nn.py 116.3 KB
Newer Older
M
minqiyang 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import print_function

from six.moves import reduce
from .. import core
from ..layers import utils
20 21
from ..layers import nn
from .. import dygraph_utils
M
minqiyang 已提交
22
from . import layers
23
from ..framework import Variable, in_dygraph_mode, OpProtoHolder, Parameter, _dygraph_tracer, _varbase_creator
M
minqiyang 已提交
24
from ..param_attr import ParamAttr
25
from ..initializer import Normal, Constant, NumpyArrayInitializer
H
hong 已提交
26 27
from .. import unique_name
from .layer_object_helper import LayerObjectHelper
L
lujun 已提交
28
import numpy as np
29
import numbers
30
import logging
31

32
__all__ = [
33 34 35
    'Conv2D', 'Conv3D', 'Pool2D', 'Linear', 'BatchNorm', 'Embedding', 'GRUUnit',
    'LayerNorm', 'NCE', 'PRelu', 'BilinearTensorProduct', 'Conv2DTranspose',
    'Conv3DTranspose', 'GroupNorm', 'SpectralNorm', 'TreeConv'
36
]
M
minqiyang 已提交
37 38


X
Xin Pan 已提交
39
class Conv2D(layers.Layer):
40
    """
41 42
    This interface is used to construct a callable object of the ``Conv2D`` class.
    For more details, refer to code examples.
43 44 45
    The convolution2D layer calculates the output based on the input, filter
    and strides, paddings, dilations, groups parameters. Input and
    Output are in NCHW format, where N is batch size, C is the number of
46 47 48
    the feature map, H is the height of the feature map, and W is the width of the feature map.
    Filter's shape is [MCHW] , where M is the number of output feature map,
    C is the number of input feature map, H is the height of the filter,
49
    and W is the width of the filter. If the groups is greater than 1,
50
    C will equal the number of input feature map divided by the groups.
51
    Please refer to UFLDL's `convolution
52
    <http://ufldl.stanford.edu/tutorial/supervised/FeatureExtractionUsingConvolution/>`_
53 54 55 56 57 58 59 60 61
    for more detials.
    If bias attribution and activation type are provided, bias is added to the
    output of the convolution, and the corresponding activation function is
    applied to the final result.

    For each input :math:`X`, the equation is:

    .. math::

62
        Out = \\sigma (W \\ast X + b)
63 64 65

    Where:

66 67
    * :math:`X`: Input value, a ``Tensor`` with NCHW format.
    * :math:`W`: Filter value, a ``Tensor`` with shape [MCHW] .
68
    * :math:`\\ast`: Convolution operation.
69
    * :math:`b`: Bias value, a 2-D ``Tensor`` with shape [M, 1].
70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91
    * :math:`\\sigma`: Activation function.
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.

    Example:

        - Input:

          Input shape: :math:`(N, C_{in}, H_{in}, W_{in})`

          Filter shape: :math:`(C_{out}, C_{in}, H_f, W_f)`

        - Output:

          Output shape: :math:`(N, C_{out}, H_{out}, W_{out})`

        Where

        .. math::

            H_{out}&= \\frac{(H_{in} + 2 * paddings[0] - (dilations[0] * (H_f - 1) + 1))}{strides[0]} + 1 \\\\
            W_{out}&= \\frac{(W_{in} + 2 * paddings[1] - (dilations[1] * (W_f - 1) + 1))}{strides[1]} + 1

92
    Parameters:
93
        num_channels(int): The number of channels in the input image.
94
        num_filters(int): The number of filter. It is as same as the output
95 96
            feature map.
        filter_size (int or tuple): The filter size. If filter_size is a tuple,
97 98
            it must contain two integers, (filter_size_H, filter_size_W).
            Otherwise, the filter will be a square.
99
        stride (int or tuple, optional): The stride size. If stride is a tuple, it must
100
            contain two integers, (stride_H, stride_W). Otherwise, the
101 102
            stride_H = stride_W = stride. Default: 1.
        padding (int or tuple, optional): The padding size. If padding is a tuple, it must
103
            contain two integers, (padding_H, padding_W). Otherwise, the
104 105
            padding_H = padding_W = padding. Default: 0.
        dilation (int or tuple, optional): The dilation size. If dilation is a tuple, it must
106
            contain two integers, (dilation_H, dilation_W). Otherwise, the
107 108
            dilation_H = dilation_W = dilation. Default: 1.
        groups (int, optional): The groups number of the Conv2d Layer. According to grouped
109 110 111
            convolution in Alex Krizhevsky's Deep CNN paper: when group=2,
            the first half of the filters is only connected to the first half
            of the input channels, while the second half of the filters is only
112 113
            connected to the second half of the input channels. Default: 1.
        param_attr (ParamAttr, optional): The parameter attribute for learnable weights(Parameter)
114 115 116 117
            of conv2d. If it is set to None or one attribute of ParamAttr, conv2d
            will create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with :math:`Normal(0.0, std)`,
            and the :math:`std` is :math:`(\\frac{2.0 }{filter\_elem\_num})^{0.5}`. Default: None.
118
        bias_attr (ParamAttr or bool, optional): The attribute for the bias of conv2d.
119 120 121 122
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, conv2d
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. Default: None.
123 124 125 126 127
        use_cudnn (bool, optional): Use cudnn kernel or not, it is valid only when the cudnn
            library is installed. Default: True.
        act (str, optional): Activation type, if it is set to None, activation is not appended.
            Default: None.
        dtype (str, optional): Data type, it can be "float32" or "float64". Default: "float32".
128

129 130 131 132
    Attribute:
        **weight** (Parameter): the learnable weights of filter of this layer.

        **bias** (Parameter or None): the learnable bias of this layer.
133

134 135 136
    Returns:
        None
    
137
    Raises:
138
        ValueError: if ``use_cudnn`` is not a bool value.
139 140 141

    Examples:
        .. code-block:: python
L
lujun 已提交
142

143 144 145 146 147
          from paddle.fluid.dygraph.base import to_variable
          import paddle.fluid as fluid
          from paddle.fluid.dygraph import Conv2D
          import numpy as np

148
          data = np.random.uniform(-1, 1, [10, 3, 32, 32]).astype('float32')
149
          with fluid.dygraph.guard():
150
              conv2d = Conv2D(3, 2, 3)
151 152
              data = to_variable(data)
              conv = conv2d(data)
153 154 155

    """

M
minqiyang 已提交
156
    def __init__(self,
157
                 num_channels,
M
minqiyang 已提交
158 159 160 161 162 163 164 165
                 num_filters,
                 filter_size,
                 stride=1,
                 padding=0,
                 dilation=1,
                 groups=None,
                 param_attr=None,
                 bias_attr=None,
166 167 168
                 use_cudnn=True,
                 act=None,
                 dtype='float32'):
M
minqiyang 已提交
169
        assert param_attr is not False, "param_attr should not be False here."
170 171
        super(Conv2D, self).__init__()
        self._num_channels = num_channels
M
minqiyang 已提交
172 173 174 175
        self._groups = groups
        self._stride = utils.convert_to_list(stride, 2, 'stride')
        self._padding = utils.convert_to_list(padding, 2, 'padding')
        self._dilation = utils.convert_to_list(dilation, 2, 'dilation')
176
        self._act = act
M
minqiyang 已提交
177 178 179
        if not isinstance(use_cudnn, bool):
            raise ValueError("use_cudnn should be True or False")
        self._use_cudnn = use_cudnn
180 181 182 183 184
        self._filter_size = filter_size
        self._num_filters = num_filters
        self._param_attr = param_attr
        self._bias_attr = bias_attr
        self._dtype = dtype
185 186 187 188 189 190 191 192 193

        # TODO: recover the usage of depthwise_conv2d when it's
        #  kernel fixed https://github.com/PaddlePaddle/Paddle/issues/17098
        # if (self._num_channels == self._groups and
        #         num_filters % self._num_channels == 0 and not self._use_cudnn):
        #     self._l_type = 'depthwise_conv2d'
        # else:
        #     self._l_type = 'conv2d'
        self._l_type = 'conv2d'
M
minqiyang 已提交
194

195
        self._num_channels = num_channels
196 197
        if self._groups is None:
            num_filter_channels = self._num_channels
M
minqiyang 已提交
198
        else:
199
            if self._num_channels % self._groups != 0:
M
minqiyang 已提交
200
                raise ValueError("num_channels must be divisible by groups.")
201 202
            num_filter_channels = self._num_channels // self._groups
        filter_size = utils.convert_to_list(self._filter_size, 2, 'filter_size')
203
        filter_shape = [self._num_filters, num_filter_channels] + filter_size
M
minqiyang 已提交
204 205

        def _get_default_param_initializer():
206 207
            filter_elem_num = filter_size[0] * filter_size[
                1] * self._num_channels
M
minqiyang 已提交
208 209 210
            std = (2.0 / filter_elem_num)**0.5
            return Normal(0.0, std, 0)

211
        self.weight = self.create_parameter(
212
            attr=self._param_attr,
M
minqiyang 已提交
213 214 215 216
            shape=filter_shape,
            dtype=self._dtype,
            default_initializer=_get_default_param_initializer())

217
        self.bias = self.create_parameter(
218 219
            attr=self._bias_attr,
            shape=[self._num_filters],
M
minqiyang 已提交
220 221
            dtype=self._dtype,
            is_bias=True)
M
minqiyang 已提交
222 223

    def forward(self, input):
224 225
        inputs = {
            'Input': [input],
226
            'Filter': [self.weight],
227 228 229 230 231 232 233 234 235 236 237 238 239 240
        }
        attrs = {
            'strides': self._stride,
            'paddings': self._padding,
            'dilations': self._dilation,
            'groups': self._groups if self._groups else 1,
            'use_cudnn': self._use_cudnn,
            'use_mkldnn': False,
        }

        if in_dygraph_mode():
            outs = core.ops.conv2d(inputs, attrs)
            pre_bias = outs['Output'][0]

241 242
            pre_act = dygraph_utils._append_bias_in_dygraph(pre_bias, self.bias,
                                                            1)
243 244 245 246

            return dygraph_utils._append_activation_in_dygraph(pre_act,
                                                               self._act)

M
minqiyang 已提交
247 248 249
        pre_bias = self._helper.create_variable_for_type_inference(
            dtype=self._dtype)

M
minqiyang 已提交
250 251 252 253
        self._helper.append_op(
            type=self._l_type,
            inputs={
                'Input': input,
254
                'Filter': self.weight,
M
minqiyang 已提交
255
            },
M
minqiyang 已提交
256
            outputs={"Output": pre_bias},
257
            attrs=attrs)
M
minqiyang 已提交
258

259
        if self.bias is not None:
260 261 262 263 264
            pre_act = self._helper.create_variable_for_type_inference(
                dtype=self._dtype)
            self._helper.append_op(
                type='elementwise_add',
                inputs={'X': [pre_bias],
265
                        'Y': [self.bias]},
266 267 268 269
                outputs={'Out': [pre_act]},
                attrs={'axis': 1})
        else:
            pre_act = pre_bias
M
minqiyang 已提交
270

L
lujun 已提交
271
        # Currently, we don't support inplace in dygraph mode
272
        return self._helper.append_activation(pre_act, act=self._act)
M
minqiyang 已提交
273 274


L
lujun 已提交
275
class Conv3D(layers.Layer):
276 277 278 279 280
    """
    **Convlution3D Layer**

    The convolution3D layer calculates the output based on the input, filter
    and strides, paddings, dilations, groups parameters. Input(Input) and
D
DuYao 已提交
281 282
    Output(Output) are multidimensional tensors with a shape of 
    :math:`[N, C, D, H, W]` . Where N is batch size, C is the number of
283 284 285 286 287 288 289 290 291 292 293 294 295 296
    channels, D is the depth of the feature, H is the height of the feature,
    and W is the width of the feature. Convlution3D is similar with Convlution2D
    but adds one dimension(depth). If bias attribution and activation type are
    provided, bias is added to the output of the convolution, and the
    corresponding activation function is applied to the final result.

    For each input :math:`X`, the equation is:

    .. math::

        Out = \sigma (W \\ast X + b)

    In the above equation:

D
DuYao 已提交
297
    * :math:`X`: Input value, a tensor with NCDHW or NDHWC format.
298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322
    * :math:`W`: Filter value, a tensor with MCDHW format.
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D tensor with shape [M, 1].
    * :math:`\\sigma`: Activation function.
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.

    Example:

        - Input:

          Input shape: :math:`(N, C_{in}, D_{in}, H_{in}, W_{in})`

          Filter shape: :math:`(C_{out}, C_{in}, D_f, H_f, W_f)`

        - Output:
          Output shape: :math:`(N, C_{out}, D_{out}, H_{out}, W_{out})`

        Where

        .. math::

            D_{out}&= \\frac{(D_{in} + 2 * paddings[0] - (dilations[0] * (D_f - 1) + 1))}{strides[0]} + 1 \\\\
            H_{out}&= \\frac{(H_{in} + 2 * paddings[1] - (dilations[1] * (H_f - 1) + 1))}{strides[1]} + 1 \\\\
            W_{out}&= \\frac{(W_{in} + 2 * paddings[2] - (dilations[2] * (W_f - 1) + 1))}{strides[2]} + 1

323
    Parameters:
324
        num_channels(int): The number of channels in the input image.
L
lujun 已提交
325
        num_filters(int): The number of filter. It is as same as the output image channel.
D
DuYao 已提交
326
        filter_size (int|tuple, optional): The filter size. If filter_size is a tuple,
327
            it must contain three integers, (filter_size_D, filter_size_H, filter_size_W).
D
DuYao 已提交
328 329 330
            Otherwise, the filter will be a square, filter_size_depth = filter_size_height
            = filter_size_width = filter_size.
        stride (int|tuple, optional): The stride size. If stride is a tuple, it must
331
            contain three integers, (stride_D, stride_H, stride_W). Otherwise, the
D
DuYao 已提交
332 333
            stride_D = stride_H = stride_W = stride. The default value is 1.
        padding (int|tuple, optional): The padding size. If padding is a tuple, it must
334
            contain three integers, (padding_D, padding_H, padding_W). Otherwise, the
D
DuYao 已提交
335 336
            padding_D = padding_H = padding_W = padding. The default value is 0.
        dilation (int|tuple, optional): The dilation size. If dilation is a tuple, it must
337
            contain three integers, (dilation_D, dilation_H, dilation_W). Otherwise, the
D
DuYao 已提交
338 339
            dilation_D = dilation_H = dilation_W = dilation. The default value is 1.
        groups (int, optional): The groups number of the Conv3d Layer. According to grouped
340 341 342
            convolution in Alex Krizhevsky's Deep CNN paper: when group=2,
            the first half of the filters is only connected to the first half
            of the input channels, while the second half of the filters is only
D
DuYao 已提交
343 344
            connected to the second half of the input channels. The default value is 1.
        param_attr (ParamAttr, optional): The parameter attribute for learnable parameters/weights
345 346 347
            of conv3d. If it is set to None or one attribute of ParamAttr, conv3d
            will create ParamAttr as param_attr. If it is set to None, the parameter
            is initialized with :math:`Normal(0.0, std)`, and the :math:`std` is
D
DuYao 已提交
348 349
            :math:`(\\frac{2.0 }{filter\_elem\_num})^{0.5}`. The default value is None.
        bias_attr (ParamAttr|bool, optional): The parameter attribute for the bias of conv3d.
350 351 352
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, conv3d
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
D
DuYao 已提交
353 354 355 356 357
            is not set, the bias is initialized zero. The default value is None.
        use_cudnn (bool, optional): Use cudnn kernel or not, it is valid only when the cudnn
            library is installed. The default value is True.
        act (str, optional): Activation type, if it is set to None, activation is not appended.
            The default value is None.
358
        dtype (str, optional): Data type, it can be "float32" or "float64". Default: "float32".
359

D
DuYao 已提交
360 361 362 363
    Attribute:
        **weight** (Parameter): the learnable weights of filters of this layer.

        **bias** (Parameter): the learnable bias of this layer.
364

365
    Returns:
D
DuYao 已提交
366
        None.
367 368 369 370 371 372 373 374

    Raises:
        ValueError: If the shapes of input, filter_size, stride, padding and
                    groups mismatch.

    Examples:
        .. code-block:: python

375 376 377 378 379 380
          import paddle.fluid as fluid
          import numpy

          with fluid.dygraph.guard():
              data = numpy.random.random((5, 3, 12, 32, 32)).astype('float32')
              conv3d = fluid.dygraph.nn.Conv3D(
381
                    num_channels=3, num_filters=2, filter_size=3, act="relu")
382 383
              ret = conv3d(fluid.dygraph.base.to_variable(data))

384 385
    """

L
lujun 已提交
386
    def __init__(self,
387
                 num_channels,
L
lujun 已提交
388 389 390 391 392 393 394 395 396
                 num_filters,
                 filter_size,
                 stride=1,
                 padding=0,
                 dilation=1,
                 groups=None,
                 param_attr=None,
                 bias_attr=None,
                 use_cudnn=True,
397 398
                 act=None,
                 dtype='float32'):
L
lujun 已提交
399
        assert param_attr is not False, "param_attr should not be False here."
400 401
        super(Conv3D, self).__init__()
        self._num_channels = num_channels
L
lujun 已提交
402 403 404
        self._groups = groups
        self._stride = utils.convert_to_list(stride, 3, 'stride')
        self._padding = utils.convert_to_list(padding, 3, 'padding')
405
        self._dilation = utils.convert_to_list(dilation, 3, 'dilation')
L
lujun 已提交
406 407
        self._act = act
        self._use_cudnn = use_cudnn
408 409 410 411
        self._filter_size = filter_size
        self._num_filters = num_filters
        self._param_attr = param_attr
        self._bias_attr = bias_attr
412
        self._dtype = dtype
413 414

        if self._groups is None:
415
            num_filter_channels = self._num_channels
L
lujun 已提交
416
        else:
417
            if self._num_channels % self._groups != 0:
L
lujun 已提交
418
                raise ValueError("num_channels must be divisible by groups.")
419
            num_filter_channels = self._num_channels // self._groups
L
lujun 已提交
420

421 422
        filter_size = utils.convert_to_list(self._filter_size, 3, 'filter_size')
        filter_shape = [self._num_filters, num_filter_channels] + filter_size
L
lujun 已提交
423 424 425

        def _get_default_param_initializer():
            filter_elem_num = filter_size[0] * filter_size[1] * filter_size[
426
                2] * self._num_channels
L
lujun 已提交
427 428 429
            std = (2.0 / filter_elem_num)**0.5
            return Normal(0.0, std, 0)

430
        self.weight = self.create_parameter(
431
            attr=self._param_attr,
L
lujun 已提交
432 433 434 435
            shape=filter_shape,
            dtype=self._dtype,
            default_initializer=_get_default_param_initializer())

436
        self.bias = self.create_parameter(
437 438
            attr=self._bias_attr,
            shape=[self._num_filters],
L
lujun 已提交
439 440 441 442 443 444 445 446
            dtype=self._dtype,
            is_bias=True)

    def forward(self, input):
        pre_bias = self._helper.create_variable_for_type_inference(
            dtype=self._dtype)

        self._helper.append_op(
447
            type='conv3d',
L
lujun 已提交
448 449
            inputs={
                'Input': input,
450
                'Filter': self.weight,
L
lujun 已提交
451 452 453 454 455 456 457 458 459 460 461
            },
            outputs={"Output": pre_bias},
            attrs={
                'strides': self._stride,
                'paddings': self._padding,
                'dilations': self._dilation,
                'groups': self._groups if self._groups else 1,
                'use_cudnn': self._use_cudnn,
                'use_mkldnn': False
            })

462
        if self.bias is not None:
463 464 465 466 467
            pre_act = self._helper.create_variable_for_type_inference(
                dtype=self._dtype)
            self._helper.append_op(
                type='elementwise_add',
                inputs={'X': [pre_bias],
468
                        'Y': [self.bias]},
469 470 471 472
                outputs={'Out': [pre_act]},
                attrs={'axis': 1})
        else:
            pre_act = pre_bias
L
lujun 已提交
473 474 475 476 477

        return self._helper.append_activation(pre_act, act=self._act)


class Conv3DTranspose(layers.Layer):
L
lujun 已提交
478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523
    """
    **Convlution3D transpose layer**

    The convolution3D transpose layer calculates the output based on the input,
    filter, and dilations, strides, paddings. Input(Input) and output(Output)
    are in NCDHW format. Where N is batch size, C is the number of channels,
    D is the depth of the feature, H is the height of the feature, and W
    is the width of the feature. Parameters(dilations, strides, paddings) are
    two elements. These two elements represent height and width, respectively.
    The details of convolution transpose layer, please refer to the following
    explanation and references `therein <http://www.matthewzeiler.com/wp-content/uploads/2017/07/cvpr2010.pdf>`_.
    If bias attribution and activation type are provided, bias is added to
    the output of the convolution, and the corresponding activation function
    is applied to the final result.

    For each input :math:`X`, the equation is:

    .. math::

        Out = \sigma (W \\ast X + b)

    In the above equation:

    * :math:`X`: Input value, a tensor with NCDHW format.
    * :math:`W`: Filter value, a tensor with MCDHW format.
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D tensor with shape [M, 1].
    * :math:`\\sigma`: Activation function.
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.

    Example:

        - Input:

          Input shape: :math:`(N, C_{in}, D_{in}, H_{in}, W_{in})`

          Filter shape: :math:`(C_{in}, C_{out}, D_f, H_f, W_f)`

        - Output:

          Output shape: :math:`(N, C_{out}, D_{out}, H_{out}, W_{out})`

        Where

        .. math::

D
DuYao 已提交
524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542
           D^\prime_{out} &= (D_{in} - 1) * strides[0] - 2 * paddings[0] + dilations[0] * (D_f - 1) + 1 \\\\
           H^\prime_{out} &= (H_{in} - 1) * strides[1] - 2 * paddings[1] + dilations[1] * (H_f - 1) + 1 \\\\
           W^\prime_{out} &= (W_{in} - 1) * strides[2] - 2 * paddings[2] + dilations[2] * (W_f - 1) + 1 \\\\
           D_{out} &\in [ D^\prime_{out}, D^\prime_{out} + strides[0] ] \\\\
           H_{out} &\in [ H^\prime_{out}, H^\prime_{out} + strides[1] ] \\\\

    **Note**:

          The conv3d_transpose can be seen as the backward of the conv3d. For conv3d, 
          when stride > 1, conv3d maps multiple input shape to the same output shape, 
          so for conv3d_transpose, when stride > 1, input shape maps multiple output shape.
          If output_size is None, :math:`H_{out} = H^\prime_{out}, :math:`H_{out} = \
          H^\prime_{out}, W_{out} = W^\prime_{out}`; else, the :math:`D_{out}` of the output 
          size must between :math:`D^\prime_{out}` and :math:`D^\prime_{out} + strides[0]`, 
          the :math:`H_{out}` of the output size must between :math:`H^\prime_{out}` 
          and :math:`H^\prime_{out} + strides[1]`, and the :math:`W_{out}` of the output size must 
          between :math:`W^\prime_{out}` and :math:`W^\prime_{out} + strides[2]`, 
          conv3d_transpose can compute the kernel size automatically.

L
lujun 已提交
543

544
    Parameters:
545
        num_channels(int): The number of channels in the input image.
L
lujun 已提交
546 547
        num_filters(int): The number of the filter. It is as same as the output
            image channel.
548
        filter_size(int|tuple): The filter size. If filter_size is a tuple,
L
lujun 已提交
549
            it must contain three integers, (filter_size_D, filter_size_H, filter_size_W).
550
            Otherwise, the filter will be a square.
D
DuYao 已提交
551 552 553 554 555 556 557 558 559 560 561 562 563 564 565
        padding(int|tuple, optional): The padding size. The padding argument effectively
             adds `dilation * (kernel - 1)` amount of zero-padding on both sides of input. If `padding` is a string,
             either 'VALID' or 'SAME' supported, which is the padding algorithm. If `padding`
             is a tuple or list, it could be in three forms: `[pad_depth, pad_height, pad_width]` or
            `[pad_depth_front, pad_depth_back, pad_height_top, pad_height_bottom, pad_width_left, pad_width_right]`,
            and when `data_format` is `'NCDHW'`, `padding` can be in the form
            `[[0,0], [0,0], [pad_depth_front, pad_depth_back], [pad_height_top, pad_height_bottom], [pad_width_left, pad_width_right]]`.
            when `data_format` is `'NDHWC'`, `padding` can be in the form
            `[[0,0], [pad_depth_front, pad_depth_back], [pad_height_top, pad_height_bottom], [pad_width_left, pad_width_right], [0,0]]`.
            The default value is 0.
        stride(int|tuple, optional): The stride size. It means the stride in transposed convolution. 
            If stride is a tuple, it must contain three integers, (stride_depth, stride_height, 
            stride_width). Otherwise, stride_depth = stride_height = stride_width = stride. 
            The default value is 1.
        dilation(int|tuple, optional): The dilation size. If dilation is a tuple, it must
L
lujun 已提交
566
            contain three integers, (dilation_D, dilation_H, dilation_W). Otherwise, the
D
DuYao 已提交
567 568
            dilation_D = dilation_H = dilation_W = dilation. The default value is 1.
        groups(int, optional): The groups number of the Conv3d transpose layer. Inspired by
L
lujun 已提交
569 570 571 572
            grouped convolution in Alex Krizhevsky's Deep CNN paper, in which
            when group=2, the first half of the filters is only connected to the
            first half of the input channels, while the second half of the
            filters is only connected to the second half of the input channels.
D
DuYao 已提交
573 574
            The default value is 1.
        param_attr (ParamAttr, optional): The parameter attribute for learnable parameters/weights
L
lujun 已提交
575 576
            of conv3d_transpose. If it is set to None or one attribute of ParamAttr, conv3d_transpose
            will create ParamAttr as param_attr. If the Initializer of the param_attr
D
DuYao 已提交
577 578
            is not set, the parameter is initialized with Xavier. The default value is None.
        bias_attr (ParamAttr|bool, optional): The parameter attribute for the bias of conv3d_transpose.
L
lujun 已提交
579 580 581
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, conv3d_transpose
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
D
DuYao 已提交
582 583 584 585 586 587 588
            is not set, the bias is initialized zero. The default value is None.
        use_cudnn(bool, optional): Use cudnn kernel or not, it is valid only when the cudnn
            library is installed. The default value is True.
        act (str, optional): Activation type, if it is set to None, activation is not appended.
            The default value is None.
        name(str, optional): The default value is None. Normally there is no need for user 
            to set this property. For more information, please refer to :ref:`api_guide_Name`.
L
lujun 已提交
589

D
DuYao 已提交
590 591 592 593
    Attribute:
        **weight** (Parameter): the learnable weights of filters of this layer.

        **bias** (Parameter): the learnable bias of this layer.
594

L
lujun 已提交
595
    Returns:
D
DuYao 已提交
596
        None.
L
lujun 已提交
597 598 599 600 601 602 603 604

    Raises:
        ValueError: If the shapes of input, filter_size, stride, padding and
                    groups mismatch.

    Examples:
       .. code-block:: python

605 606 607 608 609 610
         import paddle.fluid as fluid
         import numpy

         with fluid.dygraph.guard():
             data = numpy.random.random((5, 3, 12, 32, 32)).astype('float32')
             conv3dTranspose = fluid.dygraph.nn.Conv3DTranspose(
611
                    num_channels=3,
612 613 614 615 616
                    num_filters=12,
                    filter_size=12,
                    use_cudnn=False)
             ret = conv3dTranspose(fluid.dygraph.base.to_variable(data))

L
lujun 已提交
617 618
    """

L
lujun 已提交
619
    def __init__(self,
620
                 num_channels,
L
lujun 已提交
621
                 num_filters,
622
                 filter_size,
L
lujun 已提交
623 624 625 626 627 628 629 630
                 padding=0,
                 stride=1,
                 dilation=1,
                 groups=None,
                 param_attr=None,
                 bias_attr=None,
                 use_cudnn=True,
                 act=None,
631 632
                 dtype='float32'):
        super(Conv3DTranspose, self).__init__()
L
lujun 已提交
633 634 635 636 637 638 639
        if not isinstance(use_cudnn, bool):
            raise ValueError("use_cudnn should be True or False")
        assert param_attr is not False, "param_attr should not be False in conv3d_transpose."
        self._padding = utils.convert_to_list(padding, 3, 'padding')
        self._stride = utils.convert_to_list(stride, 3, 'stride')
        self._dilation = utils.convert_to_list(dilation, 3, 'dilation')
        self._param_attr = param_attr
640
        self._num_channels = num_channels
L
lujun 已提交
641 642 643 644 645 646
        self._filter_size = filter_size
        self._groups = 1 if groups is None else groups
        self._num_filters = num_filters
        self._use_cudnn = use_cudnn
        self._bias_attr = bias_attr
        self._act = act
647
        self._dtype = dtype
L
lujun 已提交
648

649 650
        self._filter_size = utils.convert_to_list(
            self._filter_size, 3, 'conv3d_transpose.filter_size')
L
lujun 已提交
651

652 653
        filter_shape = [self._num_channels, self._num_filters // self._groups
                        ] + self._filter_size
654
        self.weight = self.create_parameter(
L
lujun 已提交
655 656
            dtype=self._dtype, shape=filter_shape, attr=self._param_attr)
        if self._bias_attr:
657
            self.bias = self.create_parameter(
L
lujun 已提交
658 659 660 661 662 663 664 665 666 667 668
                attr=self._bias_attr,
                shape=[self._num_filters],
                dtype=self._dtype,
                is_bias=True)

    def forward(self, input):
        pre_bias = self._helper.create_variable_for_type_inference(
            dtype=self._dtype)
        self._helper.append_op(
            type="conv3d_transpose",
            inputs={'Input': [input],
669
                    'Filter': [self.weight]},
L
lujun 已提交
670 671 672 673 674 675 676 677 678 679 680 681 682 683 684
            outputs={'Output': pre_bias},
            attrs={
                'strides': self._stride,
                'paddings': self._padding,
                'dilations': self._dilation,
                'groups': self._groups if self._groups else 1,
                'use_cudnn': self._use_cudnn
            })

        if self._bias_attr:
            pre_act = self._helper.create_variable_for_type_inference(
                dtype=self._dtype)
            self._helper.append_op(
                type='elementwise_add',
                inputs={'X': [pre_bias],
685
                        'Y': [self.bias]},
L
lujun 已提交
686 687 688 689 690 691 692 693 694
                outputs={'Out': [pre_act]},
                attrs={'axis': 1})
        else:
            pre_act = pre_bias

        # Currently, we don't support inplace in imperative mode
        return self._helper.append_activation(pre_act, act=self._act)


X
Xin Pan 已提交
695
class Pool2D(layers.Layer):
696
    """
697 698 699 700 701
    This interface is used to construct a callable object of the ``Pool2D`` class.
    For more details, refer to code examples.
    The pooling2d operation calculates the output based on the input, pool_type and pool_size, pool_stride,
    pool_padding parameters.Input and output are in NCHW format, where N is batch size, C is the number of feature map,
    H is the height of the feature map, and W is the width of the feature map.
L
lujun 已提交
702 703
    Parameters(ksize, strides, paddings) are two elements. These two elements represent height and width, respectively.
    The input(X) size and output(Out) size may be different.
704

705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748
    Example:

        - Input:

          Input shape: :math:`(N, C, H_{in}, W_{in})`

        - Output:

          Output shape: :math:`(N, C, H_{out}, W_{out})`

        If ``ceil_mode`` = False:

        .. math::

            H_{out} = \\frac{(H_{in} - ksize[0] + 2 * paddings[0])}{strides[0]} + 1 \\\\
            W_{out} = \\frac{(W_{in} - ksize[1] + 2 * paddings[1])}{strides[1]} + 1

        If ``ceil_mode`` = True:

        .. math::

            H_{out} = \\frac{(H_{in} - ksize[0] + 2 * paddings[0] + strides[0] - 1)}{strides[0]} + 1 \\\\
            W_{out} = \\frac{(W_{in} - ksize[1] + 2 * paddings[1] + strides[1] - 1)}{strides[1]} + 1

        If ``exclusive`` = False:

        .. math::

            hstart &= i * strides[0] - paddings[0] \\\\
            hend   &= hstart + ksize[0] \\\\
            wstart &= j * strides[1] - paddings[1] \\\\
            wend   &= wstart + ksize[1] \\\\
            Output(i ,j) &= \\frac{sum(Input[hstart:hend, wstart:wend])}{ksize[0] * ksize[1]}

        If ``exclusive`` = True:

        .. math::

            hstart &= max(0, i * strides[0] - paddings[0])\\\\
            hend &= min(H, hstart + ksize[0]) \\\\
            wstart &= max(0, j * strides[1] - paddings[1]) \\\\
            wend & = min(W, wstart + ksize[1]) \\\\
            Output(i ,j) & = \\frac{sum(Input[hstart:hend, wstart:wend])}{(hend - hstart) * (wend - wstart)}

749
    Parameters:
750
        pool_size (int or list or tuple, optional): The pool kernel size. If pool kernel size is a tuple or list,
751
            it must contain two integers, (pool_size_Height, pool_size_Width).
752 753 754 755
            Otherwise, the pool kernel size will be a square of an int. Default: -1.
        pool_type(str, optional) : The pooling type, can be "max" for max-pooling and "avg" for average-pooling. 
            Default: max.
        pool_stride (int or list or tuple, optional): The pool stride size. If pool stride size is a tuple or list,
L
lujun 已提交
756
            it must contain two integers, (pool_stride_Height, pool_stride_Width). Otherwise,
757 758 759
            the pool stride size will be a square of an int. Default: 1.
        pool_padding (int or list or tuple, optional): The padding size for pooling operation. 
            If ``pool_padding`` is a tuple,
760
            it must contain two integers, (pool_padding_on_Height, pool_padding_on_Width).
761 762 763 764 765 766 767
            Otherwise, the padding size for pooling operation will be a square of an int. Default: 0.
        global_pooling (bool, optional): Whether to use the global pooling. If global_pooling = true,
            kernel size and paddings will be ignored. Default: False.
        use_cudnn (bool, optional): Only used in cudnn kernel, need install cudnn. Default: True.
        ceil_mode (bool, optional): Whether to use the ceil function to calculate output height and width.
            False is the default. If it is set to False, the floor function will be used. Default: False.
        exclusive (bool, optional): Whether to exclude padding points in average pooling mode. Default: True.
768 769

    Returns:
770
        None
771 772 773 774 775 776 777 778 779 780

    Raises:
        ValueError: If 'pool_type' is not "max" nor "avg"
        ValueError: If 'global_pooling' is False and 'pool_size' is -1
        ValueError: If 'use_cudnn' is not a bool value.

    Examples:

        .. code-block:: python

L
lujun 已提交
781
          import paddle.fluid as fluid
782 783
          from paddle.fluid.dygraph.base import to_variable
          import numpy as np
L
lujun 已提交
784 785

          with fluid.dygraph.guard():
786
             data = numpy.random.random((3, 32, 32, 5)).astype('float32')
787
             pool2d = fluid.dygraph.Pool2D(pool_size=2,
788 789 790
                            pool_type='max',
                            pool_stride=1,
                            global_pooling=False)
791
             pool2d_res = pool2d(to_variable(data))
792 793 794

    """

M
minqiyang 已提交
795 796 797 798 799 800 801 802
    def __init__(self,
                 pool_size=-1,
                 pool_type="max",
                 pool_stride=1,
                 pool_padding=0,
                 global_pooling=False,
                 use_cudnn=True,
                 ceil_mode=False,
803
                 exclusive=True):
M
minqiyang 已提交
804 805 806 807 808 809 810 811 812 813 814 815 816
        if pool_type not in ["max", "avg"]:
            raise ValueError(
                "Unknown pool_type: '%s'. It can only be 'max' or 'avg'.",
                str(pool_type))

        if global_pooling is False and pool_size == -1:
            raise ValueError(
                "When the global_pooling is False, pool_size must be passed "
                "and be a valid value. Received pool_size: " + str(pool_size))

        if not isinstance(use_cudnn, bool):
            raise ValueError("use_cudnn should be True or False")

817
        super(Pool2D, self).__init__()
M
minqiyang 已提交
818 819 820 821 822 823 824 825 826 827 828 829 830

        self._pool_type = pool_type
        self._pool_size = utils.convert_to_list(pool_size, 2, 'pool_size')
        self._pool_padding = utils.convert_to_list(pool_padding, 2,
                                                   'pool_padding')
        self._pool_stride = utils.convert_to_list(pool_stride, 2, 'pool_stride')
        self._global_pooling = global_pooling
        self._use_cudnn = use_cudnn
        self._ceil_mode = ceil_mode
        self._exclusive = exclusive
        self._l_type = 'pool2d'

    def forward(self, input):
831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847
        attrs = {
            "pooling_type": self._pool_type,
            "ksize": self._pool_size,
            "global_pooling": self._global_pooling,
            "strides": self._pool_stride,
            "paddings": self._pool_padding,
            "use_cudnn": self._use_cudnn,
            "ceil_mode": self._ceil_mode,
            "use_mkldnn": False,
            "exclusive": self._exclusive,
        }
        inputs = {"X": [input]}

        if in_dygraph_mode():
            outs = core.ops.pool2d(inputs, attrs)
            return outs['Out'][0]

M
minqiyang 已提交
848 849
        pool_out = self._helper.create_variable_for_type_inference(self._dtype)

M
minqiyang 已提交
850 851 852
        self._helper.append_op(
            type=self._l_type,
            inputs={"X": input},
M
minqiyang 已提交
853
            outputs={"Out": pool_out},
854
            attrs=attrs)
M
minqiyang 已提交
855
        return pool_out
M
minqiyang 已提交
856 857


S
songyouwei 已提交
858 859 860 861 862 863 864 865 866 867
class Linear(layers.Layer):
    """
    Fully-connected linear transformation layer:

    .. math::

        Out = Act({XW + b})

    where :math:`X` is the input Tensor, :math:`W` and :math:`b` are weight and bias respectively.

868
    Linear layer takes only one ``Tensor`` input.
S
songyouwei 已提交
869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927
    The Linear layer multiplies input tensor with weight matrix and
    produces an output Tensor of shape [N, *, `output_dim`],
    where N is batch size and `*` means any number of additional dimensions.
    If ``bias_attr`` is not None, a bias variable will be created and added to the output.
    Finally, if ``act`` is not None, it will be applied to the output as well.

    Parameters:
        input_dim(int): The number of input units in this layer.
        output_dim(int): The number of output units in this layer.
        param_attr(ParamAttr or list of ParamAttr, optional): The parameter attribute for learnable
            weights(Parameter) of this layer. Default: None.
        bias_attr(ParamAttr or list of ParamAttr, optional): The attribute for the bias
            of this layer. If it is set to False, no bias will be added to the output units.
            If it is set to None, the bias is initialized zero. Default: None.
        act(str, optional): Activation to be applied to the output of this layer. Default: None.
        dtype(str, optional): Dtype used for weight, it can be "float32" or "float64". Default: "float32".

    Attributes:
        **weight** (Parameter): the learnable weights of this layer.

        **bias** (Parameter or None): the learnable bias of this layer.

    Returns:
        None

    Examples:
        .. code-block:: python

          from paddle.fluid.dygraph.base import to_variable
          import paddle.fluid as fluid
          from paddle.fluid.dygraph import Linear
          import numpy as np

          data = np.random.uniform(-1, 1, [30, 10, 32]).astype('float32')
          with fluid.dygraph.guard():
              linear = Linear(32, 64)
              data = to_variable(data)
              res = linear(data)  # [30, 10, 64]
    """

    def __init__(self,
                 input_dim,
                 output_dim,
                 param_attr=None,
                 bias_attr=None,
                 act=None,
                 dtype="float32"):
        super(Linear, self).__init__()
        self._act = act
        self._dtype = dtype
        self.weight = self.create_parameter(
            shape=[input_dim, output_dim],
            attr=param_attr,
            dtype=dtype,
            is_bias=False)
        self.bias = self.create_parameter(
            shape=[output_dim], attr=bias_attr, dtype=dtype, is_bias=True)

    def forward(self, input):
928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944
        attrs = {
            "transpose_X": False,
            "transpose_Y": False,
            "alpha": 1,
        }
        inputs = {"X": [input], "Y": [self.weight]}

        if in_dygraph_mode():
            outs = core.ops.matmul(inputs, attrs)
            pre_bias = outs['Out'][0]

            pre_act = dygraph_utils._append_bias_in_dygraph(
                pre_bias, self.bias, axis=len(input.shape) - 1)

            return dygraph_utils._append_activation_in_dygraph(pre_act,
                                                               self._act)

S
songyouwei 已提交
945 946
        tmp = self._helper.create_variable_for_type_inference(self._dtype)
        self._helper.append_op(
947
            type="matmul", inputs=inputs, outputs={"Out": tmp}, attrs=attrs)
S
songyouwei 已提交
948 949 950 951 952 953 954 955 956 957 958 959 960 961
        if self.bias:
            pre_activation = self._helper.create_variable_for_type_inference(
                dtype=self._dtype)
            self._helper.append_op(
                type='elementwise_add',
                inputs={'X': [tmp],
                        'Y': [self.bias]},
                outputs={'Out': [pre_activation]},
                attrs={'axis': len(input.shape) - 1})
        else:
            pre_activation = tmp
        return self._helper.append_activation(pre_activation, act=self._act)


M
minqiyang 已提交
962
class BatchNorm(layers.Layer):
963
    """
964 965 966 967 968
    This interface is used to construct a callable object of the ``BatchNorm`` class.
    For more details, refer to code examples.
    It implements the function of the Batch Normalization Layer and can be used 
    as a normalizer function for conv2d and fully connected operations.
    The data is normalized by the mean and variance of the channel based on the current batch data.
969 970 971 972
    Refer to `Batch Normalization: Accelerating Deep Network Training by Reducing
    Internal Covariate Shift <https://arxiv.org/pdf/1502.03167.pdf>`_
    for more details.

973 974 975
    When use_global_stats = False, the :math:`\\mu_{\\beta}` 
    and :math:`\\sigma_{\\beta}^{2}` are the statistics of one mini-batch.
    Calculated as follows:
976 977 978 979 980 981 982 983

    ..  math::

        \\mu_{\\beta} &\\gets \\frac{1}{m} \\sum_{i=1}^{m} x_i \\qquad &//\\
        \ mini-batch\ mean \\\\
        \\sigma_{\\beta}^{2} &\\gets \\frac{1}{m} \\sum_{i=1}^{m}(x_i - \\
        \\mu_{\\beta})^2 \\qquad &//\ mini-batch\ variance \\\\

984 985
    - :math:`x` : mini-batch data
    - :math:`m` : the size of the mini-batch data
986 987 988

    When use_global_stats = True, the :math:`\\mu_{\\beta}`
    and :math:`\\sigma_{\\beta}^{2}` are not the statistics of one mini-batch.
989 990 991 992 993 994
    They are global or running statistics (moving_mean and moving_variance). It usually got from the
    pre-trained model. Calculated as follows:

    .. math::
        moving\_mean = moving\_mean * momentum + \mu_{\beta} * (1. - momentum) \quad &// global mean \\
        moving\_variance = moving\_variance * momentum + \sigma_{\beta}^{2} * (1. - momentum) \quad &// global variance \\
995

996 997
    The normalization function formula is as follows:
 
998 999 1000
    ..  math::

        \\hat{x_i} &\\gets \\frac{x_i - \\mu_\\beta} {\\sqrt{\\
1001 1002 1003 1004 1005 1006
        \\sigma_{\\beta}^{2} + \\epsilon}} \\qquad &//\ normalize \\\\
        y_i &\\gets \\gamma \\hat{x_i} + \\beta \\qquad &//\ scale\ and\ shift

    - :math:`\\epsilon` : add a smaller value to the variance to prevent division by zero
    - :math:`\\gamma` : trainable proportional parameter
    - :math:`\\beta` : trainable deviation parameter
1007

1008
    Parameters:
1009 1010 1011 1012 1013 1014
        num_channels(int): Indicate the number of channels of the input ``Tensor``.
        act(str, optional): Activation to be applied to the output of batch normalizaiton. Default: None.
        is_test (bool, optional): A flag indicating whether it is in test phrase or not. Default: False.
        momentum(float, optional): The value used for the moving_mean and moving_var computation. Default: 0.9.
        epsilon(float, optional): The small value added to the variance to prevent division by zero. Default: 1e-5.
        param_attr(ParamAttr, optional): The parameter attribute for Parameter `scale`
1015 1016 1017
             of batch_norm. If it is set to None or one attribute of ParamAttr, batch_norm
             will create ParamAttr as param_attr. If the Initializer of the param_attr
             is not set, the parameter is initialized with Xavier. Default: None.
1018
        bias_attr(ParamAttr, optional): The parameter attribute for the bias of batch_norm.
1019 1020 1021
             If it is set to None or one attribute of ParamAttr, batch_norm
             will create ParamAttr as bias_attr. If the Initializer of the bias_attr
             is not set, the bias is initialized zero. Default: None.
1022 1023 1024 1025 1026 1027
        dtype(str, optional): Indicate the data type of the input ``Tensor``,
             which can be float32 or float64. Default: float32.
        data_layout(str, optional): Specify the input data format, the data format can be "NCHW" or "NHWC". Default: NCHW.
        in_place(bool, optional): Make the input and output of batch norm reuse memory. Default: False.
        moving_mean_name(str, optional): The name of moving_mean which store the global Mean. Default: None.
        moving_variance_name(str, optional): The name of the moving_variance which store the global Variance. Default: None.
1028 1029
        do_model_average_for_mean_and_var(bool, optional): Whether parameter mean and variance should do model
            average when model average is enabled. Default: True.
1030
        use_global_stats(bool, optional): Whether to use global mean and
1031 1032 1033
            variance. In inference or test mode, set use_global_stats to true
            or is_test to true, and the behavior is equivalent.
            In train mode, when setting use_global_stats True, the global mean
1034 1035 1036 1037
            and variance are also used during train period. Default: False.
        trainable_statistics(bool, optional): Whether to calculate mean and var in eval mode. In eval mode, when
            setting trainable_statistics True, mean and variance will be calculated by current batch statistics.
            Default: False.
1038 1039

    Returns:
1040
        None
1041 1042 1043

    Examples:
        .. code-block:: python
L
lujun 已提交
1044 1045

          import paddle.fluid as fluid
1046 1047
          from paddle.fluid.dygraph.base import to_variable
          import numpy as np
L
lujun 已提交
1048

1049
          x = np.random.random(size=(3, 10, 3, 7)).astype('float32')
L
lujun 已提交
1050
          with fluid.dygraph.guard():
1051
              x = to_variable(x)
1052
              batch_norm = fluid.BatchNorm(10)
1053
              hidden1 = batch_norm(x)
1054 1055
    """

M
minqiyang 已提交
1056 1057 1058 1059 1060 1061 1062 1063
    def __init__(self,
                 num_channels,
                 act=None,
                 is_test=False,
                 momentum=0.9,
                 epsilon=1e-05,
                 param_attr=None,
                 bias_attr=None,
1064
                 dtype='float32',
M
minqiyang 已提交
1065 1066 1067 1068
                 data_layout='NCHW',
                 in_place=False,
                 moving_mean_name=None,
                 moving_variance_name=None,
1069
                 do_model_average_for_mean_and_var=True,
1070 1071
                 use_global_stats=False,
                 trainable_statistics=False):
1072
        super(BatchNorm, self).__init__()
1073
        self._param_attr = param_attr
1074
        self._bias_attr = bias_attr
1075
        self._act = act
M
minqiyang 已提交
1076 1077 1078

        assert bias_attr is not False, "bias_attr should not be False in batch_norm."

1079 1080
        if dtype == "float16":
            self._dtype = "float32"
M
minqiyang 已提交
1081 1082 1083 1084 1085 1086
        else:
            self._dtype = dtype

        param_shape = [num_channels]

        # create parameter
1087
        self.weight = self.create_parameter(
1088
            attr=self._param_attr,
M
minqiyang 已提交
1089 1090 1091
            shape=param_shape,
            dtype=self._dtype,
            default_initializer=Constant(1.0))
1092
        self.weight.stop_gradient = use_global_stats and self._param_attr.learning_rate == 0.
M
minqiyang 已提交
1093

1094
        self.bias = self.create_parameter(
1095
            attr=self._bias_attr,
M
minqiyang 已提交
1096 1097 1098
            shape=param_shape,
            dtype=self._dtype,
            is_bias=True)
1099
        self.bias.stop_gradient = use_global_stats and self._param_attr.learning_rate == 0.
M
minqiyang 已提交
1100

1101
        self._mean = self.create_parameter(
M
minqiyang 已提交
1102 1103 1104 1105 1106 1107 1108
            attr=ParamAttr(
                name=moving_mean_name,
                initializer=Constant(0.0),
                trainable=False,
                do_model_average=do_model_average_for_mean_and_var),
            shape=param_shape,
            dtype=self._dtype)
1109
        self._mean.stop_gradient = True
M
minqiyang 已提交
1110

1111
        self._variance = self.create_parameter(
M
minqiyang 已提交
1112 1113 1114 1115 1116 1117 1118
            attr=ParamAttr(
                name=moving_variance_name,
                initializer=Constant(1.0),
                trainable=False,
                do_model_average=do_model_average_for_mean_and_var),
            shape=param_shape,
            dtype=self._dtype)
1119
        self._variance.stop_gradient = True
M
minqiyang 已提交
1120 1121

        self._in_place = in_place
1122
        self._data_layout = data_layout
M
minqiyang 已提交
1123 1124 1125
        self._momentum = momentum
        self._epsilon = epsilon
        self._is_test = is_test
1126
        self._fuse_with_relu = False
M
minqiyang 已提交
1127
        self._use_global_stats = use_global_stats
1128
        self._trainable_statistics = trainable_statistics
M
minqiyang 已提交
1129 1130 1131 1132 1133 1134

    def forward(self, input):
        # create output
        # mean and mean_out share the same memory
        mean_out = self._mean
        # variance and variance out share the same memory
1135

M
minqiyang 已提交
1136
        variance_out = self._variance
1137 1138 1139 1140 1141 1142 1143 1144 1145 1146
        attrs = {
            "momentum": self._momentum,
            "epsilon": self._epsilon,
            "is_test": self._is_test,
            "data_layout": self._data_layout,
            "use_mkldnn": False,
            "fuse_with_relu": self._fuse_with_relu,
            "use_global_stats": self._use_global_stats,
            "trainable_statistics": self._trainable_statistics
        }
M
minqiyang 已提交
1147

1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182
        inputs = {
            "X": [input],
            "Scale": [self.weight],
            "Bias": [self.bias],
            "Mean": [self._mean],
            "Variance": [self._variance]
        }

        if in_dygraph_mode():
            attrs['is_test'] = not _dygraph_tracer()._train_mode
            saved_mean = _varbase_creator(dtype=self._dtype)
            saved_variance = _varbase_creator(dtype=self._dtype)
            batch_norm_out = _varbase_creator(dtype=self._dtype)
            batch_norm_out.stop_gradient = False
            # inplace is not supported currently
        else:
            saved_mean = self._helper.create_variable_for_type_inference(
                dtype=self._dtype, stop_gradient=True)
            saved_variance = self._helper.create_variable_for_type_inference(
                dtype=self._dtype, stop_gradient=True)
            batch_norm_out = input if self._in_place else self._helper.create_variable_for_type_inference(
                self._dtype)

        outputs = {
            "Y": [batch_norm_out],
            "MeanOut": [mean_out],
            "VarianceOut": [variance_out],
            "SavedMean": [saved_mean],
            "SavedVariance": [saved_variance]
        }

        if in_dygraph_mode():
            outs = core.ops.batch_norm(inputs, attrs, outputs)
            return dygraph_utils._append_activation_in_dygraph(
                batch_norm_out, act=self._act)
M
minqiyang 已提交
1183 1184

        self._helper.append_op(
1185
            type="batch_norm", inputs=inputs, outputs=outputs, attrs=attrs)
M
minqiyang 已提交
1186

L
lujun 已提交
1187
        # Currently, we don't support inplace in dygraph mode
1188
        return self._helper.append_activation(batch_norm_out, self._act)
1189 1190


1191 1192 1193 1194
class Embedding(layers.Layer):
    """
    **Embedding Layer**

Z
zhongpu 已提交
1195 1196 1197 1198 1199 1200
    This interface is used to construct a callable object of the ``Embedding`` class.
    For specific usage, refer to code examples. It implements the function of the Embedding Layer.
    This layer is used to lookup embeddings vector of ids provided by :attr:`input` .
    It automatically constructs a 2D embedding matrix based on the
    input :attr:`size` (vocab_size, emb_size) and :attr:`dtype` .

1201 1202
    The shape of output Tensor is generated by appending an emb_size dimension to the
    last dimension of the input Tensor shape.
Z
zhongpu 已提交
1203

1204
    **Note:** The id in :attr:`input` must satisfy :math:`0 =< id < size[0]` ,
Z
zhongpu 已提交
1205 1206 1207 1208 1209 1210 1211
    otherwise the program will throw an exception and exit.

    .. code-block:: text

        Case 1:

        input is a Tensor. padding_idx = -1
1212 1213
            input.data = [[1, 3], [2, 4], [4, 127]
            input.shape = [3, 2]
Z
zhongpu 已提交
1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226
        Given size = [128, 16]
        output is a Tensor:
            out.shape = [3, 2, 16]
            out.data = [[[0.129435295, 0.244512452, ..., 0.436322452],
                        [0.345421456, 0.524563927, ..., 0.144534654]],

                        [[0.345249859, 0.124939536, ..., 0.194353745],
                        [0.945345345, 0.435394634, ..., 0.435345365]],
                        
                        [[0.945345345, 0.435394634, ..., 0.435345365],
                        [0.0,         0.0,         ..., 0.0        ]]]  # padding data
        The input padding_idx is less than 0, it is automatically converted to padding_idx = -1 + 128 = 127
        It will pad all-zero data when ids is 127.
1227

1228
    Parameters:
L
lujun 已提交
1229 1230
        size(tuple|list): The shape of the look up table parameter. It should have two elements which indicate the size
            of the dictionary of embeddings and the size of each embedding vector respectively.
Z
zhongpu 已提交
1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252
        is_sparse(bool): The flag indicating whether to use sparse update. This parameter only
            affects the performance of the backwards gradient update. It is recommended to set 
            True because sparse update is faster. But some optimizer does not support sparse update,
            such as :ref:`api_fluid_optimizer_AdadeltaOptimizer` , :ref:`api_fluid_optimizer_AdamaxOptimizer` , 
            :ref:`api_fluid_optimizer_DecayedAdagradOptimizer` , :ref:`api_fluid_optimizer_FtrlOptimizer` ,
            :ref:`api_fluid_optimizer_LambOptimizer` and :ref:`api_fluid_optimizer_LarsMomentumOptimizer` .
            In these case, is_sparse must be False. Default: False.
        is_distributed(bool): Whether to store the embedding matrix in a distributed manner. Only used
            in multi-machine distributed CPU training. Default: False.
        padding_idx(int|long|None): padding_idx needs to be in the interval [-vocab_size, vocab_size). 
            If :math:`padding\_idx < 0`, the :math:`padding\_idx` will automatically be converted
            to :math:`vocab\_size + padding\_idx` . It will output all-zero padding data whenever lookup
            encounters :math:`padding\_idx` in id. And the padding data will not be updated while training.
            If set None, it makes no effect to output. Default: None.
        param_attr(ParamAttr): To specify the weight parameter property. Default: None, which means the
            default weight parameter property is used. See usage for details in :ref:`api_fluid_ParamAttr` . In addition,
            user-defined or pre-trained word vectors can be loaded with the :attr:`param_attr` parameter. 
            The local word vector needs to be transformed into numpy format, and the shape of local word
            vector shoud be consistent with :attr:`size` . Then :ref:`api_fluid_initializer_NumpyArrayInitializer`
            is used to load custom or pre-trained word vectors. See code example 2 for details.
        dtype(np.dtype|core.VarDesc.VarType|str): It refers to the data type of output Tensor.
            It must be "float32" or "float64". Default: "float32".
1253

Z
zhongpu 已提交
1254 1255
    Attribute:
        **weight** (Parameter): the learnable weights of this layer.
1256

1257
    Returns:
Z
zhongpu 已提交
1258
        Variable: Embedding Tensor or LoDTensor mapped by input. The data type is the same as :attr:`dtype` .
1259 1260

    Examples:
1261

1262 1263
        .. code-block:: python

L
lujun 已提交
1264 1265 1266 1267
          import paddle.fluid as fluid
          import paddle.fluid.dygraph.base as base
          import numpy as np

Z
zhongpu 已提交
1268
          # example 1
1269 1270
          inp_word = np.array([[2, 3, 5], [4, 2, 1]]).astype('int64')
          inp_word.shape  # [2, 3]
1271 1272
          dict_size = 20
          with fluid.dygraph.guard():
L
lujun 已提交
1273
              emb = fluid.dygraph.Embedding(
1274 1275 1276
                  size=[dict_size, 32],
                  param_attr='emb.w',
                  is_sparse=False)
L
lujun 已提交
1277
              static_rlt3 = emb(base.to_variable(inp_word))
1278
              static_rlt3.shape  # [2, 3, 32]
Z
zhongpu 已提交
1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292

          # example 2: load custom or pre-trained word vectors
          weight_data = np.random.random(size=(128, 100))  # word vectors with numpy format
          w_param_attrs = fluid.ParamAttr(
              name="emb_weight",
              learning_rate=0.5,
              initializer=fluid.initializer.NumpyArrayInitializer(weight_data),
              trainable=True)
          with fluid.dygraph.guard():
              emb = fluid.dygraph.Embedding(
                  size=[128, 100],
                  param_attr= w_param_attrs,
                  is_sparse=False)
              static_rlt3 = emb(base.to_variable(inp_word))          
1293 1294
    """

1295 1296 1297 1298 1299 1300 1301
    def __init__(self,
                 size,
                 is_sparse=False,
                 is_distributed=False,
                 padding_idx=None,
                 param_attr=None,
                 dtype='float32'):
1302
        super(Embedding, self).__init__()
1303 1304 1305 1306
        self._size = size
        self._is_sparse = is_sparse
        self._is_distributed = is_distributed
        self._padding_idx = -1 if padding_idx is None else padding_idx if padding_idx >= 0 else (
J
JiabinYang 已提交
1307
            size[0] + padding_idx)
1308 1309 1310

        self._param_attr = param_attr
        self._dtype = dtype
J
JiabinYang 已提交
1311
        self._remote_prefetch = self._is_sparse and (not self._is_distributed)
1312 1313 1314
        if self._remote_prefetch:
            assert self._is_sparse is True and self._is_distributed is False

1315
        self.weight = self.create_parameter(
1316 1317 1318 1319 1320 1321
            attr=self._param_attr,
            shape=self._size,
            dtype=self._dtype,
            is_bias=False)

    def forward(self, input):
1322 1323 1324 1325 1326 1327
        attrs = {
            'is_sparse': self._is_sparse,
            'is_distributed': self._is_distributed,
            'remote_prefetch': self._remote_prefetch,
            'padding_idx': self._padding_idx
        }
1328

1329
        if in_dygraph_mode():
1330
            inputs = {'Ids': [input], 'W': [self.weight]}
1331 1332 1333
            outs = core.ops.lookup_table_v2(inputs, attrs)
            return outs['Out'][0]

1334 1335
        out = self._helper.create_variable_for_type_inference(self._dtype)
        self._helper.append_op(
1336
            type='lookup_table_v2',
1337
            inputs={'Ids': input,
1338
                    'W': self.weight},
1339
            outputs={'Out': out},
1340
            attrs=attrs)
1341 1342

        return out
M
minqiyang 已提交
1343 1344


1345
class LayerNorm(layers.Layer):
1346
    """
1347 1348 1349
    This interface is used to construct a callable object of the ``LayerNorm`` class.
    For more details, refer to code examples.
    It implements the function of the Layer Normalization Layer and can be applied to mini-batch input data.
1350
    Refer to `Layer Normalization <https://arxiv.org/pdf/1607.06450v1.pdf>`_
1351

1352
    The formula is as follows:
1353

1354
    ..  math::
1355

1356
        \\mu & = \\frac{1}{H}\\sum_{i=1}^{H} x_i
1357

1358
        \\sigma & = \\sqrt{\\frac{1}{H}\sum_{i=1}^{H}{(x_i - \\mu)^2} + \\epsilon}
1359

1360
        y & = f(\\frac{g}{\\sigma}(x - \\mu) + b)
1361

1362 1363 1364 1365 1366
    - :math:`x`: the vector representation of the summed inputs to the neurons in that layer.
    - :math:`H`: the number of hidden units in a layers
    - :math:`\\epsilon`: the small value added to the variance to prevent division by zero.
    - :math:`g`: the trainable scale parameter.
    - :math:`b`: the trainable bias parameter.
1367

1368
    Parameters:
1369 1370 1371 1372
        normalized_shape(int or list or tuple): Input shape from an expected input of
            size :math:`[*, normalized_shape[0], normalized_shape[1], ..., normalized_shape[-1]]`.
            If it is a single integer, this module will normalize over the last dimension
            which is expected to be of that specific size.
1373
        scale(bool, optional): Whether to learn the adaptive gain :math:`g` after
L
lujun 已提交
1374
            normalization. Default: True.
1375
        shift(bool, optional): Whether to learn the adaptive bias :math:`b` after
L
lujun 已提交
1376
            normalization. Default: True.
1377
        epsilon(float, optional): The small value added to the variance to prevent
L
lujun 已提交
1378
            division by zero. Default: 1e-05.
1379
        param_attr(ParamAttr, optional): The parameter attribute for the learnable
1380 1381 1382
            gain :math:`g`. If :attr:`scale` is False, :attr:`param_attr` is
            omitted. If :attr:`scale` is True and :attr:`param_attr` is None,
            a default :code:`ParamAttr` would be added as scale. The
L
lujun 已提交
1383
            :attr:`param_attr` is initialized as 1 if it is added. Default: None.
1384
        bias_attr(ParamAttr, optional): The parameter attribute for the learnable
1385 1386 1387
            bias :math:`b`. If :attr:`shift` is False, :attr:`bias_attr` is
            omitted. If :attr:`shift` is True and :attr:`param_attr` is None,
            a default :code:`ParamAttr` would be added as bias. The
L
lujun 已提交
1388
            :attr:`bias_attr` is initialized as 0 if it is added. Default: None.
1389
        act(str, optional): Activation to be applied to the output of layer normalizaiton.
L
lujun 已提交
1390
                  Default: None.
1391 1392
        dtype (str, optional): Data type, it can be "float32" or "float64". Default: "float32".

1393
    Returns:
1394
        None
1395

1396
    Examples:
1397

1398 1399 1400
        .. code-block:: python

          import paddle.fluid as fluid
1401
          from paddle.fluid.dygraph.base import to_variable
1402 1403
          import numpy

1404
          x = numpy.random.random((3, 32, 32)).astype('float32')
1405
          with fluid.dygraph.guard():
1406
              x = to_variable(x)
1407
              layerNorm = fluid.LayerNorm([32, 32])
1408
              ret = layerNorm(x)
1409

1410
    """
1411

1412
    def __init__(self,
1413
                 normalized_shape,
1414 1415 1416 1417 1418
                 scale=True,
                 shift=True,
                 epsilon=1e-05,
                 param_attr=None,
                 bias_attr=None,
1419 1420 1421 1422 1423
                 act=None,
                 dtype='float32'):
        super(LayerNorm, self).__init__()
        if isinstance(normalized_shape, numbers.Integral):
            normalized_shape = [normalized_shape]
H
hong 已提交
1424

1425
        self._normalized_shape = list(normalized_shape)
1426 1427 1428 1429 1430 1431
        self._scale = scale
        self._shift = shift
        self._epsilon = epsilon
        self._param_attr = param_attr
        self._bias_attr = bias_attr
        self._act = act
1432 1433
        self._dtype = dtype
        param_shape = [np.prod(self._normalized_shape)]
1434
        if self._scale:
1435
            self.weight = self.create_parameter(
1436 1437 1438 1439
                attr=self._param_attr,
                shape=param_shape,
                dtype=self._dtype,
                default_initializer=Constant(1.0))
1440 1441 1442 1443
        else:
            if self._param_attr:
                logging.warn("param_attr are only avaliable with scale is True")

1444 1445
        if self._shift:
            assert self._bias_attr is not False
1446
            self.bias = self.create_parameter(
1447 1448 1449 1450
                attr=self._bias_attr,
                shape=param_shape,
                dtype=self._dtype,
                is_bias=True)
1451 1452 1453
        else:
            if self._bias_attr:
                logging.warn("bias_attr are only avaliable with shift is True")
1454 1455

    def forward(self, input):
1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466
        input_shape = list(input.shape)
        input_ndim = len(input_shape)
        normalized_ndim = len(self._normalized_shape)
        self._begin_norm_axis = input_ndim - normalized_ndim
        if input_ndim < normalized_ndim or input_shape[
                self._begin_norm_axis:] != self._normalized_shape:
            str_normalized_shape = str(self._normalized_shape)
            raise ValueError(
                'Given normalized_shape is ' + str_normalized_shape +
                ', expected input with shape [*, ' + str_normalized_shape[
                    1:] + ', but got input shape ' + str(input_shape))
1467
        inputs = dict()
1468
        inputs['X'] = [input]
1469
        if self._scale:
1470
            inputs['Scale'] = [self.weight]
1471
        if self._shift:
1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484
            inputs['Bias'] = [self.bias]

        attrs = {
            "epsilon": self._epsilon,
            "begin_norm_axis": self._begin_norm_axis
        }

        if in_dygraph_mode():
            outs = core.ops.layer_norm(inputs, attrs)
            pre_act = outs['Y'][0]
            return dygraph_utils._append_activation_in_dygraph(
                pre_act, act=self._act)

1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505
        # create output
        mean_out = self._helper.create_variable_for_type_inference(
            dtype=self._dtype, stop_gradient=True)
        variance_out = self._helper.create_variable_for_type_inference(
            dtype=self._dtype, stop_gradient=True)
        layer_norm_out = self._helper.create_variable_for_type_inference(
            self._dtype)

        self._helper.append_op(
            type="layer_norm",
            inputs=inputs,
            outputs={
                "Y": layer_norm_out,
                "Mean": mean_out,
                "Variance": variance_out,
            },
            attrs={
                "epsilon": self._epsilon,
                "begin_norm_axis": self._begin_norm_axis
            })

1506
        return self._helper.append_activation(layer_norm_out, act=self._act)
1507 1508


M
minqiyang 已提交
1509 1510 1511
class GRUUnit(layers.Layer):
    """
    **GRU unit layer**
D
DuYao 已提交
1512 1513 1514 1515 1516
    
    It creates a callable object from GRUUnit class.
    If origin_mode is True, then the equation of a gru step is from paper
    `Learning Phrase Representations using RNN Encoder-Decoder for Statistical 
    Machine Translation <https://arxiv.org/pdf/1406.1078.pdf>`_
M
minqiyang 已提交
1517 1518 1519 1520 1521 1522 1523 1524 1525 1526

        .. math::
            u_t & = actGate(xu_{t} + W_u h_{t-1} + b_u)

            r_t & = actGate(xr_{t} + W_r h_{t-1} + b_r)

            m_t & = actNode(xm_t + W_c dot(r_t, h_{t-1}) + b_m)

            h_t & = dot(u_t, h_{t-1}) + dot((1-u_t), m_t)

D
DuYao 已提交
1527
    If origin_mode is False, then the equation of a gru step is from paper
M
minqiyang 已提交
1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552
    `Empirical Evaluation of Gated Recurrent Neural Networks on Sequence
    Modeling <https://arxiv.org/pdf/1412.3555.pdf>`_

        .. math::
            u_t & = actGate(xu_{t} + W_u h_{t-1} + b_u)

            r_t & = actGate(xr_{t} + W_r h_{t-1} + b_r)

            m_t & = actNode(xm_t + W_c dot(r_t, h_{t-1}) + b_m)

            h_t & = dot((1-u_t), h_{t-1}) + dot(u_t, m_t)


    The inputs of gru unit includes :math:`z_t`, :math:`h_{t-1}`. In terms
    of the equation above, the :math:`z_t` is split into 3 parts -
    :math:`xu_t`, :math:`xr_t` and :math:`xm_t`. This means that in order to
    implement a full GRU unit operator for an input, a fully
    connected layer has to be applied, such that :math:`z_t = W_{fc}x_t`.

    The terms :math:`u_t` and :math:`r_t` represent the update and reset gates
    of the GRU cell. Unlike LSTM, GRU has one lesser gate. However, there is
    an intermediate candidate hidden output, which is denoted by :math:`m_t`.
    This layer has three outputs :math:`h_t`, :math:`dot(r_t, h_{t-1})`
    and concatenation of :math:`u_t`, :math:`r_t` and :math:`m_t`.

1553
    Parameters:
L
lujun 已提交
1554
        size (int): The input dimension value.
D
DuYao 已提交
1555 1556 1557 1558 1559 1560 1561 1562 1563
        param_attr(ParamAttr, optional): The parameter attribute for the learnable
            hidden-hidden weight matrix. 
            
            **Note**:
    
                1. The shape of the weight matrix is :math:`[T, 3*D]`, where D is the hidden size.
                2. All elements in the weight matrix can be divided into two parts. The first 
                   part are weights of the update gate and reset gate with shape :math:`[D, 2*D]`, 
                   and the second part are weights for candidate hidden state with shape :math:`[D, D]`.
M
minqiyang 已提交
1564 1565 1566 1567


            If it is set to None or one attribute of ParamAttr, gru_unit will
            create ParamAttr as param_attr. If the Initializer of the param_attr
D
DuYao 已提交
1568 1569 1570 1571
            is not set, the parameter is initialized with Xavier. The default 
            value is None.
        bias_attr (ParamAttr|bool, optional): The parameter attribute for the bias
            of GRU.Note that the bias with :math:`[1, 3*D]` concatenates
M
minqiyang 已提交
1572 1573 1574 1575 1576
            the bias in the update gate, reset gate and candidate calculations.
            If it is set to False, no bias will be applied to the update gate,
            reset gate and candidate calculations. If it is set to None or one
            attribute of ParamAttr, gru_unit will create ParamAttr as
            bias_attr. If the Initializer of the bias_attr is not set, the bias
D
DuYao 已提交
1577
            is initialized zero. The default value is None.
L
lujun 已提交
1578
        activation (str): The activation type for cell (actNode).
D
DuYao 已提交
1579
                             The default value is 'tanh'.
L
lujun 已提交
1580
        gate_activation (str): The activation type for gates (actGate).
D
DuYao 已提交
1581 1582 1583
                                  The default value is 'sigmoid'.
        dtype(str): The dtype of the layers. The data type can be set as
            'float32', 'float64'. The default value is 'float32'.
M
minqiyang 已提交
1584

D
DuYao 已提交
1585 1586 1587 1588
    Attribute:
        **weight** (Parameter): the learnable weights of this layer.

        **bias** (Parameter): the learnable bias of this layer.
1589

M
minqiyang 已提交
1590
    Returns:
D
DuYao 已提交
1591 1592 1593 1594
        tuple: The hidden value, reset-hidden value and gate values. The hidden value
        is a 2-D tensor with shape  :math:`[T, D]` . The reset-hidden value is a
        2-D tensor with shape  :math:`[T, D]` . The gate value is a 2-D tensor with 
        shape  :math:`[T, 3*D]`.
L
lujun 已提交
1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607

    Examples:

        .. code-block:: python

          import paddle.fluid as fluid
          import paddle.fluid.dygraph.base as base
          import numpy

          lod = [[2, 4, 3]]
          D = 5
          T = sum(lod[0])

D
DuYao 已提交
1608
          input = numpy.random.rand(T, 3 * D).astype('float32')
L
lujun 已提交
1609 1610 1611
          hidden_input = numpy.random.rand(T, D).astype('float32')
          with fluid.dygraph.guard():
              x = numpy.random.random((3, 32, 32)).astype('float32')
1612
              gru = fluid.dygraph.GRUUnit(size=D * 3)
L
lujun 已提交
1613 1614 1615
              dy_ret = gru(
                base.to_variable(input), base.to_variable(hidden_input))

M
minqiyang 已提交
1616 1617 1618 1619 1620 1621 1622 1623 1624 1625
    """

    def __init__(self,
                 size,
                 param_attr=None,
                 bias_attr=None,
                 activation='tanh',
                 gate_activation='sigmoid',
                 origin_mode=False,
                 dtype='float32'):
1626
        super(GRUUnit, self).__init__()
1627
        self._bias_attr = bias_attr
M
minqiyang 已提交
1628 1629 1630 1631 1632
        activation_dict = dict(
            identity=0,
            sigmoid=1,
            tanh=2,
            relu=3, )
H
Hongyu Liu 已提交
1633 1634
        self.activation = activation_dict[activation]
        self.gate_activation = activation_dict[gate_activation]
M
minqiyang 已提交
1635

M
minqiyang 已提交
1636
        self._dtype = dtype
M
minqiyang 已提交
1637 1638
        size = size // 3
        # create weight
1639
        self.weight = self.create_parameter(
M
minqiyang 已提交
1640
            attr=param_attr, shape=[size, 3 * size], dtype=dtype)
M
minqiyang 已提交
1641 1642

        # create bias
M
minqiyang 已提交
1643
        bias_size = [1, 3 * size]
1644
        self._bias_size = bias_size
1645
        self.bias = self.create_parameter(
M
minqiyang 已提交
1646
            attr=bias_attr, shape=bias_size, dtype=dtype, is_bias=True)
M
minqiyang 已提交
1647

M
minqiyang 已提交
1648
    def forward(self, input, hidden):
1649 1650 1651 1652 1653
        inputs = {
            'Input': [input],
            'HiddenPrev': [hidden],
            'Weight': [self.weight]
        }
1654
        if self.bias:
1655 1656 1657 1658 1659 1660 1661 1662 1663 1664
            inputs['Bias'] = [self.bias]
        attrs = {
            'activation': self.activation,
            'gate_activation': self.gate_activation,
        }

        if in_dygraph_mode():
            outs = core.ops.gru_unit(inputs, attrs)
            return outs['Hidden'][0], outs['ResetHiddenPrev'][0], outs['Gate'][
                0]
M
minqiyang 已提交
1665 1666 1667 1668 1669 1670

        gate = self._helper.create_variable_for_type_inference(self._dtype)
        reset_hidden_pre = self._helper.create_variable_for_type_inference(
            self._dtype)
        updated_hidden = self._helper.create_variable_for_type_inference(
            self._dtype)
M
minqiyang 已提交
1671 1672 1673 1674 1675 1676 1677 1678 1679
        self._helper.append_op(
            type='gru_unit',
            inputs=inputs,
            outputs={
                'Gate': gate,
                'ResetHiddenPrev': reset_hidden_pre,
                'Hidden': updated_hidden,
            },
            attrs={
H
Hongyu Liu 已提交
1680 1681
                'activation': self.activation,
                'gate_activation': self.gate_activation,
M
minqiyang 已提交
1682 1683 1684
            })

        return updated_hidden, reset_hidden_pre, gate
1685 1686 1687 1688


class NCE(layers.Layer):
    """
1689 1690 1691 1692 1693
    This interface is used to construct a callable object of the ``NCE`` class.
    For more details, refer to code examples.
    It implements the function of the ``NCE`` loss function.
    By default this function uses a uniform distribution for sampling, and it
    compute and return the noise-contrastive estimation training loss. See
1694
    `Noise-contrastive estimation: A new estimation principle for unnormalized statistical models <http://www.jmlr.org/proceedings/papers/v9/gutmann10a/gutmann10a.pdf>`_ .
1695

1696
    Parameters:
1697 1698
        num_total_classes (int): Total number of classes in all samples.
        dim (int): Dimension of input (possibly embedding dim).
1699
        param_attr (ParamAttr, optional): The parameter attribute for learnable weights(Parameter)
1700 1701 1702
             of nce. If it is set to None or one attribute of ParamAttr, nce
             will create ParamAttr as param_attr. If the Initializer of the param_attr
             is not set, the parameter is initialized with Xavier. Default: None.
1703
        bias_attr (ParamAttr or bool, optional): The attribute for the bias of nce.
1704 1705 1706 1707
             If it is set to False, no bias will be added to the output units.
             If it is set to None or one attribute of ParamAttr, nce
             will create ParamAttr as bias_attr. If the Initializer of the bias_attr
             is not set, the bias is initialized zero. Default: None.
1708 1709
        num_neg_samples (int, optional): The number of negative classes. The default value is 10.
        sampler (str, optional): The sampler used to sample class from negtive classes.
1710 1711
                       It can be 'uniform', 'log_uniform' or 'custom_dist'.
                       default: 'uniform'.
1712
        custom_dist (float[], optional): A float[] with size=num_total_classes.
1713
                       It is used when sampler is set to 'custom_dist'.
1714
                       custom_dist[i] is the probability of i-th class to be sampled.
L
lujun 已提交
1715
                       Default: None.
1716 1717
        seed (int, optional): The seed used in sampler. Default: 0.
        is_sparse(bool, optional): The flag indicating whether to use sparse update. If is_sparse is True, the weight@GRAD and bias@GRAD will be changed to SelectedRows. Default: False.
1718
        dtype (str, optional): Data type, it can be "float32" or "float64". Default: "float32".
1719

1720 1721
    Attribute:
        **weight** (Parameter): the learnable weights of this layer.
1722

1723 1724
        **bias** (Parameter or None): the learnable bias of this layer.
    
1725
    Returns:
1726
        None
1727 1728 1729 1730

    Examples:
        .. code-block:: python

1731 1732 1733
            import numpy as np
            import paddle.fluid as fluid

1734
            window_size = 5
1735 1736
            dict_size = 20
            label_word = int(window_size // 2) + 1
1737
            inp_word = np.array([[1], [2], [3], [4], [5]]).astype('int64')
1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758
            nid_freq_arr = np.random.dirichlet(np.ones(20) * 1000).astype('float32')

            with fluid.dygraph.guard():
                words = []
                for i in range(window_size):
                    words.append(fluid.dygraph.base.to_variable(inp_word[i]))

                emb = fluid.Embedding(
                    size=[dict_size, 32],
                    param_attr='emb.w',
                    is_sparse=False)

                embs3 = []
                for i in range(window_size):
                    if i == label_word:
                        continue

                    emb_rlt = emb(words[i])
                    embs3.append(emb_rlt)

                embs3 = fluid.layers.concat(input=embs3, axis=1)
1759
                nce = fluid.NCE(
1760
                             num_total_classes=dict_size,
1761
                             dim=embs3.shape[1],
1762 1763 1764 1765 1766 1767 1768
                             num_neg_samples=2,
                             sampler="custom_dist",
                             custom_dist=nid_freq_arr.tolist(),
                             seed=1,
                             param_attr='nce.w',
                             bias_attr='nce.b')

1769 1770
                wl = fluid.layers.unsqueeze(words[label_word], axes=[0])
                nce_loss3 = nce(embs3, wl)
1771 1772 1773 1774 1775

    """

    def __init__(self,
                 num_total_classes,
1776
                 dim,
1777
                 sample_weight=None,
1778 1779 1780 1781 1782 1783
                 param_attr=None,
                 bias_attr=None,
                 num_neg_samples=None,
                 sampler="uniform",
                 custom_dist=None,
                 seed=0,
1784 1785 1786
                 is_sparse=False,
                 dtype='float32'):
        super(NCE, self).__init__()
1787 1788 1789
        self._param_attr = param_attr
        self._bias_attr = bias_attr
        self._num_total_classes = num_total_classes
1790
        self._dtype = dtype
1791
        self._inputs = dict()
1792
        self._inputs['SampleWeight'] = sample_weight if sample_weight is not None else []
1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879
        if sampler == "uniform":
            sampler = 0
        elif sampler == "log_uniform":
            sampler = 1
        elif sampler == "custom_dist":
            assert custom_dist is not None
            # assert isinstance(custom_dist, Variable)

            custom_dist_len = len(custom_dist)
            alias_probs_ = [0] * custom_dist_len
            alias_ = [0] * custom_dist_len
            bigs = []
            littles = []
            for i in range(custom_dist_len):
                normal_prob = custom_dist[i] * custom_dist_len
                if normal_prob - 1.0 > 0:
                    bigs.append((i, normal_prob))
                elif 1.0 - normal_prob > 0:
                    littles.append((i, normal_prob))
                else:
                    alias_probs_[i] = normal_prob
                    alias_[i] = -1

            while len(bigs) and len(littles):
                big = bigs.pop(0)
                little = littles.pop(0)

                big_idx = big[0]
                big_prob = big[1]

                alias_probs_[little[0]] = little[1]
                alias_[little[0]] = big_idx
                big_left = big[1] + little[1] - 1
                if big_left - 1.0 > 0:
                    bigs.append((big_idx, big_left))
                elif 1.0 - big_left > 0:
                    littles.append((big_idx, big_left))
                else:
                    alias_probs_[big_idx] = big_left
                    alias_[big_idx] = -1

            if len(bigs):
                big = bigs.pop(0)
                alias_probs_[big[0]] = 1.0
                alias_[big[0]] = -1
            if len(littles):
                little = littles.pop(0)
                alias_probs_[little[0]] = 1.0
                alias_[little[0]] = -1

            def _init_by_numpy_array(numpy_array):
                ret = self.create_parameter(
                    attr=ParamAttr(),
                    shape=numpy_array.shape,
                    dtype=numpy_array.dtype,
                    default_initializer=NumpyArrayInitializer(numpy_array))
                ret.stop_gradient = True
                return ret

            self._inputs['CustomDistProbs'] = _init_by_numpy_array(
                np.array(custom_dist).astype('float32'))
            self._inputs['CustomDistAlias'] = _init_by_numpy_array(
                np.array(alias_).astype('int32'))
            self._inputs['CustomDistAliasProbs'] = _init_by_numpy_array(
                np.array(alias_probs_).astype('float32'))
            sampler = 2
        else:
            raise Exception("Unsupported sampler type.")

        if num_neg_samples is None:
            num_neg_samples = 10
        else:
            num_neg_samples = int(num_neg_samples)
        self._num_neg_samples = num_neg_samples
        remote_prefetch = is_sparse
        print(
            "With sparse mode, if your models has only small parameter prefetch may cause speed down"
        )
        self._attrs = {
            'num_total_classes': int(num_total_classes),
            'num_neg_samples': num_neg_samples,
            'seed': seed,
            'sampler': sampler,
            'is_sparse': is_sparse,
            'remote_prefetch': remote_prefetch
        }

1880
        self.weight = self.create_parameter(
1881 1882 1883
            attr=self._param_attr,
            shape=[self._num_total_classes, dim],
            is_bias=False,
1884
            dtype=self._dtype)
1885
        if self._bias_attr:
1886
            self.bias = self.create_parameter(
1887 1888 1889
                attr=self._bias_attr,
                shape=[self._num_total_classes, 1],
                is_bias=True,
1890
                dtype=self._dtype)
1891 1892
            self._inputs['Bias'] = self.bias
        self._inputs['Weight'] = self.weight
1893

1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922
    def forward(self, input, label, sample_weight=None):
        assert isinstance(input, Variable)
        assert isinstance(label, Variable)

        self._inputs['Input'] = input
        self._inputs['Label'] = label
        self._inputs['SampleWeight'] = sample_weight if sample_weight is not None else []

        cost = self._helper.create_variable_for_type_inference(
            dtype=input.dtype)
        sample_logits = self._helper.create_variable_for_type_inference(
            dtype=input.dtype)
        sample_labels = self._helper.create_variable_for_type_inference(
            dtype=label.dtype)

        self._helper.append_op(
            type='nce',
            inputs=self._inputs,
            outputs={
                'Cost': cost,
                'SampleLogits': sample_logits,
                'SampleLabels': sample_labels
            },
            attrs=self._attrs)
        return cost / (self._num_neg_samples + 1)


class PRelu(layers.Layer):
    """
1923 1924 1925 1926
    This interface is used to construct a callable object of the ``PRelu`` class.
    For more details, refer to code examples.
    It implements three activation methods of the ``PRelu`` activation function.

1927 1928 1929 1930 1931
    Equation:

    .. math::
        y = \max(0, x) + \\alpha * \min(0, x)

1932
    Parameters:
L
lujun 已提交
1933
        mode (str): The mode for weight sharing. It supports all, channel
1934 1935 1936
          and element. all: all elements share same weight
          channel:elements in a channel share same weight
          element:each element has a weight
S
songyouwei 已提交
1937 1938 1939
        channel (int, optional): The number of channels.
          This argument is required when mode is "channel".
          Default: None.
1940
        input_shape (list or tuple, optional): The shape of input.
S
songyouwei 已提交
1941 1942
          This argument is required when mode is "element".
          Default: None.
1943 1944
        param_attr(ParamAttr, optional): The parameter attribute for the learnable
          weight (alpha). Default: None.
1945
        dtype (str, optional): Data type, it can be "float32" or "float64". Default: "float32".
1946

1947 1948 1949
    Attribute:
        **weight** (Parameter): the learnable weights of this layer.
    
1950
    Returns:
1951
        None
1952 1953 1954 1955 1956

    Examples:

        .. code-block:: python

L
lujun 已提交
1957
          import paddle.fluid as fluid
1958
          from paddle.fluid.dygraph.base import to_variable
L
lujun 已提交
1959 1960 1961 1962
          import numpy as np

          inp_np = np.ones([5, 200, 100, 100]).astype('float32')
          with fluid.dygraph.guard():
1963
              inp_np = to_variable(inp_np)
S
songyouwei 已提交
1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974
              prelu0 = fluid.PRelu(
                 mode='all',
                 param_attr=fluid.ParamAttr(initializer=fluid.initializer.Constant(1.0)))
              dy_rlt0 = prelu0(inp_np)
              prelu1 = fluid.PRelu(
                 mode='channel',
                 channel=200,
                 param_attr=fluid.ParamAttr(initializer=fluid.initializer.Constant(1.0)))
              dy_rlt1 = prelu1(inp_np)
              prelu2 = fluid.PRelu(
                 mode='element',
1975
                 input_shape=inp_np.shape,
L
lujun 已提交
1976
                 param_attr=fluid.ParamAttr(initializer=fluid.initializer.Constant(1.0)))
S
songyouwei 已提交
1977
              dy_rlt2 = prelu2(inp_np)
L
lujun 已提交
1978

1979 1980
    """

S
songyouwei 已提交
1981 1982 1983 1984 1985
    def __init__(self,
                 mode,
                 channel=None,
                 input_shape=None,
                 param_attr=None,
1986
                 dtype='float32'):
1987 1988
        # need specify name_scope since snake-cased 'PRelu' is 'p_relu'
        super(PRelu, self).__init__(name_scope='prelu')
1989 1990
        self._mode = mode
        self._param_attr = param_attr
1991
        self._dtype = dtype
S
songyouwei 已提交
1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005
        if mode == 'all':
            self._alpha_shape = [1]
        elif mode == 'channel':
            assert isinstance(
                channel,
                int), "channel argument is required when mode is 'channel'."
            self._alpha_shape = [1, channel, 1, 1]
        elif mode == 'element':
            assert isinstance(input_shape, (
                list, tuple
            )), "input_shape argument is required when mode is 'element'."
            self._alpha_shape = [1] + list(input_shape)[1:]
        else:
            raise ValueError('mode should be one of all, channel, element.')
2006
        self.weight = self.create_parameter(
2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017
            attr=self._param_attr,
            shape=self._alpha_shape,
            dtype='float32',
            is_bias=False,
            default_initializer=Constant(1.0))

    def forward(self, input):
        out = self._helper.create_variable_for_type_inference(self._dtype)
        self._helper.append_op(
            type="prelu",
            inputs={"X": input,
2018
                    'Alpha': self.weight},
2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038
            attrs={"mode": self._mode},
            outputs={"Out": out})
        return out


class BilinearTensorProduct(layers.Layer):
    """
    **Add Bilinear Tensor Product Layer**

    This layer performs bilinear tensor product on two inputs.
    For example:

    .. math::
      out_{i} = x * W_{i} * {y^\mathrm{T}}, i=0,1,...,size-1

    In this formula:
     - :math:`x`: the first input contains M elements, shape is [batch_size, M].
     - :math:`y`: the second input contains N elements, shape is [batch_size, N].
     - :math:`W_{i}`: the i-th learned weight, shape is [M, N]
     - :math:`out_{i}`: the i-th element of out, shape is [batch_size, size].
D
DuYao 已提交
2039
     - :math:`y^\mathrm{T}`: the transpose of :math:`y`.
2040

2041
    Parameters:
2042 2043 2044 2045 2046
       input1_dim (int): The dimension of each first input.
       input2_dim (int): The dimension of each second input.
       output_dim (int): The dimension of output of this layer.
       name (str, optional): The default value is None. Normally there is no need for user
           to set this property. For more information, please refer to :ref:`api_guide_Name`. Default: None.
D
DuYao 已提交
2047 2048 2049 2050
       act (str, optional): Activation to be applied to the output of this layer. The default value is None.
       param_attr (ParamAttr, optional): The parameter attribute for the learnable w, parameters/weights of 
           this layer. The default value is None.
       bias_attr (ParamAttr, optional): The parameter attribute for the bias
2051
           of this layer. If it is set to False, no bias will be added to the output units.
D
DuYao 已提交
2052
           If it is set to None, the bias is initialized zero. The default value is None.
2053
       dtype (str, optional): Data type, it can be "float32" or "float64". Default: "float32".
2054

D
DuYao 已提交
2055 2056 2057 2058
    Attribute:
        **weight** (Parameter): the learnable weights of this layer.

        **bias** (Parameter): the learnable bias of this layer.
2059

2060 2061 2062 2063 2064 2065
    Returns:
       Variable: A 2-D Tensor of shape [batch_size, size].

    Examples:
       .. code-block:: python

2066 2067 2068 2069 2070 2071 2072
         import paddle.fluid as fluid
         import numpy

         with fluid.dygraph.guard():
             layer1 = numpy.random.random((5, 5)).astype('float32')
             layer2 = numpy.random.random((5, 4)).astype('float32')
             bilinearTensorProduct = fluid.dygraph.nn.BilinearTensorProduct(
2073
                    input1_dim=5, input2_dim=4, output_dim=1000)
2074 2075
             ret = bilinearTensorProduct(fluid.dygraph.base.to_variable(layer1),
                                fluid.dygraph.base.to_variable(layer2))
2076 2077 2078
    """

    def __init__(self,
2079 2080 2081
                 input1_dim,
                 input2_dim,
                 output_dim,
2082 2083 2084
                 name=None,
                 act=None,
                 param_attr=None,
2085 2086 2087
                 bias_attr=None,
                 dtype='float32'):
        super(BilinearTensorProduct, self).__init__()
2088 2089 2090 2091
        self._param_attr = param_attr
        self._bias_attr = bias_attr
        self._act = act
        self._name = name
2092 2093 2094
        self._input1_dim = input1_dim
        self._input2_dim = input2_dim
        self._output_dim = output_dim
2095
        self._inputs = dict()
2096
        self._dtype = dtype
2097

2098
        param_shape = [self._output_dim, self._input1_dim, self._input2_dim]
2099
        self.weight = self.create_parameter(
2100 2101 2102 2103
            attr=self._param_attr,
            shape=param_shape,
            dtype=self._dtype,
            is_bias=False)
2104
        bias_size = [1, self._output_dim]
2105
        self.bias = self.create_parameter(
2106 2107 2108 2109
            attr=self._bias_attr,
            shape=bias_size,
            dtype=self._dtype,
            is_bias=True)
2110 2111

    def forward(self, x, y):
2112 2113 2114
        self._inputs = {"X": x, "Y": y, "Weight": self.weight}
        if self.bias:
            self._inputs["Bias"] = self.bias
2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128
        if self._name is not None:
            out = self._helper.create_variable(
                name=".".join([self.full_name(), self._name]),
                dtype=self._dtype,
                persistable=False)
        else:
            out = self._helper.create_variable(
                dtype=self._dtype, persistable=False)
        self._helper.append_op(
            type="bilinear_tensor_product",
            inputs=self._inputs,
            outputs={"Out": out})

        # add activation
2129
        return self._helper.append_activation(out, act=self._act)
2130 2131 2132 2133


class Conv2DTranspose(layers.Layer):
    """
2134 2135
    This interface is used to construct a callable object of the ``Conv2DTranspose`` class.
    For more details, refer to code examples.
2136
    The convolution2D transpose layer calculates the output based on the input,
2137 2138 2139
    filter, and dilations, strides, paddings. Input and output
    are in NCHW format. Where N is batch size, C is the number of feature map,
    H is the height of the feature map, and W is the width of the feature map.
2140 2141
    Filter's shape is [MCHW] , where M is the number of input feature map,
    C is the number of output feature map, H is the height of the filter,
2142 2143
    and W is the width of the filter. If the groups is greater than 1,
    C will equal the number of input feature map divided by the groups.
2144 2145 2146
    If bias attribution and activation type are provided, bias is added to
    the output of the convolution, and the corresponding activation function
    is applied to the final result.
2147 2148
    The details of convolution transpose layer, please refer to the following explanation and references
    `conv2dtranspose <http://www.matthewzeiler.com/wp-content/uploads/2017/07/cvpr2010.pdf>`_ .
2149 2150 2151 2152 2153 2154 2155 2156 2157

    For each input :math:`X`, the equation is:

    .. math::

        Out = \sigma (W \\ast X + b)

    Where:

2158 2159
    * :math:`X`: Input value, a ``Tensor`` with NCHW format.
    * :math:`W`: Filter value, a ``Tensor`` with shape [MCHW] .
2160
    * :math:`\\ast`: Convolution operation.
2161
    * :math:`b`: Bias value, a 2-D ``Tensor`` with shape [M, 1].
2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185
    * :math:`\\sigma`: Activation function.
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.

    Example:

        - Input:

          Input shape: :math:`(N, C_{in}, H_{in}, W_{in})`

          Filter shape: :math:`(C_{in}, C_{out}, H_f, W_f)`

        - Output:

          Output shape: :math:`(N, C_{out}, H_{out}, W_{out})`

        Where

        .. math::

           H^\prime_{out} &= (H_{in} - 1) * strides[0] - 2 * paddings[0] + dilations[0] * (H_f - 1) + 1 \\\\
           W^\prime_{out} &= (W_{in} - 1) * strides[1] - 2 * paddings[1] + dilations[1] * (W_f - 1) + 1 \\\\
           H_{out} &\in [ H^\prime_{out}, H^\prime_{out} + strides[0] ) \\\\
           W_{out} &\in [ W^\prime_{out}, W^\prime_{out} + strides[1] )

2186
    Parameters:
2187
        num_channels(int): The number of channels in the input image.
2188
        num_filters(int): The number of the filter. It is as same as the output
2189
            feature map.
2190 2191 2192
        filter_size(int or tuple): The filter size. If filter_size is a tuple,
            it must contain two integers, (filter_size_H, filter_size_W).
            Otherwise, the filter will be a square.
2193
        output_size(int or tuple, optional): The output image size. If output size is a
2194 2195 2196
            tuple, it must contain two integers, (image_H, image_W). None if use
            filter_size, padding, and stride to calculate output_size.
            if output_size and filter_size are specified at the same time, They
L
lujun 已提交
2197
            should follow the formula above. Default: None.
2198
        padding(int or tuple, optional): The padding size. If padding is a tuple, it must
2199
            contain two integers, (padding_H, padding_W). Otherwise, the
2200 2201
            padding_H = padding_W = padding. Default: 0.
        stride(int or tuple, optional): The stride size. If stride is a tuple, it must
2202
            contain two integers, (stride_H, stride_W). Otherwise, the
2203 2204
            stride_H = stride_W = stride. Default: 1.
        dilation(int or tuple, optional): The dilation size. If dilation is a tuple, it must
2205
            contain two integers, (dilation_H, dilation_W). Otherwise, the
2206 2207
            dilation_H = dilation_W = dilation. Default: 1.
        groups(int, optional): The groups number of the Conv2d transpose layer. Inspired by
2208 2209 2210 2211
            grouped convolution in Alex Krizhevsky's Deep CNN paper, in which
            when group=2, the first half of the filters is only connected to the
            first half of the input channels, while the second half of the
            filters is only connected to the second half of the input channels.
2212 2213
            Default: 1.
        param_attr (ParamAttr, optional): The parameter attribute for learnable weights(Parameter)
2214 2215 2216
            of conv2d_transpose. If it is set to None or one attribute of ParamAttr, conv2d_transpose
            will create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with Xavier. Default: None.
2217
        bias_attr (ParamAttr or bool, optional): The attribute for the bias of conv2d_transpose.
2218 2219 2220 2221
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, conv2d_transpose
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. Default: None.
2222
        use_cudnn(bool, optional): Use cudnn kernel or not, it is valid only when the cudnn
2223
            library is installed. Default: True.
2224
        act (str, optional): Activation type, if it is set to None, activation is not appended.
2225
            Default: None.
2226
        dtype (str, optional): Data type, it can be "float32" or "float64". Default: "float32".
2227

2228 2229
    Attribute:
        **weight** (Parameter): the learnable weights of filters of this layer.
2230

2231
        **bias** (Parameter or None): the learnable bias of this layer.
2232

2233 2234
    Returns:
        None
2235 2236 2237 2238

    Examples:
       .. code-block:: python

2239
          import paddle.fluid as fluid
2240
          import numpy as np
2241 2242

          with fluid.dygraph.guard():
2243
              data = np.random.random((3, 32, 32, 5)).astype('float32')
2244
              conv2DTranspose = fluid.dygraph.nn.Conv2DTranspose(
2245
                    num_channels=32, num_filters=2, filter_size=3)
2246 2247
              ret = conv2DTranspose(fluid.dygraph.base.to_variable(data))

2248 2249 2250
    """

    def __init__(self,
2251
                 num_channels,
2252
                 num_filters,
2253
                 filter_size,
2254 2255 2256 2257 2258 2259 2260 2261
                 output_size=None,
                 padding=0,
                 stride=1,
                 dilation=1,
                 groups=None,
                 param_attr=None,
                 bias_attr=None,
                 use_cudnn=True,
2262 2263 2264
                 act=None,
                 dtype='float32'):
        super(Conv2DTranspose, self).__init__()
2265 2266 2267
        assert param_attr is not False, "param_attr should not be False in conv2d_transpose."
        self._param_attr = param_attr
        self._bias_attr = bias_attr
2268
        self._act = act
2269
        self._groups = groups
2270
        self._num_channels = num_channels
2271 2272 2273 2274 2275 2276 2277
        self._num_filters = num_filters
        self._use_cudnn = use_cudnn
        self._padding = padding
        self._stride = stride
        self._dilation = dilation
        self._filter_size = filter_size
        self._output_size = output_size
2278
        self._dtype = dtype
2279

2280 2281 2282
        if (self._num_channels == self._groups and
                self._num_filters == self._num_channels and
                not self._use_cudnn):
2283
            self._op_type = 'depthwise_conv2d_transpose'
2284 2285
        else:
            self._op_type = 'conv2d_transpose'
2286 2287 2288 2289 2290

        self._padding = utils.convert_to_list(self._padding, 2, 'padding')
        self._stride = utils.convert_to_list(self._stride, 2, 'stride')
        self._dilation = utils.convert_to_list(self._dilation, 2, 'dilation')

2291 2292
        self._filter_size = utils.convert_to_list(
            self._filter_size, 2, 'conv2d_transpose.filter_size')
2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303

        if self._output_size is None:
            self._output_size = []
        elif isinstance(self._output_size, list) or isinstance(
                self._output_size, int):
            self._output_size = utils.convert_to_list(self._output_size, 2,
                                                      'output_size')
        else:
            raise ValueError("output_size should be list or int")
        self._padding = utils.convert_to_list(self._padding, 2, 'padding')
        self._groups = 1 if self._groups is None else self._groups
2304
        filter_shape = [self._num_channels, self._num_filters // self._groups
2305 2306
                        ] + self._filter_size

2307
        self.weight = self.create_parameter(
2308
            dtype=self._dtype, shape=filter_shape, attr=self._param_attr)
2309

2310
        self.bias = self.create_parameter(
2311 2312 2313 2314 2315
            attr=self._bias_attr,
            shape=[self._num_filters],
            dtype=self._dtype,
            is_bias=True)

2316
    def forward(self, input):
2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335
        inputs = {'Input': [input], 'Filter': [self.weight]}
        attrs = {
            'output_size': self._output_size,
            'strides': self._stride,
            'paddings': self._padding,
            'dilations': self._dilation,
            'groups': self._groups,
            'use_cudnn': self._use_cudnn
        }

        if in_dygraph_mode():
            op = getattr(core.ops, self._op_type)
            outs = op(inputs, attrs)
            pre_bias = outs['Output'][0]
            pre_act = dygraph_utils._append_bias_in_dygraph(pre_bias, self.bias,
                                                            1)
            return dygraph_utils._append_activation_in_dygraph(
                pre_act, act=self._act)

2336 2337 2338 2339
        pre_bias = self._helper.create_variable_for_type_inference(
            dtype=input.dtype)
        self._helper.append_op(
            type=self._op_type,
2340
            inputs=inputs,
2341
            outputs={'Output': pre_bias},
2342
            attrs=attrs)
2343

2344
        if self.bias is not None:
2345 2346 2347 2348 2349
            pre_act = self._helper.create_variable_for_type_inference(
                dtype=self._dtype)
            self._helper.append_op(
                type='elementwise_add',
                inputs={'X': [pre_bias],
2350
                        'Y': [self.bias]},
2351 2352 2353 2354 2355 2356
                outputs={'Out': [pre_act]},
                attrs={'axis': 1})
        else:
            pre_act = pre_bias

        out = self._helper.append_activation(pre_act, act=self._act)
2357 2358 2359 2360 2361 2362 2363 2364 2365
        return out


class SequenceConv(layers.Layer):
    """
    This function creates the op for sequence_conv, using the inputs and
    other convolutional configurations for the filters and stride as given
    in the input parameters to the function.

2366
    Parameters:
L
lujun 已提交
2367
        name_scope(str): The name of this class.
2368
        num_filters (int): number of filters.
L
lujun 已提交
2369 2370 2371
        filter_size (int): the filter size (H and W). Default: 3.
        filter_stride (int): stride of the filter. Default: 1.
        padding (bool|None): if True, add paddings. Default: None
2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of sequence_conv.
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, sequence_conv
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. Default: None.
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
            of sequence_conv. If it is set to None or one attribute of ParamAttr, sequence_conv
            will create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with Xavier. Default: None.
        act (str): Activation type, if it is set to None, activation is not appended.
            Default: None.

2384 2385 2386 2387
    Attributes:
        weight (Parameter): the learnable weights of filters of this layer.
        bias (Parameter|None): the learnable bias of this layer.

2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400
    Returns:
        Variable: output of sequence_conv
    """

    def __init__(self,
                 name_scope,
                 num_filters,
                 filter_size=3,
                 filter_stride=1,
                 padding=None,
                 bias_attr=None,
                 param_attr=None,
                 act=None):
L
lujun 已提交
2401
        assert not in_dygraph_mode(
2402
        ), "SequenceConv is not supported by dynamic graph mode yet!"
2403 2404 2405 2406 2407 2408 2409
        super(SequenceConv, self).__init__(name_scope)
        self._num_filters = num_filters
        self._filter_size = filter_size
        self._filter_stride = filter_stride
        self._padding = padding
        self._bias_attr = bias_attr
        self._param_attr = param_attr
2410
        self._act = act
2411

2412
    def _build_once(self, input):
2413 2414
        self._dtype = self._helper.input_dtype(input)
        filter_shape = [self._filter_size * input.shape[1], self._num_filters]
2415
        self.weight = self.create_parameter(
2416
            attr=self._param_attr, shape=filter_shape, dtype=self._dtype)
2417

2418
        self.bias = self.create_parameter(
2419 2420 2421 2422 2423
            attr=self._bias_attr,
            shape=[self._num_filters],
            dtype=self._dtype,
            is_bias=True)

2424 2425 2426 2427 2428 2429
    def forward(self, input):
        pre_bias = self._helper.create_variable_for_type_inference(self._dtype)
        self._helper.append_op(
            type='sequence_conv',
            inputs={
                'X': [input],
2430
                'Filter': [self.weight],
2431 2432 2433 2434 2435 2436 2437
            },
            outputs={"Out": pre_bias},
            attrs={
                'contextStride': self._filter_stride,
                'contextStart': -int(self._filter_size // 2),
                'contextLength': self._filter_size
            })
2438

2439
        if self.bias is not None:
2440 2441 2442 2443 2444
            pre_act = self._helper.create_variable_for_type_inference(
                dtype=self._dtype)
            self._helper.append_op(
                type='elementwise_add',
                inputs={'X': [pre_bias],
2445
                        'Y': [self.bias]},
2446 2447 2448 2449 2450 2451
                outputs={'Out': [pre_act]},
                attrs={'axis': 1})
        else:
            pre_act = pre_bias

        return self._helper.append_activation(pre_act, act=self._act)
L
lujun 已提交
2452 2453 2454


class RowConv(layers.Layer):
2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472
    """
    ***Row-convolution operator***

    The row convolution is called lookahead convolution.  This operator was introduced in the following paper for DeepSpeech2:
    http://www.cs.cmu.edu/~dyogatam/papers/wang+etal.iclrworkshop2016.pdf

    The main motivation is that a bidirectional RNN, useful in DeepSpeech like speech models, learns representation for a sequence by performing a
    forward and a backward pass through the entire sequence. However, unlike
    unidirectional RNNs, bidirectional RNNs are challenging to deploy in an online
    and low-latency setting. The lookahead convolution incorporates information
    from future subsequences in a computationally efficient manner to improve
    unidirectional recurrent neural networks. The row convolution operator is
    different from the 1D sequence convolution, and is computed as follows:

    Given an input sequence X of length t and input dimension D, and a filter (W) of size context * D.

    More details about row_conv please refer to the design document https://github.com/PaddlePaddle/Paddle/issues/2228#issuecomment-303903645 .

2473
    Parameters:
L
lujun 已提交
2474
        name_scope(str): The name of this class.
2475 2476 2477
        future_context_size (int): Future context size. Please note, the shape
            of convolution kernel is [future_context_size + 1, D].
        param_attr (ParamAttr): Attributes of parameters, including
L
lujun 已提交
2478 2479
            name, initializer etc. Default: None.
        act (str): Non-linear activation to be applied to output variable. Default: None.
2480

2481 2482 2483
    Attributes:
        weight (Parameter): the learnable weights of this layer.

2484
    Returns:
L
lujun 已提交
2485 2486
        the output(Out) is a LodTensor, which supports variable time-length input sequences.
        The underlying tensor in this LodTensor is a matrix with shape T x N, i.e., the same shape as X.
2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501

    Examples:
        .. code-block:: python

          import paddle.fluid as fluid
          import numpy

          with fluid.dygraph.guard():
              x = numpy.random.random((16)).astype('float32')
              rowConv = fluid.dygraph.nn.RowConv(
                    'RowConv', future_context_size=2)
              ret = rowConv(fluid.dygraph.base.to_variable(x))

    """

L
lujun 已提交
2502 2503 2504 2505 2506
    def __init__(self,
                 name_scope,
                 future_context_size,
                 param_attr=None,
                 act=None):
L
lujun 已提交
2507
        assert not in_dygraph_mode(
2508
        ), "RowConv is not supported by dynamic graph mode yet!"
L
lujun 已提交
2509 2510 2511 2512 2513
        super(RowConv, self).__init__(name_scope)
        self._act = act
        self._param_attr = param_attr
        self._future_context_size = future_context_size

2514
    def _build_once(self, input):
L
lujun 已提交
2515 2516
        self._dtype = self._helper.input_dtype(input)
        filter_shape = [self._future_context_size + 1, input.shape[1]]
2517
        self.weight = self.create_parameter(
2518 2519 2520 2521
            attr=self._param_attr,
            shape=filter_shape,
            dtype=self._dtype,
            is_bias=False)
L
lujun 已提交
2522 2523 2524 2525 2526 2527

    def forward(self, input):
        out = self._helper.create_variable_for_type_inference(self._dtype)
        self._helper.append_op(
            type='row_conv',
            inputs={'X': [input],
2528
                    'Filter': [self.weight]},
L
lujun 已提交
2529 2530 2531 2532 2533 2534
            outputs={'Out': [out]})
        return self._helper.append_activation(out, act=self._act)


class GroupNorm(layers.Layer):
    """
2535 2536 2537 2538 2539 2540
    This interface is used to construct a callable object of the ``GroupNorm`` class.
    For more details, refer to code examples.
    It implements the function of the Group Normalization Layer.
    Refer to `Group Normalization <https://arxiv.org/abs/1803.08494>`_ .

    Parameters:
2541
        channels(int): The number of channels of input.
2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564
        groups(int): The number of groups that divided from channels.
        epsilon(float, optional): The small value added to the variance to prevent
                                  division by zero. Default: 1e-05.
        param_attr(ParamAttr, optional): The parameter attribute for the learnable
                                         scale :math:`g`. If it is set to False, no scale will be added to the output units.
                                         If it is set to None, the bias is initialized one. Default: None.
        bias_attr(ParamAttr, optional): The parameter attribute for the learnable
                                        bias :math:`b`. If it is set to False, no bias will be added to the output units.
                                        If it is set to None, the bias is initialized zero. Default: None.
        act(str, optional): Activation to be applied to the output of group normalizaiton. Default: None.
        data_layout(str, optional): Specify the input data format. Only NCHW is supported. Default: NCHW.

    Returns:
        None

    Examples:
        .. code-block:: python

          import paddle.fluid as fluid
          import numpy as np

          with fluid.dygraph.guard():
              x = np.random.random((8, 32, 32)).astype('float32')
2565
              groupNorm = fluid.dygraph.nn.GroupNorm(channels=32, groups=4)
2566
              ret = groupNorm(fluid.dygraph.base.to_variable(x))
L
lujun 已提交
2567 2568 2569 2570

    """

    def __init__(self,
2571
                 channels,
L
lujun 已提交
2572 2573 2574 2575 2576
                 groups,
                 epsilon=1e-05,
                 param_attr=None,
                 bias_attr=None,
                 act=None,
2577 2578 2579
                 data_layout='NCHW',
                 dtype='float32'):
        super(GroupNorm, self).__init__()
L
lujun 已提交
2580 2581 2582
        self._param_attr = param_attr
        self._bias_attr = bias_attr
        self._epsilon = epsilon
2583
        self._channels = channels
L
lujun 已提交
2584 2585
        self._groups = groups
        self._act = act
2586
        self._dtype = dtype
L
lujun 已提交
2587 2588 2589
        if data_layout != 'NCHW':
            raise ValueError("unsupported data layout:" + data_layout)

2590
        param_shape = [self._channels]
L
lujun 已提交
2591

2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602
        self.weight = self.create_parameter(
            attr=self._param_attr or False,
            shape=param_shape,
            dtype=self._dtype,
            default_initializer=Constant(1.0))

        self.bias = self.create_parameter(
            attr=self._bias_attr or False,
            shape=param_shape,
            dtype=self._dtype,
            is_bias=True)
L
lujun 已提交
2603 2604 2605

    def forward(self, input):
        inputs = {'X': input}
2606 2607 2608 2609
        if self.bias:
            inputs['Bias'] = self.bias
        if self.weight:
            inputs['Scale'] = self.weight
L
lujun 已提交
2610 2611

        # create output
2612
        mean_out = self._helper.create_variable_for_type_inference(
L
lujun 已提交
2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633
            dtype=self._dtype, stop_gradient=True)
        variance_out = self._helper.create_variable_for_type_inference(
            dtype=self._dtype, stop_gradient=True)
        group_norm_out = self._helper.create_variable_for_type_inference(
            dtype=self._dtype)

        self._helper.append_op(
            type="group_norm",
            inputs=inputs,
            outputs={
                "Y": group_norm_out,
                "Mean": mean_out,
                "Variance": variance_out,
            },
            attrs={"epsilon": self._epsilon,
                   "groups": self._groups})

        return self._helper.append_activation(group_norm_out, self._act)


class SpectralNorm(layers.Layer):
2634
    """
2635 2636
    This interface is used to construct a callable object of the ``SpectralNorm`` class.
    For more details, refer to code examples. It implements the function of the Spectral Normalization Layer.
2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667
    This layer calculates the spectral normalization value of weight parameters of
    fc, conv1d, conv2d, conv3d layers which should be 2-D, 3-D, 4-D, 5-D
    Parameters. Calculations are showed as follows.

    Step 1:
    Generate vector U in shape of [H], and V in shape of [W].
    While H is the :attr:`dim` th dimension of the input weights,
    and W is the product result of remaining dimensions.

    Step 2:
    :attr:`power_iters` shoule be a positive interger, do following
    calculations with U and V for :attr:`power_iters` rounds.

    .. math::

        \mathbf{v} := \\frac{\mathbf{W}^{T} \mathbf{u}}{\|\mathbf{W}^{T} \mathbf{u}\|_2}

        \mathbf{u} := \\frac{\mathbf{W}^{T} \mathbf{v}}{\|\mathbf{W}^{T} \mathbf{v}\|_2}

    Step 3:
    Calculate :math:`\sigma(\mathbf{W})` and normalize weight values.

    .. math::

        \sigma(\mathbf{W}) = \mathbf{u}^{T} \mathbf{W} \mathbf{v}

        \mathbf{W} = \\frac{\mathbf{W}}{\sigma(\mathbf{W})}


    Refer to `Spectral Normalization <https://arxiv.org/abs/1802.05957>`_ .

2668
    Parameters:
2669
        weight_shape(list or tuple): The shape of weight parameter.
2670 2671 2672 2673
        dim(int, optional): The index of dimension which should be permuted to the first before reshaping Input(Weight) to matrix, it should be set as 0 if Input(Weight) is the weight of fc layer, and should be set as 1 if Input(Weight) is the weight of conv layer. Default: 0.
        power_iters(int, optional): The number of power iterations to calculate spectral norm. Default: 1.
        eps(float, optional): The epsilon for numerical stability in calculating norms. Default: 1e-12.
        name (str, optional): The default value is None.  Normally there is no need for user to set this property.  For more information, please refer to :ref:`api_guide_Name` .
2674
        dtype (str, optional): Data type, it can be "float32" or "float64". Default: "float32".
2675 2676

    Returns:
2677
        None
2678 2679 2680 2681 2682

    Examples:
       .. code-block:: python

            import paddle.fluid as fluid
2683
            import numpy as np
2684 2685

            with fluid.dygraph.guard():
2686 2687 2688
                weight = np.random.random((2, 8, 32, 32)).astype('float32')
                spectralNorm = fluid.dygraph.nn.SpectralNorm(weight.shape, dim=1, power_iters=2)
                ret = spectralNorm(fluid.dygraph.base.to_variable(weight))
2689 2690 2691

    """

2692 2693 2694 2695 2696 2697 2698
    def __init__(self,
                 weight_shape,
                 dim=0,
                 power_iters=1,
                 eps=1e-12,
                 dtype='float32'):
        super(SpectralNorm, self).__init__()
L
lujun 已提交
2699 2700 2701
        self._power_iters = power_iters
        self._eps = eps
        self._dim = dim
2702
        self._dtype = dtype
L
lujun 已提交
2703

2704 2705 2706
        self._weight_shape = list(weight_shape)
        h = self._weight_shape[self._dim]
        w = np.prod(self._weight_shape) // h
L
lujun 已提交
2707

2708
        self.weight_u = self.create_parameter(
L
lujun 已提交
2709 2710 2711 2712
            attr=ParamAttr(),
            shape=[h],
            dtype=self._dtype,
            default_initializer=Normal(0., 1.))
2713
        self.weight_u.stop_gradient = True
L
lujun 已提交
2714

2715
        self.weight_v = self.create_parameter(
L
lujun 已提交
2716 2717 2718 2719
            attr=ParamAttr(),
            shape=[w],
            dtype=self._dtype,
            default_initializer=Normal(0., 1.))
2720
        self.weight_v.stop_gradient = True
L
lujun 已提交
2721 2722

    def forward(self, weight):
2723
        inputs = {'Weight': weight, 'U': self.weight_u, 'V': self.weight_v}
L
lujun 已提交
2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738
        out = self._helper.create_variable_for_type_inference(self._dtype)
        self._helper.append_op(
            type="spectral_norm",
            inputs=inputs,
            outputs={"Out": out, },
            attrs={
                "dim": self._dim,
                "power_iters": self._power_iters,
                "eps": self._eps,
            })

        return out


class TreeConv(layers.Layer):
2739
    """
2740 2741 2742 2743 2744 2745 2746 2747 2748 2749
    This interface is used to construct a callable object of the ``TreeConv`` class.
    For more details, refer to code examples.
    Tree-Based Convolution is a kind of convolution based on tree structure.
    Tree-Based Convolution is a part of Tree-Based Convolution Neural Network(TBCNN),
    which is used to classify tree structures, such as Abstract Syntax Tree.
    Tree-Based Convolution proposed a kind of data structure called continuous binary tree,
    which regards multiway tree as binary tree.
    The paper of Tree-Based Convolution Operator is here: `tree-based convolution <https://arxiv.org/abs/1409.5718v1/>`_ .
    
    Parameters:
2750
        feature_size(int): last dimension of nodes_vector.
2751 2752 2753 2754 2755 2756 2757
        output_size(int): output feature width.
        num_filters(int, optional): number of filters, Default: 1.
        max_depth(int, optional): max depth of filters, Default: 2.
        act(str, optional): activation function, Default: tanh.
        param_attr(ParamAttr, optional): the parameter attribute for the filters, Default: None.
        bias_attr(ParamAttr, optional): the parameter attribute for the bias of this layer, Default: None.
        name(str, optional): The default value is None. Normally there is no need for user to set this property. For more information, please refer to :ref:`api_guide_Name` .
2758
        dtype (str, optional): Data type, it can be "float32" or "float64". Default: "float32".
2759

2760 2761
    Attribute:
        **weight** (Parameter): the learnable weights of filters of this layer.
2762

2763
        **bias** (Parameter or None): the learnable bias of this layer.
2764

2765 2766
    Returns:
        None
L
lujun 已提交
2767

2768
    Examples:
L
lujun 已提交
2769

2770
        .. code-block:: python
2771

2772 2773
          import paddle.fluid as fluid
          import numpy
2774

2775 2776 2777 2778
          with fluid.dygraph.guard():
              nodes_vector = numpy.random.random((1, 10, 5)).astype('float32')
              edge_set = numpy.random.random((1, 9, 2)).astype('int32')
              treeConv = fluid.dygraph.nn.TreeConv(
2779
                feature_size=5, output_size=6, num_filters=1, max_depth=2)
2780
              ret = treeConv(fluid.dygraph.base.to_variable(nodes_vector), fluid.dygraph.base.to_variable(edge_set))
2781 2782
    """

L
lujun 已提交
2783
    def __init__(self,
2784
                 feature_size,
L
lujun 已提交
2785 2786 2787 2788 2789 2790
                 output_size,
                 num_filters=1,
                 max_depth=2,
                 act='tanh',
                 param_attr=None,
                 bias_attr=None,
2791 2792 2793
                 name=None,
                 dtype='float32'):
        super(TreeConv, self).__init__()
L
lujun 已提交
2794
        self._name = name
2795
        self._feature_size = feature_size
L
lujun 已提交
2796 2797 2798 2799 2800 2801
        self._output_size = output_size
        self._act = act
        self._max_depth = max_depth
        self._num_filters = num_filters
        self._bias_attr = bias_attr
        self._param_attr = param_attr
2802 2803
        self._dtype = dtype
        w_shape = [self._feature_size, 3, self._output_size, self._num_filters]
L
lujun 已提交
2804
        if self._bias_attr:
2805
            self.bias = self.create_parameter(
L
lujun 已提交
2806 2807 2808 2809
                attr=self._bias_attr,
                shape=[self._num_filters],
                dtype=self._dtype,
                is_bias=True)
2810
        self.weight = self.create_parameter(
L
lujun 已提交
2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827
            attr=self._param_attr,
            shape=w_shape,
            dtype=self._dtype,
            is_bias=False)

    def forward(self, nodes_vector, edge_set):
        if self._name:
            out = self.create_variable(
                name=self._name, dtype=self._dtype, persistable=False)
        else:
            out = self._helper.create_variable_for_type_inference(
                dtype=self._dtype)
        self._helper.append_op(
            type='tree_conv',
            inputs={
                'NodesVector': nodes_vector,
                'EdgeSet': edge_set,
2828
                'Filter': self.weight
L
lujun 已提交
2829 2830 2831 2832 2833 2834 2835 2836 2837
            },
            outputs={'Out': out, },
            attrs={'max_depth': self._max_depth})
        if self._bias_attr:
            pre_activation = self._helper.create_variable_for_type_inference(
                dtype=self._dtype)
            self._helper.append_op(
                type='elementwise_add',
                inputs={'X': [out],
2838
                        'Y': [self.bias]},
L
lujun 已提交
2839 2840 2841 2842 2843
                outputs={'Out': [pre_activation]},
                attrs={'axis': 1})
        else:
            pre_activation = out
        return self._helper.append_activation(pre_activation, act=self._act)