSig, PolyGenSig};
67
pub use self::sty::{InferTy, ParamTy, ProjectionTy, ExistentialPredicate};
68
pub use self::sty::{ClosureSubsts, GeneratorSubsts, UpvarSubsts, TypeAndMut};
V
varkor 已提交
69
pub use self::sty::{TraitRef, TyKind, PolyTraitRef};
70
pub use self::sty::{ExistentialTraitRef, PolyExistentialTraitRef};
71
pub use self::sty::{ExistentialProjection, PolyExistentialProjection, Const};
72
pub use self::sty::{BoundRegion, EarlyBoundRegion, FreeRegion, Region};
N
Niko Matsakis 已提交
73
pub use self::sty::RegionKind;
74
pub use self::sty::{TyVid, IntVid, FloatVid, RegionVid};
75 76
pub use self::sty::BoundRegion::*;
pub use self::sty::InferTy::*;
N
Niko Matsakis 已提交
77
pub use self::sty::RegionKind::*;
V
varkor 已提交
78
pub use self::sty::TyKind::*;
79

80 81 82
pub use self::binding::BindingMode;
pub use self::binding::BindingMode::*;

83
pub use self::context::{TyCtxt, FreeRegionInfo, GlobalArenas, AllArenas, tls, keep_local};
84
pub use self::context::{Lift, TypeckTables};
85

86 87
pub use self::instance::{Instance, InstanceDef};

88
pub use self::trait_def::TraitDef;
89

90
pub use self::query::queries;
91

92
pub mod adjustment;
93
pub mod binding;
94
pub mod cast;
95
#[macro_use]
96
pub mod codec;
97
mod constness;
98
pub mod error;
99
mod erase_regions;
100 101
pub mod fast_reject;
pub mod fold;
A
Andrew Cann 已提交
102
pub mod inhabitedness;
103
pub mod item_path;
104
pub mod layout;
105 106
pub mod _match;
pub mod outlives;
107
pub mod query;
108
pub mod relate;
109
pub mod steal;
110
pub mod subst;
111
pub mod trait_def;
112 113
pub mod walk;
pub mod wf;
114
pub mod util;
115

116 117
mod context;
mod flags;
118
mod instance;
119 120 121
mod structural_impls;
mod sty;

122
// Data types
123

124
/// The complete set of all analyses described in this module. This is
I
Irina Popa 已提交
125
/// produced by the driver and fed to codegen and later passes.
126 127 128
///
/// NB: These contents are being migrated into queries using the
/// *on-demand* infrastructure.
J
Jeffrey Seyfried 已提交
129
#[derive(Clone)]
130
pub struct CrateAnalysis {
131
    pub access_levels: Lrc<AccessLevels>,
132
    pub name: String,
133
    pub glob_map: Option<hir::GlobMap>,
134 135
}

136 137 138 139 140
#[derive(Clone)]
pub struct Resolutions {
    pub freevars: FreevarMap,
    pub trait_map: TraitMap,
    pub maybe_unused_trait_imports: NodeSet,
141
    pub maybe_unused_extern_crates: Vec<(NodeId, Span)>,
N
Niko Matsakis 已提交
142
    pub export_map: ExportMap,
143 144
}

145
#[derive(Clone, Copy, PartialEq, Eq, Debug)]
146
pub enum AssociatedItemContainer {
N
Niko Matsakis 已提交
147 148
    TraitContainer(DefId),
    ImplContainer(DefId),
149 150
}

151
impl AssociatedItemContainer {
152 153 154 155 156 157 158 159 160
    /// Asserts that this is the def-id of an associated item declared
    /// in a trait, and returns the trait def-id.
    pub fn assert_trait(&self) -> DefId {
        match *self {
            TraitContainer(id) => id,
            _ => bug!("associated item has wrong container type: {:?}", self)
        }
    }

N
Niko Matsakis 已提交
161
    pub fn id(&self) -> DefId {
162 163 164 165 166 167 168
        match *self {
            TraitContainer(id) => id,
            ImplContainer(id) => id,
        }
    }
}

A
Aaron Turon 已提交
169 170 171 172 173 174 175 176 177 178 179
/// The "header" of an impl is everything outside the body: a Self type, a trait
/// ref (in the case of a trait impl), and a set of predicates (from the
/// bounds/where clauses).
#[derive(Clone, PartialEq, Eq, Hash, Debug)]
pub struct ImplHeader<'tcx> {
    pub impl_def_id: DefId,
    pub self_ty: Ty<'tcx>,
    pub trait_ref: Option<TraitRef<'tcx>>,
    pub predicates: Vec<Predicate<'tcx>>,
}

180
#[derive(Copy, Clone, Debug, PartialEq)]
181 182
pub struct AssociatedItem {
    pub def_id: DefId,
183
    pub ident: Ident,
184 185 186 187
    pub kind: AssociatedKind,
    pub vis: Visibility,
    pub defaultness: hir::Defaultness,
    pub container: AssociatedItemContainer,
188

189 190 191 192
    /// Whether this is a method with an explicit self
    /// as its first argument, allowing method calls.
    pub method_has_self_argument: bool,
}
193

194
#[derive(Copy, Clone, PartialEq, Eq, Debug, Hash, RustcEncodable, RustcDecodable)]
195 196 197
pub enum AssociatedKind {
    Const,
    Method,
O
Oliver Schneider 已提交
198
    Existential,
199 200
    Type
}
201

202 203 204 205 206 207
impl AssociatedItem {
    pub fn def(&self) -> Def {
        match self.kind {
            AssociatedKind::Const => Def::AssociatedConst(self.def_id),
            AssociatedKind::Method => Def::Method(self.def_id),
            AssociatedKind::Type => Def::AssociatedTy(self.def_id),
O
Oliver Schneider 已提交
208
            AssociatedKind::Existential => Def::AssociatedExistential(self.def_id),
209 210
        }
    }
A
Andrew Cann 已提交
211 212 213 214 215

    /// Tests whether the associated item admits a non-trivial implementation
    /// for !
    pub fn relevant_for_never<'tcx>(&self) -> bool {
        match self.kind {
O
Oliver Schneider 已提交
216 217
            AssociatedKind::Existential |
            AssociatedKind::Const |
A
Andrew Cann 已提交
218
            AssociatedKind::Type => true,
A
Andrew Cann 已提交
219
            // FIXME(canndrew): Be more thorough here, check if any argument is uninhabited.
A
Andrew Cann 已提交
220 221 222
            AssociatedKind::Method => !self.method_has_self_argument,
        }
    }
223 224 225 226 227 228 229 230

    pub fn signature<'a, 'tcx>(&self, tcx: &TyCtxt<'a, 'tcx, 'tcx>) -> String {
        match self.kind {
            ty::AssociatedKind::Method => {
                // We skip the binder here because the binder would deanonymize all
                // late-bound regions, and we don't want method signatures to show up
                // `as for<'r> fn(&'r MyType)`.  Pretty-printing handles late-bound
                // regions just fine, showing `fn(&MyType)`.
L
ljedrz 已提交
231
                tcx.fn_sig(self.def_id).skip_binder().to_string()
232
            }
233
            ty::AssociatedKind::Type => format!("type {};", self.ident),
O
Oliver Schneider 已提交
234
            ty::AssociatedKind::Existential => format!("existential type {};", self.ident),
235
            ty::AssociatedKind::Const => {
236
                format!("const {}: {:?};", self.ident, tcx.type_of(self.def_id))
237 238 239
            }
        }
    }
240 241
}

242
#[derive(Clone, Debug, PartialEq, Eq, Copy, RustcEncodable, RustcDecodable)]
243 244 245 246
pub enum Visibility {
    /// Visible everywhere (including in other crates).
    Public,
    /// Visible only in the given crate-local module.
247
    Restricted(DefId),
248
    /// Not visible anywhere in the local crate. This is the visibility of private external items.
249
    Invisible,
250 251
}

252 253
pub trait DefIdTree: Copy {
    fn parent(self, id: DefId) -> Option<DefId>;
A
Andrew Cann 已提交
254 255 256 257 258 259 260 261 262 263 264 265 266 267

    fn is_descendant_of(self, mut descendant: DefId, ancestor: DefId) -> bool {
        if descendant.krate != ancestor.krate {
            return false;
        }

        while descendant != ancestor {
            match self.parent(descendant) {
                Some(parent) => descendant = parent,
                None => return false,
            }
        }
        true
    }
268 269
}

270 271 272
impl<'a, 'gcx, 'tcx> DefIdTree for TyCtxt<'a, 'gcx, 'tcx> {
    fn parent(self, id: DefId) -> Option<DefId> {
        self.def_key(id).parent.map(|index| DefId { index: index, ..id })
273 274 275
    }
}

276
impl Visibility {
277
    pub fn from_hir(visibility: &hir::Visibility, id: NodeId, tcx: TyCtxt<'_, '_, '_>) -> Self {
278
        match visibility.node {
279 280 281
            hir::VisibilityKind::Public => Visibility::Public,
            hir::VisibilityKind::Crate(_) => Visibility::Restricted(DefId::local(CRATE_DEF_INDEX)),
            hir::VisibilityKind::Restricted { ref path, .. } => match path.def {
282 283
                // If there is no resolution, `resolve` will have already reported an error, so
                // assume that the visibility is public to avoid reporting more privacy errors.
284
                Def::Err => Visibility::Public,
285
                def => Visibility::Restricted(def.def_id()),
286
            },
287
            hir::VisibilityKind::Inherited => {
J
Jeffrey Seyfried 已提交
288
                Visibility::Restricted(tcx.hir.get_module_parent(id))
289
            }
290 291
        }
    }
292 293

    /// Returns true if an item with this visibility is accessible from the given block.
A
Andrew Cann 已提交
294
    pub fn is_accessible_from<T: DefIdTree>(self, module: DefId, tree: T) -> bool {
295 296 297 298
        let restriction = match self {
            // Public items are visible everywhere.
            Visibility::Public => return true,
            // Private items from other crates are visible nowhere.
299
            Visibility::Invisible => return false,
300
            // Restricted items are visible in an arbitrary local module.
301
            Visibility::Restricted(other) if other.krate != module.krate => return false,
302 303 304
            Visibility::Restricted(module) => module,
        };

A
Andrew Cann 已提交
305
        tree.is_descendant_of(module, restriction)
306
    }
307 308

    /// Returns true if this visibility is at least as accessible as the given visibility
309
    pub fn is_at_least<T: DefIdTree>(self, vis: Visibility, tree: T) -> bool {
310 311
        let vis_restriction = match vis {
            Visibility::Public => return self == Visibility::Public,
312
            Visibility::Invisible => return true,
313 314 315
            Visibility::Restricted(module) => module,
        };

316
        self.is_accessible_from(vis_restriction, tree)
317
    }
318 319 320 321 322 323 324 325 326

    // Returns true if this item is visible anywhere in the local crate.
    pub fn is_visible_locally(self) -> bool {
        match self {
            Visibility::Public => true,
            Visibility::Restricted(def_id) => def_id.is_local(),
            Visibility::Invisible => false,
        }
    }
327 328
}

329
#[derive(Clone, PartialEq, RustcDecodable, RustcEncodable, Copy)]
330
pub enum Variance {
331 332 333 334
    Covariant,      // T<A> <: T<B> iff A <: B -- e.g., function return type
    Invariant,      // T<A> <: T<B> iff B == A -- e.g., type of mutable cell
    Contravariant,  // T<A> <: T<B> iff B <: A -- e.g., function param type
    Bivariant,      // T<A> <: T<B>            -- e.g., unused type parameter
335
}
336

337 338 339 340
/// The crate variances map is computed during typeck and contains the
/// variance of every item in the local crate. You should not use it
/// directly, because to do so will make your pass dependent on the
/// HIR of every item in the local crate. Instead, use
341
/// `tcx.variances_of()` to get the variance for a *particular*
342 343 344 345 346
/// item.
pub struct CrateVariancesMap {
    /// For each item with generics, maps to a vector of the variance
    /// of its generics.  If an item has no generics, it will have no
    /// entry.
347
    pub variances: FxHashMap<DefId, Lrc<Vec<ty::Variance>>>,
348 349

    /// An empty vector, useful for cloning.
350
    pub empty_variance: Lrc<Vec<ty::Variance>>,
351 352
}

353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412
impl Variance {
    /// `a.xform(b)` combines the variance of a context with the
    /// variance of a type with the following meaning.  If we are in a
    /// context with variance `a`, and we encounter a type argument in
    /// a position with variance `b`, then `a.xform(b)` is the new
    /// variance with which the argument appears.
    ///
    /// Example 1:
    ///
    ///     *mut Vec<i32>
    ///
    /// Here, the "ambient" variance starts as covariant. `*mut T` is
    /// invariant with respect to `T`, so the variance in which the
    /// `Vec<i32>` appears is `Covariant.xform(Invariant)`, which
    /// yields `Invariant`. Now, the type `Vec<T>` is covariant with
    /// respect to its type argument `T`, and hence the variance of
    /// the `i32` here is `Invariant.xform(Covariant)`, which results
    /// (again) in `Invariant`.
    ///
    /// Example 2:
    ///
    ///     fn(*const Vec<i32>, *mut Vec<i32)
    ///
    /// The ambient variance is covariant. A `fn` type is
    /// contravariant with respect to its parameters, so the variance
    /// within which both pointer types appear is
    /// `Covariant.xform(Contravariant)`, or `Contravariant`.  `*const
    /// T` is covariant with respect to `T`, so the variance within
    /// which the first `Vec<i32>` appears is
    /// `Contravariant.xform(Covariant)` or `Contravariant`.  The same
    /// is true for its `i32` argument. In the `*mut T` case, the
    /// variance of `Vec<i32>` is `Contravariant.xform(Invariant)`,
    /// and hence the outermost type is `Invariant` with respect to
    /// `Vec<i32>` (and its `i32` argument).
    ///
    /// Source: Figure 1 of "Taming the Wildcards:
    /// Combining Definition- and Use-Site Variance" published in PLDI'11.
    pub fn xform(self, v: ty::Variance) -> ty::Variance {
        match (self, v) {
            // Figure 1, column 1.
            (ty::Covariant, ty::Covariant) => ty::Covariant,
            (ty::Covariant, ty::Contravariant) => ty::Contravariant,
            (ty::Covariant, ty::Invariant) => ty::Invariant,
            (ty::Covariant, ty::Bivariant) => ty::Bivariant,

            // Figure 1, column 2.
            (ty::Contravariant, ty::Covariant) => ty::Contravariant,
            (ty::Contravariant, ty::Contravariant) => ty::Covariant,
            (ty::Contravariant, ty::Invariant) => ty::Invariant,
            (ty::Contravariant, ty::Bivariant) => ty::Bivariant,

            // Figure 1, column 3.
            (ty::Invariant, _) => ty::Invariant,

            // Figure 1, column 4.
            (ty::Bivariant, _) => ty::Bivariant,
        }
    }
}

413 414 415
// Contains information needed to resolve types and (in the future) look up
// the types of AST nodes.
#[derive(Copy, Clone, PartialEq, Eq, Hash)]
416
pub struct CReaderCacheKey {
417 418 419 420
    pub cnum: CrateNum,
    pub pos: usize,
}

421 422 423 424
// Flags that we track on types. These flags are propagated upwards
// through the type during type construction, so that we can quickly
// check whether the type has various kinds of types in it without
// recursing over the type itself.
425
bitflags! {
426 427 428 429 430 431
    pub struct TypeFlags: u32 {
        const HAS_PARAMS         = 1 << 0;
        const HAS_SELF           = 1 << 1;
        const HAS_TY_INFER       = 1 << 2;
        const HAS_RE_INFER       = 1 << 3;
        const HAS_RE_SKOL        = 1 << 4;
432 433 434 435 436

        /// Does this have any `ReEarlyBound` regions? Used to
        /// determine whether substitition is required, since those
        /// represent regions that are bound in a `ty::Generics` and
        /// hence may be substituted.
437
        const HAS_RE_EARLY_BOUND = 1 << 5;
438 439 440

        /// Does this have any region that "appears free" in the type?
        /// Basically anything but `ReLateBound` and `ReErased`.
441
        const HAS_FREE_REGIONS   = 1 << 6;
442 443

        /// Is an error type reachable?
444 445
        const HAS_TY_ERR         = 1 << 7;
        const HAS_PROJECTION     = 1 << 8;
J
John Kåre Alsaker 已提交
446 447

        // FIXME: Rename this to the actual property since it's used for generators too
448
        const HAS_TY_CLOSURE     = 1 << 9;
449 450 451

        // true if there are "names" of types and regions and so forth
        // that are local to a particular fn
452
        const HAS_FREE_LOCAL_NAMES    = 1 << 10;
453

454
        // Present if the type belongs in a local type context.
V
varkor 已提交
455
        // Only set for Infer other than Fresh.
456
        const KEEP_IN_LOCAL_TCX  = 1 << 11;
457

458 459
        // Is there a projection that does not involve a bound region?
        // Currently we can't normalize projections w/ bound regions.
460
        const HAS_NORMALIZABLE_PROJECTION = 1 << 12;
461

462 463 464 465
        // Set if this includes a "canonical" type or region var --
        // ought to be true only for the results of canonicalization.
        const HAS_CANONICAL_VARS = 1 << 13;

466 467 468 469
        /// Does this have any `ReLateBound` regions? Used to check
        /// if a global bound is safe to evaluate.
        const HAS_RE_LATE_BOUND = 1 << 14;

470 471
        const NEEDS_SUBST        = TypeFlags::HAS_PARAMS.bits |
                                   TypeFlags::HAS_SELF.bits |
472
                                   TypeFlags::HAS_RE_EARLY_BOUND.bits;
473 474

        // Flags representing the nominal content of a type,
475 476
        // computed by FlagsComputation. If you add a new nominal
        // flag, it should be added here too.
477 478 479 480
        const NOMINAL_FLAGS     = TypeFlags::HAS_PARAMS.bits |
                                  TypeFlags::HAS_SELF.bits |
                                  TypeFlags::HAS_TY_INFER.bits |
                                  TypeFlags::HAS_RE_INFER.bits |
481
                                  TypeFlags::HAS_RE_SKOL.bits |
482 483
                                  TypeFlags::HAS_RE_EARLY_BOUND.bits |
                                  TypeFlags::HAS_FREE_REGIONS.bits |
484
                                  TypeFlags::HAS_TY_ERR.bits |
485
                                  TypeFlags::HAS_PROJECTION.bits |
486
                                  TypeFlags::HAS_TY_CLOSURE.bits |
487
                                  TypeFlags::HAS_FREE_LOCAL_NAMES.bits |
488
                                  TypeFlags::KEEP_IN_LOCAL_TCX.bits |
489 490
                                  TypeFlags::HAS_CANONICAL_VARS.bits |
                                  TypeFlags::HAS_RE_LATE_BOUND.bits;
491
    }
492 493
}

494
pub struct TyS<'tcx> {
V
varkor 已提交
495
    pub sty: TyKind<'tcx>,
496
    pub flags: TypeFlags,
497

498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515
    /// This is a kind of confusing thing: it stores the smallest
    /// binder such that
    ///
    /// (a) the binder itself captures nothing but
    /// (b) all the late-bound things within the type are captured
    ///     by some sub-binder.
    ///
    /// So, for a type without any late-bound things, like `u32`, this
    /// will be INNERMOST, because that is the innermost binder that
    /// captures nothing. But for a type `&'D u32`, where `'D` is a
    /// late-bound region with debruijn index D, this would be D+1 --
    /// the binder itself does not capture D, but D is captured by an
    /// inner binder.
    ///
    /// We call this concept an "exclusive" binder D (because all
    /// debruijn indices within the type are contained within `0..D`
    /// (exclusive)).
    outer_exclusive_binder: ty::DebruijnIndex,
516 517
}

518 519 520 521 522 523 524 525 526 527 528 529
impl<'tcx> Ord for TyS<'tcx> {
    fn cmp(&self, other: &TyS<'tcx>) -> Ordering {
        self.sty.cmp(&other.sty)
    }
}

impl<'tcx> PartialOrd for TyS<'tcx> {
    fn partial_cmp(&self, other: &TyS<'tcx>) -> Option<Ordering> {
        Some(self.sty.cmp(&other.sty))
    }
}

530
impl<'tcx> PartialEq for TyS<'tcx> {
531
    #[inline]
532
    fn eq(&self, other: &TyS<'tcx>) -> bool {
533
        ptr::eq(self, other)
534 535
    }
}
536
impl<'tcx> Eq for TyS<'tcx> {}
537

A
Alex Crichton 已提交
538 539
impl<'tcx> Hash for TyS<'tcx> {
    fn hash<H: Hasher>(&self, s: &mut H) {
540
        (self as *const TyS<'_>).hash(s)
A
Alex Crichton 已提交
541 542
    }
}
543

G
Guillaume Gomez 已提交
544 545 546
impl<'tcx> TyS<'tcx> {
    pub fn is_primitive_ty(&self) -> bool {
        match self.sty {
547 548 549 550 551
            TyKind::Bool |
                TyKind::Char |
                TyKind::Int(_) |
                TyKind::Uint(_) |
                TyKind::Float(_) |
V
varkor 已提交
552 553 554 555 556
                TyKind::Infer(InferTy::IntVar(_)) |
                TyKind::Infer(InferTy::FloatVar(_)) |
                TyKind::Infer(InferTy::FreshIntTy(_)) |
                TyKind::Infer(InferTy::FreshFloatTy(_)) => true,
            TyKind::Ref(_, x, _) => x.is_primitive_ty(),
G
Guillaume Gomez 已提交
557 558 559
            _ => false,
        }
    }
560 561 562

    pub fn is_suggestable(&self) -> bool {
        match self.sty {
563
            TyKind::Opaque(..) |
V
varkor 已提交
564 565 566 567 568 569
            TyKind::FnDef(..) |
            TyKind::FnPtr(..) |
            TyKind::Dynamic(..) |
            TyKind::Closure(..) |
            TyKind::Infer(..) |
            TyKind::Projection(..) => false,
570 571 572
            _ => true,
        }
    }
G
Guillaume Gomez 已提交
573 574
}

575
impl<'a, 'gcx> HashStable<StableHashingContext<'a>> for ty::TyS<'gcx> {
576
    fn hash_stable<W: StableHasherResult>(&self,
577
                                          hcx: &mut StableHashingContext<'a>,
578 579 580 581 582 583 584
                                          hasher: &mut StableHasher<W>) {
        let ty::TyS {
            ref sty,

            // The other fields just provide fast access to information that is
            // also contained in `sty`, so no need to hash them.
            flags: _,
585 586

            outer_exclusive_binder: _,
587 588 589 590 591 592
        } = *self;

        sty.hash_stable(hcx, hasher);
    }
}

593
pub type Ty<'tcx> = &'tcx TyS<'tcx>;
594

595 596
impl<'tcx> serialize::UseSpecializedEncodable for Ty<'tcx> {}
impl<'tcx> serialize::UseSpecializedDecodable for Ty<'tcx> {}
597

598 599
pub type CanonicalTy<'gcx> = Canonical<'gcx, Ty<'gcx>>;

J
John Kåre Alsaker 已提交
600
extern {
V
varkor 已提交
601 602
    /// A dummy type used to force List to by unsized without requiring fat pointers
    type OpaqueListContents;
J
John Kåre Alsaker 已提交
603 604
}

A
Adam Perry 已提交
605
/// A wrapper for slices with the additional invariant
606 607
/// that the slice is interned and no other slice with
/// the same contents can exist in the same context.
J
John Kåre Alsaker 已提交
608
/// This means we can use pointer for both
609
/// equality comparisons and hashing.
V
varkor 已提交
610
/// Note: `Slice` was already taken by the `Ty`.
J
John Kåre Alsaker 已提交
611
#[repr(C)]
V
varkor 已提交
612
pub struct List<T> {
J
John Kåre Alsaker 已提交
613 614
    len: usize,
    data: [T; 0],
V
varkor 已提交
615
    opaque: OpaqueListContents,
J
John Kåre Alsaker 已提交
616 617
}

V
varkor 已提交
618
unsafe impl<T: Sync> Sync for List<T> {}
J
John Kåre Alsaker 已提交
619

V
varkor 已提交
620
impl<T: Copy> List<T> {
J
John Kåre Alsaker 已提交
621
    #[inline]
V
varkor 已提交
622
    fn from_arena<'tcx>(arena: &'tcx SyncDroplessArena, slice: &[T]) -> &'tcx List<T> {
J
John Kåre Alsaker 已提交
623 624 625 626
        assert!(!mem::needs_drop::<T>());
        assert!(mem::size_of::<T>() != 0);
        assert!(slice.len() != 0);

J
John Kåre Alsaker 已提交
627 628 629 630 631 632
        // Align up the size of the len (usize) field
        let align = mem::align_of::<T>();
        let align_mask = align - 1;
        let offset = mem::size_of::<usize>();
        let offset = (offset + align_mask) & !align_mask;

J
John Kåre Alsaker 已提交
633 634
        let size = offset + slice.len() * mem::size_of::<T>();

J
John Kåre Alsaker 已提交
635
        let mem = arena.alloc_raw(
J
John Kåre Alsaker 已提交
636
            size,
J
John Kåre Alsaker 已提交
637
            cmp::max(mem::align_of::<T>(), mem::align_of::<usize>()));
J
John Kåre Alsaker 已提交
638
        unsafe {
V
varkor 已提交
639
            let result = &mut *(mem.as_mut_ptr() as *mut List<T>);
J
John Kåre Alsaker 已提交
640
            // Write the length
J
John Kåre Alsaker 已提交
641
            result.len = slice.len();
J
John Kåre Alsaker 已提交
642 643

            // Write the elements
J
John Kåre Alsaker 已提交
644
            let arena_slice = slice::from_raw_parts_mut(result.data.as_mut_ptr(), result.len);
J
John Kåre Alsaker 已提交
645 646
            arena_slice.copy_from_slice(slice);

J
John Kåre Alsaker 已提交
647
            result
J
John Kåre Alsaker 已提交
648 649 650 651
        }
    }
}

V
varkor 已提交
652
impl<T: fmt::Debug> fmt::Debug for List<T> {
653
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
J
John Kåre Alsaker 已提交
654 655 656 657
        (**self).fmt(f)
    }
}

V
varkor 已提交
658
impl<T: Encodable> Encodable for List<T> {
J
John Kåre Alsaker 已提交
659 660 661 662 663
    #[inline]
    fn encode<S: Encoder>(&self, s: &mut S) -> Result<(), S::Error> {
        (**self).encode(s)
    }
}
664

V
varkor 已提交
665 666
impl<T> Ord for List<T> where T: Ord {
    fn cmp(&self, other: &List<T>) -> Ordering {
667
        if self == other { Ordering::Equal } else {
J
John Kåre Alsaker 已提交
668
            <[T] as Ord>::cmp(&**self, &**other)
669 670 671 672
        }
    }
}

V
varkor 已提交
673 674
impl<T> PartialOrd for List<T> where T: PartialOrd {
    fn partial_cmp(&self, other: &List<T>) -> Option<Ordering> {
675
        if self == other { Some(Ordering::Equal) } else {
J
John Kåre Alsaker 已提交
676
            <[T] as PartialOrd>::partial_cmp(&**self, &**other)
677 678 679 680
        }
    }
}

V
varkor 已提交
681
impl<T: PartialEq> PartialEq for List<T> {
682
    #[inline]
V
varkor 已提交
683
    fn eq(&self, other: &List<T>) -> bool {
684
        ptr::eq(self, other)
685 686
    }
}
V
varkor 已提交
687
impl<T: Eq> Eq for List<T> {}
688

V
varkor 已提交
689
impl<T> Hash for List<T> {
J
John Kåre Alsaker 已提交
690
    #[inline]
691
    fn hash<H: Hasher>(&self, s: &mut H) {
V
varkor 已提交
692
        (self as *const List<T>).hash(s)
693 694 695
    }
}

V
varkor 已提交
696
impl<T> Deref for List<T> {
697
    type Target = [T];
J
John Kåre Alsaker 已提交
698
    #[inline(always)]
699
    fn deref(&self) -> &[T] {
J
John Kåre Alsaker 已提交
700
        unsafe {
J
John Kåre Alsaker 已提交
701
            slice::from_raw_parts(self.data.as_ptr(), self.len)
J
John Kåre Alsaker 已提交
702
        }
703 704 705
    }
}

V
varkor 已提交
706
impl<'a, T> IntoIterator for &'a List<T> {
707 708
    type Item = &'a T;
    type IntoIter = <&'a [T] as IntoIterator>::IntoIter;
J
John Kåre Alsaker 已提交
709
    #[inline(always)]
710 711 712 713 714
    fn into_iter(self) -> Self::IntoIter {
        self[..].iter()
    }
}

V
varkor 已提交
715
impl<'tcx> serialize::UseSpecializedDecodable for &'tcx List<Ty<'tcx>> {}
716

V
varkor 已提交
717
impl<T> List<T> {
J
John Kåre Alsaker 已提交
718
    #[inline(always)]
V
varkor 已提交
719
    pub fn empty<'a>() -> &'a List<T> {
J
John Kåre Alsaker 已提交
720 721 722 723
        #[repr(align(64), C)]
        struct EmptySlice([u8; 64]);
        static EMPTY_SLICE: EmptySlice = EmptySlice([0; 64]);
        assert!(mem::align_of::<T>() <= 64);
724
        unsafe {
V
varkor 已提交
725
            &*(&EMPTY_SLICE as *const _ as *const List<T>)
726 727 728 729
        }
    }
}

S
Steve Klabnik 已提交
730 731 732
/// Upvars do not get their own node-id. Instead, we use the pair of
/// the original var id (that is, the root variable that is referenced
/// by the upvar) and the id of the closure expression.
733
#[derive(Clone, Copy, PartialEq, Eq, Hash, RustcEncodable, RustcDecodable)]
734
pub struct UpvarId {
735
    pub var_id: hir::HirId,
736
    pub closure_expr_id: LocalDefId,
737 738
}

J
Jorge Aparicio 已提交
739
#[derive(Clone, PartialEq, Eq, Hash, Debug, RustcEncodable, RustcDecodable, Copy)]
740 741 742 743 744 745
pub enum BorrowKind {
    /// Data must be immutable and is aliasable.
    ImmBorrow,

    /// Data must be immutable but not aliasable.  This kind of borrow
    /// cannot currently be expressed by the user and is used only in
K
king6cong 已提交
746
    /// implicit closure bindings. It is needed when the closure
747 748
    /// is borrowing or mutating a mutable referent, e.g.:
    ///
749
    ///    let x: &mut isize = ...;
750 751 752 753 754
    ///    let y = || *x += 5;
    ///
    /// If we were to try to translate this closure into a more explicit
    /// form, we'd encounter an error with the code as written:
    ///
755 756
    ///    struct Env { x: & &mut isize }
    ///    let x: &mut isize = ...;
757 758 759 760 761 762 763
    ///    let y = (&mut Env { &x }, fn_ptr);  // Closure is pair of env and fn
    ///    fn fn_ptr(env: &mut Env) { **env.x += 5; }
    ///
    /// This is then illegal because you cannot mutate a `&mut` found
    /// in an aliasable location. To solve, you'd have to translate with
    /// an `&mut` borrow:
    ///
764 765
    ///    struct Env { x: & &mut isize }
    ///    let x: &mut isize = ...;
766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784
    ///    let y = (&mut Env { &mut x }, fn_ptr); // changed from &x to &mut x
    ///    fn fn_ptr(env: &mut Env) { **env.x += 5; }
    ///
    /// Now the assignment to `**env.x` is legal, but creating a
    /// mutable pointer to `x` is not because `x` is not mutable. We
    /// could fix this by declaring `x` as `let mut x`. This is ok in
    /// user code, if awkward, but extra weird for closures, since the
    /// borrow is hidden.
    ///
    /// So we introduce a "unique imm" borrow -- the referent is
    /// immutable, but not aliasable. This solves the problem. For
    /// simplicity, we don't give users the way to express this
    /// borrow, it's just used when translating closures.
    UniqueImmBorrow,

    /// Data is mutable and not aliasable.
    MutBorrow
}

785 786
/// Information describing the capture of an upvar. This is computed
/// during `typeck`, specifically by `regionck`.
787
#[derive(PartialEq, Clone, Debug, Copy, RustcEncodable, RustcDecodable)]
788
pub enum UpvarCapture<'tcx> {
789 790 791 792 793 794
    /// Upvar is captured by value. This is always true when the
    /// closure is labeled `move`, but can also be true in other cases
    /// depending on inference.
    ByValue,

    /// Upvar is captured by reference.
795
    ByRef(UpvarBorrow<'tcx>),
796 797
}

798
#[derive(PartialEq, Clone, Copy, RustcEncodable, RustcDecodable)]
799
pub struct UpvarBorrow<'tcx> {
800 801 802
    /// The kind of borrow: by-ref upvars have access to shared
    /// immutable borrows, which are not part of the normal language
    /// syntax.
803
    pub kind: BorrowKind,
804 805

    /// Region of the resulting reference.
N
Niko Matsakis 已提交
806
    pub region: ty::Region<'tcx>,
807 808
}

809
pub type UpvarCaptureMap<'tcx> = FxHashMap<UpvarId, UpvarCapture<'tcx>>;
810

811 812
#[derive(Copy, Clone)]
pub struct ClosureUpvar<'tcx> {
813
    pub def: Def,
814 815 816 817
    pub span: Span,
    pub ty: Ty<'tcx>,
}

818
#[derive(Clone, Copy, PartialEq, Eq)]
819
pub enum IntVarValue {
820 821
    IntType(ast::IntTy),
    UintType(ast::UintTy),
822 823
}

824 825 826
#[derive(Clone, Copy, PartialEq, Eq)]
pub struct FloatVarValue(pub ast::FloatTy);

827
impl ty::EarlyBoundRegion {
828
    pub fn to_bound_region(&self) -> ty::BoundRegion {
829
        ty::BoundRegion::BrNamed(self.def_id, self.name)
830
    }
831 832 833 834 835 836

    /// Does this early bound region have a name? Early bound regions normally
    /// always have names except when using anonymous lifetimes (`'_`).
    pub fn has_name(&self) -> bool {
        self.name != keywords::UnderscoreLifetime.name().as_interned_str()
    }
837 838
}

V
varkor 已提交
839
#[derive(Clone, Debug, RustcEncodable, RustcDecodable)]
840
pub enum GenericParamDefKind {
V
varkor 已提交
841
    Lifetime,
842 843 844 845 846
    Type {
        has_default: bool,
        object_lifetime_default: ObjectLifetimeDefault,
        synthetic: Option<hir::SyntheticTyParamKind>,
    }
V
varkor 已提交
847 848
}

849 850 851 852 853
#[derive(Clone, RustcEncodable, RustcDecodable)]
pub struct GenericParamDef {
    pub name: InternedString,
    pub def_id: DefId,
    pub index: u32,
V
varkor 已提交
854 855 856 857 858 859

    /// `pure_wrt_drop`, set by the (unsafe) `#[may_dangle]` attribute
    /// on generic parameter `'a`/`T`, asserts data behind the parameter
    /// `'a`/`T` won't be accessed during the parent type's `Drop` impl.
    pub pure_wrt_drop: bool,

860 861 862
    pub kind: GenericParamDefKind,
}

V
varkor 已提交
863
impl GenericParamDef {
864 865
    pub fn to_early_bound_region_data(&self) -> ty::EarlyBoundRegion {
        match self.kind {
V
varkor 已提交
866
            GenericParamDefKind::Lifetime => {
867 868 869 870 871 872 873 874 875 876 877 878
                ty::EarlyBoundRegion {
                    def_id: self.def_id,
                    index: self.index,
                    name: self.name,
                }
            }
            _ => bug!("cannot convert a non-lifetime parameter def to an early bound region")
        }
    }

    pub fn to_bound_region(&self) -> ty::BoundRegion {
        match self.kind {
V
varkor 已提交
879
            GenericParamDefKind::Lifetime => {
880 881 882
                self.to_early_bound_region_data().to_bound_region()
            }
            _ => bug!("cannot convert a non-lifetime parameter def to an early bound region")
V
varkor 已提交
883 884 885 886
        }
    }
}

V
varkor 已提交
887
#[derive(Default)]
888 889 890 891 892
pub struct GenericParamCount {
    pub lifetimes: usize,
    pub types: usize,
}

893
/// Information about the formal type/lifetime parameters associated
894
/// with an item or method. Analogous to hir::Generics.
A
Ariel Ben-Yehuda 已提交
895
///
896 897
/// The ordering of parameters is the same as in Subst (excluding child generics):
/// Self (optionally), Lifetime params..., Type params...
898
#[derive(Clone, Debug, RustcEncodable, RustcDecodable)]
899
pub struct Generics {
900
    pub parent: Option<DefId>,
V
varkor 已提交
901
    pub parent_count: usize,
V
varkor 已提交
902
    pub params: Vec<GenericParamDef>,
903

V
varkor 已提交
904
    /// Reverse map to the `index` field of each `GenericParamDef`
905
    pub param_def_id_to_index: FxHashMap<DefId, u32>,
906

907
    pub has_self: bool,
908
    pub has_late_bound_regions: Option<Span>,
909 910
}

911
impl<'a, 'gcx, 'tcx> Generics {
912
    pub fn count(&self) -> usize {
V
varkor 已提交
913
        self.parent_count + self.params.len()
914
    }
915

V
varkor 已提交
916
    pub fn own_counts(&self) -> GenericParamCount {
917 918 919
        // We could cache this as a property of `GenericParamCount`, but
        // the aim is to refactor this away entirely eventually and the
        // presence of this method will be a constant reminder.
V
varkor 已提交
920
        let mut own_counts: GenericParamCount = Default::default();
921

V
varkor 已提交
922
        for param in &self.params {
923
            match param.kind {
V
varkor 已提交
924
                GenericParamDefKind::Lifetime => own_counts.lifetimes += 1,
925
                GenericParamDefKind::Type { .. } => own_counts.types += 1,
926 927 928
            };
        }

V
varkor 已提交
929
        own_counts
930 931
    }

932
    pub fn requires_monomorphization(&self, tcx: TyCtxt<'a, 'gcx, 'tcx>) -> bool {
V
varkor 已提交
933
        for param in &self.params {
934
            match param.kind {
V
varkor 已提交
935
                GenericParamDefKind::Type { .. } => return true,
V
varkor 已提交
936
                GenericParamDefKind::Lifetime => {}
V
varkor 已提交
937
            }
V
varkor 已提交
938 939 940
        }
        if let Some(parent_def_id) = self.parent {
            let parent = tcx.generics_of(parent_def_id);
941
            parent.requires_monomorphization(tcx)
V
varkor 已提交
942 943 944
        } else {
            false
        }
V
varkor 已提交
945 946
    }

947 948 949
    pub fn region_param(&'tcx self,
                        param: &EarlyBoundRegion,
                        tcx: TyCtxt<'a, 'gcx, 'tcx>)
950
                        -> &'tcx GenericParamDef
951
    {
V
varkor 已提交
952
        if let Some(index) = param.index.checked_sub(self.parent_count as u32) {
V
varkor 已提交
953
            let param = &self.params[index as usize];
954
            match param.kind {
V
varkor 已提交
955
                ty::GenericParamDefKind::Lifetime => param,
V
varkor 已提交
956
                _ => bug!("expected lifetime parameter, but found another generic parameter")
V
varkor 已提交
957
            }
958 959 960 961
        } else {
            tcx.generics_of(self.parent.expect("parent_count>0 but no parent?"))
                .region_param(param, tcx)
        }
962 963
    }

964
    /// Returns the `GenericParamDef` associated with this `ParamTy`.
965 966
    pub fn type_param(&'tcx self,
                      param: &ParamTy,
A
Ariel Ben-Yehuda 已提交
967
                      tcx: TyCtxt<'a, 'gcx, 'tcx>)
968
                      -> &'tcx GenericParamDef {
969
        if let Some(index) = param.idx.checked_sub(self.parent_count as u32) {
V
varkor 已提交
970 971
            let param = &self.params[index as usize];
            match param.kind {
972
                ty::GenericParamDefKind::Type {..} => param,
V
varkor 已提交
973 974
                _ => bug!("expected type parameter, but found another generic parameter")
            }
975 976 977 978
        } else {
            tcx.generics_of(self.parent.expect("parent_count>0 but no parent?"))
                .type_param(param, tcx)
        }
979
    }
980 981
}

982
/// Bounds on generics.
983
#[derive(Clone, Default)]
984
pub struct GenericPredicates<'tcx> {
985
    pub parent: Option<DefId>,
986
    pub predicates: Vec<(Predicate<'tcx>, Span)>,
987 988
}

989 990 991
impl<'tcx> serialize::UseSpecializedEncodable for GenericPredicates<'tcx> {}
impl<'tcx> serialize::UseSpecializedDecodable for GenericPredicates<'tcx> {}

992 993
impl<'a, 'gcx, 'tcx> GenericPredicates<'tcx> {
    pub fn instantiate(&self, tcx: TyCtxt<'a, 'gcx, 'tcx>, substs: &Substs<'tcx>)
994
                       -> InstantiatedPredicates<'tcx> {
995 996 997 998 999 1000
        let mut instantiated = InstantiatedPredicates::empty();
        self.instantiate_into(tcx, &mut instantiated, substs);
        instantiated
    }
    pub fn instantiate_own(&self, tcx: TyCtxt<'a, 'gcx, 'tcx>, substs: &Substs<'tcx>)
                           -> InstantiatedPredicates<'tcx> {
1001
        InstantiatedPredicates {
1002
            predicates: self.predicates.iter().map(|(p, _)| p.subst(tcx, substs)).collect(),
1003 1004 1005 1006 1007 1008 1009
        }
    }

    fn instantiate_into(&self, tcx: TyCtxt<'a, 'gcx, 'tcx>,
                        instantiated: &mut InstantiatedPredicates<'tcx>,
                        substs: &Substs<'tcx>) {
        if let Some(def_id) = self.parent {
1010
            tcx.predicates_of(def_id).instantiate_into(tcx, instantiated, substs);
1011
        }
1012 1013 1014
        instantiated.predicates.extend(
            self.predicates.iter().map(|(p, _)| p.subst(tcx, substs)),
        );
1015
    }
1016

1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028
    pub fn instantiate_identity(&self, tcx: TyCtxt<'a, 'gcx, 'tcx>)
                                -> InstantiatedPredicates<'tcx> {
        let mut instantiated = InstantiatedPredicates::empty();
        self.instantiate_identity_into(tcx, &mut instantiated);
        instantiated
    }

    fn instantiate_identity_into(&self, tcx: TyCtxt<'a, 'gcx, 'tcx>,
                                 instantiated: &mut InstantiatedPredicates<'tcx>) {
        if let Some(def_id) = self.parent {
            tcx.predicates_of(def_id).instantiate_identity_into(tcx, instantiated);
        }
1029
        instantiated.predicates.extend(self.predicates.iter().map(|&(p, _)| p))
1030 1031
    }

1032
    pub fn instantiate_supertrait(&self, tcx: TyCtxt<'a, 'gcx, 'tcx>,
1033 1034 1035
                                  poly_trait_ref: &ty::PolyTraitRef<'tcx>)
                                  -> InstantiatedPredicates<'tcx>
    {
1036
        assert_eq!(self.parent, None);
1037
        InstantiatedPredicates {
1038
            predicates: self.predicates.iter().map(|(pred, _)| {
1039
                pred.subst_supertrait(tcx, poly_trait_ref)
1040
            }).collect()
1041 1042
        }
    }
1043 1044
}

1045
#[derive(Clone, Copy, PartialEq, Eq, Hash, RustcEncodable, RustcDecodable)]
1046
pub enum Predicate<'tcx> {
N
Niko Matsakis 已提交
1047 1048
    /// Corresponds to `where Foo : Bar<A,B,C>`. `Foo` here would be
    /// the `Self` type of the trait reference and `A`, `B`, and `C`
1049
    /// would be the type parameters.
1050
    Trait(PolyTraitPredicate<'tcx>),
1051 1052

    /// where 'a : 'b
1053
    RegionOutlives(PolyRegionOutlivesPredicate<'tcx>),
1054 1055

    /// where T : 'a
1056
    TypeOutlives(PolyTypeOutlivesPredicate<'tcx>),
1057

N
Niko Matsakis 已提交
1058 1059
    /// where <T as TraitRef>::Name == X, approximately.
    /// See `ProjectionPredicate` struct for details.
1060
    Projection(PolyProjectionPredicate<'tcx>),
1061 1062 1063 1064 1065

    /// no syntax: T WF
    WellFormed(Ty<'tcx>),

    /// trait must be object-safe
N
Niko Matsakis 已提交
1066
    ObjectSafe(DefId),
1067

1068 1069 1070
    /// No direct syntax. May be thought of as `where T : FnFoo<...>`
    /// for some substitutions `...` and T being a closure type.
    /// Satisfied (or refuted) once we know the closure's kind.
1071
    ClosureKind(DefId, ClosureSubsts<'tcx>, ClosureKind),
N
Niko Matsakis 已提交
1072 1073 1074

    /// `T1 <: T2`
    Subtype(PolySubtypePredicate<'tcx>),
1075 1076 1077

    /// Constant initializer must evaluate successfully.
    ConstEvaluatable(DefId, &'tcx Substs<'tcx>),
1078 1079
}

1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095
/// The crate outlives map is computed during typeck and contains the
/// outlives of every item in the local crate. You should not use it
/// directly, because to do so will make your pass dependent on the
/// HIR of every item in the local crate. Instead, use
/// `tcx.inferred_outlives_of()` to get the outlives for a *particular*
/// item.
pub struct CratePredicatesMap<'tcx> {
    /// For each struct with outlive bounds, maps to a vector of the
    /// predicate of its outlive bounds. If an item has no outlives
    /// bounds, it will have no entry.
    pub predicates: FxHashMap<DefId, Lrc<Vec<ty::Predicate<'tcx>>>>,

    /// An empty vector, useful for cloning.
    pub empty_predicate: Lrc<Vec<ty::Predicate<'tcx>>>,
}

1096 1097 1098 1099 1100 1101
impl<'tcx> AsRef<Predicate<'tcx>> for Predicate<'tcx> {
    fn as_ref(&self) -> &Predicate<'tcx> {
        self
    }
}

1102
impl<'a, 'gcx, 'tcx> Predicate<'tcx> {
1103
    /// Performs a substitution suitable for going from a
1104 1105 1106 1107
    /// poly-trait-ref to supertraits that must hold if that
    /// poly-trait-ref holds. This is slightly different from a normal
    /// substitution in terms of what happens with bound regions.  See
    /// lengthy comment below for details.
1108
    pub fn subst_supertrait(&self, tcx: TyCtxt<'a, 'gcx, 'tcx>,
1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171
                            trait_ref: &ty::PolyTraitRef<'tcx>)
                            -> ty::Predicate<'tcx>
    {
        // The interaction between HRTB and supertraits is not entirely
        // obvious. Let me walk you (and myself) through an example.
        //
        // Let's start with an easy case. Consider two traits:
        //
        //     trait Foo<'a> : Bar<'a,'a> { }
        //     trait Bar<'b,'c> { }
        //
        // Now, if we have a trait reference `for<'x> T : Foo<'x>`, then
        // we can deduce that `for<'x> T : Bar<'x,'x>`. Basically, if we
        // knew that `Foo<'x>` (for any 'x) then we also know that
        // `Bar<'x,'x>` (for any 'x). This more-or-less falls out from
        // normal substitution.
        //
        // In terms of why this is sound, the idea is that whenever there
        // is an impl of `T:Foo<'a>`, it must show that `T:Bar<'a,'a>`
        // holds.  So if there is an impl of `T:Foo<'a>` that applies to
        // all `'a`, then we must know that `T:Bar<'a,'a>` holds for all
        // `'a`.
        //
        // Another example to be careful of is this:
        //
        //     trait Foo1<'a> : for<'b> Bar1<'a,'b> { }
        //     trait Bar1<'b,'c> { }
        //
        // Here, if we have `for<'x> T : Foo1<'x>`, then what do we know?
        // The answer is that we know `for<'x,'b> T : Bar1<'x,'b>`. The
        // reason is similar to the previous example: any impl of
        // `T:Foo1<'x>` must show that `for<'b> T : Bar1<'x, 'b>`.  So
        // basically we would want to collapse the bound lifetimes from
        // the input (`trait_ref`) and the supertraits.
        //
        // To achieve this in practice is fairly straightforward. Let's
        // consider the more complicated scenario:
        //
        // - We start out with `for<'x> T : Foo1<'x>`. In this case, `'x`
        //   has a De Bruijn index of 1. We want to produce `for<'x,'b> T : Bar1<'x,'b>`,
        //   where both `'x` and `'b` would have a DB index of 1.
        //   The substitution from the input trait-ref is therefore going to be
        //   `'a => 'x` (where `'x` has a DB index of 1).
        // - The super-trait-ref is `for<'b> Bar1<'a,'b>`, where `'a` is an
        //   early-bound parameter and `'b' is a late-bound parameter with a
        //   DB index of 1.
        // - If we replace `'a` with `'x` from the input, it too will have
        //   a DB index of 1, and thus we'll have `for<'x,'b> Bar1<'x,'b>`
        //   just as we wanted.
        //
        // There is only one catch. If we just apply the substitution `'a
        // => 'x` to `for<'b> Bar1<'a,'b>`, the substitution code will
        // adjust the DB index because we substituting into a binder (it
        // tries to be so smart...) resulting in `for<'x> for<'b>
        // Bar1<'x,'b>` (we have no syntax for this, so use your
        // imagination). Basically the 'x will have DB index of 2 and 'b
        // will have DB index of 1. Not quite what we want. So we apply
        // the substitution to the *contents* of the trait reference,
        // rather than the trait reference itself (put another way, the
        // substitution code expects equal binding levels in the values
        // from the substitution and the value being substituted into, and
        // this trick achieves that).

1172
        let substs = &trait_ref.skip_binder().substs;
1173
        match *self {
1174 1175 1176 1177 1178 1179 1180 1181 1182 1183
            Predicate::Trait(ref binder) =>
                Predicate::Trait(binder.map_bound(|data| data.subst(tcx, substs))),
            Predicate::Subtype(ref binder) =>
                Predicate::Subtype(binder.map_bound(|data| data.subst(tcx, substs))),
            Predicate::RegionOutlives(ref binder) =>
                Predicate::RegionOutlives(binder.map_bound(|data| data.subst(tcx, substs))),
            Predicate::TypeOutlives(ref binder) =>
                Predicate::TypeOutlives(binder.map_bound(|data| data.subst(tcx, substs))),
            Predicate::Projection(ref binder) =>
                Predicate::Projection(binder.map_bound(|data| data.subst(tcx, substs))),
1184 1185 1186 1187
            Predicate::WellFormed(data) =>
                Predicate::WellFormed(data.subst(tcx, substs)),
            Predicate::ObjectSafe(trait_def_id) =>
                Predicate::ObjectSafe(trait_def_id),
1188 1189
            Predicate::ClosureKind(closure_def_id, closure_substs, kind) =>
                Predicate::ClosureKind(closure_def_id, closure_substs.subst(tcx, substs), kind),
1190 1191
            Predicate::ConstEvaluatable(def_id, const_substs) =>
                Predicate::ConstEvaluatable(def_id, const_substs.subst(tcx, substs)),
1192 1193 1194 1195
        }
    }
}

1196
#[derive(Clone, Copy, PartialEq, Eq, Hash, RustcEncodable, RustcDecodable)]
1197
pub struct TraitPredicate<'tcx> {
1198
    pub trait_ref: TraitRef<'tcx>
1199 1200 1201 1202
}
pub type PolyTraitPredicate<'tcx> = ty::Binder<TraitPredicate<'tcx>>;

impl<'tcx> TraitPredicate<'tcx> {
N
Niko Matsakis 已提交
1203
    pub fn def_id(&self) -> DefId {
1204 1205 1206
        self.trait_ref.def_id
    }

1207
    pub fn input_types<'a>(&'a self) -> impl DoubleEndedIterator<Item=Ty<'tcx>> + 'a {
1208
        self.trait_ref.input_types()
1209 1210 1211 1212 1213 1214 1215 1216
    }

    pub fn self_ty(&self) -> Ty<'tcx> {
        self.trait_ref.self_ty()
    }
}

impl<'tcx> PolyTraitPredicate<'tcx> {
N
Niko Matsakis 已提交
1217
    pub fn def_id(&self) -> DefId {
1218
        // ok to skip binder since trait def-id does not care about regions
1219
        self.skip_binder().def_id()
1220
    }
1221 1222
}

1223
#[derive(Clone, Copy, PartialEq, Eq, PartialOrd, Ord, Hash, Debug, RustcEncodable, RustcDecodable)]
1224 1225
pub struct OutlivesPredicate<A,B>(pub A, pub B); // `A : B`
pub type PolyOutlivesPredicate<A,B> = ty::Binder<OutlivesPredicate<A,B>>;
S
scalexm 已提交
1226 1227 1228 1229 1230 1231
pub type RegionOutlivesPredicate<'tcx> = OutlivesPredicate<ty::Region<'tcx>,
                                                           ty::Region<'tcx>>;
pub type TypeOutlivesPredicate<'tcx> = OutlivesPredicate<Ty<'tcx>,
                                                         ty::Region<'tcx>>;
pub type PolyRegionOutlivesPredicate<'tcx> = ty::Binder<RegionOutlivesPredicate<'tcx>>;
pub type PolyTypeOutlivesPredicate<'tcx> = ty::Binder<TypeOutlivesPredicate<'tcx>>;
1232

1233
#[derive(Clone, Copy, PartialEq, Eq, Hash, Debug, RustcEncodable, RustcDecodable)]
N
Niko Matsakis 已提交
1234 1235 1236 1237 1238 1239 1240
pub struct SubtypePredicate<'tcx> {
    pub a_is_expected: bool,
    pub a: Ty<'tcx>,
    pub b: Ty<'tcx>
}
pub type PolySubtypePredicate<'tcx> = ty::Binder<SubtypePredicate<'tcx>>;

1241 1242 1243 1244 1245 1246 1247 1248 1249
/// This kind of predicate has no *direct* correspondent in the
/// syntax, but it roughly corresponds to the syntactic forms:
///
/// 1. `T : TraitRef<..., Item=Type>`
/// 2. `<T as TraitRef<...>>::Item == Type` (NYI)
///
/// In particular, form #1 is "desugared" to the combination of a
/// normal trait predicate (`T : TraitRef<...>`) and one of these
/// predicates. Form #2 is a broader form in that it also permits
1250 1251
/// equality between arbitrary types. Processing an instance of
/// Form #2 eventually yields one of these `ProjectionPredicate`
1252
/// instances to normalize the LHS.
1253
#[derive(Copy, Clone, PartialEq, Eq, Hash, RustcEncodable, RustcDecodable)]
1254 1255 1256 1257 1258 1259 1260
pub struct ProjectionPredicate<'tcx> {
    pub projection_ty: ProjectionTy<'tcx>,
    pub ty: Ty<'tcx>,
}

pub type PolyProjectionPredicate<'tcx> = Binder<ProjectionPredicate<'tcx>>;

1261
impl<'tcx> PolyProjectionPredicate<'tcx> {
1262 1263 1264 1265 1266
    /// Returns the def-id of the associated item being projected.
    pub fn item_def_id(&self) -> DefId {
        self.skip_binder().projection_ty.item_def_id
    }

1267
    pub fn to_poly_trait_ref(&self, tcx: TyCtxt<'_, '_, '_>) -> PolyTraitRef<'tcx> {
1268 1269 1270 1271 1272
        // Note: unlike with TraitRef::to_poly_trait_ref(),
        // self.0.trait_ref is permitted to have escaping regions.
        // This is because here `self` has a `Binder` and so does our
        // return value, so we are preserving the number of binding
        // levels.
1273
        self.map_bound(|predicate| predicate.projection_ty.trait_ref(tcx))
1274
    }
1275 1276

    pub fn ty(&self) -> Binder<Ty<'tcx>> {
1277 1278 1279 1280 1281 1282 1283 1284 1285 1286
        self.map_bound(|predicate| predicate.ty)
    }

    /// The DefId of the TraitItem for the associated type.
    ///
    /// Note that this is not the DefId of the TraitRef containing this
    /// associated type, which is in tcx.associated_item(projection_def_id()).container.
    pub fn projection_def_id(&self) -> DefId {
        // ok to skip binder since trait def-id does not care about regions
        self.skip_binder().projection_ty.item_def_id
1287
    }
1288 1289
}

1290 1291 1292 1293
pub trait ToPolyTraitRef<'tcx> {
    fn to_poly_trait_ref(&self) -> PolyTraitRef<'tcx>;
}

1294
impl<'tcx> ToPolyTraitRef<'tcx> for TraitRef<'tcx> {
1295
    fn to_poly_trait_ref(&self) -> PolyTraitRef<'tcx> {
1296
        ty::Binder::dummy(self.clone())
1297 1298 1299 1300 1301
    }
}

impl<'tcx> ToPolyTraitRef<'tcx> for PolyTraitPredicate<'tcx> {
    fn to_poly_trait_ref(&self) -> PolyTraitRef<'tcx> {
1302
        self.map_bound_ref(|trait_pred| trait_pred.trait_ref)
1303 1304 1305
    }
}

1306 1307
pub trait ToPredicate<'tcx> {
    fn to_predicate(&self) -> Predicate<'tcx>;
1308 1309
}

1310 1311
impl<'tcx> ToPredicate<'tcx> for TraitRef<'tcx> {
    fn to_predicate(&self) -> Predicate<'tcx> {
1312
        ty::Predicate::Trait(ty::Binder::dummy(ty::TraitPredicate {
1313 1314 1315 1316 1317
            trait_ref: self.clone()
        }))
    }
}

1318 1319
impl<'tcx> ToPredicate<'tcx> for PolyTraitRef<'tcx> {
    fn to_predicate(&self) -> Predicate<'tcx> {
1320
        ty::Predicate::Trait(self.to_poly_trait_predicate())
1321 1322 1323
    }
}

1324
impl<'tcx> ToPredicate<'tcx> for PolyRegionOutlivesPredicate<'tcx> {
1325
    fn to_predicate(&self) -> Predicate<'tcx> {
1326 1327 1328 1329
        Predicate::RegionOutlives(self.clone())
    }
}

1330 1331
impl<'tcx> ToPredicate<'tcx> for PolyTypeOutlivesPredicate<'tcx> {
    fn to_predicate(&self) -> Predicate<'tcx> {
1332 1333
        Predicate::TypeOutlives(self.clone())
    }
1334 1335
}

1336 1337
impl<'tcx> ToPredicate<'tcx> for PolyProjectionPredicate<'tcx> {
    fn to_predicate(&self) -> Predicate<'tcx> {
1338 1339 1340 1341
        Predicate::Projection(self.clone())
    }
}

1342
impl<'tcx> Predicate<'tcx> {
1343 1344 1345 1346 1347 1348
    /// Iterates over the types in this predicate. Note that in all
    /// cases this is skipping over a binder, so late-bound regions
    /// with depth 0 are bound by the predicate.
    pub fn walk_tys(&self) -> IntoIter<Ty<'tcx>> {
        let vec: Vec<_> = match *self {
            ty::Predicate::Trait(ref data) => {
1349
                data.skip_binder().input_types().collect()
1350
            }
1351 1352
            ty::Predicate::Subtype(binder) => {
                let SubtypePredicate { a, b, a_is_expected: _ } = binder.skip_binder();
N
Niko Matsakis 已提交
1353 1354
                vec![a, b]
            }
1355 1356
            ty::Predicate::TypeOutlives(binder) => {
                vec![binder.skip_binder().0]
1357 1358 1359 1360 1361
            }
            ty::Predicate::RegionOutlives(..) => {
                vec![]
            }
            ty::Predicate::Projection(ref data) => {
1362 1363
                let inner = data.skip_binder();
                inner.projection_ty.substs.types().chain(Some(inner.ty)).collect()
1364
            }
1365 1366 1367 1368 1369 1370
            ty::Predicate::WellFormed(data) => {
                vec![data]
            }
            ty::Predicate::ObjectSafe(_trait_def_id) => {
                vec![]
            }
1371 1372
            ty::Predicate::ClosureKind(_closure_def_id, closure_substs, _kind) => {
                closure_substs.substs.types().collect()
1373
            }
1374 1375 1376
            ty::Predicate::ConstEvaluatable(_, substs) => {
                substs.types().collect()
            }
1377 1378 1379 1380 1381 1382 1383 1384 1385 1386
        };

        // The only reason to collect into a vector here is that I was
        // too lazy to make the full (somewhat complicated) iterator
        // type that would be needed here. But I wanted this fn to
        // return an iterator conceptually, rather than a `Vec`, so as
        // to be closer to `Ty::walk`.
        vec.into_iter()
    }

1387
    pub fn to_opt_poly_trait_ref(&self) -> Option<PolyTraitRef<'tcx>> {
1388 1389
        match *self {
            Predicate::Trait(ref t) => {
1390
                Some(t.to_poly_trait_ref())
1391
            }
1392
            Predicate::Projection(..) |
N
Niko Matsakis 已提交
1393
            Predicate::Subtype(..) |
1394
            Predicate::RegionOutlives(..) |
1395 1396
            Predicate::WellFormed(..) |
            Predicate::ObjectSafe(..) |
1397
            Predicate::ClosureKind(..) |
1398 1399
            Predicate::TypeOutlives(..) |
            Predicate::ConstEvaluatable(..) => {
1400 1401
                None
            }
1402 1403
        }
    }
1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421

    pub fn to_opt_type_outlives(&self) -> Option<PolyTypeOutlivesPredicate<'tcx>> {
        match *self {
            Predicate::TypeOutlives(data) => {
                Some(data)
            }
            Predicate::Trait(..) |
            Predicate::Projection(..) |
            Predicate::Subtype(..) |
            Predicate::RegionOutlives(..) |
            Predicate::WellFormed(..) |
            Predicate::ObjectSafe(..) |
            Predicate::ClosureKind(..) |
            Predicate::ConstEvaluatable(..) => {
                None
            }
        }
    }
1422 1423
}

S
Steve Klabnik 已提交
1424 1425
/// Represents the bounds declared on a particular set of type
/// parameters.  Should eventually be generalized into a flag list of
1426 1427 1428 1429 1430
/// where clauses.  You can obtain a `InstantiatedPredicates` list from a
/// `GenericPredicates` by using the `instantiate` method. Note that this method
/// reflects an important semantic invariant of `InstantiatedPredicates`: while
/// the `GenericPredicates` are expressed in terms of the bound type
/// parameters of the impl/trait/whatever, an `InstantiatedPredicates` instance
S
Steve Klabnik 已提交
1431 1432 1433 1434 1435 1436 1437 1438
/// represented a set of bounds for some particular instantiation,
/// meaning that the generic parameters have been substituted with
/// their values.
///
/// Example:
///
///     struct Foo<T,U:Bar<T>> { ... }
///
1439
/// Here, the `GenericPredicates` for `Foo` would contain a list of bounds like
J
Jorge Aparicio 已提交
1440
/// `[[], [U:Bar<T>]]`.  Now if there were some particular reference
1441 1442
/// like `Foo<isize,usize>`, then the `InstantiatedPredicates` would be `[[],
/// [usize:Bar<isize>]]`.
1443
#[derive(Clone)]
1444
pub struct InstantiatedPredicates<'tcx> {
1445
    pub predicates: Vec<Predicate<'tcx>>,
1446 1447
}

1448 1449
impl<'tcx> InstantiatedPredicates<'tcx> {
    pub fn empty() -> InstantiatedPredicates<'tcx> {
1450
        InstantiatedPredicates { predicates: vec![] }
1451 1452
    }

1453 1454
    pub fn is_empty(&self) -> bool {
        self.predicates.is_empty()
1455
    }
1456 1457
}

N
Niko Matsakis 已提交
1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487
/// "Universes" are used during type- and trait-checking in the
/// presence of `for<..>` binders to control what sets of names are
/// visible. Universes are arranged into a tree: the root universe
/// contains names that are always visible. But when you enter into
/// some subuniverse, then it may add names that are only visible
/// within that subtree (but it can still name the names of its
/// ancestor universes).
///
/// To make this more concrete, consider this program:
///
/// ```
/// struct Foo { }
/// fn bar<T>(x: T) {
///   let y: for<'a> fn(&'a u8, Foo) = ...;
/// }
/// ```
///
/// The struct name `Foo` is in the root universe U0. But the type
/// parameter `T`, introduced on `bar`, is in a subuniverse U1 --
/// i.e., within `bar`, we can name both `T` and `Foo`, but outside of
/// `bar`, we cannot name `T`. Then, within the type of `y`, the
/// region `'a` is in a subuniverse U2 of U1, because we can name it
/// inside the fn type but not outside.
///
/// Universes are related to **skolemization** -- which is a way of
/// doing type- and trait-checking around these "forall" binders (also
/// called **universal quantification**). The idea is that when, in
/// the body of `bar`, we refer to `T` as a type, we aren't referring
/// to any type in particular, but rather a kind of "fresh" type that
/// is distinct from all other types we have actually declared. This
N
Niko Matsakis 已提交
1488
/// is called a **placeholder** type, and we use universes to talk
N
Niko Matsakis 已提交
1489 1490
/// about this. In other words, a type name in universe 0 always
/// corresponds to some "ground" type that the user declared, but a
N
Niko Matsakis 已提交
1491
/// type name in a non-zero universe is a placeholder type -- an
N
Niko Matsakis 已提交
1492 1493
/// idealized representative of "types in general" that we use for
/// checking generic functions.
N
Niko Matsakis 已提交
1494
#[derive(Copy, Clone, PartialEq, Eq, PartialOrd, Ord, Hash, RustcEncodable, RustcDecodable)]
N
Niko Matsakis 已提交
1495 1496 1497 1498 1499
pub struct UniverseIndex(u32);

impl UniverseIndex {
    /// The root universe, where things that the user defined are
    /// visible.
1500
    pub const ROOT: Self = UniverseIndex(0);
N
Niko Matsakis 已提交
1501

N
Niko Matsakis 已提交
1502 1503 1504 1505 1506 1507 1508
    /// The "max universe" -- this isn't really a valid universe, but
    /// it's useful sometimes as a "starting value" when you are
    /// taking the minimum of a (non-empty!) set of universes.
    pub const MAX: Self = UniverseIndex(::std::u32::MAX);

    /// Creates a universe index from the given integer.  Not to be
    /// used lightly lest you pick a bad value. But sometimes we
M
Matthias Krüger 已提交
1509
    /// convert universe indices into integers and back for various
N
Niko Matsakis 已提交
1510 1511 1512 1513 1514
    /// reasons.
    pub fn from_u32(index: u32) -> Self {
        UniverseIndex(index)
    }

N
Niko Matsakis 已提交
1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526
    /// A "subuniverse" corresponds to being inside a `forall` quantifier.
    /// So, for example, suppose we have this type in universe `U`:
    ///
    /// ```
    /// for<'a> fn(&'a u32)
    /// ```
    ///
    /// Once we "enter" into this `for<'a>` quantifier, we are in a
    /// subuniverse of `U` -- in this new universe, we can name the
    /// region `'a`, but that region was not nameable from `U` because
    /// it was not in scope there.
    pub fn subuniverse(self) -> UniverseIndex {
1527 1528 1529
        UniverseIndex(self.0.checked_add(1).unwrap())
    }

N
Niko Matsakis 已提交
1530 1531 1532 1533 1534
    /// True if the names in this universe are a subset of the names in `other`.
    pub fn is_subset_of(self, other: UniverseIndex) -> bool {
        self.0 <= other.0
    }

1535 1536 1537 1538 1539 1540 1541 1542 1543
    pub fn as_u32(&self) -> u32 {
        self.0
    }

    pub fn as_usize(&self) -> usize {
        self.0 as usize
    }
}

N
Niko Matsakis 已提交
1544
impl fmt::Debug for UniverseIndex {
1545
    fn fmt(&self, fmt: &mut fmt::Formatter<'_>) -> fmt::Result {
N
Niko Matsakis 已提交
1546 1547 1548 1549
        write!(fmt, "U{}", self.as_u32())
    }
}

1550 1551 1552
impl From<u32> for UniverseIndex {
    fn from(index: u32) -> Self {
        UniverseIndex(index)
1553
    }
N
Niko Matsakis 已提交
1554 1555
}

1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567
/// The "placeholder index" fully defines a placeholder region.
/// Placeholder regions are identified by both a **universe** as well
/// as a "bound-region" within that universe. The `bound_region` is
/// basically a name -- distinct bound regions within the same
/// universe are just two regions with an unknown relationship to one
/// another.
#[derive(Copy, Clone, Debug, PartialEq, Eq, Hash, RustcEncodable, RustcDecodable, PartialOrd, Ord)]
pub struct Placeholder {
    pub universe: UniverseIndex,
    pub name: BoundRegion,
}

1568
/// When type checking, we use the `ParamEnv` to track
1569 1570 1571
/// details about the set of where-clauses that are in scope at this
/// particular point.
#[derive(Copy, Clone, Debug, PartialEq, Eq, Hash)]
1572
pub struct ParamEnv<'tcx> {
1573 1574
    /// Obligations that the caller must satisfy. This is basically
    /// the set of bounds on the in-scope type parameters, translated
1575
    /// into Obligations, and elaborated and normalized.
V
varkor 已提交
1576
    pub caller_bounds: &'tcx List<ty::Predicate<'tcx>>,
1577

I
Irina Popa 已提交
1578
    /// Typically, this is `Reveal::UserFacing`, but during codegen we
1579 1580 1581
    /// want `Reveal::All` -- note that this is always paired with an
    /// empty environment. To get that, use `ParamEnv::reveal()`.
    pub reveal: traits::Reveal,
1582
}
1583

1584
impl<'tcx> ParamEnv<'tcx> {
1585 1586 1587 1588 1589
    /// Construct a trait environment suitable for contexts where
    /// there are no where clauses in scope. Hidden types (like `impl
    /// Trait`) are left hidden, so this is suitable for ordinary
    /// type-checking.
    pub fn empty() -> Self {
V
varkor 已提交
1590
        Self::new(List::empty(), Reveal::UserFacing)
1591 1592 1593 1594 1595
    }

    /// Construct a trait environment with no where clauses in scope
    /// where the values of all `impl Trait` and other hidden types
    /// are revealed. This is suitable for monomorphized, post-typeck
I
Irina Popa 已提交
1596
    /// environments like codegen or doing optimizations.
1597 1598 1599 1600
    ///
    /// NB. If you want to have predicates in scope, use `ParamEnv::new`,
    /// or invoke `param_env.with_reveal_all()`.
    pub fn reveal_all() -> Self {
V
varkor 已提交
1601
        Self::new(List::empty(), Reveal::All)
1602 1603 1604
    }

    /// Construct a trait environment with the given set of predicates.
V
varkor 已提交
1605
    pub fn new(caller_bounds: &'tcx List<ty::Predicate<'tcx>>,
S
Sean Griffin 已提交
1606
               reveal: Reveal)
1607
               -> Self {
S
Sean Griffin 已提交
1608
        ty::ParamEnv { caller_bounds, reveal }
1609 1610 1611 1612 1613
    }

    /// Returns a new parameter environment with the same clauses, but
    /// which "reveals" the true results of projections in all cases
    /// (even for associated types that are specializable).  This is
I
Irina Popa 已提交
1614
    /// the desired behavior during codegen and certain other special
1615 1616 1617 1618 1619 1620 1621 1622
    /// contexts; normally though we want to use `Reveal::UserFacing`,
    /// which is the default.
    pub fn with_reveal_all(self) -> Self {
        ty::ParamEnv { reveal: Reveal::All, ..self }
    }

    /// Returns this same environment but with no caller bounds.
    pub fn without_caller_bounds(self) -> Self {
V
varkor 已提交
1623
        ty::ParamEnv { caller_bounds: List::empty(), ..self }
1624 1625
    }

1626
    /// Creates a suitable environment in which to perform trait
1627 1628 1629 1630 1631
    /// queries on the given value. When type-checking, this is simply
    /// the pair of the environment plus value. But when reveal is set to
    /// All, then if `value` does not reference any type parameters, we will
    /// pair it with the empty environment. This improves caching and is generally
    /// invisible.
1632
    ///
1633 1634
    /// NB: We preserve the environment when type-checking because it
    /// is possible for the user to have wacky where-clauses like
1635
    /// `where Box<u32>: Copy`, which are clearly never
1636 1637
    /// satisfiable. We generally want to behave as if they were true,
    /// although the surrounding function is never reachable.
1638
    pub fn and<T: TypeFoldable<'tcx>>(self, value: T) -> ParamEnvAnd<'tcx, T> {
1639 1640 1641 1642 1643 1644
        match self.reveal {
            Reveal::UserFacing => {
                ParamEnvAnd {
                    param_env: self,
                    value,
                }
1645
            }
1646 1647

            Reveal::All => {
1648 1649 1650 1651 1652
                if value.has_skol()
                    || value.needs_infer()
                    || value.has_param_types()
                    || value.has_self_ty()
                {
1653 1654 1655 1656 1657 1658 1659 1660 1661 1662
                    ParamEnvAnd {
                        param_env: self,
                        value,
                    }
                } else {
                    ParamEnvAnd {
                        param_env: self.without_caller_bounds(),
                        value,
                    }
                }
1663
            }
1664 1665 1666
        }
    }
}
1667

1668
#[derive(Copy, Clone, Debug, PartialEq, Eq, Hash)]
1669 1670
pub struct ParamEnvAnd<'tcx, T> {
    pub param_env: ParamEnv<'tcx>,
1671
    pub value: T,
1672 1673
}

1674 1675
impl<'tcx, T> ParamEnvAnd<'tcx, T> {
    pub fn into_parts(self) -> (ParamEnv<'tcx>, T) {
1676
        (self.param_env, self.value)
1677
    }
1678 1679
}

1680 1681
impl<'a, 'gcx, T> HashStable<StableHashingContext<'a>> for ParamEnvAnd<'gcx, T>
    where T: HashStable<StableHashingContext<'a>>
1682 1683
{
    fn hash_stable<W: StableHasherResult>(&self,
1684
                                          hcx: &mut StableHashingContext<'a>,
1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695
                                          hasher: &mut StableHasher<W>) {
        let ParamEnvAnd {
            ref param_env,
            ref value
        } = *self;

        param_env.hash_stable(hcx, hasher);
        value.hash_stable(hcx, hasher);
    }
}

1696 1697 1698 1699 1700 1701
#[derive(Copy, Clone, Debug)]
pub struct Destructor {
    /// The def-id of the destructor method
    pub did: DefId,
}

1702
bitflags! {
1703 1704 1705 1706 1707 1708 1709
    pub struct AdtFlags: u32 {
        const NO_ADT_FLAGS        = 0;
        const IS_ENUM             = 1 << 0;
        const IS_PHANTOM_DATA     = 1 << 1;
        const IS_FUNDAMENTAL      = 1 << 2;
        const IS_UNION            = 1 << 3;
        const IS_BOX              = 1 << 4;
1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720
        /// Indicates whether the variant list of this ADT is `#[non_exhaustive]`.
        /// (i.e., this flag is never set unless this ADT is an enum).
        const IS_VARIANT_LIST_NON_EXHAUSTIVE   = 1 << 5;
    }
}

bitflags! {
    pub struct VariantFlags: u32 {
        const NO_VARIANT_FLAGS        = 0;
        /// Indicates whether the field list of this variant is `#[non_exhaustive]`.
        const IS_FIELD_LIST_NON_EXHAUSTIVE = 1 << 0;
1721 1722 1723
    }
}

1724
#[derive(Debug)]
1725
pub struct VariantDef {
1726 1727
    /// The variant's DefId. If this is a tuple-like struct,
    /// this is the DefId of the struct's ctor.
1728 1729
    pub did: DefId,
    pub name: Name, // struct's name if this is a struct
1730
    pub discr: VariantDiscr,
1731
    pub fields: Vec<FieldDef>,
1732
    pub ctor_kind: CtorKind,
1733
    flags: VariantFlags,
1734 1735
}

1736 1737 1738 1739 1740 1741
impl<'a, 'gcx, 'tcx> VariantDef {
    /// Create a new `VariantDef`.
    ///
    /// - `did` is the DefId used for the variant - for tuple-structs, it is the constructor DefId,
    /// and for everything else, it is the variant DefId.
    /// - `attribute_def_id` is the DefId that has the variant's attributes.
1742 1743 1744 1745 1746 1747 1748 1749 1750
    /// this is the struct DefId for structs, and the variant DefId for variants.
    ///
    /// Note that we *could* use the constructor DefId, because the constructor attributes
    /// redirect to the base attributes, but compiling a small crate requires
    /// loading the AdtDefs for all the structs in the universe (e.g. coherence for any
    /// built-in trait), and we do not want to load attributes twice.
    ///
    /// If someone speeds up attribute loading to not be a performance concern, they can
    /// remove this hack and use the constructor DefId everywhere.
1751 1752 1753 1754 1755 1756
    pub fn new(tcx: TyCtxt<'a, 'gcx, 'tcx>,
               did: DefId,
               name: Name,
               discr: VariantDiscr,
               fields: Vec<FieldDef>,
               adt_kind: AdtKind,
1757 1758
               ctor_kind: CtorKind,
               attribute_def_id: DefId)
1759 1760
               -> Self
    {
1761 1762
        debug!("VariantDef::new({:?}, {:?}, {:?}, {:?}, {:?}, {:?}, {:?})", did, name, discr,
               fields, adt_kind, ctor_kind, attribute_def_id);
1763
        let mut flags = VariantFlags::NO_VARIANT_FLAGS;
1764
        if adt_kind == AdtKind::Struct && tcx.has_attr(attribute_def_id, "non_exhaustive") {
1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781
            debug!("found non-exhaustive field list for {:?}", did);
            flags = flags | VariantFlags::IS_FIELD_LIST_NON_EXHAUSTIVE;
        }
        VariantDef {
            did,
            name,
            discr,
            fields,
            ctor_kind,
            flags
        }
    }

    #[inline]
    pub fn is_field_list_non_exhaustive(&self) -> bool {
        self.flags.intersects(VariantFlags::IS_FIELD_LIST_NON_EXHAUSTIVE)
    }
1782 1783
}

1784 1785 1786 1787 1788 1789 1790 1791 1792
impl_stable_hash_for!(struct VariantDef {
    did,
    name,
    discr,
    fields,
    ctor_kind,
    flags
});

1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805
#[derive(Copy, Clone, Debug, PartialEq, Eq, RustcEncodable, RustcDecodable)]
pub enum VariantDiscr {
    /// Explicit value for this variant, i.e. `X = 123`.
    /// The `DefId` corresponds to the embedded constant.
    Explicit(DefId),

    /// The previous variant's discriminant plus one.
    /// For efficiency reasons, the distance from the
    /// last `Explicit` discriminant is being stored,
    /// or `0` for the first variant, if it has none.
    Relative(usize),
}

1806
#[derive(Debug)]
1807
pub struct FieldDef {
1808
    pub did: DefId,
1809
    pub ident: Ident,
1810
    pub vis: Visibility,
1811 1812
}

A
Ariel Ben-Yehuda 已提交
1813 1814 1815 1816
/// The definition of an abstract data type - a struct or enum.
///
/// These are all interned (by intern_adt_def) into the adt_defs
/// table.
1817
pub struct AdtDef {
1818
    pub did: DefId,
1819
    pub variants: Vec<VariantDef>,
1820
    flags: AdtFlags,
1821
    pub repr: ReprOptions,
1822 1823
}

1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837
impl PartialOrd for AdtDef {
    fn partial_cmp(&self, other: &AdtDef) -> Option<Ordering> {
        Some(self.cmp(&other))
    }
}

/// There should be only one AdtDef for each `did`, therefore
/// it is fine to implement `Ord` only based on `did`.
impl Ord for AdtDef {
    fn cmp(&self, other: &AdtDef) -> Ordering {
        self.did.cmp(&other.did)
    }
}

1838 1839
impl PartialEq for AdtDef {
    // AdtDef are always interned and this is part of TyS equality
1840
    #[inline]
1841
    fn eq(&self, other: &Self) -> bool { ptr::eq(self, other) }
1842 1843
}

1844
impl Eq for AdtDef {}
1845

1846
impl Hash for AdtDef {
1847 1848
    #[inline]
    fn hash<H: Hasher>(&self, s: &mut H) {
1849
        (self as *const AdtDef).hash(s)
1850 1851 1852
    }
}

1853
impl<'tcx> serialize::UseSpecializedEncodable for &'tcx AdtDef {
1854
    fn default_encode<S: Encoder>(&self, s: &mut S) -> Result<(), S::Error> {
1855 1856 1857 1858
        self.did.encode(s)
    }
}

1859
impl<'tcx> serialize::UseSpecializedDecodable for &'tcx AdtDef {}
1860

1861

1862
impl<'a> HashStable<StableHashingContext<'a>> for AdtDef {
1863
    fn hash_stable<W: StableHasherResult>(&self,
1864
                                          hcx: &mut StableHashingContext<'a>,
1865
                                          hasher: &mut StableHasher<W>) {
W
Wesley Wiser 已提交
1866 1867 1868 1869
        thread_local! {
            static CACHE: RefCell<FxHashMap<usize, Fingerprint>> =
                RefCell::new(FxHashMap());
        }
1870

W
Wesley Wiser 已提交
1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891
        let hash: Fingerprint = CACHE.with(|cache| {
            let addr = self as *const AdtDef as usize;
            *cache.borrow_mut().entry(addr).or_insert_with(|| {
                let ty::AdtDef {
                    did,
                    ref variants,
                    ref flags,
                    ref repr,
                } = *self;

                let mut hasher = StableHasher::new();
                did.hash_stable(hcx, &mut hasher);
                variants.hash_stable(hcx, &mut hasher);
                flags.hash_stable(hcx, &mut hasher);
                repr.hash_stable(hcx, &mut hasher);

                hasher.finish()
           })
        });

        hash.hash_stable(hcx, hasher);
1892 1893 1894
    }
}

1895
#[derive(Copy, Clone, Debug, Eq, PartialEq, Hash)]
1896
pub enum AdtKind { Struct, Union, Enum }
1897

1898 1899 1900 1901 1902 1903 1904 1905 1906 1907
impl Into<DataTypeKind> for AdtKind {
    fn into(self) -> DataTypeKind {
        match self {
            AdtKind::Struct => DataTypeKind::Struct,
            AdtKind::Union => DataTypeKind::Union,
            AdtKind::Enum => DataTypeKind::Enum,
        }
    }
}

1908 1909
bitflags! {
    #[derive(RustcEncodable, RustcDecodable, Default)]
1910 1911
    pub struct ReprFlags: u8 {
        const IS_C               = 1 << 0;
1912 1913
        const IS_SIMD            = 1 << 1;
        const IS_TRANSPARENT     = 1 << 2;
1914
        // Internal only for now. If true, don't reorder fields.
1915
        const IS_LINEAR          = 1 << 3;
1916 1917 1918 1919

        // Any of these flags being set prevent field reordering optimisation.
        const IS_UNOPTIMISABLE   = ReprFlags::IS_C.bits |
                                   ReprFlags::IS_SIMD.bits |
1920
                                   ReprFlags::IS_LINEAR.bits;
1921 1922 1923 1924 1925 1926 1927 1928 1929
    }
}

impl_stable_hash_for!(struct ReprFlags {
    bits
});



1930
/// Represents the repr options provided by the user,
1931
#[derive(Copy, Clone, Debug, Eq, PartialEq, RustcEncodable, RustcDecodable, Default)]
1932 1933
pub struct ReprOptions {
    pub int: Option<attr::IntType>,
1934
    pub align: u32,
1935
    pub pack: u32,
1936
    pub flags: ReprFlags,
1937 1938
}

1939
impl_stable_hash_for!(struct ReprOptions {
1940
    align,
1941
    pack,
1942
    int,
1943
    flags
1944 1945
});

1946
impl ReprOptions {
1947
    pub fn new(tcx: TyCtxt<'_, '_, '_>, did: DefId) -> ReprOptions {
1948 1949
        let mut flags = ReprFlags::empty();
        let mut size = None;
1950
        let mut max_align = 0;
1951
        let mut min_pack = 0;
1952 1953
        for attr in tcx.get_attrs(did).iter() {
            for r in attr::find_repr_attrs(tcx.sess.diagnostic(), attr) {
1954
                flags.insert(match r {
1955
                    attr::ReprC => ReprFlags::IS_C,
1956 1957 1958 1959 1960 1961 1962 1963
                    attr::ReprPacked(pack) => {
                        min_pack = if min_pack > 0 {
                            cmp::min(pack, min_pack)
                        } else {
                            pack
                        };
                        ReprFlags::empty()
                    },
R
Robin Kruppe 已提交
1964
                    attr::ReprTransparent => ReprFlags::IS_TRANSPARENT,
1965 1966 1967 1968 1969
                    attr::ReprSimd => ReprFlags::IS_SIMD,
                    attr::ReprInt(i) => {
                        size = Some(i);
                        ReprFlags::empty()
                    },
1970 1971 1972 1973
                    attr::ReprAlign(align) => {
                        max_align = cmp::max(align, max_align);
                        ReprFlags::empty()
                    },
1974
                });
1975 1976
            }
        }
1977

1978
        // This is here instead of layout because the choice must make it into metadata.
1979 1980 1981
        if !tcx.consider_optimizing(|| format!("Reorder fields of {:?}", tcx.item_path_str(did))) {
            flags.insert(ReprFlags::IS_LINEAR);
        }
1982
        ReprOptions { int: size, align: max_align, pack: min_pack, flags: flags }
1983
    }
1984

1985 1986 1987 1988 1989
    #[inline]
    pub fn simd(&self) -> bool { self.flags.contains(ReprFlags::IS_SIMD) }
    #[inline]
    pub fn c(&self) -> bool { self.flags.contains(ReprFlags::IS_C) }
    #[inline]
1990
    pub fn packed(&self) -> bool { self.pack > 0 }
1991
    #[inline]
R
Robin Kruppe 已提交
1992 1993
    pub fn transparent(&self) -> bool { self.flags.contains(ReprFlags::IS_TRANSPARENT) }
    #[inline]
1994 1995
    pub fn linear(&self) -> bool { self.flags.contains(ReprFlags::IS_LINEAR) }

1996
    pub fn discr_type(&self) -> attr::IntType {
1997
        self.int.unwrap_or(attr::SignedInt(ast::IntTy::Isize))
1998
    }
1999 2000 2001 2002 2003

    /// Returns true if this `#[repr()]` should inhabit "smart enum
    /// layout" optimizations, such as representing `Foo<&T>` as a
    /// single pointer.
    pub fn inhibit_enum_layout_opt(&self) -> bool {
2004
        self.c() || self.int.is_some()
2005
    }
2006 2007 2008 2009 2010 2011

    /// Returns true if this `#[repr()]` should inhibit struct field reordering
    /// optimizations, such as with repr(C) or repr(packed(1)).
    pub fn inhibit_struct_field_reordering_opt(&self) -> bool {
        !(self.flags & ReprFlags::IS_UNOPTIMISABLE).is_empty() || (self.pack == 1)
    }
2012 2013
}

2014
impl<'a, 'gcx, 'tcx> AdtDef {
2015
    fn new(tcx: TyCtxt<'_, '_, '_>,
2016
           did: DefId,
A
Ariel Ben-Yehuda 已提交
2017
           kind: AdtKind,
2018 2019
           variants: Vec<VariantDef>,
           repr: ReprOptions) -> Self {
2020
        debug!("AdtDef::new({:?}, {:?}, {:?}, {:?})", did, kind, variants, repr);
A
Ariel Ben-Yehuda 已提交
2021
        let mut flags = AdtFlags::NO_ADT_FLAGS;
A
Ariel Ben-Yehuda 已提交
2022
        let attrs = tcx.get_attrs(did);
2023
        if attr::contains_name(&attrs, "fundamental") {
A
Ariel Ben-Yehuda 已提交
2024
            flags = flags | AdtFlags::IS_FUNDAMENTAL;
2025
        }
2026
        if Some(did) == tcx.lang_items().phantom_data() {
A
Ariel Ben-Yehuda 已提交
2027
            flags = flags | AdtFlags::IS_PHANTOM_DATA;
2028
        }
2029
        if Some(did) == tcx.lang_items().owned_box() {
2030 2031
            flags = flags | AdtFlags::IS_BOX;
        }
2032 2033 2034
        if kind == AdtKind::Enum && tcx.has_attr(did, "non_exhaustive") {
            debug!("found non-exhaustive variant list for {:?}", did);
            flags = flags | AdtFlags::IS_VARIANT_LIST_NON_EXHAUSTIVE;
2035
        }
2036 2037 2038 2039
        match kind {
            AdtKind::Enum => flags = flags | AdtFlags::IS_ENUM,
            AdtKind::Union => flags = flags | AdtFlags::IS_UNION,
            AdtKind::Struct => {}
2040
        }
2041
        AdtDef {
2042 2043 2044 2045
            did,
            variants,
            flags,
            repr,
2046 2047 2048
        }
    }

2049 2050 2051 2052 2053 2054 2055
    #[inline]
    pub fn is_struct(&self) -> bool {
        !self.is_union() && !self.is_enum()
    }

    #[inline]
    pub fn is_union(&self) -> bool {
2056
        self.flags.intersects(AdtFlags::IS_UNION)
2057 2058 2059 2060
    }

    #[inline]
    pub fn is_enum(&self) -> bool {
2061
        self.flags.intersects(AdtFlags::IS_ENUM)
2062 2063
    }

2064
    #[inline]
2065 2066
    pub fn is_variant_list_non_exhaustive(&self) -> bool {
        self.flags.intersects(AdtFlags::IS_VARIANT_LIST_NON_EXHAUSTIVE)
2067 2068
    }

A
Ariel Ben-Yehuda 已提交
2069
    /// Returns the kind of the ADT - Struct or Enum.
2070
    #[inline]
A
Ariel Ben-Yehuda 已提交
2071
    pub fn adt_kind(&self) -> AdtKind {
2072
        if self.is_enum() {
A
Ariel Ben-Yehuda 已提交
2073
            AdtKind::Enum
2074
        } else if self.is_union() {
2075
            AdtKind::Union
2076
        } else {
A
Ariel Ben-Yehuda 已提交
2077
            AdtKind::Struct
2078 2079 2080
        }
    }

2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096
    pub fn descr(&self) -> &'static str {
        match self.adt_kind() {
            AdtKind::Struct => "struct",
            AdtKind::Union => "union",
            AdtKind::Enum => "enum",
        }
    }

    pub fn variant_descr(&self) -> &'static str {
        match self.adt_kind() {
            AdtKind::Struct => "struct",
            AdtKind::Union => "union",
            AdtKind::Enum => "variant",
        }
    }

A
Ariel Ben-Yehuda 已提交
2097 2098
    /// Returns whether this type is #[fundamental] for the purposes
    /// of coherence checking.
2099 2100
    #[inline]
    pub fn is_fundamental(&self) -> bool {
2101
        self.flags.intersects(AdtFlags::IS_FUNDAMENTAL)
2102 2103
    }

A
Ariel Ben-Yehuda 已提交
2104
    /// Returns true if this is PhantomData<T>.
2105 2106
    #[inline]
    pub fn is_phantom_data(&self) -> bool {
2107
        self.flags.intersects(AdtFlags::IS_PHANTOM_DATA)
2108 2109
    }

2110 2111 2112
    /// Returns true if this is Box<T>.
    #[inline]
    pub fn is_box(&self) -> bool {
2113
        self.flags.intersects(AdtFlags::IS_BOX)
2114 2115
    }

A
Ariel Ben-Yehuda 已提交
2116
    /// Returns whether this type has a destructor.
2117 2118
    pub fn has_dtor(&self, tcx: TyCtxt<'a, 'gcx, 'tcx>) -> bool {
        self.destructor(tcx).is_some()
2119 2120
    }

2121 2122 2123
    /// Asserts this is a struct or union and returns its unique variant.
    pub fn non_enum_variant(&self) -> &VariantDef {
        assert!(self.is_struct() || self.is_union());
2124
        &self.variants[0]
2125 2126 2127
    }

    #[inline]
2128
    pub fn predicates(&self, tcx: TyCtxt<'a, 'gcx, 'tcx>) -> GenericPredicates<'gcx> {
2129
        tcx.predicates_of(self.did)
2130
    }
2131

A
Ariel Ben-Yehuda 已提交
2132 2133
    /// Returns an iterator over all fields contained
    /// by this ADT.
2134
    #[inline]
2135 2136
    pub fn all_fields<'s>(&'s self) -> impl Iterator<Item = &'s FieldDef> {
        self.variants.iter().flat_map(|v| v.fields.iter())
2137 2138 2139 2140 2141 2142 2143
    }

    pub fn is_payloadfree(&self) -> bool {
        !self.variants.is_empty() &&
            self.variants.iter().all(|v| v.fields.is_empty())
    }

2144
    pub fn variant_with_id(&self, vid: DefId) -> &VariantDef {
2145 2146 2147 2148 2149 2150
        self.variants
            .iter()
            .find(|v| v.did == vid)
            .expect("variant_with_id: unknown variant")
    }

N
Niko Matsakis 已提交
2151 2152 2153 2154 2155 2156 2157
    pub fn variant_index_with_id(&self, vid: DefId) -> usize {
        self.variants
            .iter()
            .position(|v| v.did == vid)
            .expect("variant_index_with_id: unknown variant")
    }

2158
    pub fn variant_of_def(&self, def: Def) -> &VariantDef {
2159
        match def {
2160 2161
            Def::Variant(vid) | Def::VariantCtor(vid, ..) => self.variant_with_id(vid),
            Def::Struct(..) | Def::StructCtor(..) | Def::Union(..) |
F
F001 已提交
2162 2163
            Def::TyAlias(..) | Def::AssociatedTy(..) | Def::SelfTy(..) |
            Def::SelfCtor(..) => self.non_enum_variant(),
2164
            _ => bug!("unexpected def {:?} in variant_of_def", def)
2165 2166
        }
    }
2167

O
Oliver Schneider 已提交
2168
    #[inline]
2169
    pub fn eval_explicit_discr(
O
Oliver Schneider 已提交
2170 2171 2172 2173
        &self,
        tcx: TyCtxt<'a, 'gcx, 'tcx>,
        expr_did: DefId,
    ) -> Option<Discr<'tcx>> {
2174
        let param_env = ParamEnv::empty();
O
Oliver Schneider 已提交
2175 2176 2177 2178 2179 2180 2181 2182
        let repr_type = self.repr.discr_type();
        let substs = Substs::identity_for_item(tcx.global_tcx(), expr_did);
        let instance = ty::Instance::new(expr_did, substs);
        let cid = GlobalId {
            instance,
            promoted: None
        };
        match tcx.const_eval(param_env.and(cid)) {
2183 2184
            Ok(val) => {
                // FIXME: Find the right type and use it instead of `val.ty` here
O
Oliver Schneider 已提交
2185
                if let Some(b) = val.assert_bits(tcx.global_tcx(), param_env.and(val.ty)) {
2186 2187 2188 2189 2190 2191 2192
                    trace!("discriminants: {} ({:?})", b, repr_type);
                    Some(Discr {
                        val: b,
                        ty: val.ty,
                    })
                } else {
                    info!("invalid enum discriminant: {:#?}", val);
2193
                    ::mir::interpret::struct_error(
2194
                        tcx.at(tcx.def_span(expr_did)),
2195 2196 2197 2198
                        "constant evaluation of enum discriminant resulted in non-integer",
                    ).emit();
                    None
                }
O
Oliver Schneider 已提交
2199
            }
2200
            Err(err) => {
2201 2202 2203 2204
                err.report_as_error(
                    tcx.at(tcx.def_span(expr_did)),
                    "could not evaluate enum discriminant",
                );
O
Oliver Schneider 已提交
2205 2206 2207 2208 2209 2210 2211 2212 2213 2214
                if !expr_did.is_local() {
                    span_bug!(tcx.def_span(expr_did),
                        "variant discriminant evaluation succeeded \
                            in its crate but failed locally");
                }
                None
            }
        }
    }

2215
    #[inline]
2216 2217 2218 2219
    pub fn discriminants(
        &'a self,
        tcx: TyCtxt<'a, 'gcx, 'tcx>,
    ) -> impl Iterator<Item=Discr<'tcx>> + Captures<'gcx> + 'a {
2220
        let repr_type = self.repr.discr_type();
2221
        let initial = repr_type.initial_discriminant(tcx.global_tcx());
O
Oliver Schneider 已提交
2222
        let mut prev_discr = None::<Discr<'tcx>>;
2223
        self.variants.iter().map(move |v| {
O
Oliver Schneider 已提交
2224
            let mut discr = prev_discr.map_or(initial, |d| d.wrap_incr(tcx));
2225
            if let VariantDiscr::Explicit(expr_did) = v.discr {
O
Oliver Schneider 已提交
2226 2227
                if let Some(new_discr) = self.eval_explicit_discr(tcx, expr_did) {
                    discr = new_discr;
2228 2229 2230 2231 2232 2233 2234 2235
                }
            }
            prev_discr = Some(discr);

            discr
        })
    }

2236 2237 2238 2239 2240 2241 2242 2243
    /// Compute the discriminant value used by a specific variant.
    /// Unlike `discriminants`, this is (amortized) constant-time,
    /// only doing at most one query for evaluating an explicit
    /// discriminant (the last one before the requested variant),
    /// assuming there are no constant-evaluation errors there.
    pub fn discriminant_for_variant(&self,
                                    tcx: TyCtxt<'a, 'gcx, 'tcx>,
                                    variant_index: usize)
O
Oliver Schneider 已提交
2244
                                    -> Discr<'tcx> {
2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258
        let (val, offset) = self.discriminant_def_for_variant(variant_index);
        let explicit_value = val
            .and_then(|expr_did| self.eval_explicit_discr(tcx, expr_did))
            .unwrap_or_else(|| self.repr.discr_type().initial_discriminant(tcx.global_tcx()));
        explicit_value.checked_add(tcx, offset as u128).0
    }

    /// Yields a DefId for the discriminant and an offset to add to it
    /// Alternatively, if there is no explicit discriminant, returns the
    /// inferred discriminant directly
    pub fn discriminant_def_for_variant(
        &self,
        variant_index: usize,
    ) -> (Option<DefId>, usize) {
2259
        let mut explicit_index = variant_index;
2260
        let expr_did;
2261 2262
        loop {
            match self.variants[explicit_index].discr {
2263 2264 2265 2266
                ty::VariantDiscr::Relative(0) => {
                    expr_did = None;
                    break;
                },
2267 2268 2269
                ty::VariantDiscr::Relative(distance) => {
                    explicit_index -= distance;
                }
2270 2271 2272
                ty::VariantDiscr::Explicit(did) => {
                    expr_did = Some(did);
                    break;
2273 2274 2275
                }
            }
        }
2276
        (expr_did, variant_index - explicit_index)
2277 2278
    }

2279
    pub fn destructor(&self, tcx: TyCtxt<'a, 'gcx, 'tcx>) -> Option<Destructor> {
2280
        tcx.adt_destructor(self.did)
2281 2282
    }

2283
    /// Returns a list of types such that `Self: Sized` if and only
2284
    /// if that type is Sized, or `TyErr` if this type is recursive.
A
Ariel Ben-Yehuda 已提交
2285 2286 2287 2288 2289 2290 2291 2292
    ///
    /// Oddly enough, checking that the sized-constraint is Sized is
    /// actually more expressive than checking all members:
    /// the Sized trait is inductive, so an associated type that references
    /// Self would prevent its containing ADT from being Sized.
    ///
    /// Due to normalization being eager, this applies even if
    /// the associated type is behind a pointer, e.g. issue #31299.
2293
    pub fn sized_constraint(&self, tcx: TyCtxt<'a, 'gcx, 'tcx>) -> &'tcx [Ty<'tcx>] {
2294
        match tcx.try_adt_sized_constraint(DUMMY_SP, self.did) {
2295
            Ok(tys) => tys,
2296
            Err(mut bug) => {
2297 2298 2299 2300
                debug!("adt_sized_constraint: {:?} is recursive", self);
                // This should be reported as an error by `check_representable`.
                //
                // Consider the type as Sized in the meanwhile to avoid
2301 2302 2303 2304
                // further errors. Delay our `bug` diagnostic here to get
                // emitted later as well in case we accidentally otherwise don't
                // emit an error.
                bug.delay_as_bug();
2305
                tcx.intern_type_list(&[tcx.types.err])
A
Ariel Ben-Yehuda 已提交
2306
            }
2307 2308
        }
    }
2309

2310 2311 2312 2313
    fn sized_constraint_for_ty(&self,
                               tcx: TyCtxt<'a, 'tcx, 'tcx>,
                               ty: Ty<'tcx>)
                               -> Vec<Ty<'tcx>> {
2314
        let result = match ty.sty {
2315
            Bool | Char | Int(..) | Uint(..) | Float(..) |
V
varkor 已提交
2316 2317
            RawPtr(..) | Ref(..) | FnDef(..) | FnPtr(_) |
            Array(..) | Closure(..) | Generator(..) | Never => {
A
Ariel Ben-Yehuda 已提交
2318
                vec![]
2319 2320
            }

2321
            Str |
V
varkor 已提交
2322 2323
            Dynamic(..) |
            Slice(_) |
V
varkor 已提交
2324
            Foreign(..) |
V
varkor 已提交
2325 2326
            Error |
            GeneratorWitness(..) => {
2327
                // these are never sized - return the target type
A
Ariel Ben-Yehuda 已提交
2328
                vec![ty]
2329 2330
            }

V
varkor 已提交
2331
            Tuple(ref tys) => {
2332 2333
                match tys.last() {
                    None => vec![],
2334
                    Some(ty) => self.sized_constraint_for_ty(tcx, ty)
2335
                }
2336 2337
            }

V
varkor 已提交
2338
            Adt(adt, substs) => {
2339
                // recursive case
2340
                let adt_tys = adt.sized_constraint(tcx);
2341
                debug!("sized_constraint_for_ty({:?}) intermediate = {:?}",
2342 2343 2344 2345 2346
                       ty, adt_tys);
                adt_tys.iter()
                    .map(|ty| ty.subst(tcx, substs))
                    .flat_map(|ty| self.sized_constraint_for_ty(tcx, ty))
                    .collect()
2347 2348
            }

2349
            Projection(..) | Opaque(..) => {
2350 2351
                // must calculate explicitly.
                // FIXME: consider special-casing always-Sized projections
A
Ariel Ben-Yehuda 已提交
2352
                vec![ty]
2353 2354
            }

2355 2356
            UnnormalizedProjection(..) => bug!("only used with chalk-engine"),

V
varkor 已提交
2357
            Param(..) => {
A
Ariel Ben-Yehuda 已提交
2358 2359 2360 2361
                // perf hack: if there is a `T: Sized` bound, then
                // we know that `T` is Sized and do not need to check
                // it on the impl.

2362
                let sized_trait = match tcx.lang_items().sized_trait() {
2363
                    Some(x) => x,
A
Ariel Ben-Yehuda 已提交
2364
                    _ => return vec![ty]
2365
                };
2366
                let sized_predicate = Binder::dummy(TraitRef {
2367
                    def_id: sized_trait,
2368
                    substs: tcx.mk_substs_trait(ty, &[])
2369
                }).to_predicate();
2370
                let predicates = tcx.predicates_of(self.did).predicates;
2371
                if predicates.into_iter().any(|(p, _)| p == sized_predicate) {
A
Ariel Ben-Yehuda 已提交
2372
                    vec![]
2373
                } else {
A
Ariel Ben-Yehuda 已提交
2374
                    vec![ty]
2375 2376 2377
                }
            }

V
varkor 已提交
2378
            Infer(..) => {
2379 2380 2381 2382 2383 2384 2385
                bug!("unexpected type `{:?}` in sized_constraint_for_ty",
                     ty)
            }
        };
        debug!("sized_constraint_for_ty({:?}) = {:?}", ty, result);
        result
    }
2386 2387
}

2388
impl<'a, 'gcx, 'tcx> FieldDef {
2389
    pub fn ty(&self, tcx: TyCtxt<'a, 'gcx, 'tcx>, subst: &Substs<'tcx>) -> Ty<'tcx> {
2390
        tcx.type_of(self.did).subst(tcx, subst)
2391
    }
2392 2393
}

2394 2395 2396 2397 2398 2399
/// Represents the various closure traits in the Rust language. This
/// will determine the type of the environment (`self`, in the
/// desuaring) argument that the closure expects.
///
/// You can get the environment type of a closure using
/// `tcx.closure_env_ty()`.
2400
#[derive(Clone, Copy, PartialOrd, Ord, PartialEq, Eq, Hash, Debug, RustcEncodable, RustcDecodable)]
2401
pub enum ClosureKind {
2402 2403 2404
    // Warning: Ordering is significant here! The ordering is chosen
    // because the trait Fn is a subtrait of FnMut and so in turn, and
    // hence we order it so that Fn < FnMut < FnOnce.
2405 2406 2407
    Fn,
    FnMut,
    FnOnce,
2408 2409
}

2410
impl<'a, 'tcx> ClosureKind {
2411 2412 2413
    // This is the initial value used when doing upvar inference.
    pub const LATTICE_BOTTOM: ClosureKind = ClosureKind::Fn;

2414
    pub fn trait_did(&self, tcx: TyCtxt<'a, 'tcx, 'tcx>) -> DefId {
2415 2416
        match *self {
            ClosureKind::Fn => tcx.require_lang_item(FnTraitLangItem),
2417
            ClosureKind::FnMut => {
2418
                tcx.require_lang_item(FnMutTraitLangItem)
2419
            }
2420
            ClosureKind::FnOnce => {
2421
                tcx.require_lang_item(FnOnceTraitLangItem)
2422 2423 2424
            }
        }
    }
2425 2426 2427 2428 2429

    /// True if this a type that impls this closure kind
    /// must also implement `other`.
    pub fn extends(self, other: ty::ClosureKind) -> bool {
        match (self, other) {
2430 2431 2432 2433 2434 2435
            (ClosureKind::Fn, ClosureKind::Fn) => true,
            (ClosureKind::Fn, ClosureKind::FnMut) => true,
            (ClosureKind::Fn, ClosureKind::FnOnce) => true,
            (ClosureKind::FnMut, ClosureKind::FnMut) => true,
            (ClosureKind::FnMut, ClosureKind::FnOnce) => true,
            (ClosureKind::FnOnce, ClosureKind::FnOnce) => true,
2436 2437 2438
            _ => false,
        }
    }
2439 2440 2441 2442 2443 2444 2445 2446 2447

    /// Returns the representative scalar type for this closure kind.
    /// See `TyS::to_opt_closure_kind` for more details.
    pub fn to_ty(self, tcx: TyCtxt<'_, '_, 'tcx>) -> Ty<'tcx> {
        match self {
            ty::ClosureKind::Fn => tcx.types.i8,
            ty::ClosureKind::FnMut => tcx.types.i16,
            ty::ClosureKind::FnOnce => tcx.types.i32,
        }
2448
    }
2449 2450
}

2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463
impl<'tcx> TyS<'tcx> {
    /// Iterator that walks `self` and any types reachable from
    /// `self`, in depth-first order. Note that just walks the types
    /// that appear in `self`, it does not descend into the fields of
    /// structs or variants. For example:
    ///
    /// ```notrust
    /// isize => { isize }
    /// Foo<Bar<isize>> => { Foo<Bar<isize>>, Bar<isize>, isize }
    /// [isize] => { [isize], isize }
    /// ```
    pub fn walk(&'tcx self) -> TypeWalker<'tcx> {
        TypeWalker::new(self)
2464 2465
    }

2466 2467 2468
    /// Iterator that walks the immediate children of `self`.  Hence
    /// `Foo<Bar<i32>, u32>` yields the sequence `[Bar<i32>, u32]`
    /// (but not `i32`, like `walk`).
2469
    pub fn walk_shallow(&'tcx self) -> smallvec::IntoIter<walk::TypeWalkerArray<'tcx>> {
2470
        walk::walk_shallow(self)
2471 2472
    }

2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486
    /// Walks `ty` and any types appearing within `ty`, invoking the
    /// callback `f` on each type. If the callback returns false, then the
    /// children of the current type are ignored.
    ///
    /// Note: prefer `ty.walk()` where possible.
    pub fn maybe_walk<F>(&'tcx self, mut f: F)
        where F : FnMut(Ty<'tcx>) -> bool
    {
        let mut walker = self.walk();
        while let Some(ty) = walker.next() {
            if !f(ty) {
                walker.skip_current_subtree();
            }
        }
2487
    }
2488
}
2489

2490
impl BorrowKind {
2491
    pub fn from_mutbl(m: hir::Mutability) -> BorrowKind {
2492
        match m {
2493 2494
            hir::MutMutable => MutBorrow,
            hir::MutImmutable => ImmBorrow,
2495 2496
        }
    }
2497

2498 2499 2500 2501
    /// Returns a mutability `m` such that an `&m T` pointer could be used to obtain this borrow
    /// kind. Because borrow kinds are richer than mutabilities, we sometimes have to pick a
    /// mutability that is stronger than necessary so that it at least *would permit* the borrow in
    /// question.
2502
    pub fn to_mutbl_lossy(self) -> hir::Mutability {
2503
        match self {
2504 2505
            MutBorrow => hir::MutMutable,
            ImmBorrow => hir::MutImmutable,
2506 2507 2508 2509

            // We have no type corresponding to a unique imm borrow, so
            // use `&mut`. It gives all the capabilities of an `&uniq`
            // and hence is a safe "over approximation".
2510
            UniqueImmBorrow => hir::MutMutable,
2511
        }
2512
    }
2513

2514 2515 2516 2517 2518 2519
    pub fn to_user_str(&self) -> &'static str {
        match *self {
            MutBorrow => "mutable",
            ImmBorrow => "immutable",
            UniqueImmBorrow => "uniquely immutable",
        }
2520 2521 2522
    }
}

2523 2524
#[derive(Debug, Clone)]
pub enum Attributes<'gcx> {
2525
    Owned(Lrc<[ast::Attribute]>),
2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539
    Borrowed(&'gcx [ast::Attribute])
}

impl<'gcx> ::std::ops::Deref for Attributes<'gcx> {
    type Target = [ast::Attribute];

    fn deref(&self) -> &[ast::Attribute] {
        match self {
            &Attributes::Owned(ref data) => &data,
            &Attributes::Borrowed(data) => data
        }
    }
}

2540
impl<'a, 'gcx, 'tcx> TyCtxt<'a, 'gcx, 'tcx> {
2541
    pub fn body_tables(self, body: hir::BodyId) -> &'gcx TypeckTables<'gcx> {
2542
        self.typeck_tables_of(self.hir.body_owner_def_id(body))
2543 2544
    }

N
Niko Matsakis 已提交
2545 2546 2547
    /// Returns an iterator of the def-ids for all body-owners in this
    /// crate. If you would prefer to iterate over the bodies
    /// themselves, you can do `self.hir.krate().body_ids.iter()`.
2548 2549 2550
    pub fn body_owners(
        self,
    ) -> impl Iterator<Item = DefId> + Captures<'tcx> + Captures<'gcx> + 'a {
N
Niko Matsakis 已提交
2551 2552 2553 2554 2555 2556
        self.hir.krate()
                .body_ids
                .iter()
                .map(move |&body_id| self.hir.body_owner_def_id(body_id))
    }

J
John Kåre Alsaker 已提交
2557 2558 2559 2560 2561 2562
    pub fn par_body_owners<F: Fn(DefId) + sync::Sync + sync::Send>(self, f: F) {
        par_iter(&self.hir.krate().body_ids).for_each(|&body_id| {
            f(self.hir.body_owner_def_id(body_id))
        });
    }

2563
    pub fn expr_span(self, id: NodeId) -> Span {
2564
        match self.hir.find(id) {
V
varkor 已提交
2565
            Some(Node::Expr(e)) => {
2566 2567 2568
                e.span
            }
            Some(f) => {
2569
                bug!("Node id {} is not an expr: {:?}", id, f);
2570 2571
            }
            None => {
2572
                bug!("Node id {} is not present in the node map", id);
2573
            }
2574
        }
2575 2576
    }

2577 2578
    pub fn provided_trait_methods(self, id: DefId) -> Vec<AssociatedItem> {
        self.associated_items(id)
2579
            .filter(|item| item.kind == AssociatedKind::Method && item.defaultness.has_value())
2580
            .collect()
2581 2582
    }

A
Andrew Cann 已提交
2583 2584 2585 2586 2587 2588
    pub fn trait_relevant_for_never(self, did: DefId) -> bool {
        self.associated_items(did).any(|item| {
            item.relevant_for_never()
        })
    }

2589 2590 2591
    pub fn opt_associated_item(self, def_id: DefId) -> Option<AssociatedItem> {
        let is_associated_item = if let Some(node_id) = self.hir.as_local_node_id(def_id) {
            match self.hir.get(node_id) {
V
varkor 已提交
2592
                Node::TraitItem(_) | Node::ImplItem(_) => true,
2593 2594 2595
                _ => false,
            }
        } else {
2596
            match self.describe_def(def_id).expect("no def for def-id") {
2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608
                Def::AssociatedConst(_) | Def::Method(_) | Def::AssociatedTy(_) => true,
                _ => false,
            }
        };

        if is_associated_item {
            Some(self.associated_item(def_id))
        } else {
            None
        }
    }

2609 2610
    fn associated_item_from_trait_item_ref(self,
                                           parent_def_id: DefId,
2611
                                           parent_vis: &hir::Visibility,
2612
                                           trait_item_ref: &hir::TraitItemRef)
2613
                                           -> AssociatedItem {
2614
        let def_id = self.hir.local_def_id(trait_item_ref.id.node_id);
2615 2616 2617 2618
        let (kind, has_self) = match trait_item_ref.kind {
            hir::AssociatedItemKind::Const => (ty::AssociatedKind::Const, false),
            hir::AssociatedItemKind::Method { has_self } => {
                (ty::AssociatedKind::Method, has_self)
2619
            }
2620
            hir::AssociatedItemKind::Type => (ty::AssociatedKind::Type, false),
O
Oliver Schneider 已提交
2621
            hir::AssociatedItemKind::Existential => bug!("only impls can have existentials"),
2622 2623 2624
        };

        AssociatedItem {
2625
            ident: trait_item_ref.ident,
2626
            kind,
2627 2628
            // Visibility of trait items is inherited from their traits.
            vis: Visibility::from_hir(parent_vis, trait_item_ref.id.node_id, self),
2629
            defaultness: trait_item_ref.defaultness,
2630
            def_id,
2631 2632 2633 2634 2635 2636 2637 2638 2639
            container: TraitContainer(parent_def_id),
            method_has_self_argument: has_self
        }
    }

    fn associated_item_from_impl_item_ref(self,
                                          parent_def_id: DefId,
                                          impl_item_ref: &hir::ImplItemRef)
                                          -> AssociatedItem {
2640
        let def_id = self.hir.local_def_id(impl_item_ref.id.node_id);
2641 2642 2643 2644 2645 2646
        let (kind, has_self) = match impl_item_ref.kind {
            hir::AssociatedItemKind::Const => (ty::AssociatedKind::Const, false),
            hir::AssociatedItemKind::Method { has_self } => {
                (ty::AssociatedKind::Method, has_self)
            }
            hir::AssociatedItemKind::Type => (ty::AssociatedKind::Type, false),
O
Oliver Schneider 已提交
2647
            hir::AssociatedItemKind::Existential => (ty::AssociatedKind::Existential, false),
2648 2649
        };

2650 2651
        AssociatedItem {
            ident: impl_item_ref.ident,
2652
            kind,
2653 2654
            // Visibility of trait impl items doesn't matter.
            vis: ty::Visibility::from_hir(&impl_item_ref.vis, impl_item_ref.id.node_id, self),
2655
            defaultness: impl_item_ref.defaultness,
2656
            def_id,
2657 2658 2659 2660 2661
            container: ImplContainer(parent_def_id),
            method_has_self_argument: has_self
        }
    }

2662
    pub fn field_index(self, node_id: NodeId, tables: &TypeckTables<'_>) -> usize {
2663 2664 2665 2666 2667 2668
        let hir_id = self.hir.node_to_hir_id(node_id);
        tables.field_indices().get(hir_id).cloned().expect("no index for a field")
    }

    pub fn find_field_index(self, ident: Ident, variant: &VariantDef) -> Option<usize> {
        variant.fields.iter().position(|field| {
2669
            self.adjust_ident(ident, variant.did, DUMMY_NODE_ID).0 == field.ident.modern()
2670 2671 2672
        })
    }

2673 2674 2675
    pub fn associated_items(
        self,
        def_id: DefId,
2676
    ) -> impl Iterator<Item = AssociatedItem> + 'a {
2677
        let def_ids = self.associated_item_def_ids(def_id);
2678
        Box::new((0..def_ids.len()).map(move |i| self.associated_item(def_ids[i])))
2679
            as Box<dyn Iterator<Item = AssociatedItem> + 'a>
2680 2681
    }

2682 2683
    /// Returns true if the impls are the same polarity and the trait either
    /// has no items or is annotated #[marker] and prevents item overrides.
2684
    pub fn impls_are_allowed_to_overlap(self, def_id1: DefId, def_id2: DefId) -> bool {
2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706
        if self.features().overlapping_marker_traits {
            let trait1_is_empty = self.impl_trait_ref(def_id1)
                .map_or(false, |trait_ref| {
                    self.associated_item_def_ids(trait_ref.def_id).is_empty()
                });
            let trait2_is_empty = self.impl_trait_ref(def_id2)
                .map_or(false, |trait_ref| {
                    self.associated_item_def_ids(trait_ref.def_id).is_empty()
                });
            self.impl_polarity(def_id1) == self.impl_polarity(def_id2)
                && trait1_is_empty
                && trait2_is_empty
        } else if self.features().marker_trait_attr {
            let is_marker_impl = |def_id: DefId| -> bool {
                let trait_ref = self.impl_trait_ref(def_id);
                trait_ref.map_or(false, |tr| self.trait_def(tr.def_id).is_marker)
            };
            self.impl_polarity(def_id1) == self.impl_polarity(def_id2)
                && is_marker_impl(def_id1)
                && is_marker_impl(def_id2)
        } else {
            false
2707
        }
S
Sean Griffin 已提交
2708 2709
    }

2710 2711
    // Returns `ty::VariantDef` if `def` refers to a struct,
    // or variant or their constructors, panics otherwise.
2712
    pub fn expect_variant_def(self, def: Def) -> &'tcx VariantDef {
2713
        match def {
2714
            Def::Variant(did) | Def::VariantCtor(did, ..) => {
2715
                let enum_did = self.parent_def_id(did).unwrap();
2716
                self.adt_def(enum_did).variant_with_id(did)
2717
            }
2718
            Def::Struct(did) | Def::Union(did) => {
2719
                self.adt_def(did).non_enum_variant()
2720 2721 2722
            }
            Def::StructCtor(ctor_did, ..) => {
                let did = self.parent_def_id(ctor_did).expect("struct ctor has no parent");
2723
                self.adt_def(did).non_enum_variant()
2724 2725 2726 2727 2728
            }
            _ => bug!("expect_variant_def used with unexpected def {:?}", def)
        }
    }

2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742
    /// Given a `VariantDef`, returns the def-id of the `AdtDef` of which it is a part.
    pub fn adt_def_id_of_variant(self, variant_def: &'tcx VariantDef) -> DefId {
        let def_key = self.def_key(variant_def.did);
        match def_key.disambiguated_data.data {
            // for enum variants and tuple structs, the def-id of the ADT itself
            // is the *parent* of the variant
            DefPathData::EnumVariant(..) | DefPathData::StructCtor =>
                DefId { krate: variant_def.did.krate, index: def_key.parent.unwrap() },

            // otherwise, for structs and unions, they share a def-id
            _ => variant_def.did,
        }
    }

2743
    pub fn item_name(self, id: DefId) -> InternedString {
2744
        if id.index == CRATE_DEF_INDEX {
2745
            self.original_crate_name(id.krate).as_interned_str()
2746
        } else {
2747
            let def_key = self.def_key(id);
2748
            // The name of a StructCtor is that of its struct parent.
2749
            if let hir_map::DefPathData::StructCtor = def_key.disambiguated_data.data {
2750 2751 2752 2753 2754 2755 2756 2757 2758
                self.item_name(DefId {
                    krate: id.krate,
                    index: def_key.parent.unwrap()
                })
            } else {
                def_key.disambiguated_data.data.get_opt_name().unwrap_or_else(|| {
                    bug!("item_name: no name for {:?}", self.def_path(id));
                })
            }
2759 2760 2761
        }
    }

2762 2763
    /// Return the possibly-auto-generated MIR of a (DefId, Subst) pair.
    pub fn instance_mir(self, instance: ty::InstanceDef<'gcx>)
2764
                        -> &'gcx Mir<'gcx>
2765 2766
    {
        match instance {
N
Niko Matsakis 已提交
2767
            ty::InstanceDef::Item(did) => {
2768
                self.optimized_mir(did)
N
Niko Matsakis 已提交
2769 2770 2771 2772 2773
            }
            ty::InstanceDef::Intrinsic(..) |
            ty::InstanceDef::FnPtrShim(..) |
            ty::InstanceDef::Virtual(..) |
            ty::InstanceDef::ClosureOnceShim { .. } |
2774
            ty::InstanceDef::DropGlue(..) |
S
scalexm 已提交
2775
            ty::InstanceDef::CloneShim(..) => {
2776
                self.mir_shims(instance)
N
Niko Matsakis 已提交
2777
            }
2778 2779 2780
        }
    }

2781 2782
    /// Given the DefId of an item, returns its MIR, borrowed immutably.
    /// Returns None if there is no MIR for the DefId
2783 2784 2785 2786 2787
    pub fn maybe_optimized_mir(self, did: DefId) -> Option<&'gcx Mir<'gcx>> {
        if self.is_mir_available(did) {
            Some(self.optimized_mir(did))
        } else {
            None
2788 2789 2790
        }
    }

2791
    /// Get the attributes of a definition.
2792
    pub fn get_attrs(self, did: DefId) -> Attributes<'gcx> {
2793
        if let Some(id) = self.hir.as_local_node_id(did) {
2794
            Attributes::Borrowed(self.hir.attrs(id))
2795
        } else {
A
achernyak 已提交
2796
            Attributes::Owned(self.item_attrs(did))
2797
        }
2798 2799
    }

2800
    /// Determine whether an item is annotated with an attribute
2801
    pub fn has_attr(self, did: DefId, attr: &str) -> bool {
2802
        attr::contains_name(&self.get_attrs(did), attr)
2803
    }
2804

2805 2806
    /// Returns true if this is an `auto trait`.
    pub fn trait_is_auto(self, trait_def_id: DefId) -> bool {
2807
        self.trait_def(trait_def_id).has_auto_impl
2808
    }
2809

J
John Kåre Alsaker 已提交
2810 2811 2812 2813
    pub fn generator_layout(self, def_id: DefId) -> &'tcx GeneratorLayout<'tcx> {
        self.optimized_mir(def_id).generator_layout.as_ref().unwrap()
    }

2814 2815
    /// Given the def_id of an impl, return the def_id of the trait it implements.
    /// If it implements no trait, return `None`.
2816
    pub fn trait_id_of_impl(self, def_id: DefId) -> Option<DefId> {
2817
        self.impl_trait_ref(def_id).map(|tr| tr.def_id)
2818
    }
2819 2820 2821

    /// If the given def ID describes a method belonging to an impl, return the
    /// ID of the impl that the method belongs to. Otherwise, return `None`.
2822
    pub fn impl_of_method(self, def_id: DefId) -> Option<DefId> {
2823
        let item = if def_id.krate != LOCAL_CRATE {
A
achernyak 已提交
2824
            if let Some(Def::Method(_)) = self.describe_def(def_id) {
2825 2826 2827 2828 2829
                Some(self.associated_item(def_id))
            } else {
                None
            }
        } else {
2830
            self.opt_associated_item(def_id)
2831 2832
        };

2833 2834 2835 2836
        item.and_then(|trait_item|
            match trait_item.container {
                TraitContainer(_) => None,
                ImplContainer(def_id) => Some(def_id),
2837
            }
2838
        )
2839 2840
    }

2841 2842
    /// Looks up the span of `impl_did` if the impl is local; otherwise returns `Err`
    /// with the name of the crate containing the impl.
2843
    pub fn span_of_impl(self, impl_did: DefId) -> Result<Span, Symbol> {
2844
        if impl_did.is_local() {
2845 2846
            let node_id = self.hir.as_local_node_id(impl_did).unwrap();
            Ok(self.hir.span(node_id))
2847
        } else {
2848
            Err(self.crate_name(impl_did.krate))
2849 2850
        }
    }
J
Jeffrey Seyfried 已提交
2851

2852 2853 2854
    // Hygienically compare a use-site name (`use_name`) for a field or an associated item with its
    // supposed definition name (`def_name`). The method also needs `DefId` of the supposed
    // definition's parent/scope to perform comparison.
2855 2856
    pub fn hygienic_eq(self, use_name: Ident, def_name: Ident, def_parent_def_id: DefId) -> bool {
        self.adjust_ident(use_name, def_parent_def_id, DUMMY_NODE_ID).0 == def_name.modern()
J
Jeffrey Seyfried 已提交
2857 2858 2859
    }

    pub fn adjust_ident(self, mut ident: Ident, scope: DefId, block: NodeId) -> (Ident, DefId) {
2860 2861
        ident = ident.modern();
        let target_expansion = match scope.krate {
2862
            LOCAL_CRATE => self.hir.definitions().expansion_that_defined(scope.index),
J
Jeffrey Seyfried 已提交
2863 2864
            _ => Mark::root(),
        };
2865 2866 2867
        let scope = match ident.span.adjust(target_expansion) {
            Some(actual_expansion) =>
                self.hir.definitions().parent_module_of_macro_def(actual_expansion),
2868
            None if block == DUMMY_NODE_ID => DefId::local(CRATE_DEF_INDEX), // Dummy DefId
J
Jeffrey Seyfried 已提交
2869 2870 2871 2872
            None => self.hir.get_module_parent(block),
        };
        (ident, scope)
    }
2873
}
2874

2875
impl<'a, 'gcx, 'tcx> TyCtxt<'a, 'gcx, 'tcx> {
2876
    pub fn with_freevars<T, F>(self, fid: NodeId, f: F) -> T where
2877
        F: FnOnce(&[hir::Freevar]) -> T,
2878
    {
A
Alex Crichton 已提交
2879 2880
        let def_id = self.hir.local_def_id(fid);
        match self.freevars(def_id) {
2881
            None => f(&[]),
2882
            Some(d) => f(&d),
2883 2884
        }
    }
2885
}
2886 2887 2888 2889 2890 2891 2892 2893 2894

fn associated_item<'a, 'tcx>(tcx: TyCtxt<'a, 'tcx, 'tcx>, def_id: DefId)
    -> AssociatedItem
{
    let id = tcx.hir.as_local_node_id(def_id).unwrap();
    let parent_id = tcx.hir.get_parent(id);
    let parent_def_id = tcx.hir.local_def_id(parent_id);
    let parent_item = tcx.hir.expect_item(parent_id);
    match parent_item.node {
C
csmoe 已提交
2895
        hir::ItemKind::Impl(.., ref impl_item_refs) => {
2896
            if let Some(impl_item_ref) = impl_item_refs.iter().find(|i| i.id.node_id == id) {
2897 2898
                let assoc_item = tcx.associated_item_from_impl_item_ref(parent_def_id,
                                                                        impl_item_ref);
2899 2900
                debug_assert_eq!(assoc_item.def_id, def_id);
                return assoc_item;
2901 2902 2903
            }
        }

C
csmoe 已提交
2904
        hir::ItemKind::Trait(.., ref trait_item_refs) => {
2905
            if let Some(trait_item_ref) = trait_item_refs.iter().find(|i| i.id.node_id == id) {
2906 2907 2908
                let assoc_item = tcx.associated_item_from_trait_item_ref(parent_def_id,
                                                                         &parent_item.vis,
                                                                         trait_item_ref);
2909 2910
                debug_assert_eq!(assoc_item.def_id, def_id);
                return assoc_item;
2911 2912 2913
            }
        }

2914
        _ => { }
2915
    }
2916 2917 2918 2919

    span_bug!(parent_item.span,
              "unexpected parent of trait or impl item or item not found: {:?}",
              parent_item.node)
2920 2921
}

2922 2923
/// Calculates the Sized-constraint.
///
2924
/// In fact, there are only a few options for the types in the constraint:
2925 2926 2927 2928
///     - an obviously-unsized type
///     - a type parameter or projection whose Sizedness can't be known
///     - a tuple of type parameters or projections, if there are multiple
///       such.
V
varkor 已提交
2929
///     - a Error, if a type contained itself. The representability
2930 2931 2932
///       check should catch this case.
fn adt_sized_constraint<'a, 'tcx>(tcx: TyCtxt<'a, 'tcx, 'tcx>,
                                  def_id: DefId)
2933
                                  -> &'tcx [Ty<'tcx>] {
2934
    let def = tcx.adt_def(def_id);
2935

2936
    let result = tcx.mk_type_list(def.variants.iter().flat_map(|v| {
2937 2938
        v.fields.last()
    }).flat_map(|f| {
2939
        def.sized_constraint_for_ty(tcx, tcx.type_of(f.did))
2940
    }));
2941

2942
    debug!("adt_sized_constraint: {:?} => {:?}", def, result);
2943

2944
    result
2945 2946
}

2947 2948
fn associated_item_def_ids<'a, 'tcx>(tcx: TyCtxt<'a, 'tcx, 'tcx>,
                                     def_id: DefId)
2949
                                     -> Lrc<Vec<DefId>> {
2950 2951 2952
    let id = tcx.hir.as_local_node_id(def_id).unwrap();
    let item = tcx.hir.expect_item(id);
    let vec: Vec<_> = match item.node {
C
csmoe 已提交
2953
        hir::ItemKind::Trait(.., ref trait_item_refs) => {
2954 2955 2956 2957 2958
            trait_item_refs.iter()
                           .map(|trait_item_ref| trait_item_ref.id)
                           .map(|id| tcx.hir.local_def_id(id.node_id))
                           .collect()
        }
C
csmoe 已提交
2959
        hir::ItemKind::Impl(.., ref impl_item_refs) => {
2960 2961 2962 2963 2964
            impl_item_refs.iter()
                          .map(|impl_item_ref| impl_item_ref.id)
                          .map(|id| tcx.hir.local_def_id(id.node_id))
                          .collect()
        }
C
csmoe 已提交
2965
        hir::ItemKind::TraitAlias(..) => vec![],
2966 2967
        _ => span_bug!(item.span, "associated_item_def_ids: not impl or trait")
    };
2968
    Lrc::new(vec)
2969 2970
}

A
achernyak 已提交
2971
fn def_span<'a, 'tcx>(tcx: TyCtxt<'a, 'tcx, 'tcx>, def_id: DefId) -> Span {
A
achernyak 已提交
2972
    tcx.hir.span_if_local(def_id).unwrap()
A
achernyak 已提交
2973 2974
}

A
achernyak 已提交
2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987
/// If the given def ID describes an item belonging to a trait,
/// return the ID of the trait that the trait item belongs to.
/// Otherwise, return `None`.
fn trait_of_item<'a, 'tcx>(tcx: TyCtxt<'a, 'tcx, 'tcx>, def_id: DefId) -> Option<DefId> {
    tcx.opt_associated_item(def_id)
        .and_then(|associated_item| {
            match associated_item.container {
                TraitContainer(def_id) => Some(def_id),
                ImplContainer(_) => None
            }
        })
}

2988
/// Yields the parent function's `DefId` if `def_id` is an `impl Trait` definition
2989
pub fn is_impl_trait_defn(tcx: TyCtxt<'_, '_, '_>, def_id: DefId) -> Option<DefId> {
2990
    if let Some(node_id) = tcx.hir.as_local_node_id(def_id) {
V
varkor 已提交
2991
        if let Node::Item(item) = tcx.hir.get(node_id) {
2992 2993 2994 2995 2996 2997 2998 2999
            if let hir::ItemKind::Existential(ref exist_ty) = item.node {
                return exist_ty.impl_trait_fn;
            }
        }
    }
    None
}

3000
/// See `ParamEnv` struct def'n for details.
3001
fn param_env<'a, 'tcx>(tcx: TyCtxt<'a, 'tcx, 'tcx>,
3002 3003
                       def_id: DefId)
                       -> ParamEnv<'tcx> {
3004

O
Oliver Schneider 已提交
3005
    // The param_env of an impl Trait type is its defining function's param_env
3006 3007
    if let Some(parent) = is_impl_trait_defn(tcx, def_id) {
        return param_env(tcx, parent);
3008
    }
3009 3010
    // Compute the bounds on Self and the type parameters.

N
Niko Matsakis 已提交
3011 3012
    let InstantiatedPredicates { predicates } =
        tcx.predicates_of(def_id).instantiate_identity(tcx);
3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025

    // Finally, we have to normalize the bounds in the environment, in
    // case they contain any associated type projections. This process
    // can yield errors if the put in illegal associated types, like
    // `<i32 as Foo>::Bar` where `i32` does not implement `Foo`. We
    // report these errors right here; this doesn't actually feel
    // right to me, because constructing the environment feels like a
    // kind of a "idempotent" action, but I'm not sure where would be
    // a better place. In practice, we construct environments for
    // every fn once during type checking, and we'll abort if there
    // are any errors at that point, so after type checking you can be
    // sure that this will succeed without errors anyway.

3026
    let unnormalized_env = ty::ParamEnv::new(tcx.intern_predicates(&predicates),
3027
                                             traits::Reveal::UserFacing);
3028 3029 3030 3031 3032 3033 3034

    let body_id = tcx.hir.as_local_node_id(def_id).map_or(DUMMY_NODE_ID, |id| {
        tcx.hir.maybe_body_owned_by(id).map_or(id, |body| body.node_id)
    });
    let cause = traits::ObligationCause::misc(tcx.def_span(def_id), body_id);
    traits::normalize_param_env_or_error(tcx, def_id, unnormalized_env, cause)
}
A
achernyak 已提交
3035

3036
fn crate_disambiguator<'a, 'tcx>(tcx: TyCtxt<'a, 'tcx, 'tcx>,
3037
                                 crate_num: CrateNum) -> CrateDisambiguator {
3038 3039 3040 3041
    assert_eq!(crate_num, LOCAL_CRATE);
    tcx.sess.local_crate_disambiguator()
}

3042 3043 3044 3045 3046 3047
fn original_crate_name<'a, 'tcx>(tcx: TyCtxt<'a, 'tcx, 'tcx>,
                                 crate_num: CrateNum) -> Symbol {
    assert_eq!(crate_num, LOCAL_CRATE);
    tcx.crate_name.clone()
}

3048 3049 3050 3051 3052 3053 3054
fn crate_hash<'a, 'tcx>(tcx: TyCtxt<'a, 'tcx, 'tcx>,
                        crate_num: CrateNum)
                        -> Svh {
    assert_eq!(crate_num, LOCAL_CRATE);
    tcx.hir.crate_hash
}

V
varkor 已提交
3055 3056 3057 3058
fn instance_def_size_estimate<'a, 'tcx>(tcx: TyCtxt<'a, 'tcx, 'tcx>,
                                        instance_def: InstanceDef<'tcx>)
                                        -> usize {
    match instance_def {
3059 3060 3061
        InstanceDef::Item(..) |
        InstanceDef::DropGlue(..) => {
            let mir = tcx.instance_mir(instance_def);
V
varkor 已提交
3062 3063
            mir.basic_blocks().iter().map(|bb| bb.statements.len()).sum()
        },
3064
        // Estimate the size of other compiler-generated shims to be 1.
V
varkor 已提交
3065 3066 3067 3068
        _ => 1
    }
}

3069
pub fn provide(providers: &mut ty::query::Providers<'_>) {
3070
    context::provide(providers);
3071
    erase_regions::provide(providers);
3072 3073
    layout::provide(providers);
    util::provide(providers);
3074
    constness::provide(providers);
3075
    *providers = ty::query::Providers {
3076
        associated_item,
3077
        associated_item_def_ids,
3078
        adt_sized_constraint,
A
achernyak 已提交
3079
        def_span,
3080
        param_env,
A
achernyak 已提交
3081
        trait_of_item,
3082
        crate_disambiguator,
3083
        original_crate_name,
3084
        crate_hash,
3085
        trait_impls_of: trait_def::trait_impls_of_provider,
V
varkor 已提交
3086
        instance_def_size_estimate,
3087 3088 3089 3090
        ..*providers
    };
}

3091 3092 3093
/// A map for the local crate mapping each type to a vector of its
/// inherent impls. This is not meant to be used outside of coherence;
/// rather, you should request the vector for a specific type via
3094 3095
/// `tcx.inherent_impls(def_id)` so as to minimize your dependencies
/// (constructing this map requires touching the entire crate).
3096 3097
#[derive(Clone, Debug)]
pub struct CrateInherentImpls {
3098
    pub inherent_impls: DefIdMap<Lrc<Vec<DefId>>>,
3099
}
A
Ariel Ben-Yehuda 已提交
3100

3101
#[derive(Clone, Copy, PartialEq, Eq, PartialOrd, Ord, RustcEncodable, RustcDecodable)]
3102 3103 3104 3105 3106 3107
pub struct SymbolName {
    // FIXME: we don't rely on interning or equality here - better have
    // this be a `&'tcx str`.
    pub name: InternedString
}

3108 3109 3110 3111
impl_stable_hash_for!(struct self::SymbolName {
    name
});

3112 3113 3114
impl SymbolName {
    pub fn new(name: &str) -> SymbolName {
        SymbolName {
3115
            name: Symbol::intern(name).as_interned_str()
3116 3117
        }
    }
3118

3119 3120 3121
    pub fn as_str(&self) -> LocalInternedString {
        self.name.as_str()
    }
3122 3123 3124
}

impl fmt::Display for SymbolName {
3125
    fn fmt(&self, fmt: &mut fmt::Formatter<'_>) -> fmt::Result {
3126 3127 3128
        fmt::Display::fmt(&self.name, fmt)
    }
}
3129 3130

impl fmt::Debug for SymbolName {
3131
    fn fmt(&self, fmt: &mut fmt::Formatter<'_>) -> fmt::Result {
3132 3133 3134
        fmt::Display::fmt(&self.name, fmt)
    }
}