Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
机器未来
Paddle
提交
e3a8929c
P
Paddle
项目概览
机器未来
/
Paddle
与 Fork 源项目一致
Fork自
PaddlePaddle / Paddle
通知
1
Star
1
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1
Issue
1
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
e3a8929c
编写于
1月 25, 2019
作者:
J
JiabinYang
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
little change
上级
cddecad7
变更
4
隐藏空白更改
内联
并排
Showing
4 changed file
with
159 addition
and
61 deletion
+159
-61
paddle/fluid/inference/utils/CMakeLists.txt
paddle/fluid/inference/utils/CMakeLists.txt
+2
-2
python/paddle/fluid/imperative/nn.py
python/paddle/fluid/imperative/nn.py
+1
-1
python/paddle/fluid/tests/unittests/test_imperative_ptb_rnn.py
...n/paddle/fluid/tests/unittests/test_imperative_ptb_rnn.py
+108
-58
python/paddle/fluid/tests/unittests/test_imperative_split.py
python/paddle/fluid/tests/unittests/test_imperative_split.py
+48
-0
未找到文件。
paddle/fluid/inference/utils/CMakeLists.txt
浏览文件 @
e3a8929c
cc_library
(
benchmark SRCS benchmark.cc DEPS enforce
)
cc_test
(
test_benchmark SRCS benchmark_tester.cc DEPS benchmark
)
cc_binary
(
visualizer SRCS visualizer.cc DEPS analysis
paddle_pass_builder ir_pass_manager pass graph_viz_pass analysis_passes
)
#
cc_binary(visualizer SRCS visualizer.cc DEPS analysis
#
paddle_pass_builder ir_pass_manager pass graph_viz_pass analysis_passes)
python/paddle/fluid/imperative/nn.py
浏览文件 @
e3a8929c
...
...
@@ -295,7 +295,7 @@ class EMBEDDING(layers.Layer):
self
.
_param_attr
=
param_attr
self
.
_dtype
=
dtype
self
.
_remote_prefetch
=
self
.
is_sparse
and
(
not
self
.
is_distributed
)
self
.
_remote_prefetch
=
self
.
_is_sparse
and
(
not
self
.
_
is_distributed
)
if
self
.
_remote_prefetch
:
assert
self
.
_is_sparse
is
True
and
self
.
_is_distributed
is
False
...
...
python/paddle/fluid/tests/unittests/test_imperative_ptb_rnn.py
浏览文件 @
e3a8929c
...
...
@@ -18,23 +18,28 @@ import unittest
import
paddle.fluid
as
fluid
from
paddle.fluid.imperative.nn
import
EMBEDDING
import
paddle.fluid.framework
as
framework
import
paddle.fluid.optimizer
as
optimizer
from
paddle.fluid.optimizer
import
SGDOptimizer
from
paddle.fluid.imperative.base
import
to_variable
import
numpy
as
np
from
paddle.fluid.backward
import
append_backward
class
SimpleLSTMRNN
(
fluid
.
imperative
.
Layer
):
def
__init__
(
self
,
hidden_size
,
num_layers
=
2
,
init_scale
=
0.1
,
dropout
=
None
):
def
__init__
(
self
,
hidden_size
,
num_steps
,
num_layers
=
2
,
init_scale
=
0.1
,
dropout
=
None
):
super
(
SimpleLSTMRNN
,
self
).
__init__
()
self
.
_hidden_size
=
hidden_size
self
.
_num_layers
=
num_layers
self
.
_init_scale
=
init_scale
self
.
_dropout
=
dropout
self
.
input
=
None
self
.
num_steps
=
num_steps
def
_build_once
(
self
,
input_embedding
,
seq_len
,
init_hidden
=
None
,
init_cell
=
None
):
def
_build_once
(
self
,
input_embedding
,
init_hidden
=
None
,
init_cell
=
None
):
self
.
weight_1_arr
=
[]
self
.
weight_2_arr
=
[]
self
.
bias_arr
=
[]
...
...
@@ -57,7 +62,7 @@ class SimpleLSTMRNN(fluid.imperative.Layer):
default_initializer
=
fluid
.
initializer
.
Constant
(
0.0
))
self
.
bias_arr
.
append
(
bias_1
)
pre_hidden
=
self
.
layers
.
slice
(
pre_hidden
=
fluid
.
layers
.
slice
(
init_hidden
,
axes
=
[
0
],
starts
=
[
i
],
ends
=
[
i
+
1
])
pre_cell
=
fluid
.
layers
.
slice
(
init_cell
,
axes
=
[
0
],
starts
=
[
i
],
ends
=
[
i
+
1
])
...
...
@@ -65,22 +70,20 @@ class SimpleLSTMRNN(fluid.imperative.Layer):
pre_hidden
,
shape
=
[
-
1
,
self
.
_hidden_size
])
pre_cell
=
fluid
.
layers
.
reshape
(
pre_cell
,
shape
=
[
-
1
,
self
.
_hidden_size
])
fluid
.
hidden_array
.
append
(
pre_hidden
)
fluid
.
cell_array
.
append
(
pre_cell
)
def
forward
(
self
,
input_embedding
,
seq_len
,
init_hidden
=
None
,
init_cell
=
None
):
self
.
hidden_array
.
append
(
pre_hidden
)
self
.
cell_array
.
append
(
pre_cell
)
def
forward
(
self
,
input_embedding
,
init_hidden
=
None
,
init_cell
=
None
):
res
=
[]
for
index
in
range
(
se
q_len
):
for
index
in
range
(
se
lf
.
num_steps
):
self
.
input
=
fluid
.
layers
.
slice
(
input_embedding
,
axes
=
[
1
],
starts
=
[
index
],
ends
=
[
index
+
1
])
self
.
input
=
fluid
.
layers
.
reshape
(
self
.
input
,
shape
=
[
-
1
,
self
.
_hidden_size
])
for
k
in
range
(
self
.
_num_layers
):
pre_hidden
=
self
.
hidden_array
[
k
]
print
(
"pre_hidden shape is:{}"
.
format
(
pre_hidden
.
shape
))
print
(
"input shape is:{}"
.
format
(
self
.
input
.
shape
))
pre_cell
=
self
.
cell_array
[
k
]
weight_1
=
self
.
weight_1_arr
[
k
]
bias
=
self
.
bias_arr
[
k
]
...
...
@@ -89,38 +92,41 @@ class SimpleLSTMRNN(fluid.imperative.Layer):
gate_input
=
fluid
.
layers
.
matmul
(
x
=
nn
,
y
=
weight_1
)
gate_input
=
fluid
.
layers
.
elementwise_add
(
gate_input
,
bias
)
i
,
j
,
f
,
o
=
fluid
.
layers
.
split
(
gate_input
,
num_or_sections
=
4
,
dim
=-
1
)
c
=
pre_cell
*
fluid
.
layers
.
sigmoid
(
f
)
+
fluid
.
layers
.
sigmoid
(
i
)
*
fluid
.
layers
.
tanh
(
j
)
m
=
fluid
.
layers
.
tanh
(
c
)
*
fluid
.
layers
.
sigmoid
(
o
)
self
.
hidden_array
[
k
]
=
m
self
.
cell_array
[
k
]
=
c
self
.
input
=
m
if
self
.
dropout
is
not
None
and
self
.
dropout
>
0.0
:
self
.
input
=
fluid
.
layers
.
dropout
(
self
.
input
,
dropout_prob
=
self
.
dropout
,
dropout_implementation
=
'upscale_in_train'
)
res
.
append
(
fluid
.
layers
.
reshape
(
input
,
shape
=
[
1
,
-
1
,
self
.
_hidden_size
]))
real_res
=
fluid
.
layers
.
concat
(
res
,
0
)
real_res
=
fluid
.
layers
.
transpose
(
x
=
real_res
,
perm
=
[
1
,
0
,
2
])
last_hidden
=
fluid
.
layers
.
concat
(
self
.
hidden_array
,
1
)
last_hidden
=
fluid
.
layers
.
reshape
(
last_hidden
,
shape
=
[
-
1
,
self
.
_num_layers
,
self
.
_hidden_size
])
last_hidden
=
fluid
.
layers
.
transpose
(
x
=
last_hidden
,
perm
=
[
1
,
0
,
2
])
last_cell
=
fluid
.
layers
.
concat
(
self
.
cell_array
,
1
)
last_cell
=
fluid
.
layers
.
reshape
(
last_cell
,
shape
=
[
-
1
,
self
.
_num_layers
,
self
.
_hidden_size
])
last_cell
=
fluid
.
layers
.
transpose
(
x
=
last_cell
,
perm
=
[
1
,
0
,
2
])
return
real_res
,
last_hidden
,
last_cell
print
(
"gate_input shape is: {}"
.
format
(
gate_input
.
shape
))
print
(
"gate_input value is :{}"
.
format
(
gate_input
.
_numpy
()))
print
(
"gate_input desc is :{}"
.
format
(
gate_input
))
# i, j, f, o = fluid.layers.split(gate_input, num_or_sections=4, dim=-1)
# #
# # c = pre_cell * fluid.layers.sigmoid(f) + fluid.layers.sigmoid(
# # i) * fluid.layers.tanh(j)
# # m = fluid.layers.tanh(c) * fluid.layers.sigmoid(o)
# #
# # self.hidden_array[k] = m
# # self.cell_array[k] = c
# # self.input = m
# #
# # if self.dropout is not None and self.dropout > 0.0:
# # self.input = fluid.layers.dropout(
# # self.input,
# # dropout_prob=self.dropout,
# # dropout_implementation='upscale_in_train')
# #
# # res.append(
# # fluid.layers.reshape(
# # input, shape=[1, -1, self._hidden_size]))
# # real_res = fluid.layers.concat(res, 0)
# # real_res = fluid.layers.transpose(x=real_res, perm=[1, 0, 2])
# # last_hidden = fluid.layers.concat(self.hidden_array, 1)
# # last_hidden = fluid.layers.reshape(
# # last_hidden, shape=[-1, self._num_layers, self._hidden_size])
# # last_hidden = fluid.layers.transpose(x=last_hidden, perm=[1, 0, 2])
# # last_cell = fluid.layers.concat(self.cell_array, 1)
# # last_cell = fluid.layers.reshape(
# # last_cell, shape=[-1, self._num_layers, self._hidden_size])
# # last_cell = fluid.layers.transpose(x=last_cell, perm=[1, 0, 2])
# #
# return real_res, last_hidden, last_cell
return
[
1
],
[
2
],
[
3
]
class
PtbModel
(
fluid
.
imperative
.
Layer
):
...
...
@@ -137,8 +143,10 @@ class PtbModel(fluid.imperative.Layer):
self
.
init_scale
=
init_scale
self
.
num_layers
=
num_layers
self
.
num_steps
=
num_steps
self
.
dropout
=
dropout
self
.
simple_lstm_rnn
=
SimpleLSTMRNN
(
hidden_size
,
num_steps
,
num_layers
=
num_layers
,
init_scale
=
init_scale
,
dropout
=
dropout
)
...
...
@@ -153,21 +161,23 @@ class PtbModel(fluid.imperative.Layer):
def
_build_once
(
self
,
input
,
label
,
init_hidden
,
init_cell
):
self
.
softmax_weight
=
fluid
.
layers
.
create_parameter
(
[
self
.
_hidden_size
,
self
.
_
vocab_size
],
[
self
.
hidden_size
,
self
.
vocab_size
],
dtype
=
"float32"
,
name
=
"softmax_weight"
,
default_initializer
=
fluid
.
initializer
.
UniformInitializer
(
low
=-
self
.
_init_scale
,
high
=
self
.
_
init_scale
))
low
=-
self
.
init_scale
,
high
=
self
.
init_scale
))
self
.
softmax_bias
=
fluid
.
layers
.
create_parameter
(
[
self
.
_
vocab_size
],
[
self
.
vocab_size
],
dtype
=
"float32"
,
name
=
'softmax_bias'
,
default_initializer
=
fluid
.
initializer
.
UniformInitializer
(
low
=-
self
.
_init_scale
,
high
=
self
.
_
init_scale
))
low
=-
self
.
init_scale
,
high
=
self
.
init_scale
))
def
forward
(
self
,
input
,
label
,
init_hidden
,
init_cell
):
init_h
=
fluid
.
layers
.
reshape
(
init_hidden
,
shape
=
[
self
.
num_layers
,
-
1
,
self
.
hidden_size
])
init_c
=
fluid
.
layers
.
reshape
(
init_cell
,
shape
=
[
self
.
num_layers
,
-
1
,
self
.
hidden_size
])
...
...
@@ -179,6 +189,7 @@ class PtbModel(fluid.imperative.Layer):
x_emb
,
dropout_prob
=
self
.
drop_out
,
dropout_implementation
=
'upscale_in_train'
)
print
(
"init_c is {}"
.
format
(
init_c
))
rnn_out
,
last_hidden
,
last_cell
=
self
.
simple_lstm_rnn
(
x_emb
,
init_h
,
init_c
)
rnn_out
=
fluid
.
layers
.
reshape
(
...
...
@@ -202,14 +213,53 @@ class PtbModel(fluid.imperative.Layer):
class
TestImperativePtbRnn
(
unittest
.
TestCase
):
def
test_mnist_cpu_float32
(
self
):
seed
=
90
hidden_size
=
10
vocab_size
=
1000
num_layers
=
1
num_steps
=
3
init_scale
=
0.1
batch_size
=
4
with
fluid
.
imperative
.
guard
():
fluid
.
default_startup_program
().
random_seed
=
seed
fluid
.
default_main_program
().
random_seed
=
seed
# TODO: marsyang1993 Change seed to
ptb_model
=
PtbModel
(
hidden_size
=
10
,
vocab_size
=
1000
,
num_layers
=
1
,
num_steps
=
3
,
init_scale
=
0.1
)
hidden_size
=
hidden_size
,
vocab_size
=
vocab_size
,
num_layers
=
num_layers
,
num_steps
=
num_steps
,
init_scale
=
init_scale
)
sgd
=
SGDOptimizer
(
learning_rate
=
1e-3
)
print
(
"q"
)
for
i
in
range
(
2
):
x_data
=
np
.
arange
(
12
).
reshape
(
4
,
3
).
astype
(
'int64'
)
y_data
=
np
.
arange
(
1
,
13
).
reshape
(
4
,
3
).
astype
(
'int64'
)
x_data
=
x_data
.
reshape
((
-
1
,
num_steps
,
1
))
y_data
=
y_data
.
reshape
((
-
1
,
1
))
init_hidden_data
=
np
.
zeros
(
(
num_layers
,
batch_size
,
hidden_size
),
dtype
=
'float32'
)
init_cell_data
=
np
.
zeros
(
(
num_layers
,
batch_size
,
hidden_size
),
dtype
=
'float32'
)
x
=
to_variable
(
x_data
)
y
=
to_variable
(
y_data
)
init_hidden
=
to_variable
(
init_hidden_data
)
init_cell
=
to_variable
(
init_cell_data
)
dy_loss
,
last_hidden
,
last_cell
=
ptb_model
(
x
,
y
,
init_hidden
,
init_cell
)
dy_param_init
=
dict
()
if
i
==
0
:
for
param
in
fluid
.
default_main_program
().
global_block
(
).
all_parameters
():
dy_param_init
[
param
.
name
]
=
param
.
_numpy
()
dy_loss
.
_backward
()
sgd
.
minimize
(
dy_loss
)
dy_param_updated
=
dict
()
for
param
in
fluid
.
default_main_program
().
global_block
(
).
all_parameters
():
dy_param_updated
[
param
.
name
]
=
param
.
_numpy
()
if
__name__
==
'__main__'
:
unittest
.
main
()
python/paddle/fluid/tests/unittests/test_imperative_split.py
0 → 100644
浏览文件 @
e3a8929c
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from
__future__
import
print_function
import
unittest
import
paddle.fluid
as
fluid
from
paddle.fluid.imperative.nn
import
EMBEDDING
import
paddle.fluid.framework
as
framework
from
paddle.fluid.optimizer
import
SGDOptimizer
from
paddle.fluid.imperative.base
import
to_variable
import
numpy
as
np
class
Split_test
(
fluid
.
imperative
.
Layer
):
def
__init__
(
self
):
super
(
Split_test
,
self
).
__init__
()
def
_build_once
(
self
,
input
):
pass
def
forward
(
self
,
input
):
out
=
fluid
.
layers
.
split
(
input
,
num_or_sections
=
4
,
dim
=-
1
)
return
out
class
TestImperativePtbRnn
(
unittest
.
TestCase
):
def
test_spilt
(
self
):
with
fluid
.
imperative
.
guard
():
inp
=
to_variable
(
np
.
arange
(
160
).
reshape
(
4
,
40
).
astype
(
'float32'
))
st
=
Split_test
()
out
=
st
(
inp
)
print
(
out
)
if
__name__
==
'__main__'
:
unittest
.
main
()
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录