mod.rs 109.4 KB
Newer Older
1
// Copyright 2012-2015 The Rust Project Developers. See the COPYRIGHT
2 3 4 5 6 7 8 9 10
// file at the top-level directory of this distribution and at
// http://rust-lang.org/COPYRIGHT.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.

S
Steven Fackler 已提交
11
pub use self::Variance::*;
12
pub use self::AssociatedItemContainer::*;
S
Steven Fackler 已提交
13 14
pub use self::BorrowKind::*;
pub use self::IntVarValue::*;
15
pub use self::fold::TypeFoldable;
S
Steven Fackler 已提交
16

17
use hir::{map as hir_map, FreevarMap, TraitMap};
V
varkor 已提交
18
use hir::Node;
19
use hir::def::{Def, CtorKind, ExportMap};
20
use hir::def_id::{CrateNum, DefId, LocalDefId, CRATE_DEF_INDEX, LOCAL_CRATE};
21
use hir::map::DefPathData;
22
use rustc_data_structures::svh::Svh;
W
Wesley Wiser 已提交
23
use ich::Fingerprint;
24
use ich::StableHashingContext;
25
use infer::canonical::Canonical;
26
use middle::lang_items::{FnTraitLangItem, FnMutTraitLangItem, FnOnceTraitLangItem};
27
use middle::privacy::AccessLevels;
28
use middle::resolve_lifetime::ObjectLifetimeDefault;
29
use mir::Mir;
30
use mir::interpret::GlobalId;
J
John Kåre Alsaker 已提交
31
use mir::GeneratorLayout;
32
use session::CrateDisambiguator;
33
use traits::{self, Reveal};
34
use ty;
35
use ty::subst::{Subst, Substs};
O
Oliver Schneider 已提交
36
use ty::util::{IntTypeExt, Discr};
37
use ty::walk::TypeWalker;
38
use util::captures::Captures;
39
use util::nodemap::{NodeSet, DefIdMap, FxHashMap};
J
John Kåre Alsaker 已提交
40
use arena::SyncDroplessArena;
41
use session::DataTypeKind;
42

43
use serialize::{self, Encodable, Encoder};
W
Wesley Wiser 已提交
44
use std::cell::RefCell;
45
use std::cmp::{self, Ordering};
46
use std::fmt;
47
use std::hash::{Hash, Hasher};
48
use std::ops::Deref;
J
John Kåre Alsaker 已提交
49
use rustc_data_structures::sync::{self, Lrc, ParallelIterator, par_iter};
50
use std::slice;
51
use std::vec::IntoIter;
52
use std::{mem, ptr};
J
Jeffrey Seyfried 已提交
53
use syntax::ast::{self, DUMMY_NODE_ID, Name, Ident, NodeId};
54
use syntax::attr;
55
use syntax::ext::hygiene::Mark;
56
use syntax::symbol::{keywords, Symbol, LocalInternedString, InternedString};
57
use syntax_pos::{DUMMY_SP, Span};
58

59
use smallvec;
60 61
use rustc_data_structures::stable_hasher::{StableHasher, StableHasherResult,
                                           HashStable};
O
Oliver Schneider 已提交
62

63
use hir;
64

65
pub use self::sty::{Binder, CanonicalVar, DebruijnIndex, INNERMOST};
J
John Kåre Alsaker 已提交
66
pub use self::sty::{FnSig, GenSig, PolyFnSig, PolyGenSig};
67
pub use self::sty::{InferTy, ParamTy, ProjectionTy, ExistentialPredicate};
68
pub use self::sty::{ClosureSubsts, GeneratorSubsts, UpvarSubsts, TypeAndMut};
V
varkor 已提交
69
pub use self::sty::{TraitRef, TyKind, PolyTraitRef};
70
pub use self::sty::{ExistentialTraitRef, PolyExistentialTraitRef};
71
pub use self::sty::{ExistentialProjection, PolyExistentialProjection, Const};
72
pub use self::sty::{BoundRegion, EarlyBoundRegion, FreeRegion, Region};
N
Niko Matsakis 已提交
73
pub use self::sty::RegionKind;
74
pub use self::sty::{TyVid, IntVid, FloatVid, RegionVid};
75 76
pub use self::sty::BoundRegion::*;
pub use self::sty::InferTy::*;
N
Niko Matsakis 已提交
77
pub use self::sty::RegionKind::*;
V
varkor 已提交
78
pub use self::sty::TyKind::*;
79

80 81 82
pub use self::binding::BindingMode;
pub use self::binding::BindingMode::*;

83
pub use self::context::{TyCtxt, GlobalArenas, AllArenas, tls, keep_local};
84
pub use self::context::{Lift, TypeckTables};
85

86 87
pub use self::instance::{Instance, InstanceDef};

88
pub use self::trait_def::TraitDef;
89

90
pub use self::query::queries;
91

92
pub mod adjustment;
93
pub mod binding;
94
pub mod cast;
95
#[macro_use]
96
pub mod codec;
97
pub mod error;
98
mod erase_regions;
99 100
pub mod fast_reject;
pub mod fold;
A
Andrew Cann 已提交
101
pub mod inhabitedness;
102
pub mod item_path;
103
pub mod layout;
104 105
pub mod _match;
pub mod outlives;
106
pub mod query;
107
pub mod relate;
108
pub mod steal;
109
pub mod subst;
110
pub mod trait_def;
111 112
pub mod walk;
pub mod wf;
113
pub mod util;
114

115 116
mod context;
mod flags;
117
mod instance;
118 119 120
mod structural_impls;
mod sty;

121
// Data types
122

123
/// The complete set of all analyses described in this module. This is
I
Irina Popa 已提交
124
/// produced by the driver and fed to codegen and later passes.
125 126 127
///
/// NB: These contents are being migrated into queries using the
/// *on-demand* infrastructure.
J
Jeffrey Seyfried 已提交
128
#[derive(Clone)]
129
pub struct CrateAnalysis {
130
    pub access_levels: Lrc<AccessLevels>,
131
    pub name: String,
132
    pub glob_map: Option<hir::GlobMap>,
133 134
}

135 136 137 138 139
#[derive(Clone)]
pub struct Resolutions {
    pub freevars: FreevarMap,
    pub trait_map: TraitMap,
    pub maybe_unused_trait_imports: NodeSet,
140
    pub maybe_unused_extern_crates: Vec<(NodeId, Span)>,
N
Niko Matsakis 已提交
141
    pub export_map: ExportMap,
142 143
}

144
#[derive(Clone, Copy, PartialEq, Eq, Debug)]
145
pub enum AssociatedItemContainer {
N
Niko Matsakis 已提交
146 147
    TraitContainer(DefId),
    ImplContainer(DefId),
148 149
}

150
impl AssociatedItemContainer {
151 152 153 154 155 156 157 158 159
    /// Asserts that this is the def-id of an associated item declared
    /// in a trait, and returns the trait def-id.
    pub fn assert_trait(&self) -> DefId {
        match *self {
            TraitContainer(id) => id,
            _ => bug!("associated item has wrong container type: {:?}", self)
        }
    }

N
Niko Matsakis 已提交
160
    pub fn id(&self) -> DefId {
161 162 163 164 165 166 167
        match *self {
            TraitContainer(id) => id,
            ImplContainer(id) => id,
        }
    }
}

A
Aaron Turon 已提交
168 169 170 171 172 173 174 175 176 177 178
/// The "header" of an impl is everything outside the body: a Self type, a trait
/// ref (in the case of a trait impl), and a set of predicates (from the
/// bounds/where clauses).
#[derive(Clone, PartialEq, Eq, Hash, Debug)]
pub struct ImplHeader<'tcx> {
    pub impl_def_id: DefId,
    pub self_ty: Ty<'tcx>,
    pub trait_ref: Option<TraitRef<'tcx>>,
    pub predicates: Vec<Predicate<'tcx>>,
}

179
#[derive(Copy, Clone, Debug, PartialEq)]
180 181
pub struct AssociatedItem {
    pub def_id: DefId,
182
    pub ident: Ident,
183 184 185 186
    pub kind: AssociatedKind,
    pub vis: Visibility,
    pub defaultness: hir::Defaultness,
    pub container: AssociatedItemContainer,
187

188 189 190 191
    /// Whether this is a method with an explicit self
    /// as its first argument, allowing method calls.
    pub method_has_self_argument: bool,
}
192

193
#[derive(Copy, Clone, PartialEq, Eq, Debug, Hash, RustcEncodable, RustcDecodable)]
194 195 196
pub enum AssociatedKind {
    Const,
    Method,
O
Oliver Schneider 已提交
197
    Existential,
198 199
    Type
}
200

201 202 203 204 205 206
impl AssociatedItem {
    pub fn def(&self) -> Def {
        match self.kind {
            AssociatedKind::Const => Def::AssociatedConst(self.def_id),
            AssociatedKind::Method => Def::Method(self.def_id),
            AssociatedKind::Type => Def::AssociatedTy(self.def_id),
O
Oliver Schneider 已提交
207
            AssociatedKind::Existential => Def::AssociatedExistential(self.def_id),
208 209
        }
    }
A
Andrew Cann 已提交
210 211 212 213 214

    /// Tests whether the associated item admits a non-trivial implementation
    /// for !
    pub fn relevant_for_never<'tcx>(&self) -> bool {
        match self.kind {
O
Oliver Schneider 已提交
215 216
            AssociatedKind::Existential |
            AssociatedKind::Const |
A
Andrew Cann 已提交
217
            AssociatedKind::Type => true,
A
Andrew Cann 已提交
218
            // FIXME(canndrew): Be more thorough here, check if any argument is uninhabited.
A
Andrew Cann 已提交
219 220 221
            AssociatedKind::Method => !self.method_has_self_argument,
        }
    }
222 223 224 225 226 227 228 229

    pub fn signature<'a, 'tcx>(&self, tcx: &TyCtxt<'a, 'tcx, 'tcx>) -> String {
        match self.kind {
            ty::AssociatedKind::Method => {
                // We skip the binder here because the binder would deanonymize all
                // late-bound regions, and we don't want method signatures to show up
                // `as for<'r> fn(&'r MyType)`.  Pretty-printing handles late-bound
                // regions just fine, showing `fn(&MyType)`.
L
ljedrz 已提交
230
                tcx.fn_sig(self.def_id).skip_binder().to_string()
231
            }
232
            ty::AssociatedKind::Type => format!("type {};", self.ident),
O
Oliver Schneider 已提交
233
            ty::AssociatedKind::Existential => format!("existential type {};", self.ident),
234
            ty::AssociatedKind::Const => {
235
                format!("const {}: {:?};", self.ident, tcx.type_of(self.def_id))
236 237 238
            }
        }
    }
239 240
}

241
#[derive(Clone, Debug, PartialEq, Eq, Copy, RustcEncodable, RustcDecodable)]
242 243 244 245
pub enum Visibility {
    /// Visible everywhere (including in other crates).
    Public,
    /// Visible only in the given crate-local module.
246
    Restricted(DefId),
247
    /// Not visible anywhere in the local crate. This is the visibility of private external items.
248
    Invisible,
249 250
}

251 252
pub trait DefIdTree: Copy {
    fn parent(self, id: DefId) -> Option<DefId>;
A
Andrew Cann 已提交
253 254 255 256 257 258 259 260 261 262 263 264 265 266

    fn is_descendant_of(self, mut descendant: DefId, ancestor: DefId) -> bool {
        if descendant.krate != ancestor.krate {
            return false;
        }

        while descendant != ancestor {
            match self.parent(descendant) {
                Some(parent) => descendant = parent,
                None => return false,
            }
        }
        true
    }
267 268
}

269 270 271
impl<'a, 'gcx, 'tcx> DefIdTree for TyCtxt<'a, 'gcx, 'tcx> {
    fn parent(self, id: DefId) -> Option<DefId> {
        self.def_key(id).parent.map(|index| DefId { index: index, ..id })
272 273 274
    }
}

275
impl Visibility {
276
    pub fn from_hir(visibility: &hir::Visibility, id: NodeId, tcx: TyCtxt) -> Self {
277
        match visibility.node {
278 279 280
            hir::VisibilityKind::Public => Visibility::Public,
            hir::VisibilityKind::Crate(_) => Visibility::Restricted(DefId::local(CRATE_DEF_INDEX)),
            hir::VisibilityKind::Restricted { ref path, .. } => match path.def {
281 282
                // If there is no resolution, `resolve` will have already reported an error, so
                // assume that the visibility is public to avoid reporting more privacy errors.
283
                Def::Err => Visibility::Public,
284
                def => Visibility::Restricted(def.def_id()),
285
            },
286
            hir::VisibilityKind::Inherited => {
J
Jeffrey Seyfried 已提交
287
                Visibility::Restricted(tcx.hir.get_module_parent(id))
288
            }
289 290
        }
    }
291 292

    /// Returns true if an item with this visibility is accessible from the given block.
A
Andrew Cann 已提交
293
    pub fn is_accessible_from<T: DefIdTree>(self, module: DefId, tree: T) -> bool {
294 295 296 297
        let restriction = match self {
            // Public items are visible everywhere.
            Visibility::Public => return true,
            // Private items from other crates are visible nowhere.
298
            Visibility::Invisible => return false,
299
            // Restricted items are visible in an arbitrary local module.
300
            Visibility::Restricted(other) if other.krate != module.krate => return false,
301 302 303
            Visibility::Restricted(module) => module,
        };

A
Andrew Cann 已提交
304
        tree.is_descendant_of(module, restriction)
305
    }
306 307

    /// Returns true if this visibility is at least as accessible as the given visibility
308
    pub fn is_at_least<T: DefIdTree>(self, vis: Visibility, tree: T) -> bool {
309 310
        let vis_restriction = match vis {
            Visibility::Public => return self == Visibility::Public,
311
            Visibility::Invisible => return true,
312 313 314
            Visibility::Restricted(module) => module,
        };

315
        self.is_accessible_from(vis_restriction, tree)
316
    }
317 318 319 320 321 322 323 324 325

    // Returns true if this item is visible anywhere in the local crate.
    pub fn is_visible_locally(self) -> bool {
        match self {
            Visibility::Public => true,
            Visibility::Restricted(def_id) => def_id.is_local(),
            Visibility::Invisible => false,
        }
    }
326 327
}

328
#[derive(Clone, PartialEq, RustcDecodable, RustcEncodable, Copy)]
329
pub enum Variance {
330 331 332 333
    Covariant,      // T<A> <: T<B> iff A <: B -- e.g., function return type
    Invariant,      // T<A> <: T<B> iff B == A -- e.g., type of mutable cell
    Contravariant,  // T<A> <: T<B> iff B <: A -- e.g., function param type
    Bivariant,      // T<A> <: T<B>            -- e.g., unused type parameter
334
}
335

336 337 338 339
/// The crate variances map is computed during typeck and contains the
/// variance of every item in the local crate. You should not use it
/// directly, because to do so will make your pass dependent on the
/// HIR of every item in the local crate. Instead, use
340
/// `tcx.variances_of()` to get the variance for a *particular*
341 342 343 344 345
/// item.
pub struct CrateVariancesMap {
    /// For each item with generics, maps to a vector of the variance
    /// of its generics.  If an item has no generics, it will have no
    /// entry.
346
    pub variances: FxHashMap<DefId, Lrc<Vec<ty::Variance>>>,
347 348

    /// An empty vector, useful for cloning.
349
    pub empty_variance: Lrc<Vec<ty::Variance>>,
350 351
}

352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411
impl Variance {
    /// `a.xform(b)` combines the variance of a context with the
    /// variance of a type with the following meaning.  If we are in a
    /// context with variance `a`, and we encounter a type argument in
    /// a position with variance `b`, then `a.xform(b)` is the new
    /// variance with which the argument appears.
    ///
    /// Example 1:
    ///
    ///     *mut Vec<i32>
    ///
    /// Here, the "ambient" variance starts as covariant. `*mut T` is
    /// invariant with respect to `T`, so the variance in which the
    /// `Vec<i32>` appears is `Covariant.xform(Invariant)`, which
    /// yields `Invariant`. Now, the type `Vec<T>` is covariant with
    /// respect to its type argument `T`, and hence the variance of
    /// the `i32` here is `Invariant.xform(Covariant)`, which results
    /// (again) in `Invariant`.
    ///
    /// Example 2:
    ///
    ///     fn(*const Vec<i32>, *mut Vec<i32)
    ///
    /// The ambient variance is covariant. A `fn` type is
    /// contravariant with respect to its parameters, so the variance
    /// within which both pointer types appear is
    /// `Covariant.xform(Contravariant)`, or `Contravariant`.  `*const
    /// T` is covariant with respect to `T`, so the variance within
    /// which the first `Vec<i32>` appears is
    /// `Contravariant.xform(Covariant)` or `Contravariant`.  The same
    /// is true for its `i32` argument. In the `*mut T` case, the
    /// variance of `Vec<i32>` is `Contravariant.xform(Invariant)`,
    /// and hence the outermost type is `Invariant` with respect to
    /// `Vec<i32>` (and its `i32` argument).
    ///
    /// Source: Figure 1 of "Taming the Wildcards:
    /// Combining Definition- and Use-Site Variance" published in PLDI'11.
    pub fn xform(self, v: ty::Variance) -> ty::Variance {
        match (self, v) {
            // Figure 1, column 1.
            (ty::Covariant, ty::Covariant) => ty::Covariant,
            (ty::Covariant, ty::Contravariant) => ty::Contravariant,
            (ty::Covariant, ty::Invariant) => ty::Invariant,
            (ty::Covariant, ty::Bivariant) => ty::Bivariant,

            // Figure 1, column 2.
            (ty::Contravariant, ty::Covariant) => ty::Contravariant,
            (ty::Contravariant, ty::Contravariant) => ty::Covariant,
            (ty::Contravariant, ty::Invariant) => ty::Invariant,
            (ty::Contravariant, ty::Bivariant) => ty::Bivariant,

            // Figure 1, column 3.
            (ty::Invariant, _) => ty::Invariant,

            // Figure 1, column 4.
            (ty::Bivariant, _) => ty::Bivariant,
        }
    }
}

412 413 414
// Contains information needed to resolve types and (in the future) look up
// the types of AST nodes.
#[derive(Copy, Clone, PartialEq, Eq, Hash)]
415
pub struct CReaderCacheKey {
416 417 418 419
    pub cnum: CrateNum,
    pub pos: usize,
}

420 421 422 423
// Flags that we track on types. These flags are propagated upwards
// through the type during type construction, so that we can quickly
// check whether the type has various kinds of types in it without
// recursing over the type itself.
424
bitflags! {
425 426 427 428 429 430
    pub struct TypeFlags: u32 {
        const HAS_PARAMS         = 1 << 0;
        const HAS_SELF           = 1 << 1;
        const HAS_TY_INFER       = 1 << 2;
        const HAS_RE_INFER       = 1 << 3;
        const HAS_RE_SKOL        = 1 << 4;
431 432 433 434 435

        /// Does this have any `ReEarlyBound` regions? Used to
        /// determine whether substitition is required, since those
        /// represent regions that are bound in a `ty::Generics` and
        /// hence may be substituted.
436
        const HAS_RE_EARLY_BOUND = 1 << 5;
437 438 439

        /// Does this have any region that "appears free" in the type?
        /// Basically anything but `ReLateBound` and `ReErased`.
440
        const HAS_FREE_REGIONS   = 1 << 6;
441 442

        /// Is an error type reachable?
443 444
        const HAS_TY_ERR         = 1 << 7;
        const HAS_PROJECTION     = 1 << 8;
J
John Kåre Alsaker 已提交
445 446

        // FIXME: Rename this to the actual property since it's used for generators too
447
        const HAS_TY_CLOSURE     = 1 << 9;
448 449 450

        // true if there are "names" of types and regions and so forth
        // that are local to a particular fn
451
        const HAS_FREE_LOCAL_NAMES    = 1 << 10;
452

453
        // Present if the type belongs in a local type context.
V
varkor 已提交
454
        // Only set for Infer other than Fresh.
455
        const KEEP_IN_LOCAL_TCX  = 1 << 11;
456

457 458
        // Is there a projection that does not involve a bound region?
        // Currently we can't normalize projections w/ bound regions.
459
        const HAS_NORMALIZABLE_PROJECTION = 1 << 12;
460

461 462 463 464
        // Set if this includes a "canonical" type or region var --
        // ought to be true only for the results of canonicalization.
        const HAS_CANONICAL_VARS = 1 << 13;

465 466 467 468
        /// Does this have any `ReLateBound` regions? Used to check
        /// if a global bound is safe to evaluate.
        const HAS_RE_LATE_BOUND = 1 << 14;

469 470
        const NEEDS_SUBST        = TypeFlags::HAS_PARAMS.bits |
                                   TypeFlags::HAS_SELF.bits |
471
                                   TypeFlags::HAS_RE_EARLY_BOUND.bits;
472 473

        // Flags representing the nominal content of a type,
474 475
        // computed by FlagsComputation. If you add a new nominal
        // flag, it should be added here too.
476 477 478 479
        const NOMINAL_FLAGS     = TypeFlags::HAS_PARAMS.bits |
                                  TypeFlags::HAS_SELF.bits |
                                  TypeFlags::HAS_TY_INFER.bits |
                                  TypeFlags::HAS_RE_INFER.bits |
480
                                  TypeFlags::HAS_RE_SKOL.bits |
481 482
                                  TypeFlags::HAS_RE_EARLY_BOUND.bits |
                                  TypeFlags::HAS_FREE_REGIONS.bits |
483
                                  TypeFlags::HAS_TY_ERR.bits |
484
                                  TypeFlags::HAS_PROJECTION.bits |
485
                                  TypeFlags::HAS_TY_CLOSURE.bits |
486
                                  TypeFlags::HAS_FREE_LOCAL_NAMES.bits |
487
                                  TypeFlags::KEEP_IN_LOCAL_TCX.bits |
488 489
                                  TypeFlags::HAS_CANONICAL_VARS.bits |
                                  TypeFlags::HAS_RE_LATE_BOUND.bits;
490
    }
491 492
}

493
pub struct TyS<'tcx> {
V
varkor 已提交
494
    pub sty: TyKind<'tcx>,
495
    pub flags: TypeFlags,
496

497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514
    /// This is a kind of confusing thing: it stores the smallest
    /// binder such that
    ///
    /// (a) the binder itself captures nothing but
    /// (b) all the late-bound things within the type are captured
    ///     by some sub-binder.
    ///
    /// So, for a type without any late-bound things, like `u32`, this
    /// will be INNERMOST, because that is the innermost binder that
    /// captures nothing. But for a type `&'D u32`, where `'D` is a
    /// late-bound region with debruijn index D, this would be D+1 --
    /// the binder itself does not capture D, but D is captured by an
    /// inner binder.
    ///
    /// We call this concept an "exclusive" binder D (because all
    /// debruijn indices within the type are contained within `0..D`
    /// (exclusive)).
    outer_exclusive_binder: ty::DebruijnIndex,
515 516
}

517 518 519 520 521 522 523 524 525 526 527 528
impl<'tcx> Ord for TyS<'tcx> {
    fn cmp(&self, other: &TyS<'tcx>) -> Ordering {
        self.sty.cmp(&other.sty)
    }
}

impl<'tcx> PartialOrd for TyS<'tcx> {
    fn partial_cmp(&self, other: &TyS<'tcx>) -> Option<Ordering> {
        Some(self.sty.cmp(&other.sty))
    }
}

529
impl<'tcx> PartialEq for TyS<'tcx> {
530
    #[inline]
531
    fn eq(&self, other: &TyS<'tcx>) -> bool {
532
        ptr::eq(self, other)
533 534
    }
}
535
impl<'tcx> Eq for TyS<'tcx> {}
536

A
Alex Crichton 已提交
537 538
impl<'tcx> Hash for TyS<'tcx> {
    fn hash<H: Hasher>(&self, s: &mut H) {
N
Nick Cameron 已提交
539
        (self as *const TyS).hash(s)
A
Alex Crichton 已提交
540 541
    }
}
542

G
Guillaume Gomez 已提交
543 544 545
impl<'tcx> TyS<'tcx> {
    pub fn is_primitive_ty(&self) -> bool {
        match self.sty {
546 547 548 549 550
            TyKind::Bool |
                TyKind::Char |
                TyKind::Int(_) |
                TyKind::Uint(_) |
                TyKind::Float(_) |
V
varkor 已提交
551 552 553 554 555
                TyKind::Infer(InferTy::IntVar(_)) |
                TyKind::Infer(InferTy::FloatVar(_)) |
                TyKind::Infer(InferTy::FreshIntTy(_)) |
                TyKind::Infer(InferTy::FreshFloatTy(_)) => true,
            TyKind::Ref(_, x, _) => x.is_primitive_ty(),
G
Guillaume Gomez 已提交
556 557 558
            _ => false,
        }
    }
559 560 561

    pub fn is_suggestable(&self) -> bool {
        match self.sty {
562
            TyKind::Opaque(..) |
V
varkor 已提交
563 564 565 566 567 568
            TyKind::FnDef(..) |
            TyKind::FnPtr(..) |
            TyKind::Dynamic(..) |
            TyKind::Closure(..) |
            TyKind::Infer(..) |
            TyKind::Projection(..) => false,
569 570 571
            _ => true,
        }
    }
G
Guillaume Gomez 已提交
572 573
}

574
impl<'a, 'gcx> HashStable<StableHashingContext<'a>> for ty::TyS<'gcx> {
575
    fn hash_stable<W: StableHasherResult>(&self,
576
                                          hcx: &mut StableHashingContext<'a>,
577 578 579 580 581 582 583
                                          hasher: &mut StableHasher<W>) {
        let ty::TyS {
            ref sty,

            // The other fields just provide fast access to information that is
            // also contained in `sty`, so no need to hash them.
            flags: _,
584 585

            outer_exclusive_binder: _,
586 587 588 589 590 591
        } = *self;

        sty.hash_stable(hcx, hasher);
    }
}

592
pub type Ty<'tcx> = &'tcx TyS<'tcx>;
593

594 595
impl<'tcx> serialize::UseSpecializedEncodable for Ty<'tcx> {}
impl<'tcx> serialize::UseSpecializedDecodable for Ty<'tcx> {}
596

597 598
pub type CanonicalTy<'gcx> = Canonical<'gcx, Ty<'gcx>>;

J
John Kåre Alsaker 已提交
599
extern {
V
varkor 已提交
600 601
    /// A dummy type used to force List to by unsized without requiring fat pointers
    type OpaqueListContents;
J
John Kåre Alsaker 已提交
602 603
}

A
Adam Perry 已提交
604
/// A wrapper for slices with the additional invariant
605 606
/// that the slice is interned and no other slice with
/// the same contents can exist in the same context.
J
John Kåre Alsaker 已提交
607
/// This means we can use pointer for both
608
/// equality comparisons and hashing.
V
varkor 已提交
609
/// Note: `Slice` was already taken by the `Ty`.
J
John Kåre Alsaker 已提交
610
#[repr(C)]
V
varkor 已提交
611
pub struct List<T> {
J
John Kåre Alsaker 已提交
612 613
    len: usize,
    data: [T; 0],
V
varkor 已提交
614
    opaque: OpaqueListContents,
J
John Kåre Alsaker 已提交
615 616
}

V
varkor 已提交
617
unsafe impl<T: Sync> Sync for List<T> {}
J
John Kåre Alsaker 已提交
618

V
varkor 已提交
619
impl<T: Copy> List<T> {
J
John Kåre Alsaker 已提交
620
    #[inline]
V
varkor 已提交
621
    fn from_arena<'tcx>(arena: &'tcx SyncDroplessArena, slice: &[T]) -> &'tcx List<T> {
J
John Kåre Alsaker 已提交
622 623 624 625
        assert!(!mem::needs_drop::<T>());
        assert!(mem::size_of::<T>() != 0);
        assert!(slice.len() != 0);

J
John Kåre Alsaker 已提交
626 627 628 629 630 631
        // Align up the size of the len (usize) field
        let align = mem::align_of::<T>();
        let align_mask = align - 1;
        let offset = mem::size_of::<usize>();
        let offset = (offset + align_mask) & !align_mask;

J
John Kåre Alsaker 已提交
632 633
        let size = offset + slice.len() * mem::size_of::<T>();

J
John Kåre Alsaker 已提交
634
        let mem = arena.alloc_raw(
J
John Kåre Alsaker 已提交
635
            size,
J
John Kåre Alsaker 已提交
636
            cmp::max(mem::align_of::<T>(), mem::align_of::<usize>()));
J
John Kåre Alsaker 已提交
637
        unsafe {
V
varkor 已提交
638
            let result = &mut *(mem.as_mut_ptr() as *mut List<T>);
J
John Kåre Alsaker 已提交
639
            // Write the length
J
John Kåre Alsaker 已提交
640
            result.len = slice.len();
J
John Kåre Alsaker 已提交
641 642

            // Write the elements
J
John Kåre Alsaker 已提交
643
            let arena_slice = slice::from_raw_parts_mut(result.data.as_mut_ptr(), result.len);
J
John Kåre Alsaker 已提交
644 645
            arena_slice.copy_from_slice(slice);

J
John Kåre Alsaker 已提交
646
            result
J
John Kåre Alsaker 已提交
647 648 649 650
        }
    }
}

V
varkor 已提交
651
impl<T: fmt::Debug> fmt::Debug for List<T> {
J
John Kåre Alsaker 已提交
652 653 654 655 656
    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
        (**self).fmt(f)
    }
}

V
varkor 已提交
657
impl<T: Encodable> Encodable for List<T> {
J
John Kåre Alsaker 已提交
658 659 660 661 662
    #[inline]
    fn encode<S: Encoder>(&self, s: &mut S) -> Result<(), S::Error> {
        (**self).encode(s)
    }
}
663

V
varkor 已提交
664 665
impl<T> Ord for List<T> where T: Ord {
    fn cmp(&self, other: &List<T>) -> Ordering {
666
        if self == other { Ordering::Equal } else {
J
John Kåre Alsaker 已提交
667
            <[T] as Ord>::cmp(&**self, &**other)
668 669 670 671
        }
    }
}

V
varkor 已提交
672 673
impl<T> PartialOrd for List<T> where T: PartialOrd {
    fn partial_cmp(&self, other: &List<T>) -> Option<Ordering> {
674
        if self == other { Some(Ordering::Equal) } else {
J
John Kåre Alsaker 已提交
675
            <[T] as PartialOrd>::partial_cmp(&**self, &**other)
676 677 678 679
        }
    }
}

V
varkor 已提交
680
impl<T: PartialEq> PartialEq for List<T> {
681
    #[inline]
V
varkor 已提交
682
    fn eq(&self, other: &List<T>) -> bool {
683
        ptr::eq(self, other)
684 685
    }
}
V
varkor 已提交
686
impl<T: Eq> Eq for List<T> {}
687

V
varkor 已提交
688
impl<T> Hash for List<T> {
J
John Kåre Alsaker 已提交
689
    #[inline]
690
    fn hash<H: Hasher>(&self, s: &mut H) {
V
varkor 已提交
691
        (self as *const List<T>).hash(s)
692 693 694
    }
}

V
varkor 已提交
695
impl<T> Deref for List<T> {
696
    type Target = [T];
J
John Kåre Alsaker 已提交
697
    #[inline(always)]
698
    fn deref(&self) -> &[T] {
J
John Kåre Alsaker 已提交
699
        unsafe {
J
John Kåre Alsaker 已提交
700
            slice::from_raw_parts(self.data.as_ptr(), self.len)
J
John Kåre Alsaker 已提交
701
        }
702 703 704
    }
}

V
varkor 已提交
705
impl<'a, T> IntoIterator for &'a List<T> {
706 707
    type Item = &'a T;
    type IntoIter = <&'a [T] as IntoIterator>::IntoIter;
J
John Kåre Alsaker 已提交
708
    #[inline(always)]
709 710 711 712 713
    fn into_iter(self) -> Self::IntoIter {
        self[..].iter()
    }
}

V
varkor 已提交
714
impl<'tcx> serialize::UseSpecializedDecodable for &'tcx List<Ty<'tcx>> {}
715

V
varkor 已提交
716
impl<T> List<T> {
J
John Kåre Alsaker 已提交
717
    #[inline(always)]
V
varkor 已提交
718
    pub fn empty<'a>() -> &'a List<T> {
J
John Kåre Alsaker 已提交
719 720 721 722
        #[repr(align(64), C)]
        struct EmptySlice([u8; 64]);
        static EMPTY_SLICE: EmptySlice = EmptySlice([0; 64]);
        assert!(mem::align_of::<T>() <= 64);
723
        unsafe {
V
varkor 已提交
724
            &*(&EMPTY_SLICE as *const _ as *const List<T>)
725 726 727 728
        }
    }
}

S
Steve Klabnik 已提交
729 730 731
/// Upvars do not get their own node-id. Instead, we use the pair of
/// the original var id (that is, the root variable that is referenced
/// by the upvar) and the id of the closure expression.
732
#[derive(Clone, Copy, PartialEq, Eq, Hash, RustcEncodable, RustcDecodable)]
733
pub struct UpvarId {
734
    pub var_id: hir::HirId,
735
    pub closure_expr_id: LocalDefId,
736 737
}

J
Jorge Aparicio 已提交
738
#[derive(Clone, PartialEq, Eq, Hash, Debug, RustcEncodable, RustcDecodable, Copy)]
739 740 741 742 743 744
pub enum BorrowKind {
    /// Data must be immutable and is aliasable.
    ImmBorrow,

    /// Data must be immutable but not aliasable.  This kind of borrow
    /// cannot currently be expressed by the user and is used only in
K
king6cong 已提交
745
    /// implicit closure bindings. It is needed when the closure
746 747
    /// is borrowing or mutating a mutable referent, e.g.:
    ///
748
    ///    let x: &mut isize = ...;
749 750 751 752 753
    ///    let y = || *x += 5;
    ///
    /// If we were to try to translate this closure into a more explicit
    /// form, we'd encounter an error with the code as written:
    ///
754 755
    ///    struct Env { x: & &mut isize }
    ///    let x: &mut isize = ...;
756 757 758 759 760 761 762
    ///    let y = (&mut Env { &x }, fn_ptr);  // Closure is pair of env and fn
    ///    fn fn_ptr(env: &mut Env) { **env.x += 5; }
    ///
    /// This is then illegal because you cannot mutate a `&mut` found
    /// in an aliasable location. To solve, you'd have to translate with
    /// an `&mut` borrow:
    ///
763 764
    ///    struct Env { x: & &mut isize }
    ///    let x: &mut isize = ...;
765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783
    ///    let y = (&mut Env { &mut x }, fn_ptr); // changed from &x to &mut x
    ///    fn fn_ptr(env: &mut Env) { **env.x += 5; }
    ///
    /// Now the assignment to `**env.x` is legal, but creating a
    /// mutable pointer to `x` is not because `x` is not mutable. We
    /// could fix this by declaring `x` as `let mut x`. This is ok in
    /// user code, if awkward, but extra weird for closures, since the
    /// borrow is hidden.
    ///
    /// So we introduce a "unique imm" borrow -- the referent is
    /// immutable, but not aliasable. This solves the problem. For
    /// simplicity, we don't give users the way to express this
    /// borrow, it's just used when translating closures.
    UniqueImmBorrow,

    /// Data is mutable and not aliasable.
    MutBorrow
}

784 785
/// Information describing the capture of an upvar. This is computed
/// during `typeck`, specifically by `regionck`.
786
#[derive(PartialEq, Clone, Debug, Copy, RustcEncodable, RustcDecodable)]
787
pub enum UpvarCapture<'tcx> {
788 789 790 791 792 793
    /// Upvar is captured by value. This is always true when the
    /// closure is labeled `move`, but can also be true in other cases
    /// depending on inference.
    ByValue,

    /// Upvar is captured by reference.
794
    ByRef(UpvarBorrow<'tcx>),
795 796
}

797
#[derive(PartialEq, Clone, Copy, RustcEncodable, RustcDecodable)]
798
pub struct UpvarBorrow<'tcx> {
799 800 801
    /// The kind of borrow: by-ref upvars have access to shared
    /// immutable borrows, which are not part of the normal language
    /// syntax.
802
    pub kind: BorrowKind,
803 804

    /// Region of the resulting reference.
N
Niko Matsakis 已提交
805
    pub region: ty::Region<'tcx>,
806 807
}

808
pub type UpvarCaptureMap<'tcx> = FxHashMap<UpvarId, UpvarCapture<'tcx>>;
809

810 811
#[derive(Copy, Clone)]
pub struct ClosureUpvar<'tcx> {
812
    pub def: Def,
813 814 815 816
    pub span: Span,
    pub ty: Ty<'tcx>,
}

817
#[derive(Clone, Copy, PartialEq, Eq)]
818
pub enum IntVarValue {
819 820
    IntType(ast::IntTy),
    UintType(ast::UintTy),
821 822
}

823 824 825
#[derive(Clone, Copy, PartialEq, Eq)]
pub struct FloatVarValue(pub ast::FloatTy);

826
impl ty::EarlyBoundRegion {
827
    pub fn to_bound_region(&self) -> ty::BoundRegion {
828
        ty::BoundRegion::BrNamed(self.def_id, self.name)
829
    }
830 831 832 833 834 835

    /// Does this early bound region have a name? Early bound regions normally
    /// always have names except when using anonymous lifetimes (`'_`).
    pub fn has_name(&self) -> bool {
        self.name != keywords::UnderscoreLifetime.name().as_interned_str()
    }
836 837
}

V
varkor 已提交
838
#[derive(Clone, Debug, RustcEncodable, RustcDecodable)]
839
pub enum GenericParamDefKind {
V
varkor 已提交
840
    Lifetime,
841 842 843 844 845
    Type {
        has_default: bool,
        object_lifetime_default: ObjectLifetimeDefault,
        synthetic: Option<hir::SyntheticTyParamKind>,
    }
V
varkor 已提交
846 847
}

848 849 850 851 852
#[derive(Clone, RustcEncodable, RustcDecodable)]
pub struct GenericParamDef {
    pub name: InternedString,
    pub def_id: DefId,
    pub index: u32,
V
varkor 已提交
853 854 855 856 857 858

    /// `pure_wrt_drop`, set by the (unsafe) `#[may_dangle]` attribute
    /// on generic parameter `'a`/`T`, asserts data behind the parameter
    /// `'a`/`T` won't be accessed during the parent type's `Drop` impl.
    pub pure_wrt_drop: bool,

859 860 861
    pub kind: GenericParamDefKind,
}

V
varkor 已提交
862
impl GenericParamDef {
863 864
    pub fn to_early_bound_region_data(&self) -> ty::EarlyBoundRegion {
        match self.kind {
V
varkor 已提交
865
            GenericParamDefKind::Lifetime => {
866 867 868 869 870 871 872 873 874 875 876 877
                ty::EarlyBoundRegion {
                    def_id: self.def_id,
                    index: self.index,
                    name: self.name,
                }
            }
            _ => bug!("cannot convert a non-lifetime parameter def to an early bound region")
        }
    }

    pub fn to_bound_region(&self) -> ty::BoundRegion {
        match self.kind {
V
varkor 已提交
878
            GenericParamDefKind::Lifetime => {
879 880 881
                self.to_early_bound_region_data().to_bound_region()
            }
            _ => bug!("cannot convert a non-lifetime parameter def to an early bound region")
V
varkor 已提交
882 883 884 885
        }
    }
}

V
varkor 已提交
886
#[derive(Default)]
887 888 889 890 891
pub struct GenericParamCount {
    pub lifetimes: usize,
    pub types: usize,
}

892
/// Information about the formal type/lifetime parameters associated
893
/// with an item or method. Analogous to hir::Generics.
A
Ariel Ben-Yehuda 已提交
894
///
895 896
/// The ordering of parameters is the same as in Subst (excluding child generics):
/// Self (optionally), Lifetime params..., Type params...
897
#[derive(Clone, Debug, RustcEncodable, RustcDecodable)]
898
pub struct Generics {
899
    pub parent: Option<DefId>,
V
varkor 已提交
900
    pub parent_count: usize,
V
varkor 已提交
901
    pub params: Vec<GenericParamDef>,
902

V
varkor 已提交
903
    /// Reverse map to the `index` field of each `GenericParamDef`
904
    pub param_def_id_to_index: FxHashMap<DefId, u32>,
905

906
    pub has_self: bool,
907
    pub has_late_bound_regions: Option<Span>,
908 909
}

910
impl<'a, 'gcx, 'tcx> Generics {
911
    pub fn count(&self) -> usize {
V
varkor 已提交
912
        self.parent_count + self.params.len()
913
    }
914

V
varkor 已提交
915
    pub fn own_counts(&self) -> GenericParamCount {
916 917 918
        // We could cache this as a property of `GenericParamCount`, but
        // the aim is to refactor this away entirely eventually and the
        // presence of this method will be a constant reminder.
V
varkor 已提交
919
        let mut own_counts: GenericParamCount = Default::default();
920

V
varkor 已提交
921
        for param in &self.params {
922
            match param.kind {
V
varkor 已提交
923
                GenericParamDefKind::Lifetime => own_counts.lifetimes += 1,
924
                GenericParamDefKind::Type { .. } => own_counts.types += 1,
925 926 927
            };
        }

V
varkor 已提交
928
        own_counts
929 930
    }

931
    pub fn requires_monomorphization(&self, tcx: TyCtxt<'a, 'gcx, 'tcx>) -> bool {
V
varkor 已提交
932
        for param in &self.params {
933
            match param.kind {
V
varkor 已提交
934
                GenericParamDefKind::Type { .. } => return true,
V
varkor 已提交
935
                GenericParamDefKind::Lifetime => {}
V
varkor 已提交
936
            }
V
varkor 已提交
937 938 939
        }
        if let Some(parent_def_id) = self.parent {
            let parent = tcx.generics_of(parent_def_id);
940
            parent.requires_monomorphization(tcx)
V
varkor 已提交
941 942 943
        } else {
            false
        }
V
varkor 已提交
944 945
    }

946 947 948
    pub fn region_param(&'tcx self,
                        param: &EarlyBoundRegion,
                        tcx: TyCtxt<'a, 'gcx, 'tcx>)
949
                        -> &'tcx GenericParamDef
950
    {
V
varkor 已提交
951
        if let Some(index) = param.index.checked_sub(self.parent_count as u32) {
V
varkor 已提交
952
            let param = &self.params[index as usize];
953
            match param.kind {
V
varkor 已提交
954
                ty::GenericParamDefKind::Lifetime => param,
V
varkor 已提交
955
                _ => bug!("expected lifetime parameter, but found another generic parameter")
V
varkor 已提交
956
            }
957 958 959 960
        } else {
            tcx.generics_of(self.parent.expect("parent_count>0 but no parent?"))
                .region_param(param, tcx)
        }
961 962
    }

963
    /// Returns the `GenericParamDef` associated with this `ParamTy`.
964 965
    pub fn type_param(&'tcx self,
                      param: &ParamTy,
A
Ariel Ben-Yehuda 已提交
966
                      tcx: TyCtxt<'a, 'gcx, 'tcx>)
967
                      -> &'tcx GenericParamDef {
968
        if let Some(index) = param.idx.checked_sub(self.parent_count as u32) {
V
varkor 已提交
969 970
            let param = &self.params[index as usize];
            match param.kind {
971
                ty::GenericParamDefKind::Type {..} => param,
V
varkor 已提交
972 973
                _ => bug!("expected type parameter, but found another generic parameter")
            }
974 975 976 977
        } else {
            tcx.generics_of(self.parent.expect("parent_count>0 but no parent?"))
                .type_param(param, tcx)
        }
978
    }
979 980
}

981
/// Bounds on generics.
982
#[derive(Clone, Default)]
983
pub struct GenericPredicates<'tcx> {
984
    pub parent: Option<DefId>,
985
    pub predicates: Vec<Predicate<'tcx>>,
986 987
}

988 989 990
impl<'tcx> serialize::UseSpecializedEncodable for GenericPredicates<'tcx> {}
impl<'tcx> serialize::UseSpecializedDecodable for GenericPredicates<'tcx> {}

991 992
impl<'a, 'gcx, 'tcx> GenericPredicates<'tcx> {
    pub fn instantiate(&self, tcx: TyCtxt<'a, 'gcx, 'tcx>, substs: &Substs<'tcx>)
993
                       -> InstantiatedPredicates<'tcx> {
994 995 996 997 998 999
        let mut instantiated = InstantiatedPredicates::empty();
        self.instantiate_into(tcx, &mut instantiated, substs);
        instantiated
    }
    pub fn instantiate_own(&self, tcx: TyCtxt<'a, 'gcx, 'tcx>, substs: &Substs<'tcx>)
                           -> InstantiatedPredicates<'tcx> {
1000
        InstantiatedPredicates {
1001 1002 1003 1004 1005 1006 1007 1008
            predicates: self.predicates.subst(tcx, substs)
        }
    }

    fn instantiate_into(&self, tcx: TyCtxt<'a, 'gcx, 'tcx>,
                        instantiated: &mut InstantiatedPredicates<'tcx>,
                        substs: &Substs<'tcx>) {
        if let Some(def_id) = self.parent {
1009
            tcx.predicates_of(def_id).instantiate_into(tcx, instantiated, substs);
1010
        }
1011
        instantiated.predicates.extend(self.predicates.iter().map(|p| p.subst(tcx, substs)))
1012
    }
1013

1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028
    pub fn instantiate_identity(&self, tcx: TyCtxt<'a, 'gcx, 'tcx>)
                                -> InstantiatedPredicates<'tcx> {
        let mut instantiated = InstantiatedPredicates::empty();
        self.instantiate_identity_into(tcx, &mut instantiated);
        instantiated
    }

    fn instantiate_identity_into(&self, tcx: TyCtxt<'a, 'gcx, 'tcx>,
                                 instantiated: &mut InstantiatedPredicates<'tcx>) {
        if let Some(def_id) = self.parent {
            tcx.predicates_of(def_id).instantiate_identity_into(tcx, instantiated);
        }
        instantiated.predicates.extend(&self.predicates)
    }

1029
    pub fn instantiate_supertrait(&self, tcx: TyCtxt<'a, 'gcx, 'tcx>,
1030 1031 1032
                                  poly_trait_ref: &ty::PolyTraitRef<'tcx>)
                                  -> InstantiatedPredicates<'tcx>
    {
1033
        assert_eq!(self.parent, None);
1034
        InstantiatedPredicates {
1035
            predicates: self.predicates.iter().map(|pred| {
1036
                pred.subst_supertrait(tcx, poly_trait_ref)
1037
            }).collect()
1038 1039
        }
    }
1040 1041
}

1042
#[derive(Clone, Copy, PartialEq, Eq, Hash, RustcEncodable, RustcDecodable)]
1043
pub enum Predicate<'tcx> {
N
Niko Matsakis 已提交
1044 1045
    /// Corresponds to `where Foo : Bar<A,B,C>`. `Foo` here would be
    /// the `Self` type of the trait reference and `A`, `B`, and `C`
1046
    /// would be the type parameters.
1047
    Trait(PolyTraitPredicate<'tcx>),
1048 1049

    /// where 'a : 'b
1050
    RegionOutlives(PolyRegionOutlivesPredicate<'tcx>),
1051 1052

    /// where T : 'a
1053
    TypeOutlives(PolyTypeOutlivesPredicate<'tcx>),
1054

N
Niko Matsakis 已提交
1055 1056
    /// where <T as TraitRef>::Name == X, approximately.
    /// See `ProjectionPredicate` struct for details.
1057
    Projection(PolyProjectionPredicate<'tcx>),
1058 1059 1060 1061 1062

    /// no syntax: T WF
    WellFormed(Ty<'tcx>),

    /// trait must be object-safe
N
Niko Matsakis 已提交
1063
    ObjectSafe(DefId),
1064

1065 1066 1067
    /// No direct syntax. May be thought of as `where T : FnFoo<...>`
    /// for some substitutions `...` and T being a closure type.
    /// Satisfied (or refuted) once we know the closure's kind.
1068
    ClosureKind(DefId, ClosureSubsts<'tcx>, ClosureKind),
N
Niko Matsakis 已提交
1069 1070 1071

    /// `T1 <: T2`
    Subtype(PolySubtypePredicate<'tcx>),
1072 1073 1074

    /// Constant initializer must evaluate successfully.
    ConstEvaluatable(DefId, &'tcx Substs<'tcx>),
1075 1076
}

1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092
/// The crate outlives map is computed during typeck and contains the
/// outlives of every item in the local crate. You should not use it
/// directly, because to do so will make your pass dependent on the
/// HIR of every item in the local crate. Instead, use
/// `tcx.inferred_outlives_of()` to get the outlives for a *particular*
/// item.
pub struct CratePredicatesMap<'tcx> {
    /// For each struct with outlive bounds, maps to a vector of the
    /// predicate of its outlive bounds. If an item has no outlives
    /// bounds, it will have no entry.
    pub predicates: FxHashMap<DefId, Lrc<Vec<ty::Predicate<'tcx>>>>,

    /// An empty vector, useful for cloning.
    pub empty_predicate: Lrc<Vec<ty::Predicate<'tcx>>>,
}

1093 1094 1095 1096 1097 1098
impl<'tcx> AsRef<Predicate<'tcx>> for Predicate<'tcx> {
    fn as_ref(&self) -> &Predicate<'tcx> {
        self
    }
}

1099
impl<'a, 'gcx, 'tcx> Predicate<'tcx> {
1100
    /// Performs a substitution suitable for going from a
1101 1102 1103 1104
    /// poly-trait-ref to supertraits that must hold if that
    /// poly-trait-ref holds. This is slightly different from a normal
    /// substitution in terms of what happens with bound regions.  See
    /// lengthy comment below for details.
1105
    pub fn subst_supertrait(&self, tcx: TyCtxt<'a, 'gcx, 'tcx>,
1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168
                            trait_ref: &ty::PolyTraitRef<'tcx>)
                            -> ty::Predicate<'tcx>
    {
        // The interaction between HRTB and supertraits is not entirely
        // obvious. Let me walk you (and myself) through an example.
        //
        // Let's start with an easy case. Consider two traits:
        //
        //     trait Foo<'a> : Bar<'a,'a> { }
        //     trait Bar<'b,'c> { }
        //
        // Now, if we have a trait reference `for<'x> T : Foo<'x>`, then
        // we can deduce that `for<'x> T : Bar<'x,'x>`. Basically, if we
        // knew that `Foo<'x>` (for any 'x) then we also know that
        // `Bar<'x,'x>` (for any 'x). This more-or-less falls out from
        // normal substitution.
        //
        // In terms of why this is sound, the idea is that whenever there
        // is an impl of `T:Foo<'a>`, it must show that `T:Bar<'a,'a>`
        // holds.  So if there is an impl of `T:Foo<'a>` that applies to
        // all `'a`, then we must know that `T:Bar<'a,'a>` holds for all
        // `'a`.
        //
        // Another example to be careful of is this:
        //
        //     trait Foo1<'a> : for<'b> Bar1<'a,'b> { }
        //     trait Bar1<'b,'c> { }
        //
        // Here, if we have `for<'x> T : Foo1<'x>`, then what do we know?
        // The answer is that we know `for<'x,'b> T : Bar1<'x,'b>`. The
        // reason is similar to the previous example: any impl of
        // `T:Foo1<'x>` must show that `for<'b> T : Bar1<'x, 'b>`.  So
        // basically we would want to collapse the bound lifetimes from
        // the input (`trait_ref`) and the supertraits.
        //
        // To achieve this in practice is fairly straightforward. Let's
        // consider the more complicated scenario:
        //
        // - We start out with `for<'x> T : Foo1<'x>`. In this case, `'x`
        //   has a De Bruijn index of 1. We want to produce `for<'x,'b> T : Bar1<'x,'b>`,
        //   where both `'x` and `'b` would have a DB index of 1.
        //   The substitution from the input trait-ref is therefore going to be
        //   `'a => 'x` (where `'x` has a DB index of 1).
        // - The super-trait-ref is `for<'b> Bar1<'a,'b>`, where `'a` is an
        //   early-bound parameter and `'b' is a late-bound parameter with a
        //   DB index of 1.
        // - If we replace `'a` with `'x` from the input, it too will have
        //   a DB index of 1, and thus we'll have `for<'x,'b> Bar1<'x,'b>`
        //   just as we wanted.
        //
        // There is only one catch. If we just apply the substitution `'a
        // => 'x` to `for<'b> Bar1<'a,'b>`, the substitution code will
        // adjust the DB index because we substituting into a binder (it
        // tries to be so smart...) resulting in `for<'x> for<'b>
        // Bar1<'x,'b>` (we have no syntax for this, so use your
        // imagination). Basically the 'x will have DB index of 2 and 'b
        // will have DB index of 1. Not quite what we want. So we apply
        // the substitution to the *contents* of the trait reference,
        // rather than the trait reference itself (put another way, the
        // substitution code expects equal binding levels in the values
        // from the substitution and the value being substituted into, and
        // this trick achieves that).

1169
        let substs = &trait_ref.skip_binder().substs;
1170
        match *self {
1171 1172 1173 1174 1175 1176 1177 1178 1179 1180
            Predicate::Trait(ref binder) =>
                Predicate::Trait(binder.map_bound(|data| data.subst(tcx, substs))),
            Predicate::Subtype(ref binder) =>
                Predicate::Subtype(binder.map_bound(|data| data.subst(tcx, substs))),
            Predicate::RegionOutlives(ref binder) =>
                Predicate::RegionOutlives(binder.map_bound(|data| data.subst(tcx, substs))),
            Predicate::TypeOutlives(ref binder) =>
                Predicate::TypeOutlives(binder.map_bound(|data| data.subst(tcx, substs))),
            Predicate::Projection(ref binder) =>
                Predicate::Projection(binder.map_bound(|data| data.subst(tcx, substs))),
1181 1182 1183 1184
            Predicate::WellFormed(data) =>
                Predicate::WellFormed(data.subst(tcx, substs)),
            Predicate::ObjectSafe(trait_def_id) =>
                Predicate::ObjectSafe(trait_def_id),
1185 1186
            Predicate::ClosureKind(closure_def_id, closure_substs, kind) =>
                Predicate::ClosureKind(closure_def_id, closure_substs.subst(tcx, substs), kind),
1187 1188
            Predicate::ConstEvaluatable(def_id, const_substs) =>
                Predicate::ConstEvaluatable(def_id, const_substs.subst(tcx, substs)),
1189 1190 1191 1192
        }
    }
}

1193
#[derive(Clone, Copy, PartialEq, Eq, Hash, RustcEncodable, RustcDecodable)]
1194
pub struct TraitPredicate<'tcx> {
1195
    pub trait_ref: TraitRef<'tcx>
1196 1197 1198 1199
}
pub type PolyTraitPredicate<'tcx> = ty::Binder<TraitPredicate<'tcx>>;

impl<'tcx> TraitPredicate<'tcx> {
N
Niko Matsakis 已提交
1200
    pub fn def_id(&self) -> DefId {
1201 1202 1203
        self.trait_ref.def_id
    }

1204
    pub fn input_types<'a>(&'a self) -> impl DoubleEndedIterator<Item=Ty<'tcx>> + 'a {
1205
        self.trait_ref.input_types()
1206 1207 1208 1209 1210 1211 1212 1213
    }

    pub fn self_ty(&self) -> Ty<'tcx> {
        self.trait_ref.self_ty()
    }
}

impl<'tcx> PolyTraitPredicate<'tcx> {
N
Niko Matsakis 已提交
1214
    pub fn def_id(&self) -> DefId {
1215
        // ok to skip binder since trait def-id does not care about regions
1216
        self.skip_binder().def_id()
1217
    }
1218 1219
}

1220
#[derive(Clone, Copy, PartialEq, Eq, PartialOrd, Ord, Hash, Debug, RustcEncodable, RustcDecodable)]
1221 1222
pub struct OutlivesPredicate<A,B>(pub A, pub B); // `A : B`
pub type PolyOutlivesPredicate<A,B> = ty::Binder<OutlivesPredicate<A,B>>;
S
scalexm 已提交
1223 1224 1225 1226 1227 1228
pub type RegionOutlivesPredicate<'tcx> = OutlivesPredicate<ty::Region<'tcx>,
                                                           ty::Region<'tcx>>;
pub type TypeOutlivesPredicate<'tcx> = OutlivesPredicate<Ty<'tcx>,
                                                         ty::Region<'tcx>>;
pub type PolyRegionOutlivesPredicate<'tcx> = ty::Binder<RegionOutlivesPredicate<'tcx>>;
pub type PolyTypeOutlivesPredicate<'tcx> = ty::Binder<TypeOutlivesPredicate<'tcx>>;
1229

1230
#[derive(Clone, Copy, PartialEq, Eq, Hash, Debug, RustcEncodable, RustcDecodable)]
N
Niko Matsakis 已提交
1231 1232 1233 1234 1235 1236 1237
pub struct SubtypePredicate<'tcx> {
    pub a_is_expected: bool,
    pub a: Ty<'tcx>,
    pub b: Ty<'tcx>
}
pub type PolySubtypePredicate<'tcx> = ty::Binder<SubtypePredicate<'tcx>>;

1238 1239 1240 1241 1242 1243 1244 1245 1246
/// This kind of predicate has no *direct* correspondent in the
/// syntax, but it roughly corresponds to the syntactic forms:
///
/// 1. `T : TraitRef<..., Item=Type>`
/// 2. `<T as TraitRef<...>>::Item == Type` (NYI)
///
/// In particular, form #1 is "desugared" to the combination of a
/// normal trait predicate (`T : TraitRef<...>`) and one of these
/// predicates. Form #2 is a broader form in that it also permits
1247 1248
/// equality between arbitrary types. Processing an instance of
/// Form #2 eventually yields one of these `ProjectionPredicate`
1249
/// instances to normalize the LHS.
1250
#[derive(Copy, Clone, PartialEq, Eq, Hash, RustcEncodable, RustcDecodable)]
1251 1252 1253 1254 1255 1256 1257
pub struct ProjectionPredicate<'tcx> {
    pub projection_ty: ProjectionTy<'tcx>,
    pub ty: Ty<'tcx>,
}

pub type PolyProjectionPredicate<'tcx> = Binder<ProjectionPredicate<'tcx>>;

1258
impl<'tcx> PolyProjectionPredicate<'tcx> {
1259 1260 1261 1262 1263
    /// Returns the def-id of the associated item being projected.
    pub fn item_def_id(&self) -> DefId {
        self.skip_binder().projection_ty.item_def_id
    }

1264 1265 1266 1267 1268 1269
    pub fn to_poly_trait_ref(&self, tcx: TyCtxt) -> PolyTraitRef<'tcx> {
        // Note: unlike with TraitRef::to_poly_trait_ref(),
        // self.0.trait_ref is permitted to have escaping regions.
        // This is because here `self` has a `Binder` and so does our
        // return value, so we are preserving the number of binding
        // levels.
1270
        self.map_bound(|predicate| predicate.projection_ty.trait_ref(tcx))
1271
    }
1272 1273

    pub fn ty(&self) -> Binder<Ty<'tcx>> {
1274 1275 1276 1277 1278 1279 1280 1281 1282 1283
        self.map_bound(|predicate| predicate.ty)
    }

    /// The DefId of the TraitItem for the associated type.
    ///
    /// Note that this is not the DefId of the TraitRef containing this
    /// associated type, which is in tcx.associated_item(projection_def_id()).container.
    pub fn projection_def_id(&self) -> DefId {
        // ok to skip binder since trait def-id does not care about regions
        self.skip_binder().projection_ty.item_def_id
1284
    }
1285 1286
}

1287 1288 1289 1290
pub trait ToPolyTraitRef<'tcx> {
    fn to_poly_trait_ref(&self) -> PolyTraitRef<'tcx>;
}

1291
impl<'tcx> ToPolyTraitRef<'tcx> for TraitRef<'tcx> {
1292
    fn to_poly_trait_ref(&self) -> PolyTraitRef<'tcx> {
1293
        ty::Binder::dummy(self.clone())
1294 1295 1296 1297 1298
    }
}

impl<'tcx> ToPolyTraitRef<'tcx> for PolyTraitPredicate<'tcx> {
    fn to_poly_trait_ref(&self) -> PolyTraitRef<'tcx> {
1299
        self.map_bound_ref(|trait_pred| trait_pred.trait_ref)
1300 1301 1302
    }
}

1303 1304
pub trait ToPredicate<'tcx> {
    fn to_predicate(&self) -> Predicate<'tcx>;
1305 1306
}

1307 1308
impl<'tcx> ToPredicate<'tcx> for TraitRef<'tcx> {
    fn to_predicate(&self) -> Predicate<'tcx> {
1309
        ty::Predicate::Trait(ty::Binder::dummy(ty::TraitPredicate {
1310 1311 1312 1313 1314
            trait_ref: self.clone()
        }))
    }
}

1315 1316
impl<'tcx> ToPredicate<'tcx> for PolyTraitRef<'tcx> {
    fn to_predicate(&self) -> Predicate<'tcx> {
1317
        ty::Predicate::Trait(self.to_poly_trait_predicate())
1318 1319 1320
    }
}

1321
impl<'tcx> ToPredicate<'tcx> for PolyRegionOutlivesPredicate<'tcx> {
1322
    fn to_predicate(&self) -> Predicate<'tcx> {
1323 1324 1325 1326
        Predicate::RegionOutlives(self.clone())
    }
}

1327 1328
impl<'tcx> ToPredicate<'tcx> for PolyTypeOutlivesPredicate<'tcx> {
    fn to_predicate(&self) -> Predicate<'tcx> {
1329 1330
        Predicate::TypeOutlives(self.clone())
    }
1331 1332
}

1333 1334
impl<'tcx> ToPredicate<'tcx> for PolyProjectionPredicate<'tcx> {
    fn to_predicate(&self) -> Predicate<'tcx> {
1335 1336 1337 1338
        Predicate::Projection(self.clone())
    }
}

1339
impl<'tcx> Predicate<'tcx> {
1340 1341 1342 1343 1344 1345
    /// Iterates over the types in this predicate. Note that in all
    /// cases this is skipping over a binder, so late-bound regions
    /// with depth 0 are bound by the predicate.
    pub fn walk_tys(&self) -> IntoIter<Ty<'tcx>> {
        let vec: Vec<_> = match *self {
            ty::Predicate::Trait(ref data) => {
1346
                data.skip_binder().input_types().collect()
1347
            }
1348 1349
            ty::Predicate::Subtype(binder) => {
                let SubtypePredicate { a, b, a_is_expected: _ } = binder.skip_binder();
N
Niko Matsakis 已提交
1350 1351
                vec![a, b]
            }
1352 1353
            ty::Predicate::TypeOutlives(binder) => {
                vec![binder.skip_binder().0]
1354 1355 1356 1357 1358
            }
            ty::Predicate::RegionOutlives(..) => {
                vec![]
            }
            ty::Predicate::Projection(ref data) => {
1359 1360
                let inner = data.skip_binder();
                inner.projection_ty.substs.types().chain(Some(inner.ty)).collect()
1361
            }
1362 1363 1364 1365 1366 1367
            ty::Predicate::WellFormed(data) => {
                vec![data]
            }
            ty::Predicate::ObjectSafe(_trait_def_id) => {
                vec![]
            }
1368 1369
            ty::Predicate::ClosureKind(_closure_def_id, closure_substs, _kind) => {
                closure_substs.substs.types().collect()
1370
            }
1371 1372 1373
            ty::Predicate::ConstEvaluatable(_, substs) => {
                substs.types().collect()
            }
1374 1375 1376 1377 1378 1379 1380 1381 1382 1383
        };

        // The only reason to collect into a vector here is that I was
        // too lazy to make the full (somewhat complicated) iterator
        // type that would be needed here. But I wanted this fn to
        // return an iterator conceptually, rather than a `Vec`, so as
        // to be closer to `Ty::walk`.
        vec.into_iter()
    }

1384
    pub fn to_opt_poly_trait_ref(&self) -> Option<PolyTraitRef<'tcx>> {
1385 1386
        match *self {
            Predicate::Trait(ref t) => {
1387
                Some(t.to_poly_trait_ref())
1388
            }
1389
            Predicate::Projection(..) |
N
Niko Matsakis 已提交
1390
            Predicate::Subtype(..) |
1391
            Predicate::RegionOutlives(..) |
1392 1393
            Predicate::WellFormed(..) |
            Predicate::ObjectSafe(..) |
1394
            Predicate::ClosureKind(..) |
1395 1396
            Predicate::TypeOutlives(..) |
            Predicate::ConstEvaluatable(..) => {
1397 1398
                None
            }
1399 1400
        }
    }
1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418

    pub fn to_opt_type_outlives(&self) -> Option<PolyTypeOutlivesPredicate<'tcx>> {
        match *self {
            Predicate::TypeOutlives(data) => {
                Some(data)
            }
            Predicate::Trait(..) |
            Predicate::Projection(..) |
            Predicate::Subtype(..) |
            Predicate::RegionOutlives(..) |
            Predicate::WellFormed(..) |
            Predicate::ObjectSafe(..) |
            Predicate::ClosureKind(..) |
            Predicate::ConstEvaluatable(..) => {
                None
            }
        }
    }
1419 1420
}

S
Steve Klabnik 已提交
1421 1422
/// Represents the bounds declared on a particular set of type
/// parameters.  Should eventually be generalized into a flag list of
1423 1424 1425 1426 1427
/// where clauses.  You can obtain a `InstantiatedPredicates` list from a
/// `GenericPredicates` by using the `instantiate` method. Note that this method
/// reflects an important semantic invariant of `InstantiatedPredicates`: while
/// the `GenericPredicates` are expressed in terms of the bound type
/// parameters of the impl/trait/whatever, an `InstantiatedPredicates` instance
S
Steve Klabnik 已提交
1428 1429 1430 1431 1432 1433 1434 1435
/// represented a set of bounds for some particular instantiation,
/// meaning that the generic parameters have been substituted with
/// their values.
///
/// Example:
///
///     struct Foo<T,U:Bar<T>> { ... }
///
1436
/// Here, the `GenericPredicates` for `Foo` would contain a list of bounds like
J
Jorge Aparicio 已提交
1437
/// `[[], [U:Bar<T>]]`.  Now if there were some particular reference
1438 1439
/// like `Foo<isize,usize>`, then the `InstantiatedPredicates` would be `[[],
/// [usize:Bar<isize>]]`.
1440
#[derive(Clone)]
1441
pub struct InstantiatedPredicates<'tcx> {
1442
    pub predicates: Vec<Predicate<'tcx>>,
1443 1444
}

1445 1446
impl<'tcx> InstantiatedPredicates<'tcx> {
    pub fn empty() -> InstantiatedPredicates<'tcx> {
1447
        InstantiatedPredicates { predicates: vec![] }
1448 1449
    }

1450 1451
    pub fn is_empty(&self) -> bool {
        self.predicates.is_empty()
1452
    }
1453 1454
}

N
Niko Matsakis 已提交
1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490
/// "Universes" are used during type- and trait-checking in the
/// presence of `for<..>` binders to control what sets of names are
/// visible. Universes are arranged into a tree: the root universe
/// contains names that are always visible. But when you enter into
/// some subuniverse, then it may add names that are only visible
/// within that subtree (but it can still name the names of its
/// ancestor universes).
///
/// To make this more concrete, consider this program:
///
/// ```
/// struct Foo { }
/// fn bar<T>(x: T) {
///   let y: for<'a> fn(&'a u8, Foo) = ...;
/// }
/// ```
///
/// The struct name `Foo` is in the root universe U0. But the type
/// parameter `T`, introduced on `bar`, is in a subuniverse U1 --
/// i.e., within `bar`, we can name both `T` and `Foo`, but outside of
/// `bar`, we cannot name `T`. Then, within the type of `y`, the
/// region `'a` is in a subuniverse U2 of U1, because we can name it
/// inside the fn type but not outside.
///
/// Universes are related to **skolemization** -- which is a way of
/// doing type- and trait-checking around these "forall" binders (also
/// called **universal quantification**). The idea is that when, in
/// the body of `bar`, we refer to `T` as a type, we aren't referring
/// to any type in particular, but rather a kind of "fresh" type that
/// is distinct from all other types we have actually declared. This
/// is called a **skolemized** type, and we use universes to talk
/// about this. In other words, a type name in universe 0 always
/// corresponds to some "ground" type that the user declared, but a
/// type name in a non-zero universe is a skolemized type -- an
/// idealized representative of "types in general" that we use for
/// checking generic functions.
N
Niko Matsakis 已提交
1491
#[derive(Copy, Clone, PartialEq, Eq, PartialOrd, Ord, Hash, RustcEncodable, RustcDecodable)]
N
Niko Matsakis 已提交
1492 1493 1494 1495 1496
pub struct UniverseIndex(u32);

impl UniverseIndex {
    /// The root universe, where things that the user defined are
    /// visible.
1497
    pub const ROOT: Self = UniverseIndex(0);
N
Niko Matsakis 已提交
1498

N
Niko Matsakis 已提交
1499 1500 1501 1502 1503 1504 1505
    /// The "max universe" -- this isn't really a valid universe, but
    /// it's useful sometimes as a "starting value" when you are
    /// taking the minimum of a (non-empty!) set of universes.
    pub const MAX: Self = UniverseIndex(::std::u32::MAX);

    /// Creates a universe index from the given integer.  Not to be
    /// used lightly lest you pick a bad value. But sometimes we
M
Matthias Krüger 已提交
1506
    /// convert universe indices into integers and back for various
N
Niko Matsakis 已提交
1507 1508 1509 1510 1511
    /// reasons.
    pub fn from_u32(index: u32) -> Self {
        UniverseIndex(index)
    }

N
Niko Matsakis 已提交
1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523
    /// A "subuniverse" corresponds to being inside a `forall` quantifier.
    /// So, for example, suppose we have this type in universe `U`:
    ///
    /// ```
    /// for<'a> fn(&'a u32)
    /// ```
    ///
    /// Once we "enter" into this `for<'a>` quantifier, we are in a
    /// subuniverse of `U` -- in this new universe, we can name the
    /// region `'a`, but that region was not nameable from `U` because
    /// it was not in scope there.
    pub fn subuniverse(self) -> UniverseIndex {
1524 1525 1526
        UniverseIndex(self.0.checked_add(1).unwrap())
    }

N
Niko Matsakis 已提交
1527 1528 1529 1530 1531
    /// True if the names in this universe are a subset of the names in `other`.
    pub fn is_subset_of(self, other: UniverseIndex) -> bool {
        self.0 <= other.0
    }

1532 1533 1534 1535 1536 1537 1538 1539 1540
    pub fn as_u32(&self) -> u32 {
        self.0
    }

    pub fn as_usize(&self) -> usize {
        self.0 as usize
    }
}

N
Niko Matsakis 已提交
1541 1542 1543 1544 1545 1546
impl fmt::Debug for UniverseIndex {
    fn fmt(&self, fmt: &mut fmt::Formatter) -> fmt::Result {
        write!(fmt, "U{}", self.as_u32())
    }
}

1547 1548 1549
impl From<u32> for UniverseIndex {
    fn from(index: u32) -> Self {
        UniverseIndex(index)
1550
    }
N
Niko Matsakis 已提交
1551 1552
}

1553
/// When type checking, we use the `ParamEnv` to track
1554 1555 1556
/// details about the set of where-clauses that are in scope at this
/// particular point.
#[derive(Copy, Clone, Debug, PartialEq, Eq, Hash)]
1557
pub struct ParamEnv<'tcx> {
1558 1559
    /// Obligations that the caller must satisfy. This is basically
    /// the set of bounds on the in-scope type parameters, translated
1560
    /// into Obligations, and elaborated and normalized.
V
varkor 已提交
1561
    pub caller_bounds: &'tcx List<ty::Predicate<'tcx>>,
1562

I
Irina Popa 已提交
1563
    /// Typically, this is `Reveal::UserFacing`, but during codegen we
1564 1565 1566
    /// want `Reveal::All` -- note that this is always paired with an
    /// empty environment. To get that, use `ParamEnv::reveal()`.
    pub reveal: traits::Reveal,
1567
}
1568

1569
impl<'tcx> ParamEnv<'tcx> {
1570 1571 1572 1573 1574
    /// Construct a trait environment suitable for contexts where
    /// there are no where clauses in scope. Hidden types (like `impl
    /// Trait`) are left hidden, so this is suitable for ordinary
    /// type-checking.
    pub fn empty() -> Self {
V
varkor 已提交
1575
        Self::new(List::empty(), Reveal::UserFacing)
1576 1577 1578 1579 1580
    }

    /// Construct a trait environment with no where clauses in scope
    /// where the values of all `impl Trait` and other hidden types
    /// are revealed. This is suitable for monomorphized, post-typeck
I
Irina Popa 已提交
1581
    /// environments like codegen or doing optimizations.
1582 1583 1584 1585
    ///
    /// NB. If you want to have predicates in scope, use `ParamEnv::new`,
    /// or invoke `param_env.with_reveal_all()`.
    pub fn reveal_all() -> Self {
V
varkor 已提交
1586
        Self::new(List::empty(), Reveal::All)
1587 1588 1589
    }

    /// Construct a trait environment with the given set of predicates.
V
varkor 已提交
1590
    pub fn new(caller_bounds: &'tcx List<ty::Predicate<'tcx>>,
S
Sean Griffin 已提交
1591
               reveal: Reveal)
1592
               -> Self {
S
Sean Griffin 已提交
1593
        ty::ParamEnv { caller_bounds, reveal }
1594 1595 1596 1597 1598
    }

    /// Returns a new parameter environment with the same clauses, but
    /// which "reveals" the true results of projections in all cases
    /// (even for associated types that are specializable).  This is
I
Irina Popa 已提交
1599
    /// the desired behavior during codegen and certain other special
1600 1601 1602 1603 1604 1605 1606 1607
    /// contexts; normally though we want to use `Reveal::UserFacing`,
    /// which is the default.
    pub fn with_reveal_all(self) -> Self {
        ty::ParamEnv { reveal: Reveal::All, ..self }
    }

    /// Returns this same environment but with no caller bounds.
    pub fn without_caller_bounds(self) -> Self {
V
varkor 已提交
1608
        ty::ParamEnv { caller_bounds: List::empty(), ..self }
1609 1610
    }

1611
    /// Creates a suitable environment in which to perform trait
1612 1613 1614 1615 1616
    /// queries on the given value. When type-checking, this is simply
    /// the pair of the environment plus value. But when reveal is set to
    /// All, then if `value` does not reference any type parameters, we will
    /// pair it with the empty environment. This improves caching and is generally
    /// invisible.
1617
    ///
1618 1619
    /// NB: We preserve the environment when type-checking because it
    /// is possible for the user to have wacky where-clauses like
1620
    /// `where Box<u32>: Copy`, which are clearly never
1621 1622
    /// satisfiable. We generally want to behave as if they were true,
    /// although the surrounding function is never reachable.
1623
    pub fn and<T: TypeFoldable<'tcx>>(self, value: T) -> ParamEnvAnd<'tcx, T> {
1624 1625 1626 1627 1628 1629
        match self.reveal {
            Reveal::UserFacing => {
                ParamEnvAnd {
                    param_env: self,
                    value,
                }
1630
            }
1631 1632

            Reveal::All => {
1633 1634 1635 1636 1637
                if value.has_skol()
                    || value.needs_infer()
                    || value.has_param_types()
                    || value.has_self_ty()
                {
1638 1639 1640 1641 1642 1643 1644 1645 1646 1647
                    ParamEnvAnd {
                        param_env: self,
                        value,
                    }
                } else {
                    ParamEnvAnd {
                        param_env: self.without_caller_bounds(),
                        value,
                    }
                }
1648
            }
1649 1650 1651
        }
    }
}
1652

1653
#[derive(Copy, Clone, Debug, PartialEq, Eq, Hash)]
1654 1655
pub struct ParamEnvAnd<'tcx, T> {
    pub param_env: ParamEnv<'tcx>,
1656
    pub value: T,
1657 1658
}

1659 1660
impl<'tcx, T> ParamEnvAnd<'tcx, T> {
    pub fn into_parts(self) -> (ParamEnv<'tcx>, T) {
1661
        (self.param_env, self.value)
1662
    }
1663 1664
}

1665 1666
impl<'a, 'gcx, T> HashStable<StableHashingContext<'a>> for ParamEnvAnd<'gcx, T>
    where T: HashStable<StableHashingContext<'a>>
1667 1668
{
    fn hash_stable<W: StableHasherResult>(&self,
1669
                                          hcx: &mut StableHashingContext<'a>,
1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680
                                          hasher: &mut StableHasher<W>) {
        let ParamEnvAnd {
            ref param_env,
            ref value
        } = *self;

        param_env.hash_stable(hcx, hasher);
        value.hash_stable(hcx, hasher);
    }
}

1681 1682 1683 1684 1685 1686
#[derive(Copy, Clone, Debug)]
pub struct Destructor {
    /// The def-id of the destructor method
    pub did: DefId,
}

1687
bitflags! {
1688 1689 1690 1691 1692 1693 1694
    pub struct AdtFlags: u32 {
        const NO_ADT_FLAGS        = 0;
        const IS_ENUM             = 1 << 0;
        const IS_PHANTOM_DATA     = 1 << 1;
        const IS_FUNDAMENTAL      = 1 << 2;
        const IS_UNION            = 1 << 3;
        const IS_BOX              = 1 << 4;
1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705
        /// Indicates whether the variant list of this ADT is `#[non_exhaustive]`.
        /// (i.e., this flag is never set unless this ADT is an enum).
        const IS_VARIANT_LIST_NON_EXHAUSTIVE   = 1 << 5;
    }
}

bitflags! {
    pub struct VariantFlags: u32 {
        const NO_VARIANT_FLAGS        = 0;
        /// Indicates whether the field list of this variant is `#[non_exhaustive]`.
        const IS_FIELD_LIST_NON_EXHAUSTIVE = 1 << 0;
1706 1707 1708
    }
}

1709
#[derive(Debug)]
1710
pub struct VariantDef {
1711 1712
    /// The variant's DefId. If this is a tuple-like struct,
    /// this is the DefId of the struct's ctor.
1713 1714
    pub did: DefId,
    pub name: Name, // struct's name if this is a struct
1715
    pub discr: VariantDiscr,
1716
    pub fields: Vec<FieldDef>,
1717
    pub ctor_kind: CtorKind,
1718
    flags: VariantFlags,
1719 1720
}

1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756
impl<'a, 'gcx, 'tcx> VariantDef {
    /// Create a new `VariantDef`.
    ///
    /// - `did` is the DefId used for the variant - for tuple-structs, it is the constructor DefId,
    /// and for everything else, it is the variant DefId.
    /// - `attribute_def_id` is the DefId that has the variant's attributes.
    pub fn new(tcx: TyCtxt<'a, 'gcx, 'tcx>,
               did: DefId,
               name: Name,
               discr: VariantDiscr,
               fields: Vec<FieldDef>,
               adt_kind: AdtKind,
               ctor_kind: CtorKind)
               -> Self
    {
        debug!("VariantDef::new({:?}, {:?}, {:?}, {:?}, {:?}, {:?})", did, name, discr, fields,
               adt_kind, ctor_kind);
        let mut flags = VariantFlags::NO_VARIANT_FLAGS;
        if adt_kind == AdtKind::Struct && tcx.has_attr(did, "non_exhaustive") {
            debug!("found non-exhaustive field list for {:?}", did);
            flags = flags | VariantFlags::IS_FIELD_LIST_NON_EXHAUSTIVE;
        }
        VariantDef {
            did,
            name,
            discr,
            fields,
            ctor_kind,
            flags
        }
    }

    #[inline]
    pub fn is_field_list_non_exhaustive(&self) -> bool {
        self.flags.intersects(VariantFlags::IS_FIELD_LIST_NON_EXHAUSTIVE)
    }
1757 1758
}

1759 1760 1761 1762 1763 1764 1765 1766 1767
impl_stable_hash_for!(struct VariantDef {
    did,
    name,
    discr,
    fields,
    ctor_kind,
    flags
});

1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780
#[derive(Copy, Clone, Debug, PartialEq, Eq, RustcEncodable, RustcDecodable)]
pub enum VariantDiscr {
    /// Explicit value for this variant, i.e. `X = 123`.
    /// The `DefId` corresponds to the embedded constant.
    Explicit(DefId),

    /// The previous variant's discriminant plus one.
    /// For efficiency reasons, the distance from the
    /// last `Explicit` discriminant is being stored,
    /// or `0` for the first variant, if it has none.
    Relative(usize),
}

1781
#[derive(Debug)]
1782
pub struct FieldDef {
1783
    pub did: DefId,
1784
    pub ident: Ident,
1785
    pub vis: Visibility,
1786 1787
}

A
Ariel Ben-Yehuda 已提交
1788 1789 1790 1791
/// The definition of an abstract data type - a struct or enum.
///
/// These are all interned (by intern_adt_def) into the adt_defs
/// table.
1792
pub struct AdtDef {
1793
    pub did: DefId,
1794
    pub variants: Vec<VariantDef>,
1795
    flags: AdtFlags,
1796
    pub repr: ReprOptions,
1797 1798
}

1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812
impl PartialOrd for AdtDef {
    fn partial_cmp(&self, other: &AdtDef) -> Option<Ordering> {
        Some(self.cmp(&other))
    }
}

/// There should be only one AdtDef for each `did`, therefore
/// it is fine to implement `Ord` only based on `did`.
impl Ord for AdtDef {
    fn cmp(&self, other: &AdtDef) -> Ordering {
        self.did.cmp(&other.did)
    }
}

1813 1814
impl PartialEq for AdtDef {
    // AdtDef are always interned and this is part of TyS equality
1815
    #[inline]
1816
    fn eq(&self, other: &Self) -> bool { ptr::eq(self, other) }
1817 1818
}

1819
impl Eq for AdtDef {}
1820

1821
impl Hash for AdtDef {
1822 1823
    #[inline]
    fn hash<H: Hasher>(&self, s: &mut H) {
1824
        (self as *const AdtDef).hash(s)
1825 1826 1827
    }
}

1828
impl<'tcx> serialize::UseSpecializedEncodable for &'tcx AdtDef {
1829
    fn default_encode<S: Encoder>(&self, s: &mut S) -> Result<(), S::Error> {
1830 1831 1832 1833
        self.did.encode(s)
    }
}

1834
impl<'tcx> serialize::UseSpecializedDecodable for &'tcx AdtDef {}
1835

1836

1837
impl<'a> HashStable<StableHashingContext<'a>> for AdtDef {
1838
    fn hash_stable<W: StableHasherResult>(&self,
1839
                                          hcx: &mut StableHashingContext<'a>,
1840
                                          hasher: &mut StableHasher<W>) {
W
Wesley Wiser 已提交
1841 1842 1843 1844
        thread_local! {
            static CACHE: RefCell<FxHashMap<usize, Fingerprint>> =
                RefCell::new(FxHashMap());
        }
1845

W
Wesley Wiser 已提交
1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866
        let hash: Fingerprint = CACHE.with(|cache| {
            let addr = self as *const AdtDef as usize;
            *cache.borrow_mut().entry(addr).or_insert_with(|| {
                let ty::AdtDef {
                    did,
                    ref variants,
                    ref flags,
                    ref repr,
                } = *self;

                let mut hasher = StableHasher::new();
                did.hash_stable(hcx, &mut hasher);
                variants.hash_stable(hcx, &mut hasher);
                flags.hash_stable(hcx, &mut hasher);
                repr.hash_stable(hcx, &mut hasher);

                hasher.finish()
           })
        });

        hash.hash_stable(hcx, hasher);
1867 1868 1869
    }
}

1870
#[derive(Copy, Clone, Debug, Eq, PartialEq, Hash)]
1871
pub enum AdtKind { Struct, Union, Enum }
1872

1873 1874 1875 1876 1877 1878 1879 1880 1881 1882
impl Into<DataTypeKind> for AdtKind {
    fn into(self) -> DataTypeKind {
        match self {
            AdtKind::Struct => DataTypeKind::Struct,
            AdtKind::Union => DataTypeKind::Union,
            AdtKind::Enum => DataTypeKind::Enum,
        }
    }
}

1883 1884
bitflags! {
    #[derive(RustcEncodable, RustcDecodable, Default)]
1885 1886
    pub struct ReprFlags: u8 {
        const IS_C               = 1 << 0;
1887 1888
        const IS_SIMD            = 1 << 1;
        const IS_TRANSPARENT     = 1 << 2;
1889
        // Internal only for now. If true, don't reorder fields.
1890
        const IS_LINEAR          = 1 << 3;
1891 1892 1893 1894

        // Any of these flags being set prevent field reordering optimisation.
        const IS_UNOPTIMISABLE   = ReprFlags::IS_C.bits |
                                   ReprFlags::IS_SIMD.bits |
1895
                                   ReprFlags::IS_LINEAR.bits;
1896 1897 1898 1899 1900 1901 1902 1903 1904
    }
}

impl_stable_hash_for!(struct ReprFlags {
    bits
});



1905
/// Represents the repr options provided by the user,
1906
#[derive(Copy, Clone, Debug, Eq, PartialEq, RustcEncodable, RustcDecodable, Default)]
1907 1908
pub struct ReprOptions {
    pub int: Option<attr::IntType>,
1909
    pub align: u32,
1910
    pub pack: u32,
1911
    pub flags: ReprFlags,
1912 1913
}

1914
impl_stable_hash_for!(struct ReprOptions {
1915
    align,
1916
    pack,
1917
    int,
1918
    flags
1919 1920
});

1921
impl ReprOptions {
1922
    pub fn new(tcx: TyCtxt, did: DefId) -> ReprOptions {
1923 1924
        let mut flags = ReprFlags::empty();
        let mut size = None;
1925
        let mut max_align = 0;
1926
        let mut min_pack = 0;
1927 1928
        for attr in tcx.get_attrs(did).iter() {
            for r in attr::find_repr_attrs(tcx.sess.diagnostic(), attr) {
1929
                flags.insert(match r {
1930
                    attr::ReprC => ReprFlags::IS_C,
1931 1932 1933 1934 1935 1936 1937 1938
                    attr::ReprPacked(pack) => {
                        min_pack = if min_pack > 0 {
                            cmp::min(pack, min_pack)
                        } else {
                            pack
                        };
                        ReprFlags::empty()
                    },
R
Robin Kruppe 已提交
1939
                    attr::ReprTransparent => ReprFlags::IS_TRANSPARENT,
1940 1941 1942 1943 1944
                    attr::ReprSimd => ReprFlags::IS_SIMD,
                    attr::ReprInt(i) => {
                        size = Some(i);
                        ReprFlags::empty()
                    },
1945 1946 1947 1948
                    attr::ReprAlign(align) => {
                        max_align = cmp::max(align, max_align);
                        ReprFlags::empty()
                    },
1949
                });
1950 1951
            }
        }
1952

1953
        // This is here instead of layout because the choice must make it into metadata.
1954 1955 1956
        if !tcx.consider_optimizing(|| format!("Reorder fields of {:?}", tcx.item_path_str(did))) {
            flags.insert(ReprFlags::IS_LINEAR);
        }
1957
        ReprOptions { int: size, align: max_align, pack: min_pack, flags: flags }
1958
    }
1959

1960 1961 1962 1963 1964
    #[inline]
    pub fn simd(&self) -> bool { self.flags.contains(ReprFlags::IS_SIMD) }
    #[inline]
    pub fn c(&self) -> bool { self.flags.contains(ReprFlags::IS_C) }
    #[inline]
1965
    pub fn packed(&self) -> bool { self.pack > 0 }
1966
    #[inline]
R
Robin Kruppe 已提交
1967 1968
    pub fn transparent(&self) -> bool { self.flags.contains(ReprFlags::IS_TRANSPARENT) }
    #[inline]
1969 1970
    pub fn linear(&self) -> bool { self.flags.contains(ReprFlags::IS_LINEAR) }

1971
    pub fn discr_type(&self) -> attr::IntType {
1972
        self.int.unwrap_or(attr::SignedInt(ast::IntTy::Isize))
1973
    }
1974 1975 1976 1977 1978

    /// Returns true if this `#[repr()]` should inhabit "smart enum
    /// layout" optimizations, such as representing `Foo<&T>` as a
    /// single pointer.
    pub fn inhibit_enum_layout_opt(&self) -> bool {
1979
        self.c() || self.int.is_some()
1980
    }
1981 1982 1983 1984 1985 1986

    /// Returns true if this `#[repr()]` should inhibit struct field reordering
    /// optimizations, such as with repr(C) or repr(packed(1)).
    pub fn inhibit_struct_field_reordering_opt(&self) -> bool {
        !(self.flags & ReprFlags::IS_UNOPTIMISABLE).is_empty() || (self.pack == 1)
    }
1987 1988
}

1989
impl<'a, 'gcx, 'tcx> AdtDef {
1990
    fn new(tcx: TyCtxt,
1991
           did: DefId,
A
Ariel Ben-Yehuda 已提交
1992
           kind: AdtKind,
1993 1994
           variants: Vec<VariantDef>,
           repr: ReprOptions) -> Self {
1995
        debug!("AdtDef::new({:?}, {:?}, {:?}, {:?})", did, kind, variants, repr);
A
Ariel Ben-Yehuda 已提交
1996
        let mut flags = AdtFlags::NO_ADT_FLAGS;
A
Ariel Ben-Yehuda 已提交
1997
        let attrs = tcx.get_attrs(did);
1998
        if attr::contains_name(&attrs, "fundamental") {
A
Ariel Ben-Yehuda 已提交
1999
            flags = flags | AdtFlags::IS_FUNDAMENTAL;
2000
        }
2001
        if Some(did) == tcx.lang_items().phantom_data() {
A
Ariel Ben-Yehuda 已提交
2002
            flags = flags | AdtFlags::IS_PHANTOM_DATA;
2003
        }
2004
        if Some(did) == tcx.lang_items().owned_box() {
2005 2006
            flags = flags | AdtFlags::IS_BOX;
        }
2007 2008 2009
        if kind == AdtKind::Enum && tcx.has_attr(did, "non_exhaustive") {
            debug!("found non-exhaustive variant list for {:?}", did);
            flags = flags | AdtFlags::IS_VARIANT_LIST_NON_EXHAUSTIVE;
2010
        }
2011 2012 2013 2014
        match kind {
            AdtKind::Enum => flags = flags | AdtFlags::IS_ENUM,
            AdtKind::Union => flags = flags | AdtFlags::IS_UNION,
            AdtKind::Struct => {}
2015
        }
2016
        AdtDef {
2017 2018 2019 2020
            did,
            variants,
            flags,
            repr,
2021 2022 2023
        }
    }

2024 2025 2026 2027 2028 2029 2030
    #[inline]
    pub fn is_struct(&self) -> bool {
        !self.is_union() && !self.is_enum()
    }

    #[inline]
    pub fn is_union(&self) -> bool {
2031
        self.flags.intersects(AdtFlags::IS_UNION)
2032 2033 2034 2035
    }

    #[inline]
    pub fn is_enum(&self) -> bool {
2036
        self.flags.intersects(AdtFlags::IS_ENUM)
2037 2038
    }

2039
    #[inline]
2040 2041
    pub fn is_variant_list_non_exhaustive(&self) -> bool {
        self.flags.intersects(AdtFlags::IS_VARIANT_LIST_NON_EXHAUSTIVE)
2042 2043
    }

A
Ariel Ben-Yehuda 已提交
2044
    /// Returns the kind of the ADT - Struct or Enum.
2045
    #[inline]
A
Ariel Ben-Yehuda 已提交
2046
    pub fn adt_kind(&self) -> AdtKind {
2047
        if self.is_enum() {
A
Ariel Ben-Yehuda 已提交
2048
            AdtKind::Enum
2049
        } else if self.is_union() {
2050
            AdtKind::Union
2051
        } else {
A
Ariel Ben-Yehuda 已提交
2052
            AdtKind::Struct
2053 2054 2055
        }
    }

2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071
    pub fn descr(&self) -> &'static str {
        match self.adt_kind() {
            AdtKind::Struct => "struct",
            AdtKind::Union => "union",
            AdtKind::Enum => "enum",
        }
    }

    pub fn variant_descr(&self) -> &'static str {
        match self.adt_kind() {
            AdtKind::Struct => "struct",
            AdtKind::Union => "union",
            AdtKind::Enum => "variant",
        }
    }

A
Ariel Ben-Yehuda 已提交
2072 2073
    /// Returns whether this type is #[fundamental] for the purposes
    /// of coherence checking.
2074 2075
    #[inline]
    pub fn is_fundamental(&self) -> bool {
2076
        self.flags.intersects(AdtFlags::IS_FUNDAMENTAL)
2077 2078
    }

A
Ariel Ben-Yehuda 已提交
2079
    /// Returns true if this is PhantomData<T>.
2080 2081
    #[inline]
    pub fn is_phantom_data(&self) -> bool {
2082
        self.flags.intersects(AdtFlags::IS_PHANTOM_DATA)
2083 2084
    }

2085 2086 2087
    /// Returns true if this is Box<T>.
    #[inline]
    pub fn is_box(&self) -> bool {
2088
        self.flags.intersects(AdtFlags::IS_BOX)
2089 2090
    }

A
Ariel Ben-Yehuda 已提交
2091
    /// Returns whether this type has a destructor.
2092 2093
    pub fn has_dtor(&self, tcx: TyCtxt<'a, 'gcx, 'tcx>) -> bool {
        self.destructor(tcx).is_some()
2094 2095
    }

2096 2097 2098
    /// Asserts this is a struct or union and returns its unique variant.
    pub fn non_enum_variant(&self) -> &VariantDef {
        assert!(self.is_struct() || self.is_union());
2099
        &self.variants[0]
2100 2101 2102
    }

    #[inline]
2103
    pub fn predicates(&self, tcx: TyCtxt<'a, 'gcx, 'tcx>) -> GenericPredicates<'gcx> {
2104
        tcx.predicates_of(self.did)
2105
    }
2106

A
Ariel Ben-Yehuda 已提交
2107 2108
    /// Returns an iterator over all fields contained
    /// by this ADT.
2109
    #[inline]
2110 2111
    pub fn all_fields<'s>(&'s self) -> impl Iterator<Item = &'s FieldDef> {
        self.variants.iter().flat_map(|v| v.fields.iter())
2112 2113 2114 2115 2116 2117 2118
    }

    pub fn is_payloadfree(&self) -> bool {
        !self.variants.is_empty() &&
            self.variants.iter().all(|v| v.fields.is_empty())
    }

2119
    pub fn variant_with_id(&self, vid: DefId) -> &VariantDef {
2120 2121 2122 2123 2124 2125
        self.variants
            .iter()
            .find(|v| v.did == vid)
            .expect("variant_with_id: unknown variant")
    }

N
Niko Matsakis 已提交
2126 2127 2128 2129 2130 2131 2132
    pub fn variant_index_with_id(&self, vid: DefId) -> usize {
        self.variants
            .iter()
            .position(|v| v.did == vid)
            .expect("variant_index_with_id: unknown variant")
    }

2133
    pub fn variant_of_def(&self, def: Def) -> &VariantDef {
2134
        match def {
2135 2136
            Def::Variant(vid) | Def::VariantCtor(vid, ..) => self.variant_with_id(vid),
            Def::Struct(..) | Def::StructCtor(..) | Def::Union(..) |
2137
            Def::TyAlias(..) | Def::AssociatedTy(..) | Def::SelfTy(..) => self.non_enum_variant(),
2138
            _ => bug!("unexpected def {:?} in variant_of_def", def)
2139 2140
        }
    }
2141

O
Oliver Schneider 已提交
2142
    #[inline]
2143
    pub fn eval_explicit_discr(
O
Oliver Schneider 已提交
2144 2145 2146 2147
        &self,
        tcx: TyCtxt<'a, 'gcx, 'tcx>,
        expr_did: DefId,
    ) -> Option<Discr<'tcx>> {
2148
        let param_env = ParamEnv::empty();
O
Oliver Schneider 已提交
2149 2150 2151 2152 2153 2154 2155 2156
        let repr_type = self.repr.discr_type();
        let substs = Substs::identity_for_item(tcx.global_tcx(), expr_did);
        let instance = ty::Instance::new(expr_did, substs);
        let cid = GlobalId {
            instance,
            promoted: None
        };
        match tcx.const_eval(param_env.and(cid)) {
2157 2158
            Ok(val) => {
                // FIXME: Find the right type and use it instead of `val.ty` here
O
Oliver Schneider 已提交
2159
                if let Some(b) = val.assert_bits(tcx.global_tcx(), param_env.and(val.ty)) {
2160 2161 2162 2163 2164 2165 2166
                    trace!("discriminants: {} ({:?})", b, repr_type);
                    Some(Discr {
                        val: b,
                        ty: val.ty,
                    })
                } else {
                    info!("invalid enum discriminant: {:#?}", val);
2167
                    ::mir::interpret::struct_error(
2168
                        tcx.at(tcx.def_span(expr_did)),
2169 2170 2171 2172
                        "constant evaluation of enum discriminant resulted in non-integer",
                    ).emit();
                    None
                }
O
Oliver Schneider 已提交
2173
            }
2174
            Err(err) => {
2175 2176 2177 2178
                err.report_as_error(
                    tcx.at(tcx.def_span(expr_did)),
                    "could not evaluate enum discriminant",
                );
O
Oliver Schneider 已提交
2179 2180 2181 2182 2183 2184 2185 2186 2187 2188
                if !expr_did.is_local() {
                    span_bug!(tcx.def_span(expr_did),
                        "variant discriminant evaluation succeeded \
                            in its crate but failed locally");
                }
                None
            }
        }
    }

2189
    #[inline]
2190 2191 2192 2193
    pub fn discriminants(
        &'a self,
        tcx: TyCtxt<'a, 'gcx, 'tcx>,
    ) -> impl Iterator<Item=Discr<'tcx>> + Captures<'gcx> + 'a {
2194
        let repr_type = self.repr.discr_type();
2195
        let initial = repr_type.initial_discriminant(tcx.global_tcx());
O
Oliver Schneider 已提交
2196
        let mut prev_discr = None::<Discr<'tcx>>;
2197
        self.variants.iter().map(move |v| {
O
Oliver Schneider 已提交
2198
            let mut discr = prev_discr.map_or(initial, |d| d.wrap_incr(tcx));
2199
            if let VariantDiscr::Explicit(expr_did) = v.discr {
O
Oliver Schneider 已提交
2200 2201
                if let Some(new_discr) = self.eval_explicit_discr(tcx, expr_did) {
                    discr = new_discr;
2202 2203 2204 2205 2206 2207 2208 2209
                }
            }
            prev_discr = Some(discr);

            discr
        })
    }

2210 2211 2212 2213 2214 2215 2216 2217
    /// Compute the discriminant value used by a specific variant.
    /// Unlike `discriminants`, this is (amortized) constant-time,
    /// only doing at most one query for evaluating an explicit
    /// discriminant (the last one before the requested variant),
    /// assuming there are no constant-evaluation errors there.
    pub fn discriminant_for_variant(&self,
                                    tcx: TyCtxt<'a, 'gcx, 'tcx>,
                                    variant_index: usize)
O
Oliver Schneider 已提交
2218
                                    -> Discr<'tcx> {
2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232
        let (val, offset) = self.discriminant_def_for_variant(variant_index);
        let explicit_value = val
            .and_then(|expr_did| self.eval_explicit_discr(tcx, expr_did))
            .unwrap_or_else(|| self.repr.discr_type().initial_discriminant(tcx.global_tcx()));
        explicit_value.checked_add(tcx, offset as u128).0
    }

    /// Yields a DefId for the discriminant and an offset to add to it
    /// Alternatively, if there is no explicit discriminant, returns the
    /// inferred discriminant directly
    pub fn discriminant_def_for_variant(
        &self,
        variant_index: usize,
    ) -> (Option<DefId>, usize) {
2233
        let mut explicit_index = variant_index;
2234
        let expr_did;
2235 2236
        loop {
            match self.variants[explicit_index].discr {
2237 2238 2239 2240
                ty::VariantDiscr::Relative(0) => {
                    expr_did = None;
                    break;
                },
2241 2242 2243
                ty::VariantDiscr::Relative(distance) => {
                    explicit_index -= distance;
                }
2244 2245 2246
                ty::VariantDiscr::Explicit(did) => {
                    expr_did = Some(did);
                    break;
2247 2248 2249
                }
            }
        }
2250
        (expr_did, variant_index - explicit_index)
2251 2252
    }

2253
    pub fn destructor(&self, tcx: TyCtxt<'a, 'gcx, 'tcx>) -> Option<Destructor> {
2254
        tcx.adt_destructor(self.did)
2255 2256
    }

2257
    /// Returns a list of types such that `Self: Sized` if and only
2258
    /// if that type is Sized, or `TyErr` if this type is recursive.
A
Ariel Ben-Yehuda 已提交
2259 2260 2261 2262 2263 2264 2265 2266
    ///
    /// Oddly enough, checking that the sized-constraint is Sized is
    /// actually more expressive than checking all members:
    /// the Sized trait is inductive, so an associated type that references
    /// Self would prevent its containing ADT from being Sized.
    ///
    /// Due to normalization being eager, this applies even if
    /// the associated type is behind a pointer, e.g. issue #31299.
2267
    pub fn sized_constraint(&self, tcx: TyCtxt<'a, 'gcx, 'tcx>) -> &'tcx [Ty<'tcx>] {
2268
        match tcx.try_adt_sized_constraint(DUMMY_SP, self.did) {
2269
            Ok(tys) => tys,
2270
            Err(mut bug) => {
2271 2272 2273 2274
                debug!("adt_sized_constraint: {:?} is recursive", self);
                // This should be reported as an error by `check_representable`.
                //
                // Consider the type as Sized in the meanwhile to avoid
2275 2276 2277 2278
                // further errors. Delay our `bug` diagnostic here to get
                // emitted later as well in case we accidentally otherwise don't
                // emit an error.
                bug.delay_as_bug();
2279
                tcx.intern_type_list(&[tcx.types.err])
A
Ariel Ben-Yehuda 已提交
2280
            }
2281 2282
        }
    }
2283

2284 2285 2286 2287
    fn sized_constraint_for_ty(&self,
                               tcx: TyCtxt<'a, 'tcx, 'tcx>,
                               ty: Ty<'tcx>)
                               -> Vec<Ty<'tcx>> {
2288
        let result = match ty.sty {
2289
            Bool | Char | Int(..) | Uint(..) | Float(..) |
V
varkor 已提交
2290 2291
            RawPtr(..) | Ref(..) | FnDef(..) | FnPtr(_) |
            Array(..) | Closure(..) | Generator(..) | Never => {
A
Ariel Ben-Yehuda 已提交
2292
                vec![]
2293 2294
            }

2295
            Str |
V
varkor 已提交
2296 2297
            Dynamic(..) |
            Slice(_) |
V
varkor 已提交
2298
            Foreign(..) |
V
varkor 已提交
2299 2300
            Error |
            GeneratorWitness(..) => {
2301
                // these are never sized - return the target type
A
Ariel Ben-Yehuda 已提交
2302
                vec![ty]
2303 2304
            }

V
varkor 已提交
2305
            Tuple(ref tys) => {
2306 2307
                match tys.last() {
                    None => vec![],
2308
                    Some(ty) => self.sized_constraint_for_ty(tcx, ty)
2309
                }
2310 2311
            }

V
varkor 已提交
2312
            Adt(adt, substs) => {
2313
                // recursive case
2314
                let adt_tys = adt.sized_constraint(tcx);
2315
                debug!("sized_constraint_for_ty({:?}) intermediate = {:?}",
2316 2317 2318 2319 2320
                       ty, adt_tys);
                adt_tys.iter()
                    .map(|ty| ty.subst(tcx, substs))
                    .flat_map(|ty| self.sized_constraint_for_ty(tcx, ty))
                    .collect()
2321 2322
            }

2323
            Projection(..) | Opaque(..) => {
2324 2325
                // must calculate explicitly.
                // FIXME: consider special-casing always-Sized projections
A
Ariel Ben-Yehuda 已提交
2326
                vec![ty]
2327 2328
            }

V
varkor 已提交
2329
            Param(..) => {
A
Ariel Ben-Yehuda 已提交
2330 2331 2332 2333
                // perf hack: if there is a `T: Sized` bound, then
                // we know that `T` is Sized and do not need to check
                // it on the impl.

2334
                let sized_trait = match tcx.lang_items().sized_trait() {
2335
                    Some(x) => x,
A
Ariel Ben-Yehuda 已提交
2336
                    _ => return vec![ty]
2337
                };
2338
                let sized_predicate = Binder::dummy(TraitRef {
2339
                    def_id: sized_trait,
2340
                    substs: tcx.mk_substs_trait(ty, &[])
2341
                }).to_predicate();
2342
                let predicates = tcx.predicates_of(self.did).predicates;
2343
                if predicates.into_iter().any(|p| p == sized_predicate) {
A
Ariel Ben-Yehuda 已提交
2344
                    vec![]
2345
                } else {
A
Ariel Ben-Yehuda 已提交
2346
                    vec![ty]
2347 2348 2349
                }
            }

V
varkor 已提交
2350
            Infer(..) => {
2351 2352 2353 2354 2355 2356 2357
                bug!("unexpected type `{:?}` in sized_constraint_for_ty",
                     ty)
            }
        };
        debug!("sized_constraint_for_ty({:?}) = {:?}", ty, result);
        result
    }
2358 2359
}

2360
impl<'a, 'gcx, 'tcx> FieldDef {
2361
    pub fn ty(&self, tcx: TyCtxt<'a, 'gcx, 'tcx>, subst: &Substs<'tcx>) -> Ty<'tcx> {
2362
        tcx.type_of(self.did).subst(tcx, subst)
2363
    }
2364 2365
}

2366 2367 2368 2369 2370 2371
/// Represents the various closure traits in the Rust language. This
/// will determine the type of the environment (`self`, in the
/// desuaring) argument that the closure expects.
///
/// You can get the environment type of a closure using
/// `tcx.closure_env_ty()`.
2372
#[derive(Clone, Copy, PartialOrd, Ord, PartialEq, Eq, Hash, Debug, RustcEncodable, RustcDecodable)]
2373
pub enum ClosureKind {
2374 2375 2376
    // Warning: Ordering is significant here! The ordering is chosen
    // because the trait Fn is a subtrait of FnMut and so in turn, and
    // hence we order it so that Fn < FnMut < FnOnce.
2377 2378 2379
    Fn,
    FnMut,
    FnOnce,
2380 2381
}

2382
impl<'a, 'tcx> ClosureKind {
2383 2384 2385
    // This is the initial value used when doing upvar inference.
    pub const LATTICE_BOTTOM: ClosureKind = ClosureKind::Fn;

2386
    pub fn trait_did(&self, tcx: TyCtxt<'a, 'tcx, 'tcx>) -> DefId {
2387 2388
        match *self {
            ClosureKind::Fn => tcx.require_lang_item(FnTraitLangItem),
2389
            ClosureKind::FnMut => {
2390
                tcx.require_lang_item(FnMutTraitLangItem)
2391
            }
2392
            ClosureKind::FnOnce => {
2393
                tcx.require_lang_item(FnOnceTraitLangItem)
2394 2395 2396
            }
        }
    }
2397 2398 2399 2400 2401

    /// True if this a type that impls this closure kind
    /// must also implement `other`.
    pub fn extends(self, other: ty::ClosureKind) -> bool {
        match (self, other) {
2402 2403 2404 2405 2406 2407
            (ClosureKind::Fn, ClosureKind::Fn) => true,
            (ClosureKind::Fn, ClosureKind::FnMut) => true,
            (ClosureKind::Fn, ClosureKind::FnOnce) => true,
            (ClosureKind::FnMut, ClosureKind::FnMut) => true,
            (ClosureKind::FnMut, ClosureKind::FnOnce) => true,
            (ClosureKind::FnOnce, ClosureKind::FnOnce) => true,
2408 2409 2410
            _ => false,
        }
    }
2411 2412 2413 2414 2415 2416 2417 2418 2419

    /// Returns the representative scalar type for this closure kind.
    /// See `TyS::to_opt_closure_kind` for more details.
    pub fn to_ty(self, tcx: TyCtxt<'_, '_, 'tcx>) -> Ty<'tcx> {
        match self {
            ty::ClosureKind::Fn => tcx.types.i8,
            ty::ClosureKind::FnMut => tcx.types.i16,
            ty::ClosureKind::FnOnce => tcx.types.i32,
        }
2420
    }
2421 2422
}

2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435
impl<'tcx> TyS<'tcx> {
    /// Iterator that walks `self` and any types reachable from
    /// `self`, in depth-first order. Note that just walks the types
    /// that appear in `self`, it does not descend into the fields of
    /// structs or variants. For example:
    ///
    /// ```notrust
    /// isize => { isize }
    /// Foo<Bar<isize>> => { Foo<Bar<isize>>, Bar<isize>, isize }
    /// [isize] => { [isize], isize }
    /// ```
    pub fn walk(&'tcx self) -> TypeWalker<'tcx> {
        TypeWalker::new(self)
2436 2437
    }

2438 2439 2440
    /// Iterator that walks the immediate children of `self`.  Hence
    /// `Foo<Bar<i32>, u32>` yields the sequence `[Bar<i32>, u32]`
    /// (but not `i32`, like `walk`).
2441
    pub fn walk_shallow(&'tcx self) -> smallvec::IntoIter<walk::TypeWalkerArray<'tcx>> {
2442
        walk::walk_shallow(self)
2443 2444
    }

2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458
    /// Walks `ty` and any types appearing within `ty`, invoking the
    /// callback `f` on each type. If the callback returns false, then the
    /// children of the current type are ignored.
    ///
    /// Note: prefer `ty.walk()` where possible.
    pub fn maybe_walk<F>(&'tcx self, mut f: F)
        where F : FnMut(Ty<'tcx>) -> bool
    {
        let mut walker = self.walk();
        while let Some(ty) = walker.next() {
            if !f(ty) {
                walker.skip_current_subtree();
            }
        }
2459
    }
2460
}
2461

2462
impl BorrowKind {
2463
    pub fn from_mutbl(m: hir::Mutability) -> BorrowKind {
2464
        match m {
2465 2466
            hir::MutMutable => MutBorrow,
            hir::MutImmutable => ImmBorrow,
2467 2468
        }
    }
2469

2470 2471 2472 2473
    /// Returns a mutability `m` such that an `&m T` pointer could be used to obtain this borrow
    /// kind. Because borrow kinds are richer than mutabilities, we sometimes have to pick a
    /// mutability that is stronger than necessary so that it at least *would permit* the borrow in
    /// question.
2474
    pub fn to_mutbl_lossy(self) -> hir::Mutability {
2475
        match self {
2476 2477
            MutBorrow => hir::MutMutable,
            ImmBorrow => hir::MutImmutable,
2478 2479 2480 2481

            // We have no type corresponding to a unique imm borrow, so
            // use `&mut`. It gives all the capabilities of an `&uniq`
            // and hence is a safe "over approximation".
2482
            UniqueImmBorrow => hir::MutMutable,
2483
        }
2484
    }
2485

2486 2487 2488 2489 2490 2491
    pub fn to_user_str(&self) -> &'static str {
        match *self {
            MutBorrow => "mutable",
            ImmBorrow => "immutable",
            UniqueImmBorrow => "uniquely immutable",
        }
2492 2493 2494
    }
}

2495 2496
#[derive(Debug, Clone)]
pub enum Attributes<'gcx> {
2497
    Owned(Lrc<[ast::Attribute]>),
2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511
    Borrowed(&'gcx [ast::Attribute])
}

impl<'gcx> ::std::ops::Deref for Attributes<'gcx> {
    type Target = [ast::Attribute];

    fn deref(&self) -> &[ast::Attribute] {
        match self {
            &Attributes::Owned(ref data) => &data,
            &Attributes::Borrowed(data) => data
        }
    }
}

2512
impl<'a, 'gcx, 'tcx> TyCtxt<'a, 'gcx, 'tcx> {
2513
    pub fn body_tables(self, body: hir::BodyId) -> &'gcx TypeckTables<'gcx> {
2514
        self.typeck_tables_of(self.hir.body_owner_def_id(body))
2515 2516
    }

N
Niko Matsakis 已提交
2517 2518 2519
    /// Returns an iterator of the def-ids for all body-owners in this
    /// crate. If you would prefer to iterate over the bodies
    /// themselves, you can do `self.hir.krate().body_ids.iter()`.
2520 2521 2522
    pub fn body_owners(
        self,
    ) -> impl Iterator<Item = DefId> + Captures<'tcx> + Captures<'gcx> + 'a {
N
Niko Matsakis 已提交
2523 2524 2525 2526 2527 2528
        self.hir.krate()
                .body_ids
                .iter()
                .map(move |&body_id| self.hir.body_owner_def_id(body_id))
    }

J
John Kåre Alsaker 已提交
2529 2530 2531 2532 2533 2534
    pub fn par_body_owners<F: Fn(DefId) + sync::Sync + sync::Send>(self, f: F) {
        par_iter(&self.hir.krate().body_ids).for_each(|&body_id| {
            f(self.hir.body_owner_def_id(body_id))
        });
    }

2535
    pub fn expr_span(self, id: NodeId) -> Span {
2536
        match self.hir.find(id) {
V
varkor 已提交
2537
            Some(Node::Expr(e)) => {
2538 2539 2540
                e.span
            }
            Some(f) => {
2541
                bug!("Node id {} is not an expr: {:?}", id, f);
2542 2543
            }
            None => {
2544
                bug!("Node id {} is not present in the node map", id);
2545
            }
2546
        }
2547 2548
    }

2549 2550
    pub fn provided_trait_methods(self, id: DefId) -> Vec<AssociatedItem> {
        self.associated_items(id)
2551
            .filter(|item| item.kind == AssociatedKind::Method && item.defaultness.has_value())
2552
            .collect()
2553 2554
    }

A
Andrew Cann 已提交
2555 2556 2557 2558 2559 2560
    pub fn trait_relevant_for_never(self, did: DefId) -> bool {
        self.associated_items(did).any(|item| {
            item.relevant_for_never()
        })
    }

2561 2562 2563
    pub fn opt_associated_item(self, def_id: DefId) -> Option<AssociatedItem> {
        let is_associated_item = if let Some(node_id) = self.hir.as_local_node_id(def_id) {
            match self.hir.get(node_id) {
V
varkor 已提交
2564
                Node::TraitItem(_) | Node::ImplItem(_) => true,
2565 2566 2567
                _ => false,
            }
        } else {
2568
            match self.describe_def(def_id).expect("no def for def-id") {
2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580
                Def::AssociatedConst(_) | Def::Method(_) | Def::AssociatedTy(_) => true,
                _ => false,
            }
        };

        if is_associated_item {
            Some(self.associated_item(def_id))
        } else {
            None
        }
    }

2581 2582
    fn associated_item_from_trait_item_ref(self,
                                           parent_def_id: DefId,
2583
                                           parent_vis: &hir::Visibility,
2584
                                           trait_item_ref: &hir::TraitItemRef)
2585
                                           -> AssociatedItem {
2586
        let def_id = self.hir.local_def_id(trait_item_ref.id.node_id);
2587 2588 2589 2590
        let (kind, has_self) = match trait_item_ref.kind {
            hir::AssociatedItemKind::Const => (ty::AssociatedKind::Const, false),
            hir::AssociatedItemKind::Method { has_self } => {
                (ty::AssociatedKind::Method, has_self)
2591
            }
2592
            hir::AssociatedItemKind::Type => (ty::AssociatedKind::Type, false),
O
Oliver Schneider 已提交
2593
            hir::AssociatedItemKind::Existential => bug!("only impls can have existentials"),
2594 2595 2596
        };

        AssociatedItem {
2597
            ident: trait_item_ref.ident,
2598
            kind,
2599 2600
            // Visibility of trait items is inherited from their traits.
            vis: Visibility::from_hir(parent_vis, trait_item_ref.id.node_id, self),
2601
            defaultness: trait_item_ref.defaultness,
2602
            def_id,
2603 2604 2605 2606 2607 2608 2609 2610 2611
            container: TraitContainer(parent_def_id),
            method_has_self_argument: has_self
        }
    }

    fn associated_item_from_impl_item_ref(self,
                                          parent_def_id: DefId,
                                          impl_item_ref: &hir::ImplItemRef)
                                          -> AssociatedItem {
2612
        let def_id = self.hir.local_def_id(impl_item_ref.id.node_id);
2613 2614 2615 2616 2617 2618
        let (kind, has_self) = match impl_item_ref.kind {
            hir::AssociatedItemKind::Const => (ty::AssociatedKind::Const, false),
            hir::AssociatedItemKind::Method { has_self } => {
                (ty::AssociatedKind::Method, has_self)
            }
            hir::AssociatedItemKind::Type => (ty::AssociatedKind::Type, false),
O
Oliver Schneider 已提交
2619
            hir::AssociatedItemKind::Existential => (ty::AssociatedKind::Existential, false),
2620 2621
        };

2622 2623
        AssociatedItem {
            ident: impl_item_ref.ident,
2624
            kind,
2625 2626
            // Visibility of trait impl items doesn't matter.
            vis: ty::Visibility::from_hir(&impl_item_ref.vis, impl_item_ref.id.node_id, self),
2627
            defaultness: impl_item_ref.defaultness,
2628
            def_id,
2629 2630 2631 2632 2633
            container: ImplContainer(parent_def_id),
            method_has_self_argument: has_self
        }
    }

2634 2635 2636 2637 2638 2639 2640
    pub fn field_index(self, node_id: NodeId, tables: &TypeckTables) -> usize {
        let hir_id = self.hir.node_to_hir_id(node_id);
        tables.field_indices().get(hir_id).cloned().expect("no index for a field")
    }

    pub fn find_field_index(self, ident: Ident, variant: &VariantDef) -> Option<usize> {
        variant.fields.iter().position(|field| {
2641
            self.adjust_ident(ident, variant.did, DUMMY_NODE_ID).0 == field.ident.modern()
2642 2643 2644
        })
    }

2645 2646 2647
    pub fn associated_items(
        self,
        def_id: DefId,
2648
    ) -> impl Iterator<Item = AssociatedItem> + 'a {
2649
        let def_ids = self.associated_item_def_ids(def_id);
2650
        Box::new((0..def_ids.len()).map(move |i| self.associated_item(def_ids[i])))
2651
            as Box<dyn Iterator<Item = AssociatedItem> + 'a>
2652 2653
    }

2654 2655 2656
    /// Returns true if the impls are the same polarity and are implementing
    /// a trait which contains no items
    pub fn impls_are_allowed_to_overlap(self, def_id1: DefId, def_id2: DefId) -> bool {
2657
        if !self.features().overlapping_marker_traits {
2658 2659
            return false;
        }
2660 2661 2662 2663 2664 2665 2666 2667
        let trait1_is_empty = self.impl_trait_ref(def_id1)
            .map_or(false, |trait_ref| {
                self.associated_item_def_ids(trait_ref.def_id).is_empty()
            });
        let trait2_is_empty = self.impl_trait_ref(def_id2)
            .map_or(false, |trait_ref| {
                self.associated_item_def_ids(trait_ref.def_id).is_empty()
            });
2668
        self.impl_polarity(def_id1) == self.impl_polarity(def_id2)
2669 2670
            && trait1_is_empty
            && trait2_is_empty
S
Sean Griffin 已提交
2671 2672
    }

2673 2674
    // Returns `ty::VariantDef` if `def` refers to a struct,
    // or variant or their constructors, panics otherwise.
2675
    pub fn expect_variant_def(self, def: Def) -> &'tcx VariantDef {
2676
        match def {
2677
            Def::Variant(did) | Def::VariantCtor(did, ..) => {
2678
                let enum_did = self.parent_def_id(did).unwrap();
2679
                self.adt_def(enum_did).variant_with_id(did)
2680
            }
2681
            Def::Struct(did) | Def::Union(did) => {
2682
                self.adt_def(did).non_enum_variant()
2683 2684 2685
            }
            Def::StructCtor(ctor_did, ..) => {
                let did = self.parent_def_id(ctor_did).expect("struct ctor has no parent");
2686
                self.adt_def(did).non_enum_variant()
2687 2688 2689 2690 2691
            }
            _ => bug!("expect_variant_def used with unexpected def {:?}", def)
        }
    }

2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705
    /// Given a `VariantDef`, returns the def-id of the `AdtDef` of which it is a part.
    pub fn adt_def_id_of_variant(self, variant_def: &'tcx VariantDef) -> DefId {
        let def_key = self.def_key(variant_def.did);
        match def_key.disambiguated_data.data {
            // for enum variants and tuple structs, the def-id of the ADT itself
            // is the *parent* of the variant
            DefPathData::EnumVariant(..) | DefPathData::StructCtor =>
                DefId { krate: variant_def.did.krate, index: def_key.parent.unwrap() },

            // otherwise, for structs and unions, they share a def-id
            _ => variant_def.did,
        }
    }

2706
    pub fn item_name(self, id: DefId) -> InternedString {
2707
        if id.index == CRATE_DEF_INDEX {
2708
            self.original_crate_name(id.krate).as_interned_str()
2709
        } else {
2710
            let def_key = self.def_key(id);
2711
            // The name of a StructCtor is that of its struct parent.
2712
            if let hir_map::DefPathData::StructCtor = def_key.disambiguated_data.data {
2713 2714 2715 2716 2717 2718 2719 2720 2721
                self.item_name(DefId {
                    krate: id.krate,
                    index: def_key.parent.unwrap()
                })
            } else {
                def_key.disambiguated_data.data.get_opt_name().unwrap_or_else(|| {
                    bug!("item_name: no name for {:?}", self.def_path(id));
                })
            }
2722 2723 2724
        }
    }

2725 2726
    /// Return the possibly-auto-generated MIR of a (DefId, Subst) pair.
    pub fn instance_mir(self, instance: ty::InstanceDef<'gcx>)
2727
                        -> &'gcx Mir<'gcx>
2728 2729
    {
        match instance {
N
Niko Matsakis 已提交
2730
            ty::InstanceDef::Item(did) => {
2731
                self.optimized_mir(did)
N
Niko Matsakis 已提交
2732 2733 2734 2735 2736
            }
            ty::InstanceDef::Intrinsic(..) |
            ty::InstanceDef::FnPtrShim(..) |
            ty::InstanceDef::Virtual(..) |
            ty::InstanceDef::ClosureOnceShim { .. } |
2737
            ty::InstanceDef::DropGlue(..) |
S
scalexm 已提交
2738
            ty::InstanceDef::CloneShim(..) => {
2739
                self.mir_shims(instance)
N
Niko Matsakis 已提交
2740
            }
2741 2742 2743
        }
    }

2744 2745
    /// Given the DefId of an item, returns its MIR, borrowed immutably.
    /// Returns None if there is no MIR for the DefId
2746 2747 2748 2749 2750
    pub fn maybe_optimized_mir(self, did: DefId) -> Option<&'gcx Mir<'gcx>> {
        if self.is_mir_available(did) {
            Some(self.optimized_mir(did))
        } else {
            None
2751 2752 2753
        }
    }

2754
    /// Get the attributes of a definition.
2755
    pub fn get_attrs(self, did: DefId) -> Attributes<'gcx> {
2756
        if let Some(id) = self.hir.as_local_node_id(did) {
2757
            Attributes::Borrowed(self.hir.attrs(id))
2758
        } else {
A
achernyak 已提交
2759
            Attributes::Owned(self.item_attrs(did))
2760
        }
2761 2762
    }

2763
    /// Determine whether an item is annotated with an attribute
2764
    pub fn has_attr(self, did: DefId, attr: &str) -> bool {
2765
        attr::contains_name(&self.get_attrs(did), attr)
2766
    }
2767

2768 2769
    /// Returns true if this is an `auto trait`.
    pub fn trait_is_auto(self, trait_def_id: DefId) -> bool {
2770
        self.trait_def(trait_def_id).has_auto_impl
2771
    }
2772

J
John Kåre Alsaker 已提交
2773 2774 2775 2776
    pub fn generator_layout(self, def_id: DefId) -> &'tcx GeneratorLayout<'tcx> {
        self.optimized_mir(def_id).generator_layout.as_ref().unwrap()
    }

2777 2778
    /// Given the def_id of an impl, return the def_id of the trait it implements.
    /// If it implements no trait, return `None`.
2779
    pub fn trait_id_of_impl(self, def_id: DefId) -> Option<DefId> {
2780
        self.impl_trait_ref(def_id).map(|tr| tr.def_id)
2781
    }
2782 2783 2784

    /// If the given def ID describes a method belonging to an impl, return the
    /// ID of the impl that the method belongs to. Otherwise, return `None`.
2785
    pub fn impl_of_method(self, def_id: DefId) -> Option<DefId> {
2786
        let item = if def_id.krate != LOCAL_CRATE {
A
achernyak 已提交
2787
            if let Some(Def::Method(_)) = self.describe_def(def_id) {
2788 2789 2790 2791 2792
                Some(self.associated_item(def_id))
            } else {
                None
            }
        } else {
2793
            self.opt_associated_item(def_id)
2794 2795
        };

2796 2797 2798 2799
        item.and_then(|trait_item|
            match trait_item.container {
                TraitContainer(_) => None,
                ImplContainer(def_id) => Some(def_id),
2800
            }
2801
        )
2802 2803
    }

2804 2805
    /// Looks up the span of `impl_did` if the impl is local; otherwise returns `Err`
    /// with the name of the crate containing the impl.
2806
    pub fn span_of_impl(self, impl_did: DefId) -> Result<Span, Symbol> {
2807
        if impl_did.is_local() {
2808 2809
            let node_id = self.hir.as_local_node_id(impl_did).unwrap();
            Ok(self.hir.span(node_id))
2810
        } else {
2811
            Err(self.crate_name(impl_did.krate))
2812 2813
        }
    }
J
Jeffrey Seyfried 已提交
2814

2815 2816 2817
    // Hygienically compare a use-site name (`use_name`) for a field or an associated item with its
    // supposed definition name (`def_name`). The method also needs `DefId` of the supposed
    // definition's parent/scope to perform comparison.
2818 2819
    pub fn hygienic_eq(self, use_name: Ident, def_name: Ident, def_parent_def_id: DefId) -> bool {
        self.adjust_ident(use_name, def_parent_def_id, DUMMY_NODE_ID).0 == def_name.modern()
J
Jeffrey Seyfried 已提交
2820 2821 2822
    }

    pub fn adjust_ident(self, mut ident: Ident, scope: DefId, block: NodeId) -> (Ident, DefId) {
2823 2824
        ident = ident.modern();
        let target_expansion = match scope.krate {
2825
            LOCAL_CRATE => self.hir.definitions().expansion_that_defined(scope.index),
J
Jeffrey Seyfried 已提交
2826 2827
            _ => Mark::root(),
        };
2828 2829 2830
        let scope = match ident.span.adjust(target_expansion) {
            Some(actual_expansion) =>
                self.hir.definitions().parent_module_of_macro_def(actual_expansion),
2831
            None if block == DUMMY_NODE_ID => DefId::local(CRATE_DEF_INDEX), // Dummy DefId
J
Jeffrey Seyfried 已提交
2832 2833 2834 2835
            None => self.hir.get_module_parent(block),
        };
        (ident, scope)
    }
2836
}
2837

2838
impl<'a, 'gcx, 'tcx> TyCtxt<'a, 'gcx, 'tcx> {
2839
    pub fn with_freevars<T, F>(self, fid: NodeId, f: F) -> T where
2840
        F: FnOnce(&[hir::Freevar]) -> T,
2841
    {
A
Alex Crichton 已提交
2842 2843
        let def_id = self.hir.local_def_id(fid);
        match self.freevars(def_id) {
2844
            None => f(&[]),
2845
            Some(d) => f(&d),
2846 2847
        }
    }
2848
}
2849 2850 2851 2852 2853 2854 2855 2856 2857

fn associated_item<'a, 'tcx>(tcx: TyCtxt<'a, 'tcx, 'tcx>, def_id: DefId)
    -> AssociatedItem
{
    let id = tcx.hir.as_local_node_id(def_id).unwrap();
    let parent_id = tcx.hir.get_parent(id);
    let parent_def_id = tcx.hir.local_def_id(parent_id);
    let parent_item = tcx.hir.expect_item(parent_id);
    match parent_item.node {
C
csmoe 已提交
2858
        hir::ItemKind::Impl(.., ref impl_item_refs) => {
2859
            if let Some(impl_item_ref) = impl_item_refs.iter().find(|i| i.id.node_id == id) {
2860 2861
                let assoc_item = tcx.associated_item_from_impl_item_ref(parent_def_id,
                                                                        impl_item_ref);
2862 2863
                debug_assert_eq!(assoc_item.def_id, def_id);
                return assoc_item;
2864 2865 2866
            }
        }

C
csmoe 已提交
2867
        hir::ItemKind::Trait(.., ref trait_item_refs) => {
2868
            if let Some(trait_item_ref) = trait_item_refs.iter().find(|i| i.id.node_id == id) {
2869 2870 2871
                let assoc_item = tcx.associated_item_from_trait_item_ref(parent_def_id,
                                                                         &parent_item.vis,
                                                                         trait_item_ref);
2872 2873
                debug_assert_eq!(assoc_item.def_id, def_id);
                return assoc_item;
2874 2875 2876
            }
        }

2877
        _ => { }
2878
    }
2879 2880 2881 2882

    span_bug!(parent_item.span,
              "unexpected parent of trait or impl item or item not found: {:?}",
              parent_item.node)
2883 2884
}

2885 2886
/// Calculates the Sized-constraint.
///
2887
/// In fact, there are only a few options for the types in the constraint:
2888 2889 2890 2891
///     - an obviously-unsized type
///     - a type parameter or projection whose Sizedness can't be known
///     - a tuple of type parameters or projections, if there are multiple
///       such.
V
varkor 已提交
2892
///     - a Error, if a type contained itself. The representability
2893 2894 2895
///       check should catch this case.
fn adt_sized_constraint<'a, 'tcx>(tcx: TyCtxt<'a, 'tcx, 'tcx>,
                                  def_id: DefId)
2896
                                  -> &'tcx [Ty<'tcx>] {
2897
    let def = tcx.adt_def(def_id);
2898

2899
    let result = tcx.mk_type_list(def.variants.iter().flat_map(|v| {
2900 2901
        v.fields.last()
    }).flat_map(|f| {
2902
        def.sized_constraint_for_ty(tcx, tcx.type_of(f.did))
2903
    }));
2904

2905
    debug!("adt_sized_constraint: {:?} => {:?}", def, result);
2906

2907
    result
2908 2909
}

2910 2911
fn associated_item_def_ids<'a, 'tcx>(tcx: TyCtxt<'a, 'tcx, 'tcx>,
                                     def_id: DefId)
2912
                                     -> Lrc<Vec<DefId>> {
2913 2914 2915
    let id = tcx.hir.as_local_node_id(def_id).unwrap();
    let item = tcx.hir.expect_item(id);
    let vec: Vec<_> = match item.node {
C
csmoe 已提交
2916
        hir::ItemKind::Trait(.., ref trait_item_refs) => {
2917 2918 2919 2920 2921
            trait_item_refs.iter()
                           .map(|trait_item_ref| trait_item_ref.id)
                           .map(|id| tcx.hir.local_def_id(id.node_id))
                           .collect()
        }
C
csmoe 已提交
2922
        hir::ItemKind::Impl(.., ref impl_item_refs) => {
2923 2924 2925 2926 2927
            impl_item_refs.iter()
                          .map(|impl_item_ref| impl_item_ref.id)
                          .map(|id| tcx.hir.local_def_id(id.node_id))
                          .collect()
        }
C
csmoe 已提交
2928
        hir::ItemKind::TraitAlias(..) => vec![],
2929 2930
        _ => span_bug!(item.span, "associated_item_def_ids: not impl or trait")
    };
2931
    Lrc::new(vec)
2932 2933
}

A
achernyak 已提交
2934
fn def_span<'a, 'tcx>(tcx: TyCtxt<'a, 'tcx, 'tcx>, def_id: DefId) -> Span {
A
achernyak 已提交
2935
    tcx.hir.span_if_local(def_id).unwrap()
A
achernyak 已提交
2936 2937
}

A
achernyak 已提交
2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950
/// If the given def ID describes an item belonging to a trait,
/// return the ID of the trait that the trait item belongs to.
/// Otherwise, return `None`.
fn trait_of_item<'a, 'tcx>(tcx: TyCtxt<'a, 'tcx, 'tcx>, def_id: DefId) -> Option<DefId> {
    tcx.opt_associated_item(def_id)
        .and_then(|associated_item| {
            match associated_item.container {
                TraitContainer(def_id) => Some(def_id),
                ImplContainer(_) => None
            }
        })
}

2951 2952 2953
/// Yields the parent function's `DefId` if `def_id` is an `impl Trait` definition
pub fn is_impl_trait_defn(tcx: TyCtxt, def_id: DefId) -> Option<DefId> {
    if let Some(node_id) = tcx.hir.as_local_node_id(def_id) {
V
varkor 已提交
2954
        if let Node::Item(item) = tcx.hir.get(node_id) {
2955 2956 2957 2958 2959 2960 2961 2962
            if let hir::ItemKind::Existential(ref exist_ty) = item.node {
                return exist_ty.impl_trait_fn;
            }
        }
    }
    None
}

2963
/// See `ParamEnv` struct def'n for details.
2964
fn param_env<'a, 'tcx>(tcx: TyCtxt<'a, 'tcx, 'tcx>,
2965 2966
                       def_id: DefId)
                       -> ParamEnv<'tcx> {
2967

O
Oliver Schneider 已提交
2968
    // The param_env of an impl Trait type is its defining function's param_env
2969 2970
    if let Some(parent) = is_impl_trait_defn(tcx, def_id) {
        return param_env(tcx, parent);
2971
    }
2972 2973
    // Compute the bounds on Self and the type parameters.

N
Niko Matsakis 已提交
2974 2975
    let InstantiatedPredicates { predicates } =
        tcx.predicates_of(def_id).instantiate_identity(tcx);
2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988

    // Finally, we have to normalize the bounds in the environment, in
    // case they contain any associated type projections. This process
    // can yield errors if the put in illegal associated types, like
    // `<i32 as Foo>::Bar` where `i32` does not implement `Foo`. We
    // report these errors right here; this doesn't actually feel
    // right to me, because constructing the environment feels like a
    // kind of a "idempotent" action, but I'm not sure where would be
    // a better place. In practice, we construct environments for
    // every fn once during type checking, and we'll abort if there
    // are any errors at that point, so after type checking you can be
    // sure that this will succeed without errors anyway.

2989
    let unnormalized_env = ty::ParamEnv::new(tcx.intern_predicates(&predicates),
2990
                                             traits::Reveal::UserFacing);
2991 2992 2993 2994 2995 2996 2997

    let body_id = tcx.hir.as_local_node_id(def_id).map_or(DUMMY_NODE_ID, |id| {
        tcx.hir.maybe_body_owned_by(id).map_or(id, |body| body.node_id)
    });
    let cause = traits::ObligationCause::misc(tcx.def_span(def_id), body_id);
    traits::normalize_param_env_or_error(tcx, def_id, unnormalized_env, cause)
}
A
achernyak 已提交
2998

2999
fn crate_disambiguator<'a, 'tcx>(tcx: TyCtxt<'a, 'tcx, 'tcx>,
3000
                                 crate_num: CrateNum) -> CrateDisambiguator {
3001 3002 3003 3004
    assert_eq!(crate_num, LOCAL_CRATE);
    tcx.sess.local_crate_disambiguator()
}

3005 3006 3007 3008 3009 3010
fn original_crate_name<'a, 'tcx>(tcx: TyCtxt<'a, 'tcx, 'tcx>,
                                 crate_num: CrateNum) -> Symbol {
    assert_eq!(crate_num, LOCAL_CRATE);
    tcx.crate_name.clone()
}

3011 3012 3013 3014 3015 3016 3017
fn crate_hash<'a, 'tcx>(tcx: TyCtxt<'a, 'tcx, 'tcx>,
                        crate_num: CrateNum)
                        -> Svh {
    assert_eq!(crate_num, LOCAL_CRATE);
    tcx.hir.crate_hash
}

V
varkor 已提交
3018 3019 3020 3021
fn instance_def_size_estimate<'a, 'tcx>(tcx: TyCtxt<'a, 'tcx, 'tcx>,
                                        instance_def: InstanceDef<'tcx>)
                                        -> usize {
    match instance_def {
3022 3023 3024
        InstanceDef::Item(..) |
        InstanceDef::DropGlue(..) => {
            let mir = tcx.instance_mir(instance_def);
V
varkor 已提交
3025 3026
            mir.basic_blocks().iter().map(|bb| bb.statements.len()).sum()
        },
3027
        // Estimate the size of other compiler-generated shims to be 1.
V
varkor 已提交
3028 3029 3030 3031
        _ => 1
    }
}

3032
pub fn provide(providers: &mut ty::query::Providers) {
3033
    context::provide(providers);
3034
    erase_regions::provide(providers);
3035 3036
    layout::provide(providers);
    util::provide(providers);
3037
    *providers = ty::query::Providers {
3038
        associated_item,
3039
        associated_item_def_ids,
3040
        adt_sized_constraint,
A
achernyak 已提交
3041
        def_span,
3042
        param_env,
A
achernyak 已提交
3043
        trait_of_item,
3044
        crate_disambiguator,
3045
        original_crate_name,
3046
        crate_hash,
3047
        trait_impls_of: trait_def::trait_impls_of_provider,
V
varkor 已提交
3048
        instance_def_size_estimate,
3049 3050 3051 3052
        ..*providers
    };
}

3053 3054 3055
/// A map for the local crate mapping each type to a vector of its
/// inherent impls. This is not meant to be used outside of coherence;
/// rather, you should request the vector for a specific type via
3056 3057
/// `tcx.inherent_impls(def_id)` so as to minimize your dependencies
/// (constructing this map requires touching the entire crate).
3058 3059
#[derive(Clone, Debug)]
pub struct CrateInherentImpls {
3060
    pub inherent_impls: DefIdMap<Lrc<Vec<DefId>>>,
3061
}
A
Ariel Ben-Yehuda 已提交
3062

3063
#[derive(Clone, Copy, PartialEq, Eq, PartialOrd, Ord, RustcEncodable, RustcDecodable)]
3064 3065 3066 3067 3068 3069
pub struct SymbolName {
    // FIXME: we don't rely on interning or equality here - better have
    // this be a `&'tcx str`.
    pub name: InternedString
}

3070 3071 3072 3073
impl_stable_hash_for!(struct self::SymbolName {
    name
});

3074 3075 3076
impl SymbolName {
    pub fn new(name: &str) -> SymbolName {
        SymbolName {
3077
            name: Symbol::intern(name).as_interned_str()
3078 3079
        }
    }
3080

3081 3082 3083
    pub fn as_str(&self) -> LocalInternedString {
        self.name.as_str()
    }
3084 3085 3086 3087 3088 3089 3090
}

impl fmt::Display for SymbolName {
    fn fmt(&self, fmt: &mut fmt::Formatter) -> fmt::Result {
        fmt::Display::fmt(&self.name, fmt)
    }
}
3091 3092 3093 3094 3095 3096

impl fmt::Debug for SymbolName {
    fn fmt(&self, fmt: &mut fmt::Formatter) -> fmt::Result {
        fmt::Display::fmt(&self.name, fmt)
    }
}