pybind.cc 71.7 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
2 3 4 5 6

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

7
http://www.apache.org/licenses/LICENSE-2.0
8 9 10 11 12 13

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
L
lgone2000 已提交
14
#include <Python.h>
C
chengduoZH 已提交
15
#include <algorithm>
16
#include <cstdlib>
C
chengduoZH 已提交
17
#include <map>
S
sneaxiy 已提交
18
#include <memory>
C
chengduoZH 已提交
19 20 21
#include <mutex>  // NOLINT // for call_once
#include <string>
#include <unordered_map>
22
#include <unordered_set>
C
chengduoZH 已提交
23 24
#include <utility>
#include <vector>
25

Y
Yi Wang 已提交
26 27 28
#include "paddle/fluid/framework/executor.h"
#include "paddle/fluid/framework/feed_fetch_method.h"
#include "paddle/fluid/framework/framework.pb.h"
S
sneaxiy 已提交
29
#include "paddle/fluid/framework/garbage_collector.h"
30
#include "paddle/fluid/framework/ir/coalesce_grad_tensor_pass.h"
31
#include "paddle/fluid/framework/ir/pass_builder.h"
Y
Yi Wang 已提交
32 33 34
#include "paddle/fluid/framework/lod_rank_table.h"
#include "paddle/fluid/framework/lod_tensor.h"
#include "paddle/fluid/framework/lod_tensor_array.h"
35
#include "paddle/fluid/framework/op_compatible_info.h"
S
sneaxiy 已提交
36
#include "paddle/fluid/framework/op_info.h"
37
#include "paddle/fluid/framework/op_registry.h"
Y
Yu Yang 已提交
38
#include "paddle/fluid/framework/parallel_executor.h"
Y
Yi Wang 已提交
39
#include "paddle/fluid/framework/prune.h"
Y
Refine  
Yu Yang 已提交
40
#include "paddle/fluid/framework/reader.h"
S
sneaxiy 已提交
41
#include "paddle/fluid/framework/scope_pool.h"
Y
Yi Wang 已提交
42
#include "paddle/fluid/framework/selected_rows.h"
X
Xin Pan 已提交
43
#include "paddle/fluid/framework/version.h"
Y
Refine  
Yu Yang 已提交
44
#include "paddle/fluid/memory/allocation/allocator_strategy.h"
D
dzhwinter 已提交
45
#include "paddle/fluid/operators/activation_op.h"
S
sneaxiy 已提交
46
#include "paddle/fluid/operators/py_func_op.h"
S
sneaxiy 已提交
47
#include "paddle/fluid/operators/reader/lod_tensor_blocking_queue.h"
48
#include "paddle/fluid/platform/cpu_helper.h"
Y
Yu Yang 已提交
49
#include "paddle/fluid/platform/cpu_info.h"
50
#include "paddle/fluid/platform/dynload/dynamic_loader.h"
Y
Yi Wang 已提交
51
#include "paddle/fluid/platform/enforce.h"
52
#include "paddle/fluid/platform/init.h"
Y
Yi Wang 已提交
53 54
#include "paddle/fluid/platform/place.h"
#include "paddle/fluid/platform/profiler.h"
H
hutuxian 已提交
55
#include "paddle/fluid/pybind/box_helper_py.h"
Y
Yi Wang 已提交
56
#include "paddle/fluid/pybind/const_value.h"
D
dongdaxiang 已提交
57
#include "paddle/fluid/pybind/data_set_py.h"
Y
Yi Wang 已提交
58
#include "paddle/fluid/pybind/exception.h"
D
dongdaxiang 已提交
59
#include "paddle/fluid/pybind/fleet_wrapper_py.h"
60
#include "paddle/fluid/pybind/imperative.h"
F
flame 已提交
61
#include "paddle/fluid/pybind/inference_api.h"
F
flame 已提交
62
#include "paddle/fluid/pybind/ir.h"
63

W
wopeizl 已提交
64
#ifndef _WIN32
D
dongdaxiang 已提交
65
#include "paddle/fluid/pybind/nccl_wrapper_py.h"
W
wopeizl 已提交
66
#endif
67
#include "paddle/fluid/framework/data_type.h"
68 69
#include "paddle/fluid/pybind/protobuf.h"
#include "paddle/fluid/pybind/pybind.h"  // NOLINT
S
sneaxiy 已提交
70
#include "paddle/fluid/pybind/reader_py.h"
Y
Yi Wang 已提交
71
#include "paddle/fluid/pybind/tensor_py.h"
72
#include "paddle/fluid/string/to_string.h"
D
Dong Zhihong 已提交
73
#ifdef PADDLE_WITH_CUDA
P
peizhilin 已提交
74
#ifndef _WIN32
Y
Yi Wang 已提交
75
#include "paddle/fluid/operators/nccl/nccl_gpu_common.h"
P
peizhilin 已提交
76
#endif
Y
Yi Wang 已提交
77 78
#include "paddle/fluid/platform/cuda_profiler.h"
#include "paddle/fluid/platform/gpu_info.h"
D
Dong Zhihong 已提交
79 80
#endif

81 82 83 84
#ifdef PADDLE_WITH_DISTRIBUTE
#include "paddle/fluid/pybind/communicator_py.h"
#endif

M
minqiyang 已提交
85 86
#include "pybind11/stl.h"

87 88 89
DEFINE_bool(reader_queue_speed_test_mode, false,
            "If set true, the queue.pop will only get data from queue but not "
            "remove the data from queue for speed testing");
90
DECLARE_bool(use_mkldnn);
91 92 93
#ifdef PADDLE_WITH_NGRAPH
DECLARE_bool(use_ngraph);
#endif
94

Q
Qiao Longfei 已提交
95 96 97
// disable auto conversion to list in Python
PYBIND11_MAKE_OPAQUE(paddle::framework::LoDTensorArray);

98
namespace paddle {
99
namespace pybind {
100
bool IsCompiledWithCUDA() {
101
#ifndef PADDLE_WITH_CUDA
Q
qijun 已提交
102 103 104 105 106 107
  return false;
#else
  return true;
#endif
}

108 109 110 111 112 113 114 115
bool IsCompiledWithMKLDNN() {
#ifndef PADDLE_WITH_MKLDNN
  return false;
#else
  return true;
#endif
}

116 117 118 119 120 121 122 123
bool IsCompiledWithNGRAPH() {
#ifndef PADDLE_WITH_NGRAPH
  return false;
#else
  return true;
#endif
}

124
bool IsCompiledWithBrpc() {
125
#ifndef PADDLE_WITH_DISTRIBUTE
126 127
  return false;
#endif
128 129 130 131 132 133

#ifdef PADDLE_WITH_GRPC
  return false;
#endif

  return true;
134 135
}

Y
update  
Yancey1989 已提交
136
bool IsCompiledWithDIST() {
Y
Yancey1989 已提交
137
#ifdef PADDLE_WITH_DISTRIBUTE
Y
update  
Yancey1989 已提交
138 139 140 141 142 143
  return true;
#else
  return false;
#endif
}

S
sneaxiy 已提交
144 145 146 147 148 149 150 151 152 153
template <typename PlaceType1, typename PlaceType2>
static inline bool IsSamePlace(const PlaceType1 &p1, const PlaceType2 &p2) {
  return paddle::platform::Place(p1) == paddle::platform::Place(p2);
}

template <typename PlaceType>
static inline int PlaceIndex(const PlaceType &p) {
  return static_cast<int>(paddle::platform::Place(p).which());
}

154 155 156 157 158 159
#ifdef PADDLE_WITH_AVX
PYBIND11_MODULE(core_avx, m) {
#else
PYBIND11_MODULE(core_noavx, m) {
#endif

Y
Yu Yang 已提交
160 161 162
  // Not used, just make sure cpu_info.cc is linked.
  paddle::platform::CpuTotalPhysicalMemory();

Y
Refine  
Yu Yang 已提交
163
  paddle::memory::allocation::UseAllocatorStrategyGFlag();
S
sneaxiy 已提交
164

165
  m.doc() = "C++ core of PaddlePaddle";
166

167 168 169 170
  // using framework in this function. Since it is inside a function, it will
  // not cause namespace pollution.
  using namespace paddle::framework;  // NOLINT

171
  BindException(&m);
Y
Yu Yang 已提交
172

173 174
  m.def("set_num_threads", &platform::SetNumThreads);

175 176 177 178 179 180
  m.def("save_op_compatible_info", [](framework::ProgramDesc &desc) {
    framework::OpCompatibleMap op_compatible_map;
    op_compatible_map.InitOpCompatibleMap();
    return op_compatible_map.ConvertToProto(desc.OpCompatibleMap());
  });

S
sneaxiy 已提交
181
  m.def(
S
sneaxiy 已提交
182
      "_append_python_callable_object_and_return_id",
S
sneaxiy 已提交
183 184 185 186
      [](py::object py_obj) -> size_t {
        return paddle::operators::AppendPythonCallableObjectAndReturnId(py_obj);
      });

S
sneaxiy 已提交
187 188 189
  m.def("_get_use_default_grad_op_desc_maker_ops",
        [] { return OpInfoMap::Instance().GetUseDefaultGradOpDescMakerOps(); });

S
sneaxiy 已提交
190 191 192
  // NOTE(zjl): ctest would load environment variables at the beginning even
  // though we have not `import paddle.fluid as fluid`. So we add this API
  // to enable eager deletion mode in unittest.
S
sneaxiy 已提交
193
  m.def("_set_eager_deletion_mode", &paddle::framework::SetEagerDeletionMode);
S
sneaxiy 已提交
194

195
  m.def("_set_fuse_parameter_group_size",
196
        &paddle::framework::ir::SetFuseParameterGroupsSize);
197
  m.def("_set_fuse_parameter_memory_size",
198
        &paddle::framework::ir::SetFuseParameterMemorySize);
199

S
sneaxiy 已提交
200 201 202
  m.add_object("_cleanup",
               py::capsule([]() { ScopePool::Instance().Clear(); }));

203 204
  m.def("_set_paddle_lib_path", &paddle::platform::dynload::SetPaddleLibPath);

205
  BindImperative(&m);
206

207
  py::class_<Tensor>(m, "Tensor", py::buffer_protocol())
208
      .def("__array__", [](Tensor &self) { return TensorToPyArray(self); })
S
sneaxiy 已提交
209 210
      .def("_is_initialized",
           [](const Tensor &self) { return self.IsInitialized(); })
Y
yuyang18 已提交
211
      .def("_get_dims",
212
           [](const Tensor &self) { return vectorize(self.dims()); })
Y
yuyang18 已提交
213
      .def("_set_dims",
Q
qijun 已提交
214
           [](Tensor &self, const std::vector<int64_t> &dim) {
Y
Yu Yang 已提交
215
             self.Resize(make_ddim(dim));
Y
Yu Yang 已提交
216
           })
Y
yuyang18 已提交
217
      .def("_set_layout",
D
dzhwinter 已提交
218 219 220
           [](Tensor &self, const std::string &layout) {
             self.set_layout(StringToDataLayout(layout));
           })
Y
yuyang18 已提交
221
      .def("_alloc_float",
D
dzhwinter 已提交
222
           [](Tensor &self, paddle::platform::CUDAPlace &place) {
Q
qijun 已提交
223
             self.mutable_data<float>(place);
Y
Yu Yang 已提交
224
           })
Y
yuyang18 已提交
225
      .def("_alloc_float",
Y
Yu Yang 已提交
226
           [](Tensor &self, paddle::platform::CPUPlace &place) {
Q
qijun 已提交
227
             self.mutable_data<float>(place);
Y
Yu Yang 已提交
228
           })
229 230 231 232
      .def("_alloc_double",
           [](Tensor &self, paddle::platform::CPUPlace &place) {
             self.mutable_data<double>(place);
           })
Y
yuyang18 已提交
233
      .def("_alloc_int",
Y
Yu Yang 已提交
234
           [](Tensor &self, paddle::platform::CPUPlace &place) {
Q
qijun 已提交
235
             self.mutable_data<int>(place);
Y
Yu Yang 已提交
236
           })
Y
yuyang18 已提交
237
      .def("_alloc_int",
D
dzhwinter 已提交
238
           [](Tensor &self, paddle::platform::CUDAPlace &place) {
Q
qijun 已提交
239
             self.mutable_data<int>(place);
Q
qijun 已提交
240
           })
Y
yuyang18 已提交
241
      .def("_alloc_int",
C
chengduoZH 已提交
242 243 244
           [](Tensor &self, paddle::platform::CUDAPinnedPlace &place) {
             self.mutable_data<int>(place);
           })
Y
yuyang18 已提交
245
      .def("_alloc_float",
C
chengduoZH 已提交
246 247 248
           [](Tensor &self, paddle::platform::CUDAPinnedPlace &place) {
             self.mutable_data<float>(place);
           })
249 250 251 252 253 254 255 256 257 258 259 260 261 262 263
      .def("_mutable_data",
           [](Tensor &self, paddle::platform::CPUPlace &place,
              paddle::framework::proto::VarType::Type type) {
             return reinterpret_cast<uintptr_t>(self.mutable_data(place, type));
           })
      .def("_mutable_data",
           [](Tensor &self, paddle::platform::CUDAPlace &place,
              paddle::framework::proto::VarType::Type type) {
             return reinterpret_cast<uintptr_t>(self.mutable_data(place, type));
           })
      .def("_mutable_data",
           [](Tensor &self, paddle::platform::CUDAPinnedPlace &place,
              paddle::framework::proto::VarType::Type type) {
             return reinterpret_cast<uintptr_t>(self.mutable_data(place, type));
           })
Z
Zeng Jinle 已提交
264
      .def("_clear", &Tensor::clear)
Y
Yu Yang 已提交
265 266
      .def("set", PyCPUTensorSetFromArray<float>)
      .def("set", PyCPUTensorSetFromArray<int>)
267
      .def("set", PyCPUTensorSetFromArray<double>)
268
      .def("set", PyCPUTensorSetFromArray<int64_t>)
Y
Yu Yang 已提交
269
      .def("set", PyCPUTensorSetFromArray<bool>)
270
      .def("set", PyCPUTensorSetFromArray<uint16_t>)
F
fengjiayi 已提交
271
      .def("set", PyCPUTensorSetFromArray<uint8_t>)
Q
qingqing01 已提交
272
      .def("set", PyCPUTensorSetFromArray<int8_t>)
273
#ifdef PADDLE_WITH_CUDA
Y
Yu Yang 已提交
274 275
      .def("set", PyCUDATensorSetFromArray<float>)
      .def("set", PyCUDATensorSetFromArray<int>)
276
      .def("set", PyCUDATensorSetFromArray<double>)
277
      .def("set", PyCUDATensorSetFromArray<int64_t>)
Y
Yu Yang 已提交
278
      .def("set", PyCUDATensorSetFromArray<bool>)
279
      .def("set", PyCUDATensorSetFromArray<uint16_t>)
F
fengjiayi 已提交
280
      .def("set", PyCUDATensorSetFromArray<uint8_t>)
Q
qingqing01 已提交
281
      .def("set", PyCUDATensorSetFromArray<int8_t>)
C
chengduoZH 已提交
282 283 284 285 286 287
      .def("set", PyCUDAPinnedTensorSetFromArray<float>)
      .def("set", PyCUDAPinnedTensorSetFromArray<int>)
      .def("set", PyCUDAPinnedTensorSetFromArray<double>)
      .def("set", PyCUDAPinnedTensorSetFromArray<int64_t>)
      .def("set", PyCUDAPinnedTensorSetFromArray<bool>)
      .def("set", PyCUDAPinnedTensorSetFromArray<uint16_t>)
F
fengjiayi 已提交
288
      .def("set", PyCUDAPinnedTensorSetFromArray<uint8_t>)
Q
qingqing01 已提交
289
      .def("set", PyCUDAPinnedTensorSetFromArray<int8_t>)
Q
qijun 已提交
290
#endif
291
      .def("shape", [](Tensor &self) { return vectorize(self.dims()); })
Y
yuyang18 已提交
292 293 294 295
      .def("_set_float_element", TensorSetElement<float>)
      .def("_get_float_element", TensorGetElement<float>)
      .def("_set_double_element", TensorSetElement<double>)
      .def("_get_double_element", TensorGetElement<double>)
X
xuezhong 已提交
296
      .def("_place", [](Tensor &self) { return self.place(); })
W
wopeizl 已提交
297
      .def("_dtype", [](Tensor &self) { return self.type(); })
298 299 300 301 302 303
      .def("__getitem__", PySliceTensor, py::return_value_policy::reference)
      .def("__str__", [](const Tensor &self) {
        std::stringstream ostr;
        ostr << self;
        return ostr.str();
      });
Y
Yu Yang 已提交
304

X
Xin Pan 已提交
305 306 307 308 309 310 311 312 313
  py::class_<LoDTensor, Tensor>(m, "LoDTensor", R"DOC(
    LoDTensor is a Tensor with optional LoD information.

    np.array(lod_tensor) can convert LoDTensor to numpy array.
    lod_tensor.lod() can retrieve the LoD information.

    LoD is short for Level of Details and is usually used for varied sequence
    length. You can skip the following comment if you don't need optional LoD.

314 315
    For example, a LoDTensor X can look like the example below. It contains
    2 sequences. The first has length 2 and the second has length 3, as
Z
Zeng Jinle 已提交
316
    described by x.lod.
X
Xin Pan 已提交
317

Z
Zeng Jinle 已提交
318 319 320
    The first tensor dimension 5=2+3 is calculated from LoD if it's available.
    It means the total number of sequence element. In X, each element has 2
    columns, hence [5, 2].
X
Xin Pan 已提交
321

Z
Zeng Jinle 已提交
322
    x.lod  = [[2, 3]]
323

Z
Zeng Jinle 已提交
324
    x.data = [[1, 2], [3, 4], [5, 6], [7, 8], [9, 10]]
X
Xin Pan 已提交
325

Z
Zeng Jinle 已提交
326
    x.shape = [5, 2]
X
Xin Pan 已提交
327

Z
Zeng Jinle 已提交
328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344
    LoD can have multiple levels (for example, a paragraph can have multiple
    sentences and a sentence can have multiple words). In the following
    LodTensor Y, the lod_level is 2. It means there are 2 sequence, the
    first sequence length is 2 (has 2 sub-sequences), the second one's
    length is 1. The first sequence's 2 sub-sequences have length 2 and 2,
    respectively. And the second sequence's 1 sub-sequence has length 3.

    y.lod = [[2 1], [2 2 3]]

    y.shape = [2+2+3, ...]

    Examples:
        .. code-block:: python

          import paddle.fluid as fluid

          t = fluid.LoDTensor()
X
Xin Pan 已提交
345 346 347 348 349 350 351 352 353 354 355 356

  Note:
      In above description, LoD is length-based. In Paddle internal
      implementation, lod is offset-based. Hence, internally,
      y.lod is represented as [[0, 2, 3], [0, 2, 4, 7]] (length-based
      equivlent would be [[2-0, 3-2], [2-0, 4-2, 7-4]]).

      Sometimes LoD is called recursive_sequence_length to be more
      self-explanatory. In this case, it must be length-based. Due to history
      reasons. when LoD is called lod in public API, it might be offset-based.
      Users should be careful about it.
        )DOC")
357
      .def("__array__", [](Tensor &self) { return TensorToPyArray(self); })
358 359 360 361 362 363 364 365 366
      .def("__init__",
           [](LoDTensor &instance, const std::vector<std::vector<size_t>>
                                       &recursive_sequence_lengths) {
             LoD new_lod;
             new_lod.reserve(recursive_sequence_lengths.size());
             std::copy(recursive_sequence_lengths.begin(),
                       recursive_sequence_lengths.end(),
                       std::back_inserter(new_lod));
             LoD new_offset_lod = ConvertToOffsetBasedLoD(new_lod);
C
chengduo 已提交
367 368
             PADDLE_ENFORCE_EQ(
                 CheckLoD(new_offset_lod, -1), true,
369 370 371
                 "the provided recursive_sequence_lengths info is invalid");
             new (&instance) LoDTensor(new_offset_lod);
           })
Y
Yu Yang 已提交
372
      .def("__init__", [](LoDTensor &instance) { new (&instance) LoDTensor(); })
G
gongweibao 已提交
373 374 375 376 377
      // We implement offset based LOD in C++ while we use length based with
      // Python API. So we changed set_lod to set_recursive_sequence_lengths to
      // avoid misuse.
      // The discussion is here:
      // https://github.com/PaddlePaddle/Paddle/issues/10855
D
dangqingqing 已提交
378
      .def("set_lod",
379
           [](LoDTensor &self, const std::vector<std::vector<size_t>> &lod) {
380
             // the input lod is offset-based level-of-detail info
Y
Yu Yang 已提交
381
             LoD new_lod;
382 383
             new_lod.reserve(lod.size());
             std::copy(lod.begin(), lod.end(), std::back_inserter(new_lod));
C
chengduo 已提交
384 385 386
             PADDLE_ENFORCE_EQ(
                 CheckLoD(new_lod, vectorize(self.dims()).front()), true,
                 "the provided lod info is invalid");
387
             self.set_lod(new_lod);
S
sneaxiy 已提交
388 389 390 391 392 393
           },
           py::arg("lod"), R"DOC(
           Set LoD of the LoDTensor.

           Args:
               lod (List[List[int]]): the lod to be set.
Z
Zeng Jinle 已提交
394 395 396 397 398 399 400 401 402 403

           Examples:
               .. code-block:: python

                 import paddle.fluid as fluid
                 import numpy as np

                 t = fluid.LoDTensor()
                 t.set(np.ndarray([5, 30]), fluid.CPUPlace())
                 t.set_lod([[0, 2, 5]])
S
sneaxiy 已提交
404
           )DOC")
405 406 407 408 409 410 411 412 413 414 415
      .def("set_recursive_sequence_lengths",
           [](LoDTensor &self, const std::vector<std::vector<size_t>>
                                   &recursive_sequence_lengths) {
             // the input recursive_sequence_lengths is length-based
             // level-of-detail info
             LoD new_lod;
             new_lod.reserve(recursive_sequence_lengths.size());
             std::copy(recursive_sequence_lengths.begin(),
                       recursive_sequence_lengths.end(),
                       std::back_inserter(new_lod));
             LoD new_offset_lod = ConvertToOffsetBasedLoD(new_lod);
C
chengduo 已提交
416 417
             PADDLE_ENFORCE_EQ(
                 CheckLoD(new_offset_lod, vectorize(self.dims()).front()), true,
418 419
                 "the provided recursive_sequence_lengths info is invalid");
             self.set_lod(new_offset_lod);
S
sneaxiy 已提交
420 421 422 423
           },
           py::arg("recursive_sequence_lengths"), R"DOC(
           Set LoD of the LoDTensor according to recursive sequence length.

S
sneaxiy 已提交
424
           For example, if recursive_sequence_lengths=[[2, 3]], meaning that
425 426
           there are two sequences with length 2 and 3 respectively, the
           corresponding lod would be [[0, 2, 2+3]], i.e, [[0, 2, 5]].
S
sneaxiy 已提交
427 428

           Args:
429
                recursive_sequence_lengths (List[List[int]]): sequence lengths.
Z
Zeng Jinle 已提交
430 431 432 433 434 435 436 437 438 439

           Examples:
               .. code-block:: python

                 import paddle.fluid as fluid
                 import numpy as np

                 t = fluid.LoDTensor()
                 t.set(np.ndarray([5, 30]), fluid.CPUPlace())
                 t.set_recursive_sequence_lengths([[2, 3]])
S
sneaxiy 已提交
440
           )DOC")
441 442 443 444 445 446 447 448
      .def("lod",
           [](LoDTensor &self) -> std::vector<std::vector<size_t>> {
             // output the offset-based lod info
             LoD lod = self.lod();
             std::vector<std::vector<size_t>> new_lod;
             new_lod.reserve(lod.size());
             std::copy(lod.begin(), lod.end(), std::back_inserter(new_lod));
             return new_lod;
S
sneaxiy 已提交
449 450 451 452 453 454
           },
           R"DOC(
           Return the LoD of the LoDTensor.

           Returns:
               out (List[List[int]]): the lod of the LoDTensor.
Z
Zeng Jinle 已提交
455 456 457 458 459 460 461 462 463 464 465

           Examples:
               .. code-block:: python

                 import paddle.fluid as fluid
                 import numpy as np

                 t = fluid.LoDTensor()
                 t.set(np.ndarray([5, 30]), fluid.CPUPlace())
                 t.set_lod([[0, 2, 5]])
                 print(t.lod()) # [[0, 2, 5]]
S
sneaxiy 已提交
466
           )DOC")
G
gongweibao 已提交
467
      // Set above comments of set_lod.
468 469 470 471 472 473 474 475
      .def("recursive_sequence_lengths",
           [](LoDTensor &self) -> std::vector<std::vector<size_t>> {
             // output the length-based lod info
             LoD lod = ConvertToLengthBasedLoD(self.lod());
             std::vector<std::vector<size_t>> new_lod;
             new_lod.reserve(lod.size());
             std::copy(lod.begin(), lod.end(), std::back_inserter(new_lod));
             return new_lod;
S
sneaxiy 已提交
476 477 478 479 480
           },
           R"DOC(
           Return the sequence length of the LoDTensor corresponding to LoD.

           Returns:
481
               out (List[List[int]): the sequence lengths.
Z
Zeng Jinle 已提交
482 483 484 485 486 487 488 489 490 491 492

           Examples:
               .. code-block:: python

                 import paddle.fluid as fluid
                 import numpy as np

                 t = fluid.LoDTensor()
                 t.set(np.ndarray([5, 30]), fluid.CPUPlace())
                 t.set_recursive_sequence_lengths([[2, 3]])
                 print(t.recursive_sequence_lengths()) # [[2, 3]]
S
sneaxiy 已提交
493 494 495 496 497 498 499 500 501 502 503 504
           )DOC")
      .def("has_valid_recursive_sequence_lengths",
           [](LoDTensor &self) -> bool {
             // Check that the lod info is valid and match the outermost
             // dimension of the LoDTensor data
             return CheckLoD(self.lod(), vectorize(self.dims()).front());
           },
           R"DOC(
           Check whether the lod of the LoDTensor is valid.

           Returns:
               out (bool): whether the lod is valid.
Z
Zeng Jinle 已提交
505 506 507 508 509 510 511 512 513 514 515

           Examples:
               .. code-block:: python

                 import paddle.fluid as fluid
                 import numpy as np

                 t = fluid.LoDTensor()
                 t.set(np.ndarray([5, 30]), fluid.CPUPlace())
                 t.set_recursive_sequence_lengths([[2, 3]])
                 print(t.has_valid_recursive_sequence_lengths()) # True
W
wopeizl 已提交
516 517 518 519 520 521 522
           )DOC")
      .def("__getitem__", PySliceTensor, py::return_value_policy::reference,
           R"DOC(
           Slice the original Tensor, and remove the LoD information.

           Returns:
               out (Tensor): new Tensor(NOT LoDTensor).
523
           )DOC")
524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541
      .def("__str__",
           [](const LoDTensor &self) {
             std::stringstream ostr;
             ostr << self;
             return ostr.str();
           })
      .def("_copy", [](const LoDTensor &self, const platform::Place &place) {
        // follow fetch_op's inplementation
        LoDTensor dst;
        if (self.IsInitialized() && self.numel() > 0) {
          TensorCopySync(self, place, &dst);
        } else {
          // Not copy, if the src tensor is empty.
          dst.clear();
          dst.Resize({0});
        }
        dst.set_lod(self.lod());
        return dst;
542
      });
D
dangqingqing 已提交
543

Q
qijun 已提交
544 545 546 547 548 549 550 551 552 553 554
  py::class_<SelectedRows>(m, "SelectedRows")
      .def("__init__",
           [](SelectedRows &instance) { new (&instance) SelectedRows(); })
      .def("__init__",
           [](SelectedRows &instance, const std::vector<int64_t> rows,
              const int64_t &height) {
             new (&instance) SelectedRows(rows, height);
           })
      .def("get_tensor",
           [](SelectedRows &self) { return self.mutable_value(); },
           py::return_value_policy::reference)
555 556
      .def("numel",
           [](SelectedRows &self) -> int64_t { return self.value().numel(); })
Q
qijun 已提交
557 558
      .def("set_height", &SelectedRows::set_height)
      .def("height", &SelectedRows::height)
Q
qijun 已提交
559 560 561 562 563 564 565 566 567
      .def("set_rows",
           [](SelectedRows &self, std::vector<int64_t> rows) {
#ifndef PADDLE_WITH_CUDA
             self.set_rows(rows);
#else
        Vector<int64_t> new_rows(rows);
        self.set_rows(new_rows);
#endif
           })
568
      .def("sync_index", [](SelectedRows &instance) { instance.SyncIndex(); })
569
      .def("rows", [](SelectedRows &self) {
570 571 572 573 574
        auto rows = self.rows();
        std::vector<int64_t> new_rows;
        new_rows.reserve(rows.size());
        std::copy(rows.begin(), rows.end(), std::back_inserter(new_rows));
        return new_rows;
575
      });
Q
qijun 已提交
576

577
  py::class_<Variable>(m, "Variable", R"DOC(Variable Class.
578 579 580

All parameter, weight, gradient are variables in Paddle.
)DOC")
S
sneaxiy 已提交
581
      .def(py::init<>())
582
      .def("is_int", [](const Variable &var) { return var.IsType<int>(); })
583
      .def("set_int",
584 585
           [](Variable &var, int val) -> void { *var.GetMutable<int>() = val; })
      .def("get_int", [](const Variable &var) -> int { return var.Get<int>(); })
586 587 588 589 590 591 592
      .def("is_float", [](const Variable &var) { return var.IsType<float>(); })
      .def("set_float",
           [](Variable &var, float val) -> void {
             *var.GetMutable<float>() = val;
           })
      .def("get_float",
           [](const Variable &var) -> float { return var.Get<float>(); })
Y
Yu Yang 已提交
593
      .def("get_tensor",
594 595
           [](Variable &self) -> LoDTensor * {
             return self.GetMutable<LoDTensor>();
D
dangqingqing 已提交
596 597
           },
           py::return_value_policy::reference)
Y
Yu Yang 已提交
598 599 600
      .def("get_lod_rank_table",
           [](Variable &self) { return self.GetMutable<LoDRankTable>(); },
           py::return_value_policy::reference)
Q
qijun 已提交
601 602 603 604 605
      .def("get_selected_rows",
           [](Variable &self) -> SelectedRows * {
             return self.GetMutable<SelectedRows>();
           },
           py::return_value_policy::reference)
Y
Yu Yang 已提交
606 607 608
      .def("get_lod_tensor_array",
           [](Variable &self) { return self.GetMutable<LoDTensorArray>(); },
           py::return_value_policy::reference)
P
peizhilin 已提交
609
#if (defined(PADDLE_WITH_CUDA) && !defined(_WIN32))
D
Dong Zhihong 已提交
610 611 612 613 614
      .def("get_communicator",
           [](Variable &self) -> platform::Communicator * {
             return self.GetMutable<platform::Communicator>();
           },
           py::return_value_policy::reference)
Y
Yu Yang 已提交
615
#endif
Y
Refine  
Yu Yang 已提交
616 617
      .def("get_reader",
           [](Variable &self) -> framework::ReaderHolder * {
C
chengduo 已提交
618
             PADDLE_ENFORCE_EQ(self.IsType<framework::ReaderHolder>(), true);
Y
Refine  
Yu Yang 已提交
619 620
             return self.GetMutable<framework::ReaderHolder>();
           },
W
wopeizl 已提交
621
           py::return_value_policy::reference);
622

S
sneaxiy 已提交
623
  BindReader(&m);
Y
Refine  
Yu Yang 已提交
624

S
sneaxiy 已提交
625 626 627 628
  using LoDTensorBlockingQueue =
      ::paddle::operators::reader::LoDTensorBlockingQueue;
  using LoDTensorBlockingQueueHolder =
      ::paddle::operators::reader::LoDTensorBlockingQueueHolder;
S
sneaxiy 已提交
629

S
sneaxiy 已提交
630 631
  py::class_<LoDTensorBlockingQueue, std::shared_ptr<LoDTensorBlockingQueue>>(
      m, "LoDTensorBlockingQueue", "")
S
sneaxiy 已提交
632
      .def("push",
S
sneaxiy 已提交
633
           [](LoDTensorBlockingQueue &self,
S
sneaxiy 已提交
634
              const std::vector<framework::LoDTensor> &lod_tensor_vec) {
S
sneaxiy 已提交
635
             pybind11::gil_scoped_release release;
S
sneaxiy 已提交
636
             return self.Push(lod_tensor_vec);
S
sneaxiy 已提交
637
           })
S
sneaxiy 已提交
638 639 640 641
      .def("size", &LoDTensorBlockingQueue::Size)
      .def("capacity", &LoDTensorBlockingQueue::Cap)
      .def("close", &LoDTensorBlockingQueue::Close)
      .def("is_closed", &LoDTensorBlockingQueue::IsClosed);
S
sneaxiy 已提交
642

S
sneaxiy 已提交
643
  m.def("init_lod_tensor_blocking_queue",
Q
Qiao Longfei 已提交
644 645
        [](Variable &var,
           size_t capacity) -> std::shared_ptr<LoDTensorBlockingQueue> {
Q
Qiao Longfei 已提交
646
          VLOG(1) << "init_lod_tensor_blocking_queue";
Q
Qiao Longfei 已提交
647 648 649 650
          auto *holder = var.GetMutable<LoDTensorBlockingQueueHolder>();
          holder->InitOnce(capacity, FLAGS_reader_queue_speed_test_mode);
          return holder->GetQueue();
        },
S
sneaxiy 已提交
651
        py::return_value_policy::copy);
S
sneaxiy 已提交
652

S
sneaxiy 已提交
653
  py::class_<Scope>(m, "_Scope", R"DOC(
Q
Qiao Longfei 已提交
654 655 656 657 658 659 660 661 662 663 664 665 666
    Scope is an association of a name to Variable. All variables belong to Scope.

    Variables in a parent scope can be retrieved from local scope.

    You need to specify a scope to run a Net, i.e., `exe.Run(&scope)`.
    One net can run in different scopes and update different variable in the
    scope.

    You can create var in a scope and get it from the scope.

    Examples:
        .. code-block:: python

667
          import paddle.fluid as fluid
Q
Qiao Longfei 已提交
668 669 670 671 672 673
          # create tensor from a scope and set value to it.
          param = scope.var('Param').get_tensor()
          param_array = np.full((height, row_numel), 5.0).astype("float32")
          param.set(param_array, place)

        )DOC")
S
sneaxiy 已提交
674 675
      .def("_remove_from_pool",
           [](Scope &self) { ScopePool::Instance().Remove(&self); })
D
dongzhihong 已提交
676
      .def("var",
677
           [](Scope &self, const std::string &name) -> Variable * {
D
dongzhihong 已提交
678
             return self.Var(name);
Y
Yu Yang 已提交
679
           },
S
sneaxiy 已提交
680 681
           py::arg("name"),
           R"DOC(
682
           Find or create variable named :code:`name` in the current scope.
S
sneaxiy 已提交
683

684
           If the variable named :code:`name` does not exist in the
S
sneaxiy 已提交
685
           current scope, the variable would be created. Otherwise,
686
           return the existing variable.
S
sneaxiy 已提交
687 688

           Args:
689 690
               name (str): the variable name.

S
sneaxiy 已提交
691
           Returns:
692
               out (core.Variable): the found or created variable.
S
sneaxiy 已提交
693 694 695 696
           )DOC",
           py::return_value_policy::reference)
      .def("find_var", &Scope::FindVar, py::arg("name"),
           R"DOC(
697
           Find variable named :code:`name` in the current scope or
S
sneaxiy 已提交
698
           its parent scope. Return None if not found.
699

S
sneaxiy 已提交
700 701
           Args:
               name (str): the variable name.
702

S
sneaxiy 已提交
703
           Returns:
704
               out (core.Variable|None): the found variable or None.
S
sneaxiy 已提交
705
           )DOC",
706
           py::return_value_policy::reference)
707
      .def("new_scope", [](Scope &self) -> Scope * { return &self.NewScope(); },
S
sneaxiy 已提交
708 709 710 711 712 713
           R"DOC(
           Create a new sub-scope of the current scope.

           Returns:
               out (core._Scope): the created sub-scope.
           )DOC",
714
           py::return_value_policy::reference)
S
sneaxiy 已提交
715 716 717
      .def("drop_kids", &Scope::DropKids,
           R"DOC(
           Delete all sub-scopes of the current scope.
S
sneaxiy 已提交
718 719
           )DOC")
      .def("_kids", &Scope::kids);
720

S
sneaxiy 已提交
721 722 723 724 725 726
  m.def("Scope",
        []() -> Scope * {
          auto *s = new Scope();
          ScopePool::Instance().Insert(std::unique_ptr<Scope>(s));
          return s;
        },
S
sneaxiy 已提交
727 728
        R"DOC(
        Create a new scope.
729

S
sneaxiy 已提交
730 731 732
        Returns:
            out (core._Scope): the created scope.
        )DOC",
S
sneaxiy 已提交
733 734
        py::return_value_policy::reference);

Y
Yu Yang 已提交
735 736
  //! @note: Be careful! PyBind will return std::string as an unicode, not
  //! Python str. If you want a str object, you should cast them in Python.
Y
Yu Yang 已提交
737 738
  m.def("get_all_op_protos", []() -> std::vector<py::bytes> {
    std::vector<py::bytes> ret_values;
739 740 741 742
    for (auto &iter : OpInfoMap::Instance().map()) {
      auto &info = iter.second;
      if (info.HasOpProtoAndChecker()) {
        std::string str;
C
chengduo 已提交
743 744
        PADDLE_ENFORCE_EQ(
            info.Proto().SerializeToString(&str), true,
745 746 747 748
            "Serialize OpProto Error. This could be a bug of Paddle.");
        ret_values.emplace_back(str);
      }
    }
Y
Yu Yang 已提交
749 750
    return ret_values;
  });
751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766
  m.def(
      "get_grad_op_desc", [](const OpDesc &op_desc,
                             const std::unordered_set<std::string> &no_grad_set,
                             const std::vector<BlockDesc *> &grad_sub_block) {
        std::unordered_map<std::string, std::string> grad_to_var;
        std::vector<std::unique_ptr<OpDesc>> grad_op_descs =
            framework::OpInfoMap::Instance()
                .Get(op_desc.Type())
                .GradOpMaker()(op_desc, no_grad_set, &grad_to_var,
                               grad_sub_block);
        std::vector<OpDesc *> grad_op_desc_ptrs(grad_op_descs.size());
        std::transform(grad_op_descs.begin(), grad_op_descs.end(),
                       grad_op_desc_ptrs.begin(),
                       [](std::unique_ptr<OpDesc> &p) { return p.release(); });
        return std::make_pair(grad_op_desc_ptrs, grad_to_var);
      });
767 768 769 770 771 772 773
  m.def("has_grad_op_maker", [](const std::string op_type) {
    return framework::OpInfoMap::Instance().Get(op_type).HasGradOpMaker();
  });
  m.def("has_infer_inplace", [](const std::string op_type) {
    return framework::OpInfoMap::Instance().Get(op_type).HasInferInplace();
  });
  m.def("get_flags_use_mkldnn", []() { return FLAGS_use_mkldnn; });
774 775 776
#ifdef PADDLE_WITH_NGRAPH
  m.def("get_flags_use_ngraph", []() { return FLAGS_use_ngraph; });
#endif
777

Y
Yu Yang 已提交
778
  m.def("prune", [](const ProgramDesc &origin,
779
                    const std::set<std::string> &feeded_var_names,
780
                    const std::vector<std::array<size_t, 2>> &targets) {
Y
Yu Yang 已提交
781
    ProgramDesc prog_with_targets(origin);
782

783
    for (const auto &t : targets) {
784
      prog_with_targets.MutableBlock(t[0])->Op(t[1])->SetIsTarget(true);
785
    }
786
    proto::ProgramDesc pruned_desc;
787
    Prune(*prog_with_targets.Proto(), feeded_var_names, &pruned_desc);
Y
Yu Yang 已提交
788
    return new ProgramDesc(pruned_desc);
789
  });
790 791 792
  m.def("prune_backward", [](const framework::ProgramDesc &program) {
    return PruneBackward(program);
  });
793 794 795 796
  m.def("empty_var_name",
        []() { return std::string(framework::kEmptyVarName); });
  m.def("grad_var_suffix",
        []() { return std::string(framework::kGradVarSuffix); });
797 798 799
  m.def_submodule(
       "var_names",
       "The module will return special predefined variable name in Paddle")
Y
Yi Wang 已提交
800 801
      .def("empty", []() { return kEmptyVarName; })
      .def("temp", []() { return kTempVarName; });
Q
qijun 已提交
802
  // clang-format off
Y
Yu Yang 已提交
803
  py::class_<paddle::platform::DeviceContext>(m, "DeviceContext")
Q
qijun 已提交
804 805
      .def_static("create",
                  [](paddle::platform::CPUPlace& place)
Q
qijun 已提交
806
                      -> paddle::platform::DeviceContext* {
Q
qijun 已提交
807 808 809
                    return new paddle::platform::CPUDeviceContext();
                  })
      .def_static("create",
D
dzhwinter 已提交
810
                  [](paddle::platform::CUDAPlace& place)
Q
qijun 已提交
811
                      -> paddle::platform::DeviceContext* {
812
#ifndef PADDLE_WITH_CUDA
D
dzhwinter 已提交
813
                    PADDLE_THROW("CUDAPlace is not supported in CPU device.");
Q
qijun 已提交
814
#else
Q
qijun 已提交
815
                    return new paddle::platform::CUDADeviceContext(place);
Q
qijun 已提交
816
#endif
C
chengduoZH 已提交
817 818 819 820 821 822 823 824 825 826 827
                  })
          .def_static("create",
                [](paddle::platform::CUDAPinnedPlace& place)
                        -> paddle::platform::DeviceContext* {
#ifndef PADDLE_WITH_CUDA
                  PADDLE_THROW(
                        "CUDAPinnedPlace is not supported in CPU device.");
#else
                  return new paddle::platform::CUDAPinnedDeviceContext(place);
#endif
                });;
D
Dong Zhihong 已提交
828
// clang-format on
P
peizhilin 已提交
829
#if (defined(PADDLE_WITH_CUDA) && !defined(_WIN32))
D
Dong Zhihong 已提交
830 831
  py::class_<platform::Communicator>(m, "Communicator").def(py::init<>());
#endif
832 833 834 835
  py::class_<platform::CUDAPlace>(m, "CUDAPlace", R"DOC(
    CUDAPlace is a descriptor of a device. It represents a GPU, and each CUDAPlace
    has a dev_id to indicate the number of cards represented by the current CUDAPlace.
    The memory of CUDAPlace with different dev_id is not accessible.
L
lujun 已提交
836 837 838 839

    Examples:
        .. code-block:: python

840
          import paddle.fluid as fluid
L
lujun 已提交
841 842
          gpu_place = fluid.CUDAPlace(0)

843
        )DOC")
S
sneaxiy 已提交
844 845 846
      .def("__init__",
           [](platform::CUDAPlace &self, int dev_id) {
#ifdef PADDLE_WITH_CUDA
847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870
             if (UNLIKELY(dev_id < 0)) {
               LOG(ERROR) << string::Sprintf(
                   "Invalid CUDAPlace(%d), device id must be 0 or "
                   "positive integer",
                   dev_id);
               std::exit(-1);
             }

             if (UNLIKELY(dev_id >= platform::GetCUDADeviceCount())) {
               if (platform::GetCUDADeviceCount() == 0) {
                 LOG(ERROR) << "Cannot use GPU because there is no GPU "
                               "detected on your "
                               "machine.";
                 std::exit(-1);
               } else {
                 LOG(ERROR) << string::Sprintf(
                     "Invalid CUDAPlace(%d), must inside [0, %d), because GPU "
                     "number on your machine is %d",
                     dev_id, platform::GetCUDADeviceCount(),
                     platform::GetCUDADeviceCount());
                 std::exit(-1);
               }
             }

S
sneaxiy 已提交
871 872
             new (&self) platform::CUDAPlace(dev_id);
#else
873 874 875 876 877 878 879 880 881
             LOG(ERROR) << string::Sprintf(
                 "Cannot use GPU because you have installed CPU version "
                 "PaddlePaddle.\n"
                 "If you want to use GPU, please try to install GPU version "
                 "PaddlePaddle by: pip install paddlepaddle-gpu\n"
                 "If you only have CPU, please change CUDAPlace(%d) to be "
                 "CPUPlace().\n",
                 dev_id);
             std::exit(-1);
S
sneaxiy 已提交
882 883
#endif
           })
S
sneaxiy 已提交
884 885 886 887 888 889
      .def("_type", &PlaceIndex<platform::CUDAPlace>)
      .def("_equals", &IsSamePlace<platform::CUDAPlace, platform::Place>)
      .def("_equals", &IsSamePlace<platform::CUDAPlace, platform::CUDAPlace>)
      .def("_equals", &IsSamePlace<platform::CUDAPlace, platform::CPUPlace>)
      .def("_equals",
           &IsSamePlace<platform::CUDAPlace, platform::CUDAPinnedPlace>)
D
dzhwinter 已提交
890
      .def("__str__", string::to_string<const platform::CUDAPlace &>);
Q
qijun 已提交
891

892 893 894
  py::class_<paddle::platform::CPUPlace>(m, "CPUPlace", R"DOC(
    CPUPlace is a descriptor of a device. It represents a CPU, and the memory
    CPUPlace can be accessed by CPU.
L
lujun 已提交
895 896 897 898

    Examples:
        .. code-block:: python

899
          import paddle.fluid as fluid
L
lujun 已提交
900 901
          cpu_place = fluid.CPUPlace()

902
        )DOC")
903
      .def(py::init<>())
S
sneaxiy 已提交
904 905 906 907 908 909
      .def("_type", &PlaceIndex<platform::CPUPlace>)
      .def("_equals", &IsSamePlace<platform::CPUPlace, platform::Place>)
      .def("_equals", &IsSamePlace<platform::CPUPlace, platform::CUDAPlace>)
      .def("_equals", &IsSamePlace<platform::CPUPlace, platform::CPUPlace>)
      .def("_equals",
           &IsSamePlace<platform::CPUPlace, platform::CUDAPinnedPlace>)
910
      .def("__str__", string::to_string<const platform::CPUPlace &>);
Y
Yu Yang 已提交
911

912 913 914
  py::class_<paddle::platform::CUDAPinnedPlace>(m, "CUDAPinnedPlace", R"DOC(
    CUDAPinnedPlace is a descriptor of a device. The memory of CUDAPinnedPlace
    can be accessed by GPU and CPU.
L
lujun 已提交
915 916 917 918

    Examples:
        .. code-block:: python

919
          import paddle.fluid as fluid
L
lujun 已提交
920 921
          place = fluid.CUDAPinnedPlace()

922
        )DOC")
S
sneaxiy 已提交
923
      .def("__init__",
S
sneaxiy 已提交
924
           [](platform::CUDAPinnedPlace &self) {
S
sneaxiy 已提交
925 926 927
#ifndef PADDLE_WITH_CUDA
             PADDLE_THROW("Cannot use CUDAPinnedPlace in CPU only version");
#endif
S
sneaxiy 已提交
928
             new (&self) platform::CUDAPinnedPlace();
S
sneaxiy 已提交
929
           })
S
sneaxiy 已提交
930 931 932 933 934 935 936 937
      .def("_type", &PlaceIndex<platform::CUDAPinnedPlace>)
      .def("_equals", &IsSamePlace<platform::CUDAPinnedPlace, platform::Place>)
      .def("_equals",
           &IsSamePlace<platform::CUDAPinnedPlace, platform::CUDAPlace>)
      .def("_equals",
           &IsSamePlace<platform::CUDAPinnedPlace, platform::CPUPlace>)
      .def("_equals",
           &IsSamePlace<platform::CUDAPinnedPlace, platform::CUDAPinnedPlace>)
C
chengduoZH 已提交
938 939
      .def("__str__", string::to_string<const platform::CUDAPinnedPlace &>);

Y
Yu Yang 已提交
940 941
  py::class_<platform::Place>(m, "Place")
      .def(py::init<>())
S
sneaxiy 已提交
942 943 944 945 946
      .def("_type", &PlaceIndex<platform::Place>)
      .def("_equals", &IsSamePlace<platform::Place, platform::Place>)
      .def("_equals", &IsSamePlace<platform::Place, platform::CUDAPlace>)
      .def("_equals", &IsSamePlace<platform::Place, platform::CPUPlace>)
      .def("_equals", &IsSamePlace<platform::Place, platform::CUDAPinnedPlace>)
X
xuezhong 已提交
947 948
      .def("is_gpu_place",
           [](platform::Place &self) { return platform::is_gpu_place(self); })
S
sneaxiy 已提交
949 950 951 952 953 954
      .def("is_cpu_place",
           [](platform::Place &self) { return platform::is_cpu_place(self); })
      .def("is_cuda_pinned_place",
           [](platform::Place &self) {
             return platform::is_cuda_pinned_place(self);
           })
X
xuezhong 已提交
955 956 957 958
      .def("gpu_device_id",
           [](platform::Place &self) {
             return boost::get<platform::CUDAPlace>(self).device;
           })
S
sneaxiy 已提交
959 960
      .def("set_place", [](platform::Place &self,
                           const platform::Place &other) { self = other; })
Y
Yu Yang 已提交
961 962 963 964 965
      .def("set_place",
           [](platform::Place &self, const platform::CPUPlace &cpu_place) {
             self = cpu_place;
           })
      .def("set_place",
D
dzhwinter 已提交
966
           [](platform::Place &self, const platform::CUDAPlace &gpu_place) {
Y
Yu Yang 已提交
967
             self = gpu_place;
C
chengduoZH 已提交
968 969
           })
      .def("set_place", [](platform::Place &self,
C
chengduoZH 已提交
970 971
                           const platform::CUDAPinnedPlace &cuda_pinned_place) {
        self = cuda_pinned_place;
C
chengduoZH 已提交
972
      });
Y
Yu Yang 已提交
973

Y
Yu Yang 已提交
974
  py::class_<OperatorBase>(m, "Operator")
C
chengduo 已提交
975 976 977 978 979 980 981 982 983 984 985
      .def_static(
          "create",
          [](py::bytes protobin) {
            proto::OpDesc desc;
            PADDLE_ENFORCE_EQ(desc.ParsePartialFromString(protobin), true,
                              "Cannot parse user input to OpDesc");
            PADDLE_ENFORCE_EQ(desc.IsInitialized(), true,
                              "User OpDesc is not initialized, reason %s",
                              desc.InitializationErrorString());
            return OpRegistry::CreateOp(desc);
          })
986
      .def("run",
987
           [](OperatorBase &self, const Scope &scope,
D
dzhwinter 已提交
988 989 990
              const platform::CPUPlace &place) { self.Run(scope, place); })
      .def("run",
           [](OperatorBase &self, const Scope &scope,
D
dzhwinter 已提交
991
              const platform::CUDAPlace &place) { self.Run(scope, place); })
C
chengduoZH 已提交
992 993 994 995 996
      .def("run",
           [](OperatorBase &self, const Scope &scope,
              const platform::CUDAPinnedPlace &place) {
             self.Run(scope, place);
           })
Y
Yu Yang 已提交
997 998 999 1000 1001 1002 1003
      .def("type",
           [](const OperatorBase &op) -> std::string { return op.Type(); })
      .def("outputs",
           [](const OperatorBase &op)
               -> std::map<std::string, std::vector<std::string>> {
                 return op.Outputs();
               })
Q
qijun 已提交
1004 1005
      .def("output_vars",
           [](const OperatorBase &op) { return op.OutputVars(true); })
Y
Yu Yang 已提交
1006
      .def("inputs", [](const OperatorBase &op) { return op.Inputs(); })
Q
qijun 已提交
1007
      .def("input_vars", [](const OperatorBase &op) { return op.InputVars(); })
Y
Yu Yang 已提交
1008 1009 1010 1011
      .def("__str__", &OperatorBase::DebugString)
      .def("no_intermediate_outputs",
           [](const OperatorBase &op) { return op.OutputVars(false); })
      .def("support_gpu", &OperatorBase::SupportGPU);
Y
Yu Yang 已提交
1012

1013 1014 1015
  py::class_<framework::ExecutorPrepareContext>(m, "ExecutorPrepareContext")
      .def(py::init<const ProgramDesc &, size_t>());

F
fengjiayi 已提交
1016
  py::class_<framework::Executor>(m, "Executor")
D
dzhwinter 已提交
1017
      .def(py::init<const platform::Place &>())
Y
Yancey1989 已提交
1018
      .def("close", &Executor::Close)
1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032
      .def("run_from_dataset", &Executor::RunFromDataset,
           py::call_guard<py::gil_scoped_release>())
      .def("run_prepared_ctx",
           [](Executor &self, ExecutorPrepareContext *ctx, Scope *scope,
              std::map<std::string, const LoDTensor *> *feed_targets,
              std::map<std::string, LoDTensor *> *fetch_targets,
              bool create_local_scope = true, bool create_vars = true,
              const std::string &feed_holder_name = "feed",
              const std::string &fetch_holder_name = "fetch") {
             pybind11::gil_scoped_release release;
             self.RunPreparedContext(ctx, scope, feed_targets, fetch_targets,
                                     create_local_scope, create_vars,
                                     feed_holder_name, fetch_holder_name);
           })
G
guru4elephant 已提交
1033 1034 1035 1036 1037 1038 1039 1040
      .def("run_cached_prepared_ctx",
           [](Executor &self, ExecutorPrepareContext *ctx, Scope *scope,
              bool create_local_scope = true, bool create_vars = true,
              bool keep_kids = false) {
             pybind11::gil_scoped_release release;
             self.RunPreparedContext(ctx, scope, create_local_scope,
                                     create_vars, keep_kids);
           })
1041 1042
      .def("prepare_ctx_cache", &Executor::PrepareCtxCache,
           py::call_guard<py::gil_scoped_release>())
1043 1044
      .def("create_variables", &Executor::CreateVariables,
           py::call_guard<py::gil_scoped_release>())
S
sneaxiy 已提交
1045
      .def("run", [](Executor &self, const ProgramDesc &prog, Scope *scope,
S
sneaxiy 已提交
1046 1047
                     int block_id, bool create_local_scope, bool create_vars,
                     const std::vector<std::string> &fetch_vars) {
S
sneaxiy 已提交
1048
        pybind11::gil_scoped_release release;
S
sneaxiy 已提交
1049 1050
        self.Run(prog, scope, block_id, create_local_scope, create_vars,
                 fetch_vars);
S
sneaxiy 已提交
1051
      });
S
sneaxiy 已提交
1052

D
dzhwinter 已提交
1053
  m.def("init_gflags", framework::InitGflags);
Y
Yang Yu 已提交
1054
  m.def("init_glog", framework::InitGLOG);
1055
  m.def("init_dgc", framework::InitDGC);
X
Xin Pan 已提交
1056 1057
  m.def("init_devices",
        [](bool init_p2p) { framework::InitDevices(init_p2p); });
1058

1059
  m.def("is_compiled_with_ngraph", IsCompiledWithNGRAPH);
1060
  m.def("is_compiled_with_cuda", IsCompiledWithCUDA);
1061
  m.def("is_compiled_with_mkldnn", IsCompiledWithMKLDNN);
1062
  m.def("is_compiled_with_brpc", IsCompiledWithBrpc);
Y
update  
Yancey1989 已提交
1063
  m.def("is_compiled_with_dist", IsCompiledWithDIST);
1064 1065 1066 1067 1068 1069
#ifdef PADDLE_WITH_CUDA
  m.def("is_float16_supported", [](const platform::CUDAPlace &place) -> bool {
    // Only GPUs with Compute Capability >= 53 support float16
    return platform::GetCUDAComputeCapability(place.device) >= 53;
  });
#endif
1070

1071
  m.def("set_feed_variable", framework::SetFeedVariable);
Q
qijun 已提交
1072
  m.def("get_fetch_variable", framework::GetFetchVariable);
1073
  m.def("get_variable_tensor", framework::GetVariableTensor);
Q
qijun 已提交
1074

X
Xin Pan 已提交
1075 1076
  m.def("_is_program_version_supported", IsProgramVersionSupported);

1077 1078 1079 1080 1081
  BindProgramDesc(&m);
  BindBlockDesc(&m);
  BindVarDsec(&m);
  BindOpDesc(&m);
  BindConstValue(&m);
Y
Yu Yang 已提交
1082

Y
Yu Yang 已提交
1083 1084 1085 1086 1087 1088 1089 1090 1091
  py::class_<framework::LoDRankTable>(m, "LodRankTable")
      .def("items", [](framework::LoDRankTable &table) {
        std::vector<std::pair<size_t, size_t>> res;
        for (auto &item : table.items()) {
          res.push_back({item.index, item.length});
        }
        return res;
      });

Z
Zeng Jinle 已提交
1092 1093 1094 1095 1096
  py::class_<LoDTensorArray>(m, "LoDTensorArray", R"DOC(
    Array of LoDTensor.

    Examples:
        .. code-block:: python
1097

Z
Zeng Jinle 已提交
1098 1099 1100 1101
          import paddle.fluid as fluid

          arr = fluid.LoDTensorArray()
)DOC")
S
sneaxiy 已提交
1102 1103
      .def("__init__",
           [](LoDTensorArray &instance) { new (&instance) LoDTensorArray(); })
Y
Yu Yang 已提交
1104 1105 1106 1107 1108 1109 1110 1111 1112 1113
      .def("__getitem__",
           [](LoDTensorArray &self, size_t i) { return &self.at(i); },
           py::return_value_policy::reference)
      .def("__len__", [](LoDTensorArray &self) { return self.size(); })
      .def("__setitem__",
           [](LoDTensorArray &self, size_t i, const LoDTensor &t) {
             PADDLE_ENFORCE_LT(i, self.size());
             self[i].ShareDataWith(t);
             self[i].set_lod(t.lod());
           })
S
sneaxiy 已提交
1114 1115 1116 1117 1118 1119
      .def("append",
           [](LoDTensorArray &self, const LoDTensor &t) {
             self.emplace_back();
             self.back().ShareDataWith(t);
             self.back().set_lod(t.lod());
           },
Z
Zeng Jinle 已提交
1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132
           py::arg("tensor"), R"DOC(
             Append a LoDensor to LoDTensorArray.

             Examples:
                 .. code-block:: python

                   import paddle.fluid as fluid
                   import numpy as np

                   arr = fluid.LoDTensorArray()
                   t = fluid.LoDTensor()
                   t.set(np.ndarray([5, 30]), fluid.CPUPlace())
                   arr.append(t)
1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143
           )DOC")
      .def("_move_to_list",
           [](LoDTensorArray &self) -> py::list {
             py::list res(self.size());
             for (size_t i = 0; i < self.size(); ++i) {
               res[i] = py::cast(std::move(self[i]));
             }
             self.clear();
             return res;
           },
           py::return_value_policy::take_ownership);
Y
Yu Yang 已提交
1144

Y
Yu Yang 已提交
1145
  m.def("op_support_gpu", OpSupportGPU);
D
Dong Zhihong 已提交
1146
#ifdef PADDLE_WITH_CUDA
D
Dong Zhihong 已提交
1147
  m.def("get_cuda_device_count", platform::GetCUDADeviceCount);
D
dangqingqing 已提交
1148

P
peizhilin 已提交
1149
#ifndef _WIN32
D
dangqingqing 已提交
1150 1151 1152
  m.def("nvprof_init", platform::CudaProfilerInit);
  m.def("nvprof_start", platform::CudaProfilerStart);
  m.def("nvprof_stop", platform::CudaProfilerStop);
D
Dong Zhihong 已提交
1153
#endif
P
peizhilin 已提交
1154
#endif
Y
Yu Yang 已提交
1155

1156 1157 1158 1159
  py::enum_<platform::ProfilerState>(m, "ProfilerState", py::arithmetic())
      .value("kDisabled", platform::ProfilerState::kDisabled)
      .value("kCPU", platform::ProfilerState::kCPU)
      .value("kCUDA", platform::ProfilerState::kCUDA)
1160
      .value("kAll", platform::ProfilerState::kAll)
1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173
      .export_values();

  py::enum_<platform::EventSortingKey>(m, "EventSortingKey", py::arithmetic())
      .value("kDefault", platform::EventSortingKey::kDefault)
      .value("kCalls", platform::EventSortingKey::kCalls)
      .value("kTotal", platform::EventSortingKey::kTotal)
      .value("kMin", platform::EventSortingKey::kMin)
      .value("kMax", platform::EventSortingKey::kMax)
      .value("kAve", platform::EventSortingKey::kAve)
      .export_values();

  m.def("enable_profiler", platform::EnableProfiler);
  m.def("disable_profiler", platform::DisableProfiler);
X
Xin Pan 已提交
1174
  m.def("is_profiler_enabled", platform::IsProfileEnabled);
1175
  m.def("reset_profiler", platform::ResetProfiler);
1176
  m.def("get_pass", [](const std::string &pass_type) {
W
WangZhen 已提交
1177 1178 1179
    auto pass = framework::ir::PassRegistry::Instance().Get(pass_type);
    return std::shared_ptr<framework::ir::Pass>(std::move(pass));
  });
Y
Yu Yang 已提交
1180

1181 1182
  m.def("size_of_dtype", framework::SizeOfType);

1183 1184 1185
  using VarQuantScale =
      std::unordered_map<std::string, std::pair<bool, LoDTensor>>;

1186 1187
  py::class_<ir::Pass, std::shared_ptr<ir::Pass>> pass(m, "Pass");
  pass.def(py::init())
W
WangZhen 已提交
1188
      .def("has", &ir::Pass::Has)
1189 1190 1191
      .def("set_not_owned",
           [](ir::Pass &self, const std::string &attr_name, ProgramDesc &attr) {
             self.SetNotOwned<ProgramDesc>(attr_name, &attr);
W
WangZhen 已提交
1192
           })
1193
      .def(
1194
          "set",
1195 1196 1197
          [](ir::Pass &self, const std::string &name, const std::string &attr) {
            self.Set<std::string>(name, new std::string(attr));
          })
1198 1199
      .def("set", [](ir::Pass &self, const std::string &name,
                     int val) { self.Set<const int>(name, new int(val)); })
1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213
      .def("set",
           [](ir::Pass &self, const std::string &name,
              std::unordered_set<std::string> set) {
             self.Set(name, new std::unordered_set<std::string>(set));
           })
      .def("set",
           [](ir::Pass &self, const std::string &name,
              std::unordered_set<int> set) {
             self.Set(name, new std::unordered_set<int>(set));
           })
      .def("set",
           [](ir::Pass &self, const std::string &name, VarQuantScale scales) {
             self.Set(name, new VarQuantScale(scales));
           })
F
flame 已提交
1214 1215
      .def("type", &ir::Pass::Type)
      .def("apply", [](ir::Pass &self, std::shared_ptr<ir::Graph> graph) {
1216
        self.Apply(graph.get());
F
flame 已提交
1217
      });
1218

X
fix  
Xin Pan 已提交
1219 1220
  py::class_<ir::PassBuilder, std::shared_ptr<ir::PassBuilder>> pb(
      m, "PassBuilder");
1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234
  pb.def(py::init())
      .def("append_pass",
           [](ir::PassBuilder &self,
              const std::string &pass_type) -> std::shared_ptr<ir::Pass> {
             return self.AppendPass(pass_type);
           })
      .def("all_passes", [](ir::PassBuilder &self) { return self.AllPasses(); })
      .def("insert_pass",
           [](ir::PassBuilder &self, size_t idx, const std::string &pass_type) {
             return self.InsertPass(idx, pass_type);
           })
      .def("remove_pass",
           [](ir::PassBuilder &self, size_t idx) { self.RemovePass(idx); });

Y
yuyang18 已提交
1235
  // -- python binds for parallel executor.
X
Xin Pan 已提交
1236

Y
yuyang18 已提交
1237
  py::class_<ParallelExecutor> pe(m, "ParallelExecutor");
C
chengduo 已提交
1238 1239 1240 1241
  py::class_<ExecutionStrategy> exec_strategy(pe, "ExecutionStrategy", R"DOC(
    ExecutionStrategy allows the user to more preciously control how to run
    the program in ParallelExecutor by setting the property.

C
chengduo 已提交
1242 1243 1244
    Examples:
        .. code-block:: python

1245
          import paddle.fluid as fluid
1246 1247 1248 1249 1250 1251 1252 1253 1254 1255
          x = fluid.layers.data(name='x', shape=[13], dtype='float32')
          y = fluid.layers.data(name='y', shape=[1], dtype='float32')
          y_predict = fluid.layers.fc(input=x, size=1, act=None)

          cost = fluid.layers.square_error_cost(input=y_predict, label=y)
          avg_loss = fluid.layers.mean(cost)

          sgd_optimizer = fluid.optimizer.SGD(learning_rate=0.001)
          sgd_optimizer.minimize(avg_loss)

C
chengduo 已提交
1256 1257 1258
          exec_strategy = fluid.ExecutionStrategy()
          exec_strategy.num_threads = 4

1259 1260
          train_exe = fluid.ParallelExecutor(use_cuda=False,
                                             loss_name=avg_loss.name,
C
chengduo 已提交
1261 1262
                                             exec_strategy=exec_strategy)

C
chengduo 已提交
1263 1264
        )DOC");

Y
yuyang18 已提交
1265
  exec_strategy.def(py::init())
Y
yuyang18 已提交
1266 1267 1268 1269 1270
      .def_property(
          "num_threads",
          [](const ExecutionStrategy &self) { return self.num_threads_; },
          [](ExecutionStrategy &self, size_t num_threads) {
            self.num_threads_ = num_threads;
C
chengduo 已提交
1271 1272 1273 1274 1275 1276 1277 1278 1279 1280
          },
          R"DOC(The type is INT, num_threads represents the size of thread pool that
            used to run the operators of the current program in ParallelExecutor.
            If :math:`num\_threads=1`, all the operators will execute one by one,
            but the order maybe difference between iterations.
            If it is not set, it will be set in ParallelExecutor according to the
            device type and device count, for GPU, :math:`num\_threads=device\_count*4`, for CPU,
            :math:`num\_threads=CPU\_NUM*4`, the explanation of:math:`CPU\_NUM` is in ParallelExecutor.
            if it is not set, ParallelExecutor will get the cpu count by calling
            `multiprocessing.cpu_count()`. Default 0.)DOC")
Y
yuyang18 已提交
1281
      .def_property(
1282 1283 1284 1285
          "use_cuda",
          [](const ExecutionStrategy &self) { return self.use_cuda_; },
          [](ExecutionStrategy &self, bool use_cuda) {
            self.use_cuda_ = use_cuda;
C
chengduo 已提交
1286 1287 1288 1289
          })  // FIXME(chengduo): Doesn't add doc for 'use_cuda', use_cuda may
      // make user confuse, because ParallelExecutor has a parameter named
      // 'use_cuda' too, in current implementation, ParallelExecutor's
      // 'use_cuda' will rewrite ExecutionStrategy's 'use_cuda'.
Y
yuyang18 已提交
1290 1291 1292 1293 1294
      .def_property(
          "allow_op_delay",
          [](const ExecutionStrategy &self) { return self.allow_op_delay_; },
          [](ExecutionStrategy &self, bool allow_op_delay) {
            self.allow_op_delay_ = allow_op_delay;
C
chengduo 已提交
1295 1296 1297
          },
          R"DOC(The type is BOOL, allow_op_delay represents whether to delay the
                communication operators to run, it may make the execution faster.
1298 1299
                Note that this option is invalid now, and it will be removed in
                next version. Default False.)DOC")
Y
yuyang18 已提交
1300 1301 1302 1303 1304 1305 1306
      .def_property(
          "num_iteration_per_drop_scope",
          [](const ExecutionStrategy &self) {
            return self.num_iteration_per_drop_scope_;
          },
          [](ExecutionStrategy &self, size_t num_iteration_per_drop_scope) {
            self.num_iteration_per_drop_scope_ = num_iteration_per_drop_scope;
C
chengduo 已提交
1307 1308 1309 1310
          },
          R"DOC(The type is INT, num_iteration_per_drop_scope indicates how
                many iterations to clean up the temp variables which
                is generated during execution. It may make the execution faster,
1311 1312
                because the temp variable's shape maybe the same between two iterations.
                Default 1.
C
chengduo 已提交
1313 1314 1315 1316 1317 1318

                NOTES:
                    1. If you fetch data when calling the 'run', the ParallelExecutor
                       will clean up the temp variables at the end of the current iteration.
                    2. In some NLP model, it may cause the GPU memory is insufficient,
                       in this case, you should reduce `num_iteration_per_drop_scope`.
1319
              )DOC")
Q
Qiao Longfei 已提交
1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330
      .def_property(
          "num_iteration_per_run",
          [](const ExecutionStrategy &self) {
            return self.num_iteration_per_run_;
          },
          [](ExecutionStrategy &self, size_t num_iteration_per_run) {
            self.num_iteration_per_run_ = num_iteration_per_run;
          },
          R"DOC(This config that how many iteration the executor will run when
                user call pe.run() in python
              )DOC")
1331 1332 1333 1334 1335
      .def_property("_dry_run",
                    [](const ExecutionStrategy &self) { return self.dry_run_; },
                    [](ExecutionStrategy &self, bool dry_run) {
                      self.dry_run_ = dry_run;
                    });
C
chengduo 已提交
1336

Y
yuyang18 已提交
1337
  exec_strategy.def_property(
Y
yuyang18 已提交
1338 1339 1340 1341 1342 1343 1344
      "use_experimental_executor",
      [](const ExecutionStrategy &self) {
        return self.type_ == ExecutionStrategy::kExperimental;
      },
      [](ExecutionStrategy &self, bool experimental) {
        self.type_ = experimental ? ExecutionStrategy::kExperimental
                                  : ExecutionStrategy::kDefault;
Y
yuyang18 已提交
1345 1346
      });

C
chengduo 已提交
1347 1348 1349 1350
  py::class_<BuildStrategy> build_strategy(pe, "BuildStrategy", R"DOC(
    BuildStrategy allows the user to more preciously control how to
    build the SSA Graph in ParallelExecutor by setting the property.

C
chengduo 已提交
1351 1352 1353
    Examples:
        .. code-block:: python

F
flame 已提交
1354 1355 1356
            import paddle.fluid as fluid
            build_strategy = fluid.BuildStrategy()
            build_strategy.reduce_strategy = fluid.BuildStrategy.ReduceStrategy.Reduce
C
chengduo 已提交
1357
)DOC");
Y
yuyang18 已提交
1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373

  py::enum_<BuildStrategy::ReduceStrategy>(build_strategy, "ReduceStrategy")
      .value("Reduce", BuildStrategy::ReduceStrategy::kReduce)
      .value("AllReduce", BuildStrategy::ReduceStrategy::kAllReduce);
  py::enum_<BuildStrategy::GradientScaleStrategy>(build_strategy,
                                                  "GradientScaleStrategy")
      .value("CoeffNumDevice",
             BuildStrategy::GradientScaleStrategy::kCoeffNumDevice)
      .value("One", BuildStrategy::GradientScaleStrategy::kOne)
      .value("Customized", BuildStrategy::GradientScaleStrategy::kCustomized);

  build_strategy.def(py::init())
      .def_property(
          "reduce_strategy",
          [](const BuildStrategy &self) { return self.reduce_; },
          [](BuildStrategy &self, BuildStrategy::ReduceStrategy strategy) {
C
chengduo 已提交
1374 1375
            PADDLE_ENFORCE_EQ(!self.IsFinalized(), true,
                              "BuildStrategy is finlaized.");
Y
yuyang18 已提交
1376
            self.reduce_ = strategy;
C
chengduo 已提交
1377
          },
C
chengduo 已提交
1378 1379 1380 1381 1382 1383 1384
          R"DOC(The type is fluid.BuildStrategy.ReduceStrategy, there are two reduce
                strategies in ParallelExecutor, AllReduce and Reduce. If you want
                that all the parameters' optimization are done on all devices independently,
                you should choose AllReduce; if you choose Reduce, all the parameters'
                optimization will be evenly distributed to different devices, and then
                broadcast the optimized parameter to other devices.
                Default 'AllReduce'.
F
flame 已提交
1385 1386 1387 1388 1389 1390 1391 1392

                Examples:
                    .. code-block:: python

                        import paddle.fluid as fluid
                        build_strategy = fluid.BuildStrategy()
                        build_strategy.reduce_strategy = fluid.BuildStrategy.ReduceStrategy.Reduce
                  )DOC")
Y
yuyang18 已提交
1393 1394 1395 1396 1397
      .def_property(
          "gradient_scale_strategy",
          [](const BuildStrategy &self) { return self.gradient_scale_; },
          [](BuildStrategy &self,
             BuildStrategy::GradientScaleStrategy strategy) {
C
chengduo 已提交
1398 1399
            PADDLE_ENFORCE_EQ(!self.IsFinalized(), true,
                              "BuildStrategy is finalized.");
Y
yuyang18 已提交
1400
            self.gradient_scale_ = strategy;
C
chengduo 已提交
1401
          },
C
chengduo 已提交
1402 1403 1404 1405 1406
          R"DOC(The type is fluid.BuildStrategy.GradientScaleStrategy, there are three
                ways of defining :math:`loss@grad` in ParallelExecutor, CoeffNumDevice,
                One and Customized. By default, ParallelExecutor sets the :math:`loss@grad`
                according to the number of devices. If you want to customize :math:`loss@grad`,
                you can choose Customized. Default 'CoeffNumDevice'.
F
flame 已提交
1407 1408 1409 1410 1411

                Examples:
                    .. code-block:: python

                        import paddle.fluid as fluid
C
chengduo 已提交
1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439
                        import paddle.fluid.compiler as compiler
                        import numpy
                        import os

                        use_cuda = True
                        place = fluid.CUDAPlace(0) if use_cuda else fluid.CPUPlace()
                        exe = fluid.Executor(place)

                        # NOTE: If you use CPU to run the program, you need
                        # to specify the CPU_NUM, otherwise, fluid will use
                        # all the number of the logic core as the CPU_NUM,
                        # in that case, the batch size of the input should be
                        # greater than CPU_NUM, if not, the process will be
                        # failed by an exception.
                        if not use_cuda:
                            os.environ['CPU_NUM'] = str(2)
                            places = fluid.cpu_places()
                        else:
                            places = places = fluid.cuda_places()

                        data = fluid.layers.data(name='X', shape=[1], dtype='float32')
                        hidden = fluid.layers.fc(input=data, size=10)
                        loss = fluid.layers.mean(hidden)
                        fluid.optimizer.SGD(learning_rate=0.01).minimize(loss)

                        fluid.default_startup_program().random_seed=1
                        exe.run(fluid.default_startup_program())

F
flame 已提交
1440
                        build_strategy = fluid.BuildStrategy()
C
chengduo 已提交
1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454
                        build_strategy.gradient_scale_strategy = \
                                 fluid.BuildStrategy.GradientScaleStrategy.Customized
                        compiled_prog = compiler.CompiledProgram(
                                 fluid.default_main_program()).with_data_parallel(
                                          loss_name=loss.name, build_strategy=build_strategy,
                                          places = places)

                        dev_count =  len(places)
                        x = numpy.random.random(size=(10, 1)).astype('float32')
                        loss_grad = numpy.ones((dev_count)).astype("float32") * 0.01
                        loss_grad_name = loss.name+"@GRAD"
                        loss_data = exe.run(compiled_prog,
                                             feed={"X": x, loss_grad_name : loss_grad},
                                             fetch_list=[loss.name, loss_grad_name])
F
flame 已提交
1455
                   )DOC")
Y
yuyang18 已提交
1456 1457 1458 1459
      .def_property(
          "debug_graphviz_path",
          [](const BuildStrategy &self) { return self.debug_graphviz_path_; },
          [](BuildStrategy &self, const std::string &path) {
C
chengduo 已提交
1460 1461
            PADDLE_ENFORCE_EQ(!self.IsFinalized(), true,
                              "BuildStrategy is finlaized.");
Y
yuyang18 已提交
1462
            self.debug_graphviz_path_ = path;
C
chengduo 已提交
1463
          },
C
chengduo 已提交
1464
          R"DOC(The type is STR, debug_graphviz_path indicates the path that
F
flame 已提交
1465 1466 1467 1468 1469 1470 1471 1472
                writing the SSA Graph to file in the form of graphviz.
                It is useful for debugging. Default ""

                Examples:
                    .. code-block:: python

                        import paddle.fluid as fluid
                        build_strategy = fluid.BuildStrategy()
C
chengduo 已提交
1473 1474
                        build_strategy.debug_graphviz_path = "./graph"

F
flame 已提交
1475
                    )DOC")
S
sneaxiy 已提交
1476 1477 1478 1479 1480 1481
      .def_property(
          "enable_sequential_execution",
          [](const BuildStrategy &self) {
            return self.enable_sequential_execution_;
          },
          [](BuildStrategy &self, bool b) {
C
chengduo 已提交
1482 1483
            PADDLE_ENFORCE_EQ(!self.IsFinalized(), true,
                              "BuildStrategy is finlaized.");
S
sneaxiy 已提交
1484 1485
            self.enable_sequential_execution_ = b;
          },
C
chengduo 已提交
1486 1487
          R"DOC(The type is BOOL. If set True, the execution order of ops would
                be the same as what is in the program. Default False.
F
flame 已提交
1488 1489 1490 1491 1492 1493 1494 1495

                Examples:
                    .. code-block:: python

                        import paddle.fluid as fluid
                        build_strategy = fluid.BuildStrategy()
                        build_strategy.enable_sequential_execution = True
          )DOC")
S
sneaxiy 已提交
1496 1497 1498 1499 1500 1501
      .def_property(
          "remove_unnecessary_lock",
          [](const BuildStrategy &self) {
            return self.remove_unnecessary_lock_;
          },
          [](BuildStrategy &self, bool b) {
C
chengduo 已提交
1502 1503
            PADDLE_ENFORCE_EQ(!self.IsFinalized(), true,
                              "BuildStrategy is finlaized.");
S
sneaxiy 已提交
1504 1505
            self.remove_unnecessary_lock_ = b;
          },
C
chengduo 已提交
1506 1507
          R"DOC(The type is BOOL. If set True, some locks in GPU ops would be
                released and ParallelExecutor would run faster. Default True.
F
flame 已提交
1508 1509 1510 1511 1512 1513 1514 1515

                Examples:
                    .. code-block:: python

                        import paddle.fluid as fluid
                        build_strategy = fluid.BuildStrategy()
                        build_strategy.remove_unnecessary_lock = True
          )DOC")
1516 1517 1518 1519
      .def_property(
          "num_trainers",
          [](const BuildStrategy &self) { return self.num_trainers_; },
          [](BuildStrategy &self, int num_trainers) {
1520 1521 1522
#ifdef WIN32
            PADDLE_THROW("Windows has NO support to distribute mode.");
#endif
1523 1524
            self.num_trainers_ = num_trainers;
          })
1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536
      .def_property(
          "trainers_endpoints",
          [](const BuildStrategy &self) { return self.trainers_endpoints_; },
          [](BuildStrategy &self,
             const std::vector<std::string> &trainers_endpoints) {
            self.trainers_endpoints_ = trainers_endpoints;
          })
      .def_property("trainer_id",
                    [](const BuildStrategy &self) { return self.trainer_id_; },
                    [](BuildStrategy &self, int trainer_id) {
                      self.trainer_id_ = trainer_id;
                    })
1537 1538 1539 1540 1541 1542
      .def_property(
          "nccl_comm_num",
          [](const BuildStrategy &self) { return self.nccl_comm_num_; },
          [](BuildStrategy &self, int nccl_comm_num) {
            self.nccl_comm_num_ = nccl_comm_num;
          })
1543
      .def_property("use_hierarchical_allreduce",
1544 1545 1546 1547 1548 1549
                    [](const BuildStrategy &self) {
                      return self.use_hierarchical_allreduce_;
                    },
                    [](BuildStrategy &self, bool use) {
                      self.use_hierarchical_allreduce_ = use;
                    })
1550
      .def_property("hierarchical_allreduce_inter_nranks",
1551 1552 1553 1554 1555 1556 1557
                    [](const BuildStrategy &self) {
                      return self.hierarchical_allreduce_inter_nranks_;
                    },
                    [](BuildStrategy &self, int nranks) {
                      self.hierarchical_allreduce_inter_nranks_ = nranks;
                    })

C
chengduo 已提交
1558 1559 1560 1561 1562 1563
      .def_property(
          "fuse_elewise_add_act_ops",
          [](const BuildStrategy &self) {
            return self.fuse_elewise_add_act_ops_;
          },
          [](BuildStrategy &self, bool b) {
C
chengduo 已提交
1564 1565
            PADDLE_ENFORCE_EQ(!self.IsFinalized(), true,
                              "BuildStrategy is finlaized.");
C
chengduo 已提交
1566 1567 1568
            self.fuse_elewise_add_act_ops_ = b;
          },
          R"DOC(The type is BOOL, fuse_elewise_add_act_ops indicate whether
F
flame 已提交
1569 1570 1571 1572 1573 1574 1575 1576 1577 1578
                to fuse elementwise_add_op and activation_op,
                it may make the execution faster. Default False

                Examples:
                    .. code-block:: python

                        import paddle.fluid as fluid
                        build_strategy = fluid.BuildStrategy()
                        build_strategy.fuse_elewise_add_act_ops = True
                     )DOC")
1579 1580 1581 1582 1583 1584
      .def_property(
          "fuse_relu_depthwise_conv",
          [](const BuildStrategy &self) {
            return self.fuse_relu_depthwise_conv_;
          },
          [](BuildStrategy &self, bool b) {
C
chengduo 已提交
1585 1586
            PADDLE_ENFORCE_EQ(!self.IsFinalized(), true,
                              "BuildStrategy is finlaized.");
1587 1588 1589
            self.fuse_relu_depthwise_conv_ = b;
          },
          R"DOC(The type is BOOL, fuse_relu_depthwise_conv indicate whether
F
flame 已提交
1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601
                to fuse relu and depthwise_conv2d,
                it will save GPU memory and may make the execution faster.
                This options is only available in GPU devices.
                Default False.

                Examples:
                    .. code-block:: python

                        import paddle.fluid as fluid
                        build_strategy = fluid.BuildStrategy()
                        build_strategy.fuse_relu_depthwise_conv = True
          )DOC")
C
chengduo 已提交
1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612
      .def_property("fuse_broadcast_ops",
                    [](const BuildStrategy &self) {
                      return self.fuse_broadcast_ops_ == true ||
                             self.fuse_broadcast_ops_ == boost::none;
                    },
                    [](BuildStrategy &self, bool b) {
                      PADDLE_ENFORCE_EQ(!self.IsFinalized(), true,
                                        "BuildStrategy is finlaized.");
                      self.fuse_broadcast_ops_ = b;
                    },
                    R"DOC(The type is BOOL, fuse_broadcast_op indicates whether
1613 1614 1615 1616 1617
                      to fuse the broadcast ops. Note that, in Reduce mode,
                      fusing broadcast ops may make the program faster. Because
                      fusing broadcast OP equals delaying the execution of all
                      broadcast Ops, in this case, all nccl streams are used only
                      for NCCLReduce operations for a period of time. Default False.)DOC")
C
chengduo 已提交
1618 1619
      .def_property("fuse_all_optimizer_ops",
                    [](const BuildStrategy &self) {
C
chengduo 已提交
1620 1621
                      return self.fuse_all_optimizer_ops_ == true ||
                             self.fuse_all_optimizer_ops_ == boost::none;
C
chengduo 已提交
1622 1623
                    },
                    [](BuildStrategy &self, bool b) {
C
chengduo 已提交
1624 1625
                      PADDLE_ENFORCE_EQ(!self.IsFinalized(), true,
                                        "BuildStrategy is finlaized.");
C
chengduo 已提交
1626 1627
                      self.fuse_all_optimizer_ops_ = b;
                    })
Q
qingqing01 已提交
1628 1629 1630 1631
      .def_property(
          "sync_batch_norm",
          [](const BuildStrategy &self) { return self.sync_batch_norm_; },
          [](BuildStrategy &self, bool b) {
C
chengduo 已提交
1632 1633
            PADDLE_ENFORCE_EQ(!self.IsFinalized(), true,
                              "BuildStrategy is finlaized.");
Q
qingqing01 已提交
1634 1635 1636 1637 1638 1639 1640 1641 1642
            self.sync_batch_norm_ = b;
          },
          R"DOC(The type is BOOL, sync_batch_norm indicates whether to use
                synchronous batch normalization which synchronizes the mean
                and variance through multi-devices in training phase.

                Current implementation doesn't support FP16 training and CPU.
                And only synchronous on one machine, not all machines.

F
flame 已提交
1643 1644 1645 1646 1647 1648 1649 1650 1651
                Default False

                Examples:
                    .. code-block:: python

                        import paddle.fluid as fluid
                        build_strategy = fluid.BuildStrategy()
                        build_strategy.sync_batch_norm = True
                )DOC")
D
dzhwinter 已提交
1652 1653
      .def_property(
          "memory_optimize",
1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672
          [](const BuildStrategy &self) -> py::object {
            if (self.memory_optimize_) {
              return py::cast(self.memory_optimize_.get());
            } else {
              return py::cast(nullptr);
            }
          },
          [](BuildStrategy &self, const py::handle &value) {
            auto *py_obj = value.ptr();
            if (py_obj == nullptr || py_obj == Py_None) {
              self.memory_optimize_ = boost::none;
            } else if (PyBool_Check(py_obj)) {
              self.memory_optimize_ = (py_obj == Py_True);
            } else {
              PADDLE_THROW(
                  "BuildStrategy.memory_optimize must be None, False or True");
            }
          },
          R"DOC(The type is BOOL or None, memory opitimize aims to save total memory
1673
                consumption, set to True to enable it.
1674

1675 1676 1677 1678
                Default None. None means framework would choose to use or not use 
                this strategy automatically. Currently, None means that it is 
                enabled when GC is disabled, and disabled when GC is enabled. 
                True means enabling and False means disabling. Default None.)DOC")
1679 1680 1681
      .def_property(
          "is_distribution",
          [](const BuildStrategy &self) { return self.is_distribution_; },
1682 1683 1684 1685 1686 1687 1688 1689 1690
          [](BuildStrategy &self, bool b) {
#ifdef WIN32
            if (b) {
              PADDLE_THROW("Windows has NO support to distribute mode.");
            }
#else
            self.is_distribution_ = b;
#endif
          })
Q
can run  
Qiao Longfei 已提交
1691 1692 1693
      .def_property("async_mode",
                    [](const BuildStrategy &self) { return self.async_mode_; },
                    [](BuildStrategy &self, bool b) { self.async_mode_ = b; })
D
dzhwinter 已提交
1694
      .def_property(
D
dzhwinter 已提交
1695 1696 1697
          "enable_inplace",
          [](const BuildStrategy &self) { return self.enable_inplace_; },
          [](BuildStrategy &self, bool b) { self.enable_inplace_ = b; })
C
chengduo 已提交
1698 1699
      .def_property(
          "fuse_all_reduce_ops",
C
chengduo 已提交
1700 1701 1702 1703
          [](const BuildStrategy &self) {
            return self.fuse_all_reduce_ops_ == true ||
                   self.fuse_all_reduce_ops_ == boost::none;
          },
C
chengduo 已提交
1704
          [](BuildStrategy &self, bool b) { self.fuse_all_reduce_ops_ = b; })
1705 1706 1707 1708 1709 1710 1711
      .def_property("enable_backward_optimizer_op_deps",
                    [](const BuildStrategy &self) {
                      return self.enable_backward_optimizer_op_deps_;
                    },
                    [](BuildStrategy &self, bool b) {
                      self.enable_backward_optimizer_op_deps_ = b;
                    })
1712 1713 1714 1715
      .def_property(
          "cache_runtime_context",
          [](const BuildStrategy &self) { return self.cache_runtime_context_; },
          [](BuildStrategy &self, bool b) { self.cache_runtime_context_ = b; })
1716 1717 1718 1719 1720 1721 1722 1723 1724
      .def_property(
          "mkldnn_enabled_op_types",
          [](const BuildStrategy &self) {
            return self.mkldnn_enabled_op_types_;
          },
          [](BuildStrategy &self,
             const std::unordered_set<std::string> &mkldnn_enabled_op_types) {
            self.mkldnn_enabled_op_types_ = mkldnn_enabled_op_types;
          })
1725
      .def("_finalize_strategy_and_create_passes",
X
fix  
Xin Pan 已提交
1726
           [](BuildStrategy &self) -> std::shared_ptr<ir::PassBuilder> {
1727 1728 1729 1730 1731
             return self.CreatePassesFromStrategy(true);
           },
           R"DOC(Allow user to customized passes. Normally model-specific
                optimization passes should be defined in this way. BuildStrategy
                cannot be updated after being finalized.)DOC");
Y
yuyang18 已提交
1732 1733

  pe.def(py::init<const std::vector<platform::Place> &,
Y
Yan Xu 已提交
1734
                  const std::vector<std::string> &, const std::string &,
X
Xin Pan 已提交
1735
                  Scope *, std::vector<Scope *> &, const ExecutionStrategy &,
X
Xin Pan 已提交
1736
                  const BuildStrategy &, ir::Graph *>())
Y
Yu Yang 已提交
1737 1738 1739 1740
      // NOTE: even we return a vec<Scope*>* to Python use reference policy.
      // We still cannot get local_scope from this vector, since the element
      // of vec<Scope*> will be freed by Python GC. We can only return Scope*
      // one by one and mark them as reference.
1741 1742 1743 1744 1745
      .def("local_scopes",
           [](ParallelExecutor &self) -> std::vector<Scope *> * {
             return &self.GetLocalScopes();
           },
           py::return_value_policy::reference)
1746 1747 1748
      .def("drop_local_exe_scopes", &ParallelExecutor::DropLocalExeScopes)
      .def("_need_create_local_exe_scopes",
           &ParallelExecutor::NeedCreateLocalExeScope)
Y
Yu Yang 已提交
1749 1750 1751 1752
      .def("feed_tensors_into_local_scopes",
           &ParallelExecutor::FeedTensorsIntoLocalScopes)
      .def("feed_and_split_tensor_into_local_scopes",
           &ParallelExecutor::FeedAndSplitTensorIntoLocalScopes)
S
sneaxiy 已提交
1753
      .def("run", [](ParallelExecutor &self,
1754
                     const std::vector<std::string> &fetch_tensors) {
S
sneaxiy 已提交
1755
        pybind11::gil_scoped_release release;
1756
        return self.Run(fetch_tensors);
S
sneaxiy 已提交
1757
      });
Y
Yu Yang 已提交
1758

D
dongdaxiang 已提交
1759
  BindFleetWrapper(&m);
H
hutuxian 已提交
1760
  BindBoxHelper(&m);
W
wopeizl 已提交
1761
#ifndef _WIN32
D
dongdaxiang 已提交
1762
  BindNCCLWrapper(&m);
W
wopeizl 已提交
1763
#endif
F
flame 已提交
1764 1765
  BindGraph(&m);
  BindNode(&m);
F
flame 已提交
1766
  BindInferenceApi(&m);
1767
  BindDataset(&m);
1768 1769 1770
#ifdef PADDLE_WITH_DISTRIBUTE
  BindCommunicator(&m);
#endif
L
Luo Tao 已提交
1771
}
1772
}  // namespace pybind
1773
}  // namespace paddle