nn.py 117.5 KB
Newer Older
M
minqiyang 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import print_function

from six.moves import reduce
from .. import core
from ..layers import utils
20 21
from ..layers import nn
from .. import dygraph_utils
M
minqiyang 已提交
22
from . import layers
23
from ..framework import Variable, in_dygraph_mode, OpProtoHolder, Parameter, _dygraph_tracer, _varbase_creator
M
minqiyang 已提交
24
from ..param_attr import ParamAttr
25
from ..initializer import Normal, Constant, NumpyArrayInitializer
H
hong 已提交
26 27
from .. import unique_name
from .layer_object_helper import LayerObjectHelper
L
lujun 已提交
28
import numpy as np
29
import numbers
30
import logging
31

32
__all__ = [
33 34 35
    'Conv2D', 'Conv3D', 'Pool2D', 'Linear', 'BatchNorm', 'Embedding', 'GRUUnit',
    'LayerNorm', 'NCE', 'PRelu', 'BilinearTensorProduct', 'Conv2DTranspose',
    'Conv3DTranspose', 'GroupNorm', 'SpectralNorm', 'TreeConv'
36
]
M
minqiyang 已提交
37 38


X
Xin Pan 已提交
39
class Conv2D(layers.Layer):
40
    """
41 42
    This interface is used to construct a callable object of the ``Conv2D`` class.
    For more details, refer to code examples.
43 44 45
    The convolution2D layer calculates the output based on the input, filter
    and strides, paddings, dilations, groups parameters. Input and
    Output are in NCHW format, where N is batch size, C is the number of
46 47 48
    the feature map, H is the height of the feature map, and W is the width of the feature map.
    Filter's shape is [MCHW] , where M is the number of output feature map,
    C is the number of input feature map, H is the height of the filter,
49
    and W is the width of the filter. If the groups is greater than 1,
50
    C will equal the number of input feature map divided by the groups.
51
    Please refer to UFLDL's `convolution
52
    <http://ufldl.stanford.edu/tutorial/supervised/FeatureExtractionUsingConvolution/>`_
T
tianshuo78520a 已提交
53
    for more details.
54 55 56 57 58 59 60 61
    If bias attribution and activation type are provided, bias is added to the
    output of the convolution, and the corresponding activation function is
    applied to the final result.

    For each input :math:`X`, the equation is:

    .. math::

62
        Out = \\sigma (W \\ast X + b)
63 64 65

    Where:

66 67
    * :math:`X`: Input value, a ``Tensor`` with NCHW format.
    * :math:`W`: Filter value, a ``Tensor`` with shape [MCHW] .
68
    * :math:`\\ast`: Convolution operation.
69
    * :math:`b`: Bias value, a 2-D ``Tensor`` with shape [M, 1].
70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91
    * :math:`\\sigma`: Activation function.
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.

    Example:

        - Input:

          Input shape: :math:`(N, C_{in}, H_{in}, W_{in})`

          Filter shape: :math:`(C_{out}, C_{in}, H_f, W_f)`

        - Output:

          Output shape: :math:`(N, C_{out}, H_{out}, W_{out})`

        Where

        .. math::

            H_{out}&= \\frac{(H_{in} + 2 * paddings[0] - (dilations[0] * (H_f - 1) + 1))}{strides[0]} + 1 \\\\
            W_{out}&= \\frac{(W_{in} + 2 * paddings[1] - (dilations[1] * (W_f - 1) + 1))}{strides[1]} + 1

92
    Parameters:
93
        num_channels(int): The number of channels in the input image.
94
        num_filters(int): The number of filter. It is as same as the output
95 96
            feature map.
        filter_size (int or tuple): The filter size. If filter_size is a tuple,
97 98
            it must contain two integers, (filter_size_H, filter_size_W).
            Otherwise, the filter will be a square.
99
        stride (int or tuple, optional): The stride size. If stride is a tuple, it must
100
            contain two integers, (stride_H, stride_W). Otherwise, the
101 102
            stride_H = stride_W = stride. Default: 1.
        padding (int or tuple, optional): The padding size. If padding is a tuple, it must
103
            contain two integers, (padding_H, padding_W). Otherwise, the
104 105
            padding_H = padding_W = padding. Default: 0.
        dilation (int or tuple, optional): The dilation size. If dilation is a tuple, it must
106
            contain two integers, (dilation_H, dilation_W). Otherwise, the
107 108
            dilation_H = dilation_W = dilation. Default: 1.
        groups (int, optional): The groups number of the Conv2d Layer. According to grouped
109 110 111
            convolution in Alex Krizhevsky's Deep CNN paper: when group=2,
            the first half of the filters is only connected to the first half
            of the input channels, while the second half of the filters is only
112 113
            connected to the second half of the input channels. Default: 1.
        param_attr (ParamAttr, optional): The parameter attribute for learnable weights(Parameter)
114 115 116 117
            of conv2d. If it is set to None or one attribute of ParamAttr, conv2d
            will create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with :math:`Normal(0.0, std)`,
            and the :math:`std` is :math:`(\\frac{2.0 }{filter\_elem\_num})^{0.5}`. Default: None.
118
        bias_attr (ParamAttr or bool, optional): The attribute for the bias of conv2d.
119 120 121 122
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, conv2d
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. Default: None.
123 124 125 126 127
        use_cudnn (bool, optional): Use cudnn kernel or not, it is valid only when the cudnn
            library is installed. Default: True.
        act (str, optional): Activation type, if it is set to None, activation is not appended.
            Default: None.
        dtype (str, optional): Data type, it can be "float32" or "float64". Default: "float32".
128

129 130 131 132
    Attribute:
        **weight** (Parameter): the learnable weights of filter of this layer.

        **bias** (Parameter or None): the learnable bias of this layer.
133

134 135 136
    Returns:
        None
    
137
    Raises:
138
        ValueError: if ``use_cudnn`` is not a bool value.
139 140 141

    Examples:
        .. code-block:: python
L
lujun 已提交
142

143 144 145 146 147
          from paddle.fluid.dygraph.base import to_variable
          import paddle.fluid as fluid
          from paddle.fluid.dygraph import Conv2D
          import numpy as np

148
          data = np.random.uniform(-1, 1, [10, 3, 32, 32]).astype('float32')
149
          with fluid.dygraph.guard():
150
              conv2d = Conv2D(3, 2, 3)
151 152
              data = to_variable(data)
              conv = conv2d(data)
153 154 155

    """

M
minqiyang 已提交
156
    def __init__(self,
157
                 num_channels,
M
minqiyang 已提交
158 159 160 161 162 163 164 165
                 num_filters,
                 filter_size,
                 stride=1,
                 padding=0,
                 dilation=1,
                 groups=None,
                 param_attr=None,
                 bias_attr=None,
166 167 168
                 use_cudnn=True,
                 act=None,
                 dtype='float32'):
M
minqiyang 已提交
169
        assert param_attr is not False, "param_attr should not be False here."
170 171
        super(Conv2D, self).__init__()
        self._num_channels = num_channels
M
minqiyang 已提交
172 173 174 175
        self._groups = groups
        self._stride = utils.convert_to_list(stride, 2, 'stride')
        self._padding = utils.convert_to_list(padding, 2, 'padding')
        self._dilation = utils.convert_to_list(dilation, 2, 'dilation')
176
        self._act = act
M
minqiyang 已提交
177 178 179
        if not isinstance(use_cudnn, bool):
            raise ValueError("use_cudnn should be True or False")
        self._use_cudnn = use_cudnn
180 181 182 183 184
        self._filter_size = filter_size
        self._num_filters = num_filters
        self._param_attr = param_attr
        self._bias_attr = bias_attr
        self._dtype = dtype
185

186 187 188 189 190
        if (self._num_channels == self._groups and
                num_filters % self._num_channels == 0 and not self._use_cudnn):
            self._l_type = 'depthwise_conv2d'
        else:
            self._l_type = 'conv2d'
M
minqiyang 已提交
191

192
        self._num_channels = num_channels
193 194
        if self._groups is None:
            num_filter_channels = self._num_channels
M
minqiyang 已提交
195
        else:
196
            if self._num_channels % self._groups != 0:
M
minqiyang 已提交
197
                raise ValueError("num_channels must be divisible by groups.")
198 199
            num_filter_channels = self._num_channels // self._groups
        filter_size = utils.convert_to_list(self._filter_size, 2, 'filter_size')
200
        filter_shape = [self._num_filters, num_filter_channels] + filter_size
M
minqiyang 已提交
201 202

        def _get_default_param_initializer():
203 204
            filter_elem_num = filter_size[0] * filter_size[
                1] * self._num_channels
M
minqiyang 已提交
205 206 207
            std = (2.0 / filter_elem_num)**0.5
            return Normal(0.0, std, 0)

208
        self.weight = self.create_parameter(
209
            attr=self._param_attr,
M
minqiyang 已提交
210 211 212 213
            shape=filter_shape,
            dtype=self._dtype,
            default_initializer=_get_default_param_initializer())

214
        self.bias = self.create_parameter(
215 216
            attr=self._bias_attr,
            shape=[self._num_filters],
M
minqiyang 已提交
217 218
            dtype=self._dtype,
            is_bias=True)
M
minqiyang 已提交
219 220

    def forward(self, input):
221 222 223 224 225 226 227 228 229 230 231
        if in_dygraph_mode() and self._l_type == 'conv2d':
            attrs = ('strides', self._stride, 'paddings', self._padding,
                     'dilations', self._dilation, 'groups', self._groups
                     if self._groups else 1, 'use_cudnn', self._use_cudnn)
            out = core.ops.conv2d(input, self.weight, *attrs)
            pre_bias = out

            pre_act = dygraph_utils._append_bias_in_dygraph(pre_bias, self.bias,
                                                            1)
            return dygraph_utils._append_activation_in_dygraph(pre_act,
                                                               self._act)
232 233
        inputs = {
            'Input': [input],
234
            'Filter': [self.weight],
235 236 237 238 239 240 241 242 243
        }
        attrs = {
            'strides': self._stride,
            'paddings': self._padding,
            'dilations': self._dilation,
            'groups': self._groups if self._groups else 1,
            'use_cudnn': self._use_cudnn,
            'use_mkldnn': False,
        }
M
minqiyang 已提交
244 245 246
        pre_bias = self._helper.create_variable_for_type_inference(
            dtype=self._dtype)

M
minqiyang 已提交
247 248 249 250
        self._helper.append_op(
            type=self._l_type,
            inputs={
                'Input': input,
251
                'Filter': self.weight,
M
minqiyang 已提交
252
            },
M
minqiyang 已提交
253
            outputs={"Output": pre_bias},
254
            attrs=attrs)
M
minqiyang 已提交
255

256
        if self.bias is not None:
257 258 259 260 261
            pre_act = self._helper.create_variable_for_type_inference(
                dtype=self._dtype)
            self._helper.append_op(
                type='elementwise_add',
                inputs={'X': [pre_bias],
262
                        'Y': [self.bias]},
263 264 265 266
                outputs={'Out': [pre_act]},
                attrs={'axis': 1})
        else:
            pre_act = pre_bias
M
minqiyang 已提交
267

L
lujun 已提交
268
        # Currently, we don't support inplace in dygraph mode
269
        return self._helper.append_activation(pre_act, act=self._act)
M
minqiyang 已提交
270 271


L
lujun 已提交
272
class Conv3D(layers.Layer):
273 274 275 276 277
    """
    **Convlution3D Layer**

    The convolution3D layer calculates the output based on the input, filter
    and strides, paddings, dilations, groups parameters. Input(Input) and
D
DuYao 已提交
278 279
    Output(Output) are multidimensional tensors with a shape of 
    :math:`[N, C, D, H, W]` . Where N is batch size, C is the number of
280 281 282 283 284 285 286 287 288 289 290 291 292 293
    channels, D is the depth of the feature, H is the height of the feature,
    and W is the width of the feature. Convlution3D is similar with Convlution2D
    but adds one dimension(depth). If bias attribution and activation type are
    provided, bias is added to the output of the convolution, and the
    corresponding activation function is applied to the final result.

    For each input :math:`X`, the equation is:

    .. math::

        Out = \sigma (W \\ast X + b)

    In the above equation:

D
DuYao 已提交
294
    * :math:`X`: Input value, a tensor with NCDHW or NDHWC format.
295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319
    * :math:`W`: Filter value, a tensor with MCDHW format.
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D tensor with shape [M, 1].
    * :math:`\\sigma`: Activation function.
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.

    Example:

        - Input:

          Input shape: :math:`(N, C_{in}, D_{in}, H_{in}, W_{in})`

          Filter shape: :math:`(C_{out}, C_{in}, D_f, H_f, W_f)`

        - Output:
          Output shape: :math:`(N, C_{out}, D_{out}, H_{out}, W_{out})`

        Where

        .. math::

            D_{out}&= \\frac{(D_{in} + 2 * paddings[0] - (dilations[0] * (D_f - 1) + 1))}{strides[0]} + 1 \\\\
            H_{out}&= \\frac{(H_{in} + 2 * paddings[1] - (dilations[1] * (H_f - 1) + 1))}{strides[1]} + 1 \\\\
            W_{out}&= \\frac{(W_{in} + 2 * paddings[2] - (dilations[2] * (W_f - 1) + 1))}{strides[2]} + 1

320
    Parameters:
321
        num_channels(int): The number of channels in the input image.
L
lujun 已提交
322
        num_filters(int): The number of filter. It is as same as the output image channel.
D
DuYao 已提交
323
        filter_size (int|tuple, optional): The filter size. If filter_size is a tuple,
324
            it must contain three integers, (filter_size_D, filter_size_H, filter_size_W).
D
DuYao 已提交
325 326 327
            Otherwise, the filter will be a square, filter_size_depth = filter_size_height
            = filter_size_width = filter_size.
        stride (int|tuple, optional): The stride size. If stride is a tuple, it must
328
            contain three integers, (stride_D, stride_H, stride_W). Otherwise, the
D
DuYao 已提交
329 330
            stride_D = stride_H = stride_W = stride. The default value is 1.
        padding (int|tuple, optional): The padding size. If padding is a tuple, it must
331
            contain three integers, (padding_D, padding_H, padding_W). Otherwise, the
D
DuYao 已提交
332 333
            padding_D = padding_H = padding_W = padding. The default value is 0.
        dilation (int|tuple, optional): The dilation size. If dilation is a tuple, it must
334
            contain three integers, (dilation_D, dilation_H, dilation_W). Otherwise, the
D
DuYao 已提交
335 336
            dilation_D = dilation_H = dilation_W = dilation. The default value is 1.
        groups (int, optional): The groups number of the Conv3d Layer. According to grouped
337 338 339
            convolution in Alex Krizhevsky's Deep CNN paper: when group=2,
            the first half of the filters is only connected to the first half
            of the input channels, while the second half of the filters is only
D
DuYao 已提交
340 341
            connected to the second half of the input channels. The default value is 1.
        param_attr (ParamAttr, optional): The parameter attribute for learnable parameters/weights
342 343 344
            of conv3d. If it is set to None or one attribute of ParamAttr, conv3d
            will create ParamAttr as param_attr. If it is set to None, the parameter
            is initialized with :math:`Normal(0.0, std)`, and the :math:`std` is
D
DuYao 已提交
345 346
            :math:`(\\frac{2.0 }{filter\_elem\_num})^{0.5}`. The default value is None.
        bias_attr (ParamAttr|bool, optional): The parameter attribute for the bias of conv3d.
347 348 349
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, conv3d
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
D
DuYao 已提交
350 351 352 353 354
            is not set, the bias is initialized zero. The default value is None.
        use_cudnn (bool, optional): Use cudnn kernel or not, it is valid only when the cudnn
            library is installed. The default value is True.
        act (str, optional): Activation type, if it is set to None, activation is not appended.
            The default value is None.
355
        dtype (str, optional): Data type, it can be "float32" or "float64". Default: "float32".
356

D
DuYao 已提交
357 358 359 360
    Attribute:
        **weight** (Parameter): the learnable weights of filters of this layer.

        **bias** (Parameter): the learnable bias of this layer.
361

362
    Returns:
D
DuYao 已提交
363
        None.
364 365 366 367 368 369 370 371

    Raises:
        ValueError: If the shapes of input, filter_size, stride, padding and
                    groups mismatch.

    Examples:
        .. code-block:: python

372 373 374 375 376 377
          import paddle.fluid as fluid
          import numpy

          with fluid.dygraph.guard():
              data = numpy.random.random((5, 3, 12, 32, 32)).astype('float32')
              conv3d = fluid.dygraph.nn.Conv3D(
378
                    num_channels=3, num_filters=2, filter_size=3, act="relu")
379 380
              ret = conv3d(fluid.dygraph.base.to_variable(data))

381 382
    """

L
lujun 已提交
383
    def __init__(self,
384
                 num_channels,
L
lujun 已提交
385 386 387 388 389 390 391 392 393
                 num_filters,
                 filter_size,
                 stride=1,
                 padding=0,
                 dilation=1,
                 groups=None,
                 param_attr=None,
                 bias_attr=None,
                 use_cudnn=True,
394 395
                 act=None,
                 dtype='float32'):
L
lujun 已提交
396
        assert param_attr is not False, "param_attr should not be False here."
397 398
        super(Conv3D, self).__init__()
        self._num_channels = num_channels
L
lujun 已提交
399 400 401
        self._groups = groups
        self._stride = utils.convert_to_list(stride, 3, 'stride')
        self._padding = utils.convert_to_list(padding, 3, 'padding')
402
        self._dilation = utils.convert_to_list(dilation, 3, 'dilation')
L
lujun 已提交
403 404
        self._act = act
        self._use_cudnn = use_cudnn
405 406 407 408
        self._filter_size = filter_size
        self._num_filters = num_filters
        self._param_attr = param_attr
        self._bias_attr = bias_attr
409
        self._dtype = dtype
410 411

        if self._groups is None:
412
            num_filter_channels = self._num_channels
L
lujun 已提交
413
        else:
414
            if self._num_channels % self._groups != 0:
L
lujun 已提交
415
                raise ValueError("num_channels must be divisible by groups.")
416
            num_filter_channels = self._num_channels // self._groups
L
lujun 已提交
417

418 419
        filter_size = utils.convert_to_list(self._filter_size, 3, 'filter_size')
        filter_shape = [self._num_filters, num_filter_channels] + filter_size
L
lujun 已提交
420 421 422

        def _get_default_param_initializer():
            filter_elem_num = filter_size[0] * filter_size[1] * filter_size[
423
                2] * self._num_channels
L
lujun 已提交
424 425 426
            std = (2.0 / filter_elem_num)**0.5
            return Normal(0.0, std, 0)

427
        self.weight = self.create_parameter(
428
            attr=self._param_attr,
L
lujun 已提交
429 430 431 432
            shape=filter_shape,
            dtype=self._dtype,
            default_initializer=_get_default_param_initializer())

433
        self.bias = self.create_parameter(
434 435
            attr=self._bias_attr,
            shape=[self._num_filters],
L
lujun 已提交
436 437 438 439 440 441 442 443
            dtype=self._dtype,
            is_bias=True)

    def forward(self, input):
        pre_bias = self._helper.create_variable_for_type_inference(
            dtype=self._dtype)

        self._helper.append_op(
444
            type='conv3d',
L
lujun 已提交
445 446
            inputs={
                'Input': input,
447
                'Filter': self.weight,
L
lujun 已提交
448 449 450 451 452 453 454 455 456 457 458
            },
            outputs={"Output": pre_bias},
            attrs={
                'strides': self._stride,
                'paddings': self._padding,
                'dilations': self._dilation,
                'groups': self._groups if self._groups else 1,
                'use_cudnn': self._use_cudnn,
                'use_mkldnn': False
            })

459
        if self.bias is not None:
460 461 462 463 464
            pre_act = self._helper.create_variable_for_type_inference(
                dtype=self._dtype)
            self._helper.append_op(
                type='elementwise_add',
                inputs={'X': [pre_bias],
465
                        'Y': [self.bias]},
466 467 468 469
                outputs={'Out': [pre_act]},
                attrs={'axis': 1})
        else:
            pre_act = pre_bias
L
lujun 已提交
470 471 472 473 474

        return self._helper.append_activation(pre_act, act=self._act)


class Conv3DTranspose(layers.Layer):
L
lujun 已提交
475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520
    """
    **Convlution3D transpose layer**

    The convolution3D transpose layer calculates the output based on the input,
    filter, and dilations, strides, paddings. Input(Input) and output(Output)
    are in NCDHW format. Where N is batch size, C is the number of channels,
    D is the depth of the feature, H is the height of the feature, and W
    is the width of the feature. Parameters(dilations, strides, paddings) are
    two elements. These two elements represent height and width, respectively.
    The details of convolution transpose layer, please refer to the following
    explanation and references `therein <http://www.matthewzeiler.com/wp-content/uploads/2017/07/cvpr2010.pdf>`_.
    If bias attribution and activation type are provided, bias is added to
    the output of the convolution, and the corresponding activation function
    is applied to the final result.

    For each input :math:`X`, the equation is:

    .. math::

        Out = \sigma (W \\ast X + b)

    In the above equation:

    * :math:`X`: Input value, a tensor with NCDHW format.
    * :math:`W`: Filter value, a tensor with MCDHW format.
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D tensor with shape [M, 1].
    * :math:`\\sigma`: Activation function.
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.

    Example:

        - Input:

          Input shape: :math:`(N, C_{in}, D_{in}, H_{in}, W_{in})`

          Filter shape: :math:`(C_{in}, C_{out}, D_f, H_f, W_f)`

        - Output:

          Output shape: :math:`(N, C_{out}, D_{out}, H_{out}, W_{out})`

        Where

        .. math::

D
DuYao 已提交
521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539
           D^\prime_{out} &= (D_{in} - 1) * strides[0] - 2 * paddings[0] + dilations[0] * (D_f - 1) + 1 \\\\
           H^\prime_{out} &= (H_{in} - 1) * strides[1] - 2 * paddings[1] + dilations[1] * (H_f - 1) + 1 \\\\
           W^\prime_{out} &= (W_{in} - 1) * strides[2] - 2 * paddings[2] + dilations[2] * (W_f - 1) + 1 \\\\
           D_{out} &\in [ D^\prime_{out}, D^\prime_{out} + strides[0] ] \\\\
           H_{out} &\in [ H^\prime_{out}, H^\prime_{out} + strides[1] ] \\\\

    **Note**:

          The conv3d_transpose can be seen as the backward of the conv3d. For conv3d, 
          when stride > 1, conv3d maps multiple input shape to the same output shape, 
          so for conv3d_transpose, when stride > 1, input shape maps multiple output shape.
          If output_size is None, :math:`H_{out} = H^\prime_{out}, :math:`H_{out} = \
          H^\prime_{out}, W_{out} = W^\prime_{out}`; else, the :math:`D_{out}` of the output 
          size must between :math:`D^\prime_{out}` and :math:`D^\prime_{out} + strides[0]`, 
          the :math:`H_{out}` of the output size must between :math:`H^\prime_{out}` 
          and :math:`H^\prime_{out} + strides[1]`, and the :math:`W_{out}` of the output size must 
          between :math:`W^\prime_{out}` and :math:`W^\prime_{out} + strides[2]`, 
          conv3d_transpose can compute the kernel size automatically.

L
lujun 已提交
540

541
    Parameters:
542
        num_channels(int): The number of channels in the input image.
L
lujun 已提交
543 544
        num_filters(int): The number of the filter. It is as same as the output
            image channel.
545
        filter_size(int|tuple): The filter size. If filter_size is a tuple,
L
lujun 已提交
546
            it must contain three integers, (filter_size_D, filter_size_H, filter_size_W).
547
            Otherwise, the filter will be a square.
D
DuYao 已提交
548 549 550 551 552 553 554 555 556 557 558 559 560 561 562
        padding(int|tuple, optional): The padding size. The padding argument effectively
             adds `dilation * (kernel - 1)` amount of zero-padding on both sides of input. If `padding` is a string,
             either 'VALID' or 'SAME' supported, which is the padding algorithm. If `padding`
             is a tuple or list, it could be in three forms: `[pad_depth, pad_height, pad_width]` or
            `[pad_depth_front, pad_depth_back, pad_height_top, pad_height_bottom, pad_width_left, pad_width_right]`,
            and when `data_format` is `'NCDHW'`, `padding` can be in the form
            `[[0,0], [0,0], [pad_depth_front, pad_depth_back], [pad_height_top, pad_height_bottom], [pad_width_left, pad_width_right]]`.
            when `data_format` is `'NDHWC'`, `padding` can be in the form
            `[[0,0], [pad_depth_front, pad_depth_back], [pad_height_top, pad_height_bottom], [pad_width_left, pad_width_right], [0,0]]`.
            The default value is 0.
        stride(int|tuple, optional): The stride size. It means the stride in transposed convolution. 
            If stride is a tuple, it must contain three integers, (stride_depth, stride_height, 
            stride_width). Otherwise, stride_depth = stride_height = stride_width = stride. 
            The default value is 1.
        dilation(int|tuple, optional): The dilation size. If dilation is a tuple, it must
L
lujun 已提交
563
            contain three integers, (dilation_D, dilation_H, dilation_W). Otherwise, the
D
DuYao 已提交
564 565
            dilation_D = dilation_H = dilation_W = dilation. The default value is 1.
        groups(int, optional): The groups number of the Conv3d transpose layer. Inspired by
L
lujun 已提交
566 567 568 569
            grouped convolution in Alex Krizhevsky's Deep CNN paper, in which
            when group=2, the first half of the filters is only connected to the
            first half of the input channels, while the second half of the
            filters is only connected to the second half of the input channels.
D
DuYao 已提交
570 571
            The default value is 1.
        param_attr (ParamAttr, optional): The parameter attribute for learnable parameters/weights
L
lujun 已提交
572 573
            of conv3d_transpose. If it is set to None or one attribute of ParamAttr, conv3d_transpose
            will create ParamAttr as param_attr. If the Initializer of the param_attr
D
DuYao 已提交
574 575
            is not set, the parameter is initialized with Xavier. The default value is None.
        bias_attr (ParamAttr|bool, optional): The parameter attribute for the bias of conv3d_transpose.
L
lujun 已提交
576 577 578
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, conv3d_transpose
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
D
DuYao 已提交
579 580 581 582 583 584 585
            is not set, the bias is initialized zero. The default value is None.
        use_cudnn(bool, optional): Use cudnn kernel or not, it is valid only when the cudnn
            library is installed. The default value is True.
        act (str, optional): Activation type, if it is set to None, activation is not appended.
            The default value is None.
        name(str, optional): The default value is None. Normally there is no need for user 
            to set this property. For more information, please refer to :ref:`api_guide_Name`.
L
lujun 已提交
586

D
DuYao 已提交
587 588 589 590
    Attribute:
        **weight** (Parameter): the learnable weights of filters of this layer.

        **bias** (Parameter): the learnable bias of this layer.
591

L
lujun 已提交
592
    Returns:
D
DuYao 已提交
593
        None.
L
lujun 已提交
594 595 596 597 598 599 600 601

    Raises:
        ValueError: If the shapes of input, filter_size, stride, padding and
                    groups mismatch.

    Examples:
       .. code-block:: python

602 603 604 605 606 607
         import paddle.fluid as fluid
         import numpy

         with fluid.dygraph.guard():
             data = numpy.random.random((5, 3, 12, 32, 32)).astype('float32')
             conv3dTranspose = fluid.dygraph.nn.Conv3DTranspose(
608
                    num_channels=3,
609 610 611 612 613
                    num_filters=12,
                    filter_size=12,
                    use_cudnn=False)
             ret = conv3dTranspose(fluid.dygraph.base.to_variable(data))

L
lujun 已提交
614 615
    """

L
lujun 已提交
616
    def __init__(self,
617
                 num_channels,
L
lujun 已提交
618
                 num_filters,
619
                 filter_size,
L
lujun 已提交
620 621 622 623 624 625 626 627
                 padding=0,
                 stride=1,
                 dilation=1,
                 groups=None,
                 param_attr=None,
                 bias_attr=None,
                 use_cudnn=True,
                 act=None,
628 629
                 dtype='float32'):
        super(Conv3DTranspose, self).__init__()
L
lujun 已提交
630 631 632 633 634 635 636
        if not isinstance(use_cudnn, bool):
            raise ValueError("use_cudnn should be True or False")
        assert param_attr is not False, "param_attr should not be False in conv3d_transpose."
        self._padding = utils.convert_to_list(padding, 3, 'padding')
        self._stride = utils.convert_to_list(stride, 3, 'stride')
        self._dilation = utils.convert_to_list(dilation, 3, 'dilation')
        self._param_attr = param_attr
637
        self._num_channels = num_channels
L
lujun 已提交
638 639 640 641 642 643
        self._filter_size = filter_size
        self._groups = 1 if groups is None else groups
        self._num_filters = num_filters
        self._use_cudnn = use_cudnn
        self._bias_attr = bias_attr
        self._act = act
644
        self._dtype = dtype
L
lujun 已提交
645

646 647
        self._filter_size = utils.convert_to_list(
            self._filter_size, 3, 'conv3d_transpose.filter_size')
L
lujun 已提交
648

649 650
        filter_shape = [self._num_channels, self._num_filters // self._groups
                        ] + self._filter_size
651
        self.weight = self.create_parameter(
L
lujun 已提交
652 653
            dtype=self._dtype, shape=filter_shape, attr=self._param_attr)
        if self._bias_attr:
654
            self.bias = self.create_parameter(
L
lujun 已提交
655 656 657 658 659 660 661 662 663 664 665
                attr=self._bias_attr,
                shape=[self._num_filters],
                dtype=self._dtype,
                is_bias=True)

    def forward(self, input):
        pre_bias = self._helper.create_variable_for_type_inference(
            dtype=self._dtype)
        self._helper.append_op(
            type="conv3d_transpose",
            inputs={'Input': [input],
666
                    'Filter': [self.weight]},
L
lujun 已提交
667 668 669 670 671 672 673 674 675 676 677 678 679 680 681
            outputs={'Output': pre_bias},
            attrs={
                'strides': self._stride,
                'paddings': self._padding,
                'dilations': self._dilation,
                'groups': self._groups if self._groups else 1,
                'use_cudnn': self._use_cudnn
            })

        if self._bias_attr:
            pre_act = self._helper.create_variable_for_type_inference(
                dtype=self._dtype)
            self._helper.append_op(
                type='elementwise_add',
                inputs={'X': [pre_bias],
682
                        'Y': [self.bias]},
L
lujun 已提交
683 684 685 686 687 688 689 690 691
                outputs={'Out': [pre_act]},
                attrs={'axis': 1})
        else:
            pre_act = pre_bias

        # Currently, we don't support inplace in imperative mode
        return self._helper.append_activation(pre_act, act=self._act)


X
Xin Pan 已提交
692
class Pool2D(layers.Layer):
693
    """
694 695 696 697 698
    This interface is used to construct a callable object of the ``Pool2D`` class.
    For more details, refer to code examples.
    The pooling2d operation calculates the output based on the input, pool_type and pool_size, pool_stride,
    pool_padding parameters.Input and output are in NCHW format, where N is batch size, C is the number of feature map,
    H is the height of the feature map, and W is the width of the feature map.
L
lujun 已提交
699 700
    Parameters(ksize, strides, paddings) are two elements. These two elements represent height and width, respectively.
    The input(X) size and output(Out) size may be different.
701

702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745
    Example:

        - Input:

          Input shape: :math:`(N, C, H_{in}, W_{in})`

        - Output:

          Output shape: :math:`(N, C, H_{out}, W_{out})`

        If ``ceil_mode`` = False:

        .. math::

            H_{out} = \\frac{(H_{in} - ksize[0] + 2 * paddings[0])}{strides[0]} + 1 \\\\
            W_{out} = \\frac{(W_{in} - ksize[1] + 2 * paddings[1])}{strides[1]} + 1

        If ``ceil_mode`` = True:

        .. math::

            H_{out} = \\frac{(H_{in} - ksize[0] + 2 * paddings[0] + strides[0] - 1)}{strides[0]} + 1 \\\\
            W_{out} = \\frac{(W_{in} - ksize[1] + 2 * paddings[1] + strides[1] - 1)}{strides[1]} + 1

        If ``exclusive`` = False:

        .. math::

            hstart &= i * strides[0] - paddings[0] \\\\
            hend   &= hstart + ksize[0] \\\\
            wstart &= j * strides[1] - paddings[1] \\\\
            wend   &= wstart + ksize[1] \\\\
            Output(i ,j) &= \\frac{sum(Input[hstart:hend, wstart:wend])}{ksize[0] * ksize[1]}

        If ``exclusive`` = True:

        .. math::

            hstart &= max(0, i * strides[0] - paddings[0])\\\\
            hend &= min(H, hstart + ksize[0]) \\\\
            wstart &= max(0, j * strides[1] - paddings[1]) \\\\
            wend & = min(W, wstart + ksize[1]) \\\\
            Output(i ,j) & = \\frac{sum(Input[hstart:hend, wstart:wend])}{(hend - hstart) * (wend - wstart)}

746
    Parameters:
747
        pool_size (int or list or tuple, optional): The pool kernel size. If pool kernel size is a tuple or list,
748
            it must contain two integers, (pool_size_Height, pool_size_Width).
749 750 751 752
            Otherwise, the pool kernel size will be a square of an int. Default: -1.
        pool_type(str, optional) : The pooling type, can be "max" for max-pooling and "avg" for average-pooling. 
            Default: max.
        pool_stride (int or list or tuple, optional): The pool stride size. If pool stride size is a tuple or list,
L
lujun 已提交
753
            it must contain two integers, (pool_stride_Height, pool_stride_Width). Otherwise,
754 755 756
            the pool stride size will be a square of an int. Default: 1.
        pool_padding (int or list or tuple, optional): The padding size for pooling operation. 
            If ``pool_padding`` is a tuple,
757
            it must contain two integers, (pool_padding_on_Height, pool_padding_on_Width).
758 759 760 761 762 763 764
            Otherwise, the padding size for pooling operation will be a square of an int. Default: 0.
        global_pooling (bool, optional): Whether to use the global pooling. If global_pooling = true,
            kernel size and paddings will be ignored. Default: False.
        use_cudnn (bool, optional): Only used in cudnn kernel, need install cudnn. Default: True.
        ceil_mode (bool, optional): Whether to use the ceil function to calculate output height and width.
            False is the default. If it is set to False, the floor function will be used. Default: False.
        exclusive (bool, optional): Whether to exclude padding points in average pooling mode. Default: True.
765 766

    Returns:
767
        None
768 769 770 771 772 773 774 775 776 777

    Raises:
        ValueError: If 'pool_type' is not "max" nor "avg"
        ValueError: If 'global_pooling' is False and 'pool_size' is -1
        ValueError: If 'use_cudnn' is not a bool value.

    Examples:

        .. code-block:: python

L
lujun 已提交
778
          import paddle.fluid as fluid
779 780
          from paddle.fluid.dygraph.base import to_variable
          import numpy as np
L
lujun 已提交
781 782

          with fluid.dygraph.guard():
783
             data = numpy.random.random((3, 32, 32, 5)).astype('float32')
784
             pool2d = fluid.dygraph.Pool2D(pool_size=2,
785 786 787
                            pool_type='max',
                            pool_stride=1,
                            global_pooling=False)
788
             pool2d_res = pool2d(to_variable(data))
789 790 791

    """

M
minqiyang 已提交
792 793 794 795 796 797 798 799
    def __init__(self,
                 pool_size=-1,
                 pool_type="max",
                 pool_stride=1,
                 pool_padding=0,
                 global_pooling=False,
                 use_cudnn=True,
                 ceil_mode=False,
800
                 exclusive=True):
M
minqiyang 已提交
801 802 803 804 805 806 807 808 809 810 811 812 813
        if pool_type not in ["max", "avg"]:
            raise ValueError(
                "Unknown pool_type: '%s'. It can only be 'max' or 'avg'.",
                str(pool_type))

        if global_pooling is False and pool_size == -1:
            raise ValueError(
                "When the global_pooling is False, pool_size must be passed "
                "and be a valid value. Received pool_size: " + str(pool_size))

        if not isinstance(use_cudnn, bool):
            raise ValueError("use_cudnn should be True or False")

814
        super(Pool2D, self).__init__()
M
minqiyang 已提交
815 816 817 818 819 820 821 822 823 824 825 826 827

        self._pool_type = pool_type
        self._pool_size = utils.convert_to_list(pool_size, 2, 'pool_size')
        self._pool_padding = utils.convert_to_list(pool_padding, 2,
                                                   'pool_padding')
        self._pool_stride = utils.convert_to_list(pool_stride, 2, 'pool_stride')
        self._global_pooling = global_pooling
        self._use_cudnn = use_cudnn
        self._ceil_mode = ceil_mode
        self._exclusive = exclusive
        self._l_type = 'pool2d'

    def forward(self, input):
828 829 830 831 832 833 834 835
        if in_dygraph_mode():
            attrs = ('pooling_type', self._pool_type, 'ksize', self._pool_size,
                     'global_pooling', self._global_pooling, 'strides',
                     self._pool_stride, 'paddings', self._pool_padding,
                     'use_cudnn', self._use_cudnn, 'ceil_mode', self._ceil_mode,
                     'use_mkldnn', False, 'exclusive', self._exclusive)
            return core.ops.pool2d(input, *attrs)

836 837 838 839 840 841 842 843 844 845 846 847 848
        attrs = {
            "pooling_type": self._pool_type,
            "ksize": self._pool_size,
            "global_pooling": self._global_pooling,
            "strides": self._pool_stride,
            "paddings": self._pool_padding,
            "use_cudnn": self._use_cudnn,
            "ceil_mode": self._ceil_mode,
            "use_mkldnn": False,
            "exclusive": self._exclusive,
        }
        inputs = {"X": [input]}

M
minqiyang 已提交
849 850
        pool_out = self._helper.create_variable_for_type_inference(self._dtype)

M
minqiyang 已提交
851 852 853
        self._helper.append_op(
            type=self._l_type,
            inputs={"X": input},
M
minqiyang 已提交
854
            outputs={"Out": pool_out},
855
            attrs=attrs)
M
minqiyang 已提交
856
        return pool_out
M
minqiyang 已提交
857 858


S
songyouwei 已提交
859 860 861 862 863 864 865 866 867 868
class Linear(layers.Layer):
    """
    Fully-connected linear transformation layer:

    .. math::

        Out = Act({XW + b})

    where :math:`X` is the input Tensor, :math:`W` and :math:`b` are weight and bias respectively.

869
    Linear layer takes only one ``Tensor`` input.
S
songyouwei 已提交
870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928
    The Linear layer multiplies input tensor with weight matrix and
    produces an output Tensor of shape [N, *, `output_dim`],
    where N is batch size and `*` means any number of additional dimensions.
    If ``bias_attr`` is not None, a bias variable will be created and added to the output.
    Finally, if ``act`` is not None, it will be applied to the output as well.

    Parameters:
        input_dim(int): The number of input units in this layer.
        output_dim(int): The number of output units in this layer.
        param_attr(ParamAttr or list of ParamAttr, optional): The parameter attribute for learnable
            weights(Parameter) of this layer. Default: None.
        bias_attr(ParamAttr or list of ParamAttr, optional): The attribute for the bias
            of this layer. If it is set to False, no bias will be added to the output units.
            If it is set to None, the bias is initialized zero. Default: None.
        act(str, optional): Activation to be applied to the output of this layer. Default: None.
        dtype(str, optional): Dtype used for weight, it can be "float32" or "float64". Default: "float32".

    Attributes:
        **weight** (Parameter): the learnable weights of this layer.

        **bias** (Parameter or None): the learnable bias of this layer.

    Returns:
        None

    Examples:
        .. code-block:: python

          from paddle.fluid.dygraph.base import to_variable
          import paddle.fluid as fluid
          from paddle.fluid.dygraph import Linear
          import numpy as np

          data = np.random.uniform(-1, 1, [30, 10, 32]).astype('float32')
          with fluid.dygraph.guard():
              linear = Linear(32, 64)
              data = to_variable(data)
              res = linear(data)  # [30, 10, 64]
    """

    def __init__(self,
                 input_dim,
                 output_dim,
                 param_attr=None,
                 bias_attr=None,
                 act=None,
                 dtype="float32"):
        super(Linear, self).__init__()
        self._act = act
        self._dtype = dtype
        self.weight = self.create_parameter(
            shape=[input_dim, output_dim],
            attr=param_attr,
            dtype=dtype,
            is_bias=False)
        self.bias = self.create_parameter(
            shape=[output_dim], attr=bias_attr, dtype=dtype, is_bias=True)

    def forward(self, input):
929
        if in_dygraph_mode():
930 931
            pre_bias = core.ops.mul(input, self.weight, 'x_num_col_dims',
                                    len(input.shape) - 1, 'y_num_col_dims', 1)
932 933 934 935 936 937

            pre_act = dygraph_utils._append_bias_in_dygraph(
                pre_bias, self.bias, axis=len(input.shape) - 1)

            return dygraph_utils._append_activation_in_dygraph(pre_act,
                                                               self._act)
938 939 940 941 942
        attrs = {
            "x_num_col_dims": len(input.shape) - 1,
            "y_num_col_dims": 1,
        }
        inputs = {"X": [input], "Y": [self.weight]}
943

S
songyouwei 已提交
944 945
        tmp = self._helper.create_variable_for_type_inference(self._dtype)
        self._helper.append_op(
S
songyouwei 已提交
946
            type="mul", inputs=inputs, outputs={"Out": tmp}, attrs=attrs)
S
songyouwei 已提交
947 948 949 950 951 952 953 954 955 956 957 958 959 960
        if self.bias:
            pre_activation = self._helper.create_variable_for_type_inference(
                dtype=self._dtype)
            self._helper.append_op(
                type='elementwise_add',
                inputs={'X': [tmp],
                        'Y': [self.bias]},
                outputs={'Out': [pre_activation]},
                attrs={'axis': len(input.shape) - 1})
        else:
            pre_activation = tmp
        return self._helper.append_activation(pre_activation, act=self._act)


M
minqiyang 已提交
961
class BatchNorm(layers.Layer):
962
    """
963 964 965 966 967
    This interface is used to construct a callable object of the ``BatchNorm`` class.
    For more details, refer to code examples.
    It implements the function of the Batch Normalization Layer and can be used 
    as a normalizer function for conv2d and fully connected operations.
    The data is normalized by the mean and variance of the channel based on the current batch data.
968 969 970 971
    Refer to `Batch Normalization: Accelerating Deep Network Training by Reducing
    Internal Covariate Shift <https://arxiv.org/pdf/1502.03167.pdf>`_
    for more details.

972 973 974
    When use_global_stats = False, the :math:`\\mu_{\\beta}` 
    and :math:`\\sigma_{\\beta}^{2}` are the statistics of one mini-batch.
    Calculated as follows:
975 976 977 978 979 980 981 982

    ..  math::

        \\mu_{\\beta} &\\gets \\frac{1}{m} \\sum_{i=1}^{m} x_i \\qquad &//\\
        \ mini-batch\ mean \\\\
        \\sigma_{\\beta}^{2} &\\gets \\frac{1}{m} \\sum_{i=1}^{m}(x_i - \\
        \\mu_{\\beta})^2 \\qquad &//\ mini-batch\ variance \\\\

983 984
    - :math:`x` : mini-batch data
    - :math:`m` : the size of the mini-batch data
985 986 987

    When use_global_stats = True, the :math:`\\mu_{\\beta}`
    and :math:`\\sigma_{\\beta}^{2}` are not the statistics of one mini-batch.
988 989 990 991 992 993
    They are global or running statistics (moving_mean and moving_variance). It usually got from the
    pre-trained model. Calculated as follows:

    .. math::
        moving\_mean = moving\_mean * momentum + \mu_{\beta} * (1. - momentum) \quad &// global mean \\
        moving\_variance = moving\_variance * momentum + \sigma_{\beta}^{2} * (1. - momentum) \quad &// global variance \\
994

995 996
    The normalization function formula is as follows:
 
997 998 999
    ..  math::

        \\hat{x_i} &\\gets \\frac{x_i - \\mu_\\beta} {\\sqrt{\\
1000 1001 1002 1003 1004 1005
        \\sigma_{\\beta}^{2} + \\epsilon}} \\qquad &//\ normalize \\\\
        y_i &\\gets \\gamma \\hat{x_i} + \\beta \\qquad &//\ scale\ and\ shift

    - :math:`\\epsilon` : add a smaller value to the variance to prevent division by zero
    - :math:`\\gamma` : trainable proportional parameter
    - :math:`\\beta` : trainable deviation parameter
1006

1007
    Parameters:
1008
        num_channels(int): Indicate the number of channels of the input ``Tensor``.
T
tianshuo78520a 已提交
1009
        act(str, optional): Activation to be applied to the output of batch normalization. Default: None.
1010 1011 1012 1013
        is_test (bool, optional): A flag indicating whether it is in test phrase or not. Default: False.
        momentum(float, optional): The value used for the moving_mean and moving_var computation. Default: 0.9.
        epsilon(float, optional): The small value added to the variance to prevent division by zero. Default: 1e-5.
        param_attr(ParamAttr, optional): The parameter attribute for Parameter `scale`
1014 1015 1016
             of batch_norm. If it is set to None or one attribute of ParamAttr, batch_norm
             will create ParamAttr as param_attr. If the Initializer of the param_attr
             is not set, the parameter is initialized with Xavier. Default: None.
1017
        bias_attr(ParamAttr, optional): The parameter attribute for the bias of batch_norm.
1018 1019 1020
             If it is set to None or one attribute of ParamAttr, batch_norm
             will create ParamAttr as bias_attr. If the Initializer of the bias_attr
             is not set, the bias is initialized zero. Default: None.
1021 1022 1023 1024 1025 1026
        dtype(str, optional): Indicate the data type of the input ``Tensor``,
             which can be float32 or float64. Default: float32.
        data_layout(str, optional): Specify the input data format, the data format can be "NCHW" or "NHWC". Default: NCHW.
        in_place(bool, optional): Make the input and output of batch norm reuse memory. Default: False.
        moving_mean_name(str, optional): The name of moving_mean which store the global Mean. Default: None.
        moving_variance_name(str, optional): The name of the moving_variance which store the global Variance. Default: None.
1027 1028
        do_model_average_for_mean_and_var(bool, optional): Whether parameter mean and variance should do model
            average when model average is enabled. Default: True.
1029
        use_global_stats(bool, optional): Whether to use global mean and
1030 1031 1032
            variance. In inference or test mode, set use_global_stats to true
            or is_test to true, and the behavior is equivalent.
            In train mode, when setting use_global_stats True, the global mean
1033 1034 1035 1036
            and variance are also used during train period. Default: False.
        trainable_statistics(bool, optional): Whether to calculate mean and var in eval mode. In eval mode, when
            setting trainable_statistics True, mean and variance will be calculated by current batch statistics.
            Default: False.
1037 1038

    Returns:
1039
        None
1040 1041 1042

    Examples:
        .. code-block:: python
L
lujun 已提交
1043 1044

          import paddle.fluid as fluid
1045 1046
          from paddle.fluid.dygraph.base import to_variable
          import numpy as np
L
lujun 已提交
1047

1048
          x = np.random.random(size=(3, 10, 3, 7)).astype('float32')
L
lujun 已提交
1049
          with fluid.dygraph.guard():
1050
              x = to_variable(x)
1051
              batch_norm = fluid.BatchNorm(10)
1052
              hidden1 = batch_norm(x)
1053 1054
    """

M
minqiyang 已提交
1055 1056 1057 1058 1059 1060 1061 1062
    def __init__(self,
                 num_channels,
                 act=None,
                 is_test=False,
                 momentum=0.9,
                 epsilon=1e-05,
                 param_attr=None,
                 bias_attr=None,
1063
                 dtype='float32',
M
minqiyang 已提交
1064 1065 1066 1067
                 data_layout='NCHW',
                 in_place=False,
                 moving_mean_name=None,
                 moving_variance_name=None,
1068
                 do_model_average_for_mean_and_var=True,
1069 1070
                 use_global_stats=False,
                 trainable_statistics=False):
1071
        super(BatchNorm, self).__init__()
1072
        self._param_attr = param_attr
1073
        self._bias_attr = bias_attr
1074
        self._act = act
M
minqiyang 已提交
1075 1076 1077

        assert bias_attr is not False, "bias_attr should not be False in batch_norm."

1078 1079
        if dtype == "float16":
            self._dtype = "float32"
M
minqiyang 已提交
1080 1081 1082 1083 1084 1085
        else:
            self._dtype = dtype

        param_shape = [num_channels]

        # create parameter
1086
        self.weight = self.create_parameter(
1087
            attr=self._param_attr,
M
minqiyang 已提交
1088 1089 1090
            shape=param_shape,
            dtype=self._dtype,
            default_initializer=Constant(1.0))
1091
        self.weight.stop_gradient = use_global_stats and self._param_attr.learning_rate == 0.
M
minqiyang 已提交
1092

1093
        self.bias = self.create_parameter(
1094
            attr=self._bias_attr,
M
minqiyang 已提交
1095 1096 1097
            shape=param_shape,
            dtype=self._dtype,
            is_bias=True)
1098
        self.bias.stop_gradient = use_global_stats and self._param_attr.learning_rate == 0.
M
minqiyang 已提交
1099

1100
        self._mean = self.create_parameter(
M
minqiyang 已提交
1101 1102 1103 1104 1105 1106 1107
            attr=ParamAttr(
                name=moving_mean_name,
                initializer=Constant(0.0),
                trainable=False,
                do_model_average=do_model_average_for_mean_and_var),
            shape=param_shape,
            dtype=self._dtype)
1108
        self._mean.stop_gradient = True
M
minqiyang 已提交
1109

1110
        self._variance = self.create_parameter(
M
minqiyang 已提交
1111 1112 1113 1114 1115 1116 1117
            attr=ParamAttr(
                name=moving_variance_name,
                initializer=Constant(1.0),
                trainable=False,
                do_model_average=do_model_average_for_mean_and_var),
            shape=param_shape,
            dtype=self._dtype)
1118
        self._variance.stop_gradient = True
M
minqiyang 已提交
1119 1120

        self._in_place = in_place
1121
        self._data_layout = data_layout
M
minqiyang 已提交
1122 1123 1124
        self._momentum = momentum
        self._epsilon = epsilon
        self._is_test = is_test
1125
        self._fuse_with_relu = False
M
minqiyang 已提交
1126
        self._use_global_stats = use_global_stats
1127
        self._trainable_statistics = trainable_statistics
M
minqiyang 已提交
1128 1129 1130 1131 1132 1133 1134

    def forward(self, input):
        # create output
        # mean and mean_out share the same memory
        mean_out = self._mean
        # variance and variance out share the same memory
        variance_out = self._variance
1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149

        if in_dygraph_mode():
            _is_test = (not _dygraph_tracer()._train_mode) and (
                not self._trainable_statistics)
            attrs = ("momentum", self._momentum, "epsilon", self._epsilon,
                     "is_test", _is_test, "data_layout", self._data_layout,
                     "use_mkldnn", False, "fuse_with_relu",
                     self._fuse_with_relu, "use_global_stats",
                     self._use_global_stats)
            batch_norm_out, _, _, _, _ = core.ops.batch_norm(
                input, self.weight, self.bias, self._mean, self._variance,
                mean_out, variance_out, *attrs)
            return dygraph_utils._append_activation_in_dygraph(
                batch_norm_out, act=self._act)

1150 1151 1152 1153 1154 1155 1156 1157 1158 1159
        attrs = {
            "momentum": self._momentum,
            "epsilon": self._epsilon,
            "is_test": self._is_test,
            "data_layout": self._data_layout,
            "use_mkldnn": False,
            "fuse_with_relu": self._fuse_with_relu,
            "use_global_stats": self._use_global_stats,
            "trainable_statistics": self._trainable_statistics
        }
M
minqiyang 已提交
1160

1161 1162 1163 1164 1165 1166 1167 1168
        inputs = {
            "X": [input],
            "Scale": [self.weight],
            "Bias": [self.bias],
            "Mean": [self._mean],
            "Variance": [self._variance]
        }

1169 1170 1171 1172 1173 1174
        saved_mean = self._helper.create_variable_for_type_inference(
            dtype=self._dtype, stop_gradient=True)
        saved_variance = self._helper.create_variable_for_type_inference(
            dtype=self._dtype, stop_gradient=True)
        batch_norm_out = input if self._in_place else self._helper.create_variable_for_type_inference(
            self._dtype)
1175 1176 1177 1178 1179 1180 1181 1182 1183

        outputs = {
            "Y": [batch_norm_out],
            "MeanOut": [mean_out],
            "VarianceOut": [variance_out],
            "SavedMean": [saved_mean],
            "SavedVariance": [saved_variance]
        }

M
minqiyang 已提交
1184
        self._helper.append_op(
1185
            type="batch_norm", inputs=inputs, outputs=outputs, attrs=attrs)
M
minqiyang 已提交
1186

L
lujun 已提交
1187
        # Currently, we don't support inplace in dygraph mode
1188
        return self._helper.append_activation(batch_norm_out, self._act)
1189 1190


1191 1192 1193 1194
class Embedding(layers.Layer):
    """
    **Embedding Layer**

Z
zhongpu 已提交
1195 1196 1197 1198 1199 1200
    This interface is used to construct a callable object of the ``Embedding`` class.
    For specific usage, refer to code examples. It implements the function of the Embedding Layer.
    This layer is used to lookup embeddings vector of ids provided by :attr:`input` .
    It automatically constructs a 2D embedding matrix based on the
    input :attr:`size` (vocab_size, emb_size) and :attr:`dtype` .

1201 1202
    The shape of output Tensor is generated by appending an emb_size dimension to the
    last dimension of the input Tensor shape.
Z
zhongpu 已提交
1203

1204
    **Note:** The id in :attr:`input` must satisfy :math:`0 =< id < size[0]` ,
Z
zhongpu 已提交
1205 1206 1207 1208 1209 1210 1211
    otherwise the program will throw an exception and exit.

    .. code-block:: text

        Case 1:

        input is a Tensor. padding_idx = -1
1212 1213
            input.data = [[1, 3], [2, 4], [4, 127]
            input.shape = [3, 2]
Z
zhongpu 已提交
1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226
        Given size = [128, 16]
        output is a Tensor:
            out.shape = [3, 2, 16]
            out.data = [[[0.129435295, 0.244512452, ..., 0.436322452],
                        [0.345421456, 0.524563927, ..., 0.144534654]],

                        [[0.345249859, 0.124939536, ..., 0.194353745],
                        [0.945345345, 0.435394634, ..., 0.435345365]],
                        
                        [[0.945345345, 0.435394634, ..., 0.435345365],
                        [0.0,         0.0,         ..., 0.0        ]]]  # padding data
        The input padding_idx is less than 0, it is automatically converted to padding_idx = -1 + 128 = 127
        It will pad all-zero data when ids is 127.
1227

1228
    Parameters:
L
lujun 已提交
1229 1230
        size(tuple|list): The shape of the look up table parameter. It should have two elements which indicate the size
            of the dictionary of embeddings and the size of each embedding vector respectively.
Z
zhongpu 已提交
1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248
        is_sparse(bool): The flag indicating whether to use sparse update. This parameter only
            affects the performance of the backwards gradient update. It is recommended to set 
            True because sparse update is faster. But some optimizer does not support sparse update,
            such as :ref:`api_fluid_optimizer_AdadeltaOptimizer` , :ref:`api_fluid_optimizer_AdamaxOptimizer` , 
            :ref:`api_fluid_optimizer_DecayedAdagradOptimizer` , :ref:`api_fluid_optimizer_FtrlOptimizer` ,
            :ref:`api_fluid_optimizer_LambOptimizer` and :ref:`api_fluid_optimizer_LarsMomentumOptimizer` .
            In these case, is_sparse must be False. Default: False.
        is_distributed(bool): Whether to store the embedding matrix in a distributed manner. Only used
            in multi-machine distributed CPU training. Default: False.
        padding_idx(int|long|None): padding_idx needs to be in the interval [-vocab_size, vocab_size). 
            If :math:`padding\_idx < 0`, the :math:`padding\_idx` will automatically be converted
            to :math:`vocab\_size + padding\_idx` . It will output all-zero padding data whenever lookup
            encounters :math:`padding\_idx` in id. And the padding data will not be updated while training.
            If set None, it makes no effect to output. Default: None.
        param_attr(ParamAttr): To specify the weight parameter property. Default: None, which means the
            default weight parameter property is used. See usage for details in :ref:`api_fluid_ParamAttr` . In addition,
            user-defined or pre-trained word vectors can be loaded with the :attr:`param_attr` parameter. 
            The local word vector needs to be transformed into numpy format, and the shape of local word
T
tianshuo78520a 已提交
1249
            vector should be consistent with :attr:`size` . Then :ref:`api_fluid_initializer_NumpyArrayInitializer`
Z
zhongpu 已提交
1250 1251 1252
            is used to load custom or pre-trained word vectors. See code example 2 for details.
        dtype(np.dtype|core.VarDesc.VarType|str): It refers to the data type of output Tensor.
            It must be "float32" or "float64". Default: "float32".
1253

Z
zhongpu 已提交
1254 1255
    Attribute:
        **weight** (Parameter): the learnable weights of this layer.
1256

1257
    Returns:
Z
zhongpu 已提交
1258
        Variable: Embedding Tensor or LoDTensor mapped by input. The data type is the same as :attr:`dtype` .
1259 1260

    Examples:
1261

1262 1263
        .. code-block:: python

L
lujun 已提交
1264 1265 1266 1267
          import paddle.fluid as fluid
          import paddle.fluid.dygraph.base as base
          import numpy as np

Z
zhongpu 已提交
1268
          # example 1
1269 1270
          inp_word = np.array([[2, 3, 5], [4, 2, 1]]).astype('int64')
          inp_word.shape  # [2, 3]
1271 1272
          dict_size = 20
          with fluid.dygraph.guard():
L
lujun 已提交
1273
              emb = fluid.dygraph.Embedding(
1274 1275 1276
                  size=[dict_size, 32],
                  param_attr='emb.w',
                  is_sparse=False)
L
lujun 已提交
1277
              static_rlt3 = emb(base.to_variable(inp_word))
1278
              static_rlt3.shape  # [2, 3, 32]
Z
zhongpu 已提交
1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292

          # example 2: load custom or pre-trained word vectors
          weight_data = np.random.random(size=(128, 100))  # word vectors with numpy format
          w_param_attrs = fluid.ParamAttr(
              name="emb_weight",
              learning_rate=0.5,
              initializer=fluid.initializer.NumpyArrayInitializer(weight_data),
              trainable=True)
          with fluid.dygraph.guard():
              emb = fluid.dygraph.Embedding(
                  size=[128, 100],
                  param_attr= w_param_attrs,
                  is_sparse=False)
              static_rlt3 = emb(base.to_variable(inp_word))          
1293 1294
    """

1295 1296 1297 1298 1299 1300 1301
    def __init__(self,
                 size,
                 is_sparse=False,
                 is_distributed=False,
                 padding_idx=None,
                 param_attr=None,
                 dtype='float32'):
1302
        super(Embedding, self).__init__()
1303 1304 1305 1306
        self._size = size
        self._is_sparse = is_sparse
        self._is_distributed = is_distributed
        self._padding_idx = -1 if padding_idx is None else padding_idx if padding_idx >= 0 else (
J
JiabinYang 已提交
1307
            size[0] + padding_idx)
1308 1309 1310

        self._param_attr = param_attr
        self._dtype = dtype
J
JiabinYang 已提交
1311
        self._remote_prefetch = self._is_sparse and (not self._is_distributed)
1312 1313 1314
        if self._remote_prefetch:
            assert self._is_sparse is True and self._is_distributed is False

1315
        self.weight = self.create_parameter(
1316 1317 1318 1319 1320 1321
            attr=self._param_attr,
            shape=self._size,
            dtype=self._dtype,
            is_bias=False)

    def forward(self, input):
1322 1323 1324 1325 1326 1327
        if in_dygraph_mode():
            return core.ops.lookup_table_v2(
                self.weight, input, 'is_sparse', self._is_sparse,
                'is_distributed', self._is_distributed, 'remote_prefetch',
                self._remote_prefetch, 'padding_idx', self._padding_idx)

1328 1329 1330 1331 1332 1333
        attrs = {
            'is_sparse': self._is_sparse,
            'is_distributed': self._is_distributed,
            'remote_prefetch': self._remote_prefetch,
            'padding_idx': self._padding_idx
        }
1334

1335 1336
        out = self._helper.create_variable_for_type_inference(self._dtype)
        self._helper.append_op(
1337
            type='lookup_table_v2',
1338
            inputs={'Ids': input,
1339
                    'W': self.weight},
1340
            outputs={'Out': out},
1341
            attrs=attrs)
1342 1343

        return out
M
minqiyang 已提交
1344 1345


1346
class LayerNorm(layers.Layer):
1347
    """
1348 1349 1350
    This interface is used to construct a callable object of the ``LayerNorm`` class.
    For more details, refer to code examples.
    It implements the function of the Layer Normalization Layer and can be applied to mini-batch input data.
1351
    Refer to `Layer Normalization <https://arxiv.org/pdf/1607.06450v1.pdf>`_
1352

1353
    The formula is as follows:
1354

1355
    ..  math::
1356

1357
        \\mu & = \\frac{1}{H}\\sum_{i=1}^{H} x_i
1358

1359
        \\sigma & = \\sqrt{\\frac{1}{H}\sum_{i=1}^{H}{(x_i - \\mu)^2} + \\epsilon}
1360

1361
        y & = f(\\frac{g}{\\sigma}(x - \\mu) + b)
1362

1363 1364 1365 1366 1367
    - :math:`x`: the vector representation of the summed inputs to the neurons in that layer.
    - :math:`H`: the number of hidden units in a layers
    - :math:`\\epsilon`: the small value added to the variance to prevent division by zero.
    - :math:`g`: the trainable scale parameter.
    - :math:`b`: the trainable bias parameter.
1368

1369
    Parameters:
1370 1371 1372 1373
        normalized_shape(int or list or tuple): Input shape from an expected input of
            size :math:`[*, normalized_shape[0], normalized_shape[1], ..., normalized_shape[-1]]`.
            If it is a single integer, this module will normalize over the last dimension
            which is expected to be of that specific size.
1374
        scale(bool, optional): Whether to learn the adaptive gain :math:`g` after
L
lujun 已提交
1375
            normalization. Default: True.
1376
        shift(bool, optional): Whether to learn the adaptive bias :math:`b` after
L
lujun 已提交
1377
            normalization. Default: True.
1378
        epsilon(float, optional): The small value added to the variance to prevent
L
lujun 已提交
1379
            division by zero. Default: 1e-05.
1380
        param_attr(ParamAttr, optional): The parameter attribute for the learnable
1381 1382 1383
            gain :math:`g`. If :attr:`scale` is False, :attr:`param_attr` is
            omitted. If :attr:`scale` is True and :attr:`param_attr` is None,
            a default :code:`ParamAttr` would be added as scale. The
L
lujun 已提交
1384
            :attr:`param_attr` is initialized as 1 if it is added. Default: None.
1385
        bias_attr(ParamAttr, optional): The parameter attribute for the learnable
1386 1387 1388
            bias :math:`b`. If :attr:`shift` is False, :attr:`bias_attr` is
            omitted. If :attr:`shift` is True and :attr:`param_attr` is None,
            a default :code:`ParamAttr` would be added as bias. The
L
lujun 已提交
1389
            :attr:`bias_attr` is initialized as 0 if it is added. Default: None.
T
tianshuo78520a 已提交
1390
        act(str, optional): Activation to be applied to the output of layer normalization.
L
lujun 已提交
1391
                  Default: None.
1392 1393
        dtype (str, optional): Data type, it can be "float32" or "float64". Default: "float32".

1394
    Returns:
1395
        None
1396

1397
    Examples:
1398

1399 1400 1401
        .. code-block:: python

          import paddle.fluid as fluid
1402
          from paddle.fluid.dygraph.base import to_variable
1403 1404
          import numpy

1405
          x = numpy.random.random((3, 32, 32)).astype('float32')
1406
          with fluid.dygraph.guard():
1407
              x = to_variable(x)
1408
              layerNorm = fluid.LayerNorm([32, 32])
1409
              ret = layerNorm(x)
1410

1411
    """
1412

1413
    def __init__(self,
1414
                 normalized_shape,
1415 1416 1417 1418 1419
                 scale=True,
                 shift=True,
                 epsilon=1e-05,
                 param_attr=None,
                 bias_attr=None,
1420 1421 1422 1423 1424
                 act=None,
                 dtype='float32'):
        super(LayerNorm, self).__init__()
        if isinstance(normalized_shape, numbers.Integral):
            normalized_shape = [normalized_shape]
H
hong 已提交
1425

1426
        self._normalized_shape = list(normalized_shape)
1427 1428 1429 1430 1431 1432
        self._scale = scale
        self._shift = shift
        self._epsilon = epsilon
        self._param_attr = param_attr
        self._bias_attr = bias_attr
        self._act = act
1433 1434
        self._dtype = dtype
        param_shape = [np.prod(self._normalized_shape)]
1435
        if self._scale:
1436
            self.weight = self.create_parameter(
1437 1438 1439 1440
                attr=self._param_attr,
                shape=param_shape,
                dtype=self._dtype,
                default_initializer=Constant(1.0))
1441 1442
        else:
            if self._param_attr:
T
tianshuo78520a 已提交
1443
                logging.warn("param_attr are only available with scale is True")
1444
            self.weight = None
1445

1446 1447
        if self._shift:
            assert self._bias_attr is not False
1448
            self.bias = self.create_parameter(
1449 1450 1451 1452
                attr=self._bias_attr,
                shape=param_shape,
                dtype=self._dtype,
                is_bias=True)
1453 1454
        else:
            if self._bias_attr:
T
tianshuo78520a 已提交
1455
                logging.warn("bias_attr are only available with shift is True")
1456
            self.bias = None
1457 1458

    def forward(self, input):
1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469
        input_shape = list(input.shape)
        input_ndim = len(input_shape)
        normalized_ndim = len(self._normalized_shape)
        self._begin_norm_axis = input_ndim - normalized_ndim
        if input_ndim < normalized_ndim or input_shape[
                self._begin_norm_axis:] != self._normalized_shape:
            str_normalized_shape = str(self._normalized_shape)
            raise ValueError(
                'Given normalized_shape is ' + str_normalized_shape +
                ', expected input with shape [*, ' + str_normalized_shape[
                    1:] + ', but got input shape ' + str(input_shape))
1470 1471 1472 1473 1474 1475 1476 1477

        if in_dygraph_mode():
            pre_act, _, _ = core.ops.layer_norm(
                input, self.weight, self.bias, 'epsilon', self._epsilon,
                'begin_norm_axis', self._begin_norm_axis)
            return dygraph_utils._append_activation_in_dygraph(
                pre_act, act=self._act)

1478
        inputs = dict()
1479
        inputs['X'] = [input]
1480
        if self._scale:
1481
            inputs['Scale'] = [self.weight]
1482
        if self._shift:
1483 1484 1485 1486 1487 1488
            inputs['Bias'] = [self.bias]
        attrs = {
            "epsilon": self._epsilon,
            "begin_norm_axis": self._begin_norm_axis
        }

1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509
        # create output
        mean_out = self._helper.create_variable_for_type_inference(
            dtype=self._dtype, stop_gradient=True)
        variance_out = self._helper.create_variable_for_type_inference(
            dtype=self._dtype, stop_gradient=True)
        layer_norm_out = self._helper.create_variable_for_type_inference(
            self._dtype)

        self._helper.append_op(
            type="layer_norm",
            inputs=inputs,
            outputs={
                "Y": layer_norm_out,
                "Mean": mean_out,
                "Variance": variance_out,
            },
            attrs={
                "epsilon": self._epsilon,
                "begin_norm_axis": self._begin_norm_axis
            })

1510
        return self._helper.append_activation(layer_norm_out, act=self._act)
1511 1512


M
minqiyang 已提交
1513 1514 1515
class GRUUnit(layers.Layer):
    """
    **GRU unit layer**
D
DuYao 已提交
1516 1517 1518 1519 1520
    
    It creates a callable object from GRUUnit class.
    If origin_mode is True, then the equation of a gru step is from paper
    `Learning Phrase Representations using RNN Encoder-Decoder for Statistical 
    Machine Translation <https://arxiv.org/pdf/1406.1078.pdf>`_
M
minqiyang 已提交
1521 1522 1523 1524 1525 1526 1527 1528 1529 1530

        .. math::
            u_t & = actGate(xu_{t} + W_u h_{t-1} + b_u)

            r_t & = actGate(xr_{t} + W_r h_{t-1} + b_r)

            m_t & = actNode(xm_t + W_c dot(r_t, h_{t-1}) + b_m)

            h_t & = dot(u_t, h_{t-1}) + dot((1-u_t), m_t)

D
DuYao 已提交
1531
    If origin_mode is False, then the equation of a gru step is from paper
M
minqiyang 已提交
1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556
    `Empirical Evaluation of Gated Recurrent Neural Networks on Sequence
    Modeling <https://arxiv.org/pdf/1412.3555.pdf>`_

        .. math::
            u_t & = actGate(xu_{t} + W_u h_{t-1} + b_u)

            r_t & = actGate(xr_{t} + W_r h_{t-1} + b_r)

            m_t & = actNode(xm_t + W_c dot(r_t, h_{t-1}) + b_m)

            h_t & = dot((1-u_t), h_{t-1}) + dot(u_t, m_t)


    The inputs of gru unit includes :math:`z_t`, :math:`h_{t-1}`. In terms
    of the equation above, the :math:`z_t` is split into 3 parts -
    :math:`xu_t`, :math:`xr_t` and :math:`xm_t`. This means that in order to
    implement a full GRU unit operator for an input, a fully
    connected layer has to be applied, such that :math:`z_t = W_{fc}x_t`.

    The terms :math:`u_t` and :math:`r_t` represent the update and reset gates
    of the GRU cell. Unlike LSTM, GRU has one lesser gate. However, there is
    an intermediate candidate hidden output, which is denoted by :math:`m_t`.
    This layer has three outputs :math:`h_t`, :math:`dot(r_t, h_{t-1})`
    and concatenation of :math:`u_t`, :math:`r_t` and :math:`m_t`.

1557
    Parameters:
L
lujun 已提交
1558
        size (int): The input dimension value.
D
DuYao 已提交
1559 1560 1561 1562 1563 1564 1565 1566 1567
        param_attr(ParamAttr, optional): The parameter attribute for the learnable
            hidden-hidden weight matrix. 
            
            **Note**:
    
                1. The shape of the weight matrix is :math:`[T, 3*D]`, where D is the hidden size.
                2. All elements in the weight matrix can be divided into two parts. The first 
                   part are weights of the update gate and reset gate with shape :math:`[D, 2*D]`, 
                   and the second part are weights for candidate hidden state with shape :math:`[D, D]`.
M
minqiyang 已提交
1568 1569 1570 1571


            If it is set to None or one attribute of ParamAttr, gru_unit will
            create ParamAttr as param_attr. If the Initializer of the param_attr
D
DuYao 已提交
1572 1573 1574 1575
            is not set, the parameter is initialized with Xavier. The default 
            value is None.
        bias_attr (ParamAttr|bool, optional): The parameter attribute for the bias
            of GRU.Note that the bias with :math:`[1, 3*D]` concatenates
M
minqiyang 已提交
1576 1577 1578 1579 1580
            the bias in the update gate, reset gate and candidate calculations.
            If it is set to False, no bias will be applied to the update gate,
            reset gate and candidate calculations. If it is set to None or one
            attribute of ParamAttr, gru_unit will create ParamAttr as
            bias_attr. If the Initializer of the bias_attr is not set, the bias
D
DuYao 已提交
1581
            is initialized zero. The default value is None.
L
lujun 已提交
1582
        activation (str): The activation type for cell (actNode).
D
DuYao 已提交
1583
                             The default value is 'tanh'.
L
lujun 已提交
1584
        gate_activation (str): The activation type for gates (actGate).
D
DuYao 已提交
1585 1586 1587
                                  The default value is 'sigmoid'.
        dtype(str): The dtype of the layers. The data type can be set as
            'float32', 'float64'. The default value is 'float32'.
M
minqiyang 已提交
1588

D
DuYao 已提交
1589 1590 1591 1592
    Attribute:
        **weight** (Parameter): the learnable weights of this layer.

        **bias** (Parameter): the learnable bias of this layer.
1593

M
minqiyang 已提交
1594
    Returns:
D
DuYao 已提交
1595 1596 1597 1598
        tuple: The hidden value, reset-hidden value and gate values. The hidden value
        is a 2-D tensor with shape  :math:`[T, D]` . The reset-hidden value is a
        2-D tensor with shape  :math:`[T, D]` . The gate value is a 2-D tensor with 
        shape  :math:`[T, 3*D]`.
L
lujun 已提交
1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611

    Examples:

        .. code-block:: python

          import paddle.fluid as fluid
          import paddle.fluid.dygraph.base as base
          import numpy

          lod = [[2, 4, 3]]
          D = 5
          T = sum(lod[0])

D
DuYao 已提交
1612
          input = numpy.random.rand(T, 3 * D).astype('float32')
L
lujun 已提交
1613 1614 1615
          hidden_input = numpy.random.rand(T, D).astype('float32')
          with fluid.dygraph.guard():
              x = numpy.random.random((3, 32, 32)).astype('float32')
1616
              gru = fluid.dygraph.GRUUnit(size=D * 3)
L
lujun 已提交
1617 1618 1619
              dy_ret = gru(
                base.to_variable(input), base.to_variable(hidden_input))

M
minqiyang 已提交
1620 1621 1622 1623 1624 1625 1626 1627 1628 1629
    """

    def __init__(self,
                 size,
                 param_attr=None,
                 bias_attr=None,
                 activation='tanh',
                 gate_activation='sigmoid',
                 origin_mode=False,
                 dtype='float32'):
1630
        super(GRUUnit, self).__init__()
1631
        self._bias_attr = bias_attr
M
minqiyang 已提交
1632 1633 1634 1635 1636
        activation_dict = dict(
            identity=0,
            sigmoid=1,
            tanh=2,
            relu=3, )
H
Hongyu Liu 已提交
1637 1638
        self.activation = activation_dict[activation]
        self.gate_activation = activation_dict[gate_activation]
M
minqiyang 已提交
1639

M
minqiyang 已提交
1640
        self._dtype = dtype
M
minqiyang 已提交
1641 1642
        size = size // 3
        # create weight
1643
        self.weight = self.create_parameter(
M
minqiyang 已提交
1644
            attr=param_attr, shape=[size, 3 * size], dtype=dtype)
M
minqiyang 已提交
1645 1646

        # create bias
M
minqiyang 已提交
1647
        bias_size = [1, 3 * size]
1648
        self._bias_size = bias_size
1649
        self.bias = self.create_parameter(
M
minqiyang 已提交
1650
            attr=bias_attr, shape=bias_size, dtype=dtype, is_bias=True)
M
minqiyang 已提交
1651

M
minqiyang 已提交
1652
    def forward(self, input, hidden):
1653 1654 1655 1656 1657 1658
        if in_dygraph_mode():
            gate, reset_hidden_pre, updated_hidden = core.ops.gru_unit(
                input, hidden, self.weight, self.bias, 'activation',
                self.activation, 'gate_activation', self.gate_activation)
            return updated_hidden, reset_hidden_pre, gate

1659 1660 1661 1662 1663
        inputs = {
            'Input': [input],
            'HiddenPrev': [hidden],
            'Weight': [self.weight]
        }
1664
        if self.bias:
1665 1666 1667 1668 1669
            inputs['Bias'] = [self.bias]
        attrs = {
            'activation': self.activation,
            'gate_activation': self.gate_activation,
        }
M
minqiyang 已提交
1670 1671 1672 1673 1674
        gate = self._helper.create_variable_for_type_inference(self._dtype)
        reset_hidden_pre = self._helper.create_variable_for_type_inference(
            self._dtype)
        updated_hidden = self._helper.create_variable_for_type_inference(
            self._dtype)
M
minqiyang 已提交
1675 1676 1677 1678 1679 1680 1681 1682 1683
        self._helper.append_op(
            type='gru_unit',
            inputs=inputs,
            outputs={
                'Gate': gate,
                'ResetHiddenPrev': reset_hidden_pre,
                'Hidden': updated_hidden,
            },
            attrs={
H
Hongyu Liu 已提交
1684 1685
                'activation': self.activation,
                'gate_activation': self.gate_activation,
M
minqiyang 已提交
1686 1687 1688
            })

        return updated_hidden, reset_hidden_pre, gate
1689 1690 1691 1692


class NCE(layers.Layer):
    """
1693 1694 1695 1696 1697
    This interface is used to construct a callable object of the ``NCE`` class.
    For more details, refer to code examples.
    It implements the function of the ``NCE`` loss function.
    By default this function uses a uniform distribution for sampling, and it
    compute and return the noise-contrastive estimation training loss. See
1698
    `Noise-contrastive estimation: A new estimation principle for unnormalized statistical models <http://www.jmlr.org/proceedings/papers/v9/gutmann10a/gutmann10a.pdf>`_ .
1699

1700
    Parameters:
1701 1702
        num_total_classes (int): Total number of classes in all samples.
        dim (int): Dimension of input (possibly embedding dim).
1703
        param_attr (ParamAttr, optional): The parameter attribute for learnable weights(Parameter)
1704 1705 1706
             of nce. If it is set to None or one attribute of ParamAttr, nce
             will create ParamAttr as param_attr. If the Initializer of the param_attr
             is not set, the parameter is initialized with Xavier. Default: None.
1707
        bias_attr (ParamAttr or bool, optional): The attribute for the bias of nce.
1708 1709 1710 1711
             If it is set to False, no bias will be added to the output units.
             If it is set to None or one attribute of ParamAttr, nce
             will create ParamAttr as bias_attr. If the Initializer of the bias_attr
             is not set, the bias is initialized zero. Default: None.
1712
        num_neg_samples (int, optional): The number of negative classes. The default value is 10.
T
tianshuo78520a 已提交
1713
        sampler (str, optional): The sampler used to sample class from negative classes.
1714 1715
                       It can be 'uniform', 'log_uniform' or 'custom_dist'.
                       default: 'uniform'.
1716
        custom_dist (float[], optional): A float[] with size=num_total_classes.
1717
                       It is used when sampler is set to 'custom_dist'.
1718
                       custom_dist[i] is the probability of i-th class to be sampled.
L
lujun 已提交
1719
                       Default: None.
1720 1721
        seed (int, optional): The seed used in sampler. Default: 0.
        is_sparse(bool, optional): The flag indicating whether to use sparse update. If is_sparse is True, the weight@GRAD and bias@GRAD will be changed to SelectedRows. Default: False.
1722
        dtype (str, optional): Data type, it can be "float32" or "float64". Default: "float32".
1723

1724 1725
    Attribute:
        **weight** (Parameter): the learnable weights of this layer.
1726

1727 1728
        **bias** (Parameter or None): the learnable bias of this layer.
    
1729
    Returns:
1730
        None
1731 1732 1733 1734

    Examples:
        .. code-block:: python

1735 1736 1737
            import numpy as np
            import paddle.fluid as fluid

1738
            window_size = 5
1739 1740
            dict_size = 20
            label_word = int(window_size // 2) + 1
1741
            inp_word = np.array([[1], [2], [3], [4], [5]]).astype('int64')
1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762
            nid_freq_arr = np.random.dirichlet(np.ones(20) * 1000).astype('float32')

            with fluid.dygraph.guard():
                words = []
                for i in range(window_size):
                    words.append(fluid.dygraph.base.to_variable(inp_word[i]))

                emb = fluid.Embedding(
                    size=[dict_size, 32],
                    param_attr='emb.w',
                    is_sparse=False)

                embs3 = []
                for i in range(window_size):
                    if i == label_word:
                        continue

                    emb_rlt = emb(words[i])
                    embs3.append(emb_rlt)

                embs3 = fluid.layers.concat(input=embs3, axis=1)
1763
                nce = fluid.NCE(
1764
                             num_total_classes=dict_size,
1765
                             dim=embs3.shape[1],
1766 1767 1768 1769 1770 1771 1772
                             num_neg_samples=2,
                             sampler="custom_dist",
                             custom_dist=nid_freq_arr.tolist(),
                             seed=1,
                             param_attr='nce.w',
                             bias_attr='nce.b')

1773 1774
                wl = fluid.layers.unsqueeze(words[label_word], axes=[0])
                nce_loss3 = nce(embs3, wl)
1775 1776 1777 1778 1779

    """

    def __init__(self,
                 num_total_classes,
1780
                 dim,
1781
                 sample_weight=None,
1782 1783 1784 1785 1786 1787
                 param_attr=None,
                 bias_attr=None,
                 num_neg_samples=None,
                 sampler="uniform",
                 custom_dist=None,
                 seed=0,
1788 1789 1790
                 is_sparse=False,
                 dtype='float32'):
        super(NCE, self).__init__()
1791 1792 1793
        self._param_attr = param_attr
        self._bias_attr = bias_attr
        self._num_total_classes = num_total_classes
1794
        self._dtype = dtype
1795
        self._inputs = dict()
1796
        self._inputs['SampleWeight'] = sample_weight if sample_weight is not None else []
1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883
        if sampler == "uniform":
            sampler = 0
        elif sampler == "log_uniform":
            sampler = 1
        elif sampler == "custom_dist":
            assert custom_dist is not None
            # assert isinstance(custom_dist, Variable)

            custom_dist_len = len(custom_dist)
            alias_probs_ = [0] * custom_dist_len
            alias_ = [0] * custom_dist_len
            bigs = []
            littles = []
            for i in range(custom_dist_len):
                normal_prob = custom_dist[i] * custom_dist_len
                if normal_prob - 1.0 > 0:
                    bigs.append((i, normal_prob))
                elif 1.0 - normal_prob > 0:
                    littles.append((i, normal_prob))
                else:
                    alias_probs_[i] = normal_prob
                    alias_[i] = -1

            while len(bigs) and len(littles):
                big = bigs.pop(0)
                little = littles.pop(0)

                big_idx = big[0]
                big_prob = big[1]

                alias_probs_[little[0]] = little[1]
                alias_[little[0]] = big_idx
                big_left = big[1] + little[1] - 1
                if big_left - 1.0 > 0:
                    bigs.append((big_idx, big_left))
                elif 1.0 - big_left > 0:
                    littles.append((big_idx, big_left))
                else:
                    alias_probs_[big_idx] = big_left
                    alias_[big_idx] = -1

            if len(bigs):
                big = bigs.pop(0)
                alias_probs_[big[0]] = 1.0
                alias_[big[0]] = -1
            if len(littles):
                little = littles.pop(0)
                alias_probs_[little[0]] = 1.0
                alias_[little[0]] = -1

            def _init_by_numpy_array(numpy_array):
                ret = self.create_parameter(
                    attr=ParamAttr(),
                    shape=numpy_array.shape,
                    dtype=numpy_array.dtype,
                    default_initializer=NumpyArrayInitializer(numpy_array))
                ret.stop_gradient = True
                return ret

            self._inputs['CustomDistProbs'] = _init_by_numpy_array(
                np.array(custom_dist).astype('float32'))
            self._inputs['CustomDistAlias'] = _init_by_numpy_array(
                np.array(alias_).astype('int32'))
            self._inputs['CustomDistAliasProbs'] = _init_by_numpy_array(
                np.array(alias_probs_).astype('float32'))
            sampler = 2
        else:
            raise Exception("Unsupported sampler type.")

        if num_neg_samples is None:
            num_neg_samples = 10
        else:
            num_neg_samples = int(num_neg_samples)
        self._num_neg_samples = num_neg_samples
        remote_prefetch = is_sparse
        print(
            "With sparse mode, if your models has only small parameter prefetch may cause speed down"
        )
        self._attrs = {
            'num_total_classes': int(num_total_classes),
            'num_neg_samples': num_neg_samples,
            'seed': seed,
            'sampler': sampler,
            'is_sparse': is_sparse,
            'remote_prefetch': remote_prefetch
        }

1884
        self.weight = self.create_parameter(
1885 1886 1887
            attr=self._param_attr,
            shape=[self._num_total_classes, dim],
            is_bias=False,
1888
            dtype=self._dtype)
1889
        if self._bias_attr:
1890
            self.bias = self.create_parameter(
1891 1892 1893
                attr=self._bias_attr,
                shape=[self._num_total_classes, 1],
                is_bias=True,
1894
                dtype=self._dtype)
1895 1896
            self._inputs['Bias'] = self.bias
        self._inputs['Weight'] = self.weight
1897

1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926
    def forward(self, input, label, sample_weight=None):
        assert isinstance(input, Variable)
        assert isinstance(label, Variable)

        self._inputs['Input'] = input
        self._inputs['Label'] = label
        self._inputs['SampleWeight'] = sample_weight if sample_weight is not None else []

        cost = self._helper.create_variable_for_type_inference(
            dtype=input.dtype)
        sample_logits = self._helper.create_variable_for_type_inference(
            dtype=input.dtype)
        sample_labels = self._helper.create_variable_for_type_inference(
            dtype=label.dtype)

        self._helper.append_op(
            type='nce',
            inputs=self._inputs,
            outputs={
                'Cost': cost,
                'SampleLogits': sample_logits,
                'SampleLabels': sample_labels
            },
            attrs=self._attrs)
        return cost / (self._num_neg_samples + 1)


class PRelu(layers.Layer):
    """
1927 1928 1929 1930
    This interface is used to construct a callable object of the ``PRelu`` class.
    For more details, refer to code examples.
    It implements three activation methods of the ``PRelu`` activation function.

1931 1932 1933 1934 1935
    Equation:

    .. math::
        y = \max(0, x) + \\alpha * \min(0, x)

1936
    Parameters:
L
lujun 已提交
1937
        mode (str): The mode for weight sharing. It supports all, channel
1938 1939 1940
          and element. all: all elements share same weight
          channel:elements in a channel share same weight
          element:each element has a weight
S
songyouwei 已提交
1941 1942 1943
        channel (int, optional): The number of channels.
          This argument is required when mode is "channel".
          Default: None.
1944
        input_shape (list or tuple, optional): The shape of input.
S
songyouwei 已提交
1945 1946
          This argument is required when mode is "element".
          Default: None.
1947 1948
        param_attr(ParamAttr, optional): The parameter attribute for the learnable
          weight (alpha). Default: None.
1949
        dtype (str, optional): Data type, it can be "float32" or "float64". Default: "float32".
1950

1951 1952 1953
    Attribute:
        **weight** (Parameter): the learnable weights of this layer.
    
1954
    Returns:
1955
        None
1956 1957 1958 1959 1960

    Examples:

        .. code-block:: python

L
lujun 已提交
1961
          import paddle.fluid as fluid
1962
          from paddle.fluid.dygraph.base import to_variable
L
lujun 已提交
1963 1964 1965 1966
          import numpy as np

          inp_np = np.ones([5, 200, 100, 100]).astype('float32')
          with fluid.dygraph.guard():
1967
              inp_np = to_variable(inp_np)
S
songyouwei 已提交
1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978
              prelu0 = fluid.PRelu(
                 mode='all',
                 param_attr=fluid.ParamAttr(initializer=fluid.initializer.Constant(1.0)))
              dy_rlt0 = prelu0(inp_np)
              prelu1 = fluid.PRelu(
                 mode='channel',
                 channel=200,
                 param_attr=fluid.ParamAttr(initializer=fluid.initializer.Constant(1.0)))
              dy_rlt1 = prelu1(inp_np)
              prelu2 = fluid.PRelu(
                 mode='element',
1979
                 input_shape=inp_np.shape,
L
lujun 已提交
1980
                 param_attr=fluid.ParamAttr(initializer=fluid.initializer.Constant(1.0)))
S
songyouwei 已提交
1981
              dy_rlt2 = prelu2(inp_np)
L
lujun 已提交
1982

1983 1984
    """

S
songyouwei 已提交
1985 1986 1987 1988 1989
    def __init__(self,
                 mode,
                 channel=None,
                 input_shape=None,
                 param_attr=None,
1990
                 dtype='float32'):
1991 1992
        # need specify name_scope since snake-cased 'PRelu' is 'p_relu'
        super(PRelu, self).__init__(name_scope='prelu')
1993 1994
        self._mode = mode
        self._param_attr = param_attr
1995
        self._dtype = dtype
S
songyouwei 已提交
1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009
        if mode == 'all':
            self._alpha_shape = [1]
        elif mode == 'channel':
            assert isinstance(
                channel,
                int), "channel argument is required when mode is 'channel'."
            self._alpha_shape = [1, channel, 1, 1]
        elif mode == 'element':
            assert isinstance(input_shape, (
                list, tuple
            )), "input_shape argument is required when mode is 'element'."
            self._alpha_shape = [1] + list(input_shape)[1:]
        else:
            raise ValueError('mode should be one of all, channel, element.')
2010
        self.weight = self.create_parameter(
2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021
            attr=self._param_attr,
            shape=self._alpha_shape,
            dtype='float32',
            is_bias=False,
            default_initializer=Constant(1.0))

    def forward(self, input):
        out = self._helper.create_variable_for_type_inference(self._dtype)
        self._helper.append_op(
            type="prelu",
            inputs={"X": input,
2022
                    'Alpha': self.weight},
2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042
            attrs={"mode": self._mode},
            outputs={"Out": out})
        return out


class BilinearTensorProduct(layers.Layer):
    """
    **Add Bilinear Tensor Product Layer**

    This layer performs bilinear tensor product on two inputs.
    For example:

    .. math::
      out_{i} = x * W_{i} * {y^\mathrm{T}}, i=0,1,...,size-1

    In this formula:
     - :math:`x`: the first input contains M elements, shape is [batch_size, M].
     - :math:`y`: the second input contains N elements, shape is [batch_size, N].
     - :math:`W_{i}`: the i-th learned weight, shape is [M, N]
     - :math:`out_{i}`: the i-th element of out, shape is [batch_size, size].
D
DuYao 已提交
2043
     - :math:`y^\mathrm{T}`: the transpose of :math:`y`.
2044

2045
    Parameters:
2046 2047 2048 2049 2050
       input1_dim (int): The dimension of each first input.
       input2_dim (int): The dimension of each second input.
       output_dim (int): The dimension of output of this layer.
       name (str, optional): The default value is None. Normally there is no need for user
           to set this property. For more information, please refer to :ref:`api_guide_Name`. Default: None.
D
DuYao 已提交
2051 2052 2053 2054
       act (str, optional): Activation to be applied to the output of this layer. The default value is None.
       param_attr (ParamAttr, optional): The parameter attribute for the learnable w, parameters/weights of 
           this layer. The default value is None.
       bias_attr (ParamAttr, optional): The parameter attribute for the bias
2055
           of this layer. If it is set to False, no bias will be added to the output units.
D
DuYao 已提交
2056
           If it is set to None, the bias is initialized zero. The default value is None.
2057
       dtype (str, optional): Data type, it can be "float32" or "float64". Default: "float32".
2058

D
DuYao 已提交
2059 2060 2061 2062
    Attribute:
        **weight** (Parameter): the learnable weights of this layer.

        **bias** (Parameter): the learnable bias of this layer.
2063

2064 2065 2066 2067 2068 2069
    Returns:
       Variable: A 2-D Tensor of shape [batch_size, size].

    Examples:
       .. code-block:: python

2070 2071 2072 2073 2074 2075 2076
         import paddle.fluid as fluid
         import numpy

         with fluid.dygraph.guard():
             layer1 = numpy.random.random((5, 5)).astype('float32')
             layer2 = numpy.random.random((5, 4)).astype('float32')
             bilinearTensorProduct = fluid.dygraph.nn.BilinearTensorProduct(
2077
                    input1_dim=5, input2_dim=4, output_dim=1000)
2078 2079
             ret = bilinearTensorProduct(fluid.dygraph.base.to_variable(layer1),
                                fluid.dygraph.base.to_variable(layer2))
2080 2081 2082
    """

    def __init__(self,
2083 2084 2085
                 input1_dim,
                 input2_dim,
                 output_dim,
2086 2087 2088
                 name=None,
                 act=None,
                 param_attr=None,
2089 2090 2091
                 bias_attr=None,
                 dtype='float32'):
        super(BilinearTensorProduct, self).__init__()
2092 2093 2094 2095
        self._param_attr = param_attr
        self._bias_attr = bias_attr
        self._act = act
        self._name = name
2096 2097 2098
        self._input1_dim = input1_dim
        self._input2_dim = input2_dim
        self._output_dim = output_dim
2099
        self._inputs = dict()
2100
        self._dtype = dtype
2101

2102
        param_shape = [self._output_dim, self._input1_dim, self._input2_dim]
2103
        self.weight = self.create_parameter(
2104 2105 2106 2107
            attr=self._param_attr,
            shape=param_shape,
            dtype=self._dtype,
            is_bias=False)
2108
        bias_size = [1, self._output_dim]
2109
        self.bias = self.create_parameter(
2110 2111 2112 2113
            attr=self._bias_attr,
            shape=bias_size,
            dtype=self._dtype,
            is_bias=True)
2114 2115

    def forward(self, x, y):
2116 2117 2118
        self._inputs = {"X": x, "Y": y, "Weight": self.weight}
        if self.bias:
            self._inputs["Bias"] = self.bias
2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132
        if self._name is not None:
            out = self._helper.create_variable(
                name=".".join([self.full_name(), self._name]),
                dtype=self._dtype,
                persistable=False)
        else:
            out = self._helper.create_variable(
                dtype=self._dtype, persistable=False)
        self._helper.append_op(
            type="bilinear_tensor_product",
            inputs=self._inputs,
            outputs={"Out": out})

        # add activation
2133
        return self._helper.append_activation(out, act=self._act)
2134 2135 2136 2137


class Conv2DTranspose(layers.Layer):
    """
2138 2139
    This interface is used to construct a callable object of the ``Conv2DTranspose`` class.
    For more details, refer to code examples.
2140
    The convolution2D transpose layer calculates the output based on the input,
2141 2142 2143
    filter, and dilations, strides, paddings. Input and output
    are in NCHW format. Where N is batch size, C is the number of feature map,
    H is the height of the feature map, and W is the width of the feature map.
2144 2145
    Filter's shape is [MCHW] , where M is the number of input feature map,
    C is the number of output feature map, H is the height of the filter,
2146 2147
    and W is the width of the filter. If the groups is greater than 1,
    C will equal the number of input feature map divided by the groups.
2148 2149 2150
    If bias attribution and activation type are provided, bias is added to
    the output of the convolution, and the corresponding activation function
    is applied to the final result.
2151 2152
    The details of convolution transpose layer, please refer to the following explanation and references
    `conv2dtranspose <http://www.matthewzeiler.com/wp-content/uploads/2017/07/cvpr2010.pdf>`_ .
2153 2154 2155 2156 2157 2158 2159 2160 2161

    For each input :math:`X`, the equation is:

    .. math::

        Out = \sigma (W \\ast X + b)

    Where:

2162 2163
    * :math:`X`: Input value, a ``Tensor`` with NCHW format.
    * :math:`W`: Filter value, a ``Tensor`` with shape [MCHW] .
2164
    * :math:`\\ast`: Convolution operation.
2165
    * :math:`b`: Bias value, a 2-D ``Tensor`` with shape [M, 1].
2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189
    * :math:`\\sigma`: Activation function.
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.

    Example:

        - Input:

          Input shape: :math:`(N, C_{in}, H_{in}, W_{in})`

          Filter shape: :math:`(C_{in}, C_{out}, H_f, W_f)`

        - Output:

          Output shape: :math:`(N, C_{out}, H_{out}, W_{out})`

        Where

        .. math::

           H^\prime_{out} &= (H_{in} - 1) * strides[0] - 2 * paddings[0] + dilations[0] * (H_f - 1) + 1 \\\\
           W^\prime_{out} &= (W_{in} - 1) * strides[1] - 2 * paddings[1] + dilations[1] * (W_f - 1) + 1 \\\\
           H_{out} &\in [ H^\prime_{out}, H^\prime_{out} + strides[0] ) \\\\
           W_{out} &\in [ W^\prime_{out}, W^\prime_{out} + strides[1] )

2190
    Parameters:
2191
        num_channels(int): The number of channels in the input image.
2192
        num_filters(int): The number of the filter. It is as same as the output
2193
            feature map.
2194 2195 2196
        filter_size(int or tuple): The filter size. If filter_size is a tuple,
            it must contain two integers, (filter_size_H, filter_size_W).
            Otherwise, the filter will be a square.
2197
        output_size(int or tuple, optional): The output image size. If output size is a
2198 2199 2200
            tuple, it must contain two integers, (image_H, image_W). None if use
            filter_size, padding, and stride to calculate output_size.
            if output_size and filter_size are specified at the same time, They
L
lujun 已提交
2201
            should follow the formula above. Default: None.
2202
        padding(int or tuple, optional): The padding size. If padding is a tuple, it must
2203
            contain two integers, (padding_H, padding_W). Otherwise, the
2204 2205
            padding_H = padding_W = padding. Default: 0.
        stride(int or tuple, optional): The stride size. If stride is a tuple, it must
2206
            contain two integers, (stride_H, stride_W). Otherwise, the
2207 2208
            stride_H = stride_W = stride. Default: 1.
        dilation(int or tuple, optional): The dilation size. If dilation is a tuple, it must
2209
            contain two integers, (dilation_H, dilation_W). Otherwise, the
2210 2211
            dilation_H = dilation_W = dilation. Default: 1.
        groups(int, optional): The groups number of the Conv2d transpose layer. Inspired by
2212 2213 2214 2215
            grouped convolution in Alex Krizhevsky's Deep CNN paper, in which
            when group=2, the first half of the filters is only connected to the
            first half of the input channels, while the second half of the
            filters is only connected to the second half of the input channels.
2216 2217
            Default: 1.
        param_attr (ParamAttr, optional): The parameter attribute for learnable weights(Parameter)
2218 2219 2220
            of conv2d_transpose. If it is set to None or one attribute of ParamAttr, conv2d_transpose
            will create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with Xavier. Default: None.
2221
        bias_attr (ParamAttr or bool, optional): The attribute for the bias of conv2d_transpose.
2222 2223 2224 2225
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, conv2d_transpose
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. Default: None.
2226
        use_cudnn(bool, optional): Use cudnn kernel or not, it is valid only when the cudnn
2227
            library is installed. Default: True.
2228
        act (str, optional): Activation type, if it is set to None, activation is not appended.
2229
            Default: None.
2230
        dtype (str, optional): Data type, it can be "float32" or "float64". Default: "float32".
2231

2232 2233
    Attribute:
        **weight** (Parameter): the learnable weights of filters of this layer.
2234

2235
        **bias** (Parameter or None): the learnable bias of this layer.
2236

2237 2238
    Returns:
        None
2239 2240 2241 2242

    Examples:
       .. code-block:: python

2243
          import paddle.fluid as fluid
2244
          import numpy as np
2245 2246

          with fluid.dygraph.guard():
2247
              data = np.random.random((3, 32, 32, 5)).astype('float32')
2248
              conv2DTranspose = fluid.dygraph.nn.Conv2DTranspose(
2249
                    num_channels=32, num_filters=2, filter_size=3)
2250 2251
              ret = conv2DTranspose(fluid.dygraph.base.to_variable(data))

2252 2253 2254
    """

    def __init__(self,
2255
                 num_channels,
2256
                 num_filters,
2257
                 filter_size,
2258 2259 2260 2261 2262 2263 2264 2265
                 output_size=None,
                 padding=0,
                 stride=1,
                 dilation=1,
                 groups=None,
                 param_attr=None,
                 bias_attr=None,
                 use_cudnn=True,
2266 2267 2268
                 act=None,
                 dtype='float32'):
        super(Conv2DTranspose, self).__init__()
2269 2270 2271
        assert param_attr is not False, "param_attr should not be False in conv2d_transpose."
        self._param_attr = param_attr
        self._bias_attr = bias_attr
2272
        self._act = act
2273
        self._groups = groups
2274
        self._num_channels = num_channels
2275 2276 2277 2278 2279 2280 2281
        self._num_filters = num_filters
        self._use_cudnn = use_cudnn
        self._padding = padding
        self._stride = stride
        self._dilation = dilation
        self._filter_size = filter_size
        self._output_size = output_size
2282
        self._dtype = dtype
2283

2284 2285 2286
        if (self._num_channels == self._groups and
                self._num_filters == self._num_channels and
                not self._use_cudnn):
2287
            self._op_type = 'depthwise_conv2d_transpose'
2288 2289
        else:
            self._op_type = 'conv2d_transpose'
2290 2291 2292 2293 2294

        self._padding = utils.convert_to_list(self._padding, 2, 'padding')
        self._stride = utils.convert_to_list(self._stride, 2, 'stride')
        self._dilation = utils.convert_to_list(self._dilation, 2, 'dilation')

2295 2296
        self._filter_size = utils.convert_to_list(
            self._filter_size, 2, 'conv2d_transpose.filter_size')
2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307

        if self._output_size is None:
            self._output_size = []
        elif isinstance(self._output_size, list) or isinstance(
                self._output_size, int):
            self._output_size = utils.convert_to_list(self._output_size, 2,
                                                      'output_size')
        else:
            raise ValueError("output_size should be list or int")
        self._padding = utils.convert_to_list(self._padding, 2, 'padding')
        self._groups = 1 if self._groups is None else self._groups
2308
        filter_shape = [self._num_channels, self._num_filters // self._groups
2309 2310
                        ] + self._filter_size

2311
        self.weight = self.create_parameter(
2312
            dtype=self._dtype, shape=filter_shape, attr=self._param_attr)
2313

2314
        self.bias = self.create_parameter(
2315 2316 2317 2318 2319
            attr=self._bias_attr,
            shape=[self._num_filters],
            dtype=self._dtype,
            is_bias=True)

2320
    def forward(self, input):
2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332
        if in_dygraph_mode():
            op = getattr(core.ops, self._op_type)
            out = op(input, self.weight, 'output_size', self._output_size,
                     'strides', self._stride, 'paddings', self._padding,
                     'dilations', self._dilation, 'groups', self._groups,
                     'use_cudnn', self._use_cudnn)
            pre_bias = out
            pre_act = dygraph_utils._append_bias_in_dygraph(pre_bias, self.bias,
                                                            1)
            return dygraph_utils._append_activation_in_dygraph(
                pre_act, act=self._act)

2333 2334 2335 2336 2337 2338 2339 2340 2341 2342
        inputs = {'Input': [input], 'Filter': [self.weight]}
        attrs = {
            'output_size': self._output_size,
            'strides': self._stride,
            'paddings': self._padding,
            'dilations': self._dilation,
            'groups': self._groups,
            'use_cudnn': self._use_cudnn
        }

2343 2344 2345 2346
        pre_bias = self._helper.create_variable_for_type_inference(
            dtype=input.dtype)
        self._helper.append_op(
            type=self._op_type,
2347
            inputs=inputs,
2348
            outputs={'Output': pre_bias},
2349
            attrs=attrs)
2350

2351
        if self.bias is not None:
2352 2353 2354 2355 2356
            pre_act = self._helper.create_variable_for_type_inference(
                dtype=self._dtype)
            self._helper.append_op(
                type='elementwise_add',
                inputs={'X': [pre_bias],
2357
                        'Y': [self.bias]},
2358 2359 2360 2361 2362 2363
                outputs={'Out': [pre_act]},
                attrs={'axis': 1})
        else:
            pre_act = pre_bias

        out = self._helper.append_activation(pre_act, act=self._act)
2364 2365 2366 2367 2368 2369 2370 2371 2372
        return out


class SequenceConv(layers.Layer):
    """
    This function creates the op for sequence_conv, using the inputs and
    other convolutional configurations for the filters and stride as given
    in the input parameters to the function.

2373
    Parameters:
L
lujun 已提交
2374
        name_scope(str): The name of this class.
2375
        num_filters (int): number of filters.
L
lujun 已提交
2376 2377 2378
        filter_size (int): the filter size (H and W). Default: 3.
        filter_stride (int): stride of the filter. Default: 1.
        padding (bool|None): if True, add paddings. Default: None
2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of sequence_conv.
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, sequence_conv
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. Default: None.
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
            of sequence_conv. If it is set to None or one attribute of ParamAttr, sequence_conv
            will create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with Xavier. Default: None.
        act (str): Activation type, if it is set to None, activation is not appended.
            Default: None.

2391 2392 2393 2394
    Attributes:
        weight (Parameter): the learnable weights of filters of this layer.
        bias (Parameter|None): the learnable bias of this layer.

2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407
    Returns:
        Variable: output of sequence_conv
    """

    def __init__(self,
                 name_scope,
                 num_filters,
                 filter_size=3,
                 filter_stride=1,
                 padding=None,
                 bias_attr=None,
                 param_attr=None,
                 act=None):
L
lujun 已提交
2408
        assert not in_dygraph_mode(
2409
        ), "SequenceConv is not supported by dynamic graph mode yet!"
2410 2411 2412 2413 2414 2415 2416
        super(SequenceConv, self).__init__(name_scope)
        self._num_filters = num_filters
        self._filter_size = filter_size
        self._filter_stride = filter_stride
        self._padding = padding
        self._bias_attr = bias_attr
        self._param_attr = param_attr
2417
        self._act = act
2418

2419
    def _build_once(self, input):
2420 2421
        self._dtype = self._helper.input_dtype(input)
        filter_shape = [self._filter_size * input.shape[1], self._num_filters]
2422
        self.weight = self.create_parameter(
2423
            attr=self._param_attr, shape=filter_shape, dtype=self._dtype)
2424

2425
        self.bias = self.create_parameter(
2426 2427 2428 2429 2430
            attr=self._bias_attr,
            shape=[self._num_filters],
            dtype=self._dtype,
            is_bias=True)

2431 2432 2433 2434 2435 2436
    def forward(self, input):
        pre_bias = self._helper.create_variable_for_type_inference(self._dtype)
        self._helper.append_op(
            type='sequence_conv',
            inputs={
                'X': [input],
2437
                'Filter': [self.weight],
2438 2439 2440 2441 2442 2443 2444
            },
            outputs={"Out": pre_bias},
            attrs={
                'contextStride': self._filter_stride,
                'contextStart': -int(self._filter_size // 2),
                'contextLength': self._filter_size
            })
2445

2446
        if self.bias is not None:
2447 2448 2449 2450 2451
            pre_act = self._helper.create_variable_for_type_inference(
                dtype=self._dtype)
            self._helper.append_op(
                type='elementwise_add',
                inputs={'X': [pre_bias],
2452
                        'Y': [self.bias]},
2453 2454 2455 2456 2457 2458
                outputs={'Out': [pre_act]},
                attrs={'axis': 1})
        else:
            pre_act = pre_bias

        return self._helper.append_activation(pre_act, act=self._act)
L
lujun 已提交
2459 2460 2461


class RowConv(layers.Layer):
2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479
    """
    ***Row-convolution operator***

    The row convolution is called lookahead convolution.  This operator was introduced in the following paper for DeepSpeech2:
    http://www.cs.cmu.edu/~dyogatam/papers/wang+etal.iclrworkshop2016.pdf

    The main motivation is that a bidirectional RNN, useful in DeepSpeech like speech models, learns representation for a sequence by performing a
    forward and a backward pass through the entire sequence. However, unlike
    unidirectional RNNs, bidirectional RNNs are challenging to deploy in an online
    and low-latency setting. The lookahead convolution incorporates information
    from future subsequences in a computationally efficient manner to improve
    unidirectional recurrent neural networks. The row convolution operator is
    different from the 1D sequence convolution, and is computed as follows:

    Given an input sequence X of length t and input dimension D, and a filter (W) of size context * D.

    More details about row_conv please refer to the design document https://github.com/PaddlePaddle/Paddle/issues/2228#issuecomment-303903645 .

2480
    Parameters:
L
lujun 已提交
2481
        name_scope(str): The name of this class.
2482 2483 2484
        future_context_size (int): Future context size. Please note, the shape
            of convolution kernel is [future_context_size + 1, D].
        param_attr (ParamAttr): Attributes of parameters, including
L
lujun 已提交
2485 2486
            name, initializer etc. Default: None.
        act (str): Non-linear activation to be applied to output variable. Default: None.
2487

2488 2489 2490
    Attributes:
        weight (Parameter): the learnable weights of this layer.

2491
    Returns:
L
lujun 已提交
2492 2493
        the output(Out) is a LodTensor, which supports variable time-length input sequences.
        The underlying tensor in this LodTensor is a matrix with shape T x N, i.e., the same shape as X.
2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508

    Examples:
        .. code-block:: python

          import paddle.fluid as fluid
          import numpy

          with fluid.dygraph.guard():
              x = numpy.random.random((16)).astype('float32')
              rowConv = fluid.dygraph.nn.RowConv(
                    'RowConv', future_context_size=2)
              ret = rowConv(fluid.dygraph.base.to_variable(x))

    """

L
lujun 已提交
2509 2510 2511 2512 2513
    def __init__(self,
                 name_scope,
                 future_context_size,
                 param_attr=None,
                 act=None):
L
lujun 已提交
2514
        assert not in_dygraph_mode(
2515
        ), "RowConv is not supported by dynamic graph mode yet!"
L
lujun 已提交
2516 2517 2518 2519 2520
        super(RowConv, self).__init__(name_scope)
        self._act = act
        self._param_attr = param_attr
        self._future_context_size = future_context_size

2521
    def _build_once(self, input):
L
lujun 已提交
2522 2523
        self._dtype = self._helper.input_dtype(input)
        filter_shape = [self._future_context_size + 1, input.shape[1]]
2524
        self.weight = self.create_parameter(
2525 2526 2527 2528
            attr=self._param_attr,
            shape=filter_shape,
            dtype=self._dtype,
            is_bias=False)
L
lujun 已提交
2529 2530 2531 2532 2533 2534

    def forward(self, input):
        out = self._helper.create_variable_for_type_inference(self._dtype)
        self._helper.append_op(
            type='row_conv',
            inputs={'X': [input],
2535
                    'Filter': [self.weight]},
L
lujun 已提交
2536 2537 2538 2539 2540 2541
            outputs={'Out': [out]})
        return self._helper.append_activation(out, act=self._act)


class GroupNorm(layers.Layer):
    """
2542 2543 2544 2545 2546 2547
    This interface is used to construct a callable object of the ``GroupNorm`` class.
    For more details, refer to code examples.
    It implements the function of the Group Normalization Layer.
    Refer to `Group Normalization <https://arxiv.org/abs/1803.08494>`_ .

    Parameters:
2548
        channels(int): The number of channels of input.
2549 2550 2551 2552 2553 2554 2555 2556 2557
        groups(int): The number of groups that divided from channels.
        epsilon(float, optional): The small value added to the variance to prevent
                                  division by zero. Default: 1e-05.
        param_attr(ParamAttr, optional): The parameter attribute for the learnable
                                         scale :math:`g`. If it is set to False, no scale will be added to the output units.
                                         If it is set to None, the bias is initialized one. Default: None.
        bias_attr(ParamAttr, optional): The parameter attribute for the learnable
                                        bias :math:`b`. If it is set to False, no bias will be added to the output units.
                                        If it is set to None, the bias is initialized zero. Default: None.
T
tianshuo78520a 已提交
2558
        act(str, optional): Activation to be applied to the output of group normalization. Default: None.
2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571
        data_layout(str, optional): Specify the input data format. Only NCHW is supported. Default: NCHW.

    Returns:
        None

    Examples:
        .. code-block:: python

          import paddle.fluid as fluid
          import numpy as np

          with fluid.dygraph.guard():
              x = np.random.random((8, 32, 32)).astype('float32')
2572
              groupNorm = fluid.dygraph.nn.GroupNorm(channels=32, groups=4)
2573
              ret = groupNorm(fluid.dygraph.base.to_variable(x))
L
lujun 已提交
2574 2575 2576 2577

    """

    def __init__(self,
2578
                 channels,
L
lujun 已提交
2579 2580 2581 2582 2583
                 groups,
                 epsilon=1e-05,
                 param_attr=None,
                 bias_attr=None,
                 act=None,
2584 2585 2586
                 data_layout='NCHW',
                 dtype='float32'):
        super(GroupNorm, self).__init__()
L
lujun 已提交
2587 2588 2589
        self._param_attr = param_attr
        self._bias_attr = bias_attr
        self._epsilon = epsilon
2590
        self._channels = channels
L
lujun 已提交
2591 2592
        self._groups = groups
        self._act = act
2593
        self._dtype = dtype
L
lujun 已提交
2594 2595 2596
        if data_layout != 'NCHW':
            raise ValueError("unsupported data layout:" + data_layout)

2597
        param_shape = [self._channels]
L
lujun 已提交
2598

2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609
        self.weight = self.create_parameter(
            attr=self._param_attr or False,
            shape=param_shape,
            dtype=self._dtype,
            default_initializer=Constant(1.0))

        self.bias = self.create_parameter(
            attr=self._bias_attr or False,
            shape=param_shape,
            dtype=self._dtype,
            is_bias=True)
L
lujun 已提交
2610 2611 2612

    def forward(self, input):
        inputs = {'X': input}
2613 2614 2615 2616
        if self.bias:
            inputs['Bias'] = self.bias
        if self.weight:
            inputs['Scale'] = self.weight
L
lujun 已提交
2617 2618

        # create output
2619
        mean_out = self._helper.create_variable_for_type_inference(
L
lujun 已提交
2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640
            dtype=self._dtype, stop_gradient=True)
        variance_out = self._helper.create_variable_for_type_inference(
            dtype=self._dtype, stop_gradient=True)
        group_norm_out = self._helper.create_variable_for_type_inference(
            dtype=self._dtype)

        self._helper.append_op(
            type="group_norm",
            inputs=inputs,
            outputs={
                "Y": group_norm_out,
                "Mean": mean_out,
                "Variance": variance_out,
            },
            attrs={"epsilon": self._epsilon,
                   "groups": self._groups})

        return self._helper.append_activation(group_norm_out, self._act)


class SpectralNorm(layers.Layer):
2641
    """
2642 2643
    This interface is used to construct a callable object of the ``SpectralNorm`` class.
    For more details, refer to code examples. It implements the function of the Spectral Normalization Layer.
2644 2645 2646 2647 2648 2649 2650 2651 2652 2653
    This layer calculates the spectral normalization value of weight parameters of
    fc, conv1d, conv2d, conv3d layers which should be 2-D, 3-D, 4-D, 5-D
    Parameters. Calculations are showed as follows.

    Step 1:
    Generate vector U in shape of [H], and V in shape of [W].
    While H is the :attr:`dim` th dimension of the input weights,
    and W is the product result of remaining dimensions.

    Step 2:
T
tianshuo78520a 已提交
2654
    :attr:`power_iters` should be a positive integer, do following
2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674
    calculations with U and V for :attr:`power_iters` rounds.

    .. math::

        \mathbf{v} := \\frac{\mathbf{W}^{T} \mathbf{u}}{\|\mathbf{W}^{T} \mathbf{u}\|_2}

        \mathbf{u} := \\frac{\mathbf{W}^{T} \mathbf{v}}{\|\mathbf{W}^{T} \mathbf{v}\|_2}

    Step 3:
    Calculate :math:`\sigma(\mathbf{W})` and normalize weight values.

    .. math::

        \sigma(\mathbf{W}) = \mathbf{u}^{T} \mathbf{W} \mathbf{v}

        \mathbf{W} = \\frac{\mathbf{W}}{\sigma(\mathbf{W})}


    Refer to `Spectral Normalization <https://arxiv.org/abs/1802.05957>`_ .

2675
    Parameters:
2676
        weight_shape(list or tuple): The shape of weight parameter.
2677 2678 2679 2680
        dim(int, optional): The index of dimension which should be permuted to the first before reshaping Input(Weight) to matrix, it should be set as 0 if Input(Weight) is the weight of fc layer, and should be set as 1 if Input(Weight) is the weight of conv layer. Default: 0.
        power_iters(int, optional): The number of power iterations to calculate spectral norm. Default: 1.
        eps(float, optional): The epsilon for numerical stability in calculating norms. Default: 1e-12.
        name (str, optional): The default value is None.  Normally there is no need for user to set this property.  For more information, please refer to :ref:`api_guide_Name` .
2681
        dtype (str, optional): Data type, it can be "float32" or "float64". Default: "float32".
2682 2683

    Returns:
2684
        None
2685 2686 2687 2688 2689

    Examples:
       .. code-block:: python

            import paddle.fluid as fluid
2690
            import numpy as np
2691 2692

            with fluid.dygraph.guard():
2693 2694 2695
                weight = np.random.random((2, 8, 32, 32)).astype('float32')
                spectralNorm = fluid.dygraph.nn.SpectralNorm(weight.shape, dim=1, power_iters=2)
                ret = spectralNorm(fluid.dygraph.base.to_variable(weight))
2696 2697 2698

    """

2699 2700 2701 2702 2703 2704 2705
    def __init__(self,
                 weight_shape,
                 dim=0,
                 power_iters=1,
                 eps=1e-12,
                 dtype='float32'):
        super(SpectralNorm, self).__init__()
L
lujun 已提交
2706 2707 2708
        self._power_iters = power_iters
        self._eps = eps
        self._dim = dim
2709
        self._dtype = dtype
L
lujun 已提交
2710

2711 2712 2713
        self._weight_shape = list(weight_shape)
        h = self._weight_shape[self._dim]
        w = np.prod(self._weight_shape) // h
L
lujun 已提交
2714

2715
        self.weight_u = self.create_parameter(
L
lujun 已提交
2716 2717 2718 2719
            attr=ParamAttr(),
            shape=[h],
            dtype=self._dtype,
            default_initializer=Normal(0., 1.))
2720
        self.weight_u.stop_gradient = True
L
lujun 已提交
2721

2722
        self.weight_v = self.create_parameter(
L
lujun 已提交
2723 2724 2725 2726
            attr=ParamAttr(),
            shape=[w],
            dtype=self._dtype,
            default_initializer=Normal(0., 1.))
2727
        self.weight_v.stop_gradient = True
L
lujun 已提交
2728 2729

    def forward(self, weight):
2730
        inputs = {'Weight': weight, 'U': self.weight_u, 'V': self.weight_v}
L
lujun 已提交
2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745
        out = self._helper.create_variable_for_type_inference(self._dtype)
        self._helper.append_op(
            type="spectral_norm",
            inputs=inputs,
            outputs={"Out": out, },
            attrs={
                "dim": self._dim,
                "power_iters": self._power_iters,
                "eps": self._eps,
            })

        return out


class TreeConv(layers.Layer):
2746
    """
2747 2748 2749 2750 2751 2752 2753 2754 2755 2756
    This interface is used to construct a callable object of the ``TreeConv`` class.
    For more details, refer to code examples.
    Tree-Based Convolution is a kind of convolution based on tree structure.
    Tree-Based Convolution is a part of Tree-Based Convolution Neural Network(TBCNN),
    which is used to classify tree structures, such as Abstract Syntax Tree.
    Tree-Based Convolution proposed a kind of data structure called continuous binary tree,
    which regards multiway tree as binary tree.
    The paper of Tree-Based Convolution Operator is here: `tree-based convolution <https://arxiv.org/abs/1409.5718v1/>`_ .
    
    Parameters:
2757
        feature_size(int): last dimension of nodes_vector.
2758 2759 2760 2761 2762 2763 2764
        output_size(int): output feature width.
        num_filters(int, optional): number of filters, Default: 1.
        max_depth(int, optional): max depth of filters, Default: 2.
        act(str, optional): activation function, Default: tanh.
        param_attr(ParamAttr, optional): the parameter attribute for the filters, Default: None.
        bias_attr(ParamAttr, optional): the parameter attribute for the bias of this layer, Default: None.
        name(str, optional): The default value is None. Normally there is no need for user to set this property. For more information, please refer to :ref:`api_guide_Name` .
2765
        dtype (str, optional): Data type, it can be "float32" or "float64". Default: "float32".
2766

2767 2768
    Attribute:
        **weight** (Parameter): the learnable weights of filters of this layer.
2769

2770
        **bias** (Parameter or None): the learnable bias of this layer.
2771

2772 2773
    Returns:
        None
L
lujun 已提交
2774

2775
    Examples:
L
lujun 已提交
2776

2777
        .. code-block:: python
2778

2779 2780
          import paddle.fluid as fluid
          import numpy
2781

2782 2783 2784 2785
          with fluid.dygraph.guard():
              nodes_vector = numpy.random.random((1, 10, 5)).astype('float32')
              edge_set = numpy.random.random((1, 9, 2)).astype('int32')
              treeConv = fluid.dygraph.nn.TreeConv(
2786
                feature_size=5, output_size=6, num_filters=1, max_depth=2)
2787
              ret = treeConv(fluid.dygraph.base.to_variable(nodes_vector), fluid.dygraph.base.to_variable(edge_set))
2788 2789
    """

L
lujun 已提交
2790
    def __init__(self,
2791
                 feature_size,
L
lujun 已提交
2792 2793 2794 2795 2796 2797
                 output_size,
                 num_filters=1,
                 max_depth=2,
                 act='tanh',
                 param_attr=None,
                 bias_attr=None,
2798 2799 2800
                 name=None,
                 dtype='float32'):
        super(TreeConv, self).__init__()
L
lujun 已提交
2801
        self._name = name
2802
        self._feature_size = feature_size
L
lujun 已提交
2803 2804 2805 2806 2807 2808
        self._output_size = output_size
        self._act = act
        self._max_depth = max_depth
        self._num_filters = num_filters
        self._bias_attr = bias_attr
        self._param_attr = param_attr
2809 2810
        self._dtype = dtype
        w_shape = [self._feature_size, 3, self._output_size, self._num_filters]
L
lujun 已提交
2811
        if self._bias_attr:
2812
            self.bias = self.create_parameter(
L
lujun 已提交
2813 2814 2815 2816
                attr=self._bias_attr,
                shape=[self._num_filters],
                dtype=self._dtype,
                is_bias=True)
2817
        self.weight = self.create_parameter(
L
lujun 已提交
2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834
            attr=self._param_attr,
            shape=w_shape,
            dtype=self._dtype,
            is_bias=False)

    def forward(self, nodes_vector, edge_set):
        if self._name:
            out = self.create_variable(
                name=self._name, dtype=self._dtype, persistable=False)
        else:
            out = self._helper.create_variable_for_type_inference(
                dtype=self._dtype)
        self._helper.append_op(
            type='tree_conv',
            inputs={
                'NodesVector': nodes_vector,
                'EdgeSet': edge_set,
2835
                'Filter': self.weight
L
lujun 已提交
2836 2837 2838 2839 2840 2841 2842 2843 2844
            },
            outputs={'Out': out, },
            attrs={'max_depth': self._max_depth})
        if self._bias_attr:
            pre_activation = self._helper.create_variable_for_type_inference(
                dtype=self._dtype)
            self._helper.append_op(
                type='elementwise_add',
                inputs={'X': [out],
2845
                        'Y': [self.bias]},
L
lujun 已提交
2846 2847 2848 2849 2850
                outputs={'Out': [pre_activation]},
                attrs={'axis': 1})
        else:
            pre_activation = out
        return self._helper.append_activation(pre_activation, act=self._act)