mod.rs 103.9 KB
Newer Older
1
// Copyright 2012-2015 The Rust Project Developers. See the COPYRIGHT
2 3 4 5 6 7 8 9 10
// file at the top-level directory of this distribution and at
// http://rust-lang.org/COPYRIGHT.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.

S
Steven Fackler 已提交
11
pub use self::Variance::*;
12
pub use self::AssociatedItemContainer::*;
S
Steven Fackler 已提交
13 14
pub use self::BorrowKind::*;
pub use self::IntVarValue::*;
15
pub use self::fold::TypeFoldable;
S
Steven Fackler 已提交
16

17
use hir::{map as hir_map, FreevarMap, TraitMap};
18
use hir::def::{Def, CtorKind, ExportMap};
19
use hir::def_id::{CrateNum, DefId, LocalDefId, CRATE_DEF_INDEX, LOCAL_CRATE};
20
use hir::map::DefPathData;
21
use hir::svh::Svh;
W
Wesley Wiser 已提交
22
use ich::Fingerprint;
23
use ich::StableHashingContext;
24
use infer::canonical::{Canonical, Canonicalize};
25
use middle::lang_items::{FnTraitLangItem, FnMutTraitLangItem, FnOnceTraitLangItem};
26
use middle::privacy::AccessLevels;
27
use middle::resolve_lifetime::ObjectLifetimeDefault;
28
use mir::Mir;
29
use mir::interpret::GlobalId;
J
John Kåre Alsaker 已提交
30
use mir::GeneratorLayout;
31
use session::CrateDisambiguator;
32
use traits::{self, Reveal};
33
use ty;
34
use ty::subst::{Subst, Substs};
O
Oliver Schneider 已提交
35
use ty::util::{IntTypeExt, Discr};
36
use ty::walk::TypeWalker;
37
use util::captures::Captures;
38
use util::nodemap::{NodeSet, DefIdMap, FxHashMap};
39

40
use serialize::{self, Encodable, Encoder};
W
Wesley Wiser 已提交
41
use std::cell::RefCell;
42
use std::cmp;
43
use std::fmt;
44
use std::hash::{Hash, Hasher};
45
use std::ops::Deref;
46
use rustc_data_structures::sync::Lrc;
47
use std::slice;
48
use std::vec::IntoIter;
49
use std::mem;
J
Jeffrey Seyfried 已提交
50
use syntax::ast::{self, DUMMY_NODE_ID, Name, Ident, NodeId};
51
use syntax::attr;
52
use syntax::ext::hygiene::Mark;
53
use syntax::symbol::{Symbol, LocalInternedString, InternedString};
54
use syntax_pos::{DUMMY_SP, Span};
55

56
use rustc_data_structures::accumulate_vec::IntoIter as AccIntoIter;
57 58
use rustc_data_structures::stable_hasher::{StableHasher, StableHasherResult,
                                           HashStable};
O
Oliver Schneider 已提交
59

60
use hir;
61

62
pub use self::sty::{Binder, CanonicalVar, DebruijnIndex};
J
John Kåre Alsaker 已提交
63
pub use self::sty::{FnSig, GenSig, PolyFnSig, PolyGenSig};
64
pub use self::sty::{InferTy, ParamTy, ProjectionTy, ExistentialPredicate};
65
pub use self::sty::{ClosureSubsts, GeneratorSubsts, UpvarSubsts, TypeAndMut};
66
pub use self::sty::{TraitRef, TypeVariants, PolyTraitRef};
67
pub use self::sty::{ExistentialTraitRef, PolyExistentialTraitRef};
68
pub use self::sty::{ExistentialProjection, PolyExistentialProjection, Const};
69
pub use self::sty::{BoundRegion, EarlyBoundRegion, FreeRegion, Region};
N
Niko Matsakis 已提交
70
pub use self::sty::RegionKind;
71
pub use self::sty::{TyVid, IntVid, FloatVid, RegionVid};
72 73
pub use self::sty::BoundRegion::*;
pub use self::sty::InferTy::*;
N
Niko Matsakis 已提交
74
pub use self::sty::RegionKind::*;
75 76
pub use self::sty::TypeVariants::*;

77 78 79
pub use self::binding::BindingMode;
pub use self::binding::BindingMode::*;

80
pub use self::context::{TyCtxt, GlobalArenas, AllArenas, tls, keep_local};
81
pub use self::context::{Lift, TypeckTables, InterpretInterner};
82

83 84
pub use self::instance::{Instance, InstanceDef};

85
pub use self::trait_def::TraitDef;
86

87 88
pub use self::maps::queries;

89
pub mod adjustment;
90
pub mod binding;
91
pub mod cast;
92
#[macro_use]
93
pub mod codec;
94
pub mod error;
95
mod erase_regions;
96 97
pub mod fast_reject;
pub mod fold;
A
Andrew Cann 已提交
98
pub mod inhabitedness;
99
pub mod item_path;
100
pub mod layout;
101
pub mod _match;
102
pub mod maps;
103 104
pub mod outlives;
pub mod relate;
105
pub mod steal;
106
pub mod subst;
107
pub mod trait_def;
108 109
pub mod walk;
pub mod wf;
110
pub mod util;
111

112 113
mod context;
mod flags;
114
mod instance;
115 116 117
mod structural_impls;
mod sty;

118
// Data types
119

120 121
/// The complete set of all analyses described in this module. This is
/// produced by the driver and fed to trans and later passes.
122 123 124
///
/// NB: These contents are being migrated into queries using the
/// *on-demand* infrastructure.
J
Jeffrey Seyfried 已提交
125
#[derive(Clone)]
126
pub struct CrateAnalysis {
127
    pub access_levels: Lrc<AccessLevels>,
128
    pub name: String,
129
    pub glob_map: Option<hir::GlobMap>,
130 131
}

132 133 134 135 136
#[derive(Clone)]
pub struct Resolutions {
    pub freevars: FreevarMap,
    pub trait_map: TraitMap,
    pub maybe_unused_trait_imports: NodeSet,
137
    pub maybe_unused_extern_crates: Vec<(NodeId, Span)>,
N
Niko Matsakis 已提交
138
    pub export_map: ExportMap,
139 140
}

141
#[derive(Clone, Copy, PartialEq, Eq, Debug)]
142
pub enum AssociatedItemContainer {
N
Niko Matsakis 已提交
143 144
    TraitContainer(DefId),
    ImplContainer(DefId),
145 146
}

147
impl AssociatedItemContainer {
148 149 150 151 152 153 154 155 156
    /// Asserts that this is the def-id of an associated item declared
    /// in a trait, and returns the trait def-id.
    pub fn assert_trait(&self) -> DefId {
        match *self {
            TraitContainer(id) => id,
            _ => bug!("associated item has wrong container type: {:?}", self)
        }
    }

N
Niko Matsakis 已提交
157
    pub fn id(&self) -> DefId {
158 159 160 161 162 163 164
        match *self {
            TraitContainer(id) => id,
            ImplContainer(id) => id,
        }
    }
}

A
Aaron Turon 已提交
165 166 167 168 169 170 171 172 173 174 175
/// The "header" of an impl is everything outside the body: a Self type, a trait
/// ref (in the case of a trait impl), and a set of predicates (from the
/// bounds/where clauses).
#[derive(Clone, PartialEq, Eq, Hash, Debug)]
pub struct ImplHeader<'tcx> {
    pub impl_def_id: DefId,
    pub self_ty: Ty<'tcx>,
    pub trait_ref: Option<TraitRef<'tcx>>,
    pub predicates: Vec<Predicate<'tcx>>,
}

S
scalexm 已提交
176
#[derive(Copy, Clone, Debug, PartialEq, Eq)]
177 178 179 180 181 182 183
pub struct AssociatedItem {
    pub def_id: DefId,
    pub name: Name,
    pub kind: AssociatedKind,
    pub vis: Visibility,
    pub defaultness: hir::Defaultness,
    pub container: AssociatedItemContainer,
184

185 186 187 188
    /// Whether this is a method with an explicit self
    /// as its first argument, allowing method calls.
    pub method_has_self_argument: bool,
}
189

190
#[derive(Copy, Clone, PartialEq, Eq, Debug, Hash, RustcEncodable, RustcDecodable)]
191 192 193 194 195
pub enum AssociatedKind {
    Const,
    Method,
    Type
}
196

197 198 199 200 201 202
impl AssociatedItem {
    pub fn def(&self) -> Def {
        match self.kind {
            AssociatedKind::Const => Def::AssociatedConst(self.def_id),
            AssociatedKind::Method => Def::Method(self.def_id),
            AssociatedKind::Type => Def::AssociatedTy(self.def_id),
203 204
        }
    }
A
Andrew Cann 已提交
205 206 207 208 209 210 211

    /// Tests whether the associated item admits a non-trivial implementation
    /// for !
    pub fn relevant_for_never<'tcx>(&self) -> bool {
        match self.kind {
            AssociatedKind::Const => true,
            AssociatedKind::Type => true,
A
Andrew Cann 已提交
212
            // FIXME(canndrew): Be more thorough here, check if any argument is uninhabited.
A
Andrew Cann 已提交
213 214 215
            AssociatedKind::Method => !self.method_has_self_argument,
        }
    }
216 217 218 219 220 221 222 223

    pub fn signature<'a, 'tcx>(&self, tcx: &TyCtxt<'a, 'tcx, 'tcx>) -> String {
        match self.kind {
            ty::AssociatedKind::Method => {
                // We skip the binder here because the binder would deanonymize all
                // late-bound regions, and we don't want method signatures to show up
                // `as for<'r> fn(&'r MyType)`.  Pretty-printing handles late-bound
                // regions just fine, showing `fn(&MyType)`.
224
                format!("{}", tcx.fn_sig(self.def_id).skip_binder())
225 226 227 228 229 230 231
            }
            ty::AssociatedKind::Type => format!("type {};", self.name.to_string()),
            ty::AssociatedKind::Const => {
                format!("const {}: {:?};", self.name.to_string(), tcx.type_of(self.def_id))
            }
        }
    }
232 233
}

234
#[derive(Clone, Debug, PartialEq, Eq, Copy, RustcEncodable, RustcDecodable)]
235 236 237 238
pub enum Visibility {
    /// Visible everywhere (including in other crates).
    Public,
    /// Visible only in the given crate-local module.
239
    Restricted(DefId),
240
    /// Not visible anywhere in the local crate. This is the visibility of private external items.
241
    Invisible,
242 243
}

244 245
pub trait DefIdTree: Copy {
    fn parent(self, id: DefId) -> Option<DefId>;
A
Andrew Cann 已提交
246 247 248 249 250 251 252 253 254 255 256 257 258 259

    fn is_descendant_of(self, mut descendant: DefId, ancestor: DefId) -> bool {
        if descendant.krate != ancestor.krate {
            return false;
        }

        while descendant != ancestor {
            match self.parent(descendant) {
                Some(parent) => descendant = parent,
                None => return false,
            }
        }
        true
    }
260 261
}

262 263 264
impl<'a, 'gcx, 'tcx> DefIdTree for TyCtxt<'a, 'gcx, 'tcx> {
    fn parent(self, id: DefId) -> Option<DefId> {
        self.def_key(id).parent.map(|index| DefId { index: index, ..id })
265 266 267
    }
}

268
impl Visibility {
269
    pub fn from_hir(visibility: &hir::Visibility, id: NodeId, tcx: TyCtxt) -> Self {
270 271
        match *visibility {
            hir::Public => Visibility::Public,
272
            hir::Visibility::Crate => Visibility::Restricted(DefId::local(CRATE_DEF_INDEX)),
273
            hir::Visibility::Restricted { ref path, .. } => match path.def {
274 275
                // If there is no resolution, `resolve` will have already reported an error, so
                // assume that the visibility is public to avoid reporting more privacy errors.
276
                Def::Err => Visibility::Public,
277
                def => Visibility::Restricted(def.def_id()),
278
            },
279
            hir::Inherited => {
J
Jeffrey Seyfried 已提交
280
                Visibility::Restricted(tcx.hir.get_module_parent(id))
281
            }
282 283
        }
    }
284 285

    /// Returns true if an item with this visibility is accessible from the given block.
A
Andrew Cann 已提交
286
    pub fn is_accessible_from<T: DefIdTree>(self, module: DefId, tree: T) -> bool {
287 288 289 290
        let restriction = match self {
            // Public items are visible everywhere.
            Visibility::Public => return true,
            // Private items from other crates are visible nowhere.
291
            Visibility::Invisible => return false,
292
            // Restricted items are visible in an arbitrary local module.
293
            Visibility::Restricted(other) if other.krate != module.krate => return false,
294 295 296
            Visibility::Restricted(module) => module,
        };

A
Andrew Cann 已提交
297
        tree.is_descendant_of(module, restriction)
298
    }
299 300

    /// Returns true if this visibility is at least as accessible as the given visibility
301
    pub fn is_at_least<T: DefIdTree>(self, vis: Visibility, tree: T) -> bool {
302 303
        let vis_restriction = match vis {
            Visibility::Public => return self == Visibility::Public,
304
            Visibility::Invisible => return true,
305 306 307
            Visibility::Restricted(module) => module,
        };

308
        self.is_accessible_from(vis_restriction, tree)
309
    }
310 311 312 313 314 315 316 317 318

    // Returns true if this item is visible anywhere in the local crate.
    pub fn is_visible_locally(self) -> bool {
        match self {
            Visibility::Public => true,
            Visibility::Restricted(def_id) => def_id.is_local(),
            Visibility::Invisible => false,
        }
    }
319 320
}

321
#[derive(Clone, PartialEq, RustcDecodable, RustcEncodable, Copy)]
322
pub enum Variance {
323 324 325 326
    Covariant,      // T<A> <: T<B> iff A <: B -- e.g., function return type
    Invariant,      // T<A> <: T<B> iff B == A -- e.g., type of mutable cell
    Contravariant,  // T<A> <: T<B> iff B <: A -- e.g., function param type
    Bivariant,      // T<A> <: T<B>            -- e.g., unused type parameter
327
}
328

329 330 331 332
/// The crate variances map is computed during typeck and contains the
/// variance of every item in the local crate. You should not use it
/// directly, because to do so will make your pass dependent on the
/// HIR of every item in the local crate. Instead, use
333
/// `tcx.variances_of()` to get the variance for a *particular*
334 335 336 337 338
/// item.
pub struct CrateVariancesMap {
    /// For each item with generics, maps to a vector of the variance
    /// of its generics.  If an item has no generics, it will have no
    /// entry.
339
    pub variances: FxHashMap<DefId, Lrc<Vec<ty::Variance>>>,
340 341

    /// An empty vector, useful for cloning.
342
    pub empty_variance: Lrc<Vec<ty::Variance>>,
343 344
}

345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404
impl Variance {
    /// `a.xform(b)` combines the variance of a context with the
    /// variance of a type with the following meaning.  If we are in a
    /// context with variance `a`, and we encounter a type argument in
    /// a position with variance `b`, then `a.xform(b)` is the new
    /// variance with which the argument appears.
    ///
    /// Example 1:
    ///
    ///     *mut Vec<i32>
    ///
    /// Here, the "ambient" variance starts as covariant. `*mut T` is
    /// invariant with respect to `T`, so the variance in which the
    /// `Vec<i32>` appears is `Covariant.xform(Invariant)`, which
    /// yields `Invariant`. Now, the type `Vec<T>` is covariant with
    /// respect to its type argument `T`, and hence the variance of
    /// the `i32` here is `Invariant.xform(Covariant)`, which results
    /// (again) in `Invariant`.
    ///
    /// Example 2:
    ///
    ///     fn(*const Vec<i32>, *mut Vec<i32)
    ///
    /// The ambient variance is covariant. A `fn` type is
    /// contravariant with respect to its parameters, so the variance
    /// within which both pointer types appear is
    /// `Covariant.xform(Contravariant)`, or `Contravariant`.  `*const
    /// T` is covariant with respect to `T`, so the variance within
    /// which the first `Vec<i32>` appears is
    /// `Contravariant.xform(Covariant)` or `Contravariant`.  The same
    /// is true for its `i32` argument. In the `*mut T` case, the
    /// variance of `Vec<i32>` is `Contravariant.xform(Invariant)`,
    /// and hence the outermost type is `Invariant` with respect to
    /// `Vec<i32>` (and its `i32` argument).
    ///
    /// Source: Figure 1 of "Taming the Wildcards:
    /// Combining Definition- and Use-Site Variance" published in PLDI'11.
    pub fn xform(self, v: ty::Variance) -> ty::Variance {
        match (self, v) {
            // Figure 1, column 1.
            (ty::Covariant, ty::Covariant) => ty::Covariant,
            (ty::Covariant, ty::Contravariant) => ty::Contravariant,
            (ty::Covariant, ty::Invariant) => ty::Invariant,
            (ty::Covariant, ty::Bivariant) => ty::Bivariant,

            // Figure 1, column 2.
            (ty::Contravariant, ty::Covariant) => ty::Contravariant,
            (ty::Contravariant, ty::Contravariant) => ty::Covariant,
            (ty::Contravariant, ty::Invariant) => ty::Invariant,
            (ty::Contravariant, ty::Bivariant) => ty::Bivariant,

            // Figure 1, column 3.
            (ty::Invariant, _) => ty::Invariant,

            // Figure 1, column 4.
            (ty::Bivariant, _) => ty::Bivariant,
        }
    }
}

405 406 407
// Contains information needed to resolve types and (in the future) look up
// the types of AST nodes.
#[derive(Copy, Clone, PartialEq, Eq, Hash)]
408
pub struct CReaderCacheKey {
409 410 411 412
    pub cnum: CrateNum,
    pub pos: usize,
}

413 414 415 416
// Flags that we track on types. These flags are propagated upwards
// through the type during type construction, so that we can quickly
// check whether the type has various kinds of types in it without
// recursing over the type itself.
417
bitflags! {
418 419 420 421 422 423
    pub struct TypeFlags: u32 {
        const HAS_PARAMS         = 1 << 0;
        const HAS_SELF           = 1 << 1;
        const HAS_TY_INFER       = 1 << 2;
        const HAS_RE_INFER       = 1 << 3;
        const HAS_RE_SKOL        = 1 << 4;
424 425 426 427 428

        /// Does this have any `ReEarlyBound` regions? Used to
        /// determine whether substitition is required, since those
        /// represent regions that are bound in a `ty::Generics` and
        /// hence may be substituted.
429
        const HAS_RE_EARLY_BOUND = 1 << 5;
430 431 432

        /// Does this have any region that "appears free" in the type?
        /// Basically anything but `ReLateBound` and `ReErased`.
433
        const HAS_FREE_REGIONS   = 1 << 6;
434 435

        /// Is an error type reachable?
436 437
        const HAS_TY_ERR         = 1 << 7;
        const HAS_PROJECTION     = 1 << 8;
J
John Kåre Alsaker 已提交
438 439

        // FIXME: Rename this to the actual property since it's used for generators too
440
        const HAS_TY_CLOSURE     = 1 << 9;
441 442 443

        // true if there are "names" of types and regions and so forth
        // that are local to a particular fn
444
        const HAS_LOCAL_NAMES    = 1 << 10;
445

446 447
        // Present if the type belongs in a local type context.
        // Only set for TyInfer other than Fresh.
448
        const KEEP_IN_LOCAL_TCX  = 1 << 11;
449

450 451
        // Is there a projection that does not involve a bound region?
        // Currently we can't normalize projections w/ bound regions.
452
        const HAS_NORMALIZABLE_PROJECTION = 1 << 12;
453

454 455 456 457
        // Set if this includes a "canonical" type or region var --
        // ought to be true only for the results of canonicalization.
        const HAS_CANONICAL_VARS = 1 << 13;

458 459
        const NEEDS_SUBST        = TypeFlags::HAS_PARAMS.bits |
                                   TypeFlags::HAS_SELF.bits |
460
                                   TypeFlags::HAS_RE_EARLY_BOUND.bits;
461 462

        // Flags representing the nominal content of a type,
463 464
        // computed by FlagsComputation. If you add a new nominal
        // flag, it should be added here too.
465 466 467 468
        const NOMINAL_FLAGS     = TypeFlags::HAS_PARAMS.bits |
                                  TypeFlags::HAS_SELF.bits |
                                  TypeFlags::HAS_TY_INFER.bits |
                                  TypeFlags::HAS_RE_INFER.bits |
469
                                  TypeFlags::HAS_RE_SKOL.bits |
470 471
                                  TypeFlags::HAS_RE_EARLY_BOUND.bits |
                                  TypeFlags::HAS_FREE_REGIONS.bits |
472
                                  TypeFlags::HAS_TY_ERR.bits |
473
                                  TypeFlags::HAS_PROJECTION.bits |
474
                                  TypeFlags::HAS_TY_CLOSURE.bits |
475
                                  TypeFlags::HAS_LOCAL_NAMES.bits |
476 477
                                  TypeFlags::KEEP_IN_LOCAL_TCX.bits |
                                  TypeFlags::HAS_CANONICAL_VARS.bits;
478
    }
479 480
}

481
pub struct TyS<'tcx> {
482
    pub sty: TypeVariants<'tcx>,
483
    pub flags: TypeFlags,
484 485

    // the maximal depth of any bound regions appearing in this type.
486
    region_depth: u32,
487 488
}

489
impl<'tcx> PartialEq for TyS<'tcx> {
490
    #[inline]
491 492 493 494 495
    fn eq(&self, other: &TyS<'tcx>) -> bool {
        // (self as *const _) == (other as *const _)
        (self as *const TyS<'tcx>) == (other as *const TyS<'tcx>)
    }
}
496
impl<'tcx> Eq for TyS<'tcx> {}
497

A
Alex Crichton 已提交
498 499
impl<'tcx> Hash for TyS<'tcx> {
    fn hash<H: Hasher>(&self, s: &mut H) {
N
Nick Cameron 已提交
500
        (self as *const TyS).hash(s)
A
Alex Crichton 已提交
501 502
    }
}
503

G
Guillaume Gomez 已提交
504 505 506 507 508 509 510 511 512 513 514 515
impl<'tcx> TyS<'tcx> {
    pub fn is_primitive_ty(&self) -> bool {
        match self.sty {
            TypeVariants::TyBool |
                TypeVariants::TyChar |
                TypeVariants::TyInt(_) |
                TypeVariants::TyUint(_) |
                TypeVariants::TyFloat(_) |
                TypeVariants::TyInfer(InferTy::IntVar(_)) |
                TypeVariants::TyInfer(InferTy::FloatVar(_)) |
                TypeVariants::TyInfer(InferTy::FreshIntTy(_)) |
                TypeVariants::TyInfer(InferTy::FreshFloatTy(_)) => true,
516
            TypeVariants::TyRef(_, x, _) => x.is_primitive_ty(),
G
Guillaume Gomez 已提交
517 518 519
            _ => false,
        }
    }
520 521 522 523 524 525 526 527

    pub fn is_suggestable(&self) -> bool {
        match self.sty {
            TypeVariants::TyAnon(..) |
            TypeVariants::TyFnDef(..) |
            TypeVariants::TyFnPtr(..) |
            TypeVariants::TyDynamic(..) |
            TypeVariants::TyClosure(..) |
528
            TypeVariants::TyInfer(..) |
529 530 531 532
            TypeVariants::TyProjection(..) => false,
            _ => true,
        }
    }
G
Guillaume Gomez 已提交
533 534
}

535
impl<'a, 'gcx> HashStable<StableHashingContext<'a>> for ty::TyS<'gcx> {
536
    fn hash_stable<W: StableHasherResult>(&self,
537
                                          hcx: &mut StableHashingContext<'a>,
538 539 540 541 542 543 544 545 546 547 548 549 550 551
                                          hasher: &mut StableHasher<W>) {
        let ty::TyS {
            ref sty,

            // The other fields just provide fast access to information that is
            // also contained in `sty`, so no need to hash them.
            flags: _,
            region_depth: _,
        } = *self;

        sty.hash_stable(hcx, hasher);
    }
}

552
pub type Ty<'tcx> = &'tcx TyS<'tcx>;
553

554 555
impl<'tcx> serialize::UseSpecializedEncodable for Ty<'tcx> {}
impl<'tcx> serialize::UseSpecializedDecodable for Ty<'tcx> {}
556

557 558 559 560 561 562 563 564 565 566 567
pub type CanonicalTy<'gcx> = Canonical<'gcx, Ty<'gcx>>;

impl <'gcx: 'tcx, 'tcx> Canonicalize<'gcx, 'tcx> for Ty<'tcx> {
    type Canonicalized = CanonicalTy<'gcx>;

    fn intern(_gcx: TyCtxt<'_, 'gcx, 'gcx>,
              value: Canonical<'gcx, Self::Lifted>) -> Self::Canonicalized {
        value
    }
}

A
Adam Perry 已提交
568
/// A wrapper for slices with the additional invariant
569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606
/// that the slice is interned and no other slice with
/// the same contents can exist in the same context.
/// This means we can use pointer + length for both
/// equality comparisons and hashing.
#[derive(Debug, RustcEncodable)]
pub struct Slice<T>([T]);

impl<T> PartialEq for Slice<T> {
    #[inline]
    fn eq(&self, other: &Slice<T>) -> bool {
        (&self.0 as *const [T]) == (&other.0 as *const [T])
    }
}
impl<T> Eq for Slice<T> {}

impl<T> Hash for Slice<T> {
    fn hash<H: Hasher>(&self, s: &mut H) {
        (self.as_ptr(), self.len()).hash(s)
    }
}

impl<T> Deref for Slice<T> {
    type Target = [T];
    fn deref(&self) -> &[T] {
        &self.0
    }
}

impl<'a, T> IntoIterator for &'a Slice<T> {
    type Item = &'a T;
    type IntoIter = <&'a [T] as IntoIterator>::IntoIter;
    fn into_iter(self) -> Self::IntoIter {
        self[..].iter()
    }
}

impl<'tcx> serialize::UseSpecializedDecodable for &'tcx Slice<Ty<'tcx>> {}

607 608 609 610 611 612 613 614
impl<T> Slice<T> {
    pub fn empty<'a>() -> &'a Slice<T> {
        unsafe {
            mem::transmute(slice::from_raw_parts(0x1 as *const T, 0))
        }
    }
}

S
Steve Klabnik 已提交
615 616 617
/// Upvars do not get their own node-id. Instead, we use the pair of
/// the original var id (that is, the root variable that is referenced
/// by the upvar) and the id of the closure expression.
618
#[derive(Clone, Copy, PartialEq, Eq, Hash, RustcEncodable, RustcDecodable)]
619
pub struct UpvarId {
620
    pub var_id: hir::HirId,
621
    pub closure_expr_id: LocalDefId,
622 623
}

J
Jorge Aparicio 已提交
624
#[derive(Clone, PartialEq, Eq, Hash, Debug, RustcEncodable, RustcDecodable, Copy)]
625 626 627 628 629 630
pub enum BorrowKind {
    /// Data must be immutable and is aliasable.
    ImmBorrow,

    /// Data must be immutable but not aliasable.  This kind of borrow
    /// cannot currently be expressed by the user and is used only in
K
king6cong 已提交
631
    /// implicit closure bindings. It is needed when the closure
632 633
    /// is borrowing or mutating a mutable referent, e.g.:
    ///
634
    ///    let x: &mut isize = ...;
635 636 637 638 639
    ///    let y = || *x += 5;
    ///
    /// If we were to try to translate this closure into a more explicit
    /// form, we'd encounter an error with the code as written:
    ///
640 641
    ///    struct Env { x: & &mut isize }
    ///    let x: &mut isize = ...;
642 643 644 645 646 647 648
    ///    let y = (&mut Env { &x }, fn_ptr);  // Closure is pair of env and fn
    ///    fn fn_ptr(env: &mut Env) { **env.x += 5; }
    ///
    /// This is then illegal because you cannot mutate a `&mut` found
    /// in an aliasable location. To solve, you'd have to translate with
    /// an `&mut` borrow:
    ///
649 650
    ///    struct Env { x: & &mut isize }
    ///    let x: &mut isize = ...;
651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669
    ///    let y = (&mut Env { &mut x }, fn_ptr); // changed from &x to &mut x
    ///    fn fn_ptr(env: &mut Env) { **env.x += 5; }
    ///
    /// Now the assignment to `**env.x` is legal, but creating a
    /// mutable pointer to `x` is not because `x` is not mutable. We
    /// could fix this by declaring `x` as `let mut x`. This is ok in
    /// user code, if awkward, but extra weird for closures, since the
    /// borrow is hidden.
    ///
    /// So we introduce a "unique imm" borrow -- the referent is
    /// immutable, but not aliasable. This solves the problem. For
    /// simplicity, we don't give users the way to express this
    /// borrow, it's just used when translating closures.
    UniqueImmBorrow,

    /// Data is mutable and not aliasable.
    MutBorrow
}

670 671
/// Information describing the capture of an upvar. This is computed
/// during `typeck`, specifically by `regionck`.
672
#[derive(PartialEq, Clone, Debug, Copy, RustcEncodable, RustcDecodable)]
673
pub enum UpvarCapture<'tcx> {
674 675 676 677 678 679
    /// Upvar is captured by value. This is always true when the
    /// closure is labeled `move`, but can also be true in other cases
    /// depending on inference.
    ByValue,

    /// Upvar is captured by reference.
680
    ByRef(UpvarBorrow<'tcx>),
681 682
}

683
#[derive(PartialEq, Clone, Copy, RustcEncodable, RustcDecodable)]
684
pub struct UpvarBorrow<'tcx> {
685 686 687
    /// The kind of borrow: by-ref upvars have access to shared
    /// immutable borrows, which are not part of the normal language
    /// syntax.
688
    pub kind: BorrowKind,
689 690

    /// Region of the resulting reference.
N
Niko Matsakis 已提交
691
    pub region: ty::Region<'tcx>,
692 693
}

694
pub type UpvarCaptureMap<'tcx> = FxHashMap<UpvarId, UpvarCapture<'tcx>>;
695

696 697
#[derive(Copy, Clone)]
pub struct ClosureUpvar<'tcx> {
698
    pub def: Def,
699 700 701 702
    pub span: Span,
    pub ty: Ty<'tcx>,
}

703
#[derive(Clone, Copy, PartialEq, Eq)]
704
pub enum IntVarValue {
705 706
    IntType(ast::IntTy),
    UintType(ast::UintTy),
707 708
}

709 710 711
#[derive(Clone, Copy, PartialEq, Eq)]
pub struct FloatVarValue(pub ast::FloatTy);

712
#[derive(Copy, Clone, RustcEncodable, RustcDecodable)]
713
pub struct TypeParamDef {
714
    pub name: InternedString,
N
Niko Matsakis 已提交
715
    pub def_id: DefId,
716
    pub index: u32,
717 718
    pub has_default: bool,
    pub object_lifetime_default: ObjectLifetimeDefault,
719 720 721 722 723

    /// `pure_wrt_drop`, set by the (unsafe) `#[may_dangle]` attribute
    /// on generic parameter `T`, asserts data behind the parameter
    /// `T` won't be accessed during the parent type's `Drop` impl.
    pub pure_wrt_drop: bool,
724 725

    pub synthetic: Option<hir::SyntheticTyParamKind>,
726 727
}

728
#[derive(Copy, Clone, RustcEncodable, RustcDecodable)]
729
pub struct RegionParamDef {
730
    pub name: InternedString,
N
Niko Matsakis 已提交
731
    pub def_id: DefId,
732
    pub index: u32,
733 734 735 736 737

    /// `pure_wrt_drop`, set by the (unsafe) `#[may_dangle]` attribute
    /// on generic parameter `'a`, asserts data of lifetime `'a`
    /// won't be accessed during the parent type's `Drop` impl.
    pub pure_wrt_drop: bool,
738 739
}

740
impl RegionParamDef {
741 742
    pub fn to_early_bound_region_data(&self) -> ty::EarlyBoundRegion {
        ty::EarlyBoundRegion {
743
            def_id: self.def_id,
744 745
            index: self.index,
            name: self.name,
746
        }
747
    }
748

749 750 751 752 753 754
    pub fn to_bound_region(&self) -> ty::BoundRegion {
        self.to_early_bound_region_data().to_bound_region()
    }
}

impl ty::EarlyBoundRegion {
755
    pub fn to_bound_region(&self) -> ty::BoundRegion {
756
        ty::BoundRegion::BrNamed(self.def_id, self.name)
757
    }
758 759
}

V
varkor 已提交
760
#[derive(Clone, Debug, RustcEncodable, RustcDecodable)]
V
varkor 已提交
761
pub enum GenericParamDef {
762 763
    Lifetime(RegionParamDef),
    Type(TypeParamDef),
V
varkor 已提交
764 765
}

V
varkor 已提交
766
impl GenericParamDef {
V
varkor 已提交
767 768
    pub fn index(&self) -> u32 {
        match self {
V
varkor 已提交
769
            GenericParamDef::Lifetime(lt) => lt.index,
V
varkor 已提交
770 771 772 773 774 775 776 777
            GenericParamDef::Type(ty) => ty.index,
        }
    }

    pub fn def_id(&self) -> DefId {
        match self {
            GenericParamDef::Lifetime(lt) => lt.def_id,
            GenericParamDef::Type(ty) => ty.def_id,
V
varkor 已提交
778 779
        }
    }
780 781 782 783 784 785 786

    pub fn get_type(&self) -> Option<TypeParamDef> {
        match *self {
            GenericParamDef::Type(ty) => Some(ty),
            _ => None,
        }
    }
V
varkor 已提交
787 788
}

789 790 791 792 793
pub struct GenericParamCount {
    pub lifetimes: usize,
    pub types: usize,
}

794
/// Information about the formal type/lifetime parameters associated
795
/// with an item or method. Analogous to hir::Generics.
A
Ariel Ben-Yehuda 已提交
796
///
797 798
/// The ordering of parameters is the same as in Subst (excluding child generics):
/// Self (optionally), Lifetime params..., Type params...
799
#[derive(Clone, Debug, RustcEncodable, RustcDecodable)]
800
pub struct Generics {
801
    pub parent: Option<DefId>,
V
varkor 已提交
802
    pub parent_count: usize,
V
varkor 已提交
803
    pub params: Vec<GenericParamDef>,
804

V
varkor 已提交
805
    /// Reverse map to the `index` field of each `GenericParamDef`'s inner type
806
    pub param_def_id_to_index: FxHashMap<DefId, u32>,
807

808
    pub has_self: bool,
809
    pub has_late_bound_regions: Option<Span>,
810 811
}

812
impl<'a, 'gcx, 'tcx> Generics {
813
    pub fn count(&self) -> usize {
V
varkor 已提交
814
        self.parent_count + self.params.len()
815
    }
816

817 818 819 820 821 822 823 824
    pub fn param_counts(&self) -> GenericParamCount {
        // We could cache this as a property of `GenericParamCount`, but
        // the aim is to refactor this away entirely eventually and the
        // presence of this method will be a constant reminder.
        let mut param_counts = GenericParamCount {
            lifetimes: 0,
            types: 0,
        };
825 826

        for param in self.params.iter() {
827 828 829
            match param {
                GenericParamDef::Lifetime(_) => param_counts.lifetimes += 1,
                GenericParamDef::Type(_) => param_counts.types += 1,
830 831 832 833 834 835
            };
        }

        param_counts
    }

836
    pub fn requires_monomorphization(&self, tcx: TyCtxt<'a, 'gcx, 'tcx>) -> bool {
837
        if self.params.iter().any(|p| p.get_type().is_some()) {
V
varkor 已提交
838 839 840 841
            return true;
        }
        if let Some(parent_def_id) = self.parent {
            let parent = tcx.generics_of(parent_def_id);
842
            parent.requires_monomorphization(tcx)
V
varkor 已提交
843 844 845
        } else {
            false
        }
V
varkor 已提交
846 847
    }

848 849 850
    pub fn region_param(&'tcx self,
                        param: &EarlyBoundRegion,
                        tcx: TyCtxt<'a, 'gcx, 'tcx>)
851
                        -> &'tcx RegionParamDef
852
    {
V
varkor 已提交
853
        if let Some(index) = param.index.checked_sub(self.parent_count as u32) {
854
            match self.params[index as usize] {
V
varkor 已提交
855
                ty::GenericParamDef::Lifetime(ref lt) => lt,
V
varkor 已提交
856 857
                _ => bug!("expected region parameter, but found another generic parameter")
            }
858 859 860 861
        } else {
            tcx.generics_of(self.parent.expect("parent_count>0 but no parent?"))
                .region_param(param, tcx)
        }
862 863
    }

864
    /// Returns the `TypeParamDef` associated with this `ParamTy`.
865 866
    pub fn type_param(&'tcx self,
                      param: &ParamTy,
A
Ariel Ben-Yehuda 已提交
867
                      tcx: TyCtxt<'a, 'gcx, 'tcx>)
868
                      -> &TypeParamDef {
869
        if let Some(index) = param.idx.checked_sub(self.parent_count as u32) {
A
Ariel Ben-Yehuda 已提交
870 871
            // non-Self type parameters are always offset by exactly
            // `self.regions.len()`. In the absence of a Self, this is obvious,
872
            // but even in the presence of a `Self` we just have to "compensate"
A
Ariel Ben-Yehuda 已提交
873 874
            // for the regions:
            //
875 876 877 878 879 880 881 882 883 884 885
            // Without a `Self` (or in a nested generics that doesn't have
            // a `Self` in itself, even through it parent does), for example
            // for `fn foo<'a, T1, T2>()`, the situation is:
            //     Substs:
            //         0  1  2
            //         'a T1 T2
            //     generics.types:
            //         0  1
            //         T1 T2
            //
            // And with a `Self`, for example for `trait Foo<'a, 'b, T1, T2>`, the
A
Ariel Ben-Yehuda 已提交
886 887 888 889 890 891 892
            // situation is:
            //     Substs:
            //         0   1  2  3  4
            //       Self 'a 'b  T1 T2
            //     generics.types:
            //         0  1  2
            //       Self T1 T2
893 894 895 896
            //
            // And it can be seen that in both cases, to move from a substs
            // offset to a generics offset you just have to offset by the
            // number of regions.
897
            let type_param_offset = self.param_counts().lifetimes;
898 899

            let has_self = self.has_self && self.parent.is_none();
900
            let is_separated_self = type_param_offset != 0 && index == 0 && has_self;
901

902
            if let Some(_) = (index as usize).checked_sub(type_param_offset) {
903
                assert!(!is_separated_self, "found a Self after type_param_offset");
904
                match self.params[index as usize] {
V
varkor 已提交
905
                    ty::GenericParamDef::Type(ref ty) => ty,
V
varkor 已提交
906 907
                    _ => bug!("expected type parameter, but found another generic parameter")
                }
A
Ariel Ben-Yehuda 已提交
908
            } else {
909
                assert!(is_separated_self, "non-Self param before type_param_offset");
910
                match self.params[type_param_offset] {
V
varkor 已提交
911
                    ty::GenericParamDef::Type(ref ty) => ty,
V
varkor 已提交
912 913
                    _ => bug!("expected type parameter, but found another generic parameter")
                }
A
Ariel Ben-Yehuda 已提交
914
            }
915 916 917 918
        } else {
            tcx.generics_of(self.parent.expect("parent_count>0 but no parent?"))
                .type_param(param, tcx)
        }
919
    }
920 921
}

922
/// Bounds on generics.
923
#[derive(Clone, Default)]
924
pub struct GenericPredicates<'tcx> {
925
    pub parent: Option<DefId>,
926
    pub predicates: Vec<Predicate<'tcx>>,
927 928
}

929 930 931
impl<'tcx> serialize::UseSpecializedEncodable for GenericPredicates<'tcx> {}
impl<'tcx> serialize::UseSpecializedDecodable for GenericPredicates<'tcx> {}

932 933
impl<'a, 'gcx, 'tcx> GenericPredicates<'tcx> {
    pub fn instantiate(&self, tcx: TyCtxt<'a, 'gcx, 'tcx>, substs: &Substs<'tcx>)
934
                       -> InstantiatedPredicates<'tcx> {
935 936 937 938 939 940
        let mut instantiated = InstantiatedPredicates::empty();
        self.instantiate_into(tcx, &mut instantiated, substs);
        instantiated
    }
    pub fn instantiate_own(&self, tcx: TyCtxt<'a, 'gcx, 'tcx>, substs: &Substs<'tcx>)
                           -> InstantiatedPredicates<'tcx> {
941
        InstantiatedPredicates {
942 943 944 945 946 947 948 949
            predicates: self.predicates.subst(tcx, substs)
        }
    }

    fn instantiate_into(&self, tcx: TyCtxt<'a, 'gcx, 'tcx>,
                        instantiated: &mut InstantiatedPredicates<'tcx>,
                        substs: &Substs<'tcx>) {
        if let Some(def_id) = self.parent {
950
            tcx.predicates_of(def_id).instantiate_into(tcx, instantiated, substs);
951
        }
952
        instantiated.predicates.extend(self.predicates.iter().map(|p| p.subst(tcx, substs)))
953
    }
954

955 956 957 958 959 960 961 962 963 964 965 966 967 968 969
    pub fn instantiate_identity(&self, tcx: TyCtxt<'a, 'gcx, 'tcx>)
                                -> InstantiatedPredicates<'tcx> {
        let mut instantiated = InstantiatedPredicates::empty();
        self.instantiate_identity_into(tcx, &mut instantiated);
        instantiated
    }

    fn instantiate_identity_into(&self, tcx: TyCtxt<'a, 'gcx, 'tcx>,
                                 instantiated: &mut InstantiatedPredicates<'tcx>) {
        if let Some(def_id) = self.parent {
            tcx.predicates_of(def_id).instantiate_identity_into(tcx, instantiated);
        }
        instantiated.predicates.extend(&self.predicates)
    }

970
    pub fn instantiate_supertrait(&self, tcx: TyCtxt<'a, 'gcx, 'tcx>,
971 972 973
                                  poly_trait_ref: &ty::PolyTraitRef<'tcx>)
                                  -> InstantiatedPredicates<'tcx>
    {
974
        assert_eq!(self.parent, None);
975
        InstantiatedPredicates {
976
            predicates: self.predicates.iter().map(|pred| {
977
                pred.subst_supertrait(tcx, poly_trait_ref)
978
            }).collect()
979 980
        }
    }
981 982
}

983
#[derive(Clone, Copy, PartialEq, Eq, Hash, RustcEncodable, RustcDecodable)]
984
pub enum Predicate<'tcx> {
N
Niko Matsakis 已提交
985 986
    /// Corresponds to `where Foo : Bar<A,B,C>`. `Foo` here would be
    /// the `Self` type of the trait reference and `A`, `B`, and `C`
987
    /// would be the type parameters.
988
    Trait(PolyTraitPredicate<'tcx>),
989 990

    /// where 'a : 'b
991
    RegionOutlives(PolyRegionOutlivesPredicate<'tcx>),
992 993

    /// where T : 'a
994
    TypeOutlives(PolyTypeOutlivesPredicate<'tcx>),
995

N
Niko Matsakis 已提交
996 997
    /// where <T as TraitRef>::Name == X, approximately.
    /// See `ProjectionPredicate` struct for details.
998
    Projection(PolyProjectionPredicate<'tcx>),
999 1000 1001 1002 1003

    /// no syntax: T WF
    WellFormed(Ty<'tcx>),

    /// trait must be object-safe
N
Niko Matsakis 已提交
1004
    ObjectSafe(DefId),
1005

1006 1007 1008
    /// No direct syntax. May be thought of as `where T : FnFoo<...>`
    /// for some substitutions `...` and T being a closure type.
    /// Satisfied (or refuted) once we know the closure's kind.
1009
    ClosureKind(DefId, ClosureSubsts<'tcx>, ClosureKind),
N
Niko Matsakis 已提交
1010 1011 1012

    /// `T1 <: T2`
    Subtype(PolySubtypePredicate<'tcx>),
1013 1014 1015

    /// Constant initializer must evaluate successfully.
    ConstEvaluatable(DefId, &'tcx Substs<'tcx>),
1016 1017
}

1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033
/// The crate outlives map is computed during typeck and contains the
/// outlives of every item in the local crate. You should not use it
/// directly, because to do so will make your pass dependent on the
/// HIR of every item in the local crate. Instead, use
/// `tcx.inferred_outlives_of()` to get the outlives for a *particular*
/// item.
pub struct CratePredicatesMap<'tcx> {
    /// For each struct with outlive bounds, maps to a vector of the
    /// predicate of its outlive bounds. If an item has no outlives
    /// bounds, it will have no entry.
    pub predicates: FxHashMap<DefId, Lrc<Vec<ty::Predicate<'tcx>>>>,

    /// An empty vector, useful for cloning.
    pub empty_predicate: Lrc<Vec<ty::Predicate<'tcx>>>,
}

1034 1035 1036 1037 1038 1039
impl<'tcx> AsRef<Predicate<'tcx>> for Predicate<'tcx> {
    fn as_ref(&self) -> &Predicate<'tcx> {
        self
    }
}

1040
impl<'a, 'gcx, 'tcx> Predicate<'tcx> {
1041
    /// Performs a substitution suitable for going from a
1042 1043 1044 1045
    /// poly-trait-ref to supertraits that must hold if that
    /// poly-trait-ref holds. This is slightly different from a normal
    /// substitution in terms of what happens with bound regions.  See
    /// lengthy comment below for details.
1046
    pub fn subst_supertrait(&self, tcx: TyCtxt<'a, 'gcx, 'tcx>,
1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109
                            trait_ref: &ty::PolyTraitRef<'tcx>)
                            -> ty::Predicate<'tcx>
    {
        // The interaction between HRTB and supertraits is not entirely
        // obvious. Let me walk you (and myself) through an example.
        //
        // Let's start with an easy case. Consider two traits:
        //
        //     trait Foo<'a> : Bar<'a,'a> { }
        //     trait Bar<'b,'c> { }
        //
        // Now, if we have a trait reference `for<'x> T : Foo<'x>`, then
        // we can deduce that `for<'x> T : Bar<'x,'x>`. Basically, if we
        // knew that `Foo<'x>` (for any 'x) then we also know that
        // `Bar<'x,'x>` (for any 'x). This more-or-less falls out from
        // normal substitution.
        //
        // In terms of why this is sound, the idea is that whenever there
        // is an impl of `T:Foo<'a>`, it must show that `T:Bar<'a,'a>`
        // holds.  So if there is an impl of `T:Foo<'a>` that applies to
        // all `'a`, then we must know that `T:Bar<'a,'a>` holds for all
        // `'a`.
        //
        // Another example to be careful of is this:
        //
        //     trait Foo1<'a> : for<'b> Bar1<'a,'b> { }
        //     trait Bar1<'b,'c> { }
        //
        // Here, if we have `for<'x> T : Foo1<'x>`, then what do we know?
        // The answer is that we know `for<'x,'b> T : Bar1<'x,'b>`. The
        // reason is similar to the previous example: any impl of
        // `T:Foo1<'x>` must show that `for<'b> T : Bar1<'x, 'b>`.  So
        // basically we would want to collapse the bound lifetimes from
        // the input (`trait_ref`) and the supertraits.
        //
        // To achieve this in practice is fairly straightforward. Let's
        // consider the more complicated scenario:
        //
        // - We start out with `for<'x> T : Foo1<'x>`. In this case, `'x`
        //   has a De Bruijn index of 1. We want to produce `for<'x,'b> T : Bar1<'x,'b>`,
        //   where both `'x` and `'b` would have a DB index of 1.
        //   The substitution from the input trait-ref is therefore going to be
        //   `'a => 'x` (where `'x` has a DB index of 1).
        // - The super-trait-ref is `for<'b> Bar1<'a,'b>`, where `'a` is an
        //   early-bound parameter and `'b' is a late-bound parameter with a
        //   DB index of 1.
        // - If we replace `'a` with `'x` from the input, it too will have
        //   a DB index of 1, and thus we'll have `for<'x,'b> Bar1<'x,'b>`
        //   just as we wanted.
        //
        // There is only one catch. If we just apply the substitution `'a
        // => 'x` to `for<'b> Bar1<'a,'b>`, the substitution code will
        // adjust the DB index because we substituting into a binder (it
        // tries to be so smart...) resulting in `for<'x> for<'b>
        // Bar1<'x,'b>` (we have no syntax for this, so use your
        // imagination). Basically the 'x will have DB index of 2 and 'b
        // will have DB index of 1. Not quite what we want. So we apply
        // the substitution to the *contents* of the trait reference,
        // rather than the trait reference itself (put another way, the
        // substitution code expects equal binding levels in the values
        // from the substitution and the value being substituted into, and
        // this trick achieves that).

1110
        let substs = &trait_ref.skip_binder().substs;
1111
        match *self {
1112 1113 1114 1115 1116 1117 1118 1119 1120 1121
            Predicate::Trait(ref binder) =>
                Predicate::Trait(binder.map_bound(|data| data.subst(tcx, substs))),
            Predicate::Subtype(ref binder) =>
                Predicate::Subtype(binder.map_bound(|data| data.subst(tcx, substs))),
            Predicate::RegionOutlives(ref binder) =>
                Predicate::RegionOutlives(binder.map_bound(|data| data.subst(tcx, substs))),
            Predicate::TypeOutlives(ref binder) =>
                Predicate::TypeOutlives(binder.map_bound(|data| data.subst(tcx, substs))),
            Predicate::Projection(ref binder) =>
                Predicate::Projection(binder.map_bound(|data| data.subst(tcx, substs))),
1122 1123 1124 1125
            Predicate::WellFormed(data) =>
                Predicate::WellFormed(data.subst(tcx, substs)),
            Predicate::ObjectSafe(trait_def_id) =>
                Predicate::ObjectSafe(trait_def_id),
1126 1127
            Predicate::ClosureKind(closure_def_id, closure_substs, kind) =>
                Predicate::ClosureKind(closure_def_id, closure_substs.subst(tcx, substs), kind),
1128 1129
            Predicate::ConstEvaluatable(def_id, const_substs) =>
                Predicate::ConstEvaluatable(def_id, const_substs.subst(tcx, substs)),
1130 1131 1132 1133
        }
    }
}

1134
#[derive(Clone, Copy, PartialEq, Eq, Hash, RustcEncodable, RustcDecodable)]
1135
pub struct TraitPredicate<'tcx> {
1136
    pub trait_ref: TraitRef<'tcx>
1137 1138 1139 1140
}
pub type PolyTraitPredicate<'tcx> = ty::Binder<TraitPredicate<'tcx>>;

impl<'tcx> TraitPredicate<'tcx> {
N
Niko Matsakis 已提交
1141
    pub fn def_id(&self) -> DefId {
1142 1143 1144
        self.trait_ref.def_id
    }

1145
    pub fn input_types<'a>(&'a self) -> impl DoubleEndedIterator<Item=Ty<'tcx>> + 'a {
1146
        self.trait_ref.input_types()
1147 1148 1149 1150 1151 1152 1153 1154
    }

    pub fn self_ty(&self) -> Ty<'tcx> {
        self.trait_ref.self_ty()
    }
}

impl<'tcx> PolyTraitPredicate<'tcx> {
N
Niko Matsakis 已提交
1155
    pub fn def_id(&self) -> DefId {
1156
        // ok to skip binder since trait def-id does not care about regions
1157
        self.skip_binder().def_id()
1158
    }
1159 1160
}

1161
#[derive(Clone, Copy, PartialEq, Eq, Hash, Debug, RustcEncodable, RustcDecodable)]
1162 1163
pub struct OutlivesPredicate<A,B>(pub A, pub B); // `A : B`
pub type PolyOutlivesPredicate<A,B> = ty::Binder<OutlivesPredicate<A,B>>;
S
scalexm 已提交
1164 1165 1166 1167 1168 1169
pub type RegionOutlivesPredicate<'tcx> = OutlivesPredicate<ty::Region<'tcx>,
                                                           ty::Region<'tcx>>;
pub type TypeOutlivesPredicate<'tcx> = OutlivesPredicate<Ty<'tcx>,
                                                         ty::Region<'tcx>>;
pub type PolyRegionOutlivesPredicate<'tcx> = ty::Binder<RegionOutlivesPredicate<'tcx>>;
pub type PolyTypeOutlivesPredicate<'tcx> = ty::Binder<TypeOutlivesPredicate<'tcx>>;
1170

1171
#[derive(Clone, Copy, PartialEq, Eq, Hash, Debug, RustcEncodable, RustcDecodable)]
N
Niko Matsakis 已提交
1172 1173 1174 1175 1176 1177 1178
pub struct SubtypePredicate<'tcx> {
    pub a_is_expected: bool,
    pub a: Ty<'tcx>,
    pub b: Ty<'tcx>
}
pub type PolySubtypePredicate<'tcx> = ty::Binder<SubtypePredicate<'tcx>>;

1179 1180 1181 1182 1183 1184 1185 1186 1187
/// This kind of predicate has no *direct* correspondent in the
/// syntax, but it roughly corresponds to the syntactic forms:
///
/// 1. `T : TraitRef<..., Item=Type>`
/// 2. `<T as TraitRef<...>>::Item == Type` (NYI)
///
/// In particular, form #1 is "desugared" to the combination of a
/// normal trait predicate (`T : TraitRef<...>`) and one of these
/// predicates. Form #2 is a broader form in that it also permits
1188 1189
/// equality between arbitrary types. Processing an instance of
/// Form #2 eventually yields one of these `ProjectionPredicate`
1190
/// instances to normalize the LHS.
1191
#[derive(Copy, Clone, PartialEq, Eq, Hash, RustcEncodable, RustcDecodable)]
1192 1193 1194 1195 1196 1197 1198
pub struct ProjectionPredicate<'tcx> {
    pub projection_ty: ProjectionTy<'tcx>,
    pub ty: Ty<'tcx>,
}

pub type PolyProjectionPredicate<'tcx> = Binder<ProjectionPredicate<'tcx>>;

1199
impl<'tcx> PolyProjectionPredicate<'tcx> {
1200 1201 1202 1203 1204
    /// Returns the def-id of the associated item being projected.
    pub fn item_def_id(&self) -> DefId {
        self.skip_binder().projection_ty.item_def_id
    }

1205 1206 1207 1208 1209 1210
    pub fn to_poly_trait_ref(&self, tcx: TyCtxt) -> PolyTraitRef<'tcx> {
        // Note: unlike with TraitRef::to_poly_trait_ref(),
        // self.0.trait_ref is permitted to have escaping regions.
        // This is because here `self` has a `Binder` and so does our
        // return value, so we are preserving the number of binding
        // levels.
1211
        self.map_bound(|predicate| predicate.projection_ty.trait_ref(tcx))
1212
    }
1213 1214

    pub fn ty(&self) -> Binder<Ty<'tcx>> {
1215 1216 1217 1218 1219 1220 1221 1222 1223 1224
        self.map_bound(|predicate| predicate.ty)
    }

    /// The DefId of the TraitItem for the associated type.
    ///
    /// Note that this is not the DefId of the TraitRef containing this
    /// associated type, which is in tcx.associated_item(projection_def_id()).container.
    pub fn projection_def_id(&self) -> DefId {
        // ok to skip binder since trait def-id does not care about regions
        self.skip_binder().projection_ty.item_def_id
1225
    }
1226 1227
}

1228 1229 1230 1231
pub trait ToPolyTraitRef<'tcx> {
    fn to_poly_trait_ref(&self) -> PolyTraitRef<'tcx>;
}

1232
impl<'tcx> ToPolyTraitRef<'tcx> for TraitRef<'tcx> {
1233
    fn to_poly_trait_ref(&self) -> PolyTraitRef<'tcx> {
1234
        ty::Binder::dummy(self.clone())
1235 1236 1237 1238 1239
    }
}

impl<'tcx> ToPolyTraitRef<'tcx> for PolyTraitPredicate<'tcx> {
    fn to_poly_trait_ref(&self) -> PolyTraitRef<'tcx> {
1240
        self.map_bound_ref(|trait_pred| trait_pred.trait_ref)
1241 1242 1243
    }
}

1244 1245
pub trait ToPredicate<'tcx> {
    fn to_predicate(&self) -> Predicate<'tcx>;
1246 1247
}

1248 1249
impl<'tcx> ToPredicate<'tcx> for TraitRef<'tcx> {
    fn to_predicate(&self) -> Predicate<'tcx> {
1250
        ty::Predicate::Trait(ty::Binder::dummy(ty::TraitPredicate {
1251 1252 1253 1254 1255
            trait_ref: self.clone()
        }))
    }
}

1256 1257
impl<'tcx> ToPredicate<'tcx> for PolyTraitRef<'tcx> {
    fn to_predicate(&self) -> Predicate<'tcx> {
1258
        ty::Predicate::Trait(self.to_poly_trait_predicate())
1259 1260 1261
    }
}

1262
impl<'tcx> ToPredicate<'tcx> for PolyRegionOutlivesPredicate<'tcx> {
1263
    fn to_predicate(&self) -> Predicate<'tcx> {
1264 1265 1266 1267
        Predicate::RegionOutlives(self.clone())
    }
}

1268 1269
impl<'tcx> ToPredicate<'tcx> for PolyTypeOutlivesPredicate<'tcx> {
    fn to_predicate(&self) -> Predicate<'tcx> {
1270 1271
        Predicate::TypeOutlives(self.clone())
    }
1272 1273
}

1274 1275
impl<'tcx> ToPredicate<'tcx> for PolyProjectionPredicate<'tcx> {
    fn to_predicate(&self) -> Predicate<'tcx> {
1276 1277 1278 1279
        Predicate::Projection(self.clone())
    }
}

1280
impl<'tcx> Predicate<'tcx> {
1281 1282 1283 1284 1285 1286
    /// Iterates over the types in this predicate. Note that in all
    /// cases this is skipping over a binder, so late-bound regions
    /// with depth 0 are bound by the predicate.
    pub fn walk_tys(&self) -> IntoIter<Ty<'tcx>> {
        let vec: Vec<_> = match *self {
            ty::Predicate::Trait(ref data) => {
1287
                data.skip_binder().input_types().collect()
1288
            }
1289 1290
            ty::Predicate::Subtype(binder) => {
                let SubtypePredicate { a, b, a_is_expected: _ } = binder.skip_binder();
N
Niko Matsakis 已提交
1291 1292
                vec![a, b]
            }
1293 1294
            ty::Predicate::TypeOutlives(binder) => {
                vec![binder.skip_binder().0]
1295 1296 1297 1298 1299
            }
            ty::Predicate::RegionOutlives(..) => {
                vec![]
            }
            ty::Predicate::Projection(ref data) => {
1300 1301
                let inner = data.skip_binder();
                inner.projection_ty.substs.types().chain(Some(inner.ty)).collect()
1302
            }
1303 1304 1305 1306 1307 1308
            ty::Predicate::WellFormed(data) => {
                vec![data]
            }
            ty::Predicate::ObjectSafe(_trait_def_id) => {
                vec![]
            }
1309 1310
            ty::Predicate::ClosureKind(_closure_def_id, closure_substs, _kind) => {
                closure_substs.substs.types().collect()
1311
            }
1312 1313 1314
            ty::Predicate::ConstEvaluatable(_, substs) => {
                substs.types().collect()
            }
1315 1316 1317 1318 1319 1320 1321 1322 1323 1324
        };

        // The only reason to collect into a vector here is that I was
        // too lazy to make the full (somewhat complicated) iterator
        // type that would be needed here. But I wanted this fn to
        // return an iterator conceptually, rather than a `Vec`, so as
        // to be closer to `Ty::walk`.
        vec.into_iter()
    }

1325
    pub fn to_opt_poly_trait_ref(&self) -> Option<PolyTraitRef<'tcx>> {
1326 1327
        match *self {
            Predicate::Trait(ref t) => {
1328
                Some(t.to_poly_trait_ref())
1329
            }
1330
            Predicate::Projection(..) |
N
Niko Matsakis 已提交
1331
            Predicate::Subtype(..) |
1332
            Predicate::RegionOutlives(..) |
1333 1334
            Predicate::WellFormed(..) |
            Predicate::ObjectSafe(..) |
1335
            Predicate::ClosureKind(..) |
1336 1337
            Predicate::TypeOutlives(..) |
            Predicate::ConstEvaluatable(..) => {
1338 1339
                None
            }
1340 1341
        }
    }
1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359

    pub fn to_opt_type_outlives(&self) -> Option<PolyTypeOutlivesPredicate<'tcx>> {
        match *self {
            Predicate::TypeOutlives(data) => {
                Some(data)
            }
            Predicate::Trait(..) |
            Predicate::Projection(..) |
            Predicate::Subtype(..) |
            Predicate::RegionOutlives(..) |
            Predicate::WellFormed(..) |
            Predicate::ObjectSafe(..) |
            Predicate::ClosureKind(..) |
            Predicate::ConstEvaluatable(..) => {
                None
            }
        }
    }
1360 1361
}

S
Steve Klabnik 已提交
1362 1363
/// Represents the bounds declared on a particular set of type
/// parameters.  Should eventually be generalized into a flag list of
1364 1365 1366 1367 1368
/// where clauses.  You can obtain a `InstantiatedPredicates` list from a
/// `GenericPredicates` by using the `instantiate` method. Note that this method
/// reflects an important semantic invariant of `InstantiatedPredicates`: while
/// the `GenericPredicates` are expressed in terms of the bound type
/// parameters of the impl/trait/whatever, an `InstantiatedPredicates` instance
S
Steve Klabnik 已提交
1369 1370 1371 1372 1373 1374 1375 1376
/// represented a set of bounds for some particular instantiation,
/// meaning that the generic parameters have been substituted with
/// their values.
///
/// Example:
///
///     struct Foo<T,U:Bar<T>> { ... }
///
1377
/// Here, the `GenericPredicates` for `Foo` would contain a list of bounds like
J
Jorge Aparicio 已提交
1378
/// `[[], [U:Bar<T>]]`.  Now if there were some particular reference
1379 1380
/// like `Foo<isize,usize>`, then the `InstantiatedPredicates` would be `[[],
/// [usize:Bar<isize>]]`.
1381
#[derive(Clone)]
1382
pub struct InstantiatedPredicates<'tcx> {
1383
    pub predicates: Vec<Predicate<'tcx>>,
1384 1385
}

1386 1387
impl<'tcx> InstantiatedPredicates<'tcx> {
    pub fn empty() -> InstantiatedPredicates<'tcx> {
1388
        InstantiatedPredicates { predicates: vec![] }
1389 1390
    }

1391 1392
    pub fn is_empty(&self) -> bool {
        self.predicates.is_empty()
1393
    }
1394 1395
}

N
Niko Matsakis 已提交
1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431
/// "Universes" are used during type- and trait-checking in the
/// presence of `for<..>` binders to control what sets of names are
/// visible. Universes are arranged into a tree: the root universe
/// contains names that are always visible. But when you enter into
/// some subuniverse, then it may add names that are only visible
/// within that subtree (but it can still name the names of its
/// ancestor universes).
///
/// To make this more concrete, consider this program:
///
/// ```
/// struct Foo { }
/// fn bar<T>(x: T) {
///   let y: for<'a> fn(&'a u8, Foo) = ...;
/// }
/// ```
///
/// The struct name `Foo` is in the root universe U0. But the type
/// parameter `T`, introduced on `bar`, is in a subuniverse U1 --
/// i.e., within `bar`, we can name both `T` and `Foo`, but outside of
/// `bar`, we cannot name `T`. Then, within the type of `y`, the
/// region `'a` is in a subuniverse U2 of U1, because we can name it
/// inside the fn type but not outside.
///
/// Universes are related to **skolemization** -- which is a way of
/// doing type- and trait-checking around these "forall" binders (also
/// called **universal quantification**). The idea is that when, in
/// the body of `bar`, we refer to `T` as a type, we aren't referring
/// to any type in particular, but rather a kind of "fresh" type that
/// is distinct from all other types we have actually declared. This
/// is called a **skolemized** type, and we use universes to talk
/// about this. In other words, a type name in universe 0 always
/// corresponds to some "ground" type that the user declared, but a
/// type name in a non-zero universe is a skolemized type -- an
/// idealized representative of "types in general" that we use for
/// checking generic functions.
1432
#[derive(Copy, Clone, Debug, PartialEq, Eq, PartialOrd, Ord, Hash, RustcEncodable, RustcDecodable)]
N
Niko Matsakis 已提交
1433 1434 1435 1436 1437
pub struct UniverseIndex(u32);

impl UniverseIndex {
    /// The root universe, where things that the user defined are
    /// visible.
1438
    pub const ROOT: Self = UniverseIndex(0);
N
Niko Matsakis 已提交
1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451

    /// A "subuniverse" corresponds to being inside a `forall` quantifier.
    /// So, for example, suppose we have this type in universe `U`:
    ///
    /// ```
    /// for<'a> fn(&'a u32)
    /// ```
    ///
    /// Once we "enter" into this `for<'a>` quantifier, we are in a
    /// subuniverse of `U` -- in this new universe, we can name the
    /// region `'a`, but that region was not nameable from `U` because
    /// it was not in scope there.
    pub fn subuniverse(self) -> UniverseIndex {
1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466
        UniverseIndex(self.0.checked_add(1).unwrap())
    }

    pub fn as_u32(&self) -> u32 {
        self.0
    }

    pub fn as_usize(&self) -> usize {
        self.0 as usize
    }
}

impl From<u32> for UniverseIndex {
    fn from(index: u32) -> Self {
        UniverseIndex(index)
1467
    }
N
Niko Matsakis 已提交
1468 1469
}

1470
/// When type checking, we use the `ParamEnv` to track
1471 1472 1473
/// details about the set of where-clauses that are in scope at this
/// particular point.
#[derive(Copy, Clone, Debug, PartialEq, Eq, Hash)]
1474
pub struct ParamEnv<'tcx> {
1475 1476
    /// Obligations that the caller must satisfy. This is basically
    /// the set of bounds on the in-scope type parameters, translated
1477
    /// into Obligations, and elaborated and normalized.
1478
    pub caller_bounds: &'tcx Slice<ty::Predicate<'tcx>>,
1479 1480 1481 1482 1483

    /// Typically, this is `Reveal::UserFacing`, but during trans we
    /// want `Reveal::All` -- note that this is always paired with an
    /// empty environment. To get that, use `ParamEnv::reveal()`.
    pub reveal: traits::Reveal,
1484
}
1485

1486
impl<'tcx> ParamEnv<'tcx> {
1487 1488 1489 1490 1491
    /// Construct a trait environment suitable for contexts where
    /// there are no where clauses in scope. Hidden types (like `impl
    /// Trait`) are left hidden, so this is suitable for ordinary
    /// type-checking.
    pub fn empty() -> Self {
S
Sean Griffin 已提交
1492
        Self::new(ty::Slice::empty(), Reveal::UserFacing)
1493 1494 1495 1496 1497 1498 1499 1500 1501 1502
    }

    /// Construct a trait environment with no where clauses in scope
    /// where the values of all `impl Trait` and other hidden types
    /// are revealed. This is suitable for monomorphized, post-typeck
    /// environments like trans or doing optimizations.
    ///
    /// NB. If you want to have predicates in scope, use `ParamEnv::new`,
    /// or invoke `param_env.with_reveal_all()`.
    pub fn reveal_all() -> Self {
S
Sean Griffin 已提交
1503
        Self::new(ty::Slice::empty(), Reveal::All)
1504 1505 1506 1507
    }

    /// Construct a trait environment with the given set of predicates.
    pub fn new(caller_bounds: &'tcx ty::Slice<ty::Predicate<'tcx>>,
S
Sean Griffin 已提交
1508
               reveal: Reveal)
1509
               -> Self {
S
Sean Griffin 已提交
1510
        ty::ParamEnv { caller_bounds, reveal }
1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527
    }

    /// Returns a new parameter environment with the same clauses, but
    /// which "reveals" the true results of projections in all cases
    /// (even for associated types that are specializable).  This is
    /// the desired behavior during trans and certain other special
    /// contexts; normally though we want to use `Reveal::UserFacing`,
    /// which is the default.
    pub fn with_reveal_all(self) -> Self {
        ty::ParamEnv { reveal: Reveal::All, ..self }
    }

    /// Returns this same environment but with no caller bounds.
    pub fn without_caller_bounds(self) -> Self {
        ty::ParamEnv { caller_bounds: ty::Slice::empty(), ..self }
    }

1528
    /// Creates a suitable environment in which to perform trait
1529 1530 1531 1532 1533
    /// queries on the given value. When type-checking, this is simply
    /// the pair of the environment plus value. But when reveal is set to
    /// All, then if `value` does not reference any type parameters, we will
    /// pair it with the empty environment. This improves caching and is generally
    /// invisible.
1534
    ///
1535 1536
    /// NB: We preserve the environment when type-checking because it
    /// is possible for the user to have wacky where-clauses like
1537
    /// `where Box<u32>: Copy`, which are clearly never
1538 1539
    /// satisfiable. We generally want to behave as if they were true,
    /// although the surrounding function is never reachable.
1540
    pub fn and<T: TypeFoldable<'tcx>>(self, value: T) -> ParamEnvAnd<'tcx, T> {
1541 1542 1543 1544 1545 1546
        match self.reveal {
            Reveal::UserFacing => {
                ParamEnvAnd {
                    param_env: self,
                    value,
                }
1547
            }
1548 1549

            Reveal::All => {
1550 1551 1552 1553 1554
                if value.has_skol()
                    || value.needs_infer()
                    || value.has_param_types()
                    || value.has_self_ty()
                {
1555 1556 1557 1558 1559 1560 1561 1562 1563 1564
                    ParamEnvAnd {
                        param_env: self,
                        value,
                    }
                } else {
                    ParamEnvAnd {
                        param_env: self.without_caller_bounds(),
                        value,
                    }
                }
1565
            }
1566 1567 1568
        }
    }
}
1569

1570
#[derive(Copy, Clone, Debug, PartialEq, Eq, Hash)]
1571 1572
pub struct ParamEnvAnd<'tcx, T> {
    pub param_env: ParamEnv<'tcx>,
1573
    pub value: T,
1574 1575
}

1576 1577
impl<'tcx, T> ParamEnvAnd<'tcx, T> {
    pub fn into_parts(self) -> (ParamEnv<'tcx>, T) {
1578
        (self.param_env, self.value)
1579
    }
1580 1581
}

1582 1583
impl<'a, 'gcx, T> HashStable<StableHashingContext<'a>> for ParamEnvAnd<'gcx, T>
    where T: HashStable<StableHashingContext<'a>>
1584 1585
{
    fn hash_stable<W: StableHasherResult>(&self,
1586
                                          hcx: &mut StableHashingContext<'a>,
1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597
                                          hasher: &mut StableHasher<W>) {
        let ParamEnvAnd {
            ref param_env,
            ref value
        } = *self;

        param_env.hash_stable(hcx, hasher);
        value.hash_stable(hcx, hasher);
    }
}

1598 1599 1600 1601 1602 1603
#[derive(Copy, Clone, Debug)]
pub struct Destructor {
    /// The def-id of the destructor method
    pub did: DefId,
}

1604
bitflags! {
1605 1606 1607 1608 1609 1610 1611
    pub struct AdtFlags: u32 {
        const NO_ADT_FLAGS        = 0;
        const IS_ENUM             = 1 << 0;
        const IS_PHANTOM_DATA     = 1 << 1;
        const IS_FUNDAMENTAL      = 1 << 2;
        const IS_UNION            = 1 << 3;
        const IS_BOX              = 1 << 4;
1612 1613 1614 1615
        /// Indicates whether this abstract data type will be expanded on in future (new
        /// fields/variants) and as such, whether downstream crates must match exhaustively on the
        /// fields/variants of this data type.
        ///
1616
        /// See RFC 2008 (<https://github.com/rust-lang/rfcs/pull/2008>).
1617
        const IS_NON_EXHAUSTIVE   = 1 << 5;
1618 1619 1620
    }
}

1621
#[derive(Debug)]
1622
pub struct VariantDef {
1623 1624
    /// The variant's DefId. If this is a tuple-like struct,
    /// this is the DefId of the struct's ctor.
1625 1626
    pub did: DefId,
    pub name: Name, // struct's name if this is a struct
1627
    pub discr: VariantDiscr,
1628
    pub fields: Vec<FieldDef>,
1629
    pub ctor_kind: CtorKind,
1630 1631
}

1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644
#[derive(Copy, Clone, Debug, PartialEq, Eq, RustcEncodable, RustcDecodable)]
pub enum VariantDiscr {
    /// Explicit value for this variant, i.e. `X = 123`.
    /// The `DefId` corresponds to the embedded constant.
    Explicit(DefId),

    /// The previous variant's discriminant plus one.
    /// For efficiency reasons, the distance from the
    /// last `Explicit` discriminant is being stored,
    /// or `0` for the first variant, if it has none.
    Relative(usize),
}

1645
#[derive(Debug)]
1646
pub struct FieldDef {
1647
    pub did: DefId,
1648
    pub name: Name,
1649
    pub vis: Visibility,
1650 1651
}

A
Ariel Ben-Yehuda 已提交
1652 1653 1654 1655
/// The definition of an abstract data type - a struct or enum.
///
/// These are all interned (by intern_adt_def) into the adt_defs
/// table.
1656
pub struct AdtDef {
1657
    pub did: DefId,
1658
    pub variants: Vec<VariantDef>,
1659
    flags: AdtFlags,
1660
    pub repr: ReprOptions,
1661 1662
}

1663 1664
impl PartialEq for AdtDef {
    // AdtDef are always interned and this is part of TyS equality
1665 1666 1667 1668
    #[inline]
    fn eq(&self, other: &Self) -> bool { self as *const _ == other as *const _ }
}

1669
impl Eq for AdtDef {}
1670

1671
impl Hash for AdtDef {
1672 1673
    #[inline]
    fn hash<H: Hasher>(&self, s: &mut H) {
1674
        (self as *const AdtDef).hash(s)
1675 1676 1677
    }
}

1678
impl<'tcx> serialize::UseSpecializedEncodable for &'tcx AdtDef {
1679
    fn default_encode<S: Encoder>(&self, s: &mut S) -> Result<(), S::Error> {
1680 1681 1682 1683
        self.did.encode(s)
    }
}

1684
impl<'tcx> serialize::UseSpecializedDecodable for &'tcx AdtDef {}
1685

1686

1687
impl<'a> HashStable<StableHashingContext<'a>> for AdtDef {
1688
    fn hash_stable<W: StableHasherResult>(&self,
1689
                                          hcx: &mut StableHashingContext<'a>,
1690
                                          hasher: &mut StableHasher<W>) {
W
Wesley Wiser 已提交
1691 1692 1693 1694
        thread_local! {
            static CACHE: RefCell<FxHashMap<usize, Fingerprint>> =
                RefCell::new(FxHashMap());
        }
1695

W
Wesley Wiser 已提交
1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716
        let hash: Fingerprint = CACHE.with(|cache| {
            let addr = self as *const AdtDef as usize;
            *cache.borrow_mut().entry(addr).or_insert_with(|| {
                let ty::AdtDef {
                    did,
                    ref variants,
                    ref flags,
                    ref repr,
                } = *self;

                let mut hasher = StableHasher::new();
                did.hash_stable(hcx, &mut hasher);
                variants.hash_stable(hcx, &mut hasher);
                flags.hash_stable(hcx, &mut hasher);
                repr.hash_stable(hcx, &mut hasher);

                hasher.finish()
           })
        });

        hash.hash_stable(hcx, hasher);
1717 1718 1719
    }
}

1720
#[derive(Copy, Clone, Debug, Eq, PartialEq, Hash)]
1721
pub enum AdtKind { Struct, Union, Enum }
1722

1723 1724
bitflags! {
    #[derive(RustcEncodable, RustcDecodable, Default)]
1725 1726
    pub struct ReprFlags: u8 {
        const IS_C               = 1 << 0;
1727 1728
        const IS_SIMD            = 1 << 1;
        const IS_TRANSPARENT     = 1 << 2;
1729
        // Internal only for now. If true, don't reorder fields.
1730
        const IS_LINEAR          = 1 << 3;
1731 1732 1733 1734

        // Any of these flags being set prevent field reordering optimisation.
        const IS_UNOPTIMISABLE   = ReprFlags::IS_C.bits |
                                   ReprFlags::IS_SIMD.bits |
1735
                                   ReprFlags::IS_LINEAR.bits;
1736 1737 1738 1739 1740 1741 1742 1743 1744
    }
}

impl_stable_hash_for!(struct ReprFlags {
    bits
});



1745 1746 1747 1748
/// Represents the repr options provided by the user,
#[derive(Copy, Clone, Eq, PartialEq, RustcEncodable, RustcDecodable, Default)]
pub struct ReprOptions {
    pub int: Option<attr::IntType>,
1749
    pub align: u32,
1750
    pub pack: u32,
1751
    pub flags: ReprFlags,
1752 1753
}

1754
impl_stable_hash_for!(struct ReprOptions {
1755
    align,
1756
    pack,
1757
    int,
1758
    flags
1759 1760
});

1761
impl ReprOptions {
1762
    pub fn new(tcx: TyCtxt, did: DefId) -> ReprOptions {
1763 1764
        let mut flags = ReprFlags::empty();
        let mut size = None;
1765
        let mut max_align = 0;
1766
        let mut min_pack = 0;
1767 1768
        for attr in tcx.get_attrs(did).iter() {
            for r in attr::find_repr_attrs(tcx.sess.diagnostic(), attr) {
1769
                flags.insert(match r {
1770
                    attr::ReprC => ReprFlags::IS_C,
1771 1772 1773 1774 1775 1776 1777 1778
                    attr::ReprPacked(pack) => {
                        min_pack = if min_pack > 0 {
                            cmp::min(pack, min_pack)
                        } else {
                            pack
                        };
                        ReprFlags::empty()
                    },
R
Robin Kruppe 已提交
1779
                    attr::ReprTransparent => ReprFlags::IS_TRANSPARENT,
1780 1781 1782 1783 1784
                    attr::ReprSimd => ReprFlags::IS_SIMD,
                    attr::ReprInt(i) => {
                        size = Some(i);
                        ReprFlags::empty()
                    },
1785 1786 1787 1788
                    attr::ReprAlign(align) => {
                        max_align = cmp::max(align, max_align);
                        ReprFlags::empty()
                    },
1789
                });
1790 1791
            }
        }
1792

1793
        // This is here instead of layout because the choice must make it into metadata.
1794 1795 1796
        if !tcx.consider_optimizing(|| format!("Reorder fields of {:?}", tcx.item_path_str(did))) {
            flags.insert(ReprFlags::IS_LINEAR);
        }
1797
        ReprOptions { int: size, align: max_align, pack: min_pack, flags: flags }
1798
    }
1799

1800 1801 1802 1803 1804
    #[inline]
    pub fn simd(&self) -> bool { self.flags.contains(ReprFlags::IS_SIMD) }
    #[inline]
    pub fn c(&self) -> bool { self.flags.contains(ReprFlags::IS_C) }
    #[inline]
1805
    pub fn packed(&self) -> bool { self.pack > 0 }
1806
    #[inline]
R
Robin Kruppe 已提交
1807 1808
    pub fn transparent(&self) -> bool { self.flags.contains(ReprFlags::IS_TRANSPARENT) }
    #[inline]
1809 1810
    pub fn linear(&self) -> bool { self.flags.contains(ReprFlags::IS_LINEAR) }

1811
    pub fn discr_type(&self) -> attr::IntType {
1812
        self.int.unwrap_or(attr::SignedInt(ast::IntTy::Isize))
1813
    }
1814 1815 1816 1817 1818

    /// Returns true if this `#[repr()]` should inhabit "smart enum
    /// layout" optimizations, such as representing `Foo<&T>` as a
    /// single pointer.
    pub fn inhibit_enum_layout_opt(&self) -> bool {
1819
        self.c() || self.int.is_some()
1820
    }
1821 1822 1823 1824 1825 1826

    /// Returns true if this `#[repr()]` should inhibit struct field reordering
    /// optimizations, such as with repr(C) or repr(packed(1)).
    pub fn inhibit_struct_field_reordering_opt(&self) -> bool {
        !(self.flags & ReprFlags::IS_UNOPTIMISABLE).is_empty() || (self.pack == 1)
    }
1827 1828
}

1829
impl<'a, 'gcx, 'tcx> AdtDef {
1830
    fn new(tcx: TyCtxt,
1831
           did: DefId,
A
Ariel Ben-Yehuda 已提交
1832
           kind: AdtKind,
1833 1834
           variants: Vec<VariantDef>,
           repr: ReprOptions) -> Self {
A
Ariel Ben-Yehuda 已提交
1835
        let mut flags = AdtFlags::NO_ADT_FLAGS;
A
Ariel Ben-Yehuda 已提交
1836
        let attrs = tcx.get_attrs(did);
1837
        if attr::contains_name(&attrs, "fundamental") {
A
Ariel Ben-Yehuda 已提交
1838
            flags = flags | AdtFlags::IS_FUNDAMENTAL;
1839
        }
1840
        if Some(did) == tcx.lang_items().phantom_data() {
A
Ariel Ben-Yehuda 已提交
1841
            flags = flags | AdtFlags::IS_PHANTOM_DATA;
1842
        }
1843
        if Some(did) == tcx.lang_items().owned_box() {
1844 1845
            flags = flags | AdtFlags::IS_BOX;
        }
1846 1847 1848
        if tcx.has_attr(did, "non_exhaustive") {
            flags = flags | AdtFlags::IS_NON_EXHAUSTIVE;
        }
1849 1850 1851 1852
        match kind {
            AdtKind::Enum => flags = flags | AdtFlags::IS_ENUM,
            AdtKind::Union => flags = flags | AdtFlags::IS_UNION,
            AdtKind::Struct => {}
1853
        }
1854
        AdtDef {
1855 1856 1857 1858
            did,
            variants,
            flags,
            repr,
1859 1860 1861
        }
    }

1862 1863 1864 1865 1866 1867 1868
    #[inline]
    pub fn is_struct(&self) -> bool {
        !self.is_union() && !self.is_enum()
    }

    #[inline]
    pub fn is_union(&self) -> bool {
1869
        self.flags.intersects(AdtFlags::IS_UNION)
1870 1871 1872 1873
    }

    #[inline]
    pub fn is_enum(&self) -> bool {
1874
        self.flags.intersects(AdtFlags::IS_ENUM)
1875 1876
    }

1877 1878 1879 1880 1881
    #[inline]
    pub fn is_non_exhaustive(&self) -> bool {
        self.flags.intersects(AdtFlags::IS_NON_EXHAUSTIVE)
    }

A
Ariel Ben-Yehuda 已提交
1882
    /// Returns the kind of the ADT - Struct or Enum.
1883
    #[inline]
A
Ariel Ben-Yehuda 已提交
1884
    pub fn adt_kind(&self) -> AdtKind {
1885
        if self.is_enum() {
A
Ariel Ben-Yehuda 已提交
1886
            AdtKind::Enum
1887
        } else if self.is_union() {
1888
            AdtKind::Union
1889
        } else {
A
Ariel Ben-Yehuda 已提交
1890
            AdtKind::Struct
1891 1892 1893
        }
    }

1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909
    pub fn descr(&self) -> &'static str {
        match self.adt_kind() {
            AdtKind::Struct => "struct",
            AdtKind::Union => "union",
            AdtKind::Enum => "enum",
        }
    }

    pub fn variant_descr(&self) -> &'static str {
        match self.adt_kind() {
            AdtKind::Struct => "struct",
            AdtKind::Union => "union",
            AdtKind::Enum => "variant",
        }
    }

A
Ariel Ben-Yehuda 已提交
1910 1911
    /// Returns whether this type is #[fundamental] for the purposes
    /// of coherence checking.
1912 1913
    #[inline]
    pub fn is_fundamental(&self) -> bool {
1914
        self.flags.intersects(AdtFlags::IS_FUNDAMENTAL)
1915 1916
    }

A
Ariel Ben-Yehuda 已提交
1917
    /// Returns true if this is PhantomData<T>.
1918 1919
    #[inline]
    pub fn is_phantom_data(&self) -> bool {
1920
        self.flags.intersects(AdtFlags::IS_PHANTOM_DATA)
1921 1922
    }

1923 1924 1925
    /// Returns true if this is Box<T>.
    #[inline]
    pub fn is_box(&self) -> bool {
1926
        self.flags.intersects(AdtFlags::IS_BOX)
1927 1928
    }

A
Ariel Ben-Yehuda 已提交
1929
    /// Returns whether this type has a destructor.
1930 1931
    pub fn has_dtor(&self, tcx: TyCtxt<'a, 'gcx, 'tcx>) -> bool {
        self.destructor(tcx).is_some()
1932 1933
    }

1934 1935 1936
    /// Asserts this is a struct or union and returns its unique variant.
    pub fn non_enum_variant(&self) -> &VariantDef {
        assert!(self.is_struct() || self.is_union());
1937
        &self.variants[0]
1938 1939 1940
    }

    #[inline]
1941
    pub fn predicates(&self, tcx: TyCtxt<'a, 'gcx, 'tcx>) -> GenericPredicates<'gcx> {
1942
        tcx.predicates_of(self.did)
1943
    }
1944

A
Ariel Ben-Yehuda 已提交
1945 1946
    /// Returns an iterator over all fields contained
    /// by this ADT.
1947
    #[inline]
1948 1949
    pub fn all_fields<'s>(&'s self) -> impl Iterator<Item = &'s FieldDef> {
        self.variants.iter().flat_map(|v| v.fields.iter())
1950 1951 1952 1953 1954 1955 1956
    }

    pub fn is_payloadfree(&self) -> bool {
        !self.variants.is_empty() &&
            self.variants.iter().all(|v| v.fields.is_empty())
    }

1957
    pub fn variant_with_id(&self, vid: DefId) -> &VariantDef {
1958 1959 1960 1961 1962 1963
        self.variants
            .iter()
            .find(|v| v.did == vid)
            .expect("variant_with_id: unknown variant")
    }

N
Niko Matsakis 已提交
1964 1965 1966 1967 1968 1969 1970
    pub fn variant_index_with_id(&self, vid: DefId) -> usize {
        self.variants
            .iter()
            .position(|v| v.did == vid)
            .expect("variant_index_with_id: unknown variant")
    }

1971
    pub fn variant_of_def(&self, def: Def) -> &VariantDef {
1972
        match def {
1973 1974
            Def::Variant(vid) | Def::VariantCtor(vid, ..) => self.variant_with_id(vid),
            Def::Struct(..) | Def::StructCtor(..) | Def::Union(..) |
1975
            Def::TyAlias(..) | Def::AssociatedTy(..) | Def::SelfTy(..) => self.non_enum_variant(),
1976
            _ => bug!("unexpected def {:?} in variant_of_def", def)
1977 1978
        }
    }
1979

O
Oliver Schneider 已提交
1980
    #[inline]
1981
    pub fn eval_explicit_discr(
O
Oliver Schneider 已提交
1982 1983 1984 1985
        &self,
        tcx: TyCtxt<'a, 'gcx, 'tcx>,
        expr_did: DefId,
    ) -> Option<Discr<'tcx>> {
1986
        let param_env = ParamEnv::empty();
O
Oliver Schneider 已提交
1987 1988 1989 1990 1991 1992 1993 1994
        let repr_type = self.repr.discr_type();
        let substs = Substs::identity_for_item(tcx.global_tcx(), expr_did);
        let instance = ty::Instance::new(expr_did, substs);
        let cid = GlobalId {
            instance,
            promoted: None
        };
        match tcx.const_eval(param_env.and(cid)) {
1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011
            Ok(val) => {
                // FIXME: Find the right type and use it instead of `val.ty` here
                if let Some(b) = val.assert_bits(val.ty) {
                    trace!("discriminants: {} ({:?})", b, repr_type);
                    Some(Discr {
                        val: b,
                        ty: val.ty,
                    })
                } else {
                    info!("invalid enum discriminant: {:#?}", val);
                    ::middle::const_val::struct_error(
                        tcx,
                        tcx.def_span(expr_did),
                        "constant evaluation of enum discriminant resulted in non-integer",
                    ).emit();
                    None
                }
O
Oliver Schneider 已提交
2012
            }
2013 2014
            Err(err) => {
                err.report(tcx, tcx.def_span(expr_did), "enum discriminant");
O
Oliver Schneider 已提交
2015 2016 2017 2018 2019 2020 2021 2022 2023 2024
                if !expr_did.is_local() {
                    span_bug!(tcx.def_span(expr_did),
                        "variant discriminant evaluation succeeded \
                            in its crate but failed locally");
                }
                None
            }
        }
    }

2025
    #[inline]
2026 2027 2028 2029
    pub fn discriminants(
        &'a self,
        tcx: TyCtxt<'a, 'gcx, 'tcx>,
    ) -> impl Iterator<Item=Discr<'tcx>> + Captures<'gcx> + 'a {
2030
        let repr_type = self.repr.discr_type();
2031
        let initial = repr_type.initial_discriminant(tcx.global_tcx());
O
Oliver Schneider 已提交
2032
        let mut prev_discr = None::<Discr<'tcx>>;
2033
        self.variants.iter().map(move |v| {
O
Oliver Schneider 已提交
2034
            let mut discr = prev_discr.map_or(initial, |d| d.wrap_incr(tcx));
2035
            if let VariantDiscr::Explicit(expr_did) = v.discr {
O
Oliver Schneider 已提交
2036 2037
                if let Some(new_discr) = self.eval_explicit_discr(tcx, expr_did) {
                    discr = new_discr;
2038 2039 2040 2041 2042 2043 2044 2045
                }
            }
            prev_discr = Some(discr);

            discr
        })
    }

2046 2047 2048 2049 2050 2051 2052 2053
    /// Compute the discriminant value used by a specific variant.
    /// Unlike `discriminants`, this is (amortized) constant-time,
    /// only doing at most one query for evaluating an explicit
    /// discriminant (the last one before the requested variant),
    /// assuming there are no constant-evaluation errors there.
    pub fn discriminant_for_variant(&self,
                                    tcx: TyCtxt<'a, 'gcx, 'tcx>,
                                    variant_index: usize)
O
Oliver Schneider 已提交
2054
                                    -> Discr<'tcx> {
2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068
        let (val, offset) = self.discriminant_def_for_variant(variant_index);
        let explicit_value = val
            .and_then(|expr_did| self.eval_explicit_discr(tcx, expr_did))
            .unwrap_or_else(|| self.repr.discr_type().initial_discriminant(tcx.global_tcx()));
        explicit_value.checked_add(tcx, offset as u128).0
    }

    /// Yields a DefId for the discriminant and an offset to add to it
    /// Alternatively, if there is no explicit discriminant, returns the
    /// inferred discriminant directly
    pub fn discriminant_def_for_variant(
        &self,
        variant_index: usize,
    ) -> (Option<DefId>, usize) {
2069
        let mut explicit_index = variant_index;
2070
        let expr_did;
2071 2072
        loop {
            match self.variants[explicit_index].discr {
2073 2074 2075 2076
                ty::VariantDiscr::Relative(0) => {
                    expr_did = None;
                    break;
                },
2077 2078 2079
                ty::VariantDiscr::Relative(distance) => {
                    explicit_index -= distance;
                }
2080 2081 2082
                ty::VariantDiscr::Explicit(did) => {
                    expr_did = Some(did);
                    break;
2083 2084 2085
                }
            }
        }
2086
        (expr_did, variant_index - explicit_index)
2087 2088
    }

2089
    pub fn destructor(&self, tcx: TyCtxt<'a, 'gcx, 'tcx>) -> Option<Destructor> {
2090
        tcx.adt_destructor(self.did)
2091 2092
    }

2093
    /// Returns a list of types such that `Self: Sized` if and only
2094
    /// if that type is Sized, or `TyErr` if this type is recursive.
A
Ariel Ben-Yehuda 已提交
2095 2096 2097 2098 2099 2100 2101 2102
    ///
    /// Oddly enough, checking that the sized-constraint is Sized is
    /// actually more expressive than checking all members:
    /// the Sized trait is inductive, so an associated type that references
    /// Self would prevent its containing ADT from being Sized.
    ///
    /// Due to normalization being eager, this applies even if
    /// the associated type is behind a pointer, e.g. issue #31299.
2103
    pub fn sized_constraint(&self, tcx: TyCtxt<'a, 'gcx, 'tcx>) -> &'tcx [Ty<'tcx>] {
2104
        match tcx.try_get_query::<queries::adt_sized_constraint>(DUMMY_SP, self.did) {
2105
            Ok(tys) => tys,
2106
            Err(mut bug) => {
2107 2108 2109 2110
                debug!("adt_sized_constraint: {:?} is recursive", self);
                // This should be reported as an error by `check_representable`.
                //
                // Consider the type as Sized in the meanwhile to avoid
2111 2112 2113 2114
                // further errors. Delay our `bug` diagnostic here to get
                // emitted later as well in case we accidentally otherwise don't
                // emit an error.
                bug.delay_as_bug();
2115
                tcx.intern_type_list(&[tcx.types.err])
A
Ariel Ben-Yehuda 已提交
2116
            }
2117 2118
        }
    }
2119

2120 2121 2122 2123
    fn sized_constraint_for_ty(&self,
                               tcx: TyCtxt<'a, 'tcx, 'tcx>,
                               ty: Ty<'tcx>)
                               -> Vec<Ty<'tcx>> {
2124 2125
        let result = match ty.sty {
            TyBool | TyChar | TyInt(..) | TyUint(..) | TyFloat(..) |
2126
            TyRawPtr(..) | TyRef(..) | TyFnDef(..) | TyFnPtr(_) |
J
John Kåre Alsaker 已提交
2127
            TyArray(..) | TyClosure(..) | TyGenerator(..) | TyNever => {
A
Ariel Ben-Yehuda 已提交
2128
                vec![]
2129 2130
            }

2131 2132 2133 2134 2135 2136
            TyStr |
            TyDynamic(..) |
            TySlice(_) |
            TyForeign(..) |
            TyError |
            TyGeneratorWitness(..) => {
2137
                // these are never sized - return the target type
A
Ariel Ben-Yehuda 已提交
2138
                vec![ty]
2139 2140
            }

A
Andrew Cann 已提交
2141
            TyTuple(ref tys) => {
2142 2143
                match tys.last() {
                    None => vec![],
2144
                    Some(ty) => self.sized_constraint_for_ty(tcx, ty)
2145
                }
2146 2147
            }

2148
            TyAdt(adt, substs) => {
2149
                // recursive case
2150
                let adt_tys = adt.sized_constraint(tcx);
2151
                debug!("sized_constraint_for_ty({:?}) intermediate = {:?}",
2152 2153 2154 2155 2156
                       ty, adt_tys);
                adt_tys.iter()
                    .map(|ty| ty.subst(tcx, substs))
                    .flat_map(|ty| self.sized_constraint_for_ty(tcx, ty))
                    .collect()
2157 2158
            }

2159
            TyProjection(..) | TyAnon(..) => {
2160 2161
                // must calculate explicitly.
                // FIXME: consider special-casing always-Sized projections
A
Ariel Ben-Yehuda 已提交
2162
                vec![ty]
2163 2164 2165
            }

            TyParam(..) => {
A
Ariel Ben-Yehuda 已提交
2166 2167 2168 2169
                // perf hack: if there is a `T: Sized` bound, then
                // we know that `T` is Sized and do not need to check
                // it on the impl.

2170
                let sized_trait = match tcx.lang_items().sized_trait() {
2171
                    Some(x) => x,
A
Ariel Ben-Yehuda 已提交
2172
                    _ => return vec![ty]
2173
                };
2174
                let sized_predicate = Binder::dummy(TraitRef {
2175
                    def_id: sized_trait,
2176
                    substs: tcx.mk_substs_trait(ty, &[])
2177
                }).to_predicate();
2178
                let predicates = tcx.predicates_of(self.did).predicates;
2179
                if predicates.into_iter().any(|p| p == sized_predicate) {
A
Ariel Ben-Yehuda 已提交
2180
                    vec![]
2181
                } else {
A
Ariel Ben-Yehuda 已提交
2182
                    vec![ty]
2183 2184 2185
                }
            }

A
Ariel Ben-Yehuda 已提交
2186
            TyInfer(..) => {
2187 2188 2189 2190 2191 2192 2193
                bug!("unexpected type `{:?}` in sized_constraint_for_ty",
                     ty)
            }
        };
        debug!("sized_constraint_for_ty({:?}) = {:?}", ty, result);
        result
    }
2194 2195
}

2196
impl<'a, 'gcx, 'tcx> FieldDef {
2197
    pub fn ty(&self, tcx: TyCtxt<'a, 'gcx, 'tcx>, subst: &Substs<'tcx>) -> Ty<'tcx> {
2198
        tcx.type_of(self.did).subst(tcx, subst)
2199
    }
2200 2201
}

2202 2203 2204 2205 2206 2207
/// Represents the various closure traits in the Rust language. This
/// will determine the type of the environment (`self`, in the
/// desuaring) argument that the closure expects.
///
/// You can get the environment type of a closure using
/// `tcx.closure_env_ty()`.
2208
#[derive(Clone, Copy, PartialOrd, Ord, PartialEq, Eq, Hash, Debug, RustcEncodable, RustcDecodable)]
2209
pub enum ClosureKind {
2210 2211 2212
    // Warning: Ordering is significant here! The ordering is chosen
    // because the trait Fn is a subtrait of FnMut and so in turn, and
    // hence we order it so that Fn < FnMut < FnOnce.
2213 2214 2215
    Fn,
    FnMut,
    FnOnce,
2216 2217
}

2218
impl<'a, 'tcx> ClosureKind {
2219 2220 2221
    // This is the initial value used when doing upvar inference.
    pub const LATTICE_BOTTOM: ClosureKind = ClosureKind::Fn;

2222
    pub fn trait_did(&self, tcx: TyCtxt<'a, 'tcx, 'tcx>) -> DefId {
2223 2224
        match *self {
            ClosureKind::Fn => tcx.require_lang_item(FnTraitLangItem),
2225
            ClosureKind::FnMut => {
2226
                tcx.require_lang_item(FnMutTraitLangItem)
2227
            }
2228
            ClosureKind::FnOnce => {
2229
                tcx.require_lang_item(FnOnceTraitLangItem)
2230 2231 2232
            }
        }
    }
2233 2234 2235 2236 2237

    /// True if this a type that impls this closure kind
    /// must also implement `other`.
    pub fn extends(self, other: ty::ClosureKind) -> bool {
        match (self, other) {
2238 2239 2240 2241 2242 2243
            (ClosureKind::Fn, ClosureKind::Fn) => true,
            (ClosureKind::Fn, ClosureKind::FnMut) => true,
            (ClosureKind::Fn, ClosureKind::FnOnce) => true,
            (ClosureKind::FnMut, ClosureKind::FnMut) => true,
            (ClosureKind::FnMut, ClosureKind::FnOnce) => true,
            (ClosureKind::FnOnce, ClosureKind::FnOnce) => true,
2244 2245 2246
            _ => false,
        }
    }
2247 2248 2249 2250 2251 2252 2253 2254 2255

    /// Returns the representative scalar type for this closure kind.
    /// See `TyS::to_opt_closure_kind` for more details.
    pub fn to_ty(self, tcx: TyCtxt<'_, '_, 'tcx>) -> Ty<'tcx> {
        match self {
            ty::ClosureKind::Fn => tcx.types.i8,
            ty::ClosureKind::FnMut => tcx.types.i16,
            ty::ClosureKind::FnOnce => tcx.types.i32,
        }
2256
    }
2257 2258
}

2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271
impl<'tcx> TyS<'tcx> {
    /// Iterator that walks `self` and any types reachable from
    /// `self`, in depth-first order. Note that just walks the types
    /// that appear in `self`, it does not descend into the fields of
    /// structs or variants. For example:
    ///
    /// ```notrust
    /// isize => { isize }
    /// Foo<Bar<isize>> => { Foo<Bar<isize>>, Bar<isize>, isize }
    /// [isize] => { [isize], isize }
    /// ```
    pub fn walk(&'tcx self) -> TypeWalker<'tcx> {
        TypeWalker::new(self)
2272 2273
    }

2274 2275 2276
    /// Iterator that walks the immediate children of `self`.  Hence
    /// `Foo<Bar<i32>, u32>` yields the sequence `[Bar<i32>, u32]`
    /// (but not `i32`, like `walk`).
2277
    pub fn walk_shallow(&'tcx self) -> AccIntoIter<walk::TypeWalkerArray<'tcx>> {
2278
        walk::walk_shallow(self)
2279 2280
    }

2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294
    /// Walks `ty` and any types appearing within `ty`, invoking the
    /// callback `f` on each type. If the callback returns false, then the
    /// children of the current type are ignored.
    ///
    /// Note: prefer `ty.walk()` where possible.
    pub fn maybe_walk<F>(&'tcx self, mut f: F)
        where F : FnMut(Ty<'tcx>) -> bool
    {
        let mut walker = self.walk();
        while let Some(ty) = walker.next() {
            if !f(ty) {
                walker.skip_current_subtree();
            }
        }
2295
    }
2296
}
2297

2298
impl BorrowKind {
2299
    pub fn from_mutbl(m: hir::Mutability) -> BorrowKind {
2300
        match m {
2301 2302
            hir::MutMutable => MutBorrow,
            hir::MutImmutable => ImmBorrow,
2303 2304
        }
    }
2305

2306 2307 2308 2309
    /// Returns a mutability `m` such that an `&m T` pointer could be used to obtain this borrow
    /// kind. Because borrow kinds are richer than mutabilities, we sometimes have to pick a
    /// mutability that is stronger than necessary so that it at least *would permit* the borrow in
    /// question.
2310
    pub fn to_mutbl_lossy(self) -> hir::Mutability {
2311
        match self {
2312 2313
            MutBorrow => hir::MutMutable,
            ImmBorrow => hir::MutImmutable,
2314 2315 2316 2317

            // We have no type corresponding to a unique imm borrow, so
            // use `&mut`. It gives all the capabilities of an `&uniq`
            // and hence is a safe "over approximation".
2318
            UniqueImmBorrow => hir::MutMutable,
2319
        }
2320
    }
2321

2322 2323 2324 2325 2326 2327
    pub fn to_user_str(&self) -> &'static str {
        match *self {
            MutBorrow => "mutable",
            ImmBorrow => "immutable",
            UniqueImmBorrow => "uniquely immutable",
        }
2328 2329 2330
    }
}

2331 2332
#[derive(Debug, Clone)]
pub enum Attributes<'gcx> {
2333
    Owned(Lrc<[ast::Attribute]>),
2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347
    Borrowed(&'gcx [ast::Attribute])
}

impl<'gcx> ::std::ops::Deref for Attributes<'gcx> {
    type Target = [ast::Attribute];

    fn deref(&self) -> &[ast::Attribute] {
        match self {
            &Attributes::Owned(ref data) => &data,
            &Attributes::Borrowed(data) => data
        }
    }
}

2348
impl<'a, 'gcx, 'tcx> TyCtxt<'a, 'gcx, 'tcx> {
2349
    pub fn body_tables(self, body: hir::BodyId) -> &'gcx TypeckTables<'gcx> {
2350
        self.typeck_tables_of(self.hir.body_owner_def_id(body))
2351 2352
    }

N
Niko Matsakis 已提交
2353 2354 2355
    /// Returns an iterator of the def-ids for all body-owners in this
    /// crate. If you would prefer to iterate over the bodies
    /// themselves, you can do `self.hir.krate().body_ids.iter()`.
2356 2357 2358
    pub fn body_owners(
        self,
    ) -> impl Iterator<Item = DefId> + Captures<'tcx> + Captures<'gcx> + 'a {
N
Niko Matsakis 已提交
2359 2360 2361 2362 2363 2364
        self.hir.krate()
                .body_ids
                .iter()
                .map(move |&body_id| self.hir.body_owner_def_id(body_id))
    }

2365
    pub fn expr_span(self, id: NodeId) -> Span {
2366
        match self.hir.find(id) {
2367
            Some(hir_map::NodeExpr(e)) => {
2368 2369 2370
                e.span
            }
            Some(f) => {
2371
                bug!("Node id {} is not an expr: {:?}", id, f);
2372 2373
            }
            None => {
2374
                bug!("Node id {} is not present in the node map", id);
2375
            }
2376
        }
2377 2378
    }

2379 2380
    pub fn provided_trait_methods(self, id: DefId) -> Vec<AssociatedItem> {
        self.associated_items(id)
2381
            .filter(|item| item.kind == AssociatedKind::Method && item.defaultness.has_value())
2382
            .collect()
2383 2384
    }

A
Andrew Cann 已提交
2385 2386 2387 2388 2389 2390
    pub fn trait_relevant_for_never(self, did: DefId) -> bool {
        self.associated_items(did).any(|item| {
            item.relevant_for_never()
        })
    }

2391 2392 2393 2394 2395 2396 2397
    pub fn opt_associated_item(self, def_id: DefId) -> Option<AssociatedItem> {
        let is_associated_item = if let Some(node_id) = self.hir.as_local_node_id(def_id) {
            match self.hir.get(node_id) {
                hir_map::NodeTraitItem(_) | hir_map::NodeImplItem(_) => true,
                _ => false,
            }
        } else {
2398
            match self.describe_def(def_id).expect("no def for def-id") {
2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410
                Def::AssociatedConst(_) | Def::Method(_) | Def::AssociatedTy(_) => true,
                _ => false,
            }
        };

        if is_associated_item {
            Some(self.associated_item(def_id))
        } else {
            None
        }
    }

2411 2412
    fn associated_item_from_trait_item_ref(self,
                                           parent_def_id: DefId,
2413
                                           parent_vis: &hir::Visibility,
2414
                                           trait_item_ref: &hir::TraitItemRef)
2415
                                           -> AssociatedItem {
2416
        let def_id = self.hir.local_def_id(trait_item_ref.id.node_id);
2417 2418 2419 2420
        let (kind, has_self) = match trait_item_ref.kind {
            hir::AssociatedItemKind::Const => (ty::AssociatedKind::Const, false),
            hir::AssociatedItemKind::Method { has_self } => {
                (ty::AssociatedKind::Method, has_self)
2421
            }
2422
            hir::AssociatedItemKind::Type => (ty::AssociatedKind::Type, false),
2423 2424 2425
        };

        AssociatedItem {
2426
            name: trait_item_ref.name,
2427
            kind,
2428 2429
            // Visibility of trait items is inherited from their traits.
            vis: Visibility::from_hir(parent_vis, trait_item_ref.id.node_id, self),
2430
            defaultness: trait_item_ref.defaultness,
2431
            def_id,
2432 2433 2434 2435 2436 2437 2438 2439 2440
            container: TraitContainer(parent_def_id),
            method_has_self_argument: has_self
        }
    }

    fn associated_item_from_impl_item_ref(self,
                                          parent_def_id: DefId,
                                          impl_item_ref: &hir::ImplItemRef)
                                          -> AssociatedItem {
2441
        let def_id = self.hir.local_def_id(impl_item_ref.id.node_id);
2442 2443 2444 2445 2446 2447 2448 2449 2450 2451
        let (kind, has_self) = match impl_item_ref.kind {
            hir::AssociatedItemKind::Const => (ty::AssociatedKind::Const, false),
            hir::AssociatedItemKind::Method { has_self } => {
                (ty::AssociatedKind::Method, has_self)
            }
            hir::AssociatedItemKind::Type => (ty::AssociatedKind::Type, false),
        };

        ty::AssociatedItem {
            name: impl_item_ref.name,
2452
            kind,
2453 2454
            // Visibility of trait impl items doesn't matter.
            vis: ty::Visibility::from_hir(&impl_item_ref.vis, impl_item_ref.id.node_id, self),
2455
            defaultness: impl_item_ref.defaultness,
2456
            def_id,
2457 2458 2459 2460 2461
            container: ImplContainer(parent_def_id),
            method_has_self_argument: has_self
        }
    }

2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472
    pub fn field_index(self, node_id: NodeId, tables: &TypeckTables) -> usize {
        let hir_id = self.hir.node_to_hir_id(node_id);
        tables.field_indices().get(hir_id).cloned().expect("no index for a field")
    }

    pub fn find_field_index(self, ident: Ident, variant: &VariantDef) -> Option<usize> {
        variant.fields.iter().position(|field| {
            self.adjust_ident(ident.modern(), variant.did, DUMMY_NODE_ID).0 == field.name.to_ident()
        })
    }

2473 2474 2475 2476
    pub fn associated_items(
        self,
        def_id: DefId,
    ) -> impl Iterator<Item = ty::AssociatedItem> + 'a {
2477
        let def_ids = self.associated_item_def_ids(def_id);
2478 2479
        Box::new((0..def_ids.len()).map(move |i| self.associated_item(def_ids[i])))
            as Box<dyn Iterator<Item = ty::AssociatedItem> + 'a>
2480 2481
    }

2482 2483 2484
    /// Returns true if the impls are the same polarity and are implementing
    /// a trait which contains no items
    pub fn impls_are_allowed_to_overlap(self, def_id1: DefId, def_id2: DefId) -> bool {
2485
        if !self.features().overlapping_marker_traits {
2486 2487
            return false;
        }
2488 2489 2490 2491 2492 2493 2494 2495
        let trait1_is_empty = self.impl_trait_ref(def_id1)
            .map_or(false, |trait_ref| {
                self.associated_item_def_ids(trait_ref.def_id).is_empty()
            });
        let trait2_is_empty = self.impl_trait_ref(def_id2)
            .map_or(false, |trait_ref| {
                self.associated_item_def_ids(trait_ref.def_id).is_empty()
            });
2496
        self.impl_polarity(def_id1) == self.impl_polarity(def_id2)
2497 2498
            && trait1_is_empty
            && trait2_is_empty
S
Sean Griffin 已提交
2499 2500
    }

2501 2502
    // Returns `ty::VariantDef` if `def` refers to a struct,
    // or variant or their constructors, panics otherwise.
2503
    pub fn expect_variant_def(self, def: Def) -> &'tcx VariantDef {
2504
        match def {
2505
            Def::Variant(did) | Def::VariantCtor(did, ..) => {
2506
                let enum_did = self.parent_def_id(did).unwrap();
2507
                self.adt_def(enum_did).variant_with_id(did)
2508
            }
2509
            Def::Struct(did) | Def::Union(did) => {
2510
                self.adt_def(did).non_enum_variant()
2511 2512 2513
            }
            Def::StructCtor(ctor_did, ..) => {
                let did = self.parent_def_id(ctor_did).expect("struct ctor has no parent");
2514
                self.adt_def(did).non_enum_variant()
2515 2516 2517 2518 2519
            }
            _ => bug!("expect_variant_def used with unexpected def {:?}", def)
        }
    }

2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533
    /// Given a `VariantDef`, returns the def-id of the `AdtDef` of which it is a part.
    pub fn adt_def_id_of_variant(self, variant_def: &'tcx VariantDef) -> DefId {
        let def_key = self.def_key(variant_def.did);
        match def_key.disambiguated_data.data {
            // for enum variants and tuple structs, the def-id of the ADT itself
            // is the *parent* of the variant
            DefPathData::EnumVariant(..) | DefPathData::StructCtor =>
                DefId { krate: variant_def.did.krate, index: def_key.parent.unwrap() },

            // otherwise, for structs and unions, they share a def-id
            _ => variant_def.did,
        }
    }

2534
    pub fn item_name(self, id: DefId) -> InternedString {
2535
        if id.index == CRATE_DEF_INDEX {
2536
            self.original_crate_name(id.krate).as_interned_str()
2537
        } else {
2538
            let def_key = self.def_key(id);
2539
            // The name of a StructCtor is that of its struct parent.
2540
            if let hir_map::DefPathData::StructCtor = def_key.disambiguated_data.data {
2541 2542 2543 2544 2545 2546 2547 2548 2549
                self.item_name(DefId {
                    krate: id.krate,
                    index: def_key.parent.unwrap()
                })
            } else {
                def_key.disambiguated_data.data.get_opt_name().unwrap_or_else(|| {
                    bug!("item_name: no name for {:?}", self.def_path(id));
                })
            }
2550 2551 2552
        }
    }

2553 2554
    /// Return the possibly-auto-generated MIR of a (DefId, Subst) pair.
    pub fn instance_mir(self, instance: ty::InstanceDef<'gcx>)
2555
                        -> &'gcx Mir<'gcx>
2556 2557
    {
        match instance {
N
Niko Matsakis 已提交
2558
            ty::InstanceDef::Item(did) => {
2559
                self.optimized_mir(did)
N
Niko Matsakis 已提交
2560 2561 2562 2563 2564
            }
            ty::InstanceDef::Intrinsic(..) |
            ty::InstanceDef::FnPtrShim(..) |
            ty::InstanceDef::Virtual(..) |
            ty::InstanceDef::ClosureOnceShim { .. } |
2565
            ty::InstanceDef::DropGlue(..) |
S
scalexm 已提交
2566
            ty::InstanceDef::CloneShim(..) => {
2567
                self.mir_shims(instance)
N
Niko Matsakis 已提交
2568
            }
2569 2570 2571
        }
    }

2572 2573
    /// Given the DefId of an item, returns its MIR, borrowed immutably.
    /// Returns None if there is no MIR for the DefId
2574 2575 2576 2577 2578
    pub fn maybe_optimized_mir(self, did: DefId) -> Option<&'gcx Mir<'gcx>> {
        if self.is_mir_available(did) {
            Some(self.optimized_mir(did))
        } else {
            None
2579 2580 2581
        }
    }

2582
    /// Get the attributes of a definition.
2583
    pub fn get_attrs(self, did: DefId) -> Attributes<'gcx> {
2584
        if let Some(id) = self.hir.as_local_node_id(did) {
2585
            Attributes::Borrowed(self.hir.attrs(id))
2586
        } else {
A
achernyak 已提交
2587
            Attributes::Owned(self.item_attrs(did))
2588
        }
2589 2590
    }

2591
    /// Determine whether an item is annotated with an attribute
2592
    pub fn has_attr(self, did: DefId, attr: &str) -> bool {
2593
        attr::contains_name(&self.get_attrs(did), attr)
2594
    }
2595

2596 2597
    /// Returns true if this is an `auto trait`.
    pub fn trait_is_auto(self, trait_def_id: DefId) -> bool {
2598
        self.trait_def(trait_def_id).has_auto_impl
2599
    }
2600

J
John Kåre Alsaker 已提交
2601 2602 2603 2604
    pub fn generator_layout(self, def_id: DefId) -> &'tcx GeneratorLayout<'tcx> {
        self.optimized_mir(def_id).generator_layout.as_ref().unwrap()
    }

2605 2606
    /// Given the def_id of an impl, return the def_id of the trait it implements.
    /// If it implements no trait, return `None`.
2607
    pub fn trait_id_of_impl(self, def_id: DefId) -> Option<DefId> {
2608
        self.impl_trait_ref(def_id).map(|tr| tr.def_id)
2609
    }
2610 2611 2612

    /// If the given def ID describes a method belonging to an impl, return the
    /// ID of the impl that the method belongs to. Otherwise, return `None`.
2613
    pub fn impl_of_method(self, def_id: DefId) -> Option<DefId> {
2614
        let item = if def_id.krate != LOCAL_CRATE {
A
achernyak 已提交
2615
            if let Some(Def::Method(_)) = self.describe_def(def_id) {
2616 2617 2618 2619 2620
                Some(self.associated_item(def_id))
            } else {
                None
            }
        } else {
2621
            self.opt_associated_item(def_id)
2622 2623 2624
        };

        match item {
2625
            Some(trait_item) => {
2626
                match trait_item.container {
2627 2628 2629
                    TraitContainer(_) => None,
                    ImplContainer(def_id) => Some(def_id),
                }
2630
            }
2631
            None => None
2632 2633 2634
        }
    }

2635 2636
    /// Looks up the span of `impl_did` if the impl is local; otherwise returns `Err`
    /// with the name of the crate containing the impl.
2637
    pub fn span_of_impl(self, impl_did: DefId) -> Result<Span, Symbol> {
2638
        if impl_did.is_local() {
2639 2640
            let node_id = self.hir.as_local_node_id(impl_did).unwrap();
            Ok(self.hir.span(node_id))
2641
        } else {
2642
            Err(self.crate_name(impl_did.krate))
2643 2644
        }
    }
J
Jeffrey Seyfried 已提交
2645

2646 2647 2648 2649 2650 2651 2652
    // Hygienically compare a use-site name (`use_name`) for a field or an associated item with its
    // supposed definition name (`def_name`). The method also needs `DefId` of the supposed
    // definition's parent/scope to perform comparison.
    pub fn hygienic_eq(self, use_name: Name, def_name: Name, def_parent_def_id: DefId) -> bool {
        self.adjust(use_name, def_parent_def_id, DUMMY_NODE_ID).0 == def_name.to_ident()
    }

J
Jeffrey Seyfried 已提交
2653 2654 2655 2656 2657 2658 2659 2660 2661
    pub fn adjust(self, name: Name, scope: DefId, block: NodeId) -> (Ident, DefId) {
        self.adjust_ident(name.to_ident(), scope, block)
    }

    pub fn adjust_ident(self, mut ident: Ident, scope: DefId, block: NodeId) -> (Ident, DefId) {
        let expansion = match scope.krate {
            LOCAL_CRATE => self.hir.definitions().expansion(scope.index),
            _ => Mark::root(),
        };
2662
        let scope = match ident.span.adjust(expansion) {
J
Jeffrey Seyfried 已提交
2663
            Some(macro_def) => self.hir.definitions().macro_def_scope(macro_def),
2664
            None if block == DUMMY_NODE_ID => DefId::local(CRATE_DEF_INDEX), // Dummy DefId
J
Jeffrey Seyfried 已提交
2665 2666 2667 2668
            None => self.hir.get_module_parent(block),
        };
        (ident, scope)
    }
2669
}
2670

2671
impl<'a, 'gcx, 'tcx> TyCtxt<'a, 'gcx, 'tcx> {
2672
    pub fn with_freevars<T, F>(self, fid: NodeId, f: F) -> T where
2673
        F: FnOnce(&[hir::Freevar]) -> T,
2674
    {
A
Alex Crichton 已提交
2675 2676
        let def_id = self.hir.local_def_id(fid);
        match self.freevars(def_id) {
2677
            None => f(&[]),
2678
            Some(d) => f(&d),
2679 2680
        }
    }
2681
}
2682 2683 2684 2685 2686 2687 2688 2689 2690

fn associated_item<'a, 'tcx>(tcx: TyCtxt<'a, 'tcx, 'tcx>, def_id: DefId)
    -> AssociatedItem
{
    let id = tcx.hir.as_local_node_id(def_id).unwrap();
    let parent_id = tcx.hir.get_parent(id);
    let parent_def_id = tcx.hir.local_def_id(parent_id);
    let parent_item = tcx.hir.expect_item(parent_id);
    match parent_item.node {
2691
        hir::ItemImpl(.., ref impl_item_refs) => {
2692
            if let Some(impl_item_ref) = impl_item_refs.iter().find(|i| i.id.node_id == id) {
2693 2694
                let assoc_item = tcx.associated_item_from_impl_item_ref(parent_def_id,
                                                                        impl_item_ref);
2695 2696
                debug_assert_eq!(assoc_item.def_id, def_id);
                return assoc_item;
2697 2698 2699 2700
            }
        }

        hir::ItemTrait(.., ref trait_item_refs) => {
2701
            if let Some(trait_item_ref) = trait_item_refs.iter().find(|i| i.id.node_id == id) {
2702 2703 2704
                let assoc_item = tcx.associated_item_from_trait_item_ref(parent_def_id,
                                                                         &parent_item.vis,
                                                                         trait_item_ref);
2705 2706
                debug_assert_eq!(assoc_item.def_id, def_id);
                return assoc_item;
2707 2708 2709
            }
        }

2710
        _ => { }
2711
    }
2712 2713 2714 2715

    span_bug!(parent_item.span,
              "unexpected parent of trait or impl item or item not found: {:?}",
              parent_item.node)
2716 2717
}

2718 2719
/// Calculates the Sized-constraint.
///
2720
/// In fact, there are only a few options for the types in the constraint:
2721 2722 2723 2724 2725 2726 2727 2728
///     - an obviously-unsized type
///     - a type parameter or projection whose Sizedness can't be known
///     - a tuple of type parameters or projections, if there are multiple
///       such.
///     - a TyError, if a type contained itself. The representability
///       check should catch this case.
fn adt_sized_constraint<'a, 'tcx>(tcx: TyCtxt<'a, 'tcx, 'tcx>,
                                  def_id: DefId)
2729
                                  -> &'tcx [Ty<'tcx>] {
2730
    let def = tcx.adt_def(def_id);
2731

2732
    let result = tcx.intern_type_list(&def.variants.iter().flat_map(|v| {
2733 2734
        v.fields.last()
    }).flat_map(|f| {
2735
        def.sized_constraint_for_ty(tcx, tcx.type_of(f.did))
2736
    }).collect::<Vec<_>>());
2737

2738
    debug!("adt_sized_constraint: {:?} => {:?}", def, result);
2739

2740
    result
2741 2742
}

2743 2744
fn associated_item_def_ids<'a, 'tcx>(tcx: TyCtxt<'a, 'tcx, 'tcx>,
                                     def_id: DefId)
2745
                                     -> Lrc<Vec<DefId>> {
2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760
    let id = tcx.hir.as_local_node_id(def_id).unwrap();
    let item = tcx.hir.expect_item(id);
    let vec: Vec<_> = match item.node {
        hir::ItemTrait(.., ref trait_item_refs) => {
            trait_item_refs.iter()
                           .map(|trait_item_ref| trait_item_ref.id)
                           .map(|id| tcx.hir.local_def_id(id.node_id))
                           .collect()
        }
        hir::ItemImpl(.., ref impl_item_refs) => {
            impl_item_refs.iter()
                          .map(|impl_item_ref| impl_item_ref.id)
                          .map(|id| tcx.hir.local_def_id(id.node_id))
                          .collect()
        }
A
Alex Burka 已提交
2761
        hir::ItemTraitAlias(..) => vec![],
2762 2763
        _ => span_bug!(item.span, "associated_item_def_ids: not impl or trait")
    };
2764
    Lrc::new(vec)
2765 2766
}

A
achernyak 已提交
2767
fn def_span<'a, 'tcx>(tcx: TyCtxt<'a, 'tcx, 'tcx>, def_id: DefId) -> Span {
A
achernyak 已提交
2768
    tcx.hir.span_if_local(def_id).unwrap()
A
achernyak 已提交
2769 2770
}

A
achernyak 已提交
2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783
/// If the given def ID describes an item belonging to a trait,
/// return the ID of the trait that the trait item belongs to.
/// Otherwise, return `None`.
fn trait_of_item<'a, 'tcx>(tcx: TyCtxt<'a, 'tcx, 'tcx>, def_id: DefId) -> Option<DefId> {
    tcx.opt_associated_item(def_id)
        .and_then(|associated_item| {
            match associated_item.container {
                TraitContainer(def_id) => Some(def_id),
                ImplContainer(_) => None
            }
        })
}

2784
/// See `ParamEnv` struct def'n for details.
2785
fn param_env<'a, 'tcx>(tcx: TyCtxt<'a, 'tcx, 'tcx>,
2786 2787
                       def_id: DefId)
                       -> ParamEnv<'tcx> {
2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804
    // Compute the bounds on Self and the type parameters.

    let bounds = tcx.predicates_of(def_id).instantiate_identity(tcx);
    let predicates = bounds.predicates;

    // Finally, we have to normalize the bounds in the environment, in
    // case they contain any associated type projections. This process
    // can yield errors if the put in illegal associated types, like
    // `<i32 as Foo>::Bar` where `i32` does not implement `Foo`. We
    // report these errors right here; this doesn't actually feel
    // right to me, because constructing the environment feels like a
    // kind of a "idempotent" action, but I'm not sure where would be
    // a better place. In practice, we construct environments for
    // every fn once during type checking, and we'll abort if there
    // are any errors at that point, so after type checking you can be
    // sure that this will succeed without errors anyway.

2805
    let unnormalized_env = ty::ParamEnv::new(tcx.intern_predicates(&predicates),
2806
                                             traits::Reveal::UserFacing);
2807 2808 2809 2810 2811 2812 2813

    let body_id = tcx.hir.as_local_node_id(def_id).map_or(DUMMY_NODE_ID, |id| {
        tcx.hir.maybe_body_owned_by(id).map_or(id, |body| body.node_id)
    });
    let cause = traits::ObligationCause::misc(tcx.def_span(def_id), body_id);
    traits::normalize_param_env_or_error(tcx, def_id, unnormalized_env, cause)
}
A
achernyak 已提交
2814

2815
fn crate_disambiguator<'a, 'tcx>(tcx: TyCtxt<'a, 'tcx, 'tcx>,
2816
                                 crate_num: CrateNum) -> CrateDisambiguator {
2817 2818 2819 2820
    assert_eq!(crate_num, LOCAL_CRATE);
    tcx.sess.local_crate_disambiguator()
}

2821 2822 2823 2824 2825 2826
fn original_crate_name<'a, 'tcx>(tcx: TyCtxt<'a, 'tcx, 'tcx>,
                                 crate_num: CrateNum) -> Symbol {
    assert_eq!(crate_num, LOCAL_CRATE);
    tcx.crate_name.clone()
}

2827 2828 2829 2830 2831 2832 2833
fn crate_hash<'a, 'tcx>(tcx: TyCtxt<'a, 'tcx, 'tcx>,
                        crate_num: CrateNum)
                        -> Svh {
    assert_eq!(crate_num, LOCAL_CRATE);
    tcx.hir.crate_hash
}

V
varkor 已提交
2834 2835 2836 2837
fn instance_def_size_estimate<'a, 'tcx>(tcx: TyCtxt<'a, 'tcx, 'tcx>,
                                        instance_def: InstanceDef<'tcx>)
                                        -> usize {
    match instance_def {
2838 2839 2840
        InstanceDef::Item(..) |
        InstanceDef::DropGlue(..) => {
            let mir = tcx.instance_mir(instance_def);
V
varkor 已提交
2841 2842
            mir.basic_blocks().iter().map(|bb| bb.statements.len()).sum()
        },
2843
        // Estimate the size of other compiler-generated shims to be 1.
V
varkor 已提交
2844 2845 2846 2847
        _ => 1
    }
}

2848
pub fn provide(providers: &mut ty::maps::Providers) {
2849
    context::provide(providers);
2850
    erase_regions::provide(providers);
2851 2852
    layout::provide(providers);
    util::provide(providers);
2853 2854
    *providers = ty::maps::Providers {
        associated_item,
2855
        associated_item_def_ids,
2856
        adt_sized_constraint,
A
achernyak 已提交
2857
        def_span,
2858
        param_env,
A
achernyak 已提交
2859
        trait_of_item,
2860
        crate_disambiguator,
2861
        original_crate_name,
2862
        crate_hash,
2863
        trait_impls_of: trait_def::trait_impls_of_provider,
V
varkor 已提交
2864
        instance_def_size_estimate,
2865 2866 2867 2868
        ..*providers
    };
}

2869 2870 2871
/// A map for the local crate mapping each type to a vector of its
/// inherent impls. This is not meant to be used outside of coherence;
/// rather, you should request the vector for a specific type via
2872 2873
/// `tcx.inherent_impls(def_id)` so as to minimize your dependencies
/// (constructing this map requires touching the entire crate).
2874 2875
#[derive(Clone, Debug)]
pub struct CrateInherentImpls {
2876
    pub inherent_impls: DefIdMap<Lrc<Vec<DefId>>>,
2877
}
A
Ariel Ben-Yehuda 已提交
2878

2879
#[derive(Clone, Copy, PartialEq, Eq, PartialOrd, Ord, RustcEncodable, RustcDecodable)]
2880 2881 2882 2883 2884 2885
pub struct SymbolName {
    // FIXME: we don't rely on interning or equality here - better have
    // this be a `&'tcx str`.
    pub name: InternedString
}

2886 2887 2888 2889
impl_stable_hash_for!(struct self::SymbolName {
    name
});

2890 2891 2892
impl SymbolName {
    pub fn new(name: &str) -> SymbolName {
        SymbolName {
2893
            name: Symbol::intern(name).as_interned_str()
2894 2895
        }
    }
2896

2897 2898 2899
    pub fn as_str(&self) -> LocalInternedString {
        self.name.as_str()
    }
2900 2901 2902 2903 2904 2905 2906
}

impl fmt::Display for SymbolName {
    fn fmt(&self, fmt: &mut fmt::Formatter) -> fmt::Result {
        fmt::Display::fmt(&self.name, fmt)
    }
}
2907 2908 2909 2910 2911 2912

impl fmt::Debug for SymbolName {
    fn fmt(&self, fmt: &mut fmt::Formatter) -> fmt::Result {
        fmt::Display::fmt(&self.name, fmt)
    }
}