nn.py 136.0 KB
Newer Older
M
minqiyang 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import print_function

17
import paddle
M
minqiyang 已提交
18 19 20
from six.moves import reduce
from .. import core
from ..layers import utils
21
from ..layers import nn as F
22
from .. import dygraph_utils
M
minqiyang 已提交
23
from . import layers
J
Jiabin Yang 已提交
24
from ..framework import Variable, _non_static_mode, OpProtoHolder, Parameter, _dygraph_tracer, _varbase_creator, default_main_program, _global_flags, in_dygraph_mode
25
from ..data_feeder import convert_dtype, check_variable_and_dtype, check_type, check_dtype
M
minqiyang 已提交
26
from ..param_attr import ParamAttr
27
from ..initializer import Normal, Constant, NumpyArrayInitializer
H
hong 已提交
28 29
from .. import unique_name
from .layer_object_helper import LayerObjectHelper
30
from ..data_feeder import check_variable_and_dtype, check_type
L
lujun 已提交
31
import numpy as np
32
import numbers
33
import logging
34
import os
35
import paddle.utils.deprecated as deprecated
W
wanghuancoder 已提交
36
from paddle import _C_ops
37

38
__all__ = [
39
    'Conv2D', 'Conv3D', 'Pool2D', 'Linear', 'BatchNorm', 'Dropout', 'Embedding',
40 41
    'GRUUnit', 'InstanceNorm', 'LayerNorm', 'NCE', 'PRelu',
    'BilinearTensorProduct', 'Conv2DTranspose', 'Conv3DTranspose', 'GroupNorm',
C
ceci3 已提交
42
    'SpectralNorm', 'TreeConv', 'Flatten'
43
]
M
minqiyang 已提交
44 45


X
Xin Pan 已提交
46
class Conv2D(layers.Layer):
47
    r"""
48 49
    This interface is used to construct a callable object of the ``Conv2D`` class.
    For more details, refer to code examples.
50 51 52
    The convolution2D layer calculates the output based on the input, filter
    and strides, paddings, dilations, groups parameters. Input and
    Output are in NCHW format, where N is batch size, C is the number of
53 54 55
    the feature map, H is the height of the feature map, and W is the width of the feature map.
    Filter's shape is [MCHW] , where M is the number of output feature map,
    C is the number of input feature map, H is the height of the filter,
56
    and W is the width of the filter. If the groups is greater than 1,
57
    C will equal the number of input feature map divided by the groups.
58
    Please refer to UFLDL's `convolution
59
    <http://ufldl.stanford.edu/tutorial/supervised/FeatureExtractionUsingConvolution/>`_
T
tianshuo78520a 已提交
60
    for more details.
61 62 63 64 65 66 67 68
    If bias attribution and activation type are provided, bias is added to the
    output of the convolution, and the corresponding activation function is
    applied to the final result.

    For each input :math:`X`, the equation is:

    .. math::

69
        Out = \\sigma (W \\ast X + b)
70 71 72

    Where:

73 74
    * :math:`X`: Input value, a ``Tensor`` with NCHW format.
    * :math:`W`: Filter value, a ``Tensor`` with shape [MCHW] .
75
    * :math:`\\ast`: Convolution operation.
76
    * :math:`b`: Bias value, a 2-D ``Tensor`` with shape [M, 1].
77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98
    * :math:`\\sigma`: Activation function.
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.

    Example:

        - Input:

          Input shape: :math:`(N, C_{in}, H_{in}, W_{in})`

          Filter shape: :math:`(C_{out}, C_{in}, H_f, W_f)`

        - Output:

          Output shape: :math:`(N, C_{out}, H_{out}, W_{out})`

        Where

        .. math::

            H_{out}&= \\frac{(H_{in} + 2 * paddings[0] - (dilations[0] * (H_f - 1) + 1))}{strides[0]} + 1 \\\\
            W_{out}&= \\frac{(W_{in} + 2 * paddings[1] - (dilations[1] * (W_f - 1) + 1))}{strides[1]} + 1

99
    Parameters:
100
        num_channels(int): The number of channels in the input image.
101
        num_filters(int): The number of filter. It is as same as the output
102 103
            feature map.
        filter_size (int or tuple): The filter size. If filter_size is a tuple,
104 105
            it must contain two integers, (filter_size_H, filter_size_W).
            Otherwise, the filter will be a square.
106
        stride (int or tuple, optional): The stride size. If stride is a tuple, it must
107
            contain two integers, (stride_H, stride_W). Otherwise, the
108 109
            stride_H = stride_W = stride. Default: 1.
        padding (int or tuple, optional): The padding size. If padding is a tuple, it must
110
            contain two integers, (padding_H, padding_W). Otherwise, the
111 112
            padding_H = padding_W = padding. Default: 0.
        dilation (int or tuple, optional): The dilation size. If dilation is a tuple, it must
113
            contain two integers, (dilation_H, dilation_W). Otherwise, the
114
            dilation_H = dilation_W = dilation. Default: 1.
C
cnn 已提交
115
        groups (int, optional): The groups number of the Conv2D Layer. According to grouped
116 117 118
            convolution in Alex Krizhevsky's Deep CNN paper: when group=2,
            the first half of the filters is only connected to the first half
            of the input channels, while the second half of the filters is only
119 120
            connected to the second half of the input channels. Default: 1.
        param_attr (ParamAttr, optional): The parameter attribute for learnable weights(Parameter)
121 122 123 124
            of conv2d. If it is set to None or one attribute of ParamAttr, conv2d
            will create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with :math:`Normal(0.0, std)`,
            and the :math:`std` is :math:`(\\frac{2.0 }{filter\_elem\_num})^{0.5}`. Default: None.
125
        bias_attr (ParamAttr or bool, optional): The attribute for the bias of conv2d.
126 127 128 129
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, conv2d
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. Default: None.
130 131 132 133 134
        use_cudnn (bool, optional): Use cudnn kernel or not, it is valid only when the cudnn
            library is installed. Default: True.
        act (str, optional): Activation type, if it is set to None, activation is not appended.
            Default: None.
        dtype (str, optional): Data type, it can be "float32" or "float64". Default: "float32".
135

136 137 138 139
    Attribute:
        **weight** (Parameter): the learnable weights of filter of this layer.

        **bias** (Parameter or None): the learnable bias of this layer.
140

141 142 143
    Returns:
        None
    
144
    Raises:
145
        ValueError: if ``use_cudnn`` is not a bool value.
146 147 148

    Examples:
        .. code-block:: python
L
lujun 已提交
149

150 151 152 153 154
          from paddle.fluid.dygraph.base import to_variable
          import paddle.fluid as fluid
          from paddle.fluid.dygraph import Conv2D
          import numpy as np

155
          data = np.random.uniform(-1, 1, [10, 3, 32, 32]).astype('float32')
156
          with fluid.dygraph.guard():
157
              conv2d = Conv2D(3, 2, 3)
158 159
              data = to_variable(data)
              conv = conv2d(data)
160 161 162

    """

M
minqiyang 已提交
163
    def __init__(self,
164
                 num_channels,
M
minqiyang 已提交
165 166 167 168 169 170 171 172
                 num_filters,
                 filter_size,
                 stride=1,
                 padding=0,
                 dilation=1,
                 groups=None,
                 param_attr=None,
                 bias_attr=None,
173 174 175
                 use_cudnn=True,
                 act=None,
                 dtype='float32'):
M
minqiyang 已提交
176
        assert param_attr is not False, "param_attr should not be False here."
177
        super(Conv2D, self).__init__()
178 179 180 181 182

        if (core.is_compiled_with_cuda() and paddle.fluid.get_flags(
                "FLAGS_conv2d_disable_cudnn")["FLAGS_conv2d_disable_cudnn"]):
            use_cudnn = False

183
        self._num_channels = num_channels
M
minqiyang 已提交
184 185 186 187
        self._groups = groups
        self._stride = utils.convert_to_list(stride, 2, 'stride')
        self._padding = utils.convert_to_list(padding, 2, 'padding')
        self._dilation = utils.convert_to_list(dilation, 2, 'dilation')
188
        self._act = act
M
minqiyang 已提交
189 190 191
        if not isinstance(use_cudnn, bool):
            raise ValueError("use_cudnn should be True or False")
        self._use_cudnn = use_cudnn
192
        self._use_mkldnn = _global_flags()["FLAGS_use_mkldnn"]
193 194 195 196 197
        self._filter_size = filter_size
        self._num_filters = num_filters
        self._param_attr = param_attr
        self._bias_attr = bias_attr
        self._dtype = dtype
198

199
        if (self._num_channels == self._groups and
200 201
                num_filters % self._num_channels == 0 and
                not self._use_cudnn and not self._use_mkldnn):
202 203 204
            self._l_type = 'depthwise_conv2d'
        else:
            self._l_type = 'conv2d'
M
minqiyang 已提交
205

206 207 208 209
        # NPU only supports depthwise_conv2d when  "input_channel = output_channel = groups"
        if core.is_compiled_with_npu():
            if (self._num_channels == self._groups and
                    self._num_channels == self._num_filters):
210
                self._l_type = 'depthwise_conv2d'
211
            else:
212
                self._l_type = 'conv2d'
213

214
        self._num_channels = num_channels
215 216
        if self._groups is None:
            num_filter_channels = self._num_channels
M
minqiyang 已提交
217
        else:
218
            if self._num_channels % self._groups != 0:
M
minqiyang 已提交
219
                raise ValueError("num_channels must be divisible by groups.")
220 221
            num_filter_channels = self._num_channels // self._groups
        filter_size = utils.convert_to_list(self._filter_size, 2, 'filter_size')
222
        filter_shape = [self._num_filters, num_filter_channels] + filter_size
M
minqiyang 已提交
223 224

        def _get_default_param_initializer():
225 226
            filter_elem_num = filter_size[0] * filter_size[
                1] * self._num_channels
M
minqiyang 已提交
227 228 229
            std = (2.0 / filter_elem_num)**0.5
            return Normal(0.0, std, 0)

230
        self.weight = self.create_parameter(
231
            attr=self._param_attr,
M
minqiyang 已提交
232 233 234 235
            shape=filter_shape,
            dtype=self._dtype,
            default_initializer=_get_default_param_initializer())

236
        self.bias = self.create_parameter(
237 238
            attr=self._bias_attr,
            shape=[self._num_filters],
M
minqiyang 已提交
239 240
            dtype=self._dtype,
            is_bias=True)
M
minqiyang 已提交
241 242

    def forward(self, input):
J
Jiabin Yang 已提交
243 244
        if _non_static_mode() and (self._l_type == 'conv2d' or
                                   self._l_type == 'depthwise_conv2d'):
245 246
            attrs = ('strides', self._stride, 'paddings', self._padding,
                     'dilations', self._dilation, 'groups', self._groups
247 248
                     if self._groups else 1, 'use_cudnn', self._use_cudnn,
                     'use_mkldnn', self._use_mkldnn)
W
wanghuancoder 已提交
249
            out = _C_ops.conv2d(input, self.weight, *attrs)
250 251
            pre_bias = out

252 253 254 255
            pre_act = dygraph_utils._append_bias_in_dygraph(
                pre_bias, self.bias, 1, use_mkldnn=self._use_mkldnn)
            return dygraph_utils._append_activation_in_dygraph(
                pre_act, self._act, use_mkldnn=self._use_mkldnn)
256 257
        inputs = {
            'Input': [input],
258
            'Filter': [self.weight],
259 260 261 262 263 264 265
        }
        attrs = {
            'strides': self._stride,
            'paddings': self._padding,
            'dilations': self._dilation,
            'groups': self._groups if self._groups else 1,
            'use_cudnn': self._use_cudnn,
266
            'use_mkldnn': self._use_mkldnn,
267
        }
268 269 270

        check_variable_and_dtype(input, 'input',
                                 ['float16', 'float32', 'float64'], 'Conv2D')
M
minqiyang 已提交
271 272 273
        pre_bias = self._helper.create_variable_for_type_inference(
            dtype=self._dtype)

M
minqiyang 已提交
274 275 276 277
        self._helper.append_op(
            type=self._l_type,
            inputs={
                'Input': input,
278
                'Filter': self.weight,
M
minqiyang 已提交
279
            },
M
minqiyang 已提交
280
            outputs={"Output": pre_bias},
281
            attrs=attrs)
M
minqiyang 已提交
282

283
        if self.bias is not None:
284 285 286 287 288
            pre_act = self._helper.create_variable_for_type_inference(
                dtype=self._dtype)
            self._helper.append_op(
                type='elementwise_add',
                inputs={'X': [pre_bias],
289
                        'Y': [self.bias]},
290
                outputs={'Out': [pre_act]},
291 292
                attrs={'axis': 1,
                       'use_mkldnn': self._use_mkldnn})
293 294
        else:
            pre_act = pre_bias
M
minqiyang 已提交
295

L
lujun 已提交
296
        # Currently, we don't support inplace in dygraph mode
297
        return self._helper.append_activation(pre_act, act=self._act)
M
minqiyang 已提交
298 299


L
lujun 已提交
300
class Conv3D(layers.Layer):
301
    r"""
302 303 304 305
    **Convlution3D Layer**

    The convolution3D layer calculates the output based on the input, filter
    and strides, paddings, dilations, groups parameters. Input(Input) and
D
DuYao 已提交
306 307
    Output(Output) are multidimensional tensors with a shape of 
    :math:`[N, C, D, H, W]` . Where N is batch size, C is the number of
308 309 310 311 312 313 314 315 316 317 318 319 320 321
    channels, D is the depth of the feature, H is the height of the feature,
    and W is the width of the feature. Convlution3D is similar with Convlution2D
    but adds one dimension(depth). If bias attribution and activation type are
    provided, bias is added to the output of the convolution, and the
    corresponding activation function is applied to the final result.

    For each input :math:`X`, the equation is:

    .. math::

        Out = \sigma (W \\ast X + b)

    In the above equation:

D
DuYao 已提交
322
    * :math:`X`: Input value, a tensor with NCDHW or NDHWC format.
323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347
    * :math:`W`: Filter value, a tensor with MCDHW format.
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D tensor with shape [M, 1].
    * :math:`\\sigma`: Activation function.
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.

    Example:

        - Input:

          Input shape: :math:`(N, C_{in}, D_{in}, H_{in}, W_{in})`

          Filter shape: :math:`(C_{out}, C_{in}, D_f, H_f, W_f)`

        - Output:
          Output shape: :math:`(N, C_{out}, D_{out}, H_{out}, W_{out})`

        Where

        .. math::

            D_{out}&= \\frac{(D_{in} + 2 * paddings[0] - (dilations[0] * (D_f - 1) + 1))}{strides[0]} + 1 \\\\
            H_{out}&= \\frac{(H_{in} + 2 * paddings[1] - (dilations[1] * (H_f - 1) + 1))}{strides[1]} + 1 \\\\
            W_{out}&= \\frac{(W_{in} + 2 * paddings[2] - (dilations[2] * (W_f - 1) + 1))}{strides[2]} + 1

348
    Parameters:
349
        num_channels(int): The number of channels in the input image.
L
lujun 已提交
350
        num_filters(int): The number of filter. It is as same as the output image channel.
D
DuYao 已提交
351
        filter_size (int|tuple, optional): The filter size. If filter_size is a tuple,
352
            it must contain three integers, (filter_size_D, filter_size_H, filter_size_W).
D
DuYao 已提交
353 354 355
            Otherwise, the filter will be a square, filter_size_depth = filter_size_height
            = filter_size_width = filter_size.
        stride (int|tuple, optional): The stride size. If stride is a tuple, it must
356
            contain three integers, (stride_D, stride_H, stride_W). Otherwise, the
D
DuYao 已提交
357 358
            stride_D = stride_H = stride_W = stride. The default value is 1.
        padding (int|tuple, optional): The padding size. If padding is a tuple, it must
359
            contain three integers, (padding_D, padding_H, padding_W). Otherwise, the
D
DuYao 已提交
360 361
            padding_D = padding_H = padding_W = padding. The default value is 0.
        dilation (int|tuple, optional): The dilation size. If dilation is a tuple, it must
362
            contain three integers, (dilation_D, dilation_H, dilation_W). Otherwise, the
D
DuYao 已提交
363
            dilation_D = dilation_H = dilation_W = dilation. The default value is 1.
C
cnn 已提交
364
        groups (int, optional): The groups number of the Conv3D Layer. According to grouped
365 366 367
            convolution in Alex Krizhevsky's Deep CNN paper: when group=2,
            the first half of the filters is only connected to the first half
            of the input channels, while the second half of the filters is only
D
DuYao 已提交
368 369
            connected to the second half of the input channels. The default value is 1.
        param_attr (ParamAttr, optional): The parameter attribute for learnable parameters/weights
370 371 372
            of conv3d. If it is set to None or one attribute of ParamAttr, conv3d
            will create ParamAttr as param_attr. If it is set to None, the parameter
            is initialized with :math:`Normal(0.0, std)`, and the :math:`std` is
D
DuYao 已提交
373 374
            :math:`(\\frac{2.0 }{filter\_elem\_num})^{0.5}`. The default value is None.
        bias_attr (ParamAttr|bool, optional): The parameter attribute for the bias of conv3d.
375 376 377
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, conv3d
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
D
DuYao 已提交
378 379 380 381 382
            is not set, the bias is initialized zero. The default value is None.
        use_cudnn (bool, optional): Use cudnn kernel or not, it is valid only when the cudnn
            library is installed. The default value is True.
        act (str, optional): Activation type, if it is set to None, activation is not appended.
            The default value is None.
383
        dtype (str, optional): Data type, it can be "float32" or "float64". Default: "float32".
384

D
DuYao 已提交
385 386 387 388
    Attribute:
        **weight** (Parameter): the learnable weights of filters of this layer.

        **bias** (Parameter): the learnable bias of this layer.
389

390
    Returns:
D
DuYao 已提交
391
        None.
392 393 394 395 396 397 398 399

    Raises:
        ValueError: If the shapes of input, filter_size, stride, padding and
                    groups mismatch.

    Examples:
        .. code-block:: python

400 401 402 403 404 405
          import paddle.fluid as fluid
          import numpy

          with fluid.dygraph.guard():
              data = numpy.random.random((5, 3, 12, 32, 32)).astype('float32')
              conv3d = fluid.dygraph.nn.Conv3D(
406
                    num_channels=3, num_filters=2, filter_size=3, act="relu")
407 408
              ret = conv3d(fluid.dygraph.base.to_variable(data))

409 410
    """

L
lujun 已提交
411
    def __init__(self,
412
                 num_channels,
L
lujun 已提交
413 414 415 416 417 418 419 420 421
                 num_filters,
                 filter_size,
                 stride=1,
                 padding=0,
                 dilation=1,
                 groups=None,
                 param_attr=None,
                 bias_attr=None,
                 use_cudnn=True,
422 423
                 act=None,
                 dtype='float32'):
L
lujun 已提交
424
        assert param_attr is not False, "param_attr should not be False here."
425 426
        super(Conv3D, self).__init__()
        self._num_channels = num_channels
L
lujun 已提交
427 428 429
        self._groups = groups
        self._stride = utils.convert_to_list(stride, 3, 'stride')
        self._padding = utils.convert_to_list(padding, 3, 'padding')
430
        self._dilation = utils.convert_to_list(dilation, 3, 'dilation')
L
lujun 已提交
431 432
        self._act = act
        self._use_cudnn = use_cudnn
433 434 435 436
        self._filter_size = filter_size
        self._num_filters = num_filters
        self._param_attr = param_attr
        self._bias_attr = bias_attr
437
        self._dtype = dtype
438 439

        if self._groups is None:
440
            num_filter_channels = self._num_channels
L
lujun 已提交
441
        else:
442
            if self._num_channels % self._groups != 0:
L
lujun 已提交
443
                raise ValueError("num_channels must be divisible by groups.")
444
            num_filter_channels = self._num_channels // self._groups
L
lujun 已提交
445

446 447
        filter_size = utils.convert_to_list(self._filter_size, 3, 'filter_size')
        filter_shape = [self._num_filters, num_filter_channels] + filter_size
L
lujun 已提交
448 449 450

        def _get_default_param_initializer():
            filter_elem_num = filter_size[0] * filter_size[1] * filter_size[
451
                2] * self._num_channels
L
lujun 已提交
452 453 454
            std = (2.0 / filter_elem_num)**0.5
            return Normal(0.0, std, 0)

455
        self.weight = self.create_parameter(
456
            attr=self._param_attr,
L
lujun 已提交
457 458 459 460
            shape=filter_shape,
            dtype=self._dtype,
            default_initializer=_get_default_param_initializer())

461
        self.bias = self.create_parameter(
462 463
            attr=self._bias_attr,
            shape=[self._num_filters],
L
lujun 已提交
464 465 466 467 468 469 470 471
            dtype=self._dtype,
            is_bias=True)

    def forward(self, input):
        pre_bias = self._helper.create_variable_for_type_inference(
            dtype=self._dtype)

        self._helper.append_op(
472
            type='conv3d',
L
lujun 已提交
473 474
            inputs={
                'Input': input,
475
                'Filter': self.weight,
L
lujun 已提交
476 477 478 479 480 481 482 483 484 485 486
            },
            outputs={"Output": pre_bias},
            attrs={
                'strides': self._stride,
                'paddings': self._padding,
                'dilations': self._dilation,
                'groups': self._groups if self._groups else 1,
                'use_cudnn': self._use_cudnn,
                'use_mkldnn': False
            })

487
        if self.bias is not None:
488 489 490 491 492
            pre_act = self._helper.create_variable_for_type_inference(
                dtype=self._dtype)
            self._helper.append_op(
                type='elementwise_add',
                inputs={'X': [pre_bias],
493
                        'Y': [self.bias]},
494 495 496 497
                outputs={'Out': [pre_act]},
                attrs={'axis': 1})
        else:
            pre_act = pre_bias
L
lujun 已提交
498 499 500 501 502

        return self._helper.append_activation(pre_act, act=self._act)


class Conv3DTranspose(layers.Layer):
503
    r"""
L
lujun 已提交
504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548
    **Convlution3D transpose layer**

    The convolution3D transpose layer calculates the output based on the input,
    filter, and dilations, strides, paddings. Input(Input) and output(Output)
    are in NCDHW format. Where N is batch size, C is the number of channels,
    D is the depth of the feature, H is the height of the feature, and W
    is the width of the feature. Parameters(dilations, strides, paddings) are
    two elements. These two elements represent height and width, respectively.
    The details of convolution transpose layer, please refer to the following
    explanation and references `therein <http://www.matthewzeiler.com/wp-content/uploads/2017/07/cvpr2010.pdf>`_.
    If bias attribution and activation type are provided, bias is added to
    the output of the convolution, and the corresponding activation function
    is applied to the final result.

    For each input :math:`X`, the equation is:

    .. math::

        Out = \sigma (W \\ast X + b)

    In the above equation:

    * :math:`X`: Input value, a tensor with NCDHW format.
    * :math:`W`: Filter value, a tensor with MCDHW format.
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D tensor with shape [M, 1].
    * :math:`\\sigma`: Activation function.
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.

    Example:

        - Input:

          Input shape: :math:`(N, C_{in}, D_{in}, H_{in}, W_{in})`

          Filter shape: :math:`(C_{in}, C_{out}, D_f, H_f, W_f)`

        - Output:

          Output shape: :math:`(N, C_{out}, D_{out}, H_{out}, W_{out})`

        Where

        .. math::

D
DuYao 已提交
549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567
           D^\prime_{out} &= (D_{in} - 1) * strides[0] - 2 * paddings[0] + dilations[0] * (D_f - 1) + 1 \\\\
           H^\prime_{out} &= (H_{in} - 1) * strides[1] - 2 * paddings[1] + dilations[1] * (H_f - 1) + 1 \\\\
           W^\prime_{out} &= (W_{in} - 1) * strides[2] - 2 * paddings[2] + dilations[2] * (W_f - 1) + 1 \\\\
           D_{out} &\in [ D^\prime_{out}, D^\prime_{out} + strides[0] ] \\\\
           H_{out} &\in [ H^\prime_{out}, H^\prime_{out} + strides[1] ] \\\\

    **Note**:

          The conv3d_transpose can be seen as the backward of the conv3d. For conv3d, 
          when stride > 1, conv3d maps multiple input shape to the same output shape, 
          so for conv3d_transpose, when stride > 1, input shape maps multiple output shape.
          If output_size is None, :math:`H_{out} = H^\prime_{out}, :math:`H_{out} = \
          H^\prime_{out}, W_{out} = W^\prime_{out}`; else, the :math:`D_{out}` of the output 
          size must between :math:`D^\prime_{out}` and :math:`D^\prime_{out} + strides[0]`, 
          the :math:`H_{out}` of the output size must between :math:`H^\prime_{out}` 
          and :math:`H^\prime_{out} + strides[1]`, and the :math:`W_{out}` of the output size must 
          between :math:`W^\prime_{out}` and :math:`W^\prime_{out} + strides[2]`, 
          conv3d_transpose can compute the kernel size automatically.

L
lujun 已提交
568

569
    Parameters:
570
        num_channels(int): The number of channels in the input image.
L
lujun 已提交
571 572
        num_filters(int): The number of the filter. It is as same as the output
            image channel.
573
        filter_size(int|tuple): The filter size. If filter_size is a tuple,
L
lujun 已提交
574
            it must contain three integers, (filter_size_D, filter_size_H, filter_size_W).
575
            Otherwise, the filter will be a square.
D
DuYao 已提交
576 577 578 579 580 581 582 583 584 585 586 587 588 589 590
        padding(int|tuple, optional): The padding size. The padding argument effectively
             adds `dilation * (kernel - 1)` amount of zero-padding on both sides of input. If `padding` is a string,
             either 'VALID' or 'SAME' supported, which is the padding algorithm. If `padding`
             is a tuple or list, it could be in three forms: `[pad_depth, pad_height, pad_width]` or
            `[pad_depth_front, pad_depth_back, pad_height_top, pad_height_bottom, pad_width_left, pad_width_right]`,
            and when `data_format` is `'NCDHW'`, `padding` can be in the form
            `[[0,0], [0,0], [pad_depth_front, pad_depth_back], [pad_height_top, pad_height_bottom], [pad_width_left, pad_width_right]]`.
            when `data_format` is `'NDHWC'`, `padding` can be in the form
            `[[0,0], [pad_depth_front, pad_depth_back], [pad_height_top, pad_height_bottom], [pad_width_left, pad_width_right], [0,0]]`.
            The default value is 0.
        stride(int|tuple, optional): The stride size. It means the stride in transposed convolution. 
            If stride is a tuple, it must contain three integers, (stride_depth, stride_height, 
            stride_width). Otherwise, stride_depth = stride_height = stride_width = stride. 
            The default value is 1.
        dilation(int|tuple, optional): The dilation size. If dilation is a tuple, it must
L
lujun 已提交
591
            contain three integers, (dilation_D, dilation_H, dilation_W). Otherwise, the
D
DuYao 已提交
592
            dilation_D = dilation_H = dilation_W = dilation. The default value is 1.
C
cnn 已提交
593
        groups(int, optional): The groups number of the Conv3D transpose layer. Inspired by
L
lujun 已提交
594 595 596 597
            grouped convolution in Alex Krizhevsky's Deep CNN paper, in which
            when group=2, the first half of the filters is only connected to the
            first half of the input channels, while the second half of the
            filters is only connected to the second half of the input channels.
D
DuYao 已提交
598 599
            The default value is 1.
        param_attr (ParamAttr, optional): The parameter attribute for learnable parameters/weights
L
lujun 已提交
600 601
            of conv3d_transpose. If it is set to None or one attribute of ParamAttr, conv3d_transpose
            will create ParamAttr as param_attr. If the Initializer of the param_attr
D
DuYao 已提交
602 603
            is not set, the parameter is initialized with Xavier. The default value is None.
        bias_attr (ParamAttr|bool, optional): The parameter attribute for the bias of conv3d_transpose.
L
lujun 已提交
604 605 606
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, conv3d_transpose
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
D
DuYao 已提交
607 608 609 610 611 612 613
            is not set, the bias is initialized zero. The default value is None.
        use_cudnn(bool, optional): Use cudnn kernel or not, it is valid only when the cudnn
            library is installed. The default value is True.
        act (str, optional): Activation type, if it is set to None, activation is not appended.
            The default value is None.
        name(str, optional): The default value is None. Normally there is no need for user 
            to set this property. For more information, please refer to :ref:`api_guide_Name`.
L
lujun 已提交
614

D
DuYao 已提交
615 616 617 618
    Attribute:
        **weight** (Parameter): the learnable weights of filters of this layer.

        **bias** (Parameter): the learnable bias of this layer.
619

L
lujun 已提交
620
    Returns:
D
DuYao 已提交
621
        None.
L
lujun 已提交
622 623 624 625 626 627 628 629

    Raises:
        ValueError: If the shapes of input, filter_size, stride, padding and
                    groups mismatch.

    Examples:
       .. code-block:: python

630 631 632 633 634 635
         import paddle.fluid as fluid
         import numpy

         with fluid.dygraph.guard():
             data = numpy.random.random((5, 3, 12, 32, 32)).astype('float32')
             conv3dTranspose = fluid.dygraph.nn.Conv3DTranspose(
636
                    num_channels=3,
637 638 639 640 641
                    num_filters=12,
                    filter_size=12,
                    use_cudnn=False)
             ret = conv3dTranspose(fluid.dygraph.base.to_variable(data))

L
lujun 已提交
642 643
    """

L
lujun 已提交
644
    def __init__(self,
645
                 num_channels,
L
lujun 已提交
646
                 num_filters,
647
                 filter_size,
L
lujun 已提交
648 649 650 651 652 653 654 655
                 padding=0,
                 stride=1,
                 dilation=1,
                 groups=None,
                 param_attr=None,
                 bias_attr=None,
                 use_cudnn=True,
                 act=None,
656 657
                 dtype='float32'):
        super(Conv3DTranspose, self).__init__()
L
lujun 已提交
658 659 660 661 662 663 664
        if not isinstance(use_cudnn, bool):
            raise ValueError("use_cudnn should be True or False")
        assert param_attr is not False, "param_attr should not be False in conv3d_transpose."
        self._padding = utils.convert_to_list(padding, 3, 'padding')
        self._stride = utils.convert_to_list(stride, 3, 'stride')
        self._dilation = utils.convert_to_list(dilation, 3, 'dilation')
        self._param_attr = param_attr
665
        self._num_channels = num_channels
L
lujun 已提交
666 667 668 669 670 671
        self._filter_size = filter_size
        self._groups = 1 if groups is None else groups
        self._num_filters = num_filters
        self._use_cudnn = use_cudnn
        self._bias_attr = bias_attr
        self._act = act
672
        self._dtype = dtype
L
lujun 已提交
673

674 675
        self._filter_size = utils.convert_to_list(
            self._filter_size, 3, 'conv3d_transpose.filter_size')
L
lujun 已提交
676

677 678
        filter_shape = [self._num_channels, self._num_filters // self._groups
                        ] + self._filter_size
679
        self.weight = self.create_parameter(
L
lujun 已提交
680
            dtype=self._dtype, shape=filter_shape, attr=self._param_attr)
681 682 683 684 685
        self.bias = self.create_parameter(
            attr=self._bias_attr,
            shape=[self._num_filters],
            dtype=self._dtype,
            is_bias=True)
L
lujun 已提交
686 687 688 689 690 691 692

    def forward(self, input):
        pre_bias = self._helper.create_variable_for_type_inference(
            dtype=self._dtype)
        self._helper.append_op(
            type="conv3d_transpose",
            inputs={'Input': [input],
693
                    'Filter': [self.weight]},
L
lujun 已提交
694 695 696 697 698 699 700 701 702 703 704 705 706 707 708
            outputs={'Output': pre_bias},
            attrs={
                'strides': self._stride,
                'paddings': self._padding,
                'dilations': self._dilation,
                'groups': self._groups if self._groups else 1,
                'use_cudnn': self._use_cudnn
            })

        if self._bias_attr:
            pre_act = self._helper.create_variable_for_type_inference(
                dtype=self._dtype)
            self._helper.append_op(
                type='elementwise_add',
                inputs={'X': [pre_bias],
709
                        'Y': [self.bias]},
L
lujun 已提交
710 711 712 713 714 715 716 717 718
                outputs={'Out': [pre_act]},
                attrs={'axis': 1})
        else:
            pre_act = pre_bias

        # Currently, we don't support inplace in imperative mode
        return self._helper.append_activation(pre_act, act=self._act)


X
Xin Pan 已提交
719
class Pool2D(layers.Layer):
720
    r"""
721

722 723 724 725 726
    This interface is used to construct a callable object of the ``Pool2D`` class.
    For more details, refer to code examples.
    The pooling2d operation calculates the output based on the input, pool_type and pool_size, pool_stride,
    pool_padding parameters.Input and output are in NCHW format, where N is batch size, C is the number of feature map,
    H is the height of the feature map, and W is the width of the feature map.
L
lujun 已提交
727 728
    Parameters(ksize, strides, paddings) are two elements. These two elements represent height and width, respectively.
    The input(X) size and output(Out) size may be different.
729

730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773
    Example:

        - Input:

          Input shape: :math:`(N, C, H_{in}, W_{in})`

        - Output:

          Output shape: :math:`(N, C, H_{out}, W_{out})`

        If ``ceil_mode`` = False:

        .. math::

            H_{out} = \\frac{(H_{in} - ksize[0] + 2 * paddings[0])}{strides[0]} + 1 \\\\
            W_{out} = \\frac{(W_{in} - ksize[1] + 2 * paddings[1])}{strides[1]} + 1

        If ``ceil_mode`` = True:

        .. math::

            H_{out} = \\frac{(H_{in} - ksize[0] + 2 * paddings[0] + strides[0] - 1)}{strides[0]} + 1 \\\\
            W_{out} = \\frac{(W_{in} - ksize[1] + 2 * paddings[1] + strides[1] - 1)}{strides[1]} + 1

        If ``exclusive`` = False:

        .. math::

            hstart &= i * strides[0] - paddings[0] \\\\
            hend   &= hstart + ksize[0] \\\\
            wstart &= j * strides[1] - paddings[1] \\\\
            wend   &= wstart + ksize[1] \\\\
            Output(i ,j) &= \\frac{sum(Input[hstart:hend, wstart:wend])}{ksize[0] * ksize[1]}

        If ``exclusive`` = True:

        .. math::

            hstart &= max(0, i * strides[0] - paddings[0])\\\\
            hend &= min(H, hstart + ksize[0]) \\\\
            wstart &= max(0, j * strides[1] - paddings[1]) \\\\
            wend & = min(W, wstart + ksize[1]) \\\\
            Output(i ,j) & = \\frac{sum(Input[hstart:hend, wstart:wend])}{(hend - hstart) * (wend - wstart)}

774
    Parameters:
775
        pool_size (int or list or tuple, optional): The pool kernel size. If pool kernel size is a tuple or list,
776
            it must contain two integers, (pool_size_Height, pool_size_Width).
777 778 779 780
            Otherwise, the pool kernel size will be a square of an int. Default: -1.
        pool_type(str, optional) : The pooling type, can be "max" for max-pooling and "avg" for average-pooling. 
            Default: max.
        pool_stride (int or list or tuple, optional): The pool stride size. If pool stride size is a tuple or list,
L
lujun 已提交
781
            it must contain two integers, (pool_stride_Height, pool_stride_Width). Otherwise,
782 783 784
            the pool stride size will be a square of an int. Default: 1.
        pool_padding (int or list or tuple, optional): The padding size for pooling operation. 
            If ``pool_padding`` is a tuple,
785
            it must contain two integers, (pool_padding_on_Height, pool_padding_on_Width).
786 787 788 789 790 791 792
            Otherwise, the padding size for pooling operation will be a square of an int. Default: 0.
        global_pooling (bool, optional): Whether to use the global pooling. If global_pooling = true,
            kernel size and paddings will be ignored. Default: False.
        use_cudnn (bool, optional): Only used in cudnn kernel, need install cudnn. Default: True.
        ceil_mode (bool, optional): Whether to use the ceil function to calculate output height and width.
            False is the default. If it is set to False, the floor function will be used. Default: False.
        exclusive (bool, optional): Whether to exclude padding points in average pooling mode. Default: True.
793 794 795 796
        data_format (string): The data format of the input and output data. An optional string from: `"NCHW"`, `"NHWC"`.
            The default is `"NCHW"`. When it is `"NCHW"`, the data is stored in the order of:
            ``[batch_size, input_channels, input_height, input_width]``. When it is `"NHWC"`, the data is 
            stored in the order of: ``[batch_size, input_height, input_width, input_channels]``
797 798

    Returns:
799
        None
800 801

    Raises:
802 803 804 805
        ValueError: If ``pool_type`` is not "max" nor "avg".
        ValueError: If ``global_pooling`` is False and ``pool_size`` is -1.
        ValueError: If ``use_cudnn`` is not a bool value.
        ValueError: If ``data_format`` is not "NCHW" nor "NHWC".
806 807 808 809 810

    Examples:

        .. code-block:: python

L
lujun 已提交
811
          import paddle.fluid as fluid
812 813
          from paddle.fluid.dygraph.base import to_variable
          import numpy as np
L
lujun 已提交
814 815

          with fluid.dygraph.guard():
816
             data = numpy.random.random((3, 32, 32, 5)).astype('float32')
817
             pool2d = fluid.dygraph.Pool2D(pool_size=2,
818 819 820
                            pool_type='max',
                            pool_stride=1,
                            global_pooling=False)
821
             pool2d_res = pool2d(to_variable(data))
822 823 824

    """

M
minqiyang 已提交
825 826 827 828 829 830 831 832
    def __init__(self,
                 pool_size=-1,
                 pool_type="max",
                 pool_stride=1,
                 pool_padding=0,
                 global_pooling=False,
                 use_cudnn=True,
                 ceil_mode=False,
833 834 835 836
                 exclusive=True,
                 data_format="NCHW"):
        data_format = data_format.upper()  # supprt NHWC, nhwc, etc.
        pool_type = pool_type.lower()  # supprt max, Max, etc.
M
minqiyang 已提交
837 838 839 840 841 842 843 844 845 846 847 848 849
        if pool_type not in ["max", "avg"]:
            raise ValueError(
                "Unknown pool_type: '%s'. It can only be 'max' or 'avg'.",
                str(pool_type))

        if global_pooling is False and pool_size == -1:
            raise ValueError(
                "When the global_pooling is False, pool_size must be passed "
                "and be a valid value. Received pool_size: " + str(pool_size))

        if not isinstance(use_cudnn, bool):
            raise ValueError("use_cudnn should be True or False")

850
        self._use_mkldnn = _global_flags()["FLAGS_use_mkldnn"]
851

852 853 854 855 856
        if data_format not in ["NCHW", "NHWC"]:
            raise ValueError(
                "Attr(data_format) should be 'NCHW' or 'NHWC'. Received "
                "Attr(data_format): %s." % str(data_format))

857
        super(Pool2D, self).__init__()
M
minqiyang 已提交
858 859 860 861 862 863 864 865 866 867

        self._pool_type = pool_type
        self._pool_size = utils.convert_to_list(pool_size, 2, 'pool_size')
        self._pool_padding = utils.convert_to_list(pool_padding, 2,
                                                   'pool_padding')
        self._pool_stride = utils.convert_to_list(pool_stride, 2, 'pool_stride')
        self._global_pooling = global_pooling
        self._use_cudnn = use_cudnn
        self._ceil_mode = ceil_mode
        self._exclusive = exclusive
868
        self._data_format = data_format
M
minqiyang 已提交
869 870 871
        self._l_type = 'pool2d'

    def forward(self, input):
J
Jiabin Yang 已提交
872
        if _non_static_mode():
873 874 875 876
            attrs = ('pooling_type', self._pool_type, 'ksize', self._pool_size,
                     'global_pooling', self._global_pooling, 'strides',
                     self._pool_stride, 'paddings', self._pool_padding,
                     'use_cudnn', self._use_cudnn, 'ceil_mode', self._ceil_mode,
877 878
                     'use_mkldnn', self._use_mkldnn, 'exclusive',
                     self._exclusive, 'data_format', self._data_format)
W
wanghuancoder 已提交
879
            return _C_ops.pool2d(input, *attrs)
880

881 882 883 884
        check_variable_and_dtype(
            input, 'input', ['int8', 'uint8', 'float16', 'float32', 'float64'],
            'Pool2D')

885 886 887 888 889 890 891 892
        attrs = {
            "pooling_type": self._pool_type,
            "ksize": self._pool_size,
            "global_pooling": self._global_pooling,
            "strides": self._pool_stride,
            "paddings": self._pool_padding,
            "use_cudnn": self._use_cudnn,
            "ceil_mode": self._ceil_mode,
893
            "use_mkldnn": self._use_mkldnn,
894
            "exclusive": self._exclusive,
895
            "data_format": self._data_format,
896 897 898
        }
        inputs = {"X": [input]}

M
minqiyang 已提交
899 900
        pool_out = self._helper.create_variable_for_type_inference(self._dtype)

M
minqiyang 已提交
901 902 903
        self._helper.append_op(
            type=self._l_type,
            inputs={"X": input},
M
minqiyang 已提交
904
            outputs={"Out": pool_out},
905
            attrs=attrs)
M
minqiyang 已提交
906
        return pool_out
M
minqiyang 已提交
907 908


S
songyouwei 已提交
909 910
class Linear(layers.Layer):
    """
911
    
S
songyouwei 已提交
912 913 914 915 916 917 918 919
    Fully-connected linear transformation layer:

    .. math::

        Out = Act({XW + b})

    where :math:`X` is the input Tensor, :math:`W` and :math:`b` are weight and bias respectively.

920
    Linear layer takes only one ``Tensor`` input.
S
songyouwei 已提交
921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978
    The Linear layer multiplies input tensor with weight matrix and
    produces an output Tensor of shape [N, *, `output_dim`],
    where N is batch size and `*` means any number of additional dimensions.
    If ``bias_attr`` is not None, a bias variable will be created and added to the output.
    Finally, if ``act`` is not None, it will be applied to the output as well.

    Parameters:
        input_dim(int): The number of input units in this layer.
        output_dim(int): The number of output units in this layer.
        param_attr(ParamAttr or list of ParamAttr, optional): The parameter attribute for learnable
            weights(Parameter) of this layer. Default: None.
        bias_attr(ParamAttr or list of ParamAttr, optional): The attribute for the bias
            of this layer. If it is set to False, no bias will be added to the output units.
            If it is set to None, the bias is initialized zero. Default: None.
        act(str, optional): Activation to be applied to the output of this layer. Default: None.
        dtype(str, optional): Dtype used for weight, it can be "float32" or "float64". Default: "float32".

    Attributes:
        **weight** (Parameter): the learnable weights of this layer.

        **bias** (Parameter or None): the learnable bias of this layer.

    Returns:
        None

    Examples:
        .. code-block:: python

          from paddle.fluid.dygraph.base import to_variable
          import paddle.fluid as fluid
          from paddle.fluid.dygraph import Linear
          import numpy as np

          data = np.random.uniform(-1, 1, [30, 10, 32]).astype('float32')
          with fluid.dygraph.guard():
              linear = Linear(32, 64)
              data = to_variable(data)
              res = linear(data)  # [30, 10, 64]
    """

    def __init__(self,
                 input_dim,
                 output_dim,
                 param_attr=None,
                 bias_attr=None,
                 act=None,
                 dtype="float32"):
        super(Linear, self).__init__()
        self._act = act
        self._dtype = dtype
        self.weight = self.create_parameter(
            shape=[input_dim, output_dim],
            attr=param_attr,
            dtype=dtype,
            is_bias=False)
        self.bias = self.create_parameter(
            shape=[output_dim], attr=bias_attr, dtype=dtype, is_bias=True)

979
        self._use_mkldnn = _global_flags()["FLAGS_use_mkldnn"]
980

S
songyouwei 已提交
981
    def forward(self, input):
J
Jiabin Yang 已提交
982
        if _non_static_mode():
983
            pre_bias = _varbase_creator(dtype=input.dtype)
W
wanghuancoder 已提交
984 985 986
            _C_ops.matmul(input, self.weight, pre_bias, 'transpose_X', False,
                          'transpose_Y', False, "alpha", 1, "use_mkldnn",
                          self._use_mkldnn)
987
            pre_act = dygraph_utils._append_bias_in_dygraph(
988 989 990 991
                pre_bias,
                self.bias,
                axis=len(input.shape) - 1,
                use_mkldnn=self._use_mkldnn)
992

993 994
            return dygraph_utils._append_activation_in_dygraph(
                pre_act, self._act, use_mkldnn=self._use_mkldnn)
995 996 997 998

        check_variable_and_dtype(input, 'input',
                                 ['float16', 'float32', 'float64'], "Linear")

999
        attrs = {
S
songyouwei 已提交
1000 1001 1002
            "transpose_X": False,
            "transpose_Y": False,
            "alpha": 1,
1003
            "use_mkldnn": self._use_mkldnn,
1004 1005
        }
        inputs = {"X": [input], "Y": [self.weight]}
1006

S
songyouwei 已提交
1007 1008
        tmp = self._helper.create_variable_for_type_inference(self._dtype)
        self._helper.append_op(
S
songyouwei 已提交
1009
            type="matmul", inputs=inputs, outputs={"Out": tmp}, attrs=attrs)
1010
        if self.bias is not None:
S
songyouwei 已提交
1011 1012 1013 1014 1015 1016 1017
            pre_activation = self._helper.create_variable_for_type_inference(
                dtype=self._dtype)
            self._helper.append_op(
                type='elementwise_add',
                inputs={'X': [tmp],
                        'Y': [self.bias]},
                outputs={'Out': [pre_activation]},
1018 1019 1020 1021
                attrs={
                    'axis': len(input.shape) - 1,
                    'use_mkldnn': self._use_mkldnn
                })
S
songyouwei 已提交
1022 1023 1024 1025 1026
        else:
            pre_activation = tmp
        return self._helper.append_activation(pre_activation, act=self._act)


1027
class InstanceNorm(layers.Layer):
1028
    r"""
1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058
    This interface is used to construct a callable object of the ``InstanceNorm`` class.
    For more details, refer to code examples.

    Can be used as a normalizer function for convolution or fully_connected operations.
    The required data format for this layer is one of the following:

    DataLayout: NCHW `[batch, in_channels, in_height, in_width]`

    Refer to `Instance Normalization: The Missing Ingredient for Fast Stylization <https://arxiv.org/pdf/1607.08022.pdf>`_
    for more details.

    :math:`input` is the input features over a mini-batch.

    ..  math::
        
        \\mu_{\\beta} &\\gets \\frac{1}{HW} \\sum_{i=1}^{HW} x_i \\qquad &//\\
        \\ mean\ of\ one\  feature\ map\ in\ mini-batch \\\\
        \\sigma_{\\beta}^{2} &\\gets \\frac{1}{HW} \\sum_{i=1}^{HW}(x_i - \\
        \\mu_{\\beta})^2 \\qquad &//\ variance\ of\ one\ feature\ map\ in\ mini-batch \\\\
        \\hat{x_i} &\\gets \\frac{x_i - \\mu_\\beta} {\\sqrt{\\
        \\sigma_{\\beta}^{2} + \\epsilon}} \\qquad &//\ normalize \\\\
        y_i &\\gets \\gamma \\hat{x_i} + \\beta \\qquad &//\ scale\ and\ shift

    Note:
        `H` means height of feature map, `W` means width of feature map.

    Parameters:
        num_channels(int): Indicate the number of channels of the input ``Tensor``.
        epsilon(float, optional): A value added to the denominator for
            numerical stability. Default is 1e-5.
C
ceci3 已提交
1059
        param_attr(ParamAttr|bool, optional): The parameter attribute for Parameter `scale`
1060 1061 1062
             of instance_norm. If it is set to None or one attribute of ParamAttr, instance_norm
	     will create ParamAttr as param_attr, the name of scale can be set in ParamAttr.
	     If the Initializer of the param_attr is not set, the parameter is initialized 
C
ceci3 已提交
1063 1064
	     one. If it is set to False, will not create param_attr. Default: None.
        bias_attr(ParamAttr|bool, optional): The parameter attribute for the bias of instance_norm.
1065 1066 1067
             If it is set to None or one attribute of ParamAttr, instance_norm
	     will create ParamAttr as bias_attr, the name of bias can be set in ParamAttr. 
	     If the Initializer of the bias_attr is not set, the bias is initialized zero. 
C
ceci3 已提交
1068
             If it is set to False, will not create bias_attr. Default: None.
1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102
        dtype(str, optional): Indicate the data type of the input ``Tensor``,
             which can be float32 or float64. Default: float32.

    Returns:
        None.

    Examples:

        .. code-block:: python

          import paddle.fluid as fluid
          from paddle.fluid.dygraph.base import to_variable
          import numpy as np
          import paddle

          # x's shape is [1, 3, 1, 2] 
          x = np.array([[[[1.0, 8.0]], [[10.0, 5.0]], [[4.0, 6.0]]]]).astype('float32')
          with fluid.dygraph.guard():
              x = to_variable(x)
              instanceNorm = paddle.nn.InstanceNorm(3)
              ret = instanceNorm(x)
              # ret's shape is [1, 3, 1, 2]; value is [-1 1 0.999999 -0.999999 -0.999995 0.999995] 
              print(ret)

    """

    def __init__(self,
                 num_channels,
                 epsilon=1e-5,
                 param_attr=None,
                 bias_attr=None,
                 dtype='float32'):
        super(InstanceNorm, self).__init__()

C
ceci3 已提交
1103 1104
        if param_attr == False or bias_attr == False:
            assert bias_attr == param_attr, "param_attr and bias_attr must be set to Fasle at the same time in InstanceNorm"
1105 1106 1107 1108 1109
        self._epsilon = epsilon
        self._param_attr = param_attr
        self._bias_attr = bias_attr
        self._dtype = dtype

C
ceci3 已提交
1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125
        if param_attr != False and bias_attr != False:
            self.scale = self.create_parameter(
                attr=self._param_attr,
                shape=[num_channels],
                dtype=self._dtype,
                default_initializer=Constant(1.0),
                is_bias=False)
            self.bias = self.create_parameter(
                attr=self._bias_attr,
                shape=[num_channels],
                dtype=self._dtype,
                default_initializer=Constant(0.0),
                is_bias=True)
        else:
            self.scale = None
            self.bias = None
1126 1127

    def forward(self, input):
J
Jiabin Yang 已提交
1128
        if _non_static_mode():
W
wanghuancoder 已提交
1129 1130
            out, _, _ = _C_ops.instance_norm(input, self.scale, self.bias,
                                             'epsilon', self._epsilon)
1131 1132 1133 1134 1135 1136 1137
            return out

        check_variable_and_dtype(input, 'input', ['float32', 'float64'],
                                 "InstanceNorm")

        attrs = {"epsilon": self._epsilon}

C
ceci3 已提交
1138 1139 1140 1141
        if self.scale and self.bias:
            inputs = {"X": [input], "Scale": [self.scale], "Bias": [self.bias]}
        else:
            inputs = {"X": [input]}
1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160

        saved_mean = self._helper.create_variable_for_type_inference(
            dtype=self._dtype, stop_gradient=True)
        saved_variance = self._helper.create_variable_for_type_inference(
            dtype=self._dtype, stop_gradient=True)
        instance_norm_out = self._helper.create_variable_for_type_inference(
            self._dtype)

        outputs = {
            "Y": [instance_norm_out],
            "SavedMean": [saved_mean],
            "SavedVariance": [saved_variance]
        }

        self._helper.append_op(
            type="instance_norm", inputs=inputs, outputs=outputs, attrs=attrs)
        return instance_norm_out


M
minqiyang 已提交
1161
class BatchNorm(layers.Layer):
1162
    r"""
1163

1164 1165 1166 1167 1168
    This interface is used to construct a callable object of the ``BatchNorm`` class.
    For more details, refer to code examples.
    It implements the function of the Batch Normalization Layer and can be used 
    as a normalizer function for conv2d and fully connected operations.
    The data is normalized by the mean and variance of the channel based on the current batch data.
1169 1170 1171 1172
    Refer to `Batch Normalization: Accelerating Deep Network Training by Reducing
    Internal Covariate Shift <https://arxiv.org/pdf/1502.03167.pdf>`_
    for more details.

1173 1174
    When use_global_stats = False, the :math:`\mu_{\beta}` 
    and :math:`\sigma_{\beta}^{2}` are the statistics of one mini-batch.
1175
    Calculated as follows:
1176 1177 1178

    ..  math::

1179 1180 1181 1182
        \mu_{\beta} &\gets \frac{1}{m} \sum_{i=1}^{m} x_i \qquad &
        //\ mini-batch\ mean \\
        \sigma_{\beta}^{2} &\gets \frac{1}{m} \sum_{i=1}^{m}(x_i - \mu_{\beta})^2 \qquad &
        //\ mini-batch\ variance \\
1183

1184 1185
    - :math:`x` : mini-batch data
    - :math:`m` : the size of the mini-batch data
1186 1187 1188

    When use_global_stats = True, the :math:`\\mu_{\\beta}`
    and :math:`\\sigma_{\\beta}^{2}` are not the statistics of one mini-batch.
1189 1190 1191 1192 1193 1194
    They are global or running statistics (moving_mean and moving_variance). It usually got from the
    pre-trained model. Calculated as follows:

    .. math::
        moving\_mean = moving\_mean * momentum + \mu_{\beta} * (1. - momentum) \quad &// global mean \\
        moving\_variance = moving\_variance * momentum + \sigma_{\beta}^{2} * (1. - momentum) \quad &// global variance \\
1195

1196 1197
    The normalization function formula is as follows:
 
1198 1199
    ..  math::

1200 1201 1202 1203
        \hat{x_i} &\gets \frac{x_i - \mu_\beta} {\sqrt{\
        \sigma_{\beta}^{2} + \epsilon}} \qquad &//\ normalize \\
        y_i &\gets \gamma \hat{x_i} + \beta \qquad &//\ scale\ and\ shift

1204

1205 1206 1207
    - :math:`\epsilon` : add a smaller value to the variance to prevent division by zero
    - :math:`\gamma` : trainable proportional parameter
    - :math:`\beta` : trainable deviation parameter
1208

1209
    Parameters:
1210
        num_channels(int): Indicate the number of channels of the input ``Tensor``.
T
tianshuo78520a 已提交
1211
        act(str, optional): Activation to be applied to the output of batch normalization. Default: None.
1212 1213 1214
        is_test (bool, optional): A flag indicating whether it is in test phrase or not.
             This flag only has effect on static graph mode. For dygraph mode, please use ``eval()``.
             Default: False.
1215 1216 1217
        momentum(float, optional): The value used for the moving_mean and moving_var computation. Default: 0.9.
        epsilon(float, optional): The small value added to the variance to prevent division by zero. Default: 1e-5.
        param_attr(ParamAttr, optional): The parameter attribute for Parameter `scale`
1218 1219 1220
             of batch_norm. If it is set to None or one attribute of ParamAttr, batch_norm
             will create ParamAttr as param_attr. If the Initializer of the param_attr
             is not set, the parameter is initialized with Xavier. Default: None.
1221
        bias_attr(ParamAttr, optional): The parameter attribute for the bias of batch_norm.
1222 1223 1224
             If it is set to None or one attribute of ParamAttr, batch_norm
             will create ParamAttr as bias_attr. If the Initializer of the bias_attr
             is not set, the bias is initialized zero. Default: None.
1225 1226 1227 1228 1229 1230
        dtype(str, optional): Indicate the data type of the input ``Tensor``,
             which can be float32 or float64. Default: float32.
        data_layout(str, optional): Specify the input data format, the data format can be "NCHW" or "NHWC". Default: NCHW.
        in_place(bool, optional): Make the input and output of batch norm reuse memory. Default: False.
        moving_mean_name(str, optional): The name of moving_mean which store the global Mean. Default: None.
        moving_variance_name(str, optional): The name of the moving_variance which store the global Variance. Default: None.
1231 1232
        do_model_average_for_mean_and_var(bool, optional): Whether parameter mean and variance should do model
            average when model average is enabled. Default: True.
1233
        use_global_stats(bool, optional): Whether to use global mean and
1234 1235 1236
            variance. In inference or test mode, set use_global_stats to true
            or is_test to true, and the behavior is equivalent.
            In train mode, when setting use_global_stats True, the global mean
1237 1238 1239 1240
            and variance are also used during train period. Default: False.
        trainable_statistics(bool, optional): Whether to calculate mean and var in eval mode. In eval mode, when
            setting trainable_statistics True, mean and variance will be calculated by current batch statistics.
            Default: False.
1241 1242

    Returns:
1243
        None
1244 1245 1246

    Examples:
        .. code-block:: python
L
lujun 已提交
1247 1248

          import paddle.fluid as fluid
1249 1250
          from paddle.fluid.dygraph.base import to_variable
          import numpy as np
L
lujun 已提交
1251

1252
          x = np.random.random(size=(3, 10, 3, 7)).astype('float32')
L
lujun 已提交
1253
          with fluid.dygraph.guard():
1254
              x = to_variable(x)
1255
              batch_norm = fluid.BatchNorm(10)
1256
              hidden1 = batch_norm(x)
1257 1258
    """

M
minqiyang 已提交
1259 1260 1261 1262 1263 1264 1265 1266
    def __init__(self,
                 num_channels,
                 act=None,
                 is_test=False,
                 momentum=0.9,
                 epsilon=1e-05,
                 param_attr=None,
                 bias_attr=None,
1267
                 dtype='float32',
M
minqiyang 已提交
1268 1269 1270 1271
                 data_layout='NCHW',
                 in_place=False,
                 moving_mean_name=None,
                 moving_variance_name=None,
1272
                 do_model_average_for_mean_and_var=True,
1273 1274
                 use_global_stats=False,
                 trainable_statistics=False):
1275
        super(BatchNorm, self).__init__()
1276
        self._param_attr = param_attr
1277
        self._bias_attr = bias_attr
1278
        self._act = act
1279
        self._use_mkldnn = _global_flags()["FLAGS_use_mkldnn"]
M
minqiyang 已提交
1280 1281 1282

        assert bias_attr is not False, "bias_attr should not be False in batch_norm."

1283 1284
        if dtype == "float16":
            self._dtype = "float32"
M
minqiyang 已提交
1285 1286 1287 1288 1289 1290
        else:
            self._dtype = dtype

        param_shape = [num_channels]

        # create parameter
1291
        self.weight = self.create_parameter(
1292
            attr=self._param_attr,
M
minqiyang 已提交
1293 1294 1295
            shape=param_shape,
            dtype=self._dtype,
            default_initializer=Constant(1.0))
1296
        self.weight.stop_gradient = use_global_stats and self._param_attr.learning_rate == 0.
M
minqiyang 已提交
1297

1298
        self.bias = self.create_parameter(
1299
            attr=self._bias_attr,
M
minqiyang 已提交
1300 1301 1302
            shape=param_shape,
            dtype=self._dtype,
            is_bias=True)
1303
        self.bias.stop_gradient = use_global_stats and self._param_attr.learning_rate == 0.
M
minqiyang 已提交
1304

1305
        self._mean = self.create_parameter(
M
minqiyang 已提交
1306 1307 1308 1309 1310 1311 1312
            attr=ParamAttr(
                name=moving_mean_name,
                initializer=Constant(0.0),
                trainable=False,
                do_model_average=do_model_average_for_mean_and_var),
            shape=param_shape,
            dtype=self._dtype)
1313
        self._mean.stop_gradient = True
M
minqiyang 已提交
1314

1315
        self._variance = self.create_parameter(
M
minqiyang 已提交
1316 1317 1318 1319 1320 1321 1322
            attr=ParamAttr(
                name=moving_variance_name,
                initializer=Constant(1.0),
                trainable=False,
                do_model_average=do_model_average_for_mean_and_var),
            shape=param_shape,
            dtype=self._dtype)
1323
        self._variance.stop_gradient = True
M
minqiyang 已提交
1324 1325

        self._in_place = in_place
1326
        self._data_layout = data_layout
M
minqiyang 已提交
1327 1328 1329
        self._momentum = momentum
        self._epsilon = epsilon
        self._is_test = is_test
1330
        self._fuse_with_relu = False
M
minqiyang 已提交
1331
        self._use_global_stats = use_global_stats
1332
        self._trainable_statistics = trainable_statistics
M
minqiyang 已提交
1333 1334 1335 1336 1337 1338 1339

    def forward(self, input):
        # create output
        # mean and mean_out share the same memory
        mean_out = self._mean
        # variance and variance out share the same memory
        variance_out = self._variance
1340

J
Jiabin Yang 已提交
1341
        if _non_static_mode():
H
hong 已提交
1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357
            if in_dygraph_mode():
                batch_norm_out, t1, t2, t3, t4, _ = _C_ops.final_state_batch_norm(
                    input, self.weight, self.bias, self._mean, self._variance,
                    self._momentum, self._epsilon, self._data_layout,
                    not self.training, self._use_global_stats,
                    self._trainable_statistics, False)
            else:
                attrs = ("momentum", self._momentum, "epsilon", self._epsilon,
                         "is_test", not self.training, "data_layout",
                         self._data_layout, "use_mkldnn", self._use_mkldnn,
                         "fuse_with_relu", self._fuse_with_relu,
                         "use_global_stats", self._use_global_stats,
                         'trainable_statistics', self._trainable_statistics)
                batch_norm_out, _, _, _, _, _ = _C_ops.batch_norm(
                    input, self.weight, self.bias, self._mean, self._variance,
                    mean_out, variance_out, *attrs)
1358
            return dygraph_utils._append_activation_in_dygraph(
1359
                batch_norm_out, act=self._act, use_mkldnn=self._use_mkldnn)
1360

1361 1362 1363
        check_variable_and_dtype(input, 'input',
                                 ['float16', 'float32', 'float64'], 'BatchNorm')

1364 1365 1366 1367 1368 1369 1370
        attrs = {
            "momentum": self._momentum,
            "epsilon": self._epsilon,
            "is_test": self._is_test,
            "data_layout": self._data_layout,
            "use_mkldnn": False,
            "fuse_with_relu": self._fuse_with_relu,
1371 1372
            "use_global_stats": self._use_global_stats,
            "trainable_statistics": self._trainable_statistics,
1373
        }
M
minqiyang 已提交
1374

1375 1376 1377 1378 1379 1380 1381 1382
        inputs = {
            "X": [input],
            "Scale": [self.weight],
            "Bias": [self.bias],
            "Mean": [self._mean],
            "Variance": [self._variance]
        }

1383 1384 1385 1386
        saved_mean = self._helper.create_variable_for_type_inference(
            dtype=self._dtype, stop_gradient=True)
        saved_variance = self._helper.create_variable_for_type_inference(
            dtype=self._dtype, stop_gradient=True)
1387 1388
        reserve_space = self._helper.create_variable_for_type_inference(
            dtype=self._helper.input_dtype(input), stop_gradient=True)
1389

1390 1391
        batch_norm_out = input if self._in_place else self._helper.create_variable_for_type_inference(
            self._dtype)
1392 1393 1394 1395 1396 1397 1398 1399

        outputs = {
            "Y": [batch_norm_out],
            "MeanOut": [mean_out],
            "VarianceOut": [variance_out],
            "SavedMean": [saved_mean],
            "SavedVariance": [saved_variance]
        }
1400
        if reserve_space is not None:
1401
            outputs["ReserveSpace"] = [reserve_space]
1402

M
minqiyang 已提交
1403
        self._helper.append_op(
1404
            type="batch_norm", inputs=inputs, outputs=outputs, attrs=attrs)
M
minqiyang 已提交
1405

L
lujun 已提交
1406
        # Currently, we don't support inplace in dygraph mode
1407
        return self._helper.append_activation(batch_norm_out, self._act)
1408 1409


1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488
class Dropout(layers.Layer):
    """
   This interface is used to construct a callable object of the ``Dropout`` class.
   For more details, refer to code examples.

   Drop or keep each element of input independently. Dropout is a regularization
   technique for reducing overfitting by preventing neuron co-adaption during
   training. The dropout operator randomly sets (according to the given dropout
   probability) the outputs of some units to zero, while others are remain
   unchanged.

   Dropout layer can be removed for efficiency concern.

   Parameters:
       p (float, optional): Probability of setting units to zero. Default: 0.5
       seed (int, optional): A Python integer used to create random seeds. If this
                   parameter is set to None, a random seed is used.
                   NOTE: If an integer seed is given, always the same output
                   units will be dropped. DO NOT use a fixed seed in training. Default: None.
       dropout_implementation(string, optional): ['downgrade_in_infer'(default)|'upscale_in_train']

                                       1. downgrade_in_infer(default), downgrade the outcome at inference

                                          - train: out = input * mask
                                          - inference: out = input * (1.0 - p)

                                          (mask is a tensor same shape with input, value is 0 or 1
                                          ratio of 0 is dropout_prob)
                                       2. upscale_in_train, upscale the outcome at training time

                                          - train: out = input * mask / ( 1.0 - p )
                                          - inference: out = input

                                          (mask is a tensor same shape with input, value is 0 or 1
                                          ratio of 0 is p)
       is_test (bool, optional): A flag indicating whether it is in test phrase or not.
                   This flag only has effect on static graph mode. For dygraph mode, please use ``eval()``.
                   Default: False.

   Returns:
       None

   Examples:

       .. code-block:: python

           import paddle.fluid as fluid
           from paddle.fluid.dygraph.base import to_variable
           import numpy as np

           x = np.random.random(size=(3, 10, 3, 7)).astype('float32')
           with fluid.dygraph.guard():
               x = to_variable(x)
               m = fluid.dygraph.Dropout(p=0.5)
               droped_train = m(x)
               # switch to eval mode
               m.eval()
               droped_eval = m(x)
   """

    def __init__(self,
                 p=0.5,
                 seed=None,
                 dropout_implementation="downgrade_in_infer",
                 is_test=False):
        super(Dropout, self).__init__()
        assert isinstance(p, (float, int)), "p argument should be a number"
        assert 0 <= p <= 1, "p argument should between 0 and 1"
        self._dropout_prob = p
        assert seed is None or isinstance(
            seed, int), "seed argument should be None or a integer"
        self._seed = seed
        assert dropout_implementation in (
            'downgrade_in_infer', 'upscale_in_train'
        ), "dropout_implementation argument should be 'downgrade_in_infer' or 'upscale_in_train'"
        self._dropout_implementation = dropout_implementation
        self._is_test = is_test

    def forward(self, input):
1489 1490 1491
        # fast return for p == 0
        if self._dropout_prob == 0:
            return input
1492 1493 1494 1495 1496 1497
        prog = default_main_program()
        if (self._seed is None or self._seed == 0) and prog.random_seed != 0:
            self._seed = prog.random_seed
        attrs = {
            'dropout_prob': self._dropout_prob,
            'is_test': not self.training
J
Jiabin Yang 已提交
1498
            if _non_static_mode() else self._is_test,
1499 1500 1501 1502 1503
            'fix_seed': self._seed is not None,
            'seed': self._seed if self._seed is not None else 0,
            'dropout_implementation': self._dropout_implementation,
        }

J
Jiabin Yang 已提交
1504
        if _non_static_mode():
1505
            attrs = sum(attrs.items(), ())
W
wanghuancoder 已提交
1506
            out, mask = _C_ops.dropout(input, *attrs)
1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521
            return out

        out = self._helper.create_variable_for_type_inference(dtype=input.dtype)
        mask = self._helper.create_variable_for_type_inference(
            dtype=core.VarDesc.VarType.UINT8, stop_gradient=True)

        self._helper.append_op(
            type='dropout',
            inputs={'X': [input]},
            outputs={'Out': [out],
                     'Mask': [mask]},
            attrs=attrs)
        return out


1522
class Embedding(layers.Layer):
1523
    r"""
1524 1525 1526 1527
    :alias_main: paddle.nn.Embedding
	:alias: paddle.nn.Embedding,paddle.nn.layer.Embedding,paddle.nn.layer.common.Embedding
	:old_api: paddle.fluid.dygraph.Embedding

1528 1529
    **Embedding Layer**

Z
zhongpu 已提交
1530 1531 1532 1533 1534 1535
    This interface is used to construct a callable object of the ``Embedding`` class.
    For specific usage, refer to code examples. It implements the function of the Embedding Layer.
    This layer is used to lookup embeddings vector of ids provided by :attr:`input` .
    It automatically constructs a 2D embedding matrix based on the
    input :attr:`size` (vocab_size, emb_size) and :attr:`dtype` .

1536 1537
    The shape of output Tensor is generated by appending an emb_size dimension to the
    last dimension of the input Tensor shape.
Z
zhongpu 已提交
1538

1539
    **Note:** The id in :attr:`input` must satisfy :math:`0 =< id < size[0]` ,
Z
zhongpu 已提交
1540 1541 1542 1543 1544 1545 1546
    otherwise the program will throw an exception and exit.

    .. code-block:: text

        Case 1:

        input is a Tensor. padding_idx = -1
1547 1548
            input.data = [[1, 3], [2, 4], [4, 127]
            input.shape = [3, 2]
Z
zhongpu 已提交
1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561
        Given size = [128, 16]
        output is a Tensor:
            out.shape = [3, 2, 16]
            out.data = [[[0.129435295, 0.244512452, ..., 0.436322452],
                        [0.345421456, 0.524563927, ..., 0.144534654]],

                        [[0.345249859, 0.124939536, ..., 0.194353745],
                        [0.945345345, 0.435394634, ..., 0.435345365]],
                        
                        [[0.945345345, 0.435394634, ..., 0.435345365],
                        [0.0,         0.0,         ..., 0.0        ]]]  # padding data
        The input padding_idx is less than 0, it is automatically converted to padding_idx = -1 + 128 = 127
        It will pad all-zero data when ids is 127.
1562

1563
    Parameters:
L
lujun 已提交
1564 1565
        size(tuple|list): The shape of the look up table parameter. It should have two elements which indicate the size
            of the dictionary of embeddings and the size of each embedding vector respectively.
Z
zhongpu 已提交
1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583
        is_sparse(bool): The flag indicating whether to use sparse update. This parameter only
            affects the performance of the backwards gradient update. It is recommended to set 
            True because sparse update is faster. But some optimizer does not support sparse update,
            such as :ref:`api_fluid_optimizer_AdadeltaOptimizer` , :ref:`api_fluid_optimizer_AdamaxOptimizer` , 
            :ref:`api_fluid_optimizer_DecayedAdagradOptimizer` , :ref:`api_fluid_optimizer_FtrlOptimizer` ,
            :ref:`api_fluid_optimizer_LambOptimizer` and :ref:`api_fluid_optimizer_LarsMomentumOptimizer` .
            In these case, is_sparse must be False. Default: False.
        is_distributed(bool): Whether to store the embedding matrix in a distributed manner. Only used
            in multi-machine distributed CPU training. Default: False.
        padding_idx(int|long|None): padding_idx needs to be in the interval [-vocab_size, vocab_size). 
            If :math:`padding\_idx < 0`, the :math:`padding\_idx` will automatically be converted
            to :math:`vocab\_size + padding\_idx` . It will output all-zero padding data whenever lookup
            encounters :math:`padding\_idx` in id. And the padding data will not be updated while training.
            If set None, it makes no effect to output. Default: None.
        param_attr(ParamAttr): To specify the weight parameter property. Default: None, which means the
            default weight parameter property is used. See usage for details in :ref:`api_fluid_ParamAttr` . In addition,
            user-defined or pre-trained word vectors can be loaded with the :attr:`param_attr` parameter. 
            The local word vector needs to be transformed into numpy format, and the shape of local word
T
tianshuo78520a 已提交
1584
            vector should be consistent with :attr:`size` . Then :ref:`api_fluid_initializer_NumpyArrayInitializer`
Z
zhongpu 已提交
1585 1586 1587
            is used to load custom or pre-trained word vectors. See code example 2 for details.
        dtype(np.dtype|core.VarDesc.VarType|str): It refers to the data type of output Tensor.
            It must be "float32" or "float64". Default: "float32".
1588

Z
zhongpu 已提交
1589 1590
    Attribute:
        **weight** (Parameter): the learnable weights of this layer.
1591

1592
    Returns:
Z
zhongpu 已提交
1593
        Variable: Embedding Tensor or LoDTensor mapped by input. The data type is the same as :attr:`dtype` .
1594 1595

    Examples:
1596

1597 1598
        .. code-block:: python

L
lujun 已提交
1599 1600 1601 1602
          import paddle.fluid as fluid
          import paddle.fluid.dygraph.base as base
          import numpy as np

Z
zhongpu 已提交
1603
          # example 1
1604 1605
          inp_word = np.array([[2, 3, 5], [4, 2, 1]]).astype('int64')
          inp_word.shape  # [2, 3]
1606 1607
          dict_size = 20
          with fluid.dygraph.guard():
L
lujun 已提交
1608
              emb = fluid.dygraph.Embedding(
1609 1610 1611
                  size=[dict_size, 32],
                  param_attr='emb.w',
                  is_sparse=False)
L
lujun 已提交
1612
              static_rlt3 = emb(base.to_variable(inp_word))
1613
              static_rlt3.shape  # [2, 3, 32]
Z
zhongpu 已提交
1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627

          # example 2: load custom or pre-trained word vectors
          weight_data = np.random.random(size=(128, 100))  # word vectors with numpy format
          w_param_attrs = fluid.ParamAttr(
              name="emb_weight",
              learning_rate=0.5,
              initializer=fluid.initializer.NumpyArrayInitializer(weight_data),
              trainable=True)
          with fluid.dygraph.guard():
              emb = fluid.dygraph.Embedding(
                  size=[128, 100],
                  param_attr= w_param_attrs,
                  is_sparse=False)
              static_rlt3 = emb(base.to_variable(inp_word))          
1628 1629
    """

1630 1631 1632 1633 1634 1635 1636
    def __init__(self,
                 size,
                 is_sparse=False,
                 is_distributed=False,
                 padding_idx=None,
                 param_attr=None,
                 dtype='float32'):
1637
        super(Embedding, self).__init__()
1638 1639 1640 1641
        self._size = size
        self._is_sparse = is_sparse
        self._is_distributed = is_distributed
        self._padding_idx = -1 if padding_idx is None else padding_idx if padding_idx >= 0 else (
J
JiabinYang 已提交
1642
            size[0] + padding_idx)
1643 1644 1645

        self._param_attr = param_attr
        self._dtype = dtype
J
JiabinYang 已提交
1646
        self._remote_prefetch = self._is_sparse and (not self._is_distributed)
1647 1648 1649
        if self._remote_prefetch:
            assert self._is_sparse is True and self._is_distributed is False

1650
        self.weight = self.create_parameter(
1651 1652 1653 1654 1655 1656
            attr=self._param_attr,
            shape=self._size,
            dtype=self._dtype,
            is_bias=False)

    def forward(self, input):
J
Jiabin Yang 已提交
1657
        if _non_static_mode():
W
wanghuancoder 已提交
1658
            return _C_ops.lookup_table_v2(
1659 1660 1661 1662
                self.weight, input, 'is_sparse', self._is_sparse,
                'is_distributed', self._is_distributed, 'remote_prefetch',
                self._remote_prefetch, 'padding_idx', self._padding_idx)

1663 1664 1665
        check_variable_and_dtype(input, 'input',
                                 ['uint8', 'int8', 'int16', 'int32', 'int64'],
                                 'Embedding')
1666 1667 1668 1669 1670 1671
        attrs = {
            'is_sparse': self._is_sparse,
            'is_distributed': self._is_distributed,
            'remote_prefetch': self._remote_prefetch,
            'padding_idx': self._padding_idx
        }
1672

1673 1674
        out = self._helper.create_variable_for_type_inference(self._dtype)
        self._helper.append_op(
1675
            type='lookup_table_v2',
1676
            inputs={'Ids': input,
1677
                    'W': self.weight},
1678
            outputs={'Out': out},
1679
            attrs=attrs)
1680 1681

        return out
M
minqiyang 已提交
1682 1683


1684
class LayerNorm(layers.Layer):
1685
    r"""
1686 1687 1688 1689
    :alias_main: paddle.nn.LayerNorm
	:alias: paddle.nn.LayerNorm,paddle.nn.layer.LayerNorm,paddle.nn.layer.norm.LayerNorm
	:old_api: paddle.fluid.dygraph.LayerNorm

1690 1691 1692
    This interface is used to construct a callable object of the ``LayerNorm`` class.
    For more details, refer to code examples.
    It implements the function of the Layer Normalization Layer and can be applied to mini-batch input data.
1693
    Refer to `Layer Normalization <https://arxiv.org/pdf/1607.06450v1.pdf>`_
1694

1695
    The formula is as follows:
1696

1697
    ..  math::
1698

1699
        \\mu & = \\frac{1}{H}\\sum_{i=1}^{H} x_i
1700

1701
        \\sigma & = \\sqrt{\\frac{1}{H}\sum_{i=1}^{H}{(x_i - \\mu)^2} + \\epsilon}
1702

1703
        y & = f(\\frac{g}{\\sigma}(x - \\mu) + b)
1704

1705 1706 1707 1708 1709
    - :math:`x`: the vector representation of the summed inputs to the neurons in that layer.
    - :math:`H`: the number of hidden units in a layers
    - :math:`\\epsilon`: the small value added to the variance to prevent division by zero.
    - :math:`g`: the trainable scale parameter.
    - :math:`b`: the trainable bias parameter.
1710

1711
    Parameters:
1712 1713 1714 1715
        normalized_shape(int or list or tuple): Input shape from an expected input of
            size :math:`[*, normalized_shape[0], normalized_shape[1], ..., normalized_shape[-1]]`.
            If it is a single integer, this module will normalize over the last dimension
            which is expected to be of that specific size.
1716
        scale(bool, optional): Whether to learn the adaptive gain :math:`g` after
L
lujun 已提交
1717
            normalization. Default: True.
1718
        shift(bool, optional): Whether to learn the adaptive bias :math:`b` after
L
lujun 已提交
1719
            normalization. Default: True.
1720
        epsilon(float, optional): The small value added to the variance to prevent
L
lujun 已提交
1721
            division by zero. Default: 1e-05.
1722
        param_attr(ParamAttr, optional): The parameter attribute for the learnable
1723 1724 1725
            gain :math:`g`. If :attr:`scale` is False, :attr:`param_attr` is
            omitted. If :attr:`scale` is True and :attr:`param_attr` is None,
            a default :code:`ParamAttr` would be added as scale. The
L
lujun 已提交
1726
            :attr:`param_attr` is initialized as 1 if it is added. Default: None.
1727
        bias_attr(ParamAttr, optional): The parameter attribute for the learnable
1728 1729 1730
            bias :math:`b`. If :attr:`shift` is False, :attr:`bias_attr` is
            omitted. If :attr:`shift` is True and :attr:`param_attr` is None,
            a default :code:`ParamAttr` would be added as bias. The
L
lujun 已提交
1731
            :attr:`bias_attr` is initialized as 0 if it is added. Default: None.
T
tianshuo78520a 已提交
1732
        act(str, optional): Activation to be applied to the output of layer normalization.
L
lujun 已提交
1733
                  Default: None.
1734 1735
        dtype (str, optional): Data type, it can be "float32" or "float64". Default: "float32".

1736
    Returns:
1737
        None
1738

1739
    Examples:
1740

1741 1742 1743
        .. code-block:: python

          import paddle.fluid as fluid
1744
          from paddle.fluid.dygraph.base import to_variable
1745 1746
          import numpy

1747
          x = numpy.random.random((3, 32, 32)).astype('float32')
1748
          with fluid.dygraph.guard():
1749
              x = to_variable(x)
1750
              layerNorm = fluid.LayerNorm([32, 32])
1751
              ret = layerNorm(x)
1752

1753
    """
1754

1755
    def __init__(self,
1756
                 normalized_shape,
1757 1758 1759 1760 1761
                 scale=True,
                 shift=True,
                 epsilon=1e-05,
                 param_attr=None,
                 bias_attr=None,
1762 1763 1764 1765 1766
                 act=None,
                 dtype='float32'):
        super(LayerNorm, self).__init__()
        if isinstance(normalized_shape, numbers.Integral):
            normalized_shape = [normalized_shape]
H
hong 已提交
1767

1768
        self._normalized_shape = list(normalized_shape)
1769 1770 1771 1772 1773 1774
        self._scale = scale
        self._shift = shift
        self._epsilon = epsilon
        self._param_attr = param_attr
        self._bias_attr = bias_attr
        self._act = act
1775 1776
        self._dtype = dtype
        param_shape = [np.prod(self._normalized_shape)]
1777
        if self._scale:
1778
            self.weight = self.create_parameter(
1779 1780 1781 1782
                attr=self._param_attr,
                shape=param_shape,
                dtype=self._dtype,
                default_initializer=Constant(1.0))
1783 1784
        else:
            if self._param_attr:
T
tianshuo78520a 已提交
1785
                logging.warn("param_attr are only available with scale is True")
1786
            self.weight = None
1787

1788 1789
        if self._shift:
            assert self._bias_attr is not False
1790
            self.bias = self.create_parameter(
1791 1792 1793 1794
                attr=self._bias_attr,
                shape=param_shape,
                dtype=self._dtype,
                is_bias=True)
1795 1796
        else:
            if self._bias_attr:
T
tianshuo78520a 已提交
1797
                logging.warn("bias_attr are only available with shift is True")
1798
            self.bias = None
1799 1800

    def forward(self, input):
1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811
        input_shape = list(input.shape)
        input_ndim = len(input_shape)
        normalized_ndim = len(self._normalized_shape)
        self._begin_norm_axis = input_ndim - normalized_ndim
        if input_ndim < normalized_ndim or input_shape[
                self._begin_norm_axis:] != self._normalized_shape:
            str_normalized_shape = str(self._normalized_shape)
            raise ValueError(
                'Given normalized_shape is ' + str_normalized_shape +
                ', expected input with shape [*, ' + str_normalized_shape[
                    1:] + ', but got input shape ' + str(input_shape))
1812

J
Jiabin Yang 已提交
1813
        if _non_static_mode():
W
wanghuancoder 已提交
1814
            pre_act, _, _ = _C_ops.layer_norm(
1815 1816 1817 1818 1819
                input, self.weight, self.bias, 'epsilon', self._epsilon,
                'begin_norm_axis', self._begin_norm_axis)
            return dygraph_utils._append_activation_in_dygraph(
                pre_act, act=self._act)

1820 1821 1822
        check_variable_and_dtype(input, 'input', ['float32', 'float64'],
                                 'LayerNorm')

1823
        inputs = dict()
1824
        inputs['X'] = [input]
1825
        if self._scale:
1826
            inputs['Scale'] = [self.weight]
1827
        if self._shift:
1828 1829 1830 1831 1832 1833
            inputs['Bias'] = [self.bias]
        attrs = {
            "epsilon": self._epsilon,
            "begin_norm_axis": self._begin_norm_axis
        }

1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854
        # create output
        mean_out = self._helper.create_variable_for_type_inference(
            dtype=self._dtype, stop_gradient=True)
        variance_out = self._helper.create_variable_for_type_inference(
            dtype=self._dtype, stop_gradient=True)
        layer_norm_out = self._helper.create_variable_for_type_inference(
            self._dtype)

        self._helper.append_op(
            type="layer_norm",
            inputs=inputs,
            outputs={
                "Y": layer_norm_out,
                "Mean": mean_out,
                "Variance": variance_out,
            },
            attrs={
                "epsilon": self._epsilon,
                "begin_norm_axis": self._begin_norm_axis
            })

1855
        return self._helper.append_activation(layer_norm_out, act=self._act)
1856 1857


M
minqiyang 已提交
1858 1859 1860
class GRUUnit(layers.Layer):
    """
    **GRU unit layer**
D
DuYao 已提交
1861 1862 1863 1864 1865
    
    It creates a callable object from GRUUnit class.
    If origin_mode is True, then the equation of a gru step is from paper
    `Learning Phrase Representations using RNN Encoder-Decoder for Statistical 
    Machine Translation <https://arxiv.org/pdf/1406.1078.pdf>`_
M
minqiyang 已提交
1866 1867 1868 1869 1870 1871 1872 1873 1874 1875

        .. math::
            u_t & = actGate(xu_{t} + W_u h_{t-1} + b_u)

            r_t & = actGate(xr_{t} + W_r h_{t-1} + b_r)

            m_t & = actNode(xm_t + W_c dot(r_t, h_{t-1}) + b_m)

            h_t & = dot(u_t, h_{t-1}) + dot((1-u_t), m_t)

D
DuYao 已提交
1876
    If origin_mode is False, then the equation of a gru step is from paper
M
minqiyang 已提交
1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901
    `Empirical Evaluation of Gated Recurrent Neural Networks on Sequence
    Modeling <https://arxiv.org/pdf/1412.3555.pdf>`_

        .. math::
            u_t & = actGate(xu_{t} + W_u h_{t-1} + b_u)

            r_t & = actGate(xr_{t} + W_r h_{t-1} + b_r)

            m_t & = actNode(xm_t + W_c dot(r_t, h_{t-1}) + b_m)

            h_t & = dot((1-u_t), h_{t-1}) + dot(u_t, m_t)


    The inputs of gru unit includes :math:`z_t`, :math:`h_{t-1}`. In terms
    of the equation above, the :math:`z_t` is split into 3 parts -
    :math:`xu_t`, :math:`xr_t` and :math:`xm_t`. This means that in order to
    implement a full GRU unit operator for an input, a fully
    connected layer has to be applied, such that :math:`z_t = W_{fc}x_t`.

    The terms :math:`u_t` and :math:`r_t` represent the update and reset gates
    of the GRU cell. Unlike LSTM, GRU has one lesser gate. However, there is
    an intermediate candidate hidden output, which is denoted by :math:`m_t`.
    This layer has three outputs :math:`h_t`, :math:`dot(r_t, h_{t-1})`
    and concatenation of :math:`u_t`, :math:`r_t` and :math:`m_t`.

1902
    Parameters:
L
lujun 已提交
1903
        size (int): The input dimension value.
D
DuYao 已提交
1904 1905 1906 1907 1908 1909 1910 1911 1912
        param_attr(ParamAttr, optional): The parameter attribute for the learnable
            hidden-hidden weight matrix. 
            
            **Note**:
    
                1. The shape of the weight matrix is :math:`[T, 3*D]`, where D is the hidden size.
                2. All elements in the weight matrix can be divided into two parts. The first 
                   part are weights of the update gate and reset gate with shape :math:`[D, 2*D]`, 
                   and the second part are weights for candidate hidden state with shape :math:`[D, D]`.
M
minqiyang 已提交
1913 1914 1915 1916


            If it is set to None or one attribute of ParamAttr, gru_unit will
            create ParamAttr as param_attr. If the Initializer of the param_attr
D
DuYao 已提交
1917 1918 1919 1920
            is not set, the parameter is initialized with Xavier. The default 
            value is None.
        bias_attr (ParamAttr|bool, optional): The parameter attribute for the bias
            of GRU.Note that the bias with :math:`[1, 3*D]` concatenates
M
minqiyang 已提交
1921 1922 1923 1924 1925
            the bias in the update gate, reset gate and candidate calculations.
            If it is set to False, no bias will be applied to the update gate,
            reset gate and candidate calculations. If it is set to None or one
            attribute of ParamAttr, gru_unit will create ParamAttr as
            bias_attr. If the Initializer of the bias_attr is not set, the bias
D
DuYao 已提交
1926
            is initialized zero. The default value is None.
L
lujun 已提交
1927
        activation (str): The activation type for cell (actNode).
D
DuYao 已提交
1928
                             The default value is 'tanh'.
L
lujun 已提交
1929
        gate_activation (str): The activation type for gates (actGate).
D
DuYao 已提交
1930 1931 1932
                                  The default value is 'sigmoid'.
        dtype(str): The dtype of the layers. The data type can be set as
            'float32', 'float64'. The default value is 'float32'.
M
minqiyang 已提交
1933

D
DuYao 已提交
1934 1935 1936 1937
    Attribute:
        **weight** (Parameter): the learnable weights of this layer.

        **bias** (Parameter): the learnable bias of this layer.
1938

M
minqiyang 已提交
1939
    Returns:
D
DuYao 已提交
1940 1941 1942 1943
        tuple: The hidden value, reset-hidden value and gate values. The hidden value
        is a 2-D tensor with shape  :math:`[T, D]` . The reset-hidden value is a
        2-D tensor with shape  :math:`[T, D]` . The gate value is a 2-D tensor with 
        shape  :math:`[T, 3*D]`.
L
lujun 已提交
1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956

    Examples:

        .. code-block:: python

          import paddle.fluid as fluid
          import paddle.fluid.dygraph.base as base
          import numpy

          lod = [[2, 4, 3]]
          D = 5
          T = sum(lod[0])

D
DuYao 已提交
1957
          input = numpy.random.rand(T, 3 * D).astype('float32')
L
lujun 已提交
1958 1959 1960
          hidden_input = numpy.random.rand(T, D).astype('float32')
          with fluid.dygraph.guard():
              x = numpy.random.random((3, 32, 32)).astype('float32')
1961
              gru = fluid.dygraph.GRUUnit(size=D * 3)
L
lujun 已提交
1962 1963 1964
              dy_ret = gru(
                base.to_variable(input), base.to_variable(hidden_input))

M
minqiyang 已提交
1965 1966 1967 1968 1969 1970 1971 1972 1973 1974
    """

    def __init__(self,
                 size,
                 param_attr=None,
                 bias_attr=None,
                 activation='tanh',
                 gate_activation='sigmoid',
                 origin_mode=False,
                 dtype='float32'):
1975
        super(GRUUnit, self).__init__()
1976
        self._bias_attr = bias_attr
M
minqiyang 已提交
1977 1978 1979 1980 1981
        activation_dict = dict(
            identity=0,
            sigmoid=1,
            tanh=2,
            relu=3, )
H
Hongyu Liu 已提交
1982 1983
        self.activation = activation_dict[activation]
        self.gate_activation = activation_dict[gate_activation]
M
minqiyang 已提交
1984

M
minqiyang 已提交
1985
        self._dtype = dtype
M
minqiyang 已提交
1986 1987
        size = size // 3
        # create weight
1988
        self.weight = self.create_parameter(
M
minqiyang 已提交
1989
            attr=param_attr, shape=[size, 3 * size], dtype=dtype)
M
minqiyang 已提交
1990 1991

        # create bias
M
minqiyang 已提交
1992
        bias_size = [1, 3 * size]
1993
        self._bias_size = bias_size
1994
        self.bias = self.create_parameter(
M
minqiyang 已提交
1995
            attr=bias_attr, shape=bias_size, dtype=dtype, is_bias=True)
M
minqiyang 已提交
1996

M
minqiyang 已提交
1997
    def forward(self, input, hidden):
J
Jiabin Yang 已提交
1998
        if _non_static_mode():
W
wanghuancoder 已提交
1999
            gate, reset_hidden_pre, updated_hidden = _C_ops.gru_unit(
2000 2001 2002 2003
                input, hidden, self.weight, self.bias, 'activation',
                self.activation, 'gate_activation', self.gate_activation)
            return updated_hidden, reset_hidden_pre, gate

2004 2005 2006 2007
        check_variable_and_dtype(input, 'input', ['float32', 'float64'],
                                 'GRUUnit')
        check_variable_and_dtype(hidden, 'hidden', ['float32', 'float64'],
                                 'GRUUnit')
2008 2009 2010 2011 2012
        inputs = {
            'Input': [input],
            'HiddenPrev': [hidden],
            'Weight': [self.weight]
        }
2013
        if self.bias is not None:
2014
            inputs['Bias'] = [self.bias]
M
minqiyang 已提交
2015 2016 2017 2018 2019
        gate = self._helper.create_variable_for_type_inference(self._dtype)
        reset_hidden_pre = self._helper.create_variable_for_type_inference(
            self._dtype)
        updated_hidden = self._helper.create_variable_for_type_inference(
            self._dtype)
M
minqiyang 已提交
2020 2021 2022 2023 2024 2025 2026 2027 2028
        self._helper.append_op(
            type='gru_unit',
            inputs=inputs,
            outputs={
                'Gate': gate,
                'ResetHiddenPrev': reset_hidden_pre,
                'Hidden': updated_hidden,
            },
            attrs={
H
Hongyu Liu 已提交
2029 2030
                'activation': self.activation,
                'gate_activation': self.gate_activation,
M
minqiyang 已提交
2031 2032 2033
            })

        return updated_hidden, reset_hidden_pre, gate
2034 2035 2036 2037


class NCE(layers.Layer):
    """
2038 2039 2040 2041 2042
    This interface is used to construct a callable object of the ``NCE`` class.
    For more details, refer to code examples.
    It implements the function of the ``NCE`` loss function.
    By default this function uses a uniform distribution for sampling, and it
    compute and return the noise-contrastive estimation training loss. See
2043
    `Noise-contrastive estimation: A new estimation principle for unnormalized statistical models <http://www.jmlr.org/proceedings/papers/v9/gutmann10a/gutmann10a.pdf>`_ .
2044

2045
    Parameters:
2046 2047
        num_total_classes (int): Total number of classes in all samples.
        dim (int): Dimension of input (possibly embedding dim).
2048
        param_attr (ParamAttr, optional): The parameter attribute for learnable weights(Parameter)
2049 2050 2051
             of nce. If it is set to None or one attribute of ParamAttr, nce
             will create ParamAttr as param_attr. If the Initializer of the param_attr
             is not set, the parameter is initialized with Xavier. Default: None.
2052
        bias_attr (ParamAttr or bool, optional): The attribute for the bias of nce.
2053 2054 2055 2056
             If it is set to False, no bias will be added to the output units.
             If it is set to None or one attribute of ParamAttr, nce
             will create ParamAttr as bias_attr. If the Initializer of the bias_attr
             is not set, the bias is initialized zero. Default: None.
2057
        num_neg_samples (int, optional): The number of negative classes. The default value is 10.
T
tianshuo78520a 已提交
2058
        sampler (str, optional): The sampler used to sample class from negative classes.
2059 2060
                       It can be 'uniform', 'log_uniform' or 'custom_dist'.
                       default: 'uniform'.
2061
        custom_dist (float[], optional): A float[] with size=num_total_classes.
2062
                       It is used when sampler is set to 'custom_dist'.
2063
                       custom_dist[i] is the probability of i-th class to be sampled.
L
lujun 已提交
2064
                       Default: None.
2065 2066
        seed (int, optional): The seed used in sampler. Default: 0.
        is_sparse(bool, optional): The flag indicating whether to use sparse update. If is_sparse is True, the weight@GRAD and bias@GRAD will be changed to SelectedRows. Default: False.
2067
        dtype (str, optional): Data type, it can be "float32" or "float64". Default: "float32".
2068

2069 2070
    Attribute:
        **weight** (Parameter): the learnable weights of this layer.
2071

2072 2073
        **bias** (Parameter or None): the learnable bias of this layer.
    
2074
    Returns:
2075
        None
2076 2077 2078 2079

    Examples:
        .. code-block:: python

2080 2081 2082
            import numpy as np
            import paddle.fluid as fluid

2083
            window_size = 5
2084 2085
            dict_size = 20
            label_word = int(window_size // 2) + 1
2086
            inp_word = np.array([[1], [2], [3], [4], [5]]).astype('int64')
2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107
            nid_freq_arr = np.random.dirichlet(np.ones(20) * 1000).astype('float32')

            with fluid.dygraph.guard():
                words = []
                for i in range(window_size):
                    words.append(fluid.dygraph.base.to_variable(inp_word[i]))

                emb = fluid.Embedding(
                    size=[dict_size, 32],
                    param_attr='emb.w',
                    is_sparse=False)

                embs3 = []
                for i in range(window_size):
                    if i == label_word:
                        continue

                    emb_rlt = emb(words[i])
                    embs3.append(emb_rlt)

                embs3 = fluid.layers.concat(input=embs3, axis=1)
2108
                nce = fluid.NCE(
2109
                             num_total_classes=dict_size,
2110
                             dim=embs3.shape[1],
2111 2112 2113 2114 2115 2116 2117
                             num_neg_samples=2,
                             sampler="custom_dist",
                             custom_dist=nid_freq_arr.tolist(),
                             seed=1,
                             param_attr='nce.w',
                             bias_attr='nce.b')

2118 2119
                wl = fluid.layers.unsqueeze(words[label_word], axes=[0])
                nce_loss3 = nce(embs3, wl)
2120 2121 2122 2123 2124

    """

    def __init__(self,
                 num_total_classes,
2125
                 dim,
2126
                 sample_weight=None,
2127 2128 2129 2130 2131 2132
                 param_attr=None,
                 bias_attr=None,
                 num_neg_samples=None,
                 sampler="uniform",
                 custom_dist=None,
                 seed=0,
2133 2134 2135
                 is_sparse=False,
                 dtype='float32'):
        super(NCE, self).__init__()
2136 2137 2138
        self._param_attr = param_attr
        self._bias_attr = bias_attr
        self._num_total_classes = num_total_classes
2139
        self._dtype = dtype
2140
        self._inputs = dict()
2141
        self._inputs['SampleWeight'] = sample_weight if sample_weight is not None else []
2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228
        if sampler == "uniform":
            sampler = 0
        elif sampler == "log_uniform":
            sampler = 1
        elif sampler == "custom_dist":
            assert custom_dist is not None
            # assert isinstance(custom_dist, Variable)

            custom_dist_len = len(custom_dist)
            alias_probs_ = [0] * custom_dist_len
            alias_ = [0] * custom_dist_len
            bigs = []
            littles = []
            for i in range(custom_dist_len):
                normal_prob = custom_dist[i] * custom_dist_len
                if normal_prob - 1.0 > 0:
                    bigs.append((i, normal_prob))
                elif 1.0 - normal_prob > 0:
                    littles.append((i, normal_prob))
                else:
                    alias_probs_[i] = normal_prob
                    alias_[i] = -1

            while len(bigs) and len(littles):
                big = bigs.pop(0)
                little = littles.pop(0)

                big_idx = big[0]
                big_prob = big[1]

                alias_probs_[little[0]] = little[1]
                alias_[little[0]] = big_idx
                big_left = big[1] + little[1] - 1
                if big_left - 1.0 > 0:
                    bigs.append((big_idx, big_left))
                elif 1.0 - big_left > 0:
                    littles.append((big_idx, big_left))
                else:
                    alias_probs_[big_idx] = big_left
                    alias_[big_idx] = -1

            if len(bigs):
                big = bigs.pop(0)
                alias_probs_[big[0]] = 1.0
                alias_[big[0]] = -1
            if len(littles):
                little = littles.pop(0)
                alias_probs_[little[0]] = 1.0
                alias_[little[0]] = -1

            def _init_by_numpy_array(numpy_array):
                ret = self.create_parameter(
                    attr=ParamAttr(),
                    shape=numpy_array.shape,
                    dtype=numpy_array.dtype,
                    default_initializer=NumpyArrayInitializer(numpy_array))
                ret.stop_gradient = True
                return ret

            self._inputs['CustomDistProbs'] = _init_by_numpy_array(
                np.array(custom_dist).astype('float32'))
            self._inputs['CustomDistAlias'] = _init_by_numpy_array(
                np.array(alias_).astype('int32'))
            self._inputs['CustomDistAliasProbs'] = _init_by_numpy_array(
                np.array(alias_probs_).astype('float32'))
            sampler = 2
        else:
            raise Exception("Unsupported sampler type.")

        if num_neg_samples is None:
            num_neg_samples = 10
        else:
            num_neg_samples = int(num_neg_samples)
        self._num_neg_samples = num_neg_samples
        remote_prefetch = is_sparse
        print(
            "With sparse mode, if your models has only small parameter prefetch may cause speed down"
        )
        self._attrs = {
            'num_total_classes': int(num_total_classes),
            'num_neg_samples': num_neg_samples,
            'seed': seed,
            'sampler': sampler,
            'is_sparse': is_sparse,
            'remote_prefetch': remote_prefetch
        }

2229
        self.weight = self.create_parameter(
2230 2231 2232
            attr=self._param_attr,
            shape=[self._num_total_classes, dim],
            is_bias=False,
2233
            dtype=self._dtype)
2234
        if self._bias_attr:
2235
            self.bias = self.create_parameter(
2236 2237 2238
                attr=self._bias_attr,
                shape=[self._num_total_classes, 1],
                is_bias=True,
2239
                dtype=self._dtype)
2240 2241
            self._inputs['Bias'] = self.bias
        self._inputs['Weight'] = self.weight
2242

2243
    def forward(self, input, label, sample_weight=None):
J
Jiabin Yang 已提交
2244
        if _non_static_mode():
W
Weilong Wu 已提交
2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256
            attrs = ('num_total_classes', self._attrs['num_total_classes'],
                     'num_neg_samples', self._attrs['num_neg_samples'], 'seed',
                     self._attrs['seed'], 'sampler', self._attrs['sampler'],
                     'is_sparse', self._attrs['is_sparse'], 'remote_prefetch',
                     self._attrs['remote_prefetch'])
            cost, _, _ = _C_ops.nce(
                input, label, self.weight, self.bias,
                self._inputs['SampleWeight'], self._inputs['CustomDistProbs'],
                self._inputs['CustomDistAlias'],
                self._inputs['CustomDistAliasProbs'], *attrs)
            return cost / (self._num_neg_samples + 1)

2257 2258 2259 2260
        check_variable_and_dtype(input, "input", ['float32', 'float64'], "NCE")
        check_variable_and_dtype(label, "label", ['int64'], "NCE")
        check_type(sample_weight, 'sample_weight', (Variable, type(None)),
                   'NCE')
2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287
        assert isinstance(input, Variable)
        assert isinstance(label, Variable)

        self._inputs['Input'] = input
        self._inputs['Label'] = label
        self._inputs['SampleWeight'] = sample_weight if sample_weight is not None else []

        cost = self._helper.create_variable_for_type_inference(
            dtype=input.dtype)
        sample_logits = self._helper.create_variable_for_type_inference(
            dtype=input.dtype)
        sample_labels = self._helper.create_variable_for_type_inference(
            dtype=label.dtype)

        self._helper.append_op(
            type='nce',
            inputs=self._inputs,
            outputs={
                'Cost': cost,
                'SampleLogits': sample_logits,
                'SampleLabels': sample_labels
            },
            attrs=self._attrs)
        return cost / (self._num_neg_samples + 1)


class PRelu(layers.Layer):
2288
    r"""
2289 2290 2291 2292
    This interface is used to construct a callable object of the ``PRelu`` class.
    For more details, refer to code examples.
    It implements three activation methods of the ``PRelu`` activation function.

2293 2294 2295 2296 2297
    Equation:

    .. math::
        y = \max(0, x) + \\alpha * \min(0, x)

2298
    Parameters:
L
lujun 已提交
2299
        mode (str): The mode for weight sharing. It supports all, channel
2300 2301 2302
          and element. all: all elements share same weight
          channel:elements in a channel share same weight
          element:each element has a weight
S
songyouwei 已提交
2303 2304 2305
        channel (int, optional): The number of channels.
          This argument is required when mode is "channel".
          Default: None.
2306
        input_shape (list or tuple, optional): The shape of input.
S
songyouwei 已提交
2307 2308
          This argument is required when mode is "element".
          Default: None.
2309 2310
        param_attr(ParamAttr, optional): The parameter attribute for the learnable
          weight (alpha). Default: None.
2311
        dtype (str, optional): Data type, it can be "float32" or "float64". Default: "float32".
2312

2313 2314 2315
    Attribute:
        **weight** (Parameter): the learnable weights of this layer.
    
2316
    Returns:
2317
        None
2318 2319 2320 2321 2322

    Examples:

        .. code-block:: python

L
lujun 已提交
2323
          import paddle.fluid as fluid
2324
          from paddle.fluid.dygraph.base import to_variable
L
lujun 已提交
2325 2326 2327 2328
          import numpy as np

          inp_np = np.ones([5, 200, 100, 100]).astype('float32')
          with fluid.dygraph.guard():
2329
              inp_np = to_variable(inp_np)
S
songyouwei 已提交
2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340
              prelu0 = fluid.PRelu(
                 mode='all',
                 param_attr=fluid.ParamAttr(initializer=fluid.initializer.Constant(1.0)))
              dy_rlt0 = prelu0(inp_np)
              prelu1 = fluid.PRelu(
                 mode='channel',
                 channel=200,
                 param_attr=fluid.ParamAttr(initializer=fluid.initializer.Constant(1.0)))
              dy_rlt1 = prelu1(inp_np)
              prelu2 = fluid.PRelu(
                 mode='element',
2341
                 input_shape=inp_np.shape,
L
lujun 已提交
2342
                 param_attr=fluid.ParamAttr(initializer=fluid.initializer.Constant(1.0)))
S
songyouwei 已提交
2343
              dy_rlt2 = prelu2(inp_np)
L
lujun 已提交
2344

2345 2346
    """

S
songyouwei 已提交
2347 2348 2349 2350 2351
    def __init__(self,
                 mode,
                 channel=None,
                 input_shape=None,
                 param_attr=None,
2352
                 dtype='float32'):
2353 2354
        # need specify name_scope since snake-cased 'PRelu' is 'p_relu'
        super(PRelu, self).__init__(name_scope='prelu')
2355 2356
        self._mode = mode
        self._param_attr = param_attr
2357
        self._dtype = dtype
S
songyouwei 已提交
2358 2359 2360 2361 2362 2363
        if mode == 'all':
            self._alpha_shape = [1]
        elif mode == 'channel':
            assert isinstance(
                channel,
                int), "channel argument is required when mode is 'channel'."
2364 2365 2366
            #NOTE(zhiqiu): The _alpha_shape should be [1, channel] + [1] * len(input_shape[2:]), not [1, channel, 1, 1].
            # However, the suffix 1 in the list is useless, since the tensor is viewed as one demension array during kernel calculation. 
            # And, input_shape is not required when mode is 'channel', so it is simplified.
2367 2368
            #NOTE(zhiqiu): Revert shape to [1, channel, 1, 1] for compatibility with saved model of old version.
            self._alpha_shape = [1, channel, 1, 1]
S
songyouwei 已提交
2369 2370 2371 2372 2373 2374 2375
        elif mode == 'element':
            assert isinstance(input_shape, (
                list, tuple
            )), "input_shape argument is required when mode is 'element'."
            self._alpha_shape = [1] + list(input_shape)[1:]
        else:
            raise ValueError('mode should be one of all, channel, element.')
2376
        self.weight = self.create_parameter(
2377 2378 2379 2380 2381 2382 2383
            attr=self._param_attr,
            shape=self._alpha_shape,
            dtype='float32',
            is_bias=False,
            default_initializer=Constant(1.0))

    def forward(self, input):
2384
        check_variable_and_dtype(input, 'input', ['float32'], 'PRelu')
2385 2386 2387 2388
        out = self._helper.create_variable_for_type_inference(self._dtype)
        self._helper.append_op(
            type="prelu",
            inputs={"X": input,
2389
                    'Alpha': self.weight},
2390 2391 2392 2393 2394 2395
            attrs={"mode": self._mode},
            outputs={"Out": out})
        return out


class BilinearTensorProduct(layers.Layer):
2396
    r"""
2397

2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410
    **Add Bilinear Tensor Product Layer**

    This layer performs bilinear tensor product on two inputs.
    For example:

    .. math::
      out_{i} = x * W_{i} * {y^\mathrm{T}}, i=0,1,...,size-1

    In this formula:
     - :math:`x`: the first input contains M elements, shape is [batch_size, M].
     - :math:`y`: the second input contains N elements, shape is [batch_size, N].
     - :math:`W_{i}`: the i-th learned weight, shape is [M, N]
     - :math:`out_{i}`: the i-th element of out, shape is [batch_size, size].
D
DuYao 已提交
2411
     - :math:`y^\mathrm{T}`: the transpose of :math:`y`.
2412

2413
    Parameters:
2414 2415 2416 2417 2418
       input1_dim (int): The dimension of each first input.
       input2_dim (int): The dimension of each second input.
       output_dim (int): The dimension of output of this layer.
       name (str, optional): The default value is None. Normally there is no need for user
           to set this property. For more information, please refer to :ref:`api_guide_Name`. Default: None.
D
DuYao 已提交
2419 2420 2421 2422
       act (str, optional): Activation to be applied to the output of this layer. The default value is None.
       param_attr (ParamAttr, optional): The parameter attribute for the learnable w, parameters/weights of 
           this layer. The default value is None.
       bias_attr (ParamAttr, optional): The parameter attribute for the bias
2423
           of this layer. If it is set to False, no bias will be added to the output units.
D
DuYao 已提交
2424
           If it is set to None, the bias is initialized zero. The default value is None.
2425
       dtype (str, optional): Data type, it can be "float32" or "float64". Default: "float32".
2426

D
DuYao 已提交
2427 2428 2429 2430
    Attribute:
        **weight** (Parameter): the learnable weights of this layer.

        **bias** (Parameter): the learnable bias of this layer.
2431

2432
    Returns:
W
wanghuancoder 已提交
2433
       Tensor: A 2-D Tensor of shape [batch_size, size].
2434 2435 2436 2437

    Examples:
       .. code-block:: python

W
wanghuancoder 已提交
2438 2439 2440 2441 2442 2443 2444 2445 2446
        import paddle
        import numpy

        layer1 = numpy.random.random((5, 5)).astype('float32')
        layer2 = numpy.random.random((5, 4)).astype('float32')
        bilinearTensorProduct = paddle.nn.BilinearTensorProduct(
            input1_dim=5, input2_dim=4, output_dim=1000)
        ret = bilinearTensorProduct(paddle.to_tensor(layer1),
                                    paddle.to_tensor(layer2))
2447

2448 2449 2450
    """

    def __init__(self,
2451 2452 2453
                 input1_dim,
                 input2_dim,
                 output_dim,
2454 2455 2456
                 name=None,
                 act=None,
                 param_attr=None,
2457 2458 2459
                 bias_attr=None,
                 dtype='float32'):
        super(BilinearTensorProduct, self).__init__()
2460 2461 2462 2463
        self._param_attr = param_attr
        self._bias_attr = bias_attr
        self._act = act
        self._name = name
2464 2465 2466
        self._input1_dim = input1_dim
        self._input2_dim = input2_dim
        self._output_dim = output_dim
2467
        self._inputs = dict()
2468
        self._dtype = dtype
2469

2470
        param_shape = [self._output_dim, self._input1_dim, self._input2_dim]
2471
        self.weight = self.create_parameter(
2472 2473 2474 2475
            attr=self._param_attr,
            shape=param_shape,
            dtype=self._dtype,
            is_bias=False)
2476
        bias_size = [1, self._output_dim]
2477
        self.bias = self.create_parameter(
2478 2479 2480 2481
            attr=self._bias_attr,
            shape=bias_size,
            dtype=self._dtype,
            is_bias=True)
2482

2483 2484 2485 2486
    @deprecated(
        since="2.0.0",
        update_to="paddle.nn.Bilinear",
        reason="New name and new args in Bilinear, easier to use.")
2487
    def forward(self, x, y):
2488 2489 2490 2491
        check_variable_and_dtype(x, 'x', ['float32', 'float64'],
                                 'BilinearTensorProduct')
        check_variable_and_dtype(y, 'y', ['float32', 'float64'],
                                 'BilinearTensorProduct')
2492
        self._inputs = {"X": x, "Y": y, "Weight": self.weight}
2493
        if self.bias is not None:
2494
            self._inputs["Bias"] = self.bias
2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508
        if self._name is not None:
            out = self._helper.create_variable(
                name=".".join([self.full_name(), self._name]),
                dtype=self._dtype,
                persistable=False)
        else:
            out = self._helper.create_variable(
                dtype=self._dtype, persistable=False)
        self._helper.append_op(
            type="bilinear_tensor_product",
            inputs=self._inputs,
            outputs={"Out": out})

        # add activation
2509
        return self._helper.append_activation(out, act=self._act)
2510 2511 2512


class Conv2DTranspose(layers.Layer):
2513
    r"""
2514 2515
    This interface is used to construct a callable object of the ``Conv2DTranspose`` class.
    For more details, refer to code examples.
2516
    The convolution2D transpose layer calculates the output based on the input,
2517 2518 2519
    filter, and dilations, strides, paddings. Input and output
    are in NCHW format. Where N is batch size, C is the number of feature map,
    H is the height of the feature map, and W is the width of the feature map.
2520 2521
    Filter's shape is [MCHW] , where M is the number of input feature map,
    C is the number of output feature map, H is the height of the filter,
2522 2523
    and W is the width of the filter. If the groups is greater than 1,
    C will equal the number of input feature map divided by the groups.
2524 2525 2526
    If bias attribution and activation type are provided, bias is added to
    the output of the convolution, and the corresponding activation function
    is applied to the final result.
2527 2528
    The details of convolution transpose layer, please refer to the following explanation and references
    `conv2dtranspose <http://www.matthewzeiler.com/wp-content/uploads/2017/07/cvpr2010.pdf>`_ .
2529 2530 2531 2532 2533 2534 2535 2536 2537

    For each input :math:`X`, the equation is:

    .. math::

        Out = \sigma (W \\ast X + b)

    Where:

2538 2539
    * :math:`X`: Input value, a ``Tensor`` with NCHW format.
    * :math:`W`: Filter value, a ``Tensor`` with shape [MCHW] .
2540
    * :math:`\\ast`: Convolution operation.
2541
    * :math:`b`: Bias value, a 2-D ``Tensor`` with shape [M, 1].
2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565
    * :math:`\\sigma`: Activation function.
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.

    Example:

        - Input:

          Input shape: :math:`(N, C_{in}, H_{in}, W_{in})`

          Filter shape: :math:`(C_{in}, C_{out}, H_f, W_f)`

        - Output:

          Output shape: :math:`(N, C_{out}, H_{out}, W_{out})`

        Where

        .. math::

           H^\prime_{out} &= (H_{in} - 1) * strides[0] - 2 * paddings[0] + dilations[0] * (H_f - 1) + 1 \\\\
           W^\prime_{out} &= (W_{in} - 1) * strides[1] - 2 * paddings[1] + dilations[1] * (W_f - 1) + 1 \\\\
           H_{out} &\in [ H^\prime_{out}, H^\prime_{out} + strides[0] ) \\\\
           W_{out} &\in [ W^\prime_{out}, W^\prime_{out} + strides[1] )

2566
    Parameters:
2567
        num_channels(int): The number of channels in the input image.
2568
        num_filters(int): The number of the filter. It is as same as the output
2569
            feature map.
2570 2571 2572
        filter_size(int or tuple): The filter size. If filter_size is a tuple,
            it must contain two integers, (filter_size_H, filter_size_W).
            Otherwise, the filter will be a square.
2573
        output_size(int or tuple, optional): The output image size. If output size is a
2574 2575 2576
            tuple, it must contain two integers, (image_H, image_W). None if use
            filter_size, padding, and stride to calculate output_size.
            if output_size and filter_size are specified at the same time, They
L
lujun 已提交
2577
            should follow the formula above. Default: None.
2578
        padding(int or tuple, optional): The padding size. If padding is a tuple, it must
2579
            contain two integers, (padding_H, padding_W). Otherwise, the
2580 2581
            padding_H = padding_W = padding. Default: 0.
        stride(int or tuple, optional): The stride size. If stride is a tuple, it must
2582
            contain two integers, (stride_H, stride_W). Otherwise, the
2583 2584
            stride_H = stride_W = stride. Default: 1.
        dilation(int or tuple, optional): The dilation size. If dilation is a tuple, it must
2585
            contain two integers, (dilation_H, dilation_W). Otherwise, the
2586
            dilation_H = dilation_W = dilation. Default: 1.
C
cnn 已提交
2587
        groups(int, optional): The groups number of the Conv2D transpose layer. Inspired by
2588 2589 2590 2591
            grouped convolution in Alex Krizhevsky's Deep CNN paper, in which
            when group=2, the first half of the filters is only connected to the
            first half of the input channels, while the second half of the
            filters is only connected to the second half of the input channels.
2592 2593
            Default: 1.
        param_attr (ParamAttr, optional): The parameter attribute for learnable weights(Parameter)
2594 2595 2596
            of conv2d_transpose. If it is set to None or one attribute of ParamAttr, conv2d_transpose
            will create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with Xavier. Default: None.
2597
        bias_attr (ParamAttr or bool, optional): The attribute for the bias of conv2d_transpose.
2598 2599 2600 2601
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, conv2d_transpose
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. Default: None.
2602
        use_cudnn(bool, optional): Use cudnn kernel or not, it is valid only when the cudnn
2603
            library is installed. Default: True.
2604
        act (str, optional): Activation type, if it is set to None, activation is not appended.
2605
            Default: None.
2606
        dtype (str, optional): Data type, it can be "float32" or "float64". Default: "float32".
2607

2608 2609
    Attribute:
        **weight** (Parameter): the learnable weights of filters of this layer.
2610

2611
        **bias** (Parameter or None): the learnable bias of this layer.
2612

2613 2614
    Returns:
        None
2615 2616 2617 2618

    Examples:
       .. code-block:: python

2619
          import paddle.fluid as fluid
2620
          import numpy as np
2621 2622

          with fluid.dygraph.guard():
2623
              data = np.random.random((3, 32, 32, 5)).astype('float32')
2624
              conv2DTranspose = fluid.dygraph.nn.Conv2DTranspose(
2625
                    num_channels=32, num_filters=2, filter_size=3)
2626 2627
              ret = conv2DTranspose(fluid.dygraph.base.to_variable(data))

2628 2629 2630
    """

    def __init__(self,
2631
                 num_channels,
2632
                 num_filters,
2633
                 filter_size,
2634 2635 2636 2637 2638 2639 2640 2641
                 output_size=None,
                 padding=0,
                 stride=1,
                 dilation=1,
                 groups=None,
                 param_attr=None,
                 bias_attr=None,
                 use_cudnn=True,
2642 2643 2644
                 act=None,
                 dtype='float32'):
        super(Conv2DTranspose, self).__init__()
2645 2646 2647
        assert param_attr is not False, "param_attr should not be False in conv2d_transpose."
        self._param_attr = param_attr
        self._bias_attr = bias_attr
2648
        self._act = act
2649
        self._groups = groups
2650
        self._num_channels = num_channels
2651 2652 2653 2654 2655 2656 2657
        self._num_filters = num_filters
        self._use_cudnn = use_cudnn
        self._padding = padding
        self._stride = stride
        self._dilation = dilation
        self._filter_size = filter_size
        self._output_size = output_size
2658
        self._dtype = dtype
2659

2660 2661 2662
        if (self._num_channels == self._groups and
                self._num_filters == self._num_channels and
                not self._use_cudnn):
2663
            self._op_type = 'depthwise_conv2d_transpose'
2664 2665
        else:
            self._op_type = 'conv2d_transpose'
2666 2667 2668 2669 2670

        self._padding = utils.convert_to_list(self._padding, 2, 'padding')
        self._stride = utils.convert_to_list(self._stride, 2, 'stride')
        self._dilation = utils.convert_to_list(self._dilation, 2, 'dilation')

2671 2672
        self._filter_size = utils.convert_to_list(
            self._filter_size, 2, 'conv2d_transpose.filter_size')
2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683

        if self._output_size is None:
            self._output_size = []
        elif isinstance(self._output_size, list) or isinstance(
                self._output_size, int):
            self._output_size = utils.convert_to_list(self._output_size, 2,
                                                      'output_size')
        else:
            raise ValueError("output_size should be list or int")
        self._padding = utils.convert_to_list(self._padding, 2, 'padding')
        self._groups = 1 if self._groups is None else self._groups
2684
        filter_shape = [self._num_channels, self._num_filters // self._groups
2685 2686
                        ] + self._filter_size

2687
        self.weight = self.create_parameter(
2688
            dtype=self._dtype, shape=filter_shape, attr=self._param_attr)
2689

2690
        self.bias = self.create_parameter(
2691 2692 2693 2694 2695
            attr=self._bias_attr,
            shape=[self._num_filters],
            dtype=self._dtype,
            is_bias=True)

2696
    def forward(self, input):
J
Jiabin Yang 已提交
2697
        if _non_static_mode():
W
wanghuancoder 已提交
2698
            op = getattr(_C_ops, self._op_type)
2699 2700 2701 2702 2703 2704 2705 2706 2707 2708
            out = op(input, self.weight, 'output_size', self._output_size,
                     'strides', self._stride, 'paddings', self._padding,
                     'dilations', self._dilation, 'groups', self._groups,
                     'use_cudnn', self._use_cudnn)
            pre_bias = out
            pre_act = dygraph_utils._append_bias_in_dygraph(pre_bias, self.bias,
                                                            1)
            return dygraph_utils._append_activation_in_dygraph(
                pre_act, act=self._act)

2709 2710 2711 2712
        check_variable_and_dtype(input, 'input',
                                 ['float16', 'float32', 'float64'],
                                 "Conv2DTranspose")

2713 2714 2715 2716 2717 2718 2719 2720 2721 2722
        inputs = {'Input': [input], 'Filter': [self.weight]}
        attrs = {
            'output_size': self._output_size,
            'strides': self._stride,
            'paddings': self._padding,
            'dilations': self._dilation,
            'groups': self._groups,
            'use_cudnn': self._use_cudnn
        }

2723 2724 2725 2726
        pre_bias = self._helper.create_variable_for_type_inference(
            dtype=input.dtype)
        self._helper.append_op(
            type=self._op_type,
2727
            inputs=inputs,
2728
            outputs={'Output': pre_bias},
2729
            attrs=attrs)
2730

2731
        if self.bias is not None:
2732 2733 2734 2735 2736
            pre_act = self._helper.create_variable_for_type_inference(
                dtype=self._dtype)
            self._helper.append_op(
                type='elementwise_add',
                inputs={'X': [pre_bias],
2737
                        'Y': [self.bias]},
2738 2739 2740 2741 2742 2743
                outputs={'Out': [pre_act]},
                attrs={'axis': 1})
        else:
            pre_act = pre_bias

        out = self._helper.append_activation(pre_act, act=self._act)
2744 2745 2746 2747 2748 2749 2750 2751 2752
        return out


class SequenceConv(layers.Layer):
    """
    This function creates the op for sequence_conv, using the inputs and
    other convolutional configurations for the filters and stride as given
    in the input parameters to the function.

2753
    Parameters:
L
lujun 已提交
2754
        name_scope(str): The name of this class.
2755
        num_filters (int): number of filters.
L
lujun 已提交
2756 2757 2758
        filter_size (int): the filter size (H and W). Default: 3.
        filter_stride (int): stride of the filter. Default: 1.
        padding (bool|None): if True, add paddings. Default: None
2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of sequence_conv.
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, sequence_conv
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. Default: None.
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
            of sequence_conv. If it is set to None or one attribute of ParamAttr, sequence_conv
            will create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with Xavier. Default: None.
        act (str): Activation type, if it is set to None, activation is not appended.
            Default: None.

2771 2772 2773 2774
    Attributes:
        weight (Parameter): the learnable weights of filters of this layer.
        bias (Parameter|None): the learnable bias of this layer.

2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787
    Returns:
        Variable: output of sequence_conv
    """

    def __init__(self,
                 name_scope,
                 num_filters,
                 filter_size=3,
                 filter_stride=1,
                 padding=None,
                 bias_attr=None,
                 param_attr=None,
                 act=None):
J
Jiabin Yang 已提交
2788
        assert not _non_static_mode(
2789
        ), "SequenceConv is not supported by dynamic graph mode yet!"
2790 2791 2792 2793 2794 2795 2796
        super(SequenceConv, self).__init__(name_scope)
        self._num_filters = num_filters
        self._filter_size = filter_size
        self._filter_stride = filter_stride
        self._padding = padding
        self._bias_attr = bias_attr
        self._param_attr = param_attr
2797
        self._act = act
2798

2799
    def _build_once(self, input):
2800 2801
        self._dtype = self._helper.input_dtype(input)
        filter_shape = [self._filter_size * input.shape[1], self._num_filters]
2802
        self.weight = self.create_parameter(
2803
            attr=self._param_attr, shape=filter_shape, dtype=self._dtype)
2804

2805
        self.bias = self.create_parameter(
2806 2807 2808 2809 2810
            attr=self._bias_attr,
            shape=[self._num_filters],
            dtype=self._dtype,
            is_bias=True)

2811 2812 2813 2814 2815 2816
    def forward(self, input):
        pre_bias = self._helper.create_variable_for_type_inference(self._dtype)
        self._helper.append_op(
            type='sequence_conv',
            inputs={
                'X': [input],
2817
                'Filter': [self.weight],
2818 2819 2820 2821 2822 2823 2824
            },
            outputs={"Out": pre_bias},
            attrs={
                'contextStride': self._filter_stride,
                'contextStart': -int(self._filter_size // 2),
                'contextLength': self._filter_size
            })
2825

2826
        if self.bias is not None:
2827 2828 2829 2830 2831
            pre_act = self._helper.create_variable_for_type_inference(
                dtype=self._dtype)
            self._helper.append_op(
                type='elementwise_add',
                inputs={'X': [pre_bias],
2832
                        'Y': [self.bias]},
2833 2834 2835 2836 2837 2838
                outputs={'Out': [pre_act]},
                attrs={'axis': 1})
        else:
            pre_act = pre_bias

        return self._helper.append_activation(pre_act, act=self._act)
L
lujun 已提交
2839 2840 2841


class RowConv(layers.Layer):
2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859
    """
    ***Row-convolution operator***

    The row convolution is called lookahead convolution.  This operator was introduced in the following paper for DeepSpeech2:
    http://www.cs.cmu.edu/~dyogatam/papers/wang+etal.iclrworkshop2016.pdf

    The main motivation is that a bidirectional RNN, useful in DeepSpeech like speech models, learns representation for a sequence by performing a
    forward and a backward pass through the entire sequence. However, unlike
    unidirectional RNNs, bidirectional RNNs are challenging to deploy in an online
    and low-latency setting. The lookahead convolution incorporates information
    from future subsequences in a computationally efficient manner to improve
    unidirectional recurrent neural networks. The row convolution operator is
    different from the 1D sequence convolution, and is computed as follows:

    Given an input sequence X of length t and input dimension D, and a filter (W) of size context * D.

    More details about row_conv please refer to the design document https://github.com/PaddlePaddle/Paddle/issues/2228#issuecomment-303903645 .

2860
    Parameters:
L
lujun 已提交
2861
        name_scope(str): The name of this class.
2862 2863 2864
        future_context_size (int): Future context size. Please note, the shape
            of convolution kernel is [future_context_size + 1, D].
        param_attr (ParamAttr): Attributes of parameters, including
L
lujun 已提交
2865 2866
            name, initializer etc. Default: None.
        act (str): Non-linear activation to be applied to output variable. Default: None.
2867

2868 2869 2870
    Attributes:
        weight (Parameter): the learnable weights of this layer.

2871
    Returns:
L
lujun 已提交
2872 2873
        the output(Out) is a LodTensor, which supports variable time-length input sequences.
        The underlying tensor in this LodTensor is a matrix with shape T x N, i.e., the same shape as X.
2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888

    Examples:
        .. code-block:: python

          import paddle.fluid as fluid
          import numpy

          with fluid.dygraph.guard():
              x = numpy.random.random((16)).astype('float32')
              rowConv = fluid.dygraph.nn.RowConv(
                    'RowConv', future_context_size=2)
              ret = rowConv(fluid.dygraph.base.to_variable(x))

    """

L
lujun 已提交
2889 2890 2891 2892 2893
    def __init__(self,
                 name_scope,
                 future_context_size,
                 param_attr=None,
                 act=None):
J
Jiabin Yang 已提交
2894
        assert not _non_static_mode(
2895
        ), "RowConv is not supported by dynamic graph mode yet!"
L
lujun 已提交
2896 2897 2898 2899 2900
        super(RowConv, self).__init__(name_scope)
        self._act = act
        self._param_attr = param_attr
        self._future_context_size = future_context_size

2901
    def _build_once(self, input):
L
lujun 已提交
2902 2903
        self._dtype = self._helper.input_dtype(input)
        filter_shape = [self._future_context_size + 1, input.shape[1]]
2904
        self.weight = self.create_parameter(
2905 2906 2907 2908
            attr=self._param_attr,
            shape=filter_shape,
            dtype=self._dtype,
            is_bias=False)
L
lujun 已提交
2909 2910 2911 2912 2913 2914

    def forward(self, input):
        out = self._helper.create_variable_for_type_inference(self._dtype)
        self._helper.append_op(
            type='row_conv',
            inputs={'X': [input],
2915
                    'Filter': [self.weight]},
L
lujun 已提交
2916 2917 2918 2919 2920 2921
            outputs={'Out': [out]})
        return self._helper.append_activation(out, act=self._act)


class GroupNorm(layers.Layer):
    """
2922 2923 2924 2925
    :alias_main: paddle.nn.GroupNorm
	:alias: paddle.nn.GroupNorm,paddle.nn.layer.GroupNorm,paddle.nn.layer.norm.GroupNorm
	:old_api: paddle.fluid.dygraph.GroupNorm

2926 2927 2928 2929 2930 2931
    This interface is used to construct a callable object of the ``GroupNorm`` class.
    For more details, refer to code examples.
    It implements the function of the Group Normalization Layer.
    Refer to `Group Normalization <https://arxiv.org/abs/1803.08494>`_ .

    Parameters:
2932
        channels(int): The number of channels of input.
2933 2934 2935 2936 2937 2938 2939 2940 2941
        groups(int): The number of groups that divided from channels.
        epsilon(float, optional): The small value added to the variance to prevent
                                  division by zero. Default: 1e-05.
        param_attr(ParamAttr, optional): The parameter attribute for the learnable
                                         scale :math:`g`. If it is set to False, no scale will be added to the output units.
                                         If it is set to None, the bias is initialized one. Default: None.
        bias_attr(ParamAttr, optional): The parameter attribute for the learnable
                                        bias :math:`b`. If it is set to False, no bias will be added to the output units.
                                        If it is set to None, the bias is initialized zero. Default: None.
T
tianshuo78520a 已提交
2942
        act(str, optional): Activation to be applied to the output of group normalization. Default: None.
2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955
        data_layout(str, optional): Specify the input data format. Only NCHW is supported. Default: NCHW.

    Returns:
        None

    Examples:
        .. code-block:: python

          import paddle.fluid as fluid
          import numpy as np

          with fluid.dygraph.guard():
              x = np.random.random((8, 32, 32)).astype('float32')
2956
              groupNorm = fluid.dygraph.nn.GroupNorm(channels=32, groups=4)
2957
              ret = groupNorm(fluid.dygraph.base.to_variable(x))
L
lujun 已提交
2958 2959 2960 2961

    """

    def __init__(self,
2962
                 channels,
L
lujun 已提交
2963 2964 2965 2966 2967
                 groups,
                 epsilon=1e-05,
                 param_attr=None,
                 bias_attr=None,
                 act=None,
2968 2969 2970
                 data_layout='NCHW',
                 dtype='float32'):
        super(GroupNorm, self).__init__()
L
lujun 已提交
2971 2972 2973
        self._param_attr = param_attr
        self._bias_attr = bias_attr
        self._epsilon = epsilon
2974
        self._channels = channels
L
lujun 已提交
2975 2976
        self._groups = groups
        self._act = act
2977
        self._dtype = dtype
L
lujun 已提交
2978 2979 2980
        if data_layout != 'NCHW':
            raise ValueError("unsupported data layout:" + data_layout)

2981
        param_shape = [self._channels]
L
lujun 已提交
2982

2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993
        self.weight = self.create_parameter(
            attr=self._param_attr or False,
            shape=param_shape,
            dtype=self._dtype,
            default_initializer=Constant(1.0))

        self.bias = self.create_parameter(
            attr=self._bias_attr or False,
            shape=param_shape,
            dtype=self._dtype,
            is_bias=True)
L
lujun 已提交
2994 2995

    def forward(self, input):
2996 2997 2998 2999 3000
        if in_dygraph_mode():
            attrs = ('epsilon', self._epsilon, 'groups', self._groups)
            out, _, _ = _C_ops.group_norm(input, self.weight, self.bias, *attrs)

            return dygraph_utils._append_activation_in_dygraph(out, self._act)
J
Jiabin Yang 已提交
3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014
        else:
            inputs = {'X': input}
            if self.bias is not None:
                inputs['Bias'] = self.bias
            if self.weight is not None:
                inputs['Scale'] = self.weight

            # create output
            mean_out = self._helper.create_variable_for_type_inference(
                dtype=self._dtype, stop_gradient=True)
            variance_out = self._helper.create_variable_for_type_inference(
                dtype=self._dtype, stop_gradient=True)
            group_norm_out = self._helper.create_variable_for_type_inference(
                dtype=self._dtype)
3015

J
Jiabin Yang 已提交
3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027
            self._helper.append_op(
                type="group_norm",
                inputs=inputs,
                outputs={
                    "Y": group_norm_out,
                    "Mean": mean_out,
                    "Variance": variance_out,
                },
                attrs={"epsilon": self._epsilon,
                       "groups": self._groups})

            return self._helper.append_activation(group_norm_out, self._act)
L
lujun 已提交
3028 3029 3030


class SpectralNorm(layers.Layer):
3031
    r"""
3032 3033
    This interface is used to construct a callable object of the ``SpectralNorm`` class.
    For more details, refer to code examples. It implements the function of the Spectral Normalization Layer.
3034 3035 3036 3037 3038 3039 3040 3041 3042 3043
    This layer calculates the spectral normalization value of weight parameters of
    fc, conv1d, conv2d, conv3d layers which should be 2-D, 3-D, 4-D, 5-D
    Parameters. Calculations are showed as follows.

    Step 1:
    Generate vector U in shape of [H], and V in shape of [W].
    While H is the :attr:`dim` th dimension of the input weights,
    and W is the product result of remaining dimensions.

    Step 2:
T
tianshuo78520a 已提交
3044
    :attr:`power_iters` should be a positive integer, do following
3045 3046 3047 3048
    calculations with U and V for :attr:`power_iters` rounds.

    .. math::

3049
        \mathbf{v} := \frac{\mathbf{W}^{T} \mathbf{u}}{\|\mathbf{W}^{T} \mathbf{u}\|_2}
3050

3051
        \mathbf{u} := \frac{\mathbf{W}^{T} \mathbf{v}}{\|\mathbf{W}^{T} \mathbf{v}\|_2}
3052 3053 3054 3055 3056 3057 3058 3059

    Step 3:
    Calculate :math:`\sigma(\mathbf{W})` and normalize weight values.

    .. math::

        \sigma(\mathbf{W}) = \mathbf{u}^{T} \mathbf{W} \mathbf{v}

3060
        \mathbf{W} = \frac{\mathbf{W}}{\sigma(\mathbf{W})}
3061 3062 3063 3064


    Refer to `Spectral Normalization <https://arxiv.org/abs/1802.05957>`_ .

3065
    Parameters:
3066
        weight_shape(list or tuple): The shape of weight parameter.
3067 3068 3069 3070
        dim(int, optional): The index of dimension which should be permuted to the first before reshaping Input(Weight) to matrix, it should be set as 0 if Input(Weight) is the weight of fc layer, and should be set as 1 if Input(Weight) is the weight of conv layer. Default: 0.
        power_iters(int, optional): The number of power iterations to calculate spectral norm. Default: 1.
        eps(float, optional): The epsilon for numerical stability in calculating norms. Default: 1e-12.
        name (str, optional): The default value is None.  Normally there is no need for user to set this property.  For more information, please refer to :ref:`api_guide_Name` .
3071
        dtype (str, optional): Data type, it can be "float32" or "float64". Default: "float32".
3072 3073

    Returns:
3074
        None
3075 3076 3077 3078

    Examples:
       .. code-block:: python

C
Chen Long 已提交
3079 3080
            import paddle
            x = paddle.rand((2,8,32,32))
3081

C
Chen Long 已提交
3082 3083 3084 3085
            spectral_norm = paddle.nn.SpectralNorm(x.shape, dim=1, power_iters=2)
            spectral_norm_out = spectral_norm(x)

            print(spectral_norm_out.shape) # [2, 8, 32, 32]
3086 3087 3088

    """

3089 3090 3091 3092 3093 3094 3095
    def __init__(self,
                 weight_shape,
                 dim=0,
                 power_iters=1,
                 eps=1e-12,
                 dtype='float32'):
        super(SpectralNorm, self).__init__()
L
lujun 已提交
3096 3097 3098
        self._power_iters = power_iters
        self._eps = eps
        self._dim = dim
3099
        self._dtype = dtype
L
lujun 已提交
3100

3101
        self._weight_shape = list(weight_shape)
3102 3103 3104 3105 3106 3107
        assert np.prod(self._weight_shape) > 0,\
            "Any dimension of `weight_shape` cannot be equal to 0."
        assert dim < len(self._weight_shape), \
            ("The input `dim` should be less than the "
            "length of `weight_shape`, but received dim="
            "{}".format(dim))
3108 3109
        h = self._weight_shape[self._dim]
        w = np.prod(self._weight_shape) // h
L
lujun 已提交
3110

3111
        self.weight_u = self.create_parameter(
L
lujun 已提交
3112 3113 3114 3115
            attr=ParamAttr(),
            shape=[h],
            dtype=self._dtype,
            default_initializer=Normal(0., 1.))
3116
        self.weight_u.stop_gradient = True
L
lujun 已提交
3117

3118
        self.weight_v = self.create_parameter(
L
lujun 已提交
3119 3120 3121 3122
            attr=ParamAttr(),
            shape=[w],
            dtype=self._dtype,
            default_initializer=Normal(0., 1.))
3123
        self.weight_v.stop_gradient = True
L
lujun 已提交
3124 3125

    def forward(self, weight):
3126 3127
        check_variable_and_dtype(weight, "weight", ['float32', 'float64'],
                                 'SpectralNorm')
3128
        inputs = {'Weight': weight, 'U': self.weight_u, 'V': self.weight_v}
L
lujun 已提交
3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143
        out = self._helper.create_variable_for_type_inference(self._dtype)
        self._helper.append_op(
            type="spectral_norm",
            inputs=inputs,
            outputs={"Out": out, },
            attrs={
                "dim": self._dim,
                "power_iters": self._power_iters,
                "eps": self._eps,
            })

        return out


class TreeConv(layers.Layer):
3144
    """
3145 3146 3147 3148 3149 3150 3151 3152 3153 3154
    This interface is used to construct a callable object of the ``TreeConv`` class.
    For more details, refer to code examples.
    Tree-Based Convolution is a kind of convolution based on tree structure.
    Tree-Based Convolution is a part of Tree-Based Convolution Neural Network(TBCNN),
    which is used to classify tree structures, such as Abstract Syntax Tree.
    Tree-Based Convolution proposed a kind of data structure called continuous binary tree,
    which regards multiway tree as binary tree.
    The paper of Tree-Based Convolution Operator is here: `tree-based convolution <https://arxiv.org/abs/1409.5718v1/>`_ .
    
    Parameters:
3155
        feature_size(int): last dimension of nodes_vector.
3156 3157 3158 3159 3160 3161 3162
        output_size(int): output feature width.
        num_filters(int, optional): number of filters, Default: 1.
        max_depth(int, optional): max depth of filters, Default: 2.
        act(str, optional): activation function, Default: tanh.
        param_attr(ParamAttr, optional): the parameter attribute for the filters, Default: None.
        bias_attr(ParamAttr, optional): the parameter attribute for the bias of this layer, Default: None.
        name(str, optional): The default value is None. Normally there is no need for user to set this property. For more information, please refer to :ref:`api_guide_Name` .
3163
        dtype (str, optional): Data type, it can be "float32" or "float64". Default: "float32".
3164

3165 3166
    Attribute:
        **weight** (Parameter): the learnable weights of filters of this layer.
3167

3168
        **bias** (Parameter or None): the learnable bias of this layer.
3169

3170 3171
    Returns:
        None
L
lujun 已提交
3172

3173
    Examples:
L
lujun 已提交
3174

3175
        .. code-block:: python
3176

3177 3178
          import paddle.fluid as fluid
          import numpy
3179

3180 3181 3182 3183
          with fluid.dygraph.guard():
              nodes_vector = numpy.random.random((1, 10, 5)).astype('float32')
              edge_set = numpy.random.random((1, 9, 2)).astype('int32')
              treeConv = fluid.dygraph.nn.TreeConv(
3184
                feature_size=5, output_size=6, num_filters=1, max_depth=2)
3185
              ret = treeConv(fluid.dygraph.base.to_variable(nodes_vector), fluid.dygraph.base.to_variable(edge_set))
3186 3187
    """

L
lujun 已提交
3188
    def __init__(self,
3189
                 feature_size,
L
lujun 已提交
3190 3191 3192 3193 3194 3195
                 output_size,
                 num_filters=1,
                 max_depth=2,
                 act='tanh',
                 param_attr=None,
                 bias_attr=None,
3196 3197 3198
                 name=None,
                 dtype='float32'):
        super(TreeConv, self).__init__()
L
lujun 已提交
3199
        self._name = name
3200
        self._feature_size = feature_size
L
lujun 已提交
3201 3202 3203 3204 3205 3206
        self._output_size = output_size
        self._act = act
        self._max_depth = max_depth
        self._num_filters = num_filters
        self._bias_attr = bias_attr
        self._param_attr = param_attr
3207 3208
        self._dtype = dtype
        w_shape = [self._feature_size, 3, self._output_size, self._num_filters]
L
lujun 已提交
3209
        if self._bias_attr:
3210
            self.bias = self.create_parameter(
L
lujun 已提交
3211 3212 3213 3214
                attr=self._bias_attr,
                shape=[self._num_filters],
                dtype=self._dtype,
                is_bias=True)
3215
        self.weight = self.create_parameter(
L
lujun 已提交
3216 3217 3218 3219 3220 3221
            attr=self._param_attr,
            shape=w_shape,
            dtype=self._dtype,
            is_bias=False)

    def forward(self, nodes_vector, edge_set):
3222 3223
        check_type(nodes_vector, 'nodes_vector', (Variable), 'TreeConv')
        check_type(edge_set, 'edge_set', (Variable), 'TreeConv')
L
lujun 已提交
3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234
        if self._name:
            out = self.create_variable(
                name=self._name, dtype=self._dtype, persistable=False)
        else:
            out = self._helper.create_variable_for_type_inference(
                dtype=self._dtype)
        self._helper.append_op(
            type='tree_conv',
            inputs={
                'NodesVector': nodes_vector,
                'EdgeSet': edge_set,
3235
                'Filter': self.weight
L
lujun 已提交
3236 3237 3238 3239 3240 3241 3242 3243 3244
            },
            outputs={'Out': out, },
            attrs={'max_depth': self._max_depth})
        if self._bias_attr:
            pre_activation = self._helper.create_variable_for_type_inference(
                dtype=self._dtype)
            self._helper.append_op(
                type='elementwise_add',
                inputs={'X': [out],
3245
                        'Y': [self.bias]},
L
lujun 已提交
3246 3247 3248 3249 3250
                outputs={'Out': [pre_activation]},
                attrs={'axis': 1})
        else:
            pre_activation = out
        return self._helper.append_activation(pre_activation, act=self._act)
3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273


class Flatten(layers.Layer):
    """
    This interface is used to construct a callable object of the ``FLatten`` class.
    For more details, refer to code examples.
    It implements flatten a contiguous range of dims into a tensor.

    Parameters:
        start_axis(int): first dim to flatten (default = 1)
        stop_axis(int): last dim to flatten (default = -1).
    
    Returns:
        None

    Examples:

        .. code-block:: python

          import paddle
          import numpy as np

          inp_np = np.ones([5, 2, 3, 4]).astype('float32')
Z
Zhou Wei 已提交
3274
          inp_np = paddle.to_tensor(inp_np)
3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285
          flatten = paddle.nn.Flatten(start_axis=1, stop_axis=2)
          flatten_res = flatten(inp_np)

    """

    def __init__(self, start_axis=1, stop_axis=-1):
        super(Flatten, self).__init__()
        self.start_axis = start_axis
        self.stop_axis = stop_axis

    def forward(self, input):
3286 3287
        out = paddle.tensor.manipulation.flatten(
            input, start_axis=self.start_axis, stop_axis=self.stop_axis)
3288
        return out