nn.py 116.5 KB
Newer Older
M
minqiyang 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import print_function

from six.moves import reduce
from .. import core
from ..layers import utils
20
from ..dygraph import dygraph_utils
M
minqiyang 已提交
21
from . import layers
22
from ..framework import Variable, in_dygraph_mode, OpProtoHolder, Parameter, _dygraph_tracer, _varbase_creator
M
minqiyang 已提交
23
from ..param_attr import ParamAttr
24
from ..initializer import Normal, Constant, NumpyArrayInitializer
H
hong 已提交
25 26
from .. import unique_name
from .layer_object_helper import LayerObjectHelper
L
lujun 已提交
27
import numpy as np
28
import numbers
29
import logging
30

31
__all__ = [
32 33 34
    'Conv2D', 'Conv3D', 'Pool2D', 'Linear', 'BatchNorm', 'Embedding', 'GRUUnit',
    'LayerNorm', 'NCE', 'PRelu', 'BilinearTensorProduct', 'Conv2DTranspose',
    'Conv3DTranspose', 'GroupNorm', 'SpectralNorm', 'TreeConv'
35
]
M
minqiyang 已提交
36 37


X
Xin Pan 已提交
38
class Conv2D(layers.Layer):
39
    """
40 41
    This interface is used to construct a callable object of the ``Conv2D`` class.
    For more details, refer to code examples.
42 43 44
    The convolution2D layer calculates the output based on the input, filter
    and strides, paddings, dilations, groups parameters. Input and
    Output are in NCHW format, where N is batch size, C is the number of
45 46 47
    the feature map, H is the height of the feature map, and W is the width of the feature map.
    Filter's shape is [MCHW] , where M is the number of output feature map,
    C is the number of input feature map, H is the height of the filter,
48
    and W is the width of the filter. If the groups is greater than 1,
49
    C will equal the number of input feature map divided by the groups.
50
    Please refer to UFLDL's `convolution
51
    <http://ufldl.stanford.edu/tutorial/supervised/FeatureExtractionUsingConvolution/>`_
52 53 54 55 56 57 58 59 60
    for more detials.
    If bias attribution and activation type are provided, bias is added to the
    output of the convolution, and the corresponding activation function is
    applied to the final result.

    For each input :math:`X`, the equation is:

    .. math::

61
        Out = \\sigma (W \\ast X + b)
62 63 64

    Where:

65 66
    * :math:`X`: Input value, a ``Tensor`` with NCHW format.
    * :math:`W`: Filter value, a ``Tensor`` with shape [MCHW] .
67
    * :math:`\\ast`: Convolution operation.
68
    * :math:`b`: Bias value, a 2-D ``Tensor`` with shape [M, 1].
69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90
    * :math:`\\sigma`: Activation function.
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.

    Example:

        - Input:

          Input shape: :math:`(N, C_{in}, H_{in}, W_{in})`

          Filter shape: :math:`(C_{out}, C_{in}, H_f, W_f)`

        - Output:

          Output shape: :math:`(N, C_{out}, H_{out}, W_{out})`

        Where

        .. math::

            H_{out}&= \\frac{(H_{in} + 2 * paddings[0] - (dilations[0] * (H_f - 1) + 1))}{strides[0]} + 1 \\\\
            W_{out}&= \\frac{(W_{in} + 2 * paddings[1] - (dilations[1] * (W_f - 1) + 1))}{strides[1]} + 1

91
    Parameters:
92
        num_channels(int): The number of channels in the input image.
93
        num_filters(int): The number of filter. It is as same as the output
94 95
            feature map.
        filter_size (int or tuple): The filter size. If filter_size is a tuple,
96 97
            it must contain two integers, (filter_size_H, filter_size_W).
            Otherwise, the filter will be a square.
98
        stride (int or tuple, optional): The stride size. If stride is a tuple, it must
99
            contain two integers, (stride_H, stride_W). Otherwise, the
100 101
            stride_H = stride_W = stride. Default: 1.
        padding (int or tuple, optional): The padding size. If padding is a tuple, it must
102
            contain two integers, (padding_H, padding_W). Otherwise, the
103 104
            padding_H = padding_W = padding. Default: 0.
        dilation (int or tuple, optional): The dilation size. If dilation is a tuple, it must
105
            contain two integers, (dilation_H, dilation_W). Otherwise, the
106 107
            dilation_H = dilation_W = dilation. Default: 1.
        groups (int, optional): The groups number of the Conv2d Layer. According to grouped
108 109 110
            convolution in Alex Krizhevsky's Deep CNN paper: when group=2,
            the first half of the filters is only connected to the first half
            of the input channels, while the second half of the filters is only
111 112
            connected to the second half of the input channels. Default: 1.
        param_attr (ParamAttr, optional): The parameter attribute for learnable weights(Parameter)
113 114 115 116
            of conv2d. If it is set to None or one attribute of ParamAttr, conv2d
            will create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with :math:`Normal(0.0, std)`,
            and the :math:`std` is :math:`(\\frac{2.0 }{filter\_elem\_num})^{0.5}`. Default: None.
117
        bias_attr (ParamAttr or bool, optional): The attribute for the bias of conv2d.
118 119 120 121
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, conv2d
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. Default: None.
122 123 124 125 126
        use_cudnn (bool, optional): Use cudnn kernel or not, it is valid only when the cudnn
            library is installed. Default: True.
        act (str, optional): Activation type, if it is set to None, activation is not appended.
            Default: None.
        dtype (str, optional): Data type, it can be "float32" or "float64". Default: "float32".
127

128 129 130 131
    Attribute:
        **weight** (Parameter): the learnable weights of filter of this layer.

        **bias** (Parameter or None): the learnable bias of this layer.
132

133 134 135
    Returns:
        None
    
136
    Raises:
137
        ValueError: if ``use_cudnn`` is not a bool value.
138 139 140

    Examples:
        .. code-block:: python
L
lujun 已提交
141

142 143 144 145 146
          from paddle.fluid.dygraph.base import to_variable
          import paddle.fluid as fluid
          from paddle.fluid.dygraph import Conv2D
          import numpy as np

147
          data = np.random.uniform(-1, 1, [10, 3, 32, 32]).astype('float32')
148
          with fluid.dygraph.guard():
149
              conv2d = Conv2D(3, 2, 3)
150 151
              data = to_variable(data)
              conv = conv2d(data)
152 153 154

    """

M
minqiyang 已提交
155
    def __init__(self,
156
                 num_channels,
M
minqiyang 已提交
157 158 159 160 161 162 163 164
                 num_filters,
                 filter_size,
                 stride=1,
                 padding=0,
                 dilation=1,
                 groups=None,
                 param_attr=None,
                 bias_attr=None,
165 166 167
                 use_cudnn=True,
                 act=None,
                 dtype='float32'):
M
minqiyang 已提交
168
        assert param_attr is not False, "param_attr should not be False here."
169 170
        super(Conv2D, self).__init__()
        self._num_channels = num_channels
M
minqiyang 已提交
171 172 173 174
        self._groups = groups
        self._stride = utils.convert_to_list(stride, 2, 'stride')
        self._padding = utils.convert_to_list(padding, 2, 'padding')
        self._dilation = utils.convert_to_list(dilation, 2, 'dilation')
175
        self._act = act
M
minqiyang 已提交
176 177 178
        if not isinstance(use_cudnn, bool):
            raise ValueError("use_cudnn should be True or False")
        self._use_cudnn = use_cudnn
179 180 181 182 183
        self._filter_size = filter_size
        self._num_filters = num_filters
        self._param_attr = param_attr
        self._bias_attr = bias_attr
        self._dtype = dtype
184 185 186 187 188 189 190 191 192

        # TODO: recover the usage of depthwise_conv2d when it's
        #  kernel fixed https://github.com/PaddlePaddle/Paddle/issues/17098
        # if (self._num_channels == self._groups and
        #         num_filters % self._num_channels == 0 and not self._use_cudnn):
        #     self._l_type = 'depthwise_conv2d'
        # else:
        #     self._l_type = 'conv2d'
        self._l_type = 'conv2d'
M
minqiyang 已提交
193

194
        self._num_channels = num_channels
195 196
        if self._groups is None:
            num_filter_channels = self._num_channels
M
minqiyang 已提交
197
        else:
198
            if self._num_channels % self._groups != 0:
M
minqiyang 已提交
199
                raise ValueError("num_channels must be divisible by groups.")
200 201
            num_filter_channels = self._num_channels // self._groups
        filter_size = utils.convert_to_list(self._filter_size, 2, 'filter_size')
202
        filter_shape = [self._num_filters, num_filter_channels] + filter_size
M
minqiyang 已提交
203 204

        def _get_default_param_initializer():
205 206
            filter_elem_num = filter_size[0] * filter_size[
                1] * self._num_channels
M
minqiyang 已提交
207 208 209
            std = (2.0 / filter_elem_num)**0.5
            return Normal(0.0, std, 0)

210
        self.weight = self.create_parameter(
211
            attr=self._param_attr,
M
minqiyang 已提交
212 213 214 215
            shape=filter_shape,
            dtype=self._dtype,
            default_initializer=_get_default_param_initializer())

216
        self.bias = self.create_parameter(
217 218
            attr=self._bias_attr,
            shape=[self._num_filters],
M
minqiyang 已提交
219 220
            dtype=self._dtype,
            is_bias=True)
M
minqiyang 已提交
221 222

    def forward(self, input):
223 224
        inputs = {
            'Input': [input],
225
            'Filter': [self.weight],
226 227 228 229 230 231 232 233 234 235 236 237 238 239
        }
        attrs = {
            'strides': self._stride,
            'paddings': self._padding,
            'dilations': self._dilation,
            'groups': self._groups if self._groups else 1,
            'use_cudnn': self._use_cudnn,
            'use_mkldnn': False,
        }

        if in_dygraph_mode():
            outs = core.ops.conv2d(inputs, attrs)
            pre_bias = outs['Output'][0]

240 241
            pre_act = dygraph_utils._append_bias_in_dygraph(pre_bias, self.bias,
                                                            1)
242 243 244 245

            return dygraph_utils._append_activation_in_dygraph(pre_act,
                                                               self._act)

M
minqiyang 已提交
246 247 248
        pre_bias = self._helper.create_variable_for_type_inference(
            dtype=self._dtype)

M
minqiyang 已提交
249 250 251 252
        self._helper.append_op(
            type=self._l_type,
            inputs={
                'Input': input,
253
                'Filter': self.weight,
M
minqiyang 已提交
254
            },
M
minqiyang 已提交
255
            outputs={"Output": pre_bias},
256
            attrs=attrs)
M
minqiyang 已提交
257

258
        if self.bias is not None:
259 260 261 262 263
            pre_act = self._helper.create_variable_for_type_inference(
                dtype=self._dtype)
            self._helper.append_op(
                type='elementwise_add',
                inputs={'X': [pre_bias],
264
                        'Y': [self.bias]},
265 266 267 268
                outputs={'Out': [pre_act]},
                attrs={'axis': 1})
        else:
            pre_act = pre_bias
M
minqiyang 已提交
269

L
lujun 已提交
270
        # Currently, we don't support inplace in dygraph mode
271
        return self._helper.append_activation(pre_act, act=self._act)
M
minqiyang 已提交
272 273


L
lujun 已提交
274
class Conv3D(layers.Layer):
275 276 277 278 279
    """
    **Convlution3D Layer**

    The convolution3D layer calculates the output based on the input, filter
    and strides, paddings, dilations, groups parameters. Input(Input) and
D
DuYao 已提交
280 281
    Output(Output) are multidimensional tensors with a shape of 
    :math:`[N, C, D, H, W]` . Where N is batch size, C is the number of
282 283 284 285 286 287 288 289 290 291 292 293 294 295
    channels, D is the depth of the feature, H is the height of the feature,
    and W is the width of the feature. Convlution3D is similar with Convlution2D
    but adds one dimension(depth). If bias attribution and activation type are
    provided, bias is added to the output of the convolution, and the
    corresponding activation function is applied to the final result.

    For each input :math:`X`, the equation is:

    .. math::

        Out = \sigma (W \\ast X + b)

    In the above equation:

D
DuYao 已提交
296
    * :math:`X`: Input value, a tensor with NCDHW or NDHWC format.
297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321
    * :math:`W`: Filter value, a tensor with MCDHW format.
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D tensor with shape [M, 1].
    * :math:`\\sigma`: Activation function.
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.

    Example:

        - Input:

          Input shape: :math:`(N, C_{in}, D_{in}, H_{in}, W_{in})`

          Filter shape: :math:`(C_{out}, C_{in}, D_f, H_f, W_f)`

        - Output:
          Output shape: :math:`(N, C_{out}, D_{out}, H_{out}, W_{out})`

        Where

        .. math::

            D_{out}&= \\frac{(D_{in} + 2 * paddings[0] - (dilations[0] * (D_f - 1) + 1))}{strides[0]} + 1 \\\\
            H_{out}&= \\frac{(H_{in} + 2 * paddings[1] - (dilations[1] * (H_f - 1) + 1))}{strides[1]} + 1 \\\\
            W_{out}&= \\frac{(W_{in} + 2 * paddings[2] - (dilations[2] * (W_f - 1) + 1))}{strides[2]} + 1

322
    Parameters:
323
        num_channels(int): The number of channels in the input image.
L
lujun 已提交
324
        num_filters(int): The number of filter. It is as same as the output image channel.
D
DuYao 已提交
325
        filter_size (int|tuple, optional): The filter size. If filter_size is a tuple,
326
            it must contain three integers, (filter_size_D, filter_size_H, filter_size_W).
D
DuYao 已提交
327 328 329
            Otherwise, the filter will be a square, filter_size_depth = filter_size_height
            = filter_size_width = filter_size.
        stride (int|tuple, optional): The stride size. If stride is a tuple, it must
330
            contain three integers, (stride_D, stride_H, stride_W). Otherwise, the
D
DuYao 已提交
331 332
            stride_D = stride_H = stride_W = stride. The default value is 1.
        padding (int|tuple, optional): The padding size. If padding is a tuple, it must
333
            contain three integers, (padding_D, padding_H, padding_W). Otherwise, the
D
DuYao 已提交
334 335
            padding_D = padding_H = padding_W = padding. The default value is 0.
        dilation (int|tuple, optional): The dilation size. If dilation is a tuple, it must
336
            contain three integers, (dilation_D, dilation_H, dilation_W). Otherwise, the
D
DuYao 已提交
337 338
            dilation_D = dilation_H = dilation_W = dilation. The default value is 1.
        groups (int, optional): The groups number of the Conv3d Layer. According to grouped
339 340 341
            convolution in Alex Krizhevsky's Deep CNN paper: when group=2,
            the first half of the filters is only connected to the first half
            of the input channels, while the second half of the filters is only
D
DuYao 已提交
342 343
            connected to the second half of the input channels. The default value is 1.
        param_attr (ParamAttr, optional): The parameter attribute for learnable parameters/weights
344 345 346
            of conv3d. If it is set to None or one attribute of ParamAttr, conv3d
            will create ParamAttr as param_attr. If it is set to None, the parameter
            is initialized with :math:`Normal(0.0, std)`, and the :math:`std` is
D
DuYao 已提交
347 348
            :math:`(\\frac{2.0 }{filter\_elem\_num})^{0.5}`. The default value is None.
        bias_attr (ParamAttr|bool, optional): The parameter attribute for the bias of conv3d.
349 350 351
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, conv3d
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
D
DuYao 已提交
352 353 354 355 356
            is not set, the bias is initialized zero. The default value is None.
        use_cudnn (bool, optional): Use cudnn kernel or not, it is valid only when the cudnn
            library is installed. The default value is True.
        act (str, optional): Activation type, if it is set to None, activation is not appended.
            The default value is None.
357
        dtype (str, optional): Data type, it can be "float32" or "float64". Default: "float32".
358

D
DuYao 已提交
359 360 361 362
    Attribute:
        **weight** (Parameter): the learnable weights of filters of this layer.

        **bias** (Parameter): the learnable bias of this layer.
363

364
    Returns:
D
DuYao 已提交
365
        None.
366 367 368 369 370 371 372 373

    Raises:
        ValueError: If the shapes of input, filter_size, stride, padding and
                    groups mismatch.

    Examples:
        .. code-block:: python

374 375 376 377 378 379
          import paddle.fluid as fluid
          import numpy

          with fluid.dygraph.guard():
              data = numpy.random.random((5, 3, 12, 32, 32)).astype('float32')
              conv3d = fluid.dygraph.nn.Conv3D(
380
                    num_channels=3, num_filters=2, filter_size=3, act="relu")
381 382
              ret = conv3d(fluid.dygraph.base.to_variable(data))

383 384
    """

L
lujun 已提交
385
    def __init__(self,
386
                 num_channels,
L
lujun 已提交
387 388 389 390 391 392 393 394 395
                 num_filters,
                 filter_size,
                 stride=1,
                 padding=0,
                 dilation=1,
                 groups=None,
                 param_attr=None,
                 bias_attr=None,
                 use_cudnn=True,
396 397
                 act=None,
                 dtype='float32'):
L
lujun 已提交
398
        assert param_attr is not False, "param_attr should not be False here."
399 400
        super(Conv3D, self).__init__()
        self._num_channels = num_channels
L
lujun 已提交
401 402 403
        self._groups = groups
        self._stride = utils.convert_to_list(stride, 3, 'stride')
        self._padding = utils.convert_to_list(padding, 3, 'padding')
404
        self._dilation = utils.convert_to_list(dilation, 3, 'dilation')
L
lujun 已提交
405 406
        self._act = act
        self._use_cudnn = use_cudnn
407 408 409 410
        self._filter_size = filter_size
        self._num_filters = num_filters
        self._param_attr = param_attr
        self._bias_attr = bias_attr
411
        self._dtype = dtype
412 413

        if self._groups is None:
414
            num_filter_channels = self._num_channels
L
lujun 已提交
415
        else:
416
            if self._num_channels % self._groups != 0:
L
lujun 已提交
417
                raise ValueError("num_channels must be divisible by groups.")
418
            num_filter_channels = self._num_channels // self._groups
L
lujun 已提交
419

420 421
        filter_size = utils.convert_to_list(self._filter_size, 3, 'filter_size')
        filter_shape = [self._num_filters, num_filter_channels] + filter_size
L
lujun 已提交
422 423 424

        def _get_default_param_initializer():
            filter_elem_num = filter_size[0] * filter_size[1] * filter_size[
425
                2] * self._num_channels
L
lujun 已提交
426 427 428
            std = (2.0 / filter_elem_num)**0.5
            return Normal(0.0, std, 0)

429
        self.weight = self.create_parameter(
430
            attr=self._param_attr,
L
lujun 已提交
431 432 433 434
            shape=filter_shape,
            dtype=self._dtype,
            default_initializer=_get_default_param_initializer())

435
        self.bias = self.create_parameter(
436 437
            attr=self._bias_attr,
            shape=[self._num_filters],
L
lujun 已提交
438 439 440 441 442 443 444 445
            dtype=self._dtype,
            is_bias=True)

    def forward(self, input):
        pre_bias = self._helper.create_variable_for_type_inference(
            dtype=self._dtype)

        self._helper.append_op(
446
            type='conv3d',
L
lujun 已提交
447 448
            inputs={
                'Input': input,
449
                'Filter': self.weight,
L
lujun 已提交
450 451 452 453 454 455 456 457 458 459 460
            },
            outputs={"Output": pre_bias},
            attrs={
                'strides': self._stride,
                'paddings': self._padding,
                'dilations': self._dilation,
                'groups': self._groups if self._groups else 1,
                'use_cudnn': self._use_cudnn,
                'use_mkldnn': False
            })

461
        if self.bias is not None:
462 463 464 465 466
            pre_act = self._helper.create_variable_for_type_inference(
                dtype=self._dtype)
            self._helper.append_op(
                type='elementwise_add',
                inputs={'X': [pre_bias],
467
                        'Y': [self.bias]},
468 469 470 471
                outputs={'Out': [pre_act]},
                attrs={'axis': 1})
        else:
            pre_act = pre_bias
L
lujun 已提交
472 473 474 475 476

        return self._helper.append_activation(pre_act, act=self._act)


class Conv3DTranspose(layers.Layer):
L
lujun 已提交
477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522
    """
    **Convlution3D transpose layer**

    The convolution3D transpose layer calculates the output based on the input,
    filter, and dilations, strides, paddings. Input(Input) and output(Output)
    are in NCDHW format. Where N is batch size, C is the number of channels,
    D is the depth of the feature, H is the height of the feature, and W
    is the width of the feature. Parameters(dilations, strides, paddings) are
    two elements. These two elements represent height and width, respectively.
    The details of convolution transpose layer, please refer to the following
    explanation and references `therein <http://www.matthewzeiler.com/wp-content/uploads/2017/07/cvpr2010.pdf>`_.
    If bias attribution and activation type are provided, bias is added to
    the output of the convolution, and the corresponding activation function
    is applied to the final result.

    For each input :math:`X`, the equation is:

    .. math::

        Out = \sigma (W \\ast X + b)

    In the above equation:

    * :math:`X`: Input value, a tensor with NCDHW format.
    * :math:`W`: Filter value, a tensor with MCDHW format.
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D tensor with shape [M, 1].
    * :math:`\\sigma`: Activation function.
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.

    Example:

        - Input:

          Input shape: :math:`(N, C_{in}, D_{in}, H_{in}, W_{in})`

          Filter shape: :math:`(C_{in}, C_{out}, D_f, H_f, W_f)`

        - Output:

          Output shape: :math:`(N, C_{out}, D_{out}, H_{out}, W_{out})`

        Where

        .. math::

D
DuYao 已提交
523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541
           D^\prime_{out} &= (D_{in} - 1) * strides[0] - 2 * paddings[0] + dilations[0] * (D_f - 1) + 1 \\\\
           H^\prime_{out} &= (H_{in} - 1) * strides[1] - 2 * paddings[1] + dilations[1] * (H_f - 1) + 1 \\\\
           W^\prime_{out} &= (W_{in} - 1) * strides[2] - 2 * paddings[2] + dilations[2] * (W_f - 1) + 1 \\\\
           D_{out} &\in [ D^\prime_{out}, D^\prime_{out} + strides[0] ] \\\\
           H_{out} &\in [ H^\prime_{out}, H^\prime_{out} + strides[1] ] \\\\

    **Note**:

          The conv3d_transpose can be seen as the backward of the conv3d. For conv3d, 
          when stride > 1, conv3d maps multiple input shape to the same output shape, 
          so for conv3d_transpose, when stride > 1, input shape maps multiple output shape.
          If output_size is None, :math:`H_{out} = H^\prime_{out}, :math:`H_{out} = \
          H^\prime_{out}, W_{out} = W^\prime_{out}`; else, the :math:`D_{out}` of the output 
          size must between :math:`D^\prime_{out}` and :math:`D^\prime_{out} + strides[0]`, 
          the :math:`H_{out}` of the output size must between :math:`H^\prime_{out}` 
          and :math:`H^\prime_{out} + strides[1]`, and the :math:`W_{out}` of the output size must 
          between :math:`W^\prime_{out}` and :math:`W^\prime_{out} + strides[2]`, 
          conv3d_transpose can compute the kernel size automatically.

L
lujun 已提交
542

543
    Parameters:
544
        num_channels(int): The number of channels in the input image.
L
lujun 已提交
545 546
        num_filters(int): The number of the filter. It is as same as the output
            image channel.
547
        filter_size(int|tuple): The filter size. If filter_size is a tuple,
L
lujun 已提交
548
            it must contain three integers, (filter_size_D, filter_size_H, filter_size_W).
549
            Otherwise, the filter will be a square.
D
DuYao 已提交
550 551 552 553 554 555 556 557 558 559 560 561 562 563 564
        padding(int|tuple, optional): The padding size. The padding argument effectively
             adds `dilation * (kernel - 1)` amount of zero-padding on both sides of input. If `padding` is a string,
             either 'VALID' or 'SAME' supported, which is the padding algorithm. If `padding`
             is a tuple or list, it could be in three forms: `[pad_depth, pad_height, pad_width]` or
            `[pad_depth_front, pad_depth_back, pad_height_top, pad_height_bottom, pad_width_left, pad_width_right]`,
            and when `data_format` is `'NCDHW'`, `padding` can be in the form
            `[[0,0], [0,0], [pad_depth_front, pad_depth_back], [pad_height_top, pad_height_bottom], [pad_width_left, pad_width_right]]`.
            when `data_format` is `'NDHWC'`, `padding` can be in the form
            `[[0,0], [pad_depth_front, pad_depth_back], [pad_height_top, pad_height_bottom], [pad_width_left, pad_width_right], [0,0]]`.
            The default value is 0.
        stride(int|tuple, optional): The stride size. It means the stride in transposed convolution. 
            If stride is a tuple, it must contain three integers, (stride_depth, stride_height, 
            stride_width). Otherwise, stride_depth = stride_height = stride_width = stride. 
            The default value is 1.
        dilation(int|tuple, optional): The dilation size. If dilation is a tuple, it must
L
lujun 已提交
565
            contain three integers, (dilation_D, dilation_H, dilation_W). Otherwise, the
D
DuYao 已提交
566 567
            dilation_D = dilation_H = dilation_W = dilation. The default value is 1.
        groups(int, optional): The groups number of the Conv3d transpose layer. Inspired by
L
lujun 已提交
568 569 570 571
            grouped convolution in Alex Krizhevsky's Deep CNN paper, in which
            when group=2, the first half of the filters is only connected to the
            first half of the input channels, while the second half of the
            filters is only connected to the second half of the input channels.
D
DuYao 已提交
572 573
            The default value is 1.
        param_attr (ParamAttr, optional): The parameter attribute for learnable parameters/weights
L
lujun 已提交
574 575
            of conv3d_transpose. If it is set to None or one attribute of ParamAttr, conv3d_transpose
            will create ParamAttr as param_attr. If the Initializer of the param_attr
D
DuYao 已提交
576 577
            is not set, the parameter is initialized with Xavier. The default value is None.
        bias_attr (ParamAttr|bool, optional): The parameter attribute for the bias of conv3d_transpose.
L
lujun 已提交
578 579 580
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, conv3d_transpose
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
D
DuYao 已提交
581 582 583 584 585 586 587
            is not set, the bias is initialized zero. The default value is None.
        use_cudnn(bool, optional): Use cudnn kernel or not, it is valid only when the cudnn
            library is installed. The default value is True.
        act (str, optional): Activation type, if it is set to None, activation is not appended.
            The default value is None.
        name(str, optional): The default value is None. Normally there is no need for user 
            to set this property. For more information, please refer to :ref:`api_guide_Name`.
L
lujun 已提交
588

D
DuYao 已提交
589 590 591 592
    Attribute:
        **weight** (Parameter): the learnable weights of filters of this layer.

        **bias** (Parameter): the learnable bias of this layer.
593

L
lujun 已提交
594
    Returns:
D
DuYao 已提交
595
        None.
L
lujun 已提交
596 597 598 599 600 601 602 603

    Raises:
        ValueError: If the shapes of input, filter_size, stride, padding and
                    groups mismatch.

    Examples:
       .. code-block:: python

604 605 606 607 608 609
         import paddle.fluid as fluid
         import numpy

         with fluid.dygraph.guard():
             data = numpy.random.random((5, 3, 12, 32, 32)).astype('float32')
             conv3dTranspose = fluid.dygraph.nn.Conv3DTranspose(
610
                    num_channels=3,
611 612 613 614 615
                    num_filters=12,
                    filter_size=12,
                    use_cudnn=False)
             ret = conv3dTranspose(fluid.dygraph.base.to_variable(data))

L
lujun 已提交
616 617
    """

L
lujun 已提交
618
    def __init__(self,
619
                 num_channels,
L
lujun 已提交
620
                 num_filters,
621
                 filter_size,
L
lujun 已提交
622 623 624 625 626 627 628 629
                 padding=0,
                 stride=1,
                 dilation=1,
                 groups=None,
                 param_attr=None,
                 bias_attr=None,
                 use_cudnn=True,
                 act=None,
630 631
                 dtype='float32'):
        super(Conv3DTranspose, self).__init__()
L
lujun 已提交
632 633 634 635 636 637 638
        if not isinstance(use_cudnn, bool):
            raise ValueError("use_cudnn should be True or False")
        assert param_attr is not False, "param_attr should not be False in conv3d_transpose."
        self._padding = utils.convert_to_list(padding, 3, 'padding')
        self._stride = utils.convert_to_list(stride, 3, 'stride')
        self._dilation = utils.convert_to_list(dilation, 3, 'dilation')
        self._param_attr = param_attr
639
        self._num_channels = num_channels
L
lujun 已提交
640 641 642 643 644 645
        self._filter_size = filter_size
        self._groups = 1 if groups is None else groups
        self._num_filters = num_filters
        self._use_cudnn = use_cudnn
        self._bias_attr = bias_attr
        self._act = act
646
        self._dtype = dtype
L
lujun 已提交
647

648 649
        self._filter_size = utils.convert_to_list(
            self._filter_size, 3, 'conv3d_transpose.filter_size')
L
lujun 已提交
650

651 652
        filter_shape = [self._num_channels, self._num_filters // self._groups
                        ] + self._filter_size
653
        self.weight = self.create_parameter(
L
lujun 已提交
654 655
            dtype=self._dtype, shape=filter_shape, attr=self._param_attr)
        if self._bias_attr:
656
            self.bias = self.create_parameter(
L
lujun 已提交
657 658 659 660 661 662 663 664 665 666 667
                attr=self._bias_attr,
                shape=[self._num_filters],
                dtype=self._dtype,
                is_bias=True)

    def forward(self, input):
        pre_bias = self._helper.create_variable_for_type_inference(
            dtype=self._dtype)
        self._helper.append_op(
            type="conv3d_transpose",
            inputs={'Input': [input],
668
                    'Filter': [self.weight]},
L
lujun 已提交
669 670 671 672 673 674 675 676 677 678 679 680 681 682 683
            outputs={'Output': pre_bias},
            attrs={
                'strides': self._stride,
                'paddings': self._padding,
                'dilations': self._dilation,
                'groups': self._groups if self._groups else 1,
                'use_cudnn': self._use_cudnn
            })

        if self._bias_attr:
            pre_act = self._helper.create_variable_for_type_inference(
                dtype=self._dtype)
            self._helper.append_op(
                type='elementwise_add',
                inputs={'X': [pre_bias],
684
                        'Y': [self.bias]},
L
lujun 已提交
685 686 687 688 689 690 691 692 693
                outputs={'Out': [pre_act]},
                attrs={'axis': 1})
        else:
            pre_act = pre_bias

        # Currently, we don't support inplace in imperative mode
        return self._helper.append_activation(pre_act, act=self._act)


X
Xin Pan 已提交
694
class Pool2D(layers.Layer):
695
    """
696 697 698 699 700
    This interface is used to construct a callable object of the ``Pool2D`` class.
    For more details, refer to code examples.
    The pooling2d operation calculates the output based on the input, pool_type and pool_size, pool_stride,
    pool_padding parameters.Input and output are in NCHW format, where N is batch size, C is the number of feature map,
    H is the height of the feature map, and W is the width of the feature map.
L
lujun 已提交
701 702
    Parameters(ksize, strides, paddings) are two elements. These two elements represent height and width, respectively.
    The input(X) size and output(Out) size may be different.
703

704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747
    Example:

        - Input:

          Input shape: :math:`(N, C, H_{in}, W_{in})`

        - Output:

          Output shape: :math:`(N, C, H_{out}, W_{out})`

        If ``ceil_mode`` = False:

        .. math::

            H_{out} = \\frac{(H_{in} - ksize[0] + 2 * paddings[0])}{strides[0]} + 1 \\\\
            W_{out} = \\frac{(W_{in} - ksize[1] + 2 * paddings[1])}{strides[1]} + 1

        If ``ceil_mode`` = True:

        .. math::

            H_{out} = \\frac{(H_{in} - ksize[0] + 2 * paddings[0] + strides[0] - 1)}{strides[0]} + 1 \\\\
            W_{out} = \\frac{(W_{in} - ksize[1] + 2 * paddings[1] + strides[1] - 1)}{strides[1]} + 1

        If ``exclusive`` = False:

        .. math::

            hstart &= i * strides[0] - paddings[0] \\\\
            hend   &= hstart + ksize[0] \\\\
            wstart &= j * strides[1] - paddings[1] \\\\
            wend   &= wstart + ksize[1] \\\\
            Output(i ,j) &= \\frac{sum(Input[hstart:hend, wstart:wend])}{ksize[0] * ksize[1]}

        If ``exclusive`` = True:

        .. math::

            hstart &= max(0, i * strides[0] - paddings[0])\\\\
            hend &= min(H, hstart + ksize[0]) \\\\
            wstart &= max(0, j * strides[1] - paddings[1]) \\\\
            wend & = min(W, wstart + ksize[1]) \\\\
            Output(i ,j) & = \\frac{sum(Input[hstart:hend, wstart:wend])}{(hend - hstart) * (wend - wstart)}

748
    Parameters:
749
        pool_size (int or list or tuple, optional): The pool kernel size. If pool kernel size is a tuple or list,
750
            it must contain two integers, (pool_size_Height, pool_size_Width).
751 752 753 754
            Otherwise, the pool kernel size will be a square of an int. Default: -1.
        pool_type(str, optional) : The pooling type, can be "max" for max-pooling and "avg" for average-pooling. 
            Default: max.
        pool_stride (int or list or tuple, optional): The pool stride size. If pool stride size is a tuple or list,
L
lujun 已提交
755
            it must contain two integers, (pool_stride_Height, pool_stride_Width). Otherwise,
756 757 758
            the pool stride size will be a square of an int. Default: 1.
        pool_padding (int or list or tuple, optional): The padding size for pooling operation. 
            If ``pool_padding`` is a tuple,
759
            it must contain two integers, (pool_padding_on_Height, pool_padding_on_Width).
760 761 762 763 764 765 766
            Otherwise, the padding size for pooling operation will be a square of an int. Default: 0.
        global_pooling (bool, optional): Whether to use the global pooling. If global_pooling = true,
            kernel size and paddings will be ignored. Default: False.
        use_cudnn (bool, optional): Only used in cudnn kernel, need install cudnn. Default: True.
        ceil_mode (bool, optional): Whether to use the ceil function to calculate output height and width.
            False is the default. If it is set to False, the floor function will be used. Default: False.
        exclusive (bool, optional): Whether to exclude padding points in average pooling mode. Default: True.
767 768

    Returns:
769
        None
770 771 772 773 774 775 776 777 778 779

    Raises:
        ValueError: If 'pool_type' is not "max" nor "avg"
        ValueError: If 'global_pooling' is False and 'pool_size' is -1
        ValueError: If 'use_cudnn' is not a bool value.

    Examples:

        .. code-block:: python

L
lujun 已提交
780
          import paddle.fluid as fluid
781 782
          from paddle.fluid.dygraph.base import to_variable
          import numpy as np
L
lujun 已提交
783 784

          with fluid.dygraph.guard():
785
             data = numpy.random.random((3, 32, 32, 5)).astype('float32')
786
             pool2d = fluid.dygraph.Pool2D(pool_size=2,
787 788 789
                            pool_type='max',
                            pool_stride=1,
                            global_pooling=False)
790
             pool2d_res = pool2d(to_variable(data))
791 792 793

    """

M
minqiyang 已提交
794 795 796 797 798 799 800 801
    def __init__(self,
                 pool_size=-1,
                 pool_type="max",
                 pool_stride=1,
                 pool_padding=0,
                 global_pooling=False,
                 use_cudnn=True,
                 ceil_mode=False,
802
                 exclusive=True):
M
minqiyang 已提交
803 804 805 806 807 808 809 810 811 812 813 814 815
        if pool_type not in ["max", "avg"]:
            raise ValueError(
                "Unknown pool_type: '%s'. It can only be 'max' or 'avg'.",
                str(pool_type))

        if global_pooling is False and pool_size == -1:
            raise ValueError(
                "When the global_pooling is False, pool_size must be passed "
                "and be a valid value. Received pool_size: " + str(pool_size))

        if not isinstance(use_cudnn, bool):
            raise ValueError("use_cudnn should be True or False")

816
        super(Pool2D, self).__init__()
M
minqiyang 已提交
817 818 819 820 821 822 823 824 825 826 827 828 829

        self._pool_type = pool_type
        self._pool_size = utils.convert_to_list(pool_size, 2, 'pool_size')
        self._pool_padding = utils.convert_to_list(pool_padding, 2,
                                                   'pool_padding')
        self._pool_stride = utils.convert_to_list(pool_stride, 2, 'pool_stride')
        self._global_pooling = global_pooling
        self._use_cudnn = use_cudnn
        self._ceil_mode = ceil_mode
        self._exclusive = exclusive
        self._l_type = 'pool2d'

    def forward(self, input):
830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846
        attrs = {
            "pooling_type": self._pool_type,
            "ksize": self._pool_size,
            "global_pooling": self._global_pooling,
            "strides": self._pool_stride,
            "paddings": self._pool_padding,
            "use_cudnn": self._use_cudnn,
            "ceil_mode": self._ceil_mode,
            "use_mkldnn": False,
            "exclusive": self._exclusive,
        }
        inputs = {"X": [input]}

        if in_dygraph_mode():
            outs = core.ops.pool2d(inputs, attrs)
            return outs['Out'][0]

M
minqiyang 已提交
847 848
        pool_out = self._helper.create_variable_for_type_inference(self._dtype)

M
minqiyang 已提交
849 850 851
        self._helper.append_op(
            type=self._l_type,
            inputs={"X": input},
M
minqiyang 已提交
852
            outputs={"Out": pool_out},
853
            attrs=attrs)
M
minqiyang 已提交
854
        return pool_out
M
minqiyang 已提交
855 856


S
songyouwei 已提交
857 858 859 860 861 862 863 864 865 866
class Linear(layers.Layer):
    """
    Fully-connected linear transformation layer:

    .. math::

        Out = Act({XW + b})

    where :math:`X` is the input Tensor, :math:`W` and :math:`b` are weight and bias respectively.

867
    Linear layer takes only one ``Tensor`` input.
S
songyouwei 已提交
868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926
    The Linear layer multiplies input tensor with weight matrix and
    produces an output Tensor of shape [N, *, `output_dim`],
    where N is batch size and `*` means any number of additional dimensions.
    If ``bias_attr`` is not None, a bias variable will be created and added to the output.
    Finally, if ``act`` is not None, it will be applied to the output as well.

    Parameters:
        input_dim(int): The number of input units in this layer.
        output_dim(int): The number of output units in this layer.
        param_attr(ParamAttr or list of ParamAttr, optional): The parameter attribute for learnable
            weights(Parameter) of this layer. Default: None.
        bias_attr(ParamAttr or list of ParamAttr, optional): The attribute for the bias
            of this layer. If it is set to False, no bias will be added to the output units.
            If it is set to None, the bias is initialized zero. Default: None.
        act(str, optional): Activation to be applied to the output of this layer. Default: None.
        dtype(str, optional): Dtype used for weight, it can be "float32" or "float64". Default: "float32".

    Attributes:
        **weight** (Parameter): the learnable weights of this layer.

        **bias** (Parameter or None): the learnable bias of this layer.

    Returns:
        None

    Examples:
        .. code-block:: python

          from paddle.fluid.dygraph.base import to_variable
          import paddle.fluid as fluid
          from paddle.fluid.dygraph import Linear
          import numpy as np

          data = np.random.uniform(-1, 1, [30, 10, 32]).astype('float32')
          with fluid.dygraph.guard():
              linear = Linear(32, 64)
              data = to_variable(data)
              res = linear(data)  # [30, 10, 64]
    """

    def __init__(self,
                 input_dim,
                 output_dim,
                 param_attr=None,
                 bias_attr=None,
                 act=None,
                 dtype="float32"):
        super(Linear, self).__init__()
        self._act = act
        self._dtype = dtype
        self.weight = self.create_parameter(
            shape=[input_dim, output_dim],
            attr=param_attr,
            dtype=dtype,
            is_bias=False)
        self.bias = self.create_parameter(
            shape=[output_dim], attr=bias_attr, dtype=dtype, is_bias=True)

    def forward(self, input):
927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943
        attrs = {
            "transpose_X": False,
            "transpose_Y": False,
            "alpha": 1,
        }
        inputs = {"X": [input], "Y": [self.weight]}

        if in_dygraph_mode():
            outs = core.ops.matmul(inputs, attrs)
            pre_bias = outs['Out'][0]

            pre_act = dygraph_utils._append_bias_in_dygraph(
                pre_bias, self.bias, axis=len(input.shape) - 1)

            return dygraph_utils._append_activation_in_dygraph(pre_act,
                                                               self._act)

S
songyouwei 已提交
944 945
        tmp = self._helper.create_variable_for_type_inference(self._dtype)
        self._helper.append_op(
946
            type="matmul", inputs=inputs, outputs={"Out": tmp}, attrs=attrs)
S
songyouwei 已提交
947 948 949 950 951 952 953 954 955 956 957 958 959 960
        if self.bias:
            pre_activation = self._helper.create_variable_for_type_inference(
                dtype=self._dtype)
            self._helper.append_op(
                type='elementwise_add',
                inputs={'X': [tmp],
                        'Y': [self.bias]},
                outputs={'Out': [pre_activation]},
                attrs={'axis': len(input.shape) - 1})
        else:
            pre_activation = tmp
        return self._helper.append_activation(pre_activation, act=self._act)


M
minqiyang 已提交
961
class BatchNorm(layers.Layer):
962
    """
963 964 965 966 967
    This interface is used to construct a callable object of the ``BatchNorm`` class.
    For more details, refer to code examples.
    It implements the function of the Batch Normalization Layer and can be used 
    as a normalizer function for conv2d and fully connected operations.
    The data is normalized by the mean and variance of the channel based on the current batch data.
968 969 970 971
    Refer to `Batch Normalization: Accelerating Deep Network Training by Reducing
    Internal Covariate Shift <https://arxiv.org/pdf/1502.03167.pdf>`_
    for more details.

972 973 974
    When use_global_stats = False, the :math:`\\mu_{\\beta}` 
    and :math:`\\sigma_{\\beta}^{2}` are the statistics of one mini-batch.
    Calculated as follows:
975 976 977 978 979 980 981 982

    ..  math::

        \\mu_{\\beta} &\\gets \\frac{1}{m} \\sum_{i=1}^{m} x_i \\qquad &//\\
        \ mini-batch\ mean \\\\
        \\sigma_{\\beta}^{2} &\\gets \\frac{1}{m} \\sum_{i=1}^{m}(x_i - \\
        \\mu_{\\beta})^2 \\qquad &//\ mini-batch\ variance \\\\

983 984
    - :math:`x` : mini-batch data
    - :math:`m` : the size of the mini-batch data
985 986 987

    When use_global_stats = True, the :math:`\\mu_{\\beta}`
    and :math:`\\sigma_{\\beta}^{2}` are not the statistics of one mini-batch.
988 989 990 991 992 993
    They are global or running statistics (moving_mean and moving_variance). It usually got from the
    pre-trained model. Calculated as follows:

    .. math::
        moving\_mean = moving\_mean * momentum + \mu_{\beta} * (1. - momentum) \quad &// global mean \\
        moving\_variance = moving\_variance * momentum + \sigma_{\beta}^{2} * (1. - momentum) \quad &// global variance \\
994

995 996
    The normalization function formula is as follows:
 
997 998 999
    ..  math::

        \\hat{x_i} &\\gets \\frac{x_i - \\mu_\\beta} {\\sqrt{\\
1000 1001 1002 1003 1004 1005
        \\sigma_{\\beta}^{2} + \\epsilon}} \\qquad &//\ normalize \\\\
        y_i &\\gets \\gamma \\hat{x_i} + \\beta \\qquad &//\ scale\ and\ shift

    - :math:`\\epsilon` : add a smaller value to the variance to prevent division by zero
    - :math:`\\gamma` : trainable proportional parameter
    - :math:`\\beta` : trainable deviation parameter
1006

1007
    Parameters:
1008 1009 1010 1011 1012 1013
        num_channels(int): Indicate the number of channels of the input ``Tensor``.
        act(str, optional): Activation to be applied to the output of batch normalizaiton. Default: None.
        is_test (bool, optional): A flag indicating whether it is in test phrase or not. Default: False.
        momentum(float, optional): The value used for the moving_mean and moving_var computation. Default: 0.9.
        epsilon(float, optional): The small value added to the variance to prevent division by zero. Default: 1e-5.
        param_attr(ParamAttr, optional): The parameter attribute for Parameter `scale`
1014 1015 1016
             of batch_norm. If it is set to None or one attribute of ParamAttr, batch_norm
             will create ParamAttr as param_attr. If the Initializer of the param_attr
             is not set, the parameter is initialized with Xavier. Default: None.
1017
        bias_attr(ParamAttr, optional): The parameter attribute for the bias of batch_norm.
1018 1019 1020
             If it is set to None or one attribute of ParamAttr, batch_norm
             will create ParamAttr as bias_attr. If the Initializer of the bias_attr
             is not set, the bias is initialized zero. Default: None.
1021 1022 1023 1024 1025 1026
        dtype(str, optional): Indicate the data type of the input ``Tensor``,
             which can be float32 or float64. Default: float32.
        data_layout(str, optional): Specify the input data format, the data format can be "NCHW" or "NHWC". Default: NCHW.
        in_place(bool, optional): Make the input and output of batch norm reuse memory. Default: False.
        moving_mean_name(str, optional): The name of moving_mean which store the global Mean. Default: None.
        moving_variance_name(str, optional): The name of the moving_variance which store the global Variance. Default: None.
1027 1028
        do_model_average_for_mean_and_var(bool, optional): Whether parameter mean and variance should do model
            average when model average is enabled. Default: True.
1029
        use_global_stats(bool, optional): Whether to use global mean and
1030 1031 1032
            variance. In inference or test mode, set use_global_stats to true
            or is_test to true, and the behavior is equivalent.
            In train mode, when setting use_global_stats True, the global mean
1033 1034 1035 1036
            and variance are also used during train period. Default: False.
        trainable_statistics(bool, optional): Whether to calculate mean and var in eval mode. In eval mode, when
            setting trainable_statistics True, mean and variance will be calculated by current batch statistics.
            Default: False.
1037 1038

    Returns:
1039
        None
1040 1041 1042

    Examples:
        .. code-block:: python
L
lujun 已提交
1043 1044

          import paddle.fluid as fluid
1045 1046
          from paddle.fluid.dygraph.base import to_variable
          import numpy as np
L
lujun 已提交
1047

1048
          x = np.random.random(size=(3, 10, 3, 7)).astype('float32')
L
lujun 已提交
1049
          with fluid.dygraph.guard():
1050
              x = to_variable(x)
1051
              batch_norm = fluid.BatchNorm(10)
1052
              hidden1 = batch_norm(x)
1053 1054
    """

M
minqiyang 已提交
1055 1056 1057 1058 1059 1060 1061 1062
    def __init__(self,
                 num_channels,
                 act=None,
                 is_test=False,
                 momentum=0.9,
                 epsilon=1e-05,
                 param_attr=None,
                 bias_attr=None,
1063
                 dtype='float32',
M
minqiyang 已提交
1064 1065 1066 1067
                 data_layout='NCHW',
                 in_place=False,
                 moving_mean_name=None,
                 moving_variance_name=None,
1068
                 do_model_average_for_mean_and_var=True,
1069 1070
                 use_global_stats=False,
                 trainable_statistics=False):
1071
        super(BatchNorm, self).__init__()
1072
        self._param_attr = param_attr
1073
        self._bias_attr = bias_attr
1074
        self._act = act
M
minqiyang 已提交
1075

H
hong 已提交
1076 1077 1078
        self._full_name = unique_name.generate("batch_norm")
        self._helper = LayerObjectHelper(self._full_name)

M
minqiyang 已提交
1079 1080
        assert bias_attr is not False, "bias_attr should not be False in batch_norm."

1081 1082
        if dtype == "float16":
            self._dtype = "float32"
M
minqiyang 已提交
1083 1084 1085 1086 1087 1088
        else:
            self._dtype = dtype

        param_shape = [num_channels]

        # create parameter
1089
        self.weight = self.create_parameter(
1090
            attr=self._param_attr,
M
minqiyang 已提交
1091 1092 1093
            shape=param_shape,
            dtype=self._dtype,
            default_initializer=Constant(1.0))
1094
        self.weight.stop_gradient = use_global_stats and self._param_attr.learning_rate == 0.
M
minqiyang 已提交
1095

1096
        self.bias = self.create_parameter(
1097
            attr=self._bias_attr,
M
minqiyang 已提交
1098 1099 1100
            shape=param_shape,
            dtype=self._dtype,
            is_bias=True)
1101
        self.bias.stop_gradient = use_global_stats and self._param_attr.learning_rate == 0.
M
minqiyang 已提交
1102

1103
        self._mean = self.create_parameter(
M
minqiyang 已提交
1104 1105 1106 1107 1108 1109 1110
            attr=ParamAttr(
                name=moving_mean_name,
                initializer=Constant(0.0),
                trainable=False,
                do_model_average=do_model_average_for_mean_and_var),
            shape=param_shape,
            dtype=self._dtype)
1111
        self._mean.stop_gradient = True
M
minqiyang 已提交
1112

1113
        self._variance = self.create_parameter(
M
minqiyang 已提交
1114 1115 1116 1117 1118 1119 1120
            attr=ParamAttr(
                name=moving_variance_name,
                initializer=Constant(1.0),
                trainable=False,
                do_model_average=do_model_average_for_mean_and_var),
            shape=param_shape,
            dtype=self._dtype)
1121
        self._variance.stop_gradient = True
M
minqiyang 已提交
1122 1123

        self._in_place = in_place
1124
        self._data_layout = data_layout
M
minqiyang 已提交
1125 1126 1127
        self._momentum = momentum
        self._epsilon = epsilon
        self._is_test = is_test
1128
        self._fuse_with_relu = False
M
minqiyang 已提交
1129
        self._use_global_stats = use_global_stats
1130
        self._trainable_statistics = trainable_statistics
M
minqiyang 已提交
1131 1132 1133 1134 1135 1136

    def forward(self, input):
        # create output
        # mean and mean_out share the same memory
        mean_out = self._mean
        # variance and variance out share the same memory
1137

M
minqiyang 已提交
1138
        variance_out = self._variance
1139 1140 1141 1142 1143 1144 1145 1146 1147 1148
        attrs = {
            "momentum": self._momentum,
            "epsilon": self._epsilon,
            "is_test": self._is_test,
            "data_layout": self._data_layout,
            "use_mkldnn": False,
            "fuse_with_relu": self._fuse_with_relu,
            "use_global_stats": self._use_global_stats,
            "trainable_statistics": self._trainable_statistics
        }
M
minqiyang 已提交
1149

1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184
        inputs = {
            "X": [input],
            "Scale": [self.weight],
            "Bias": [self.bias],
            "Mean": [self._mean],
            "Variance": [self._variance]
        }

        if in_dygraph_mode():
            attrs['is_test'] = not _dygraph_tracer()._train_mode
            saved_mean = _varbase_creator(dtype=self._dtype)
            saved_variance = _varbase_creator(dtype=self._dtype)
            batch_norm_out = _varbase_creator(dtype=self._dtype)
            batch_norm_out.stop_gradient = False
            # inplace is not supported currently
        else:
            saved_mean = self._helper.create_variable_for_type_inference(
                dtype=self._dtype, stop_gradient=True)
            saved_variance = self._helper.create_variable_for_type_inference(
                dtype=self._dtype, stop_gradient=True)
            batch_norm_out = input if self._in_place else self._helper.create_variable_for_type_inference(
                self._dtype)

        outputs = {
            "Y": [batch_norm_out],
            "MeanOut": [mean_out],
            "VarianceOut": [variance_out],
            "SavedMean": [saved_mean],
            "SavedVariance": [saved_variance]
        }

        if in_dygraph_mode():
            outs = core.ops.batch_norm(inputs, attrs, outputs)
            return dygraph_utils._append_activation_in_dygraph(
                batch_norm_out, act=self._act)
M
minqiyang 已提交
1185 1186

        self._helper.append_op(
1187
            type="batch_norm", inputs=inputs, outputs=outputs, attrs=attrs)
M
minqiyang 已提交
1188

L
lujun 已提交
1189
        # Currently, we don't support inplace in dygraph mode
1190
        return self._helper.append_activation(batch_norm_out, self._act)
1191 1192


1193 1194 1195 1196
class Embedding(layers.Layer):
    """
    **Embedding Layer**

Z
zhongpu 已提交
1197 1198 1199 1200 1201 1202
    This interface is used to construct a callable object of the ``Embedding`` class.
    For specific usage, refer to code examples. It implements the function of the Embedding Layer.
    This layer is used to lookup embeddings vector of ids provided by :attr:`input` .
    It automatically constructs a 2D embedding matrix based on the
    input :attr:`size` (vocab_size, emb_size) and :attr:`dtype` .

1203 1204
    The shape of output Tensor is generated by appending an emb_size dimension to the
    last dimension of the input Tensor shape.
Z
zhongpu 已提交
1205

1206
    **Note:** The id in :attr:`input` must satisfy :math:`0 =< id < size[0]` ,
Z
zhongpu 已提交
1207 1208 1209 1210 1211 1212 1213
    otherwise the program will throw an exception and exit.

    .. code-block:: text

        Case 1:

        input is a Tensor. padding_idx = -1
1214 1215
            input.data = [[1, 3], [2, 4], [4, 127]
            input.shape = [3, 2]
Z
zhongpu 已提交
1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228
        Given size = [128, 16]
        output is a Tensor:
            out.shape = [3, 2, 16]
            out.data = [[[0.129435295, 0.244512452, ..., 0.436322452],
                        [0.345421456, 0.524563927, ..., 0.144534654]],

                        [[0.345249859, 0.124939536, ..., 0.194353745],
                        [0.945345345, 0.435394634, ..., 0.435345365]],
                        
                        [[0.945345345, 0.435394634, ..., 0.435345365],
                        [0.0,         0.0,         ..., 0.0        ]]]  # padding data
        The input padding_idx is less than 0, it is automatically converted to padding_idx = -1 + 128 = 127
        It will pad all-zero data when ids is 127.
1229

1230
    Parameters:
L
lujun 已提交
1231 1232
        size(tuple|list): The shape of the look up table parameter. It should have two elements which indicate the size
            of the dictionary of embeddings and the size of each embedding vector respectively.
Z
zhongpu 已提交
1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254
        is_sparse(bool): The flag indicating whether to use sparse update. This parameter only
            affects the performance of the backwards gradient update. It is recommended to set 
            True because sparse update is faster. But some optimizer does not support sparse update,
            such as :ref:`api_fluid_optimizer_AdadeltaOptimizer` , :ref:`api_fluid_optimizer_AdamaxOptimizer` , 
            :ref:`api_fluid_optimizer_DecayedAdagradOptimizer` , :ref:`api_fluid_optimizer_FtrlOptimizer` ,
            :ref:`api_fluid_optimizer_LambOptimizer` and :ref:`api_fluid_optimizer_LarsMomentumOptimizer` .
            In these case, is_sparse must be False. Default: False.
        is_distributed(bool): Whether to store the embedding matrix in a distributed manner. Only used
            in multi-machine distributed CPU training. Default: False.
        padding_idx(int|long|None): padding_idx needs to be in the interval [-vocab_size, vocab_size). 
            If :math:`padding\_idx < 0`, the :math:`padding\_idx` will automatically be converted
            to :math:`vocab\_size + padding\_idx` . It will output all-zero padding data whenever lookup
            encounters :math:`padding\_idx` in id. And the padding data will not be updated while training.
            If set None, it makes no effect to output. Default: None.
        param_attr(ParamAttr): To specify the weight parameter property. Default: None, which means the
            default weight parameter property is used. See usage for details in :ref:`api_fluid_ParamAttr` . In addition,
            user-defined or pre-trained word vectors can be loaded with the :attr:`param_attr` parameter. 
            The local word vector needs to be transformed into numpy format, and the shape of local word
            vector shoud be consistent with :attr:`size` . Then :ref:`api_fluid_initializer_NumpyArrayInitializer`
            is used to load custom or pre-trained word vectors. See code example 2 for details.
        dtype(np.dtype|core.VarDesc.VarType|str): It refers to the data type of output Tensor.
            It must be "float32" or "float64". Default: "float32".
1255

Z
zhongpu 已提交
1256 1257
    Attribute:
        **weight** (Parameter): the learnable weights of this layer.
1258

1259
    Returns:
Z
zhongpu 已提交
1260
        Variable: Embedding Tensor or LoDTensor mapped by input. The data type is the same as :attr:`dtype` .
1261 1262

    Examples:
1263

1264 1265
        .. code-block:: python

L
lujun 已提交
1266 1267 1268 1269
          import paddle.fluid as fluid
          import paddle.fluid.dygraph.base as base
          import numpy as np

Z
zhongpu 已提交
1270
          # example 1
1271 1272
          inp_word = np.array([[2, 3, 5], [4, 2, 1]]).astype('int64')
          inp_word.shape  # [2, 3]
1273 1274
          dict_size = 20
          with fluid.dygraph.guard():
L
lujun 已提交
1275
              emb = fluid.dygraph.Embedding(
1276 1277 1278
                  size=[dict_size, 32],
                  param_attr='emb.w',
                  is_sparse=False)
L
lujun 已提交
1279
              static_rlt3 = emb(base.to_variable(inp_word))
1280
              static_rlt3.shape  # [2, 3, 32]
Z
zhongpu 已提交
1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294

          # example 2: load custom or pre-trained word vectors
          weight_data = np.random.random(size=(128, 100))  # word vectors with numpy format
          w_param_attrs = fluid.ParamAttr(
              name="emb_weight",
              learning_rate=0.5,
              initializer=fluid.initializer.NumpyArrayInitializer(weight_data),
              trainable=True)
          with fluid.dygraph.guard():
              emb = fluid.dygraph.Embedding(
                  size=[128, 100],
                  param_attr= w_param_attrs,
                  is_sparse=False)
              static_rlt3 = emb(base.to_variable(inp_word))          
1295 1296
    """

1297 1298 1299 1300 1301 1302 1303
    def __init__(self,
                 size,
                 is_sparse=False,
                 is_distributed=False,
                 padding_idx=None,
                 param_attr=None,
                 dtype='float32'):
1304
        super(Embedding, self).__init__()
1305 1306 1307 1308
        self._size = size
        self._is_sparse = is_sparse
        self._is_distributed = is_distributed
        self._padding_idx = -1 if padding_idx is None else padding_idx if padding_idx >= 0 else (
J
JiabinYang 已提交
1309
            size[0] + padding_idx)
1310 1311 1312

        self._param_attr = param_attr
        self._dtype = dtype
J
JiabinYang 已提交
1313
        self._remote_prefetch = self._is_sparse and (not self._is_distributed)
1314 1315 1316
        if self._remote_prefetch:
            assert self._is_sparse is True and self._is_distributed is False

1317
        self.weight = self.create_parameter(
1318 1319 1320 1321 1322 1323
            attr=self._param_attr,
            shape=self._size,
            dtype=self._dtype,
            is_bias=False)

    def forward(self, input):
1324 1325 1326 1327 1328 1329
        attrs = {
            'is_sparse': self._is_sparse,
            'is_distributed': self._is_distributed,
            'remote_prefetch': self._remote_prefetch,
            'padding_idx': self._padding_idx
        }
1330

1331
        if in_dygraph_mode():
1332
            inputs = {'Ids': [input], 'W': [self.weight]}
1333 1334 1335
            outs = core.ops.lookup_table_v2(inputs, attrs)
            return outs['Out'][0]

1336 1337
        out = self._helper.create_variable_for_type_inference(self._dtype)
        self._helper.append_op(
1338
            type='lookup_table_v2',
1339
            inputs={'Ids': input,
1340
                    'W': self.weight},
1341
            outputs={'Out': out},
1342
            attrs=attrs)
1343 1344

        return out
M
minqiyang 已提交
1345 1346


1347
class LayerNorm(layers.Layer):
1348
    """
1349 1350 1351
    This interface is used to construct a callable object of the ``LayerNorm`` class.
    For more details, refer to code examples.
    It implements the function of the Layer Normalization Layer and can be applied to mini-batch input data.
1352
    Refer to `Layer Normalization <https://arxiv.org/pdf/1607.06450v1.pdf>`_
1353

1354
    The formula is as follows:
1355

1356
    ..  math::
1357

1358
        \\mu & = \\frac{1}{H}\\sum_{i=1}^{H} x_i
1359

1360
        \\sigma & = \\sqrt{\\frac{1}{H}\sum_{i=1}^{H}{(x_i - \\mu)^2} + \\epsilon}
1361

1362
        y & = f(\\frac{g}{\\sigma}(x - \\mu) + b)
1363

1364 1365 1366 1367 1368
    - :math:`x`: the vector representation of the summed inputs to the neurons in that layer.
    - :math:`H`: the number of hidden units in a layers
    - :math:`\\epsilon`: the small value added to the variance to prevent division by zero.
    - :math:`g`: the trainable scale parameter.
    - :math:`b`: the trainable bias parameter.
1369

1370
    Parameters:
1371 1372 1373 1374
        normalized_shape(int or list or tuple): Input shape from an expected input of
            size :math:`[*, normalized_shape[0], normalized_shape[1], ..., normalized_shape[-1]]`.
            If it is a single integer, this module will normalize over the last dimension
            which is expected to be of that specific size.
1375
        scale(bool, optional): Whether to learn the adaptive gain :math:`g` after
L
lujun 已提交
1376
            normalization. Default: True.
1377
        shift(bool, optional): Whether to learn the adaptive bias :math:`b` after
L
lujun 已提交
1378
            normalization. Default: True.
1379
        epsilon(float, optional): The small value added to the variance to prevent
L
lujun 已提交
1380
            division by zero. Default: 1e-05.
1381
        param_attr(ParamAttr, optional): The parameter attribute for the learnable
1382 1383 1384
            gain :math:`g`. If :attr:`scale` is False, :attr:`param_attr` is
            omitted. If :attr:`scale` is True and :attr:`param_attr` is None,
            a default :code:`ParamAttr` would be added as scale. The
L
lujun 已提交
1385
            :attr:`param_attr` is initialized as 1 if it is added. Default: None.
1386
        bias_attr(ParamAttr, optional): The parameter attribute for the learnable
1387 1388 1389
            bias :math:`b`. If :attr:`shift` is False, :attr:`bias_attr` is
            omitted. If :attr:`shift` is True and :attr:`param_attr` is None,
            a default :code:`ParamAttr` would be added as bias. The
L
lujun 已提交
1390
            :attr:`bias_attr` is initialized as 0 if it is added. Default: None.
1391
        act(str, optional): Activation to be applied to the output of layer normalizaiton.
L
lujun 已提交
1392
                  Default: None.
1393 1394
        dtype (str, optional): Data type, it can be "float32" or "float64". Default: "float32".

1395
    Returns:
1396
        None
1397

1398
    Examples:
1399

1400 1401 1402
        .. code-block:: python

          import paddle.fluid as fluid
1403
          from paddle.fluid.dygraph.base import to_variable
1404 1405
          import numpy

1406
          x = numpy.random.random((3, 32, 32)).astype('float32')
1407
          with fluid.dygraph.guard():
1408
              x = to_variable(x)
1409
              layerNorm = fluid.LayerNorm([32, 32])
1410
              ret = layerNorm(x)
1411

1412
    """
1413

1414
    def __init__(self,
1415
                 normalized_shape,
1416 1417 1418 1419 1420
                 scale=True,
                 shift=True,
                 epsilon=1e-05,
                 param_attr=None,
                 bias_attr=None,
1421 1422 1423 1424 1425
                 act=None,
                 dtype='float32'):
        super(LayerNorm, self).__init__()
        if isinstance(normalized_shape, numbers.Integral):
            normalized_shape = [normalized_shape]
H
hong 已提交
1426 1427 1428 1429

        self._full_name = unique_name.generate("layer_norm")
        self._helper = LayerObjectHelper(self._full_name)

1430
        self._normalized_shape = list(normalized_shape)
1431 1432 1433 1434 1435 1436
        self._scale = scale
        self._shift = shift
        self._epsilon = epsilon
        self._param_attr = param_attr
        self._bias_attr = bias_attr
        self._act = act
1437 1438
        self._dtype = dtype
        param_shape = [np.prod(self._normalized_shape)]
1439
        if self._scale:
1440
            self.weight = self.create_parameter(
1441 1442 1443 1444
                attr=self._param_attr,
                shape=param_shape,
                dtype=self._dtype,
                default_initializer=Constant(1.0))
1445 1446 1447 1448
        else:
            if self._param_attr:
                logging.warn("param_attr are only avaliable with scale is True")

1449 1450
        if self._shift:
            assert self._bias_attr is not False
1451
            self.bias = self.create_parameter(
1452 1453 1454 1455
                attr=self._bias_attr,
                shape=param_shape,
                dtype=self._dtype,
                is_bias=True)
1456 1457 1458
        else:
            if self._bias_attr:
                logging.warn("bias_attr are only avaliable with shift is True")
1459 1460

    def forward(self, input):
1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471
        input_shape = list(input.shape)
        input_ndim = len(input_shape)
        normalized_ndim = len(self._normalized_shape)
        self._begin_norm_axis = input_ndim - normalized_ndim
        if input_ndim < normalized_ndim or input_shape[
                self._begin_norm_axis:] != self._normalized_shape:
            str_normalized_shape = str(self._normalized_shape)
            raise ValueError(
                'Given normalized_shape is ' + str_normalized_shape +
                ', expected input with shape [*, ' + str_normalized_shape[
                    1:] + ', but got input shape ' + str(input_shape))
1472
        inputs = dict()
1473
        inputs['X'] = [input]
1474
        if self._scale:
1475
            inputs['Scale'] = [self.weight]
1476
        if self._shift:
1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489
            inputs['Bias'] = [self.bias]

        attrs = {
            "epsilon": self._epsilon,
            "begin_norm_axis": self._begin_norm_axis
        }

        if in_dygraph_mode():
            outs = core.ops.layer_norm(inputs, attrs)
            pre_act = outs['Y'][0]
            return dygraph_utils._append_activation_in_dygraph(
                pre_act, act=self._act)

1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510
        # create output
        mean_out = self._helper.create_variable_for_type_inference(
            dtype=self._dtype, stop_gradient=True)
        variance_out = self._helper.create_variable_for_type_inference(
            dtype=self._dtype, stop_gradient=True)
        layer_norm_out = self._helper.create_variable_for_type_inference(
            self._dtype)

        self._helper.append_op(
            type="layer_norm",
            inputs=inputs,
            outputs={
                "Y": layer_norm_out,
                "Mean": mean_out,
                "Variance": variance_out,
            },
            attrs={
                "epsilon": self._epsilon,
                "begin_norm_axis": self._begin_norm_axis
            })

1511
        return self._helper.append_activation(layer_norm_out, act=self._act)
1512 1513


M
minqiyang 已提交
1514 1515 1516
class GRUUnit(layers.Layer):
    """
    **GRU unit layer**
D
DuYao 已提交
1517 1518 1519 1520 1521
    
    It creates a callable object from GRUUnit class.
    If origin_mode is True, then the equation of a gru step is from paper
    `Learning Phrase Representations using RNN Encoder-Decoder for Statistical 
    Machine Translation <https://arxiv.org/pdf/1406.1078.pdf>`_
M
minqiyang 已提交
1522 1523 1524 1525 1526 1527 1528 1529 1530 1531

        .. math::
            u_t & = actGate(xu_{t} + W_u h_{t-1} + b_u)

            r_t & = actGate(xr_{t} + W_r h_{t-1} + b_r)

            m_t & = actNode(xm_t + W_c dot(r_t, h_{t-1}) + b_m)

            h_t & = dot(u_t, h_{t-1}) + dot((1-u_t), m_t)

D
DuYao 已提交
1532
    If origin_mode is False, then the equation of a gru step is from paper
M
minqiyang 已提交
1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557
    `Empirical Evaluation of Gated Recurrent Neural Networks on Sequence
    Modeling <https://arxiv.org/pdf/1412.3555.pdf>`_

        .. math::
            u_t & = actGate(xu_{t} + W_u h_{t-1} + b_u)

            r_t & = actGate(xr_{t} + W_r h_{t-1} + b_r)

            m_t & = actNode(xm_t + W_c dot(r_t, h_{t-1}) + b_m)

            h_t & = dot((1-u_t), h_{t-1}) + dot(u_t, m_t)


    The inputs of gru unit includes :math:`z_t`, :math:`h_{t-1}`. In terms
    of the equation above, the :math:`z_t` is split into 3 parts -
    :math:`xu_t`, :math:`xr_t` and :math:`xm_t`. This means that in order to
    implement a full GRU unit operator for an input, a fully
    connected layer has to be applied, such that :math:`z_t = W_{fc}x_t`.

    The terms :math:`u_t` and :math:`r_t` represent the update and reset gates
    of the GRU cell. Unlike LSTM, GRU has one lesser gate. However, there is
    an intermediate candidate hidden output, which is denoted by :math:`m_t`.
    This layer has three outputs :math:`h_t`, :math:`dot(r_t, h_{t-1})`
    and concatenation of :math:`u_t`, :math:`r_t` and :math:`m_t`.

1558
    Parameters:
L
lujun 已提交
1559
        size (int): The input dimension value.
D
DuYao 已提交
1560 1561 1562 1563 1564 1565 1566 1567 1568
        param_attr(ParamAttr, optional): The parameter attribute for the learnable
            hidden-hidden weight matrix. 
            
            **Note**:
    
                1. The shape of the weight matrix is :math:`[T, 3*D]`, where D is the hidden size.
                2. All elements in the weight matrix can be divided into two parts. The first 
                   part are weights of the update gate and reset gate with shape :math:`[D, 2*D]`, 
                   and the second part are weights for candidate hidden state with shape :math:`[D, D]`.
M
minqiyang 已提交
1569 1570 1571 1572


            If it is set to None or one attribute of ParamAttr, gru_unit will
            create ParamAttr as param_attr. If the Initializer of the param_attr
D
DuYao 已提交
1573 1574 1575 1576
            is not set, the parameter is initialized with Xavier. The default 
            value is None.
        bias_attr (ParamAttr|bool, optional): The parameter attribute for the bias
            of GRU.Note that the bias with :math:`[1, 3*D]` concatenates
M
minqiyang 已提交
1577 1578 1579 1580 1581
            the bias in the update gate, reset gate and candidate calculations.
            If it is set to False, no bias will be applied to the update gate,
            reset gate and candidate calculations. If it is set to None or one
            attribute of ParamAttr, gru_unit will create ParamAttr as
            bias_attr. If the Initializer of the bias_attr is not set, the bias
D
DuYao 已提交
1582
            is initialized zero. The default value is None.
L
lujun 已提交
1583
        activation (str): The activation type for cell (actNode).
D
DuYao 已提交
1584
                             The default value is 'tanh'.
L
lujun 已提交
1585
        gate_activation (str): The activation type for gates (actGate).
D
DuYao 已提交
1586 1587 1588
                                  The default value is 'sigmoid'.
        dtype(str): The dtype of the layers. The data type can be set as
            'float32', 'float64'. The default value is 'float32'.
M
minqiyang 已提交
1589

D
DuYao 已提交
1590 1591 1592 1593
    Attribute:
        **weight** (Parameter): the learnable weights of this layer.

        **bias** (Parameter): the learnable bias of this layer.
1594

M
minqiyang 已提交
1595
    Returns:
D
DuYao 已提交
1596 1597 1598 1599
        tuple: The hidden value, reset-hidden value and gate values. The hidden value
        is a 2-D tensor with shape  :math:`[T, D]` . The reset-hidden value is a
        2-D tensor with shape  :math:`[T, D]` . The gate value is a 2-D tensor with 
        shape  :math:`[T, 3*D]`.
L
lujun 已提交
1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612

    Examples:

        .. code-block:: python

          import paddle.fluid as fluid
          import paddle.fluid.dygraph.base as base
          import numpy

          lod = [[2, 4, 3]]
          D = 5
          T = sum(lod[0])

D
DuYao 已提交
1613
          input = numpy.random.rand(T, 3 * D).astype('float32')
L
lujun 已提交
1614 1615 1616
          hidden_input = numpy.random.rand(T, D).astype('float32')
          with fluid.dygraph.guard():
              x = numpy.random.random((3, 32, 32)).astype('float32')
1617
              gru = fluid.dygraph.GRUUnit(size=D * 3)
L
lujun 已提交
1618 1619 1620
              dy_ret = gru(
                base.to_variable(input), base.to_variable(hidden_input))

M
minqiyang 已提交
1621 1622 1623 1624 1625 1626 1627 1628 1629 1630
    """

    def __init__(self,
                 size,
                 param_attr=None,
                 bias_attr=None,
                 activation='tanh',
                 gate_activation='sigmoid',
                 origin_mode=False,
                 dtype='float32'):
1631
        super(GRUUnit, self).__init__()
1632
        self._bias_attr = bias_attr
M
minqiyang 已提交
1633 1634 1635 1636 1637
        activation_dict = dict(
            identity=0,
            sigmoid=1,
            tanh=2,
            relu=3, )
H
Hongyu Liu 已提交
1638 1639
        self.activation = activation_dict[activation]
        self.gate_activation = activation_dict[gate_activation]
M
minqiyang 已提交
1640

M
minqiyang 已提交
1641
        self._dtype = dtype
M
minqiyang 已提交
1642 1643
        size = size // 3
        # create weight
1644
        self.weight = self.create_parameter(
M
minqiyang 已提交
1645
            attr=param_attr, shape=[size, 3 * size], dtype=dtype)
M
minqiyang 已提交
1646 1647

        # create bias
M
minqiyang 已提交
1648
        bias_size = [1, 3 * size]
1649
        self._bias_size = bias_size
1650
        self.bias = self.create_parameter(
M
minqiyang 已提交
1651
            attr=bias_attr, shape=bias_size, dtype=dtype, is_bias=True)
M
minqiyang 已提交
1652

M
minqiyang 已提交
1653
    def forward(self, input, hidden):
1654 1655 1656 1657 1658
        inputs = {
            'Input': [input],
            'HiddenPrev': [hidden],
            'Weight': [self.weight]
        }
1659
        if self.bias:
1660 1661 1662 1663 1664 1665 1666 1667 1668 1669
            inputs['Bias'] = [self.bias]
        attrs = {
            'activation': self.activation,
            'gate_activation': self.gate_activation,
        }

        if in_dygraph_mode():
            outs = core.ops.gru_unit(inputs, attrs)
            return outs['Hidden'][0], outs['ResetHiddenPrev'][0], outs['Gate'][
                0]
M
minqiyang 已提交
1670 1671 1672 1673 1674 1675

        gate = self._helper.create_variable_for_type_inference(self._dtype)
        reset_hidden_pre = self._helper.create_variable_for_type_inference(
            self._dtype)
        updated_hidden = self._helper.create_variable_for_type_inference(
            self._dtype)
M
minqiyang 已提交
1676 1677 1678 1679 1680 1681 1682 1683 1684
        self._helper.append_op(
            type='gru_unit',
            inputs=inputs,
            outputs={
                'Gate': gate,
                'ResetHiddenPrev': reset_hidden_pre,
                'Hidden': updated_hidden,
            },
            attrs={
H
Hongyu Liu 已提交
1685 1686
                'activation': self.activation,
                'gate_activation': self.gate_activation,
M
minqiyang 已提交
1687 1688 1689
            })

        return updated_hidden, reset_hidden_pre, gate
1690 1691 1692 1693


class NCE(layers.Layer):
    """
1694 1695 1696 1697 1698
    This interface is used to construct a callable object of the ``NCE`` class.
    For more details, refer to code examples.
    It implements the function of the ``NCE`` loss function.
    By default this function uses a uniform distribution for sampling, and it
    compute and return the noise-contrastive estimation training loss. See
1699
    `Noise-contrastive estimation: A new estimation principle for unnormalized statistical models <http://www.jmlr.org/proceedings/papers/v9/gutmann10a/gutmann10a.pdf>`_ .
1700

1701
    Parameters:
1702 1703
        num_total_classes (int): Total number of classes in all samples.
        dim (int): Dimension of input (possibly embedding dim).
1704
        param_attr (ParamAttr, optional): The parameter attribute for learnable weights(Parameter)
1705 1706 1707
             of nce. If it is set to None or one attribute of ParamAttr, nce
             will create ParamAttr as param_attr. If the Initializer of the param_attr
             is not set, the parameter is initialized with Xavier. Default: None.
1708
        bias_attr (ParamAttr or bool, optional): The attribute for the bias of nce.
1709 1710 1711 1712
             If it is set to False, no bias will be added to the output units.
             If it is set to None or one attribute of ParamAttr, nce
             will create ParamAttr as bias_attr. If the Initializer of the bias_attr
             is not set, the bias is initialized zero. Default: None.
1713 1714
        num_neg_samples (int, optional): The number of negative classes. The default value is 10.
        sampler (str, optional): The sampler used to sample class from negtive classes.
1715 1716
                       It can be 'uniform', 'log_uniform' or 'custom_dist'.
                       default: 'uniform'.
1717
        custom_dist (float[], optional): A float[] with size=num_total_classes.
1718
                       It is used when sampler is set to 'custom_dist'.
1719
                       custom_dist[i] is the probability of i-th class to be sampled.
L
lujun 已提交
1720
                       Default: None.
1721 1722
        seed (int, optional): The seed used in sampler. Default: 0.
        is_sparse(bool, optional): The flag indicating whether to use sparse update. If is_sparse is True, the weight@GRAD and bias@GRAD will be changed to SelectedRows. Default: False.
1723
        dtype (str, optional): Data type, it can be "float32" or "float64". Default: "float32".
1724

1725 1726
    Attribute:
        **weight** (Parameter): the learnable weights of this layer.
1727

1728 1729
        **bias** (Parameter or None): the learnable bias of this layer.
    
1730
    Returns:
1731
        None
1732 1733 1734 1735

    Examples:
        .. code-block:: python

1736 1737 1738
            import numpy as np
            import paddle.fluid as fluid

1739
            window_size = 5
1740 1741
            dict_size = 20
            label_word = int(window_size // 2) + 1
1742
            inp_word = np.array([[1], [2], [3], [4], [5]]).astype('int64')
1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763
            nid_freq_arr = np.random.dirichlet(np.ones(20) * 1000).astype('float32')

            with fluid.dygraph.guard():
                words = []
                for i in range(window_size):
                    words.append(fluid.dygraph.base.to_variable(inp_word[i]))

                emb = fluid.Embedding(
                    size=[dict_size, 32],
                    param_attr='emb.w',
                    is_sparse=False)

                embs3 = []
                for i in range(window_size):
                    if i == label_word:
                        continue

                    emb_rlt = emb(words[i])
                    embs3.append(emb_rlt)

                embs3 = fluid.layers.concat(input=embs3, axis=1)
1764
                nce = fluid.NCE(
1765
                             num_total_classes=dict_size,
1766
                             dim=embs3.shape[1],
1767 1768 1769 1770 1771 1772 1773
                             num_neg_samples=2,
                             sampler="custom_dist",
                             custom_dist=nid_freq_arr.tolist(),
                             seed=1,
                             param_attr='nce.w',
                             bias_attr='nce.b')

1774 1775
                wl = fluid.layers.unsqueeze(words[label_word], axes=[0])
                nce_loss3 = nce(embs3, wl)
1776 1777 1778 1779 1780

    """

    def __init__(self,
                 num_total_classes,
1781
                 dim,
1782
                 sample_weight=None,
1783 1784 1785 1786 1787 1788
                 param_attr=None,
                 bias_attr=None,
                 num_neg_samples=None,
                 sampler="uniform",
                 custom_dist=None,
                 seed=0,
1789 1790 1791
                 is_sparse=False,
                 dtype='float32'):
        super(NCE, self).__init__()
1792 1793 1794
        self._param_attr = param_attr
        self._bias_attr = bias_attr
        self._num_total_classes = num_total_classes
1795
        self._dtype = dtype
1796
        self._inputs = dict()
1797
        self._inputs['SampleWeight'] = sample_weight if sample_weight is not None else []
1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884
        if sampler == "uniform":
            sampler = 0
        elif sampler == "log_uniform":
            sampler = 1
        elif sampler == "custom_dist":
            assert custom_dist is not None
            # assert isinstance(custom_dist, Variable)

            custom_dist_len = len(custom_dist)
            alias_probs_ = [0] * custom_dist_len
            alias_ = [0] * custom_dist_len
            bigs = []
            littles = []
            for i in range(custom_dist_len):
                normal_prob = custom_dist[i] * custom_dist_len
                if normal_prob - 1.0 > 0:
                    bigs.append((i, normal_prob))
                elif 1.0 - normal_prob > 0:
                    littles.append((i, normal_prob))
                else:
                    alias_probs_[i] = normal_prob
                    alias_[i] = -1

            while len(bigs) and len(littles):
                big = bigs.pop(0)
                little = littles.pop(0)

                big_idx = big[0]
                big_prob = big[1]

                alias_probs_[little[0]] = little[1]
                alias_[little[0]] = big_idx
                big_left = big[1] + little[1] - 1
                if big_left - 1.0 > 0:
                    bigs.append((big_idx, big_left))
                elif 1.0 - big_left > 0:
                    littles.append((big_idx, big_left))
                else:
                    alias_probs_[big_idx] = big_left
                    alias_[big_idx] = -1

            if len(bigs):
                big = bigs.pop(0)
                alias_probs_[big[0]] = 1.0
                alias_[big[0]] = -1
            if len(littles):
                little = littles.pop(0)
                alias_probs_[little[0]] = 1.0
                alias_[little[0]] = -1

            def _init_by_numpy_array(numpy_array):
                ret = self.create_parameter(
                    attr=ParamAttr(),
                    shape=numpy_array.shape,
                    dtype=numpy_array.dtype,
                    default_initializer=NumpyArrayInitializer(numpy_array))
                ret.stop_gradient = True
                return ret

            self._inputs['CustomDistProbs'] = _init_by_numpy_array(
                np.array(custom_dist).astype('float32'))
            self._inputs['CustomDistAlias'] = _init_by_numpy_array(
                np.array(alias_).astype('int32'))
            self._inputs['CustomDistAliasProbs'] = _init_by_numpy_array(
                np.array(alias_probs_).astype('float32'))
            sampler = 2
        else:
            raise Exception("Unsupported sampler type.")

        if num_neg_samples is None:
            num_neg_samples = 10
        else:
            num_neg_samples = int(num_neg_samples)
        self._num_neg_samples = num_neg_samples
        remote_prefetch = is_sparse
        print(
            "With sparse mode, if your models has only small parameter prefetch may cause speed down"
        )
        self._attrs = {
            'num_total_classes': int(num_total_classes),
            'num_neg_samples': num_neg_samples,
            'seed': seed,
            'sampler': sampler,
            'is_sparse': is_sparse,
            'remote_prefetch': remote_prefetch
        }

1885
        self.weight = self.create_parameter(
1886 1887 1888
            attr=self._param_attr,
            shape=[self._num_total_classes, dim],
            is_bias=False,
1889
            dtype=self._dtype)
1890
        if self._bias_attr:
1891
            self.bias = self.create_parameter(
1892 1893 1894
                attr=self._bias_attr,
                shape=[self._num_total_classes, 1],
                is_bias=True,
1895
                dtype=self._dtype)
1896 1897
            self._inputs['Bias'] = self.bias
        self._inputs['Weight'] = self.weight
1898

1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927
    def forward(self, input, label, sample_weight=None):
        assert isinstance(input, Variable)
        assert isinstance(label, Variable)

        self._inputs['Input'] = input
        self._inputs['Label'] = label
        self._inputs['SampleWeight'] = sample_weight if sample_weight is not None else []

        cost = self._helper.create_variable_for_type_inference(
            dtype=input.dtype)
        sample_logits = self._helper.create_variable_for_type_inference(
            dtype=input.dtype)
        sample_labels = self._helper.create_variable_for_type_inference(
            dtype=label.dtype)

        self._helper.append_op(
            type='nce',
            inputs=self._inputs,
            outputs={
                'Cost': cost,
                'SampleLogits': sample_logits,
                'SampleLabels': sample_labels
            },
            attrs=self._attrs)
        return cost / (self._num_neg_samples + 1)


class PRelu(layers.Layer):
    """
1928 1929 1930 1931
    This interface is used to construct a callable object of the ``PRelu`` class.
    For more details, refer to code examples.
    It implements three activation methods of the ``PRelu`` activation function.

1932 1933 1934 1935 1936
    Equation:

    .. math::
        y = \max(0, x) + \\alpha * \min(0, x)

1937
    Parameters:
L
lujun 已提交
1938
        mode (str): The mode for weight sharing. It supports all, channel
1939 1940 1941
          and element. all: all elements share same weight
          channel:elements in a channel share same weight
          element:each element has a weight
S
songyouwei 已提交
1942 1943 1944
        channel (int, optional): The number of channels.
          This argument is required when mode is "channel".
          Default: None.
1945
        input_shape (list or tuple, optional): The shape of input.
S
songyouwei 已提交
1946 1947
          This argument is required when mode is "element".
          Default: None.
1948 1949
        param_attr(ParamAttr, optional): The parameter attribute for the learnable
          weight (alpha). Default: None.
1950
        dtype (str, optional): Data type, it can be "float32" or "float64". Default: "float32".
1951

1952 1953 1954
    Attribute:
        **weight** (Parameter): the learnable weights of this layer.
    
1955
    Returns:
1956
        None
1957 1958 1959 1960 1961

    Examples:

        .. code-block:: python

L
lujun 已提交
1962
          import paddle.fluid as fluid
1963
          from paddle.fluid.dygraph.base import to_variable
L
lujun 已提交
1964 1965 1966 1967
          import numpy as np

          inp_np = np.ones([5, 200, 100, 100]).astype('float32')
          with fluid.dygraph.guard():
1968
              inp_np = to_variable(inp_np)
S
songyouwei 已提交
1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979
              prelu0 = fluid.PRelu(
                 mode='all',
                 param_attr=fluid.ParamAttr(initializer=fluid.initializer.Constant(1.0)))
              dy_rlt0 = prelu0(inp_np)
              prelu1 = fluid.PRelu(
                 mode='channel',
                 channel=200,
                 param_attr=fluid.ParamAttr(initializer=fluid.initializer.Constant(1.0)))
              dy_rlt1 = prelu1(inp_np)
              prelu2 = fluid.PRelu(
                 mode='element',
1980
                 input_shape=inp_np.shape,
L
lujun 已提交
1981
                 param_attr=fluid.ParamAttr(initializer=fluid.initializer.Constant(1.0)))
S
songyouwei 已提交
1982
              dy_rlt2 = prelu2(inp_np)
L
lujun 已提交
1983

1984 1985
    """

S
songyouwei 已提交
1986 1987 1988 1989 1990
    def __init__(self,
                 mode,
                 channel=None,
                 input_shape=None,
                 param_attr=None,
1991 1992
                 dtype='float32'):
        super(PRelu, self).__init__()
1993 1994
        self._mode = mode
        self._param_attr = param_attr
1995
        self._dtype = dtype
S
songyouwei 已提交
1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009
        if mode == 'all':
            self._alpha_shape = [1]
        elif mode == 'channel':
            assert isinstance(
                channel,
                int), "channel argument is required when mode is 'channel'."
            self._alpha_shape = [1, channel, 1, 1]
        elif mode == 'element':
            assert isinstance(input_shape, (
                list, tuple
            )), "input_shape argument is required when mode is 'element'."
            self._alpha_shape = [1] + list(input_shape)[1:]
        else:
            raise ValueError('mode should be one of all, channel, element.')
2010
        self.weight = self.create_parameter(
2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021
            attr=self._param_attr,
            shape=self._alpha_shape,
            dtype='float32',
            is_bias=False,
            default_initializer=Constant(1.0))

    def forward(self, input):
        out = self._helper.create_variable_for_type_inference(self._dtype)
        self._helper.append_op(
            type="prelu",
            inputs={"X": input,
2022
                    'Alpha': self.weight},
2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042
            attrs={"mode": self._mode},
            outputs={"Out": out})
        return out


class BilinearTensorProduct(layers.Layer):
    """
    **Add Bilinear Tensor Product Layer**

    This layer performs bilinear tensor product on two inputs.
    For example:

    .. math::
      out_{i} = x * W_{i} * {y^\mathrm{T}}, i=0,1,...,size-1

    In this formula:
     - :math:`x`: the first input contains M elements, shape is [batch_size, M].
     - :math:`y`: the second input contains N elements, shape is [batch_size, N].
     - :math:`W_{i}`: the i-th learned weight, shape is [M, N]
     - :math:`out_{i}`: the i-th element of out, shape is [batch_size, size].
D
DuYao 已提交
2043
     - :math:`y^\mathrm{T}`: the transpose of :math:`y`.
2044

2045
    Parameters:
2046 2047 2048 2049 2050
       input1_dim (int): The dimension of each first input.
       input2_dim (int): The dimension of each second input.
       output_dim (int): The dimension of output of this layer.
       name (str, optional): The default value is None. Normally there is no need for user
           to set this property. For more information, please refer to :ref:`api_guide_Name`. Default: None.
D
DuYao 已提交
2051 2052 2053 2054
       act (str, optional): Activation to be applied to the output of this layer. The default value is None.
       param_attr (ParamAttr, optional): The parameter attribute for the learnable w, parameters/weights of 
           this layer. The default value is None.
       bias_attr (ParamAttr, optional): The parameter attribute for the bias
2055
           of this layer. If it is set to False, no bias will be added to the output units.
D
DuYao 已提交
2056
           If it is set to None, the bias is initialized zero. The default value is None.
2057
       dtype (str, optional): Data type, it can be "float32" or "float64". Default: "float32".
2058

D
DuYao 已提交
2059 2060 2061 2062
    Attribute:
        **weight** (Parameter): the learnable weights of this layer.

        **bias** (Parameter): the learnable bias of this layer.
2063

2064 2065 2066 2067 2068 2069
    Returns:
       Variable: A 2-D Tensor of shape [batch_size, size].

    Examples:
       .. code-block:: python

2070 2071 2072 2073 2074 2075 2076
         import paddle.fluid as fluid
         import numpy

         with fluid.dygraph.guard():
             layer1 = numpy.random.random((5, 5)).astype('float32')
             layer2 = numpy.random.random((5, 4)).astype('float32')
             bilinearTensorProduct = fluid.dygraph.nn.BilinearTensorProduct(
2077
                    input1_dim=5, input2_dim=4, output_dim=1000)
2078 2079
             ret = bilinearTensorProduct(fluid.dygraph.base.to_variable(layer1),
                                fluid.dygraph.base.to_variable(layer2))
2080 2081 2082
    """

    def __init__(self,
2083 2084 2085
                 input1_dim,
                 input2_dim,
                 output_dim,
2086 2087 2088
                 name=None,
                 act=None,
                 param_attr=None,
2089 2090 2091
                 bias_attr=None,
                 dtype='float32'):
        super(BilinearTensorProduct, self).__init__()
2092 2093 2094 2095
        self._param_attr = param_attr
        self._bias_attr = bias_attr
        self._act = act
        self._name = name
2096 2097 2098
        self._input1_dim = input1_dim
        self._input2_dim = input2_dim
        self._output_dim = output_dim
2099
        self._inputs = dict()
2100
        self._dtype = dtype
2101

2102
        param_shape = [self._output_dim, self._input1_dim, self._input2_dim]
2103
        self.weight = self.create_parameter(
2104 2105 2106 2107
            attr=self._param_attr,
            shape=param_shape,
            dtype=self._dtype,
            is_bias=False)
2108
        bias_size = [1, self._output_dim]
2109
        self.bias = self.create_parameter(
2110 2111 2112 2113
            attr=self._bias_attr,
            shape=bias_size,
            dtype=self._dtype,
            is_bias=True)
2114 2115

    def forward(self, x, y):
2116 2117 2118
        self._inputs = {"X": x, "Y": y, "Weight": self.weight}
        if self.bias:
            self._inputs["Bias"] = self.bias
2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132
        if self._name is not None:
            out = self._helper.create_variable(
                name=".".join([self.full_name(), self._name]),
                dtype=self._dtype,
                persistable=False)
        else:
            out = self._helper.create_variable(
                dtype=self._dtype, persistable=False)
        self._helper.append_op(
            type="bilinear_tensor_product",
            inputs=self._inputs,
            outputs={"Out": out})

        # add activation
2133
        return self._helper.append_activation(out, act=self._act)
2134 2135 2136 2137


class Conv2DTranspose(layers.Layer):
    """
2138 2139
    This interface is used to construct a callable object of the ``Conv2DTranspose`` class.
    For more details, refer to code examples.
2140
    The convolution2D transpose layer calculates the output based on the input,
2141 2142 2143
    filter, and dilations, strides, paddings. Input and output
    are in NCHW format. Where N is batch size, C is the number of feature map,
    H is the height of the feature map, and W is the width of the feature map.
2144 2145
    Filter's shape is [MCHW] , where M is the number of input feature map,
    C is the number of output feature map, H is the height of the filter,
2146 2147
    and W is the width of the filter. If the groups is greater than 1,
    C will equal the number of input feature map divided by the groups.
2148 2149 2150
    If bias attribution and activation type are provided, bias is added to
    the output of the convolution, and the corresponding activation function
    is applied to the final result.
2151 2152
    The details of convolution transpose layer, please refer to the following explanation and references
    `conv2dtranspose <http://www.matthewzeiler.com/wp-content/uploads/2017/07/cvpr2010.pdf>`_ .
2153 2154 2155 2156 2157 2158 2159 2160 2161

    For each input :math:`X`, the equation is:

    .. math::

        Out = \sigma (W \\ast X + b)

    Where:

2162 2163
    * :math:`X`: Input value, a ``Tensor`` with NCHW format.
    * :math:`W`: Filter value, a ``Tensor`` with shape [MCHW] .
2164
    * :math:`\\ast`: Convolution operation.
2165
    * :math:`b`: Bias value, a 2-D ``Tensor`` with shape [M, 1].
2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189
    * :math:`\\sigma`: Activation function.
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.

    Example:

        - Input:

          Input shape: :math:`(N, C_{in}, H_{in}, W_{in})`

          Filter shape: :math:`(C_{in}, C_{out}, H_f, W_f)`

        - Output:

          Output shape: :math:`(N, C_{out}, H_{out}, W_{out})`

        Where

        .. math::

           H^\prime_{out} &= (H_{in} - 1) * strides[0] - 2 * paddings[0] + dilations[0] * (H_f - 1) + 1 \\\\
           W^\prime_{out} &= (W_{in} - 1) * strides[1] - 2 * paddings[1] + dilations[1] * (W_f - 1) + 1 \\\\
           H_{out} &\in [ H^\prime_{out}, H^\prime_{out} + strides[0] ) \\\\
           W_{out} &\in [ W^\prime_{out}, W^\prime_{out} + strides[1] )

2190
    Parameters:
2191
        num_channels(int): The number of channels in the input image.
2192
        num_filters(int): The number of the filter. It is as same as the output
2193
            feature map.
2194 2195 2196
        filter_size(int or tuple): The filter size. If filter_size is a tuple,
            it must contain two integers, (filter_size_H, filter_size_W).
            Otherwise, the filter will be a square.
2197
        output_size(int or tuple, optional): The output image size. If output size is a
2198 2199 2200
            tuple, it must contain two integers, (image_H, image_W). None if use
            filter_size, padding, and stride to calculate output_size.
            if output_size and filter_size are specified at the same time, They
L
lujun 已提交
2201
            should follow the formula above. Default: None.
2202
        padding(int or tuple, optional): The padding size. If padding is a tuple, it must
2203
            contain two integers, (padding_H, padding_W). Otherwise, the
2204 2205
            padding_H = padding_W = padding. Default: 0.
        stride(int or tuple, optional): The stride size. If stride is a tuple, it must
2206
            contain two integers, (stride_H, stride_W). Otherwise, the
2207 2208
            stride_H = stride_W = stride. Default: 1.
        dilation(int or tuple, optional): The dilation size. If dilation is a tuple, it must
2209
            contain two integers, (dilation_H, dilation_W). Otherwise, the
2210 2211
            dilation_H = dilation_W = dilation. Default: 1.
        groups(int, optional): The groups number of the Conv2d transpose layer. Inspired by
2212 2213 2214 2215
            grouped convolution in Alex Krizhevsky's Deep CNN paper, in which
            when group=2, the first half of the filters is only connected to the
            first half of the input channels, while the second half of the
            filters is only connected to the second half of the input channels.
2216 2217
            Default: 1.
        param_attr (ParamAttr, optional): The parameter attribute for learnable weights(Parameter)
2218 2219 2220
            of conv2d_transpose. If it is set to None or one attribute of ParamAttr, conv2d_transpose
            will create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with Xavier. Default: None.
2221
        bias_attr (ParamAttr or bool, optional): The attribute for the bias of conv2d_transpose.
2222 2223 2224 2225
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, conv2d_transpose
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. Default: None.
2226
        use_cudnn(bool, optional): Use cudnn kernel or not, it is valid only when the cudnn
2227
            library is installed. Default: True.
2228
        act (str, optional): Activation type, if it is set to None, activation is not appended.
2229
            Default: None.
2230
        dtype (str, optional): Data type, it can be "float32" or "float64". Default: "float32".
2231

2232 2233
    Attribute:
        **weight** (Parameter): the learnable weights of filters of this layer.
2234

2235
        **bias** (Parameter or None): the learnable bias of this layer.
2236

2237 2238
    Returns:
        None
2239 2240 2241 2242

    Examples:
       .. code-block:: python

2243
          import paddle.fluid as fluid
2244
          import numpy as np
2245 2246

          with fluid.dygraph.guard():
2247
              data = np.random.random((3, 32, 32, 5)).astype('float32')
2248
              conv2DTranspose = fluid.dygraph.nn.Conv2DTranspose(
2249
                    num_channels=32, num_filters=2, filter_size=3)
2250 2251
              ret = conv2DTranspose(fluid.dygraph.base.to_variable(data))

2252 2253 2254
    """

    def __init__(self,
2255
                 num_channels,
2256
                 num_filters,
2257
                 filter_size,
2258 2259 2260 2261 2262 2263 2264 2265
                 output_size=None,
                 padding=0,
                 stride=1,
                 dilation=1,
                 groups=None,
                 param_attr=None,
                 bias_attr=None,
                 use_cudnn=True,
2266 2267 2268
                 act=None,
                 dtype='float32'):
        super(Conv2DTranspose, self).__init__()
2269 2270 2271
        assert param_attr is not False, "param_attr should not be False in conv2d_transpose."
        self._param_attr = param_attr
        self._bias_attr = bias_attr
2272
        self._act = act
2273
        self._groups = groups
2274
        self._num_channels = num_channels
2275 2276 2277 2278 2279 2280 2281
        self._num_filters = num_filters
        self._use_cudnn = use_cudnn
        self._padding = padding
        self._stride = stride
        self._dilation = dilation
        self._filter_size = filter_size
        self._output_size = output_size
2282
        self._dtype = dtype
2283

2284 2285 2286
        if (self._num_channels == self._groups and
                self._num_filters == self._num_channels and
                not self._use_cudnn):
2287
            self._op_type = 'depthwise_conv2d_transpose'
2288 2289
        else:
            self._op_type = 'conv2d_transpose'
2290 2291 2292 2293 2294

        self._padding = utils.convert_to_list(self._padding, 2, 'padding')
        self._stride = utils.convert_to_list(self._stride, 2, 'stride')
        self._dilation = utils.convert_to_list(self._dilation, 2, 'dilation')

2295 2296
        self._filter_size = utils.convert_to_list(
            self._filter_size, 2, 'conv2d_transpose.filter_size')
2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307

        if self._output_size is None:
            self._output_size = []
        elif isinstance(self._output_size, list) or isinstance(
                self._output_size, int):
            self._output_size = utils.convert_to_list(self._output_size, 2,
                                                      'output_size')
        else:
            raise ValueError("output_size should be list or int")
        self._padding = utils.convert_to_list(self._padding, 2, 'padding')
        self._groups = 1 if self._groups is None else self._groups
2308
        filter_shape = [self._num_channels, self._num_filters // self._groups
2309 2310
                        ] + self._filter_size

2311
        self.weight = self.create_parameter(
2312
            dtype=self._dtype, shape=filter_shape, attr=self._param_attr)
2313

2314
        self.bias = self.create_parameter(
2315 2316 2317 2318 2319
            attr=self._bias_attr,
            shape=[self._num_filters],
            dtype=self._dtype,
            is_bias=True)

2320
    def forward(self, input):
2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339
        inputs = {'Input': [input], 'Filter': [self.weight]}
        attrs = {
            'output_size': self._output_size,
            'strides': self._stride,
            'paddings': self._padding,
            'dilations': self._dilation,
            'groups': self._groups,
            'use_cudnn': self._use_cudnn
        }

        if in_dygraph_mode():
            op = getattr(core.ops, self._op_type)
            outs = op(inputs, attrs)
            pre_bias = outs['Output'][0]
            pre_act = dygraph_utils._append_bias_in_dygraph(pre_bias, self.bias,
                                                            1)
            return dygraph_utils._append_activation_in_dygraph(
                pre_act, act=self._act)

2340 2341 2342 2343
        pre_bias = self._helper.create_variable_for_type_inference(
            dtype=input.dtype)
        self._helper.append_op(
            type=self._op_type,
2344
            inputs=inputs,
2345
            outputs={'Output': pre_bias},
2346
            attrs=attrs)
2347

2348
        if self.bias is not None:
2349 2350 2351 2352 2353
            pre_act = self._helper.create_variable_for_type_inference(
                dtype=self._dtype)
            self._helper.append_op(
                type='elementwise_add',
                inputs={'X': [pre_bias],
2354
                        'Y': [self.bias]},
2355 2356 2357 2358 2359 2360
                outputs={'Out': [pre_act]},
                attrs={'axis': 1})
        else:
            pre_act = pre_bias

        out = self._helper.append_activation(pre_act, act=self._act)
2361 2362 2363 2364 2365 2366 2367 2368 2369
        return out


class SequenceConv(layers.Layer):
    """
    This function creates the op for sequence_conv, using the inputs and
    other convolutional configurations for the filters and stride as given
    in the input parameters to the function.

2370
    Parameters:
L
lujun 已提交
2371
        name_scope(str): The name of this class.
2372
        num_filters (int): number of filters.
L
lujun 已提交
2373 2374 2375
        filter_size (int): the filter size (H and W). Default: 3.
        filter_stride (int): stride of the filter. Default: 1.
        padding (bool|None): if True, add paddings. Default: None
2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of sequence_conv.
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, sequence_conv
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. Default: None.
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
            of sequence_conv. If it is set to None or one attribute of ParamAttr, sequence_conv
            will create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with Xavier. Default: None.
        act (str): Activation type, if it is set to None, activation is not appended.
            Default: None.

2388 2389 2390 2391
    Attributes:
        weight (Parameter): the learnable weights of filters of this layer.
        bias (Parameter|None): the learnable bias of this layer.

2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404
    Returns:
        Variable: output of sequence_conv
    """

    def __init__(self,
                 name_scope,
                 num_filters,
                 filter_size=3,
                 filter_stride=1,
                 padding=None,
                 bias_attr=None,
                 param_attr=None,
                 act=None):
L
lujun 已提交
2405
        assert not in_dygraph_mode(
2406
        ), "SequenceConv is not supported by dynamic graph mode yet!"
2407 2408 2409 2410 2411 2412 2413
        super(SequenceConv, self).__init__(name_scope)
        self._num_filters = num_filters
        self._filter_size = filter_size
        self._filter_stride = filter_stride
        self._padding = padding
        self._bias_attr = bias_attr
        self._param_attr = param_attr
2414
        self._act = act
2415

2416
    def _build_once(self, input):
2417 2418
        self._dtype = self._helper.input_dtype(input)
        filter_shape = [self._filter_size * input.shape[1], self._num_filters]
2419
        self.weight = self.create_parameter(
2420
            attr=self._param_attr, shape=filter_shape, dtype=self._dtype)
2421

2422
        self.bias = self.create_parameter(
2423 2424 2425 2426 2427
            attr=self._bias_attr,
            shape=[self._num_filters],
            dtype=self._dtype,
            is_bias=True)

2428 2429 2430 2431 2432 2433
    def forward(self, input):
        pre_bias = self._helper.create_variable_for_type_inference(self._dtype)
        self._helper.append_op(
            type='sequence_conv',
            inputs={
                'X': [input],
2434
                'Filter': [self.weight],
2435 2436 2437 2438 2439 2440 2441
            },
            outputs={"Out": pre_bias},
            attrs={
                'contextStride': self._filter_stride,
                'contextStart': -int(self._filter_size // 2),
                'contextLength': self._filter_size
            })
2442

2443
        if self.bias is not None:
2444 2445 2446 2447 2448
            pre_act = self._helper.create_variable_for_type_inference(
                dtype=self._dtype)
            self._helper.append_op(
                type='elementwise_add',
                inputs={'X': [pre_bias],
2449
                        'Y': [self.bias]},
2450 2451 2452 2453 2454 2455
                outputs={'Out': [pre_act]},
                attrs={'axis': 1})
        else:
            pre_act = pre_bias

        return self._helper.append_activation(pre_act, act=self._act)
L
lujun 已提交
2456 2457 2458


class RowConv(layers.Layer):
2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476
    """
    ***Row-convolution operator***

    The row convolution is called lookahead convolution.  This operator was introduced in the following paper for DeepSpeech2:
    http://www.cs.cmu.edu/~dyogatam/papers/wang+etal.iclrworkshop2016.pdf

    The main motivation is that a bidirectional RNN, useful in DeepSpeech like speech models, learns representation for a sequence by performing a
    forward and a backward pass through the entire sequence. However, unlike
    unidirectional RNNs, bidirectional RNNs are challenging to deploy in an online
    and low-latency setting. The lookahead convolution incorporates information
    from future subsequences in a computationally efficient manner to improve
    unidirectional recurrent neural networks. The row convolution operator is
    different from the 1D sequence convolution, and is computed as follows:

    Given an input sequence X of length t and input dimension D, and a filter (W) of size context * D.

    More details about row_conv please refer to the design document https://github.com/PaddlePaddle/Paddle/issues/2228#issuecomment-303903645 .

2477
    Parameters:
L
lujun 已提交
2478
        name_scope(str): The name of this class.
2479 2480 2481
        future_context_size (int): Future context size. Please note, the shape
            of convolution kernel is [future_context_size + 1, D].
        param_attr (ParamAttr): Attributes of parameters, including
L
lujun 已提交
2482 2483
            name, initializer etc. Default: None.
        act (str): Non-linear activation to be applied to output variable. Default: None.
2484

2485 2486 2487
    Attributes:
        weight (Parameter): the learnable weights of this layer.

2488
    Returns:
L
lujun 已提交
2489 2490
        the output(Out) is a LodTensor, which supports variable time-length input sequences.
        The underlying tensor in this LodTensor is a matrix with shape T x N, i.e., the same shape as X.
2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505

    Examples:
        .. code-block:: python

          import paddle.fluid as fluid
          import numpy

          with fluid.dygraph.guard():
              x = numpy.random.random((16)).astype('float32')
              rowConv = fluid.dygraph.nn.RowConv(
                    'RowConv', future_context_size=2)
              ret = rowConv(fluid.dygraph.base.to_variable(x))

    """

L
lujun 已提交
2506 2507 2508 2509 2510
    def __init__(self,
                 name_scope,
                 future_context_size,
                 param_attr=None,
                 act=None):
L
lujun 已提交
2511
        assert not in_dygraph_mode(
2512
        ), "RowConv is not supported by dynamic graph mode yet!"
L
lujun 已提交
2513 2514 2515 2516 2517
        super(RowConv, self).__init__(name_scope)
        self._act = act
        self._param_attr = param_attr
        self._future_context_size = future_context_size

2518
    def _build_once(self, input):
L
lujun 已提交
2519 2520
        self._dtype = self._helper.input_dtype(input)
        filter_shape = [self._future_context_size + 1, input.shape[1]]
2521
        self.weight = self.create_parameter(
2522 2523 2524 2525
            attr=self._param_attr,
            shape=filter_shape,
            dtype=self._dtype,
            is_bias=False)
L
lujun 已提交
2526 2527 2528 2529 2530 2531

    def forward(self, input):
        out = self._helper.create_variable_for_type_inference(self._dtype)
        self._helper.append_op(
            type='row_conv',
            inputs={'X': [input],
2532
                    'Filter': [self.weight]},
L
lujun 已提交
2533 2534 2535 2536 2537 2538
            outputs={'Out': [out]})
        return self._helper.append_activation(out, act=self._act)


class GroupNorm(layers.Layer):
    """
2539 2540 2541 2542 2543 2544
    This interface is used to construct a callable object of the ``GroupNorm`` class.
    For more details, refer to code examples.
    It implements the function of the Group Normalization Layer.
    Refer to `Group Normalization <https://arxiv.org/abs/1803.08494>`_ .

    Parameters:
2545
        channels(int): The number of channels of input.
2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568
        groups(int): The number of groups that divided from channels.
        epsilon(float, optional): The small value added to the variance to prevent
                                  division by zero. Default: 1e-05.
        param_attr(ParamAttr, optional): The parameter attribute for the learnable
                                         scale :math:`g`. If it is set to False, no scale will be added to the output units.
                                         If it is set to None, the bias is initialized one. Default: None.
        bias_attr(ParamAttr, optional): The parameter attribute for the learnable
                                        bias :math:`b`. If it is set to False, no bias will be added to the output units.
                                        If it is set to None, the bias is initialized zero. Default: None.
        act(str, optional): Activation to be applied to the output of group normalizaiton. Default: None.
        data_layout(str, optional): Specify the input data format. Only NCHW is supported. Default: NCHW.

    Returns:
        None

    Examples:
        .. code-block:: python

          import paddle.fluid as fluid
          import numpy as np

          with fluid.dygraph.guard():
              x = np.random.random((8, 32, 32)).astype('float32')
2569
              groupNorm = fluid.dygraph.nn.GroupNorm(channels=32, groups=4)
2570
              ret = groupNorm(fluid.dygraph.base.to_variable(x))
L
lujun 已提交
2571 2572 2573 2574

    """

    def __init__(self,
2575
                 channels,
L
lujun 已提交
2576 2577 2578 2579 2580
                 groups,
                 epsilon=1e-05,
                 param_attr=None,
                 bias_attr=None,
                 act=None,
2581 2582 2583
                 data_layout='NCHW',
                 dtype='float32'):
        super(GroupNorm, self).__init__()
L
lujun 已提交
2584 2585 2586
        self._param_attr = param_attr
        self._bias_attr = bias_attr
        self._epsilon = epsilon
2587
        self._channels = channels
L
lujun 已提交
2588 2589
        self._groups = groups
        self._act = act
2590
        self._dtype = dtype
L
lujun 已提交
2591 2592 2593
        if data_layout != 'NCHW':
            raise ValueError("unsupported data layout:" + data_layout)

2594
        param_shape = [self._channels]
L
lujun 已提交
2595

2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606
        self.weight = self.create_parameter(
            attr=self._param_attr or False,
            shape=param_shape,
            dtype=self._dtype,
            default_initializer=Constant(1.0))

        self.bias = self.create_parameter(
            attr=self._bias_attr or False,
            shape=param_shape,
            dtype=self._dtype,
            is_bias=True)
L
lujun 已提交
2607 2608 2609

    def forward(self, input):
        inputs = {'X': input}
2610 2611 2612 2613
        if self.bias:
            inputs['Bias'] = self.bias
        if self.weight:
            inputs['Scale'] = self.weight
L
lujun 已提交
2614 2615

        # create output
2616
        mean_out = self._helper.create_variable_for_type_inference(
L
lujun 已提交
2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637
            dtype=self._dtype, stop_gradient=True)
        variance_out = self._helper.create_variable_for_type_inference(
            dtype=self._dtype, stop_gradient=True)
        group_norm_out = self._helper.create_variable_for_type_inference(
            dtype=self._dtype)

        self._helper.append_op(
            type="group_norm",
            inputs=inputs,
            outputs={
                "Y": group_norm_out,
                "Mean": mean_out,
                "Variance": variance_out,
            },
            attrs={"epsilon": self._epsilon,
                   "groups": self._groups})

        return self._helper.append_activation(group_norm_out, self._act)


class SpectralNorm(layers.Layer):
2638
    """
2639 2640
    This interface is used to construct a callable object of the ``SpectralNorm`` class.
    For more details, refer to code examples. It implements the function of the Spectral Normalization Layer.
2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671
    This layer calculates the spectral normalization value of weight parameters of
    fc, conv1d, conv2d, conv3d layers which should be 2-D, 3-D, 4-D, 5-D
    Parameters. Calculations are showed as follows.

    Step 1:
    Generate vector U in shape of [H], and V in shape of [W].
    While H is the :attr:`dim` th dimension of the input weights,
    and W is the product result of remaining dimensions.

    Step 2:
    :attr:`power_iters` shoule be a positive interger, do following
    calculations with U and V for :attr:`power_iters` rounds.

    .. math::

        \mathbf{v} := \\frac{\mathbf{W}^{T} \mathbf{u}}{\|\mathbf{W}^{T} \mathbf{u}\|_2}

        \mathbf{u} := \\frac{\mathbf{W}^{T} \mathbf{v}}{\|\mathbf{W}^{T} \mathbf{v}\|_2}

    Step 3:
    Calculate :math:`\sigma(\mathbf{W})` and normalize weight values.

    .. math::

        \sigma(\mathbf{W}) = \mathbf{u}^{T} \mathbf{W} \mathbf{v}

        \mathbf{W} = \\frac{\mathbf{W}}{\sigma(\mathbf{W})}


    Refer to `Spectral Normalization <https://arxiv.org/abs/1802.05957>`_ .

2672
    Parameters:
2673
        weight_shape(list or tuple): The shape of weight parameter.
2674 2675 2676 2677
        dim(int, optional): The index of dimension which should be permuted to the first before reshaping Input(Weight) to matrix, it should be set as 0 if Input(Weight) is the weight of fc layer, and should be set as 1 if Input(Weight) is the weight of conv layer. Default: 0.
        power_iters(int, optional): The number of power iterations to calculate spectral norm. Default: 1.
        eps(float, optional): The epsilon for numerical stability in calculating norms. Default: 1e-12.
        name (str, optional): The default value is None.  Normally there is no need for user to set this property.  For more information, please refer to :ref:`api_guide_Name` .
2678
        dtype (str, optional): Data type, it can be "float32" or "float64". Default: "float32".
2679 2680

    Returns:
2681
        None
2682 2683 2684 2685 2686

    Examples:
       .. code-block:: python

            import paddle.fluid as fluid
2687
            import numpy as np
2688 2689

            with fluid.dygraph.guard():
2690 2691 2692
                weight = np.random.random((2, 8, 32, 32)).astype('float32')
                spectralNorm = fluid.dygraph.nn.SpectralNorm(weight.shape, dim=1, power_iters=2)
                ret = spectralNorm(fluid.dygraph.base.to_variable(weight))
2693 2694 2695

    """

2696 2697 2698 2699 2700 2701 2702
    def __init__(self,
                 weight_shape,
                 dim=0,
                 power_iters=1,
                 eps=1e-12,
                 dtype='float32'):
        super(SpectralNorm, self).__init__()
L
lujun 已提交
2703 2704 2705
        self._power_iters = power_iters
        self._eps = eps
        self._dim = dim
2706
        self._dtype = dtype
L
lujun 已提交
2707

2708 2709 2710
        self._weight_shape = list(weight_shape)
        h = self._weight_shape[self._dim]
        w = np.prod(self._weight_shape) // h
L
lujun 已提交
2711

2712
        self.weight_u = self.create_parameter(
L
lujun 已提交
2713 2714 2715 2716
            attr=ParamAttr(),
            shape=[h],
            dtype=self._dtype,
            default_initializer=Normal(0., 1.))
2717
        self.weight_u.stop_gradient = True
L
lujun 已提交
2718

2719
        self.weight_v = self.create_parameter(
L
lujun 已提交
2720 2721 2722 2723
            attr=ParamAttr(),
            shape=[w],
            dtype=self._dtype,
            default_initializer=Normal(0., 1.))
2724
        self.weight_v.stop_gradient = True
L
lujun 已提交
2725 2726

    def forward(self, weight):
2727
        inputs = {'Weight': weight, 'U': self.weight_u, 'V': self.weight_v}
L
lujun 已提交
2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742
        out = self._helper.create_variable_for_type_inference(self._dtype)
        self._helper.append_op(
            type="spectral_norm",
            inputs=inputs,
            outputs={"Out": out, },
            attrs={
                "dim": self._dim,
                "power_iters": self._power_iters,
                "eps": self._eps,
            })

        return out


class TreeConv(layers.Layer):
2743
    """
2744 2745 2746 2747 2748 2749 2750 2751 2752 2753
    This interface is used to construct a callable object of the ``TreeConv`` class.
    For more details, refer to code examples.
    Tree-Based Convolution is a kind of convolution based on tree structure.
    Tree-Based Convolution is a part of Tree-Based Convolution Neural Network(TBCNN),
    which is used to classify tree structures, such as Abstract Syntax Tree.
    Tree-Based Convolution proposed a kind of data structure called continuous binary tree,
    which regards multiway tree as binary tree.
    The paper of Tree-Based Convolution Operator is here: `tree-based convolution <https://arxiv.org/abs/1409.5718v1/>`_ .
    
    Parameters:
2754
        feature_size(int): last dimension of nodes_vector.
2755 2756 2757 2758 2759 2760 2761
        output_size(int): output feature width.
        num_filters(int, optional): number of filters, Default: 1.
        max_depth(int, optional): max depth of filters, Default: 2.
        act(str, optional): activation function, Default: tanh.
        param_attr(ParamAttr, optional): the parameter attribute for the filters, Default: None.
        bias_attr(ParamAttr, optional): the parameter attribute for the bias of this layer, Default: None.
        name(str, optional): The default value is None. Normally there is no need for user to set this property. For more information, please refer to :ref:`api_guide_Name` .
2762
        dtype (str, optional): Data type, it can be "float32" or "float64". Default: "float32".
2763

2764 2765
    Attribute:
        **weight** (Parameter): the learnable weights of filters of this layer.
2766

2767
        **bias** (Parameter or None): the learnable bias of this layer.
2768

2769 2770
    Returns:
        None
L
lujun 已提交
2771

2772
    Examples:
L
lujun 已提交
2773

2774
        .. code-block:: python
2775

2776 2777
          import paddle.fluid as fluid
          import numpy
2778

2779 2780 2781 2782
          with fluid.dygraph.guard():
              nodes_vector = numpy.random.random((1, 10, 5)).astype('float32')
              edge_set = numpy.random.random((1, 9, 2)).astype('int32')
              treeConv = fluid.dygraph.nn.TreeConv(
2783
                feature_size=5, output_size=6, num_filters=1, max_depth=2)
2784
              ret = treeConv(fluid.dygraph.base.to_variable(nodes_vector), fluid.dygraph.base.to_variable(edge_set))
2785 2786
    """

L
lujun 已提交
2787
    def __init__(self,
2788
                 feature_size,
L
lujun 已提交
2789 2790 2791 2792 2793 2794
                 output_size,
                 num_filters=1,
                 max_depth=2,
                 act='tanh',
                 param_attr=None,
                 bias_attr=None,
2795 2796 2797
                 name=None,
                 dtype='float32'):
        super(TreeConv, self).__init__()
L
lujun 已提交
2798
        self._name = name
2799
        self._feature_size = feature_size
L
lujun 已提交
2800 2801 2802 2803 2804 2805
        self._output_size = output_size
        self._act = act
        self._max_depth = max_depth
        self._num_filters = num_filters
        self._bias_attr = bias_attr
        self._param_attr = param_attr
2806 2807
        self._dtype = dtype
        w_shape = [self._feature_size, 3, self._output_size, self._num_filters]
L
lujun 已提交
2808
        if self._bias_attr:
2809
            self.bias = self.create_parameter(
L
lujun 已提交
2810 2811 2812 2813
                attr=self._bias_attr,
                shape=[self._num_filters],
                dtype=self._dtype,
                is_bias=True)
2814
        self.weight = self.create_parameter(
L
lujun 已提交
2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831
            attr=self._param_attr,
            shape=w_shape,
            dtype=self._dtype,
            is_bias=False)

    def forward(self, nodes_vector, edge_set):
        if self._name:
            out = self.create_variable(
                name=self._name, dtype=self._dtype, persistable=False)
        else:
            out = self._helper.create_variable_for_type_inference(
                dtype=self._dtype)
        self._helper.append_op(
            type='tree_conv',
            inputs={
                'NodesVector': nodes_vector,
                'EdgeSet': edge_set,
2832
                'Filter': self.weight
L
lujun 已提交
2833 2834 2835 2836 2837 2838 2839 2840 2841
            },
            outputs={'Out': out, },
            attrs={'max_depth': self._max_depth})
        if self._bias_attr:
            pre_activation = self._helper.create_variable_for_type_inference(
                dtype=self._dtype)
            self._helper.append_op(
                type='elementwise_add',
                inputs={'X': [out],
2842
                        'Y': [self.bias]},
L
lujun 已提交
2843 2844 2845 2846 2847
                outputs={'Out': [pre_activation]},
                attrs={'axis': 1})
        else:
            pre_activation = out
        return self._helper.append_activation(pre_activation, act=self._act)