pybind.cc 115.6 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
2 3 4 5 6

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

7
http://www.apache.org/licenses/LICENSE-2.0
8 9 10 11 12 13

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
L
lgone2000 已提交
14
#include <Python.h>
15

C
chengduoZH 已提交
16
#include <algorithm>
17
#include <cstdlib>
C
chengduoZH 已提交
18
#include <map>
S
sneaxiy 已提交
19
#include <memory>
C
chengduoZH 已提交
20 21 22
#include <mutex>  // NOLINT // for call_once
#include <string>
#include <unordered_map>
23
#include <unordered_set>
C
chengduoZH 已提交
24 25
#include <utility>
#include <vector>
26

27
#include "paddle/fluid/framework/custom_operator.h"
28
#include "paddle/fluid/framework/data_layout.h"
Y
Yi Wang 已提交
29 30
#include "paddle/fluid/framework/executor.h"
#include "paddle/fluid/framework/feed_fetch_method.h"
Z
Zhen Wang 已提交
31
#include "paddle/fluid/framework/feed_fetch_type.h"
S
sneaxiy 已提交
32
#include "paddle/fluid/framework/garbage_collector.h"
H
hutuxian 已提交
33
#include "paddle/fluid/framework/io/fs.h"
34
#include "paddle/fluid/framework/ir/coalesce_grad_tensor_pass.h"
35
#include "paddle/fluid/framework/ir/pass_builder.h"
36
#include "paddle/fluid/framework/load_op_lib.h"
Y
Yi Wang 已提交
37 38 39
#include "paddle/fluid/framework/lod_rank_table.h"
#include "paddle/fluid/framework/lod_tensor.h"
#include "paddle/fluid/framework/lod_tensor_array.h"
S
sneaxiy 已提交
40
#include "paddle/fluid/framework/op_info.h"
41
#include "paddle/fluid/framework/op_registry.h"
42
#include "paddle/fluid/framework/op_version_registry.h"
Y
Yu Yang 已提交
43
#include "paddle/fluid/framework/parallel_executor.h"
Y
Yi Wang 已提交
44
#include "paddle/fluid/framework/prune.h"
Y
Refine  
Yu Yang 已提交
45
#include "paddle/fluid/framework/reader.h"
H
hong 已提交
46
#include "paddle/fluid/framework/save_load_util.h"
S
sneaxiy 已提交
47
#include "paddle/fluid/framework/scope_pool.h"
Y
Yi Wang 已提交
48
#include "paddle/fluid/framework/selected_rows.h"
49
#include "paddle/fluid/framework/tensor_util.h"
50
#include "paddle/fluid/framework/trainer.h"
51
#include "paddle/fluid/framework/type_defs.h"
X
Xin Pan 已提交
52
#include "paddle/fluid/framework/version.h"
H
hong 已提交
53
#include "paddle/fluid/imperative/layer.h"
Y
Refine  
Yu Yang 已提交
54
#include "paddle/fluid/memory/allocation/allocator_strategy.h"
55
#include "paddle/fluid/memory/allocation/mmap_allocator.h"
D
dzhwinter 已提交
56
#include "paddle/fluid/operators/activation_op.h"
L
Leo Chen 已提交
57
#include "paddle/fluid/operators/common_infer_shape_functions.h"
S
sneaxiy 已提交
58
#include "paddle/fluid/operators/py_func_op.h"
59
#include "paddle/fluid/platform/cpu_helper.h"
Y
Yu Yang 已提交
60
#include "paddle/fluid/platform/cpu_info.h"
61
#include "paddle/fluid/platform/device_context.h"
62
#include "paddle/fluid/platform/dynload/dynamic_loader.h"
Y
Yi Wang 已提交
63
#include "paddle/fluid/platform/enforce.h"
64
#include "paddle/fluid/platform/init.h"
H
hutuxian 已提交
65
#include "paddle/fluid/platform/monitor.h"
Y
Yi Wang 已提交
66 67
#include "paddle/fluid/platform/place.h"
#include "paddle/fluid/platform/profiler.h"
68 69 70
#ifdef PADDLE_WITH_ASCEND
#include "paddle/fluid/pybind/ascend_wrapper_py.h"
#endif
H
hutuxian 已提交
71
#include "paddle/fluid/pybind/box_helper_py.h"
72
#include "paddle/fluid/pybind/compatible.h"
Y
Yi Wang 已提交
73
#include "paddle/fluid/pybind/const_value.h"
D
dongdaxiang 已提交
74
#include "paddle/fluid/pybind/data_set_py.h"
Y
Yi Wang 已提交
75
#include "paddle/fluid/pybind/exception.h"
D
dongdaxiang 已提交
76
#include "paddle/fluid/pybind/fleet_wrapper_py.h"
Y
yaoxuefeng 已提交
77
#include "paddle/fluid/pybind/generator_py.h"
78
#include "paddle/fluid/pybind/global_value_getter_setter.h"
79
#include "paddle/fluid/pybind/gloo_context_py.h"
80
#include "paddle/fluid/pybind/gloo_wrapper_py.h"
T
Thunderbrook 已提交
81
#include "paddle/fluid/pybind/heter_wrapper_py.h"
82
#include "paddle/fluid/pybind/imperative.h"
F
flame 已提交
83
#include "paddle/fluid/pybind/inference_api.h"
F
flame 已提交
84
#include "paddle/fluid/pybind/ir.h"
T
Thunderbrook 已提交
85
#include "paddle/fluid/pybind/ps_gpu_wrapper_py.h"
86
#include "paddle/fluid/pybind/pybind_boost_headers.h"
87

88
#if defined(PADDLE_WITH_NCCL) || defined(PADDLE_WITH_RCCL)
D
dongdaxiang 已提交
89
#include "paddle/fluid/pybind/nccl_wrapper_py.h"
W
wopeizl 已提交
90
#endif
91
#include "paddle/fluid/framework/data_type.h"
92 93
#include "paddle/fluid/pybind/protobuf.h"
#include "paddle/fluid/pybind/pybind.h"  // NOLINT
S
sneaxiy 已提交
94
#include "paddle/fluid/pybind/reader_py.h"
Y
Yi Wang 已提交
95
#include "paddle/fluid/pybind/tensor_py.h"
96
#include "paddle/fluid/string/to_string.h"
97 98
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
#if defined(PADDLE_WITH_NCCL) || defined(PADDLE_WITH_RCCL)
Y
Yi Wang 已提交
99
#include "paddle/fluid/operators/nccl/nccl_gpu_common.h"
P
peizhilin 已提交
100
#endif
101
#ifndef PADDLE_WITH_HIP
Y
Yi Wang 已提交
102
#include "paddle/fluid/platform/cuda_profiler.h"
103
#endif
Y
Yi Wang 已提交
104
#include "paddle/fluid/platform/gpu_info.h"
D
Dong Zhihong 已提交
105 106
#endif

107 108 109 110
#ifdef PADDLE_WITH_XPU
#include "paddle/fluid/platform/xpu_info.h"
#endif

Y
Yanghello 已提交
111 112 113 114
#ifdef PADDLE_WITH_CRYPTO
#include "paddle/fluid/pybind/crypto.h"
#endif

T
tangwei12 已提交
115
#if defined PADDLE_WITH_PSCORE
T
tangwei12 已提交
116 117 118
#include "paddle/fluid/pybind/fleet_py.h"
#endif

M
minqiyang 已提交
119 120
#include "pybind11/stl.h"

121
DECLARE_bool(use_mkldnn);
122

Q
Qiao Longfei 已提交
123 124
// disable auto conversion to list in Python
PYBIND11_MAKE_OPAQUE(paddle::framework::LoDTensorArray);
125 126 127
PYBIND11_MAKE_OPAQUE(paddle::framework::FetchUnmergedList);
PYBIND11_MAKE_OPAQUE(paddle::framework::FetchList);
PYBIND11_MAKE_OPAQUE(paddle::framework::FetchType);
Q
Qiao Longfei 已提交
128

129
namespace paddle {
130
namespace pybind {
131
bool IsCompiledWithCUDA() {
132 133 134 135 136 137 138 139 140
#if !defined(PADDLE_WITH_CUDA) && !defined(PADDLE_WITH_HIP)
  return false;
#else
  return true;
#endif
}

bool IsCompiledWithROCM() {
#ifndef PADDLE_WITH_HIP
Q
qijun 已提交
141 142 143 144 145 146
  return false;
#else
  return true;
#endif
}

147 148 149 150 151 152 153 154
bool IsCompiledWithXPU() {
#ifndef PADDLE_WITH_XPU
  return false;
#else
  return true;
#endif
}

155 156 157 158 159 160 161 162
bool IsCompiledWithMKLDNN() {
#ifndef PADDLE_WITH_MKLDNN
  return false;
#else
  return true;
#endif
}

163 164 165 166 167 168 169 170 171 172 173
bool SupportsBfloat16() {
#ifndef PADDLE_WITH_MKLDNN
  return false;
#else
  if (platform::MayIUse(platform::cpu_isa_t::avx512_core))
    return true;
  else
    return false;
#endif
}

174 175 176 177 178 179 180 181 182 183 184
bool SupportsBfloat16FastPerformance() {
#ifndef PADDLE_WITH_MKLDNN
  return false;
#else
  if (platform::MayIUse(platform::cpu_isa_t::avx512_bf16))
    return true;
  else
    return false;
#endif
}

185
bool IsCompiledWithBrpc() {
186
#ifndef PADDLE_WITH_DISTRIBUTE
187 188
  return false;
#endif
189 190 191 192 193 194

#ifdef PADDLE_WITH_GRPC
  return false;
#endif

  return true;
195 196
}

Y
update  
Yancey1989 已提交
197
bool IsCompiledWithDIST() {
Y
Yancey1989 已提交
198
#ifdef PADDLE_WITH_DISTRIBUTE
Y
update  
Yancey1989 已提交
199 200 201 202 203 204
  return true;
#else
  return false;
#endif
}

S
sneaxiy 已提交
205 206 207 208 209 210 211 212 213 214
template <typename PlaceType1, typename PlaceType2>
static inline bool IsSamePlace(const PlaceType1 &p1, const PlaceType2 &p2) {
  return paddle::platform::Place(p1) == paddle::platform::Place(p2);
}

template <typename PlaceType>
static inline int PlaceIndex(const PlaceType &p) {
  return static_cast<int>(paddle::platform::Place(p).which());
}

H
hong 已提交
215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236
static PyObject *GetPythonAttribute(PyObject *obj, const char *attr_name) {
  // NOTE(zjl): PyObject_GetAttrString would return nullptr when attr_name
  // is not inside obj, but it would also set the error flag of Python.
  // If the error flag is set in C++, C++ code would not raise Exception,
  // but Python would raise Exception once C++ call ends.
  // To avoid unexpected Exception raised in Python, we check whether
  // attribute exists before calling PyObject_GetAttrString.
  //
  // Caution: PyObject_GetAttrString would increase reference count of PyObject.
  // Developer should call Py_DECREF manually after the attribute is not used.
  if (PyObject_HasAttrString(obj, attr_name)) {
    return PyObject_GetAttrString(obj, attr_name);
  } else {
    return nullptr;
  }
}

template <typename T>
static T PyObjectCast(PyObject *obj) {
  try {
    return py::cast<T>(py::handle(obj));
  } catch (py::cast_error &) {
237 238 239
    PADDLE_THROW(platform::errors::InvalidArgument(
        "Python object is not type of %s, the real type is %s",
        typeid(T).name(), obj->ob_type->tp_name));
H
hong 已提交
240 241 242 243 244 245 246 247 248 249 250 251 252
  }
}

using PyNameVarBaseMap = std::unordered_map<std::string, py::handle>;

static std::vector<std::shared_ptr<imperative::VarBase>> GetVarBaseList(
    const PyNameVarBaseMap &state_dict) {
  std::vector<std::shared_ptr<imperative::VarBase>> vec_res;
  vec_res.reserve(state_dict.size());

  for (auto &para : state_dict) {
    PyObject *py_obj = para.second.ptr();
    if (!py_obj || py_obj == Py_None) {
253 254
      PADDLE_THROW(platform::errors::InvalidArgument(
          "The parameter [%s] to save is None", para.first));
H
hong 已提交
255 256
    }
    vec_res.emplace_back(
257
        PyObjectCast<std::shared_ptr<imperative::VarBase>>(py_obj));
H
hong 已提交
258 259 260 261 262 263 264 265 266 267 268 269
  }

  return vec_res;
}

static std::vector<std::string> inline GetNameList(
    const py::handle &py_handle) {
  std::vector<std::string> vec_res;

  PyObject *py_obj = py_handle.ptr();  // get underlying PyObject
  // Python None is not nullptr in C++!
  if (!py_obj || py_obj == Py_None) {
270 271
    PADDLE_THROW(platform::errors::InvalidArgument(
        "The parameter list to save is None"));
H
hong 已提交
272 273 274 275 276 277 278 279 280 281 282 283
  }

  if (PyList_Check(py_obj)) {
    size_t len = PyList_GET_SIZE(py_obj);

    vec_res.reserve(len);

    const char *kNameField = "name";

    for (size_t i = 0; i < len; ++i) {
      PyObject *py_name =
          PyObject_GetAttrString(PyList_GET_ITEM(py_obj, i), kNameField);
284 285 286
      PADDLE_ENFORCE_NOT_NULL(py_name,
                              platform::errors::InvalidArgument(
                                  "The name of parameter to save is None"));
H
hong 已提交
287 288 289 290
      vec_res.emplace_back(PyObjectCast<std::string>(py_name));
      Py_DECREF(py_name);
    }
  } else {
291 292
    PADDLE_THROW(platform::errors::InvalidArgument(
        "The parameters to save is not a list"));
H
hong 已提交
293 294 295 296
  }
  return vec_res;
}

297 298 299 300 301 302 303 304
static void inline CreateVariableIfNotExit(
    const py::handle &py_handle, const framework::Scope &scope,
    const framework::Executor *exe = nullptr) {
  std::vector<std::string> vec_res;

  PyObject *py_obj = py_handle.ptr();  // get underlying PyObject
  // Python None is not nullptr in C++!
  if (!py_obj || py_obj == Py_None) {
305 306
    PADDLE_THROW(
        platform::errors::InvalidArgument("The parameter list to set is None"));
307 308 309 310 311 312 313 314 315 316 317 318 319
  }

  if (PyList_Check(py_obj)) {
    size_t len = PyList_GET_SIZE(py_obj);

    vec_res.reserve(len);

    const char *kNameField = "name";
    const char *kVarDescField = "desc";

    for (size_t i = 0; i < len; ++i) {
      PyObject *py_name =
          PyObject_GetAttrString(PyList_GET_ITEM(py_obj, i), kNameField);
320 321 322
      PADDLE_ENFORCE_NOT_NULL(py_name,
                              platform::errors::InvalidArgument(
                                  "The name of parameter to set is None"));
323 324 325 326 327
      auto para_name = PyObjectCast<std::string>(py_name);
      Py_DECREF(py_name);

      auto var = scope.FindVar(para_name);
      if (var == nullptr) {
328 329 330 331 332
        PADDLE_ENFORCE_NOT_NULL(exe,
                                platform::errors::InvalidArgument(
                                    "Parameter not Initialized, "
                                    "Please set argument [executor] not None "
                                    "or run startup program first"));
333 334
        PyObject *py_var_desc =
            PyObject_GetAttrString(PyList_GET_ITEM(py_obj, i), kVarDescField);
335 336 337
        PADDLE_ENFORCE_NOT_NULL(
            py_var_desc, platform::errors::InvalidArgument(
                             "The var_desc of parameter to set is None"));
338 339 340 341 342 343 344 345 346
        auto var_desc = PyObjectCast<framework::VarDesc>(py_var_desc);
        Py_DECREF(py_var_desc);
        var = const_cast<framework::Scope *>(&scope)->Var(para_name);
        auto *tensor_temp = var->GetMutable<framework::LoDTensor>();
        tensor_temp->Resize(framework::make_ddim(var_desc.GetShape()));
        tensor_temp->mutable_data(exe->GetPlace(), var_desc.GetDataType());
      }
    }
  } else {
347 348
    PADDLE_THROW(platform::errors::InvalidArgument(
        "The parameters to set is not a list"));
349 350 351 352 353
  }

  return;
}

354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377
static void AssertStaticGraphAndDygraphGradMakerNoDiff() {
  std::set<std::string> ops;
  for (auto &pair : framework::OpInfoMap::Instance().map()) {
    bool has_static_grad_maker = (pair.second.grad_op_maker_ != nullptr);
    bool has_dygraph_grad_maker =
        (pair.second.dygraph_grad_op_maker_ != nullptr);
    if (has_static_grad_maker ^ has_dygraph_grad_maker) {
      bool has_kernel =
          (framework::OperatorWithKernel::AllOpKernels().count(pair.first) > 0);
      if (has_kernel) {
        ops.insert(pair.first);
      } else {
        VLOG(5) << pair.first << " has no kernels, skip";
      }
    }
  }
  PADDLE_ENFORCE_EQ(ops.empty(), true,
                    platform::errors::Unimplemented(
                        "OperatorWithKernel [%s] have only static graph grad "
                        "maker or have only dygraph grad maker, which is not "
                        "allowed",
                        string::join_strings(ops, ',')));
}

378 379 380 381 382 383
#ifdef PADDLE_WITH_AVX
PYBIND11_MODULE(core_avx, m) {
#else
PYBIND11_MODULE(core_noavx, m) {
#endif

Y
Yu Yang 已提交
384 385 386
  // Not used, just make sure cpu_info.cc is linked.
  paddle::platform::CpuTotalPhysicalMemory();

Y
Refine  
Yu Yang 已提交
387
  paddle::memory::allocation::UseAllocatorStrategyGFlag();
S
sneaxiy 已提交
388

389 390
  AssertStaticGraphAndDygraphGradMakerNoDiff();

391
  m.doc() = "C++ core of PaddlePaddle";
392

393 394 395 396
  // using framework in this function. Since it is inside a function, it will
  // not cause namespace pollution.
  using namespace paddle::framework;  // NOLINT

397
  BindException(&m);
Y
Yu Yang 已提交
398

399 400
  m.def("set_num_threads", &platform::SetNumThreads);

401
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
402 403 404
  m.def("cudnn_version", &platform::CudnnVersion);
#endif

6
633WHU 已提交
405 406 407 408 409
  m.def("from_dlpack", [](py::capsule *dltensor) {
    DLManagedTensor *dmt = reinterpret_cast<DLManagedTensor *>(
        PyCapsule_GetPointer(dltensor->ptr(), "dltensor"));
    PyCapsule_SetName(dltensor->ptr(), "used_dltensor");
    DLTensor dl = dmt->dl_tensor;
410
    framework::Tensor tensor;
6
633WHU 已提交
411 412 413 414

    if (dl.ctx.device_type == kDLCPU) {
      paddle::framework::TensorFromDLPack(dl, &tensor);
    }
415
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
6
633WHU 已提交
416 417 418 419 420 421 422
    if (dl.ctx.device_type == kDLGPU) {
      paddle::framework::TensorFromDLPack(dl, &tensor);
    }
#endif
    return tensor;
  });

H
hong 已提交
423 424 425 426 427 428 429 430 431
  m.def("_save_static_dict",
        [](const std::string &str_file_name, const py::handle &vec_var_list,
           const Scope &scope) {
          std::vector<std::string> vec_name_list = GetNameList(vec_var_list);
          SaveStaticNameListToDisk(str_file_name, vec_name_list, scope);
        });

  m.def("_load_static_dict",
        [](const std::string &str_file_name, const py::handle &vec_var_list,
432
           const Scope &scope, const Executor *executor) {
H
hong 已提交
433
          std::vector<std::string> vec_name_list = GetNameList(vec_var_list);
434
          CreateVariableIfNotExit(vec_var_list, scope, executor);
H
hong 已提交
435 436 437
          LoadStaticNameListFromDisk(str_file_name, vec_name_list, scope);
        });

438 439 440 441 442 443
  m.def("_create_loaded_parameter",
        [](const py::handle &vec_var_list, const Scope &scope,
           const Executor *executor) {
          CreateVariableIfNotExit(vec_var_list, scope, executor);
        });

H
hong 已提交
444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462
  m.def("_save_dygraph_dict", [](const std::string &str_file_name,
                                 const PyNameVarBaseMap &state_dict) {
    auto vec_var_base_list = GetVarBaseList(state_dict);

    SaveDygraphVarBaseListToDisk(str_file_name, vec_var_base_list);
  });

  m.def("_load_dygraph_dict", [](const std::string &str_file_name) {
    auto load_tensor = LoadDygraphVarBaseListFromDisk(str_file_name);

    std::unordered_map<std::string, std::shared_ptr<imperative::VarBase>>
        map_output;

    for (size_t i = 0; i < load_tensor.size(); ++i) {
      map_output.emplace(load_tensor[i]->Name(), load_tensor[i]);
    }

    return map_output;
  });
6
633WHU 已提交
463

464 465 466 467 468 469
  m.def("save_op_version_info", [](framework::ProgramDesc &desc) {
    framework::compatible::pb::OpVersionMap pb_vmap{desc.OpVersionMap()};
    framework::compatible::SaveOpVersions(
        framework::compatible::OpVersionRegistrar::GetInstance()
            .GetVersionMap(),
        &pb_vmap);
470 471
  });

472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496
  m.def("set_printoptions", [](const py::kwargs &kwargs) {
    auto &print_opt = framework::PrintOptions::Instance();
    if (kwargs.contains("precision")) {
      print_opt.precision = kwargs["precision"].cast<int>();
    }
    if (kwargs.contains("threshold")) {
      print_opt.threshold = kwargs["threshold"].cast<int>();
    }
    if (kwargs.contains("edgeitems")) {
      print_opt.edgeitems = kwargs["edgeitems"].cast<int>();
    }
    if (kwargs.contains("linewidth")) {
      print_opt.linewidth = kwargs["linewidth"].cast<int>();
    }
    if (kwargs.contains("sci_mode")) {
      print_opt.sci_mode = kwargs["sci_mode"].cast<bool>();
    }

    VLOG(4) << "Set printoptions: precision=" << print_opt.precision
            << ", threshold=" << print_opt.threshold
            << ", edgeitems=" << print_opt.edgeitems
            << ", linewidth=" << print_opt.linewidth
            << ", sci_mode=" << print_opt.sci_mode;
  });

L
Leo Chen 已提交
497 498 499 500 501 502
  m.def("broadcast_shape", [](const std::vector<int64_t> &x_dim,
                              const std::vector<int64_t> &y_dim) {
    return vectorize(operators::details::BroadcastTwoDims(
        make_ddim(x_dim), make_ddim(y_dim), -1));
  });

S
sneaxiy 已提交
503
  m.def(
S
sneaxiy 已提交
504
      "_append_python_callable_object_and_return_id",
S
sneaxiy 已提交
505 506 507 508
      [](py::object py_obj) -> size_t {
        return paddle::operators::AppendPythonCallableObjectAndReturnId(py_obj);
      });

S
sneaxiy 已提交
509 510 511
  m.def("_get_use_default_grad_op_desc_maker_ops",
        [] { return OpInfoMap::Instance().GetUseDefaultGradOpDescMakerOps(); });

512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527
  m.def("_get_all_register_op_kernels", [] {
    auto &all_kernels = paddle::framework::OperatorWithKernel::AllOpKernels();
    std::unordered_map<std::string, std::vector<std::string>> all_kernels_info;
    for (auto &kernel_pair : all_kernels) {
      auto op_type = kernel_pair.first;
      std::vector<std::string> kernel_types;
      for (auto &info_pair : kernel_pair.second) {
        paddle::framework::OpKernelType kernel_type = info_pair.first;
        kernel_types.push_back(
            paddle::framework::KernelTypeToString(kernel_type));
      }
      all_kernels_info.emplace(op_type, kernel_types);
    }
    return all_kernels_info;
  });

S
sneaxiy 已提交
528 529 530
  // NOTE(zjl): ctest would load environment variables at the beginning even
  // though we have not `import paddle.fluid as fluid`. So we add this API
  // to enable eager deletion mode in unittest.
S
sneaxiy 已提交
531
  m.def("_set_eager_deletion_mode", &paddle::framework::SetEagerDeletionMode);
S
sneaxiy 已提交
532

533
  m.def("_set_fuse_parameter_group_size",
534
        &paddle::framework::ir::SetFuseParameterGroupsSize);
535
  m.def("_set_fuse_parameter_memory_size",
536
        &paddle::framework::ir::SetFuseParameterMemorySize);
537

S
sneaxiy 已提交
538 539 540
  m.add_object("_cleanup",
               py::capsule([]() { ScopePool::Instance().Clear(); }));

541 542
  m.def("_set_paddle_lib_path", &paddle::platform::dynload::SetPaddleLibPath);

543 544 545
  m.def("_promote_types_if_complex_exists",
        &paddle::framework::PromoteTypesIfComplexExists);

546
  BindImperative(&m);
547

548 549 550
  py::class_<framework::Tensor>(m, "Tensor", py::buffer_protocol())
      .def("__array__",
           [](framework::Tensor &self) { return TensorToPyArray(self); })
S
sneaxiy 已提交
551
      .def("_is_initialized",
552
           [](const framework::Tensor &self) { return self.IsInitialized(); })
Y
yuyang18 已提交
553
      .def("_get_dims",
554
           [](const framework::Tensor &self) { return vectorize(self.dims()); })
Y
yuyang18 已提交
555
      .def("_set_dims",
556
           [](framework::Tensor &self, const std::vector<int64_t> &dim) {
Y
Yu Yang 已提交
557
             self.Resize(make_ddim(dim));
Y
Yu Yang 已提交
558
           })
Y
yuyang18 已提交
559
      .def("_set_layout",
560
           [](framework::Tensor &self, const std::string &layout) {
D
dzhwinter 已提交
561 562
             self.set_layout(StringToDataLayout(layout));
           })
Y
yuyang18 已提交
563
      .def("_alloc_float",
564
           [](framework::Tensor &self, paddle::platform::CUDAPlace &place) {
Q
qijun 已提交
565
             self.mutable_data<float>(place);
Y
Yu Yang 已提交
566
           })
567
      .def("_alloc_float",
568
           [](framework::Tensor &self, paddle::platform::XPUPlace &place) {
569 570
             self.mutable_data<float>(place);
           })
Y
yuyang18 已提交
571
      .def("_alloc_float",
572
           [](framework::Tensor &self, paddle::platform::CPUPlace &place) {
Q
qijun 已提交
573
             self.mutable_data<float>(place);
Y
Yu Yang 已提交
574
           })
575
      .def("_alloc_double",
576
           [](framework::Tensor &self, paddle::platform::CPUPlace &place) {
577 578
             self.mutable_data<double>(place);
           })
Y
yuyang18 已提交
579
      .def("_alloc_int",
580
           [](framework::Tensor &self, paddle::platform::CPUPlace &place) {
Q
qijun 已提交
581
             self.mutable_data<int>(place);
Y
Yu Yang 已提交
582
           })
583
      .def("_alloc_int",
584
           [](framework::Tensor &self, paddle::platform::XPUPlace &place) {
585 586
             self.mutable_data<int>(place);
           })
Y
yuyang18 已提交
587
      .def("_alloc_int",
588
           [](framework::Tensor &self, paddle::platform::CUDAPlace &place) {
Q
qijun 已提交
589
             self.mutable_data<int>(place);
Q
qijun 已提交
590
           })
Y
yuyang18 已提交
591
      .def("_alloc_int",
592 593
           [](framework::Tensor &self,
              paddle::platform::CUDAPinnedPlace &place) {
C
chengduoZH 已提交
594 595
             self.mutable_data<int>(place);
           })
Y
yuyang18 已提交
596
      .def("_alloc_float",
597 598
           [](framework::Tensor &self,
              paddle::platform::CUDAPinnedPlace &place) {
C
chengduoZH 已提交
599 600
             self.mutable_data<float>(place);
           })
601
      .def("_mutable_data",
602
           [](framework::Tensor &self, paddle::platform::CPUPlace &place,
603 604 605
              paddle::framework::proto::VarType::Type type) {
             return reinterpret_cast<uintptr_t>(self.mutable_data(place, type));
           })
606
      .def("_mutable_data",
607
           [](framework::Tensor &self, paddle::platform::XPUPlace &place,
608 609 610
              paddle::framework::proto::VarType::Type type) {
             return reinterpret_cast<uintptr_t>(self.mutable_data(place, type));
           })
611
      .def("_mutable_data",
612
           [](framework::Tensor &self, paddle::platform::CUDAPlace &place,
613 614 615 616
              paddle::framework::proto::VarType::Type type) {
             return reinterpret_cast<uintptr_t>(self.mutable_data(place, type));
           })
      .def("_mutable_data",
617
           [](framework::Tensor &self, paddle::platform::CUDAPinnedPlace &place,
618 619 620
              paddle::framework::proto::VarType::Type type) {
             return reinterpret_cast<uintptr_t>(self.mutable_data(place, type));
           })
621
      .def("_clear", &framework::Tensor::clear)
622
      .def("set", SetTensorFromPyArray<paddle::platform::CPUPlace>,
623
           py::arg("array"), py::arg("place"), py::arg("zero_copy") = false)
624 625
      .def("set", SetTensorFromPyArray<paddle::platform::XPUPlace>,
           py::arg("array"), py::arg("place"), py::arg("zero_copy") = false)
626
      .def("set", SetTensorFromPyArray<paddle::platform::CUDAPlace>,
627
           py::arg("array"), py::arg("place"), py::arg("zero_copy") = false)
628
      .def("set", SetTensorFromPyArray<paddle::platform::CUDAPinnedPlace>,
629 630
           py::arg("array"), py::arg("place"), py::arg("zero_copy") = false,
           R"DOC(
L
Leo Chen 已提交
631 632 633 634
        Set the data of LoDTensor on place with given numpy array.
        
        Args:
          lod (numpy.ndarray): The data to set.
635
          place (CPUPlace|CUDAPlace|XPUPlace|CUDAPinnedPlace): The place where the 
L
Leo Chen 已提交
636
          LoDTensor is to be set.
637 638
          zero_copy (bool, optional): Whether to share memory with the input numpy array.
          This parameter only works with CPUPlace. Default: False.
L
Leo Chen 已提交
639 640 641 642 643 644 645 646 647 648 649 650 651

        Returns:
            None.

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid
                import numpy as np

                t = fluid.LoDTensor()
                t.set(np.ndarray([5, 30]), fluid.CPUPlace())
          )DOC")
652

653 654 655
      .def("shape",
           [](framework::Tensor &self) { return vectorize(self.dims()); },
           R"DOC(
L
Leo Chen 已提交
656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671
           Return the shape of LoDTensor.

           Returns:
               list[int]: The shape of LoDTensor.


           Examples:
               .. code-block:: python

                  import paddle.fluid as fluid
                  import numpy as np

                  t = fluid.LoDTensor()
                  t.set(np.ndarray([5, 30]), fluid.CPUPlace())
                  print(t.shape())  # [5, 30]
           )DOC")
6
633WHU 已提交
672
      .def("_to_dlpack",
673
           [](framework::Tensor &self) {
6
633WHU 已提交
674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693
             DLPackTensor dlpack_tensor(self, 1);
             DLManagedTensor *dmt =
                 dlpack_tensor.ToCudfCompatibleDLManagedTensor();
             auto capsule = py::capsule(
                 static_cast<void *>(dmt), "dltensor", [](PyObject *ptr) {
                   if (ptr) {
                     auto dltensor = new DLManagedTensor;
                     try {
                       dltensor = reinterpret_cast<DLManagedTensor *>(
                           PyCapsule_GetPointer(ptr, "used_dltensor"));
                       return;
                     } catch (...) {
                       dltensor = reinterpret_cast<DLManagedTensor *>(
                           PyCapsule_GetPointer(ptr, "dltensor"));
                     }
                     dltensor->deleter(dltensor);
                   }
                 });
             return capsule;
           })
Y
yuyang18 已提交
694 695 696 697
      .def("_set_float_element", TensorSetElement<float>)
      .def("_get_float_element", TensorGetElement<float>)
      .def("_set_double_element", TensorSetElement<double>)
      .def("_get_double_element", TensorGetElement<double>)
698 699
      .def("_place", [](framework::Tensor &self) { return self.place(); })
      .def("_dtype", [](framework::Tensor &self) { return self.type(); })
700
      .def("_layout",
701 702 703 704
           [](framework::Tensor &self) {
             return DataLayoutToString(self.layout());
           })
      .def("_share_data_with", &framework::Tensor::ShareDataWith)
705
      .def("__getitem__", PySliceTensor, py::return_value_policy::reference)
706
      .def("__str__", [](const framework::Tensor &self) {
707 708 709 710
        std::stringstream ostr;
        ostr << self;
        return ostr.str();
      });
Y
Yu Yang 已提交
711

L
Leo Chen 已提交
712
  // TODO(cql): add reference: en_user_guide_lod_tensor
713
  py::class_<LoDTensor, framework::Tensor>(m, "LoDTensor", R"DOC(
L
Leo Chen 已提交
714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787
    LoDTensor is a Tensor with optional LoD (Level of Details) information, 
    it can be used for variable-length sequences, 
    see :ref:`user_guide_lod_tensor` for details.

    LoDTensor can be converted to numpy array using :code:`numpy.array(lod_tensor)`.

    You can skip the following explanation if you don't need to know details 
    of LoDTensor.

    The following two examples show how to use LODtensor to represent 
    variable-length sequences.
    
    Example 1:
    
    Suppose x is a LoDTensor representing a variable-length sequence. 
    It contains two logical subsequences, the length of first logical sequence 
    is 2 (e.g., number of samples is 2), the length of second logical sequence 
    is 3, and the total length is 5. The data of the first logical sequence is 
    [1, 2], [3, 4], and the data of the second logical sequence is [5, 6], 
    [7, 8], [9, 10]. The data dimension of each sample is 2. So, the final 
    shape of the LoDTensor is [5, 2], of which 5 is the total length and 2 is 
    the dimension of each sample.
    
    Logically, we can represent the variable-length sequence in two ways: one 
    is in the form of recursive sequence lengths, that is, 
    x.recursive_sequence_lengths=[[2, 3]]; the other is in the form of offsets, 
    that is, x.lod=[[0, 2, 2+3]]. These two representations are equivalent, and 
    you can set and retrieve recursive_sequence_lengths or LoD through the 
    corresponding interfaces of LoDTensor introduced later.

    Actually, in order to access sequence faster, Paddle uses offset to store 
    different lengths of sequences. 
    Therefore, the operations on recursive_sequence_lengths will be converted 
    to the operations on LoD eventually.
    
    .. code-block:: python

      y.data = [[1, 2], [3, 4],
                [5, 6], [7, 8],
                [9, 10], [11, 12], [13, 14]]

      y.shape = [2+2+3, 2]

      y.recursive_sequence_lengths = [[2, 1], [2, 2, 3]]

      y.lod = [[0, 2, 3], [0, 2, 4, 7]]

    Example 2:

    LoD may have more than one level (for example, a paragraph may have more 
    than one sentence and a sentence may have more than one word). Suppose y 
    is a LoDTensor and its lod_level is 2. 
    From level = 0, there are two logical sequences, the length of which is 
    2 and 1, respectively, indicating that the first logical sequence contains 
    two sub-sequences and the second logical sequence contains one sub-sequence. 
    From level = 1, the lengths of two sub-sequences contained by the first 
    logical sequence is 2 and 2, and the length of sub-sequence contained by 
    the second logical sequence is 3.
      
    Therefore, the LoDTensor is represented in the form of recursive sequence 
    lengths as y.recursive_sequence_lengths=[[2,1], [2,2,3]]; and equally, in 
    the form of offset, it is represented as y.lod=[[0,2,3], [0,2,4,7]].

    .. code-block:: python

      y.data = [[1, 2], [3, 4],
                [5, 6], [7, 8],
                [9, 10], [11, 12], [13, 14]]

      y.shape = [2+2+3, 2]

      y.recursive_sequence_lengths = [[2, 1], [2, 2, 3]]

      y.lod = [[0, 2, 3], [0, 2, 4, 7]]
Z
Zeng Jinle 已提交
788 789 790 791 792 793 794

    Examples:
        .. code-block:: python

          import paddle.fluid as fluid

          t = fluid.LoDTensor()
X
Xin Pan 已提交
795 796

        )DOC")
797 798
      .def("__array__",
           [](framework::Tensor &self) { return TensorToPyArray(self); })
799 800 801 802 803 804 805 806 807
      .def("__init__",
           [](LoDTensor &instance, const std::vector<std::vector<size_t>>
                                       &recursive_sequence_lengths) {
             LoD new_lod;
             new_lod.reserve(recursive_sequence_lengths.size());
             std::copy(recursive_sequence_lengths.begin(),
                       recursive_sequence_lengths.end(),
                       std::back_inserter(new_lod));
             LoD new_offset_lod = ConvertToOffsetBasedLoD(new_lod);
C
chengduo 已提交
808 809
             PADDLE_ENFORCE_EQ(
                 CheckLoD(new_offset_lod, -1), true,
810 811 812 813
                 platform::errors::InvalidArgument(
                     "The provided recursive_sequence_lengths info is invalid, "
                     "the LoD converted by recursive_sequence_lengths is %s",
                     new_lod));
814 815
             new (&instance) LoDTensor(new_offset_lod);
           })
Y
Yu Yang 已提交
816
      .def("__init__", [](LoDTensor &instance) { new (&instance) LoDTensor(); })
G
gongweibao 已提交
817
      // We implement offset based LOD in C++ while we use length based with
H
hong 已提交
818 819
      // Python API. So we changed set_lod to set_recursive_sequence_lengths
      // to
G
gongweibao 已提交
820 821 822
      // avoid misuse.
      // The discussion is here:
      // https://github.com/PaddlePaddle/Paddle/issues/10855
D
dangqingqing 已提交
823
      .def("set_lod",
824
           [](LoDTensor &self, const std::vector<std::vector<size_t>> &lod) {
825
             // the input lod is offset-based level-of-detail info
Y
Yu Yang 已提交
826
             LoD new_lod;
827 828
             new_lod.reserve(lod.size());
             std::copy(lod.begin(), lod.end(), std::back_inserter(new_lod));
C
chengduo 已提交
829 830
             PADDLE_ENFORCE_EQ(
                 CheckLoD(new_lod, vectorize(self.dims()).front()), true,
831 832
                 platform::errors::InvalidArgument(
                     "The provided LoD is invalid, the LoD is %s", new_lod));
833
             self.set_lod(new_lod);
S
sneaxiy 已提交
834 835 836 837 838
           },
           py::arg("lod"), R"DOC(
           Set LoD of the LoDTensor.

           Args:
L
Leo Chen 已提交
839 840 841 842
               lod (list[list[int]]): The lod to set.

           Returns:
                None.
Z
Zeng Jinle 已提交
843 844 845 846 847 848 849 850 851 852

           Examples:
               .. code-block:: python

                 import paddle.fluid as fluid
                 import numpy as np

                 t = fluid.LoDTensor()
                 t.set(np.ndarray([5, 30]), fluid.CPUPlace())
                 t.set_lod([[0, 2, 5]])
L
Leo Chen 已提交
853
                 print(t.lod()) # [[0, 2, 5]]
S
sneaxiy 已提交
854
           )DOC")
855 856 857 858 859 860 861 862 863 864 865
      .def("set_recursive_sequence_lengths",
           [](LoDTensor &self, const std::vector<std::vector<size_t>>
                                   &recursive_sequence_lengths) {
             // the input recursive_sequence_lengths is length-based
             // level-of-detail info
             LoD new_lod;
             new_lod.reserve(recursive_sequence_lengths.size());
             std::copy(recursive_sequence_lengths.begin(),
                       recursive_sequence_lengths.end(),
                       std::back_inserter(new_lod));
             LoD new_offset_lod = ConvertToOffsetBasedLoD(new_lod);
C
chengduo 已提交
866 867
             PADDLE_ENFORCE_EQ(
                 CheckLoD(new_offset_lod, vectorize(self.dims()).front()), true,
868 869 870 871 872
                 platform::errors::InvalidArgument(
                     "The provided recursive_sequence_lengths info is invalid, "
                     "the LoD converted by recursive_sequence_lengths is "
                     "%s",
                     new_lod));
873
             self.set_lod(new_offset_lod);
S
sneaxiy 已提交
874 875
           },
           py::arg("recursive_sequence_lengths"), R"DOC(
L
Leo Chen 已提交
876
           Set LoD of the LoDTensor according to recursive sequence lengths.
S
sneaxiy 已提交
877

L
Leo Chen 已提交
878
           For example, if recursive_sequence_lengths=[[2, 3]], which means
879
           there are two sequences with length 2 and 3 respectively, the
L
Leo Chen 已提交
880
           corresponding lod would be [[0, 2, 2+3]], i.e., [[0, 2, 5]].
S
sneaxiy 已提交
881 882

           Args:
L
Leo Chen 已提交
883 884 885 886
                recursive_sequence_lengths (list[list[int]]): The recursive sequence lengths.
           
           Returns:
                None.
Z
Zeng Jinle 已提交
887 888 889 890 891 892 893 894 895 896

           Examples:
               .. code-block:: python

                 import paddle.fluid as fluid
                 import numpy as np

                 t = fluid.LoDTensor()
                 t.set(np.ndarray([5, 30]), fluid.CPUPlace())
                 t.set_recursive_sequence_lengths([[2, 3]])
L
Leo Chen 已提交
897 898
                 print(t.recursive_sequence_length())  # [[2, 3]]
                 print(t.lod())  # [[0, 2, 5]]
S
sneaxiy 已提交
899
           )DOC")
900 901 902 903 904 905 906 907
      .def("lod",
           [](LoDTensor &self) -> std::vector<std::vector<size_t>> {
             // output the offset-based lod info
             LoD lod = self.lod();
             std::vector<std::vector<size_t>> new_lod;
             new_lod.reserve(lod.size());
             std::copy(lod.begin(), lod.end(), std::back_inserter(new_lod));
             return new_lod;
S
sneaxiy 已提交
908 909 910 911 912
           },
           R"DOC(
           Return the LoD of the LoDTensor.

           Returns:
L
Leo Chen 已提交
913 914
               list[list[int]]: The lod of the LoDTensor.
           
Z
Zeng Jinle 已提交
915 916 917 918 919 920 921 922 923 924
           Examples:
               .. code-block:: python

                 import paddle.fluid as fluid
                 import numpy as np

                 t = fluid.LoDTensor()
                 t.set(np.ndarray([5, 30]), fluid.CPUPlace())
                 t.set_lod([[0, 2, 5]])
                 print(t.lod()) # [[0, 2, 5]]
S
sneaxiy 已提交
925
           )DOC")
G
gongweibao 已提交
926
      // Set above comments of set_lod.
927 928 929 930 931 932 933 934
      .def("recursive_sequence_lengths",
           [](LoDTensor &self) -> std::vector<std::vector<size_t>> {
             // output the length-based lod info
             LoD lod = ConvertToLengthBasedLoD(self.lod());
             std::vector<std::vector<size_t>> new_lod;
             new_lod.reserve(lod.size());
             std::copy(lod.begin(), lod.end(), std::back_inserter(new_lod));
             return new_lod;
S
sneaxiy 已提交
935 936
           },
           R"DOC(
L
Leo Chen 已提交
937 938
           Return the recursive sequence lengths corresponding to of the LodD 
           of the LoDTensor.
S
sneaxiy 已提交
939 940

           Returns:
L
Leo Chen 已提交
941
                list[list[int]]: The recursive sequence lengths.
Z
Zeng Jinle 已提交
942 943 944 945 946 947 948 949 950 951 952

           Examples:
               .. code-block:: python

                 import paddle.fluid as fluid
                 import numpy as np

                 t = fluid.LoDTensor()
                 t.set(np.ndarray([5, 30]), fluid.CPUPlace())
                 t.set_recursive_sequence_lengths([[2, 3]])
                 print(t.recursive_sequence_lengths()) # [[2, 3]]
S
sneaxiy 已提交
953 954 955 956 957 958 959 960
           )DOC")
      .def("has_valid_recursive_sequence_lengths",
           [](LoDTensor &self) -> bool {
             // Check that the lod info is valid and match the outermost
             // dimension of the LoDTensor data
             return CheckLoD(self.lod(), vectorize(self.dims()).front());
           },
           R"DOC(
L
Leo Chen 已提交
961
           Check whether the LoD of the LoDTensor is valid.
S
sneaxiy 已提交
962 963

           Returns:
L
Leo Chen 已提交
964
               bool: Whether the LoD is valid.
Z
Zeng Jinle 已提交
965 966 967 968 969 970 971 972 973 974 975

           Examples:
               .. code-block:: python

                 import paddle.fluid as fluid
                 import numpy as np

                 t = fluid.LoDTensor()
                 t.set(np.ndarray([5, 30]), fluid.CPUPlace())
                 t.set_recursive_sequence_lengths([[2, 3]])
                 print(t.has_valid_recursive_sequence_lengths()) # True
W
wopeizl 已提交
976 977 978 979 980 981 982
           )DOC")
      .def("__getitem__", PySliceTensor, py::return_value_policy::reference,
           R"DOC(
           Slice the original Tensor, and remove the LoD information.

           Returns:
               out (Tensor): new Tensor(NOT LoDTensor).
983
           )DOC")
984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001
      .def("__str__",
           [](const LoDTensor &self) {
             std::stringstream ostr;
             ostr << self;
             return ostr.str();
           })
      .def("_copy", [](const LoDTensor &self, const platform::Place &place) {
        // follow fetch_op's inplementation
        LoDTensor dst;
        if (self.IsInitialized() && self.numel() > 0) {
          TensorCopySync(self, place, &dst);
        } else {
          // Not copy, if the src tensor is empty.
          dst.clear();
          dst.Resize({0});
        }
        dst.set_lod(self.lod());
        return dst;
1002
#ifdef _WIN32
1003
      });
1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053
#else
           })
      .def(py::pickle(
          [](const LoDTensor &t) {  // __getstate__
            auto holder = t.Holder();
            PADDLE_ENFORCE_EQ(
              platform::is_cpu_place(holder->place()), true,
              platform::errors::PreconditionNotMet(
                  "LoDTensor is not on CPU."
                  "Now only LoDTensor on CPU can be serialized."));
            auto* mmap_writer_allocation =
              dynamic_cast<memory::allocation::MemoryMapWriterAllocation *>(
                holder.get());
            PADDLE_ENFORCE_NOT_NULL(mmap_writer_allocation,
              platform::errors::PreconditionNotMet(
                "LoDTensor is not in shared memory."
                "Now only LoDTensor on shared memory can be serialized."));
            int type_idx = static_cast<int>(t.type());

            return py::make_tuple(mmap_writer_allocation->ipc_name(),
                                  mmap_writer_allocation->size(),
                                  type_idx, vectorize(t.dims()), t.lod());
          },
          [](py::tuple t) {  // __setstate__
            if (t.size() != 5)
              throw std::runtime_error("Invalid LoDTensor state!");

            // 1. Create a new C++ instance
            LoDTensor tensor;

            // 2. Rebuild Allocation
            const std::string &ipc_name = t[0].cast<std::string>();
            size_t size = t[1].cast<size_t>();
            auto shared_reader_holder =
              memory::allocation::RebuildMemoryMapReaderAllocation(
                ipc_name, size);

            // 3. Maintain global fd set
            VLOG(3) << "LoDTensor ipc name: " << ipc_name;
            memory::allocation::MemoryMapFdSet::Instance().Insert(ipc_name);

            // 4. Rebuild LoDTensor
            tensor.ResetHolderWithType(shared_reader_holder,
              static_cast<proto::VarType::Type>(t[2].cast<int>()));
            tensor.Resize(make_ddim(t[3].cast<std::vector<int>>()));
            tensor.set_lod(t[4].cast<framework::LoD>());

            return tensor;
          }));
#endif
D
dangqingqing 已提交
1054

Q
qijun 已提交
1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065
  py::class_<SelectedRows>(m, "SelectedRows")
      .def("__init__",
           [](SelectedRows &instance) { new (&instance) SelectedRows(); })
      .def("__init__",
           [](SelectedRows &instance, const std::vector<int64_t> rows,
              const int64_t &height) {
             new (&instance) SelectedRows(rows, height);
           })
      .def("get_tensor",
           [](SelectedRows &self) { return self.mutable_value(); },
           py::return_value_policy::reference)
1066 1067
      .def("numel",
           [](SelectedRows &self) -> int64_t { return self.value().numel(); })
Q
qijun 已提交
1068 1069
      .def("set_height", &SelectedRows::set_height)
      .def("height", &SelectedRows::height)
Q
qijun 已提交
1070 1071
      .def("set_rows",
           [](SelectedRows &self, std::vector<int64_t> rows) {
1072
#if !defined(PADDLE_WITH_CUDA) && !defined(PADDLE_WITH_HIP)
Q
qijun 已提交
1073 1074 1075 1076 1077 1078
             self.set_rows(rows);
#else
        Vector<int64_t> new_rows(rows);
        self.set_rows(new_rows);
#endif
           })
1079
      .def("sync_index", [](SelectedRows &instance) { instance.SyncIndex(); })
1080
      .def("rows", [](SelectedRows &self) {
1081 1082 1083 1084 1085
        auto rows = self.rows();
        std::vector<int64_t> new_rows;
        new_rows.reserve(rows.size());
        std::copy(rows.begin(), rows.end(), std::back_inserter(new_rows));
        return new_rows;
1086
      });
Q
qijun 已提交
1087

1088
  py::class_<Variable>(m, "Variable", R"DOC(Variable Class.
1089 1090 1091

All parameter, weight, gradient are variables in Paddle.
)DOC")
S
sneaxiy 已提交
1092
      .def(py::init<>())
1093
      .def("is_int", [](const Variable &var) { return var.IsType<int>(); })
1094
      .def("set_int",
1095 1096
           [](Variable &var, int val) -> void { *var.GetMutable<int>() = val; })
      .def("get_int", [](const Variable &var) -> int { return var.Get<int>(); })
1097 1098 1099 1100 1101 1102 1103
      .def("is_float", [](const Variable &var) { return var.IsType<float>(); })
      .def("set_float",
           [](Variable &var, float val) -> void {
             *var.GetMutable<float>() = val;
           })
      .def("get_float",
           [](const Variable &var) -> float { return var.Get<float>(); })
Y
Yu Yang 已提交
1104
      .def("get_tensor",
1105 1106
           [](Variable &self) -> LoDTensor * {
             return self.GetMutable<LoDTensor>();
D
dangqingqing 已提交
1107 1108
           },
           py::return_value_policy::reference)
1109 1110 1111 1112
      .def("get_bytes",
           [](Variable &self) {
             return py::bytes(*self.GetMutable<std::string>());
           })
Y
Yu Yang 已提交
1113 1114 1115
      .def("get_lod_rank_table",
           [](Variable &self) { return self.GetMutable<LoDRankTable>(); },
           py::return_value_policy::reference)
Q
qijun 已提交
1116 1117 1118 1119 1120
      .def("get_selected_rows",
           [](Variable &self) -> SelectedRows * {
             return self.GetMutable<SelectedRows>();
           },
           py::return_value_policy::reference)
Y
Yu Yang 已提交
1121 1122 1123
      .def("get_lod_tensor_array",
           [](Variable &self) { return self.GetMutable<LoDTensorArray>(); },
           py::return_value_policy::reference)
1124 1125 1126
      .def("get_fetch_list",
           [](Variable &self) { return self.GetMutable<FetchList>(); },
           py::return_value_policy::reference)
1127
#if defined(PADDLE_WITH_NCCL) || defined(PADDLE_WITH_RCCL)
D
Dong Zhihong 已提交
1128 1129 1130 1131 1132
      .def("get_communicator",
           [](Variable &self) -> platform::Communicator * {
             return self.GetMutable<platform::Communicator>();
           },
           py::return_value_policy::reference)
Y
Yu Yang 已提交
1133
#endif
Y
Refine  
Yu Yang 已提交
1134 1135
      .def("get_reader",
           [](Variable &self) -> framework::ReaderHolder * {
1136 1137 1138 1139
             PADDLE_ENFORCE_EQ(
                 self.IsType<framework::ReaderHolder>(), true,
                 platform::errors::InvalidArgument(
                     "The variable is not type of ReaderHolder."));
Y
Refine  
Yu Yang 已提交
1140 1141
             return self.GetMutable<framework::ReaderHolder>();
           },
1142 1143 1144 1145 1146
           py::return_value_policy::reference)
      .def("set_scope", [](Variable &self, Scope &scope) {
        auto scope_vec = self.GetMutable<std::vector<framework::Scope *>>();
        scope_vec->emplace_back(&scope);
      });
1147

S
sneaxiy 已提交
1148
  BindReader(&m);
Y
Refine  
Yu Yang 已提交
1149

S
sneaxiy 已提交
1150
  py::class_<Scope>(m, "_Scope", R"DOC(
Q
Qiao Longfei 已提交
1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163
    Scope is an association of a name to Variable. All variables belong to Scope.

    Variables in a parent scope can be retrieved from local scope.

    You need to specify a scope to run a Net, i.e., `exe.Run(&scope)`.
    One net can run in different scopes and update different variable in the
    scope.

    You can create var in a scope and get it from the scope.

    Examples:
        .. code-block:: python

1164
          import paddle.fluid as fluid
Q
Qiao Longfei 已提交
1165 1166 1167 1168 1169 1170
          # create tensor from a scope and set value to it.
          param = scope.var('Param').get_tensor()
          param_array = np.full((height, row_numel), 5.0).astype("float32")
          param.set(param_array, place)

        )DOC")
S
sneaxiy 已提交
1171 1172
      .def("_remove_from_pool",
           [](Scope &self) { ScopePool::Instance().Remove(&self); })
D
dongzhihong 已提交
1173
      .def("var",
1174
           [](Scope &self, const std::string &name) -> Variable * {
D
dongzhihong 已提交
1175
             return self.Var(name);
Y
Yu Yang 已提交
1176
           },
S
sneaxiy 已提交
1177 1178
           py::arg("name"),
           R"DOC(
1179
           Find or create variable named :code:`name` in the current scope.
S
sneaxiy 已提交
1180

1181
           If the variable named :code:`name` does not exist in the
S
sneaxiy 已提交
1182
           current scope, the variable would be created. Otherwise,
1183
           return the existing variable.
S
sneaxiy 已提交
1184 1185

           Args:
1186 1187
               name (str): the variable name.

S
sneaxiy 已提交
1188
           Returns:
1189
               out (core.Variable): the found or created variable.
S
sneaxiy 已提交
1190 1191 1192 1193
           )DOC",
           py::return_value_policy::reference)
      .def("find_var", &Scope::FindVar, py::arg("name"),
           R"DOC(
1194
           Find variable named :code:`name` in the current scope or
1195
           its parent scope. Return None if not found. 
1196

S
sneaxiy 已提交
1197 1198
           Args:
               name (str): the variable name.
1199

S
sneaxiy 已提交
1200
           Returns:
1201
               out (core.Variable|None): the found variable or None.
S
sneaxiy 已提交
1202
           )DOC",
1203
           py::return_value_policy::reference)
1204
      .def("new_scope", [](Scope &self) -> Scope * { return &self.NewScope(); },
S
sneaxiy 已提交
1205 1206 1207 1208 1209 1210
           R"DOC(
           Create a new sub-scope of the current scope.

           Returns:
               out (core._Scope): the created sub-scope.
           )DOC",
1211
           py::return_value_policy::reference)
S
sneaxiy 已提交
1212 1213 1214
      .def("drop_kids", &Scope::DropKids,
           R"DOC(
           Delete all sub-scopes of the current scope.
S
sneaxiy 已提交
1215 1216
           )DOC")
      .def("_kids", &Scope::kids);
1217

S
sneaxiy 已提交
1218 1219 1220 1221 1222 1223
  m.def("Scope",
        []() -> Scope * {
          auto *s = new Scope();
          ScopePool::Instance().Insert(std::unique_ptr<Scope>(s));
          return s;
        },
S
sneaxiy 已提交
1224 1225
        R"DOC(
        Create a new scope.
1226

S
sneaxiy 已提交
1227 1228 1229
        Returns:
            out (core._Scope): the created scope.
        )DOC",
S
sneaxiy 已提交
1230 1231
        py::return_value_policy::reference);

Y
Yu Yang 已提交
1232 1233
  //! @note: Be careful! PyBind will return std::string as an unicode, not
  //! Python str. If you want a str object, you should cast them in Python.
Y
Yu Yang 已提交
1234 1235
  m.def("get_all_op_protos", []() -> std::vector<py::bytes> {
    std::vector<py::bytes> ret_values;
1236 1237 1238 1239
    for (auto &iter : OpInfoMap::Instance().map()) {
      auto &info = iter.second;
      if (info.HasOpProtoAndChecker()) {
        std::string str;
C
chengduo 已提交
1240 1241
        PADDLE_ENFORCE_EQ(
            info.Proto().SerializeToString(&str), true,
1242 1243
            platform::errors::Fatal(
                "Serialize OpProto Error. This could be a bug of Paddle."));
1244 1245 1246
        ret_values.emplace_back(str);
      }
    }
Y
Yu Yang 已提交
1247 1248
    return ret_values;
  });
1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261
  m.def("get_op_attrs_default_value",
        [](py::bytes byte_name) -> paddle::framework::AttributeMap {
          std::string op_type = byte_name;
          paddle::framework::AttributeMap res;
          auto info = OpInfoMap::Instance().GetNullable(op_type);
          if (info != nullptr) {
            if (info->HasOpProtoAndChecker()) {
              auto op_checker = info->Checker();
              res = op_checker->GetAttrsDefaultValuesMap();
            }
          }
          return res;
        });
1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277
  m.def(
      "get_grad_op_desc", [](const OpDesc &op_desc,
                             const std::unordered_set<std::string> &no_grad_set,
                             const std::vector<BlockDesc *> &grad_sub_block) {
        std::unordered_map<std::string, std::string> grad_to_var;
        std::vector<std::unique_ptr<OpDesc>> grad_op_descs =
            framework::OpInfoMap::Instance()
                .Get(op_desc.Type())
                .GradOpMaker()(op_desc, no_grad_set, &grad_to_var,
                               grad_sub_block);
        std::vector<OpDesc *> grad_op_desc_ptrs(grad_op_descs.size());
        std::transform(grad_op_descs.begin(), grad_op_descs.end(),
                       grad_op_desc_ptrs.begin(),
                       [](std::unique_ptr<OpDesc> &p) { return p.release(); });
        return std::make_pair(grad_op_desc_ptrs, grad_to_var);
      });
1278 1279 1280
  m.def("has_grad_op_maker", [](const std::string op_type) {
    return framework::OpInfoMap::Instance().Get(op_type).HasGradOpMaker();
  });
1281 1282 1283 1284 1285
  m.def("has_non_empty_grad_op_maker", [](const std::string op_type) {
    return framework::OpInfoMap::Instance()
        .Get(op_type)
        .HasNonEmptyGradOpMaker();
  });
1286 1287 1288
  m.def("has_infer_inplace", [](const std::string op_type) {
    return framework::OpInfoMap::Instance().Get(op_type).HasInferInplace();
  });
1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302
  m.def("infer_no_need_buffer_slots",
        [](const std::string op_type, const framework::VariableNameMap &inputs,
           const framework::VariableNameMap &outputs,
           const framework::AttributeMap &attrs) {
          auto infer_func = framework::OpInfoMap::Instance()
                                .Get(op_type)
                                .NoNeedBufferVarsInferer();
          if (infer_func) {
            return infer_func(inputs, outputs, attrs);
          } else {
            std::unordered_set<std::string> empty = {};
            return empty;
          }
        });
Y
Yu Yang 已提交
1303
  m.def("prune", [](const ProgramDesc &origin,
1304
                    const std::set<std::string> &feeded_var_names,
1305
                    const std::vector<std::array<size_t, 2>> &targets) {
Y
Yu Yang 已提交
1306
    ProgramDesc prog_with_targets(origin);
1307

1308
    for (const auto &t : targets) {
1309
      prog_with_targets.MutableBlock(t[0])->Op(t[1])->SetIsTarget(true);
1310
    }
1311
    proto::ProgramDesc pruned_desc;
1312 1313 1314 1315
    auto pruned_origin_block_id_map =
        Prune(*prog_with_targets.Proto(), feeded_var_names, &pruned_desc);
    return std::make_tuple(ProgramDesc(pruned_desc),
                           pruned_origin_block_id_map);
1316
  });
1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333
  m.def("prune_backward",
        [](const framework::ProgramDesc &program) {
          return PruneBackward(program);
        },
        R"DOC(
             Prune the backward part of a program, mostly called in
             program.clone(for_test=True).
              
             Args:
                   program (ProgramDesc): The original program.

             Returns:
                   tuple(ProgramDesc, map<int, int>): The first part is 
                   the pruned program desc, and the second part is a map
                   which contains the id pair of pruned block and corresponding
                   origin block.
           )DOC");
1334 1335 1336 1337
  m.def("empty_var_name",
        []() { return std::string(framework::kEmptyVarName); });
  m.def("grad_var_suffix",
        []() { return std::string(framework::kGradVarSuffix); });
1338 1339 1340
  m.def_submodule(
       "var_names",
       "The module will return special predefined variable name in Paddle")
Y
Yi Wang 已提交
1341 1342
      .def("empty", []() { return kEmptyVarName; })
      .def("temp", []() { return kTempVarName; });
1343

Q
qijun 已提交
1344
  // clang-format off
Y
Yu Yang 已提交
1345
  py::class_<paddle::platform::DeviceContext>(m, "DeviceContext")
Q
qijun 已提交
1346 1347
      .def_static("create",
                  [](paddle::platform::CPUPlace& place)
Q
qijun 已提交
1348
                      -> paddle::platform::DeviceContext* {
Q
qijun 已提交
1349 1350
                    return new paddle::platform::CPUDeviceContext();
                  })
1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362
      .def_static("create",
                  [](paddle::platform::XPUPlace& place)
                      -> paddle::platform::DeviceContext* {
#ifndef PADDLE_WITH_XPU
             PADDLE_THROW(
                 platform::errors::PermissionDenied(
                 "Cannot use XPUPlace in CPU/GPU version, "
                 "Please recompile or reinstall Paddle with XPU support."));
#else
                    return new paddle::platform::XPUDeviceContext(place);
#endif
                  })
Q
qijun 已提交
1363
      .def_static("create",
D
dzhwinter 已提交
1364
                  [](paddle::platform::CUDAPlace& place)
Q
qijun 已提交
1365
                      -> paddle::platform::DeviceContext* {
1366
#if !defined(PADDLE_WITH_CUDA) && !defined(PADDLE_WITH_HIP)
1367 1368 1369 1370
             PADDLE_THROW(
                 platform::errors::PermissionDenied(
                 "Cannot use CUDAPlace in CPU only version, "
                 "Please recompile or reinstall Paddle with CUDA support."));
Q
qijun 已提交
1371
#else
Q
qijun 已提交
1372
                    return new paddle::platform::CUDADeviceContext(place);
Q
qijun 已提交
1373
#endif
C
chengduoZH 已提交
1374 1375 1376 1377
                  })
          .def_static("create",
                [](paddle::platform::CUDAPinnedPlace& place)
                        -> paddle::platform::DeviceContext* {
1378
#if !defined(PADDLE_WITH_CUDA) && !defined(PADDLE_WITH_HIP)
1379 1380 1381 1382
             PADDLE_THROW(
                 platform::errors::PermissionDenied(
                 "Cannot use CUDAPinnedPlace in CPU only version, "
                 "Please recompile or reinstall Paddle with CUDA support."));
C
chengduoZH 已提交
1383 1384 1385 1386
#else
                  return new paddle::platform::CUDAPinnedDeviceContext(place);
#endif
                });;
D
Dong Zhihong 已提交
1387
// clang-format on
1388
#if defined(PADDLE_WITH_NCCL) || defined(PADDLE_WITH_RCCL)
D
Dong Zhihong 已提交
1389 1390
  py::class_<platform::Communicator>(m, "Communicator").def(py::init<>());
#endif
1391
  py::class_<platform::CUDAPlace>(m, "CUDAPlace", R"DOC(
1392 1393 1394 1395 1396

    CUDAPlace is a descriptor of a device.
    It represents a GPU device allocated or to be allocated with Tensor or LoDTensor.
    Each CUDAPlace has a dev_id to indicate the graphics card ID represented by the current CUDAPlace,
    staring from 0.
1397
    The memory of CUDAPlace with different dev_id is not accessible.
1398 1399 1400 1401 1402 1403 1404 1405
    Numbering here refers to the logical ID of the visible graphics card, not the actual ID of the graphics card.
    You can set visible GPU devices by setting the `CUDA_VISIBLE_DEVICES` environment variable.
    When the program starts, visible GPU devices will be numbered from 0.
    If `CUDA_VISIBLE_DEVICES` is not set, all devices are visible by default,
    and the logical ID is the same as the actual ID.

    Parameters:
        id (int): GPU device ID.
L
lujun 已提交
1406 1407 1408 1409

    Examples:
        .. code-block:: python

1410 1411 1412
          import paddle

          place = paddle.CUDAPlace(0)
L
lujun 已提交
1413

1414
        )DOC")
S
sneaxiy 已提交
1415 1416
      .def("__init__",
           [](platform::CUDAPlace &self, int dev_id) {
1417
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441
             if (UNLIKELY(dev_id < 0)) {
               LOG(ERROR) << string::Sprintf(
                   "Invalid CUDAPlace(%d), device id must be 0 or "
                   "positive integer",
                   dev_id);
               std::exit(-1);
             }

             if (UNLIKELY(dev_id >= platform::GetCUDADeviceCount())) {
               if (platform::GetCUDADeviceCount() == 0) {
                 LOG(ERROR) << "Cannot use GPU because there is no GPU "
                               "detected on your "
                               "machine.";
                 std::exit(-1);
               } else {
                 LOG(ERROR) << string::Sprintf(
                     "Invalid CUDAPlace(%d), must inside [0, %d), because GPU "
                     "number on your machine is %d",
                     dev_id, platform::GetCUDADeviceCount(),
                     platform::GetCUDADeviceCount());
                 std::exit(-1);
               }
             }

S
sneaxiy 已提交
1442 1443
             new (&self) platform::CUDAPlace(dev_id);
#else
1444 1445 1446 1447 1448 1449 1450 1451 1452
             LOG(ERROR) << string::Sprintf(
                 "Cannot use GPU because you have installed CPU version "
                 "PaddlePaddle.\n"
                 "If you want to use GPU, please try to install GPU version "
                 "PaddlePaddle by: pip install paddlepaddle-gpu\n"
                 "If you only have CPU, please change CUDAPlace(%d) to be "
                 "CPUPlace().\n",
                 dev_id);
             std::exit(-1);
S
sneaxiy 已提交
1453 1454
#endif
           })
1455
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
1456 1457
      .def("get_device_id",
           [](const platform::CUDAPlace &self) { return self.GetDeviceId(); })
S
sneaxiy 已提交
1458 1459 1460 1461
      .def("_type", &PlaceIndex<platform::CUDAPlace>)
      .def("_equals", &IsSamePlace<platform::CUDAPlace, platform::Place>)
      .def("_equals", &IsSamePlace<platform::CUDAPlace, platform::CUDAPlace>)
      .def("_equals", &IsSamePlace<platform::CUDAPlace, platform::CPUPlace>)
1462
      .def("_equals", &IsSamePlace<platform::CUDAPlace, platform::XPUPlace>)
S
sneaxiy 已提交
1463 1464
      .def("_equals",
           &IsSamePlace<platform::CUDAPlace, platform::CUDAPinnedPlace>)
1465 1466 1467
      .def("_get_device_id",
           [](platform::CUDAPlace &self) -> int { return self.GetDeviceId(); })
#endif
1468
      .def("__repr__", string::to_string<const platform::CUDAPlace &>)
D
dzhwinter 已提交
1469
      .def("__str__", string::to_string<const platform::CUDAPlace &>);
Q
qijun 已提交
1470

1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515
  py::class_<platform::XPUPlace>(m, "XPUPlace", R"DOC(
    **Note**:
    Examples:
        .. code-block:: python
          import paddle.fluid as fluid
          xpu_place = fluid.XPUPlace(0)
        )DOC")
      .def("__init__",
           [](platform::XPUPlace &self, int dev_id) {
#ifdef PADDLE_WITH_XPU
             if (UNLIKELY(dev_id < 0)) {
               LOG(ERROR) << string::Sprintf(
                   "Invalid XPUPlace(%d), device id must be 0 or "
                   "positive integer",
                   dev_id);
               std::exit(-1);
             }
             if (UNLIKELY(dev_id >= platform::GetXPUDeviceCount())) {
               if (platform::GetXPUDeviceCount() == 0) {
                 LOG(ERROR) << "Cannot use XPU because there is no XPU "
                               "detected on your "
                               "machine.";
                 std::exit(-1);
               } else {
                 LOG(ERROR) << string::Sprintf(
                     "Invalid XPUPlace(%d), must inside [0, %d), because XPU "
                     "number on your machine is %d",
                     dev_id, platform::GetXPUDeviceCount(),
                     platform::GetXPUDeviceCount());
                 std::exit(-1);
               }
             }
             new (&self) platform::XPUPlace(dev_id);
#else
             LOG(ERROR) << string::Sprintf(
                 "Cannot use XPU because you have installed CPU/GPU version "
                 "PaddlePaddle.\n"
                 "If you want to use XPU, please try to install XPU version "
                 "PaddlePaddle by: pip install paddlepaddle-xpu\n"
                 "If you only have CPU, please change XPUPlace(%d) to be "
                 "CPUPlace().\n",
                 dev_id);
             std::exit(-1);
#endif
           })
1516
#ifdef PADDLE_WITH_XPU
1517 1518 1519 1520 1521 1522 1523
      .def("_type", &PlaceIndex<platform::XPUPlace>)
      .def("_equals", &IsSamePlace<platform::XPUPlace, platform::Place>)
      .def("_equals", &IsSamePlace<platform::XPUPlace, platform::CUDAPlace>)
      .def("_equals", &IsSamePlace<platform::XPUPlace, platform::CPUPlace>)
      .def("_equals", &IsSamePlace<platform::XPUPlace, platform::XPUPlace>)
      .def("_equals",
           &IsSamePlace<platform::XPUPlace, platform::CUDAPinnedPlace>)
1524 1525 1526
      .def("get_device_id",
           [](const platform::XPUPlace &self) { return self.GetDeviceId(); })
#endif
1527
      .def("__repr__", string::to_string<const platform::XPUPlace &>)
1528
      .def("__str__", string::to_string<const platform::XPUPlace &>);
1529 1530 1531
#ifdef PADDLE_WITH_XPU
  m.def("get_xpu_device_count", platform::GetXPUDeviceCount);
#endif
1532
  py::class_<paddle::platform::CPUPlace>(m, "CPUPlace", R"DOC(
1533
    CPUPlace is a descriptor of a device.
1534
    It represents a CPU device on which a tensor will be allocated and a model will run.
L
lujun 已提交
1535 1536 1537 1538

    Examples:
        .. code-block:: python

1539 1540
          import paddle
          cpu_place = paddle.CPUPlace()
L
lujun 已提交
1541

1542
        )DOC")
1543
      .def(py::init<>())
S
sneaxiy 已提交
1544 1545
      .def("_type", &PlaceIndex<platform::CPUPlace>)
      .def("_equals", &IsSamePlace<platform::CPUPlace, platform::Place>)
1546
      .def("_equals", &IsSamePlace<platform::CPUPlace, platform::XPUPlace>)
S
sneaxiy 已提交
1547 1548 1549 1550
      .def("_equals", &IsSamePlace<platform::CPUPlace, platform::CUDAPlace>)
      .def("_equals", &IsSamePlace<platform::CPUPlace, platform::CPUPlace>)
      .def("_equals",
           &IsSamePlace<platform::CPUPlace, platform::CUDAPinnedPlace>)
1551
      .def("__repr__", string::to_string<const platform::CPUPlace &>)
1552
      .def("__str__", string::to_string<const platform::CPUPlace &>);
Y
Yu Yang 已提交
1553

1554
  py::class_<paddle::platform::CUDAPinnedPlace>(m, "CUDAPinnedPlace", R"DOC(
1555 1556 1557 1558 1559 1560
    CUDAPinnedPlace is a descriptor of a device.
    It refers to the page locked memory allocated by the CUDA function `cudaHostAlloc()` in the host memory.
    The host operating system will not paging and exchanging the memory.
    It can be accessed through direct memory access technology to speed up the copy of data between the host and GPU.
    For more information on CUDA data transfer and `pinned memory`,
    please refer to `official document <https://docs.nvidia.com/cuda/cuda-c-best-practices-guide/index.html#pinned-memory>`_ .
L
lujun 已提交
1561 1562 1563 1564

    Examples:
        .. code-block:: python

1565 1566
          import paddle
          place = paddle.CUDAPinnedPlace()
L
lujun 已提交
1567

1568
        )DOC")
S
sneaxiy 已提交
1569
      .def("__init__",
S
sneaxiy 已提交
1570
           [](platform::CUDAPinnedPlace &self) {
1571
#if !defined(PADDLE_WITH_CUDA) && !defined(PADDLE_WITH_HIP)
1572 1573 1574
             PADDLE_THROW(platform::errors::PermissionDenied(
                 "Cannot use CUDAPinnedPlace in CPU only version, "
                 "Please recompile or reinstall Paddle with CUDA support."));
S
sneaxiy 已提交
1575
#endif
S
sneaxiy 已提交
1576
             new (&self) platform::CUDAPinnedPlace();
S
sneaxiy 已提交
1577
           })
S
sneaxiy 已提交
1578 1579 1580 1581
      .def("_type", &PlaceIndex<platform::CUDAPinnedPlace>)
      .def("_equals", &IsSamePlace<platform::CUDAPinnedPlace, platform::Place>)
      .def("_equals",
           &IsSamePlace<platform::CUDAPinnedPlace, platform::CUDAPlace>)
1582 1583
      .def("_equals",
           &IsSamePlace<platform::CUDAPinnedPlace, platform::XPUPlace>)
S
sneaxiy 已提交
1584 1585 1586 1587
      .def("_equals",
           &IsSamePlace<platform::CUDAPinnedPlace, platform::CPUPlace>)
      .def("_equals",
           &IsSamePlace<platform::CUDAPinnedPlace, platform::CUDAPinnedPlace>)
1588
      .def("__repr__", string::to_string<const platform::CUDAPinnedPlace &>)
C
chengduoZH 已提交
1589 1590
      .def("__str__", string::to_string<const platform::CUDAPinnedPlace &>);

Y
Yu Yang 已提交
1591 1592
  py::class_<platform::Place>(m, "Place")
      .def(py::init<>())
S
sneaxiy 已提交
1593 1594 1595 1596
      .def("_type", &PlaceIndex<platform::Place>)
      .def("_equals", &IsSamePlace<platform::Place, platform::Place>)
      .def("_equals", &IsSamePlace<platform::Place, platform::CUDAPlace>)
      .def("_equals", &IsSamePlace<platform::Place, platform::CPUPlace>)
1597
      .def("_equals", &IsSamePlace<platform::Place, platform::XPUPlace>)
S
sneaxiy 已提交
1598
      .def("_equals", &IsSamePlace<platform::Place, platform::CUDAPinnedPlace>)
X
xuezhong 已提交
1599 1600
      .def("is_gpu_place",
           [](platform::Place &self) { return platform::is_gpu_place(self); })
S
sneaxiy 已提交
1601 1602
      .def("is_cpu_place",
           [](platform::Place &self) { return platform::is_cpu_place(self); })
1603 1604
      .def("is_xpu_place",
           [](platform::Place &self) { return platform::is_xpu_place(self); })
S
sneaxiy 已提交
1605 1606 1607 1608
      .def("is_cuda_pinned_place",
           [](platform::Place &self) {
             return platform::is_cuda_pinned_place(self);
           })
X
xuezhong 已提交
1609 1610
      .def("gpu_device_id",
           [](platform::Place &self) {
1611
             return BOOST_GET_CONST(platform::CUDAPlace, self).device;
X
xuezhong 已提交
1612
           })
1613 1614 1615 1616
      .def("xpu_device_id",
           [](platform::Place &self) {
             return BOOST_GET_CONST(platform::XPUPlace, self).device;
           })
S
sneaxiy 已提交
1617 1618
      .def("set_place", [](platform::Place &self,
                           const platform::Place &other) { self = other; })
Y
Yu Yang 已提交
1619 1620 1621 1622
      .def("set_place",
           [](platform::Place &self, const platform::CPUPlace &cpu_place) {
             self = cpu_place;
           })
1623 1624 1625 1626
      .def("set_place",
           [](platform::Place &self, const platform::XPUPlace &xpu_place) {
             self = xpu_place;
           })
Y
Yu Yang 已提交
1627
      .def("set_place",
D
dzhwinter 已提交
1628
           [](platform::Place &self, const platform::CUDAPlace &gpu_place) {
Y
Yu Yang 已提交
1629
             self = gpu_place;
C
chengduoZH 已提交
1630
           })
1631 1632 1633 1634 1635 1636 1637
      .def("set_place",
           [](platform::Place &self,
              const platform::CUDAPinnedPlace &cuda_pinned_place) {
             self = cuda_pinned_place;
           })
      .def("__repr__", string::to_string<const platform::Place &>)
      .def("__str__", string::to_string<const platform::Place &>);
Y
Yu Yang 已提交
1638

Y
Yu Yang 已提交
1639
  py::class_<OperatorBase>(m, "Operator")
C
chengduo 已提交
1640 1641 1642 1643 1644
      .def_static(
          "create",
          [](py::bytes protobin) {
            proto::OpDesc desc;
            PADDLE_ENFORCE_EQ(desc.ParsePartialFromString(protobin), true,
1645 1646 1647 1648 1649 1650 1651
                              platform::errors::InvalidArgument(
                                  "Cannot parse user input to OpDesc"));
            PADDLE_ENFORCE_EQ(
                desc.IsInitialized(), true,
                platform::errors::InvalidArgument(
                    "The provided OpDesc is not initialized, the reason is: %s",
                    desc.InitializationErrorString()));
C
chengduo 已提交
1652 1653
            return OpRegistry::CreateOp(desc);
          })
1654
      .def("run",
1655
           [](OperatorBase &self, const Scope &scope,
D
dzhwinter 已提交
1656
              const platform::CPUPlace &place) { self.Run(scope, place); })
1657 1658 1659
      .def("run",
           [](OperatorBase &self, const Scope &scope,
              const platform::XPUPlace &place) { self.Run(scope, place); })
D
dzhwinter 已提交
1660 1661
      .def("run",
           [](OperatorBase &self, const Scope &scope,
D
dzhwinter 已提交
1662
              const platform::CUDAPlace &place) { self.Run(scope, place); })
C
chengduoZH 已提交
1663 1664 1665 1666 1667
      .def("run",
           [](OperatorBase &self, const Scope &scope,
              const platform::CUDAPinnedPlace &place) {
             self.Run(scope, place);
           })
Y
Yu Yang 已提交
1668 1669 1670 1671 1672 1673 1674
      .def("type",
           [](const OperatorBase &op) -> std::string { return op.Type(); })
      .def("outputs",
           [](const OperatorBase &op)
               -> std::map<std::string, std::vector<std::string>> {
                 return op.Outputs();
               })
Q
qijun 已提交
1675 1676
      .def("output_vars",
           [](const OperatorBase &op) { return op.OutputVars(true); })
Y
Yu Yang 已提交
1677
      .def("inputs", [](const OperatorBase &op) { return op.Inputs(); })
Q
qijun 已提交
1678
      .def("input_vars", [](const OperatorBase &op) { return op.InputVars(); })
Y
Yu Yang 已提交
1679 1680 1681 1682
      .def("__str__", &OperatorBase::DebugString)
      .def("no_intermediate_outputs",
           [](const OperatorBase &op) { return op.OutputVars(false); })
      .def("support_gpu", &OperatorBase::SupportGPU);
Y
Yu Yang 已提交
1683

1684 1685 1686
  py::class_<framework::ExecutorPrepareContext>(m, "ExecutorPrepareContext")
      .def(py::init<const ProgramDesc &, size_t>());

1687 1688 1689 1690 1691 1692 1693 1694 1695
  py::class_<framework::TrainerBase, std::shared_ptr<framework::TrainerBase>>(
      m, "TrainerBase")
      .def("get_worker_scope",
           [](TrainerBase &self, int thread_id) -> Scope * {
             return self.GetWorkerScope(thread_id);
           },
           py::return_value_policy::reference)
      .def("finalize", &TrainerBase::Finalize);

F
fengjiayi 已提交
1696
  py::class_<framework::Executor>(m, "Executor")
D
dzhwinter 已提交
1697
      .def(py::init<const platform::Place &>())
Y
Yancey1989 已提交
1698
      .def("close", &Executor::Close)
1699 1700
      .def("run_from_dataset", &Executor::RunFromDataset,
           py::call_guard<py::gil_scoped_release>())
D
Dong Daxiang 已提交
1701 1702
      .def("release_trainer", &Executor::ReleaseTrainer,
           py::call_guard<py::gil_scoped_release>())
1703 1704 1705 1706
      .def("init_for_dataset",
           [](Executor &self, const ProgramDesc &prog,
              const std::string &trainer_desc, Scope *scope,
              Dataset *dataset) -> std::shared_ptr<TrainerBase> {
D
Dong Daxiang 已提交
1707
             pybind11::gil_scoped_release release;
1708 1709 1710 1711 1712 1713 1714
             return self.InitForDataset(prog, trainer_desc, scope, dataset);
           })
      .def("run_from_dataset",
           [](Executor &self, std::shared_ptr<TrainerBase> trainer) {
             pybind11::gil_scoped_release release;
             self.RunFromDataset(trainer);
           })
1715 1716 1717
      .def("run_prepared_ctx",
           [](Executor &self, ExecutorPrepareContext *ctx, Scope *scope,
              std::map<std::string, const LoDTensor *> *feed_targets,
1718
              std::map<std::string, FetchType *> *fetch_targets,
1719 1720 1721 1722 1723 1724 1725 1726
              bool create_local_scope = true, bool create_vars = true,
              const std::string &feed_holder_name = "feed",
              const std::string &fetch_holder_name = "fetch") {
             pybind11::gil_scoped_release release;
             self.RunPreparedContext(ctx, scope, feed_targets, fetch_targets,
                                     create_local_scope, create_vars,
                                     feed_holder_name, fetch_holder_name);
           })
1727
      .def("run_prepared_ctx",
G
guru4elephant 已提交
1728 1729 1730 1731 1732 1733 1734
           [](Executor &self, ExecutorPrepareContext *ctx, Scope *scope,
              bool create_local_scope = true, bool create_vars = true,
              bool keep_kids = false) {
             pybind11::gil_scoped_release release;
             self.RunPreparedContext(ctx, scope, create_local_scope,
                                     create_vars, keep_kids);
           })
1735 1736 1737 1738 1739 1740 1741 1742 1743 1744
      .def("prepare",
           [](Executor &self, const ProgramDesc &program, int block_id,
              const std::vector<std::string> &skip_ref_cnt_vars =
                  std::vector<std::string>(),
              bool force_disable_gc = false) {
             pybind11::gil_scoped_release release;
             return self.Prepare(program, block_id, skip_ref_cnt_vars,
                                 force_disable_gc);
           })
      .def("create_variables", &Executor::CreateVariables)
S
sneaxiy 已提交
1745
      .def("run", [](Executor &self, const ProgramDesc &prog, Scope *scope,
S
sneaxiy 已提交
1746 1747
                     int block_id, bool create_local_scope, bool create_vars,
                     const std::vector<std::string> &fetch_vars) {
S
sneaxiy 已提交
1748
        pybind11::gil_scoped_release release;
S
sneaxiy 已提交
1749 1750
        self.Run(prog, scope, block_id, create_local_scope, create_vars,
                 fetch_vars);
S
sneaxiy 已提交
1751
      });
S
sneaxiy 已提交
1752

D
dzhwinter 已提交
1753
  m.def("init_gflags", framework::InitGflags);
Y
Yang Yu 已提交
1754
  m.def("init_glog", framework::InitGLOG);
1755
  m.def("load_op_library", framework::LoadOpLib);
1756 1757
  m.def("load_op_meta_info_and_register_op",
        framework::LoadOpMetaInfoAndRegisterOp);
1758
  m.def("init_devices", []() { framework::InitDevices(); });
1759

1760
  m.def("is_compiled_with_cuda", IsCompiledWithCUDA);
1761
  m.def("is_compiled_with_rocm", IsCompiledWithROCM);
1762
  m.def("is_compiled_with_xpu", IsCompiledWithXPU);
1763
  m.def("is_compiled_with_mkldnn", IsCompiledWithMKLDNN);
1764
  m.def("supports_bfloat16", SupportsBfloat16);
1765
  m.def("supports_bfloat16_fast_performance", SupportsBfloat16FastPerformance);
1766
  m.def("is_compiled_with_brpc", IsCompiledWithBrpc);
Y
update  
Yancey1989 已提交
1767
  m.def("is_compiled_with_dist", IsCompiledWithDIST);
1768 1769 1770
  m.def("_cuda_synchronize", [](const platform::CUDAPlace &place) {
    platform::DeviceContextPool::Instance().Get(place)->Wait();
  });
H
hutuxian 已提交
1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789

  m.def("get_float_stats", []() {
    std::vector<paddle::platform::ExportedStatValue<float>> float_stats;
    paddle::platform::StatRegistry<float>::Instance().publish(float_stats);
    std::unordered_map<std::string, float> stats_map;
    for (const auto &stat : float_stats) {
      stats_map[stat.key] = stat.value;
    }
    return stats_map;
  });
  m.def("get_int_stats", []() {
    std::vector<paddle::platform::ExportedStatValue<int64_t>> int_stats;
    paddle::platform::StatRegistry<int64_t>::Instance().publish(int_stats);
    std::unordered_map<std::string, int64_t> stats_map;
    for (const auto &stat : int_stats) {
      stats_map[stat.key] = stat.value;
    }
    return stats_map;
  });
H
hutuxian 已提交
1790 1791 1792 1793 1794 1795 1796
  m.def("run_cmd",
        [](const std::string &cmd, int time_out = -1,
           int sleep_inter = -1) -> const std::string {
          return paddle::framework::shell_get_command_output(cmd, time_out,
                                                             sleep_inter);
        },
        py::arg("cmd"), py::arg("time_out") = -1, py::arg("sleep_inter") = -1);
G
gongweibao 已提交
1797 1798 1799 1800 1801 1802 1803 1804 1805
  m.def("shell_execute_cmd",
        [](const std::string &cmd, int time_out = 0, int sleep_inter = 0,
           bool redirect_stderr = false) -> std::vector<std::string> {
          return paddle::framework::shell_execute_cmd(
              cmd, time_out, sleep_inter, redirect_stderr);
        },
        py::arg("cmd"), py::arg("time_out") = 0, py::arg("sleep_inter") = 0,
        py::arg("redirect_stderr") = false);

1806
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
1807 1808 1809 1810 1811
  m.def("is_float16_supported", [](const platform::CUDAPlace &place) -> bool {
    // Only GPUs with Compute Capability >= 53 support float16
    return platform::GetCUDAComputeCapability(place.device) >= 53;
  });
#endif
1812

1813
  m.def("set_feed_variable", framework::SetFeedVariable);
1814 1815 1816 1817 1818
  m.def("get_fetch_variable",
        [](const Scope &scope, const std::string &var_name,
           size_t index) -> py::object {
          auto &var = framework::GetFetchVariable(scope, var_name, index);
          if (data_is_lod_tensor(var)) {
1819
            return py::cast(BOOST_GET(LoDTensor, var));
1820
          } else {
1821
            return py::cast(BOOST_GET(LoDTensorArray, var));
1822 1823
          }
        });
1824
  m.def("get_variable_tensor", framework::GetVariableTensor);
Q
qijun 已提交
1825

X
Xin Pan 已提交
1826 1827
  m.def("_is_program_version_supported", IsProgramVersionSupported);

1828 1829 1830 1831 1832
  BindProgramDesc(&m);
  BindBlockDesc(&m);
  BindVarDsec(&m);
  BindOpDesc(&m);
  BindConstValue(&m);
1833
  BindGlobalValueGetterSetter(&m);
Y
Yu Yang 已提交
1834

Y
Yu Yang 已提交
1835 1836 1837 1838 1839 1840 1841 1842 1843
  py::class_<framework::LoDRankTable>(m, "LodRankTable")
      .def("items", [](framework::LoDRankTable &table) {
        std::vector<std::pair<size_t, size_t>> res;
        for (auto &item : table.items()) {
          res.push_back({item.index, item.length});
        }
        return res;
      });

Z
Zeng Jinle 已提交
1844
  py::class_<LoDTensorArray>(m, "LoDTensorArray", R"DOC(
1845
    LoDTensorArray is array of LoDTensor, it supports operator[], len() and for-loop iteration.
Z
Zeng Jinle 已提交
1846 1847 1848

    Examples:
        .. code-block:: python
1849

Z
Zeng Jinle 已提交
1850 1851 1852 1853
          import paddle.fluid as fluid

          arr = fluid.LoDTensorArray()
)DOC")
S
sneaxiy 已提交
1854 1855
      .def("__init__",
           [](LoDTensorArray &instance) { new (&instance) LoDTensorArray(); })
Y
Yu Yang 已提交
1856 1857 1858 1859 1860 1861
      .def("__getitem__",
           [](LoDTensorArray &self, size_t i) { return &self.at(i); },
           py::return_value_policy::reference)
      .def("__len__", [](LoDTensorArray &self) { return self.size(); })
      .def("__setitem__",
           [](LoDTensorArray &self, size_t i, const LoDTensor &t) {
1862 1863 1864 1865
             PADDLE_ENFORCE_LT(i, self.size(),
                               platform::errors::InvalidArgument(
                                   "The index to set is larger than the size "
                                   "of LoDTensorArray."));
Y
Yu Yang 已提交
1866 1867 1868
             self[i].ShareDataWith(t);
             self[i].set_lod(t.lod());
           })
S
sneaxiy 已提交
1869 1870 1871 1872 1873 1874
      .def("append",
           [](LoDTensorArray &self, const LoDTensor &t) {
             self.emplace_back();
             self.back().ShareDataWith(t);
             self.back().set_lod(t.lod());
           },
Z
Zeng Jinle 已提交
1875 1876
           py::arg("tensor"), R"DOC(
             Append a LoDensor to LoDTensorArray.
1877 1878 1879 1880 1881 1882
              
             Args:
                   tensor (LoDTensor): The LoDTensor to be appended.

             Returns:
                   None.
Z
Zeng Jinle 已提交
1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893

             Examples:
                 .. code-block:: python

                   import paddle.fluid as fluid
                   import numpy as np

                   arr = fluid.LoDTensorArray()
                   t = fluid.LoDTensor()
                   t.set(np.ndarray([5, 30]), fluid.CPUPlace())
                   arr.append(t)
1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904
           )DOC")
      .def("_move_to_list",
           [](LoDTensorArray &self) -> py::list {
             py::list res(self.size());
             for (size_t i = 0; i < self.size(); ++i) {
               res[i] = py::cast(std::move(self[i]));
             }
             self.clear();
             return res;
           },
           py::return_value_policy::take_ownership);
Y
Yu Yang 已提交
1905

1906 1907 1908 1909 1910 1911 1912 1913
  py::class_<FetchList>(m, "FetchList", R"DOC( FetchList is a
        vector of boost::variant<LoDTensor, LoDTensorArray>.
        )DOC")
      .def("_move_to_list",
           [](FetchList &self) -> py::list {
             py::list res(self.size());
             for (size_t i = 0; i < self.size(); ++i) {
               if (data_is_lod_tensor(self[i])) {
1914
                 auto &data = BOOST_GET(LoDTensor, self[i]);
1915 1916
                 res[i] = py::cast(std::move(data));
               } else {
1917
                 auto &data = BOOST_GET(LoDTensorArray, self[i]);
1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932
                 py::list tmp(data.size());
                 for (size_t j = 0; j < data.size(); ++j) {
                   tmp[j] = py::cast(std::move(data[j]));
                 }
                 res[i] = std::move(tmp);
               }
             }
             self.clear();
             return res;
           },
           py::return_value_policy::take_ownership)

      .def("append",
           [](FetchList &self, const LoDTensor &t) {
             self.emplace_back();
1933
             auto &lod_tensor = BOOST_GET(LoDTensor, self.back());
1934 1935 1936 1937 1938 1939 1940 1941
             lod_tensor.ShareDataWith(t);
             lod_tensor.set_lod(t.lod());
           },
           py::arg("var"))

      .def("append",
           [](FetchList &self, const LoDTensorArray &t) {
             self.emplace_back();
1942
             auto &lod_tensor_array = BOOST_GET(LoDTensorArray, self.back());
1943 1944 1945 1946 1947 1948 1949 1950 1951
             for (size_t i = 0; i < t.size(); ++i) {
               lod_tensor_array[i].ShareDataWith(t[i]);
               lod_tensor_array[i].set_lod(t[i].lod());
             }
           },
           py::arg("var"));

  py::class_<FetchUnmergedList>(m, "FetchUnmergedList", R"DOC(
        FetchUnmergedList is 2-D array of FetchType(boost::variant(LoDTensor, LoDTensorArray)).
Z
Zhen Wang 已提交
1952 1953
        )DOC")
      .def("_move_to_list",
1954
           [](FetchUnmergedList &self) -> py::list {
Z
Zhen Wang 已提交
1955 1956 1957 1958
             py::list res(self.size());
             for (size_t i = 0; i < self.size(); ++i) {
               py::list tmp(self[i].size());
               for (size_t j = 0; j < self[i].size(); ++j) {
1959
                 if (data_is_lod_tensor(self[i][j])) {
1960
                   auto &var = BOOST_GET(LoDTensor, self[i][j]);
1961 1962
                   tmp[j] = py::cast(std::move(var));
                 } else {
1963
                   auto &var = BOOST_GET(LoDTensorArray, self[i][j]);
1964 1965 1966 1967 1968 1969
                   py::list tmp_array(var.size());
                   for (size_t k = 0; k < var.size(); ++k) {
                     tmp_array[k] = std::move(var[k]);
                   }
                   tmp[j] = std::move(tmp_array);
                 }
Z
Zhen Wang 已提交
1970 1971 1972 1973 1974 1975 1976 1977 1978
               }
               res[i] = std::move(tmp);
               self[i].clear();
             }
             self.clear();
             return res;
           },
           py::return_value_policy::take_ownership);

Y
Yu Yang 已提交
1979
  m.def("op_support_gpu", OpSupportGPU);
1980
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
D
Dong Zhihong 已提交
1981
  m.def("get_cuda_device_count", platform::GetCUDADeviceCount);
D
dangqingqing 已提交
1982

1983
#if !defined(PADDLE_WITH_HIP) && !defined(_WIN32)
D
dangqingqing 已提交
1984 1985 1986
  m.def("nvprof_init", platform::CudaProfilerInit);
  m.def("nvprof_start", platform::CudaProfilerStart);
  m.def("nvprof_stop", platform::CudaProfilerStop);
1987 1988 1989 1990
  m.def("nvprof_nvtx_push", platform::CudaNvtxRangePush);
  m.def("nvprof_nvtx_pop", platform::CudaNvtxRangePop);
  m.def("nvprof_enable_record_event", platform::NvprofEnableRecordEvent);
  m.def("nvprof_disable_record_event", platform::NvprofDisableRecordEvent);
D
Dong Zhihong 已提交
1991
#endif
P
peizhilin 已提交
1992
#endif
Y
Yu Yang 已提交
1993

1994 1995 1996 1997 1998 1999
  py::enum_<platform::TracerOption>(m, "TracerOption", py::arithmetic())
      .value("kDefault", platform::TracerOption::kDefault)
      .value("kOpDetail", platform::TracerOption::kOpDetail)
      .value("kAllOpDetail", platform::TracerOption::kAllOpDetail)
      .export_values();

2000 2001 2002 2003
  py::enum_<platform::ProfilerState>(m, "ProfilerState", py::arithmetic())
      .value("kDisabled", platform::ProfilerState::kDisabled)
      .value("kCPU", platform::ProfilerState::kCPU)
      .value("kCUDA", platform::ProfilerState::kCUDA)
2004
      .value("kAll", platform::ProfilerState::kAll)
2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015
      .export_values();

  py::enum_<platform::EventSortingKey>(m, "EventSortingKey", py::arithmetic())
      .value("kDefault", platform::EventSortingKey::kDefault)
      .value("kCalls", platform::EventSortingKey::kCalls)
      .value("kTotal", platform::EventSortingKey::kTotal)
      .value("kMin", platform::EventSortingKey::kMin)
      .value("kMax", platform::EventSortingKey::kMax)
      .value("kAve", platform::EventSortingKey::kAve)
      .export_values();

2016
  m.def("set_tracer_option", platform::SetTracerOption);
2017 2018
  m.def("enable_profiler", platform::EnableProfiler);
  m.def("disable_profiler", platform::DisableProfiler);
X
Xin Pan 已提交
2019
  m.def("is_profiler_enabled", platform::IsProfileEnabled);
2020
  m.def("reset_profiler", platform::ResetProfiler);
2021
  m.def("get_pass", [](const std::string &pass_type) {
W
WangZhen 已提交
2022 2023 2024
    auto pass = framework::ir::PassRegistry::Instance().Get(pass_type);
    return std::shared_ptr<framework::ir::Pass>(std::move(pass));
  });
Y
Yu Yang 已提交
2025

2026 2027
  m.def("size_of_dtype", framework::SizeOfType);

2028
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
2029 2030
  m.def("set_cublas_switch", platform::SetAllowTF32Cublas);
  m.def("get_cublas_switch", platform::AllowTF32Cublas);
A
AshburnLee 已提交
2031 2032
  m.def("set_cudnn_switch", platform::SetAllowTF32Cudnn);
  m.def("get_cudnn_switch", platform::AllowTF32Cudnn);
2033 2034
#endif  // PADDLE_WITH_CUDA

2035 2036 2037
  using VarQuantScale =
      std::unordered_map<std::string, std::pair<bool, LoDTensor>>;

2038 2039
  py::class_<ir::Pass, std::shared_ptr<ir::Pass>> pass(m, "Pass");
  pass.def(py::init())
W
WangZhen 已提交
2040
      .def("has", &ir::Pass::Has)
2041 2042 2043
      .def("set_not_owned",
           [](ir::Pass &self, const std::string &attr_name, ProgramDesc &attr) {
             self.SetNotOwned<ProgramDesc>(attr_name, &attr);
W
WangZhen 已提交
2044
           })
2045
      .def(
2046
          "set",
2047 2048 2049
          [](ir::Pass &self, const std::string &name, const std::string &attr) {
            self.Set<std::string>(name, new std::string(attr));
          })
2050 2051
      .def("set", [](ir::Pass &self, const std::string &name,
                     bool val) { self.Set<bool>(name, new bool(val)); })
2052 2053
      .def("set", [](ir::Pass &self, const std::string &name,
                     int val) { self.Set<const int>(name, new int(val)); })
2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067
      .def("set",
           [](ir::Pass &self, const std::string &name,
              std::unordered_set<std::string> set) {
             self.Set(name, new std::unordered_set<std::string>(set));
           })
      .def("set",
           [](ir::Pass &self, const std::string &name,
              std::unordered_set<int> set) {
             self.Set(name, new std::unordered_set<int>(set));
           })
      .def("set",
           [](ir::Pass &self, const std::string &name, VarQuantScale scales) {
             self.Set(name, new VarQuantScale(scales));
           })
F
flame 已提交
2068 2069
      .def("type", &ir::Pass::Type)
      .def("apply", [](ir::Pass &self, std::shared_ptr<ir::Graph> graph) {
2070
        self.Apply(graph.get());
F
flame 已提交
2071
      });
2072

X
fix  
Xin Pan 已提交
2073 2074
  py::class_<ir::PassBuilder, std::shared_ptr<ir::PassBuilder>> pb(
      m, "PassBuilder");
2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088
  pb.def(py::init())
      .def("append_pass",
           [](ir::PassBuilder &self,
              const std::string &pass_type) -> std::shared_ptr<ir::Pass> {
             return self.AppendPass(pass_type);
           })
      .def("all_passes", [](ir::PassBuilder &self) { return self.AllPasses(); })
      .def("insert_pass",
           [](ir::PassBuilder &self, size_t idx, const std::string &pass_type) {
             return self.InsertPass(idx, pass_type);
           })
      .def("remove_pass",
           [](ir::PassBuilder &self, size_t idx) { self.RemovePass(idx); });

Y
yuyang18 已提交
2089
  // -- python binds for parallel executor.
X
Xin Pan 已提交
2090

Y
yuyang18 已提交
2091
  py::class_<ParallelExecutor> pe(m, "ParallelExecutor");
C
chengduo 已提交
2092 2093 2094 2095
  py::class_<ExecutionStrategy> exec_strategy(pe, "ExecutionStrategy", R"DOC(
    ExecutionStrategy allows the user to more preciously control how to run
    the program in ParallelExecutor by setting the property.

2096 2097 2098
    Returns:
        ExecutionStrategy: An ExecutionStrategy object.

C
chengduo 已提交
2099 2100 2101
    Examples:
        .. code-block:: python

2102 2103 2104 2105 2106 2107 2108 2109 2110
          import paddle
          import paddle.static as static
          import paddle.nn.functional as F

          paddle.enable_static()

          x = static.data(name='x', shape=[None, 13], dtype='float32')
          y = static.data(name='y', shape=[None, 1], dtype='float32')
          y_predict = static.nn.fc(input=x, size=1, act=None)
2111

2112 2113
          cost = F.square_error_cost(input=y_predict, label=y)
          avg_loss = paddle.mean(cost)
2114

2115
          sgd_optimizer = paddle.optimizer.SGD(learning_rate=0.001)
2116 2117
          sgd_optimizer.minimize(avg_loss)

2118
          exec_strategy = static.ExecutionStrategy()
C
chengduo 已提交
2119 2120
          exec_strategy.num_threads = 4

2121 2122 2123
          train_exe = static.ParallelExecutor(use_cuda=False,
                                              loss_name=avg_loss.name,
                                              exec_strategy=exec_strategy)
C
chengduo 已提交
2124 2125
        )DOC");

2126 2127 2128 2129
  py::enum_<paddle::platform::DeviceType>(m, "DeviceType", py::arithmetic())
      .value("CPU", paddle::platform::DeviceType::CPU)
      .value("CUDA", paddle::platform::DeviceType::CUDA)
      .value("XPU", paddle::platform::DeviceType::XPU);
2130

Y
yuyang18 已提交
2131
  exec_strategy.def(py::init())
Y
yuyang18 已提交
2132 2133 2134 2135 2136
      .def_property(
          "num_threads",
          [](const ExecutionStrategy &self) { return self.num_threads_; },
          [](ExecutionStrategy &self, size_t num_threads) {
            self.num_threads_ = num_threads;
C
chengduo 已提交
2137
          },
2138 2139
          R"DOC(
            The type is INT, num_threads represents the size of thread pool that
C
chengduo 已提交
2140 2141 2142 2143 2144 2145 2146
            used to run the operators of the current program in ParallelExecutor.
            If :math:`num\_threads=1`, all the operators will execute one by one,
            but the order maybe difference between iterations.
            If it is not set, it will be set in ParallelExecutor according to the
            device type and device count, for GPU, :math:`num\_threads=device\_count*4`, for CPU,
            :math:`num\_threads=CPU\_NUM*4`, the explanation of:math:`CPU\_NUM` is in ParallelExecutor.
            if it is not set, ParallelExecutor will get the cpu count by calling
2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159
            `multiprocessing.cpu_count()`. Default 0.

            Examples:
                .. code-block:: python

                    import paddle
                    import paddle.static as static

                    paddle.enable_static()

                    exec_strategy = static.ExecutionStrategy()
                    exec_strategy.num_threads = 4
            )DOC")
Y
yuyang18 已提交
2160
      .def_property(
2161 2162
          "_use_device",
          [](const ExecutionStrategy &self) { return self.use_device_; },
2163
          [](ExecutionStrategy &self, paddle::platform::DeviceType use_device) {
2164 2165 2166
            self.use_device_ = use_device;
          })  // NOTE(liuyuhui): Doesn't add doc for 'use_device', because
              // use_device isn‘t exposed to users.
Y
yuyang18 已提交
2167 2168 2169 2170 2171
      .def_property(
          "allow_op_delay",
          [](const ExecutionStrategy &self) { return self.allow_op_delay_; },
          [](ExecutionStrategy &self, bool allow_op_delay) {
            self.allow_op_delay_ = allow_op_delay;
C
chengduo 已提交
2172 2173 2174
          },
          R"DOC(The type is BOOL, allow_op_delay represents whether to delay the
                communication operators to run, it may make the execution faster.
2175 2176
                Note that this option is invalid now, and it will be removed in
                next version. Default False.)DOC")
Y
yuyang18 已提交
2177 2178 2179 2180 2181 2182 2183
      .def_property(
          "num_iteration_per_drop_scope",
          [](const ExecutionStrategy &self) {
            return self.num_iteration_per_drop_scope_;
          },
          [](ExecutionStrategy &self, size_t num_iteration_per_drop_scope) {
            self.num_iteration_per_drop_scope_ = num_iteration_per_drop_scope;
C
chengduo 已提交
2184 2185 2186 2187
          },
          R"DOC(The type is INT, num_iteration_per_drop_scope indicates how
                many iterations to clean up the temp variables which
                is generated during execution. It may make the execution faster,
2188
                because the temp variable's shape maybe the same between two iterations.
2189 2190 2191 2192 2193 2194 2195 2196 2197 2198
                Default 100.

                .. note::
                    1. If you fetch data when calling the 'run', the ParallelExecutor 
                    will clean up the temp variables at the end of the current iteration. 
                    2. In some NLP model, it may cause the GPU memory is insufficient, 
                    in this case, you should reduce `num_iteration_per_drop_scope`.

                Examples:
                    .. code-block:: python
C
chengduo 已提交
2199

2200 2201 2202 2203 2204 2205 2206
                        import paddle
                        import paddle.static as static

                        paddle.enable_static()

                        exec_strategy = static.ExecutionStrategy()
                        exec_strategy.num_iteration_per_drop_scope = 10
2207
              )DOC")
Q
Qiao Longfei 已提交
2208 2209 2210 2211 2212 2213 2214 2215 2216
      .def_property(
          "num_iteration_per_run",
          [](const ExecutionStrategy &self) {
            return self.num_iteration_per_run_;
          },
          [](ExecutionStrategy &self, size_t num_iteration_per_run) {
            self.num_iteration_per_run_ = num_iteration_per_run;
          },
          R"DOC(This config that how many iteration the executor will run when
2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228
                user call exe.run() in python。Default: 1.

                Examples:
                    .. code-block:: python

                        import paddle
                        import paddle.static as static

                        paddle.enable_static()

                        exec_strategy = static.ExecutionStrategy()
                        exec_strategy.num_iteration_per_run = 10
Q
Qiao Longfei 已提交
2229
              )DOC")
2230 2231 2232 2233 2234 2235 2236 2237
      .def_property(
          "use_thread_barrier",
          [](const ExecutionStrategy &self) { return self.thread_barrier_; },
          [](ExecutionStrategy &self, bool use_thread_barrier) {
            self.thread_barrier_ = use_thread_barrier;
          },
          R"DOC(This config that the this is distributed training with parameter server
              )DOC")
2238 2239 2240 2241 2242
      .def_property("_dry_run",
                    [](const ExecutionStrategy &self) { return self.dry_run_; },
                    [](ExecutionStrategy &self, bool dry_run) {
                      self.dry_run_ = dry_run;
                    });
C
chengduo 已提交
2243

Y
yuyang18 已提交
2244
  exec_strategy.def_property(
Y
yuyang18 已提交
2245 2246 2247 2248 2249 2250 2251
      "use_experimental_executor",
      [](const ExecutionStrategy &self) {
        return self.type_ == ExecutionStrategy::kExperimental;
      },
      [](ExecutionStrategy &self, bool experimental) {
        self.type_ = experimental ? ExecutionStrategy::kExperimental
                                  : ExecutionStrategy::kDefault;
Y
yuyang18 已提交
2252 2253
      });

C
chengduo 已提交
2254 2255 2256 2257
  py::class_<BuildStrategy> build_strategy(pe, "BuildStrategy", R"DOC(
    BuildStrategy allows the user to more preciously control how to
    build the SSA Graph in ParallelExecutor by setting the property.

2258 2259 2260
    Returns:
        BuildStrategy: An BuildStrategy object.

C
chengduo 已提交
2261 2262 2263
    Examples:
        .. code-block:: python

2264
            import os
2265 2266 2267 2268
            import paddle
            import paddle.static as static

            paddle.enable_static()
2269

2270 2271
            os.environ['CPU_NUM'] = str(2)
            places = static.cpu_places()
2272

2273 2274 2275 2276
            data = static.data(name="x", shape=[None, 1], dtype="float32")
            hidden = static.nn.fc(input=data, size=10)
            loss = paddle.mean(hidden)
            paddle.optimizer.SGD(learning_rate=0.01).minimize(loss)
2277

2278
            build_strategy = static.BuildStrategy()
2279 2280
            build_strategy.enable_inplace = True
            build_strategy.memory_optimize = True
2281 2282
            build_strategy.reduce_strategy = static.BuildStrategy.ReduceStrategy.Reduce
            program = static.CompiledProgram(static.default_main_program())
2283
            program = program.with_data_parallel(loss_name=loss.name,
2284 2285
                                                  build_strategy=build_strategy,
                                                  places=places)
C
chengduo 已提交
2286
)DOC");
Y
yuyang18 已提交
2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302

  py::enum_<BuildStrategy::ReduceStrategy>(build_strategy, "ReduceStrategy")
      .value("Reduce", BuildStrategy::ReduceStrategy::kReduce)
      .value("AllReduce", BuildStrategy::ReduceStrategy::kAllReduce);
  py::enum_<BuildStrategy::GradientScaleStrategy>(build_strategy,
                                                  "GradientScaleStrategy")
      .value("CoeffNumDevice",
             BuildStrategy::GradientScaleStrategy::kCoeffNumDevice)
      .value("One", BuildStrategy::GradientScaleStrategy::kOne)
      .value("Customized", BuildStrategy::GradientScaleStrategy::kCustomized);

  build_strategy.def(py::init())
      .def_property(
          "reduce_strategy",
          [](const BuildStrategy &self) { return self.reduce_; },
          [](BuildStrategy &self, BuildStrategy::ReduceStrategy strategy) {
2303 2304 2305 2306
            PADDLE_ENFORCE_NE(self.IsFinalized(), true,
                              platform::errors::PreconditionNotMet(
                                  "BuildStrategy has been finlaized, cannot be "
                                  "configured again."));
Y
yuyang18 已提交
2307
            self.reduce_ = strategy;
C
chengduo 已提交
2308
          },
2309
          R"DOC((fluid.BuildStrategy.ReduceStrategy, optional): there are two reduce
C
chengduo 已提交
2310 2311
                strategies in ParallelExecutor, AllReduce and Reduce. If you want
                that all the parameters' optimization are done on all devices independently,
2312
                you should choose AllReduce; otherwise, if you choose Reduce, all the parameters'
C
chengduo 已提交
2313 2314
                optimization will be evenly distributed to different devices, and then
                broadcast the optimized parameter to other devices.
2315
                Default is 'AllReduce'.
F
flame 已提交
2316 2317 2318 2319

                Examples:
                    .. code-block:: python

2320 2321 2322 2323 2324 2325 2326
                        import paddle
                        import paddle.static as static

                        paddle.enable_static()

                        build_strategy = static.BuildStrategy()
                        build_strategy.reduce_strategy = static.BuildStrategy.ReduceStrategy.Reduce
F
flame 已提交
2327
                  )DOC")
Y
yuyang18 已提交
2328 2329 2330 2331 2332
      .def_property(
          "gradient_scale_strategy",
          [](const BuildStrategy &self) { return self.gradient_scale_; },
          [](BuildStrategy &self,
             BuildStrategy::GradientScaleStrategy strategy) {
2333 2334 2335 2336
            PADDLE_ENFORCE_NE(self.IsFinalized(), true,
                              platform::errors::PreconditionNotMet(
                                  "BuildStrategy has been finlaized, cannot be "
                                  "configured again."));
Y
yuyang18 已提交
2337
            self.gradient_scale_ = strategy;
C
chengduo 已提交
2338
          },
2339
          R"DOC((paddle.static.BuildStrategy.GradientScaleStrategy, optional): there are three
2340
                ways of defining :math:`loss@grad` in ParallelExecutor, that is, CoeffNumDevice,
C
chengduo 已提交
2341 2342
                One and Customized. By default, ParallelExecutor sets the :math:`loss@grad`
                according to the number of devices. If you want to customize :math:`loss@grad`,
2343
                you can choose Customized. Default is 'CoeffNumDevice'.
F
flame 已提交
2344 2345 2346 2347

                Examples:
                    .. code-block:: python

C
chengduo 已提交
2348 2349
                        import numpy
                        import os
2350 2351 2352 2353
                        import paddle
                        import paddle.static as static

                        paddle.enable_static()
C
chengduo 已提交
2354 2355

                        use_cuda = True
2356 2357
                        place = paddle.CUDAPlace(0) if use_cuda else paddle.CPUPlace()
                        exe = static.Executor(place)
C
chengduo 已提交
2358 2359

                        # NOTE: If you use CPU to run the program, you need
2360
                        # to specify the CPU_NUM, otherwise, paddle will use
C
chengduo 已提交
2361 2362 2363 2364 2365 2366
                        # all the number of the logic core as the CPU_NUM,
                        # in that case, the batch size of the input should be
                        # greater than CPU_NUM, if not, the process will be
                        # failed by an exception.
                        if not use_cuda:
                            os.environ['CPU_NUM'] = str(2)
2367
                            places = static.cpu_places()
C
chengduo 已提交
2368
                        else:
2369
                            places = static.cuda_places()
C
chengduo 已提交
2370

2371 2372 2373 2374
                        data = static.data(name='X', shape=[None, 1], dtype='float32')
                        hidden = static.nn.fc(input=data, size=10)
                        loss = paddle.mean(hidden)
                        paddle.optimizer.SGD(learning_rate=0.01).minimize(loss)
C
chengduo 已提交
2375

2376
                        exe.run(static.default_startup_program())
C
chengduo 已提交
2377

2378
                        build_strategy = static.BuildStrategy()
C
chengduo 已提交
2379
                        build_strategy.gradient_scale_strategy = \
2380 2381 2382
                                  static.BuildStrategy.GradientScaleStrategy.Customized
                        compiled_prog = static.CompiledProgram(
                                  static.default_main_program()).with_data_parallel(
C
chengduo 已提交
2383
                                          loss_name=loss.name, build_strategy=build_strategy,
2384
                                          places=places)
C
chengduo 已提交
2385 2386 2387 2388 2389 2390

                        dev_count =  len(places)
                        x = numpy.random.random(size=(10, 1)).astype('float32')
                        loss_grad = numpy.ones((dev_count)).astype("float32") * 0.01
                        loss_grad_name = loss.name+"@GRAD"
                        loss_data = exe.run(compiled_prog,
2391 2392
                                              feed={"X": x, loss_grad_name : loss_grad},
                                              fetch_list=[loss.name, loss_grad_name])
F
flame 已提交
2393
                   )DOC")
Y
yuyang18 已提交
2394 2395 2396 2397
      .def_property(
          "debug_graphviz_path",
          [](const BuildStrategy &self) { return self.debug_graphviz_path_; },
          [](BuildStrategy &self, const std::string &path) {
2398 2399 2400 2401
            PADDLE_ENFORCE_NE(self.IsFinalized(), true,
                              platform::errors::PreconditionNotMet(
                                  "BuildStrategy has been finlaized, cannot be "
                                  "configured again."));
Y
yuyang18 已提交
2402
            self.debug_graphviz_path_ = path;
C
chengduo 已提交
2403
          },
2404
          R"DOC((str, optional): debug_graphviz_path indicates the path that
F
flame 已提交
2405
                writing the SSA Graph to file in the form of graphviz.
2406
                It is useful for debugging. Default is empty string, that is, ""
F
flame 已提交
2407 2408 2409 2410

                Examples:
                    .. code-block:: python

2411 2412 2413 2414
                        import paddle
                        import paddle.static as static

                        paddle.enable_static()
C
chengduo 已提交
2415

2416 2417
                        build_strategy = static.BuildStrategy()
                        build_strategy.debug_graphviz_path = "./graph"
F
flame 已提交
2418
                    )DOC")
S
sneaxiy 已提交
2419 2420 2421 2422 2423 2424
      .def_property(
          "enable_sequential_execution",
          [](const BuildStrategy &self) {
            return self.enable_sequential_execution_;
          },
          [](BuildStrategy &self, bool b) {
2425 2426 2427 2428
            PADDLE_ENFORCE_NE(self.IsFinalized(), true,
                              platform::errors::PreconditionNotMet(
                                  "BuildStrategy has been finlaized, cannot be "
                                  "configured again."));
S
sneaxiy 已提交
2429 2430
            self.enable_sequential_execution_ = b;
          },
2431 2432
          R"DOC((bool, optional): If set True, the execution order of ops would
                be the same as what is in the program. Default is False.
F
flame 已提交
2433 2434 2435 2436

                Examples:
                    .. code-block:: python

2437 2438 2439 2440 2441 2442
                        import paddle
                        import paddle.static as static

                        paddle.enable_static()

                        build_strategy = static.BuildStrategy()
F
flame 已提交
2443 2444
                        build_strategy.enable_sequential_execution = True
          )DOC")
S
sneaxiy 已提交
2445 2446 2447 2448 2449 2450
      .def_property(
          "remove_unnecessary_lock",
          [](const BuildStrategy &self) {
            return self.remove_unnecessary_lock_;
          },
          [](BuildStrategy &self, bool b) {
2451 2452 2453 2454
            PADDLE_ENFORCE_NE(self.IsFinalized(), true,
                              platform::errors::PreconditionNotMet(
                                  "BuildStrategy has been finlaized, cannot be "
                                  "configured again."));
S
sneaxiy 已提交
2455 2456
            self.remove_unnecessary_lock_ = b;
          },
2457 2458
          R"DOC((bool, optional): If set True, some locks in GPU ops would be
                released and ParallelExecutor would run faster. Default is True.
F
flame 已提交
2459 2460 2461 2462

                Examples:
                    .. code-block:: python

2463 2464 2465 2466 2467 2468
                        import paddle
                        import paddle.static as static

                        paddle.enable_static()

                        build_strategy = static.BuildStrategy()
F
flame 已提交
2469 2470
                        build_strategy.remove_unnecessary_lock = True
          )DOC")
2471 2472 2473 2474
      .def_property(
          "num_trainers",
          [](const BuildStrategy &self) { return self.num_trainers_; },
          [](BuildStrategy &self, int num_trainers) {
2475
#ifdef WIN32
2476
            PADDLE_THROW(platform::errors::Unavailable(
2477
                "Distribution mode is not supported on Windows platform."));
2478
#endif
2479 2480
            self.num_trainers_ = num_trainers;
          })
2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492
      .def_property(
          "trainers_endpoints",
          [](const BuildStrategy &self) { return self.trainers_endpoints_; },
          [](BuildStrategy &self,
             const std::vector<std::string> &trainers_endpoints) {
            self.trainers_endpoints_ = trainers_endpoints;
          })
      .def_property("trainer_id",
                    [](const BuildStrategy &self) { return self.trainer_id_; },
                    [](BuildStrategy &self, int trainer_id) {
                      self.trainer_id_ = trainer_id;
                    })
2493 2494 2495 2496 2497 2498
      .def_property(
          "nccl_comm_num",
          [](const BuildStrategy &self) { return self.nccl_comm_num_; },
          [](BuildStrategy &self, int nccl_comm_num) {
            self.nccl_comm_num_ = nccl_comm_num;
          })
2499 2500 2501 2502 2503 2504
      .def_property(
          "bkcl_comm_num",
          [](const BuildStrategy &self) { return self.bkcl_comm_num_; },
          [](BuildStrategy &self, int bkcl_comm_num) {
            self.bkcl_comm_num_ = bkcl_comm_num;
          })
2505
      .def_property("use_hierarchical_allreduce",
2506 2507 2508 2509 2510 2511
                    [](const BuildStrategy &self) {
                      return self.use_hierarchical_allreduce_;
                    },
                    [](BuildStrategy &self, bool use) {
                      self.use_hierarchical_allreduce_ = use;
                    })
2512
      .def_property("hierarchical_allreduce_inter_nranks",
2513 2514 2515 2516 2517 2518 2519
                    [](const BuildStrategy &self) {
                      return self.hierarchical_allreduce_inter_nranks_;
                    },
                    [](BuildStrategy &self, int nranks) {
                      self.hierarchical_allreduce_inter_nranks_ = nranks;
                    })

C
chengduo 已提交
2520 2521 2522 2523 2524 2525
      .def_property(
          "fuse_elewise_add_act_ops",
          [](const BuildStrategy &self) {
            return self.fuse_elewise_add_act_ops_;
          },
          [](BuildStrategy &self, bool b) {
2526 2527 2528 2529
            PADDLE_ENFORCE_NE(self.IsFinalized(), true,
                              platform::errors::PreconditionNotMet(
                                  "BuildStrategy has been finlaized, cannot be "
                                  "configured again."));
C
chengduo 已提交
2530 2531
            self.fuse_elewise_add_act_ops_ = b;
          },
2532
          R"DOC((bool, optional): fuse_elewise_add_act_ops indicate whether
F
flame 已提交
2533
                to fuse elementwise_add_op and activation_op,
2534
                it may make the execution faster. Default is False.
F
flame 已提交
2535 2536 2537 2538

                Examples:
                    .. code-block:: python

2539 2540 2541 2542 2543 2544
                        import paddle
                        import paddle.static as static

                        paddle.enable_static()

                        build_strategy = static.BuildStrategy()
F
flame 已提交
2545 2546
                        build_strategy.fuse_elewise_add_act_ops = True
                     )DOC")
Z
Zhen Wang 已提交
2547 2548 2549 2550
      .def_property(
          "fuse_bn_act_ops",
          [](const BuildStrategy &self) { return self.fuse_bn_act_ops_; },
          [](BuildStrategy &self, bool b) {
2551
            PADDLE_ENFORCE_NE(self.IsFinalized(), true,
Z
Zhen Wang 已提交
2552
                              platform::errors::PreconditionNotMet(
2553 2554
                                  "BuildStrategy has been finlaized, cannot be "
                                  "configured again."));
Z
Zhen Wang 已提交
2555 2556 2557 2558 2559 2560 2561 2562 2563
            self.fuse_bn_act_ops_ = b;
          },
          R"DOC((bool, optional): fuse_bn_act_ops indicate whether
                to fuse batch_norm and activation_op,
                it may make the execution faster. Default is False.

                Examples:
                    .. code-block:: python

2564 2565 2566 2567 2568 2569
                        import paddle
                        import paddle.static as static

                        paddle.enable_static()

                        build_strategy = static.BuildStrategy()
Z
Zhen Wang 已提交
2570 2571
                        build_strategy.fuse_bn_act_ops = True
                     )DOC")
Z
Zhang Ting 已提交
2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596
      .def_property(
          "fuse_bn_add_act_ops",
          [](const BuildStrategy &self) { return self.fuse_bn_add_act_ops_; },
          [](BuildStrategy &self, bool b) {
            PADDLE_ENFORCE_NE(self.IsFinalized(), true,
                              platform::errors::PreconditionNotMet(
                                  "BuildStrategy has been finlaized, cannot be "
                                  "configured again."));
            self.fuse_bn_add_act_ops_ = b;
          },
          R"DOC((bool, optional): fuse_bn_add_act_ops indicate whether
                to fuse batch_norm, elementwise_add and activation_op,
                it may make the execution faster. Default is True

                Examples:
                    .. code-block:: python

                        import paddle
                        import paddle.static as static

                        paddle.enable_static()

                        build_strategy = static.BuildStrategy()
                        build_strategy.fuse_bn_add_act_ops = True
                     )DOC")
2597 2598 2599 2600
      .def_property(
          "enable_auto_fusion",
          [](const BuildStrategy &self) { return self.enable_auto_fusion_; },
          [](BuildStrategy &self, bool b) {
2601
            PADDLE_ENFORCE_NE(self.IsFinalized(), true,
2602
                              platform::errors::PreconditionNotMet(
2603 2604
                                  "BuildStrategy has been finlaized, cannot be "
                                  "configured again."));
2605 2606 2607 2608 2609 2610 2611 2612 2613 2614
            self.enable_auto_fusion_ = b;
          },
          R"DOC((bool, optional): Whether to enable fusing subgraph to a
                fusion_group. Now we only support fusing subgraph that composed
                of elementwise-like operators, such as elementwise_add/mul
                without broadcast and activations.

                Examples:
                    .. code-block:: python

2615 2616 2617 2618 2619 2620
                        import paddle
                        import paddle.static as static

                        paddle.enable_static()

                        build_strategy = static.BuildStrategy()
2621 2622
                        build_strategy.enable_auto_fusion = True
                    )DOC")
2623 2624 2625 2626 2627 2628
      .def_property(
          "fuse_relu_depthwise_conv",
          [](const BuildStrategy &self) {
            return self.fuse_relu_depthwise_conv_;
          },
          [](BuildStrategy &self, bool b) {
2629 2630 2631 2632
            PADDLE_ENFORCE_NE(self.IsFinalized(), true,
                              platform::errors::PreconditionNotMet(
                                  "BuildStrategy has been finlaized, cannot be "
                                  "configured again."));
2633 2634
            self.fuse_relu_depthwise_conv_ = b;
          },
2635
          R"DOC((bool, optional): fuse_relu_depthwise_conv indicate whether
F
flame 已提交
2636 2637 2638
                to fuse relu and depthwise_conv2d,
                it will save GPU memory and may make the execution faster.
                This options is only available in GPU devices.
2639
                Default is False.
F
flame 已提交
2640 2641 2642 2643

                Examples:
                    .. code-block:: python

2644 2645 2646 2647 2648 2649
                        import paddle
                        import paddle.static as static

                        paddle.enable_static()

                        build_strategy = static.BuildStrategy()
F
flame 已提交
2650 2651
                        build_strategy.fuse_relu_depthwise_conv = True
          )DOC")
C
chengduo 已提交
2652 2653 2654 2655 2656 2657
      .def_property("fuse_broadcast_ops",
                    [](const BuildStrategy &self) {
                      return self.fuse_broadcast_ops_ == true ||
                             self.fuse_broadcast_ops_ == boost::none;
                    },
                    [](BuildStrategy &self, bool b) {
2658 2659 2660 2661
                      PADDLE_ENFORCE_NE(self.IsFinalized(), true,
                                        platform::errors::PreconditionNotMet(
                                            "BuildStrategy has been finlaized, "
                                            "cannot be configured again."));
C
chengduo 已提交
2662 2663
                      self.fuse_broadcast_ops_ = b;
                    },
2664
                    R"DOC((bool, optional): fuse_broadcast_op indicates whether
2665 2666 2667 2668
                      to fuse the broadcast ops. Note that, in Reduce mode,
                      fusing broadcast ops may make the program faster. Because
                      fusing broadcast OP equals delaying the execution of all
                      broadcast Ops, in this case, all nccl streams are used only
2669 2670 2671 2672 2673
                      for NCCLReduce operations for a period of time. Default False.

                      Examples:
                          .. code-block:: python

2674 2675 2676 2677 2678 2679
                              import paddle
                              import paddle.static as static

                              paddle.enable_static()

                              build_strategy = static.BuildStrategy()
2680 2681
                              build_strategy.fuse_broadcast_ops = True
                    )DOC")
C
chengduo 已提交
2682 2683
      .def_property("fuse_all_optimizer_ops",
                    [](const BuildStrategy &self) {
C
chengduo 已提交
2684 2685
                      return self.fuse_all_optimizer_ops_ == true ||
                             self.fuse_all_optimizer_ops_ == boost::none;
C
chengduo 已提交
2686 2687
                    },
                    [](BuildStrategy &self, bool b) {
2688 2689 2690 2691
                      PADDLE_ENFORCE_NE(self.IsFinalized(), true,
                                        platform::errors::PreconditionNotMet(
                                            "BuildStrategy has been finlaized, "
                                            "cannot be configured again."));
C
chengduo 已提交
2692 2693
                      self.fuse_all_optimizer_ops_ = b;
                    })
Q
qingqing01 已提交
2694 2695 2696 2697
      .def_property(
          "sync_batch_norm",
          [](const BuildStrategy &self) { return self.sync_batch_norm_; },
          [](BuildStrategy &self, bool b) {
2698 2699 2700 2701
            PADDLE_ENFORCE_NE(self.IsFinalized(), true,
                              platform::errors::PreconditionNotMet(
                                  "BuildStrategy has been finlaized, cannot be "
                                  "configured again."));
Q
qingqing01 已提交
2702 2703
            self.sync_batch_norm_ = b;
          },
2704
          R"DOC((bool, optional): sync_batch_norm indicates whether to use
Q
qingqing01 已提交
2705 2706 2707
                synchronous batch normalization which synchronizes the mean
                and variance through multi-devices in training phase.
                Current implementation doesn't support FP16 training and CPU.
2708 2709
                And only synchronous on one machine, not all machines. 
                Default is False.
F
flame 已提交
2710 2711 2712 2713

                Examples:
                    .. code-block:: python

2714 2715 2716 2717 2718 2719
                        import paddle
                        import paddle.static as static

                        paddle.enable_static()

                        build_strategy = static.BuildStrategy()
F
flame 已提交
2720 2721
                        build_strategy.sync_batch_norm = True
                )DOC")
D
dzhwinter 已提交
2722 2723
      .def_property(
          "memory_optimize",
2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737
          [](const BuildStrategy &self) -> py::object {
            if (self.memory_optimize_) {
              return py::cast(self.memory_optimize_.get());
            } else {
              return py::cast(nullptr);
            }
          },
          [](BuildStrategy &self, const py::handle &value) {
            auto *py_obj = value.ptr();
            if (py_obj == nullptr || py_obj == Py_None) {
              self.memory_optimize_ = boost::none;
            } else if (PyBool_Check(py_obj)) {
              self.memory_optimize_ = (py_obj == Py_True);
            } else {
2738 2739 2740
              PADDLE_THROW(platform::errors::InvalidArgument(
                  "BuildStrategy.memory_optimize must be set to None, False or "
                  "True"));
2741 2742
            }
          },
2743
          R"DOC((bool, optional): memory opitimize aims to save total memory
2744
                consumption, set to True to enable it.
2745

2746 2747 2748
                Default None. None means framework would choose to use or not use 
                this strategy automatically. Currently, None means that it is 
                enabled when GC is disabled, and disabled when GC is enabled. 
2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762
                True means enabling and False means disabling. Default is None.

                Examples:
                    .. code-block:: python

                        import paddle
                        import paddle.static as static

                        paddle.enable_static()

                        build_strategy = static.BuildStrategy()
                        build_strategy.memory_optimize = True
                
                )DOC")
2763 2764 2765
      .def_property(
          "is_distribution",
          [](const BuildStrategy &self) { return self.is_distribution_; },
2766 2767 2768
          [](BuildStrategy &self, bool b) {
#ifdef WIN32
            if (b) {
2769
              PADDLE_THROW(platform::errors::Unavailable(
2770
                  "Distribution mode is not supported on Windows platform."));
2771 2772 2773 2774 2775
            }
#else
            self.is_distribution_ = b;
#endif
          })
Q
can run  
Qiao Longfei 已提交
2776 2777 2778
      .def_property("async_mode",
                    [](const BuildStrategy &self) { return self.async_mode_; },
                    [](BuildStrategy &self, bool b) { self.async_mode_ = b; })
D
dzhwinter 已提交
2779
      .def_property(
D
dzhwinter 已提交
2780 2781 2782
          "enable_inplace",
          [](const BuildStrategy &self) { return self.enable_inplace_; },
          [](BuildStrategy &self, bool b) { self.enable_inplace_ = b; })
2783 2784 2785 2786
      .def_property(
          "enable_addto",
          [](const BuildStrategy &self) { return self.enable_addto_; },
          [](BuildStrategy &self, bool b) { self.enable_addto_ = b; })
C
chengduo 已提交
2787 2788
      .def_property(
          "fuse_all_reduce_ops",
C
chengduo 已提交
2789 2790 2791 2792
          [](const BuildStrategy &self) {
            return self.fuse_all_reduce_ops_ == true ||
                   self.fuse_all_reduce_ops_ == boost::none;
          },
C
chengduo 已提交
2793
          [](BuildStrategy &self, bool b) { self.fuse_all_reduce_ops_ = b; })
2794 2795 2796 2797 2798 2799 2800
      .def_property("enable_backward_optimizer_op_deps",
                    [](const BuildStrategy &self) {
                      return self.enable_backward_optimizer_op_deps_;
                    },
                    [](BuildStrategy &self, bool b) {
                      self.enable_backward_optimizer_op_deps_ = b;
                    })
2801 2802 2803 2804
      .def_property(
          "cache_runtime_context",
          [](const BuildStrategy &self) { return self.cache_runtime_context_; },
          [](BuildStrategy &self, bool b) { self.cache_runtime_context_ = b; })
2805 2806 2807 2808 2809 2810 2811 2812 2813
      .def_property(
          "mkldnn_enabled_op_types",
          [](const BuildStrategy &self) {
            return self.mkldnn_enabled_op_types_;
          },
          [](BuildStrategy &self,
             const std::unordered_set<std::string> &mkldnn_enabled_op_types) {
            self.mkldnn_enabled_op_types_ = mkldnn_enabled_op_types;
          })
2814
      .def("_finalize_strategy_and_create_passes",
X
fix  
Xin Pan 已提交
2815
           [](BuildStrategy &self) -> std::shared_ptr<ir::PassBuilder> {
2816 2817 2818 2819 2820
             return self.CreatePassesFromStrategy(true);
           },
           R"DOC(Allow user to customized passes. Normally model-specific
                optimization passes should be defined in this way. BuildStrategy
                cannot be updated after being finalized.)DOC");
Y
yuyang18 已提交
2821 2822

  pe.def(py::init<const std::vector<platform::Place> &,
Y
Yan Xu 已提交
2823
                  const std::vector<std::string> &, const std::string &,
X
Xin Pan 已提交
2824
                  Scope *, std::vector<Scope *> &, const ExecutionStrategy &,
X
Xin Pan 已提交
2825
                  const BuildStrategy &, ir::Graph *>())
Y
Yu Yang 已提交
2826 2827 2828 2829
      // NOTE: even we return a vec<Scope*>* to Python use reference policy.
      // We still cannot get local_scope from this vector, since the element
      // of vec<Scope*> will be freed by Python GC. We can only return Scope*
      // one by one and mark them as reference.
2830 2831 2832 2833 2834
      .def("local_scopes",
           [](ParallelExecutor &self) -> std::vector<Scope *> * {
             return &self.GetLocalScopes();
           },
           py::return_value_policy::reference)
2835 2836 2837
      .def("drop_local_exe_scopes", &ParallelExecutor::DropLocalExeScopes)
      .def("_need_create_local_exe_scopes",
           &ParallelExecutor::NeedCreateLocalExeScope)
Y
Yu Yang 已提交
2838 2839 2840 2841
      .def("feed_tensors_into_local_scopes",
           &ParallelExecutor::FeedTensorsIntoLocalScopes)
      .def("feed_and_split_tensor_into_local_scopes",
           &ParallelExecutor::FeedAndSplitTensorIntoLocalScopes)
2842 2843
      .def("run",
           [](ParallelExecutor &self,
Z
Zhen Wang 已提交
2844 2845 2846 2847 2848 2849 2850 2851
              const std::vector<std::string> &fetch_tensors,
              bool return_merged) -> py::object {
             paddle::framework::FetchResultType ret;
             {
               pybind11::gil_scoped_release release;
               ret = self.Run(fetch_tensors, return_merged);
             }
             if (return_merged) {
2852
               return py::cast(
2853
                   std::move(BOOST_GET(paddle::framework::FetchList, ret)));
Z
Zhen Wang 已提交
2854 2855
             } else {
               return py::cast(std::move(
2856
                   BOOST_GET(paddle::framework::FetchUnmergedList, ret)));
Z
Zhen Wang 已提交
2857
             }
2858 2859
           })
      .def("device_count", &ParallelExecutor::DeviceCount);
Y
Yu Yang 已提交
2860

D
dongdaxiang 已提交
2861
  BindFleetWrapper(&m);
T
Thunderbrook 已提交
2862

T
Thunderbrook 已提交
2863 2864
#ifdef PADDLE_WITH_PSLIB
  BindHeterWrapper(&m);
T
Thunderbrook 已提交
2865
#endif
2866 2867
#if (defined PADDLE_WITH_NCCL || defined PADDLE_WITH_RCCL) && \
    (defined PADDLE_WITH_PSLIB)
T
Thunderbrook 已提交
2868
  BindPSGPUWrapper(&m);
T
Thunderbrook 已提交
2869
#endif
2870
  BindGlooWrapper(&m);
H
hutuxian 已提交
2871
  BindBoxHelper(&m);
H
hutuxian 已提交
2872 2873 2874
#ifdef PADDLE_WITH_BOX_PS
  BindBoxWrapper(&m);
#endif
2875
#if defined(PADDLE_WITH_NCCL) || defined(PADDLE_WITH_RCCL)
D
dongdaxiang 已提交
2876
  BindNCCLWrapper(&m);
2877 2878 2879
#endif
#ifdef PADDLE_WITH_GLOO
  BindGlooContext(&m);
W
wopeizl 已提交
2880
#endif
F
flame 已提交
2881 2882
  BindGraph(&m);
  BindNode(&m);
F
flame 已提交
2883
  BindInferenceApi(&m);
2884
  BindCompatible(&m);
2885
  BindDataset(&m);
Y
yaoxuefeng 已提交
2886
  BindGenerator(&m);
2887 2888 2889 2890
#ifdef PADDLE_WITH_ASCEND
  BindAscendWrapper(&m);
  BindAscendGraph(&m);
#endif
Y
Yanghello 已提交
2891 2892 2893
#ifdef PADDLE_WITH_CRYPTO
  BindCrypto(&m);
#endif
T
tangwei12 已提交
2894

T
tangwei12 已提交
2895
#if defined PADDLE_WITH_PSCORE
T
tangwei12 已提交
2896 2897
  BindDistFleetWrapper(&m);
  BindPSHost(&m);
2898
  BindCommunicatorContext(&m);
T
tangwei12 已提交
2899 2900
  BindDistCommunicator(&m);
  BindHeterClient(&m);
2901
#endif
L
Luo Tao 已提交
2902
}
2903
}  // namespace pybind
2904
}  // namespace paddle