nn.py 143.2 KB
Newer Older
M
minqiyang 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import print_function

17
import paddle
M
minqiyang 已提交
18 19 20
from six.moves import reduce
from .. import core
from ..layers import utils
21
from ..layers import nn as F
22
from .. import dygraph_utils
M
minqiyang 已提交
23
from . import layers
24
from ..framework import Variable, in_dygraph_mode, OpProtoHolder, Parameter, _dygraph_tracer, _varbase_creator, default_main_program
25
from ..data_feeder import convert_dtype, check_variable_and_dtype, check_type, check_dtype
M
minqiyang 已提交
26
from ..param_attr import ParamAttr
27
from ..initializer import Normal, Constant, NumpyArrayInitializer
H
hong 已提交
28 29
from .. import unique_name
from .layer_object_helper import LayerObjectHelper
30
from ..data_feeder import check_variable_and_dtype, check_type
L
lujun 已提交
31
import numpy as np
32
import numbers
33
import logging
34

35
__all__ = [
36
    'Conv2D', 'Conv3D', 'Pool2D', 'Linear', 'BatchNorm', 'Dropout', 'Embedding',
37 38
    'GRUUnit', 'InstanceNorm', 'LayerNorm', 'NCE', 'PRelu',
    'BilinearTensorProduct', 'Conv2DTranspose', 'Conv3DTranspose', 'GroupNorm',
C
ceci3 已提交
39
    'SpectralNorm', 'TreeConv', 'Flatten', 'SyncBatchNorm'
40
]
M
minqiyang 已提交
41 42


X
Xin Pan 已提交
43
class Conv2D(layers.Layer):
44
    """
45 46
    This interface is used to construct a callable object of the ``Conv2D`` class.
    For more details, refer to code examples.
47 48 49
    The convolution2D layer calculates the output based on the input, filter
    and strides, paddings, dilations, groups parameters. Input and
    Output are in NCHW format, where N is batch size, C is the number of
50 51 52
    the feature map, H is the height of the feature map, and W is the width of the feature map.
    Filter's shape is [MCHW] , where M is the number of output feature map,
    C is the number of input feature map, H is the height of the filter,
53
    and W is the width of the filter. If the groups is greater than 1,
54
    C will equal the number of input feature map divided by the groups.
55
    Please refer to UFLDL's `convolution
56
    <http://ufldl.stanford.edu/tutorial/supervised/FeatureExtractionUsingConvolution/>`_
T
tianshuo78520a 已提交
57
    for more details.
58 59 60 61 62 63 64 65
    If bias attribution and activation type are provided, bias is added to the
    output of the convolution, and the corresponding activation function is
    applied to the final result.

    For each input :math:`X`, the equation is:

    .. math::

66
        Out = \\sigma (W \\ast X + b)
67 68 69

    Where:

70 71
    * :math:`X`: Input value, a ``Tensor`` with NCHW format.
    * :math:`W`: Filter value, a ``Tensor`` with shape [MCHW] .
72
    * :math:`\\ast`: Convolution operation.
73
    * :math:`b`: Bias value, a 2-D ``Tensor`` with shape [M, 1].
74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95
    * :math:`\\sigma`: Activation function.
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.

    Example:

        - Input:

          Input shape: :math:`(N, C_{in}, H_{in}, W_{in})`

          Filter shape: :math:`(C_{out}, C_{in}, H_f, W_f)`

        - Output:

          Output shape: :math:`(N, C_{out}, H_{out}, W_{out})`

        Where

        .. math::

            H_{out}&= \\frac{(H_{in} + 2 * paddings[0] - (dilations[0] * (H_f - 1) + 1))}{strides[0]} + 1 \\\\
            W_{out}&= \\frac{(W_{in} + 2 * paddings[1] - (dilations[1] * (W_f - 1) + 1))}{strides[1]} + 1

96
    Parameters:
97
        num_channels(int): The number of channels in the input image.
98
        num_filters(int): The number of filter. It is as same as the output
99 100
            feature map.
        filter_size (int or tuple): The filter size. If filter_size is a tuple,
101 102
            it must contain two integers, (filter_size_H, filter_size_W).
            Otherwise, the filter will be a square.
103
        stride (int or tuple, optional): The stride size. If stride is a tuple, it must
104
            contain two integers, (stride_H, stride_W). Otherwise, the
105 106
            stride_H = stride_W = stride. Default: 1.
        padding (int or tuple, optional): The padding size. If padding is a tuple, it must
107
            contain two integers, (padding_H, padding_W). Otherwise, the
108 109
            padding_H = padding_W = padding. Default: 0.
        dilation (int or tuple, optional): The dilation size. If dilation is a tuple, it must
110
            contain two integers, (dilation_H, dilation_W). Otherwise, the
111 112
            dilation_H = dilation_W = dilation. Default: 1.
        groups (int, optional): The groups number of the Conv2d Layer. According to grouped
113 114 115
            convolution in Alex Krizhevsky's Deep CNN paper: when group=2,
            the first half of the filters is only connected to the first half
            of the input channels, while the second half of the filters is only
116 117
            connected to the second half of the input channels. Default: 1.
        param_attr (ParamAttr, optional): The parameter attribute for learnable weights(Parameter)
118 119 120 121
            of conv2d. If it is set to None or one attribute of ParamAttr, conv2d
            will create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with :math:`Normal(0.0, std)`,
            and the :math:`std` is :math:`(\\frac{2.0 }{filter\_elem\_num})^{0.5}`. Default: None.
122
        bias_attr (ParamAttr or bool, optional): The attribute for the bias of conv2d.
123 124 125 126
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, conv2d
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. Default: None.
127 128 129 130 131
        use_cudnn (bool, optional): Use cudnn kernel or not, it is valid only when the cudnn
            library is installed. Default: True.
        act (str, optional): Activation type, if it is set to None, activation is not appended.
            Default: None.
        dtype (str, optional): Data type, it can be "float32" or "float64". Default: "float32".
132

133 134 135 136
    Attribute:
        **weight** (Parameter): the learnable weights of filter of this layer.

        **bias** (Parameter or None): the learnable bias of this layer.
137

138 139 140
    Returns:
        None
    
141
    Raises:
142
        ValueError: if ``use_cudnn`` is not a bool value.
143 144 145

    Examples:
        .. code-block:: python
L
lujun 已提交
146

147 148 149 150 151
          from paddle.fluid.dygraph.base import to_variable
          import paddle.fluid as fluid
          from paddle.fluid.dygraph import Conv2D
          import numpy as np

152
          data = np.random.uniform(-1, 1, [10, 3, 32, 32]).astype('float32')
153
          with fluid.dygraph.guard():
154
              conv2d = Conv2D(3, 2, 3)
155 156
              data = to_variable(data)
              conv = conv2d(data)
157 158 159

    """

M
minqiyang 已提交
160
    def __init__(self,
161
                 num_channels,
M
minqiyang 已提交
162 163 164 165 166 167 168 169
                 num_filters,
                 filter_size,
                 stride=1,
                 padding=0,
                 dilation=1,
                 groups=None,
                 param_attr=None,
                 bias_attr=None,
170 171 172
                 use_cudnn=True,
                 act=None,
                 dtype='float32'):
M
minqiyang 已提交
173
        assert param_attr is not False, "param_attr should not be False here."
174 175
        super(Conv2D, self).__init__()
        self._num_channels = num_channels
M
minqiyang 已提交
176 177 178 179
        self._groups = groups
        self._stride = utils.convert_to_list(stride, 2, 'stride')
        self._padding = utils.convert_to_list(padding, 2, 'padding')
        self._dilation = utils.convert_to_list(dilation, 2, 'dilation')
180
        self._act = act
M
minqiyang 已提交
181 182 183
        if not isinstance(use_cudnn, bool):
            raise ValueError("use_cudnn should be True or False")
        self._use_cudnn = use_cudnn
184
        self._use_mkldnn = core.globals()["FLAGS_use_mkldnn"]
185 186 187 188 189
        self._filter_size = filter_size
        self._num_filters = num_filters
        self._param_attr = param_attr
        self._bias_attr = bias_attr
        self._dtype = dtype
190

191
        if (self._num_channels == self._groups and
192 193
                num_filters % self._num_channels == 0 and
                not self._use_cudnn and not self._use_mkldnn):
194 195 196
            self._l_type = 'depthwise_conv2d'
        else:
            self._l_type = 'conv2d'
M
minqiyang 已提交
197

198
        self._num_channels = num_channels
199 200
        if self._groups is None:
            num_filter_channels = self._num_channels
M
minqiyang 已提交
201
        else:
202
            if self._num_channels % self._groups != 0:
M
minqiyang 已提交
203
                raise ValueError("num_channels must be divisible by groups.")
204 205
            num_filter_channels = self._num_channels // self._groups
        filter_size = utils.convert_to_list(self._filter_size, 2, 'filter_size')
206
        filter_shape = [self._num_filters, num_filter_channels] + filter_size
M
minqiyang 已提交
207 208

        def _get_default_param_initializer():
209 210
            filter_elem_num = filter_size[0] * filter_size[
                1] * self._num_channels
M
minqiyang 已提交
211 212 213
            std = (2.0 / filter_elem_num)**0.5
            return Normal(0.0, std, 0)

214
        self.weight = self.create_parameter(
215
            attr=self._param_attr,
M
minqiyang 已提交
216 217 218 219
            shape=filter_shape,
            dtype=self._dtype,
            default_initializer=_get_default_param_initializer())

220
        self.bias = self.create_parameter(
221 222
            attr=self._bias_attr,
            shape=[self._num_filters],
M
minqiyang 已提交
223 224
            dtype=self._dtype,
            is_bias=True)
M
minqiyang 已提交
225 226

    def forward(self, input):
227 228 229
        if in_dygraph_mode() and self._l_type == 'conv2d':
            attrs = ('strides', self._stride, 'paddings', self._padding,
                     'dilations', self._dilation, 'groups', self._groups
230 231
                     if self._groups else 1, 'use_cudnn', self._use_cudnn,
                     'use_mkldnn', self._use_mkldnn)
232 233 234
            out = core.ops.conv2d(input, self.weight, *attrs)
            pre_bias = out

235 236 237 238
            pre_act = dygraph_utils._append_bias_in_dygraph(
                pre_bias, self.bias, 1, use_mkldnn=self._use_mkldnn)
            return dygraph_utils._append_activation_in_dygraph(
                pre_act, self._act, use_mkldnn=self._use_mkldnn)
239 240
        inputs = {
            'Input': [input],
241
            'Filter': [self.weight],
242 243 244 245 246 247 248
        }
        attrs = {
            'strides': self._stride,
            'paddings': self._padding,
            'dilations': self._dilation,
            'groups': self._groups if self._groups else 1,
            'use_cudnn': self._use_cudnn,
249
            'use_mkldnn': self._use_mkldnn,
250
        }
251 252 253

        check_variable_and_dtype(input, 'input',
                                 ['float16', 'float32', 'float64'], 'Conv2D')
M
minqiyang 已提交
254 255 256
        pre_bias = self._helper.create_variable_for_type_inference(
            dtype=self._dtype)

M
minqiyang 已提交
257 258 259 260
        self._helper.append_op(
            type=self._l_type,
            inputs={
                'Input': input,
261
                'Filter': self.weight,
M
minqiyang 已提交
262
            },
M
minqiyang 已提交
263
            outputs={"Output": pre_bias},
264
            attrs=attrs)
M
minqiyang 已提交
265

266
        if self.bias is not None:
267 268 269 270 271
            pre_act = self._helper.create_variable_for_type_inference(
                dtype=self._dtype)
            self._helper.append_op(
                type='elementwise_add',
                inputs={'X': [pre_bias],
272
                        'Y': [self.bias]},
273
                outputs={'Out': [pre_act]},
274 275
                attrs={'axis': 1,
                       'use_mkldnn': self._use_mkldnn})
276 277
        else:
            pre_act = pre_bias
M
minqiyang 已提交
278

L
lujun 已提交
279
        # Currently, we don't support inplace in dygraph mode
280
        return self._helper.append_activation(pre_act, act=self._act)
M
minqiyang 已提交
281 282


L
lujun 已提交
283
class Conv3D(layers.Layer):
284 285 286 287 288
    """
    **Convlution3D Layer**

    The convolution3D layer calculates the output based on the input, filter
    and strides, paddings, dilations, groups parameters. Input(Input) and
D
DuYao 已提交
289 290
    Output(Output) are multidimensional tensors with a shape of 
    :math:`[N, C, D, H, W]` . Where N is batch size, C is the number of
291 292 293 294 295 296 297 298 299 300 301 302 303 304
    channels, D is the depth of the feature, H is the height of the feature,
    and W is the width of the feature. Convlution3D is similar with Convlution2D
    but adds one dimension(depth). If bias attribution and activation type are
    provided, bias is added to the output of the convolution, and the
    corresponding activation function is applied to the final result.

    For each input :math:`X`, the equation is:

    .. math::

        Out = \sigma (W \\ast X + b)

    In the above equation:

D
DuYao 已提交
305
    * :math:`X`: Input value, a tensor with NCDHW or NDHWC format.
306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330
    * :math:`W`: Filter value, a tensor with MCDHW format.
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D tensor with shape [M, 1].
    * :math:`\\sigma`: Activation function.
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.

    Example:

        - Input:

          Input shape: :math:`(N, C_{in}, D_{in}, H_{in}, W_{in})`

          Filter shape: :math:`(C_{out}, C_{in}, D_f, H_f, W_f)`

        - Output:
          Output shape: :math:`(N, C_{out}, D_{out}, H_{out}, W_{out})`

        Where

        .. math::

            D_{out}&= \\frac{(D_{in} + 2 * paddings[0] - (dilations[0] * (D_f - 1) + 1))}{strides[0]} + 1 \\\\
            H_{out}&= \\frac{(H_{in} + 2 * paddings[1] - (dilations[1] * (H_f - 1) + 1))}{strides[1]} + 1 \\\\
            W_{out}&= \\frac{(W_{in} + 2 * paddings[2] - (dilations[2] * (W_f - 1) + 1))}{strides[2]} + 1

331
    Parameters:
332
        num_channels(int): The number of channels in the input image.
L
lujun 已提交
333
        num_filters(int): The number of filter. It is as same as the output image channel.
D
DuYao 已提交
334
        filter_size (int|tuple, optional): The filter size. If filter_size is a tuple,
335
            it must contain three integers, (filter_size_D, filter_size_H, filter_size_W).
D
DuYao 已提交
336 337 338
            Otherwise, the filter will be a square, filter_size_depth = filter_size_height
            = filter_size_width = filter_size.
        stride (int|tuple, optional): The stride size. If stride is a tuple, it must
339
            contain three integers, (stride_D, stride_H, stride_W). Otherwise, the
D
DuYao 已提交
340 341
            stride_D = stride_H = stride_W = stride. The default value is 1.
        padding (int|tuple, optional): The padding size. If padding is a tuple, it must
342
            contain three integers, (padding_D, padding_H, padding_W). Otherwise, the
D
DuYao 已提交
343 344
            padding_D = padding_H = padding_W = padding. The default value is 0.
        dilation (int|tuple, optional): The dilation size. If dilation is a tuple, it must
345
            contain three integers, (dilation_D, dilation_H, dilation_W). Otherwise, the
D
DuYao 已提交
346 347
            dilation_D = dilation_H = dilation_W = dilation. The default value is 1.
        groups (int, optional): The groups number of the Conv3d Layer. According to grouped
348 349 350
            convolution in Alex Krizhevsky's Deep CNN paper: when group=2,
            the first half of the filters is only connected to the first half
            of the input channels, while the second half of the filters is only
D
DuYao 已提交
351 352
            connected to the second half of the input channels. The default value is 1.
        param_attr (ParamAttr, optional): The parameter attribute for learnable parameters/weights
353 354 355
            of conv3d. If it is set to None or one attribute of ParamAttr, conv3d
            will create ParamAttr as param_attr. If it is set to None, the parameter
            is initialized with :math:`Normal(0.0, std)`, and the :math:`std` is
D
DuYao 已提交
356 357
            :math:`(\\frac{2.0 }{filter\_elem\_num})^{0.5}`. The default value is None.
        bias_attr (ParamAttr|bool, optional): The parameter attribute for the bias of conv3d.
358 359 360
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, conv3d
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
D
DuYao 已提交
361 362 363 364 365
            is not set, the bias is initialized zero. The default value is None.
        use_cudnn (bool, optional): Use cudnn kernel or not, it is valid only when the cudnn
            library is installed. The default value is True.
        act (str, optional): Activation type, if it is set to None, activation is not appended.
            The default value is None.
366
        dtype (str, optional): Data type, it can be "float32" or "float64". Default: "float32".
367

D
DuYao 已提交
368 369 370 371
    Attribute:
        **weight** (Parameter): the learnable weights of filters of this layer.

        **bias** (Parameter): the learnable bias of this layer.
372

373
    Returns:
D
DuYao 已提交
374
        None.
375 376 377 378 379 380 381 382

    Raises:
        ValueError: If the shapes of input, filter_size, stride, padding and
                    groups mismatch.

    Examples:
        .. code-block:: python

383 384 385 386 387 388
          import paddle.fluid as fluid
          import numpy

          with fluid.dygraph.guard():
              data = numpy.random.random((5, 3, 12, 32, 32)).astype('float32')
              conv3d = fluid.dygraph.nn.Conv3D(
389
                    num_channels=3, num_filters=2, filter_size=3, act="relu")
390 391
              ret = conv3d(fluid.dygraph.base.to_variable(data))

392 393
    """

L
lujun 已提交
394
    def __init__(self,
395
                 num_channels,
L
lujun 已提交
396 397 398 399 400 401 402 403 404
                 num_filters,
                 filter_size,
                 stride=1,
                 padding=0,
                 dilation=1,
                 groups=None,
                 param_attr=None,
                 bias_attr=None,
                 use_cudnn=True,
405 406
                 act=None,
                 dtype='float32'):
L
lujun 已提交
407
        assert param_attr is not False, "param_attr should not be False here."
408 409
        super(Conv3D, self).__init__()
        self._num_channels = num_channels
L
lujun 已提交
410 411 412
        self._groups = groups
        self._stride = utils.convert_to_list(stride, 3, 'stride')
        self._padding = utils.convert_to_list(padding, 3, 'padding')
413
        self._dilation = utils.convert_to_list(dilation, 3, 'dilation')
L
lujun 已提交
414 415
        self._act = act
        self._use_cudnn = use_cudnn
416 417 418 419
        self._filter_size = filter_size
        self._num_filters = num_filters
        self._param_attr = param_attr
        self._bias_attr = bias_attr
420
        self._dtype = dtype
421 422

        if self._groups is None:
423
            num_filter_channels = self._num_channels
L
lujun 已提交
424
        else:
425
            if self._num_channels % self._groups != 0:
L
lujun 已提交
426
                raise ValueError("num_channels must be divisible by groups.")
427
            num_filter_channels = self._num_channels // self._groups
L
lujun 已提交
428

429 430
        filter_size = utils.convert_to_list(self._filter_size, 3, 'filter_size')
        filter_shape = [self._num_filters, num_filter_channels] + filter_size
L
lujun 已提交
431 432 433

        def _get_default_param_initializer():
            filter_elem_num = filter_size[0] * filter_size[1] * filter_size[
434
                2] * self._num_channels
L
lujun 已提交
435 436 437
            std = (2.0 / filter_elem_num)**0.5
            return Normal(0.0, std, 0)

438
        self.weight = self.create_parameter(
439
            attr=self._param_attr,
L
lujun 已提交
440 441 442 443
            shape=filter_shape,
            dtype=self._dtype,
            default_initializer=_get_default_param_initializer())

444
        self.bias = self.create_parameter(
445 446
            attr=self._bias_attr,
            shape=[self._num_filters],
L
lujun 已提交
447 448 449 450 451 452 453 454
            dtype=self._dtype,
            is_bias=True)

    def forward(self, input):
        pre_bias = self._helper.create_variable_for_type_inference(
            dtype=self._dtype)

        self._helper.append_op(
455
            type='conv3d',
L
lujun 已提交
456 457
            inputs={
                'Input': input,
458
                'Filter': self.weight,
L
lujun 已提交
459 460 461 462 463 464 465 466 467 468 469
            },
            outputs={"Output": pre_bias},
            attrs={
                'strides': self._stride,
                'paddings': self._padding,
                'dilations': self._dilation,
                'groups': self._groups if self._groups else 1,
                'use_cudnn': self._use_cudnn,
                'use_mkldnn': False
            })

470
        if self.bias is not None:
471 472 473 474 475
            pre_act = self._helper.create_variable_for_type_inference(
                dtype=self._dtype)
            self._helper.append_op(
                type='elementwise_add',
                inputs={'X': [pre_bias],
476
                        'Y': [self.bias]},
477 478 479 480
                outputs={'Out': [pre_act]},
                attrs={'axis': 1})
        else:
            pre_act = pre_bias
L
lujun 已提交
481 482 483 484 485

        return self._helper.append_activation(pre_act, act=self._act)


class Conv3DTranspose(layers.Layer):
L
lujun 已提交
486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531
    """
    **Convlution3D transpose layer**

    The convolution3D transpose layer calculates the output based on the input,
    filter, and dilations, strides, paddings. Input(Input) and output(Output)
    are in NCDHW format. Where N is batch size, C is the number of channels,
    D is the depth of the feature, H is the height of the feature, and W
    is the width of the feature. Parameters(dilations, strides, paddings) are
    two elements. These two elements represent height and width, respectively.
    The details of convolution transpose layer, please refer to the following
    explanation and references `therein <http://www.matthewzeiler.com/wp-content/uploads/2017/07/cvpr2010.pdf>`_.
    If bias attribution and activation type are provided, bias is added to
    the output of the convolution, and the corresponding activation function
    is applied to the final result.

    For each input :math:`X`, the equation is:

    .. math::

        Out = \sigma (W \\ast X + b)

    In the above equation:

    * :math:`X`: Input value, a tensor with NCDHW format.
    * :math:`W`: Filter value, a tensor with MCDHW format.
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D tensor with shape [M, 1].
    * :math:`\\sigma`: Activation function.
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.

    Example:

        - Input:

          Input shape: :math:`(N, C_{in}, D_{in}, H_{in}, W_{in})`

          Filter shape: :math:`(C_{in}, C_{out}, D_f, H_f, W_f)`

        - Output:

          Output shape: :math:`(N, C_{out}, D_{out}, H_{out}, W_{out})`

        Where

        .. math::

D
DuYao 已提交
532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550
           D^\prime_{out} &= (D_{in} - 1) * strides[0] - 2 * paddings[0] + dilations[0] * (D_f - 1) + 1 \\\\
           H^\prime_{out} &= (H_{in} - 1) * strides[1] - 2 * paddings[1] + dilations[1] * (H_f - 1) + 1 \\\\
           W^\prime_{out} &= (W_{in} - 1) * strides[2] - 2 * paddings[2] + dilations[2] * (W_f - 1) + 1 \\\\
           D_{out} &\in [ D^\prime_{out}, D^\prime_{out} + strides[0] ] \\\\
           H_{out} &\in [ H^\prime_{out}, H^\prime_{out} + strides[1] ] \\\\

    **Note**:

          The conv3d_transpose can be seen as the backward of the conv3d. For conv3d, 
          when stride > 1, conv3d maps multiple input shape to the same output shape, 
          so for conv3d_transpose, when stride > 1, input shape maps multiple output shape.
          If output_size is None, :math:`H_{out} = H^\prime_{out}, :math:`H_{out} = \
          H^\prime_{out}, W_{out} = W^\prime_{out}`; else, the :math:`D_{out}` of the output 
          size must between :math:`D^\prime_{out}` and :math:`D^\prime_{out} + strides[0]`, 
          the :math:`H_{out}` of the output size must between :math:`H^\prime_{out}` 
          and :math:`H^\prime_{out} + strides[1]`, and the :math:`W_{out}` of the output size must 
          between :math:`W^\prime_{out}` and :math:`W^\prime_{out} + strides[2]`, 
          conv3d_transpose can compute the kernel size automatically.

L
lujun 已提交
551

552
    Parameters:
553
        num_channels(int): The number of channels in the input image.
L
lujun 已提交
554 555
        num_filters(int): The number of the filter. It is as same as the output
            image channel.
556
        filter_size(int|tuple): The filter size. If filter_size is a tuple,
L
lujun 已提交
557
            it must contain three integers, (filter_size_D, filter_size_H, filter_size_W).
558
            Otherwise, the filter will be a square.
D
DuYao 已提交
559 560 561 562 563 564 565 566 567 568 569 570 571 572 573
        padding(int|tuple, optional): The padding size. The padding argument effectively
             adds `dilation * (kernel - 1)` amount of zero-padding on both sides of input. If `padding` is a string,
             either 'VALID' or 'SAME' supported, which is the padding algorithm. If `padding`
             is a tuple or list, it could be in three forms: `[pad_depth, pad_height, pad_width]` or
            `[pad_depth_front, pad_depth_back, pad_height_top, pad_height_bottom, pad_width_left, pad_width_right]`,
            and when `data_format` is `'NCDHW'`, `padding` can be in the form
            `[[0,0], [0,0], [pad_depth_front, pad_depth_back], [pad_height_top, pad_height_bottom], [pad_width_left, pad_width_right]]`.
            when `data_format` is `'NDHWC'`, `padding` can be in the form
            `[[0,0], [pad_depth_front, pad_depth_back], [pad_height_top, pad_height_bottom], [pad_width_left, pad_width_right], [0,0]]`.
            The default value is 0.
        stride(int|tuple, optional): The stride size. It means the stride in transposed convolution. 
            If stride is a tuple, it must contain three integers, (stride_depth, stride_height, 
            stride_width). Otherwise, stride_depth = stride_height = stride_width = stride. 
            The default value is 1.
        dilation(int|tuple, optional): The dilation size. If dilation is a tuple, it must
L
lujun 已提交
574
            contain three integers, (dilation_D, dilation_H, dilation_W). Otherwise, the
D
DuYao 已提交
575 576
            dilation_D = dilation_H = dilation_W = dilation. The default value is 1.
        groups(int, optional): The groups number of the Conv3d transpose layer. Inspired by
L
lujun 已提交
577 578 579 580
            grouped convolution in Alex Krizhevsky's Deep CNN paper, in which
            when group=2, the first half of the filters is only connected to the
            first half of the input channels, while the second half of the
            filters is only connected to the second half of the input channels.
D
DuYao 已提交
581 582
            The default value is 1.
        param_attr (ParamAttr, optional): The parameter attribute for learnable parameters/weights
L
lujun 已提交
583 584
            of conv3d_transpose. If it is set to None or one attribute of ParamAttr, conv3d_transpose
            will create ParamAttr as param_attr. If the Initializer of the param_attr
D
DuYao 已提交
585 586
            is not set, the parameter is initialized with Xavier. The default value is None.
        bias_attr (ParamAttr|bool, optional): The parameter attribute for the bias of conv3d_transpose.
L
lujun 已提交
587 588 589
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, conv3d_transpose
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
D
DuYao 已提交
590 591 592 593 594 595 596
            is not set, the bias is initialized zero. The default value is None.
        use_cudnn(bool, optional): Use cudnn kernel or not, it is valid only when the cudnn
            library is installed. The default value is True.
        act (str, optional): Activation type, if it is set to None, activation is not appended.
            The default value is None.
        name(str, optional): The default value is None. Normally there is no need for user 
            to set this property. For more information, please refer to :ref:`api_guide_Name`.
L
lujun 已提交
597

D
DuYao 已提交
598 599 600 601
    Attribute:
        **weight** (Parameter): the learnable weights of filters of this layer.

        **bias** (Parameter): the learnable bias of this layer.
602

L
lujun 已提交
603
    Returns:
D
DuYao 已提交
604
        None.
L
lujun 已提交
605 606 607 608 609 610 611 612

    Raises:
        ValueError: If the shapes of input, filter_size, stride, padding and
                    groups mismatch.

    Examples:
       .. code-block:: python

613 614 615 616 617 618
         import paddle.fluid as fluid
         import numpy

         with fluid.dygraph.guard():
             data = numpy.random.random((5, 3, 12, 32, 32)).astype('float32')
             conv3dTranspose = fluid.dygraph.nn.Conv3DTranspose(
619
                    num_channels=3,
620 621 622 623 624
                    num_filters=12,
                    filter_size=12,
                    use_cudnn=False)
             ret = conv3dTranspose(fluid.dygraph.base.to_variable(data))

L
lujun 已提交
625 626
    """

L
lujun 已提交
627
    def __init__(self,
628
                 num_channels,
L
lujun 已提交
629
                 num_filters,
630
                 filter_size,
L
lujun 已提交
631 632 633 634 635 636 637 638
                 padding=0,
                 stride=1,
                 dilation=1,
                 groups=None,
                 param_attr=None,
                 bias_attr=None,
                 use_cudnn=True,
                 act=None,
639 640
                 dtype='float32'):
        super(Conv3DTranspose, self).__init__()
L
lujun 已提交
641 642 643 644 645 646 647
        if not isinstance(use_cudnn, bool):
            raise ValueError("use_cudnn should be True or False")
        assert param_attr is not False, "param_attr should not be False in conv3d_transpose."
        self._padding = utils.convert_to_list(padding, 3, 'padding')
        self._stride = utils.convert_to_list(stride, 3, 'stride')
        self._dilation = utils.convert_to_list(dilation, 3, 'dilation')
        self._param_attr = param_attr
648
        self._num_channels = num_channels
L
lujun 已提交
649 650 651 652 653 654
        self._filter_size = filter_size
        self._groups = 1 if groups is None else groups
        self._num_filters = num_filters
        self._use_cudnn = use_cudnn
        self._bias_attr = bias_attr
        self._act = act
655
        self._dtype = dtype
L
lujun 已提交
656

657 658
        self._filter_size = utils.convert_to_list(
            self._filter_size, 3, 'conv3d_transpose.filter_size')
L
lujun 已提交
659

660 661
        filter_shape = [self._num_channels, self._num_filters // self._groups
                        ] + self._filter_size
662
        self.weight = self.create_parameter(
L
lujun 已提交
663
            dtype=self._dtype, shape=filter_shape, attr=self._param_attr)
664 665 666 667 668
        self.bias = self.create_parameter(
            attr=self._bias_attr,
            shape=[self._num_filters],
            dtype=self._dtype,
            is_bias=True)
L
lujun 已提交
669 670 671 672 673 674 675

    def forward(self, input):
        pre_bias = self._helper.create_variable_for_type_inference(
            dtype=self._dtype)
        self._helper.append_op(
            type="conv3d_transpose",
            inputs={'Input': [input],
676
                    'Filter': [self.weight]},
L
lujun 已提交
677 678 679 680 681 682 683 684 685 686 687 688 689 690 691
            outputs={'Output': pre_bias},
            attrs={
                'strides': self._stride,
                'paddings': self._padding,
                'dilations': self._dilation,
                'groups': self._groups if self._groups else 1,
                'use_cudnn': self._use_cudnn
            })

        if self._bias_attr:
            pre_act = self._helper.create_variable_for_type_inference(
                dtype=self._dtype)
            self._helper.append_op(
                type='elementwise_add',
                inputs={'X': [pre_bias],
692
                        'Y': [self.bias]},
L
lujun 已提交
693 694 695 696 697 698 699 700 701
                outputs={'Out': [pre_act]},
                attrs={'axis': 1})
        else:
            pre_act = pre_bias

        # Currently, we don't support inplace in imperative mode
        return self._helper.append_activation(pre_act, act=self._act)


X
Xin Pan 已提交
702
class Pool2D(layers.Layer):
703
    """
704 705 706 707
    :alias_main: paddle.nn.Pool2D
	:alias: paddle.nn.Pool2D,paddle.nn.layer.Pool2D,paddle.nn.layer.common.Pool2D
	:old_api: paddle.fluid.dygraph.Pool2D

708 709 710 711 712
    This interface is used to construct a callable object of the ``Pool2D`` class.
    For more details, refer to code examples.
    The pooling2d operation calculates the output based on the input, pool_type and pool_size, pool_stride,
    pool_padding parameters.Input and output are in NCHW format, where N is batch size, C is the number of feature map,
    H is the height of the feature map, and W is the width of the feature map.
L
lujun 已提交
713 714
    Parameters(ksize, strides, paddings) are two elements. These two elements represent height and width, respectively.
    The input(X) size and output(Out) size may be different.
715

716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759
    Example:

        - Input:

          Input shape: :math:`(N, C, H_{in}, W_{in})`

        - Output:

          Output shape: :math:`(N, C, H_{out}, W_{out})`

        If ``ceil_mode`` = False:

        .. math::

            H_{out} = \\frac{(H_{in} - ksize[0] + 2 * paddings[0])}{strides[0]} + 1 \\\\
            W_{out} = \\frac{(W_{in} - ksize[1] + 2 * paddings[1])}{strides[1]} + 1

        If ``ceil_mode`` = True:

        .. math::

            H_{out} = \\frac{(H_{in} - ksize[0] + 2 * paddings[0] + strides[0] - 1)}{strides[0]} + 1 \\\\
            W_{out} = \\frac{(W_{in} - ksize[1] + 2 * paddings[1] + strides[1] - 1)}{strides[1]} + 1

        If ``exclusive`` = False:

        .. math::

            hstart &= i * strides[0] - paddings[0] \\\\
            hend   &= hstart + ksize[0] \\\\
            wstart &= j * strides[1] - paddings[1] \\\\
            wend   &= wstart + ksize[1] \\\\
            Output(i ,j) &= \\frac{sum(Input[hstart:hend, wstart:wend])}{ksize[0] * ksize[1]}

        If ``exclusive`` = True:

        .. math::

            hstart &= max(0, i * strides[0] - paddings[0])\\\\
            hend &= min(H, hstart + ksize[0]) \\\\
            wstart &= max(0, j * strides[1] - paddings[1]) \\\\
            wend & = min(W, wstart + ksize[1]) \\\\
            Output(i ,j) & = \\frac{sum(Input[hstart:hend, wstart:wend])}{(hend - hstart) * (wend - wstart)}

760
    Parameters:
761
        pool_size (int or list or tuple, optional): The pool kernel size. If pool kernel size is a tuple or list,
762
            it must contain two integers, (pool_size_Height, pool_size_Width).
763 764 765 766
            Otherwise, the pool kernel size will be a square of an int. Default: -1.
        pool_type(str, optional) : The pooling type, can be "max" for max-pooling and "avg" for average-pooling. 
            Default: max.
        pool_stride (int or list or tuple, optional): The pool stride size. If pool stride size is a tuple or list,
L
lujun 已提交
767
            it must contain two integers, (pool_stride_Height, pool_stride_Width). Otherwise,
768 769 770
            the pool stride size will be a square of an int. Default: 1.
        pool_padding (int or list or tuple, optional): The padding size for pooling operation. 
            If ``pool_padding`` is a tuple,
771
            it must contain two integers, (pool_padding_on_Height, pool_padding_on_Width).
772 773 774 775 776 777 778
            Otherwise, the padding size for pooling operation will be a square of an int. Default: 0.
        global_pooling (bool, optional): Whether to use the global pooling. If global_pooling = true,
            kernel size and paddings will be ignored. Default: False.
        use_cudnn (bool, optional): Only used in cudnn kernel, need install cudnn. Default: True.
        ceil_mode (bool, optional): Whether to use the ceil function to calculate output height and width.
            False is the default. If it is set to False, the floor function will be used. Default: False.
        exclusive (bool, optional): Whether to exclude padding points in average pooling mode. Default: True.
779 780 781 782
        data_format (string): The data format of the input and output data. An optional string from: `"NCHW"`, `"NHWC"`.
            The default is `"NCHW"`. When it is `"NCHW"`, the data is stored in the order of:
            ``[batch_size, input_channels, input_height, input_width]``. When it is `"NHWC"`, the data is 
            stored in the order of: ``[batch_size, input_height, input_width, input_channels]``
783 784

    Returns:
785
        None
786 787

    Raises:
788 789 790 791
        ValueError: If ``pool_type`` is not "max" nor "avg".
        ValueError: If ``global_pooling`` is False and ``pool_size`` is -1.
        ValueError: If ``use_cudnn`` is not a bool value.
        ValueError: If ``data_format`` is not "NCHW" nor "NHWC".
792 793 794 795 796

    Examples:

        .. code-block:: python

L
lujun 已提交
797
          import paddle.fluid as fluid
798 799
          from paddle.fluid.dygraph.base import to_variable
          import numpy as np
L
lujun 已提交
800 801

          with fluid.dygraph.guard():
802
             data = numpy.random.random((3, 32, 32, 5)).astype('float32')
803
             pool2d = fluid.dygraph.Pool2D(pool_size=2,
804 805 806
                            pool_type='max',
                            pool_stride=1,
                            global_pooling=False)
807
             pool2d_res = pool2d(to_variable(data))
808 809 810

    """

M
minqiyang 已提交
811 812 813 814 815 816 817 818
    def __init__(self,
                 pool_size=-1,
                 pool_type="max",
                 pool_stride=1,
                 pool_padding=0,
                 global_pooling=False,
                 use_cudnn=True,
                 ceil_mode=False,
819 820 821 822
                 exclusive=True,
                 data_format="NCHW"):
        data_format = data_format.upper()  # supprt NHWC, nhwc, etc.
        pool_type = pool_type.lower()  # supprt max, Max, etc.
M
minqiyang 已提交
823 824 825 826 827 828 829 830 831 832 833 834 835
        if pool_type not in ["max", "avg"]:
            raise ValueError(
                "Unknown pool_type: '%s'. It can only be 'max' or 'avg'.",
                str(pool_type))

        if global_pooling is False and pool_size == -1:
            raise ValueError(
                "When the global_pooling is False, pool_size must be passed "
                "and be a valid value. Received pool_size: " + str(pool_size))

        if not isinstance(use_cudnn, bool):
            raise ValueError("use_cudnn should be True or False")

836 837
        self._use_mkldnn = core.globals()["FLAGS_use_mkldnn"]

838 839 840 841 842
        if data_format not in ["NCHW", "NHWC"]:
            raise ValueError(
                "Attr(data_format) should be 'NCHW' or 'NHWC'. Received "
                "Attr(data_format): %s." % str(data_format))

843
        super(Pool2D, self).__init__()
M
minqiyang 已提交
844 845 846 847 848 849 850 851 852 853

        self._pool_type = pool_type
        self._pool_size = utils.convert_to_list(pool_size, 2, 'pool_size')
        self._pool_padding = utils.convert_to_list(pool_padding, 2,
                                                   'pool_padding')
        self._pool_stride = utils.convert_to_list(pool_stride, 2, 'pool_stride')
        self._global_pooling = global_pooling
        self._use_cudnn = use_cudnn
        self._ceil_mode = ceil_mode
        self._exclusive = exclusive
854
        self._data_format = data_format
M
minqiyang 已提交
855 856 857
        self._l_type = 'pool2d'

    def forward(self, input):
858 859 860 861 862
        if in_dygraph_mode():
            attrs = ('pooling_type', self._pool_type, 'ksize', self._pool_size,
                     'global_pooling', self._global_pooling, 'strides',
                     self._pool_stride, 'paddings', self._pool_padding,
                     'use_cudnn', self._use_cudnn, 'ceil_mode', self._ceil_mode,
863 864
                     'use_mkldnn', self._use_mkldnn, 'exclusive',
                     self._exclusive, 'data_format', self._data_format)
865 866
            return core.ops.pool2d(input, *attrs)

867 868 869 870
        check_variable_and_dtype(
            input, 'input', ['int8', 'uint8', 'float16', 'float32', 'float64'],
            'Pool2D')

871 872 873 874 875 876 877 878
        attrs = {
            "pooling_type": self._pool_type,
            "ksize": self._pool_size,
            "global_pooling": self._global_pooling,
            "strides": self._pool_stride,
            "paddings": self._pool_padding,
            "use_cudnn": self._use_cudnn,
            "ceil_mode": self._ceil_mode,
879
            "use_mkldnn": self._use_mkldnn,
880
            "exclusive": self._exclusive,
881
            "data_format": self._data_format,
882 883 884
        }
        inputs = {"X": [input]}

M
minqiyang 已提交
885 886
        pool_out = self._helper.create_variable_for_type_inference(self._dtype)

M
minqiyang 已提交
887 888 889
        self._helper.append_op(
            type=self._l_type,
            inputs={"X": input},
M
minqiyang 已提交
890
            outputs={"Out": pool_out},
891
            attrs=attrs)
M
minqiyang 已提交
892
        return pool_out
M
minqiyang 已提交
893 894


S
songyouwei 已提交
895 896
class Linear(layers.Layer):
    """
897 898 899 900
    :alias_main: paddle.nn.Linear
	:alias: paddle.nn.Linear,paddle.nn.layer.Linear,paddle.nn.layer.common.Linear
	:old_api: paddle.fluid.dygraph.Linear
    
S
songyouwei 已提交
901 902 903 904 905 906 907 908
    Fully-connected linear transformation layer:

    .. math::

        Out = Act({XW + b})

    where :math:`X` is the input Tensor, :math:`W` and :math:`b` are weight and bias respectively.

909
    Linear layer takes only one ``Tensor`` input.
S
songyouwei 已提交
910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967
    The Linear layer multiplies input tensor with weight matrix and
    produces an output Tensor of shape [N, *, `output_dim`],
    where N is batch size and `*` means any number of additional dimensions.
    If ``bias_attr`` is not None, a bias variable will be created and added to the output.
    Finally, if ``act`` is not None, it will be applied to the output as well.

    Parameters:
        input_dim(int): The number of input units in this layer.
        output_dim(int): The number of output units in this layer.
        param_attr(ParamAttr or list of ParamAttr, optional): The parameter attribute for learnable
            weights(Parameter) of this layer. Default: None.
        bias_attr(ParamAttr or list of ParamAttr, optional): The attribute for the bias
            of this layer. If it is set to False, no bias will be added to the output units.
            If it is set to None, the bias is initialized zero. Default: None.
        act(str, optional): Activation to be applied to the output of this layer. Default: None.
        dtype(str, optional): Dtype used for weight, it can be "float32" or "float64". Default: "float32".

    Attributes:
        **weight** (Parameter): the learnable weights of this layer.

        **bias** (Parameter or None): the learnable bias of this layer.

    Returns:
        None

    Examples:
        .. code-block:: python

          from paddle.fluid.dygraph.base import to_variable
          import paddle.fluid as fluid
          from paddle.fluid.dygraph import Linear
          import numpy as np

          data = np.random.uniform(-1, 1, [30, 10, 32]).astype('float32')
          with fluid.dygraph.guard():
              linear = Linear(32, 64)
              data = to_variable(data)
              res = linear(data)  # [30, 10, 64]
    """

    def __init__(self,
                 input_dim,
                 output_dim,
                 param_attr=None,
                 bias_attr=None,
                 act=None,
                 dtype="float32"):
        super(Linear, self).__init__()
        self._act = act
        self._dtype = dtype
        self.weight = self.create_parameter(
            shape=[input_dim, output_dim],
            attr=param_attr,
            dtype=dtype,
            is_bias=False)
        self.bias = self.create_parameter(
            shape=[output_dim], attr=bias_attr, dtype=dtype, is_bias=True)

968 969
        self._use_mkldnn = core.globals()["FLAGS_use_mkldnn"]

S
songyouwei 已提交
970
    def forward(self, input):
971
        if in_dygraph_mode():
972 973
            pre_bias = _varbase_creator(dtype=input.dtype)
            core.ops.matmul(input, self.weight, pre_bias, 'transpose_X', False,
974 975
                            'transpose_Y', False, "alpha", 1, "use_mkldnn",
                            self._use_mkldnn)
976
            pre_act = dygraph_utils._append_bias_in_dygraph(
977 978 979 980
                pre_bias,
                self.bias,
                axis=len(input.shape) - 1,
                use_mkldnn=self._use_mkldnn)
981

982 983
            return dygraph_utils._append_activation_in_dygraph(
                pre_act, self._act, use_mkldnn=self._use_mkldnn)
984 985 986 987

        check_variable_and_dtype(input, 'input',
                                 ['float16', 'float32', 'float64'], "Linear")

988
        attrs = {
S
songyouwei 已提交
989 990 991
            "transpose_X": False,
            "transpose_Y": False,
            "alpha": 1,
992
            "use_mkldnn": self._use_mkldnn,
993 994
        }
        inputs = {"X": [input], "Y": [self.weight]}
995

S
songyouwei 已提交
996 997
        tmp = self._helper.create_variable_for_type_inference(self._dtype)
        self._helper.append_op(
S
songyouwei 已提交
998
            type="matmul", inputs=inputs, outputs={"Out": tmp}, attrs=attrs)
999
        if self.bias is not None:
S
songyouwei 已提交
1000 1001 1002 1003 1004 1005 1006
            pre_activation = self._helper.create_variable_for_type_inference(
                dtype=self._dtype)
            self._helper.append_op(
                type='elementwise_add',
                inputs={'X': [tmp],
                        'Y': [self.bias]},
                outputs={'Out': [pre_activation]},
1007 1008 1009 1010
                attrs={
                    'axis': len(input.shape) - 1,
                    'use_mkldnn': self._use_mkldnn
                })
S
songyouwei 已提交
1011 1012 1013 1014 1015
        else:
            pre_activation = tmp
        return self._helper.append_activation(pre_activation, act=self._act)


1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047
class InstanceNorm(layers.Layer):
    """
    This interface is used to construct a callable object of the ``InstanceNorm`` class.
    For more details, refer to code examples.

    Can be used as a normalizer function for convolution or fully_connected operations.
    The required data format for this layer is one of the following:

    DataLayout: NCHW `[batch, in_channels, in_height, in_width]`

    Refer to `Instance Normalization: The Missing Ingredient for Fast Stylization <https://arxiv.org/pdf/1607.08022.pdf>`_
    for more details.

    :math:`input` is the input features over a mini-batch.

    ..  math::
        
        \\mu_{\\beta} &\\gets \\frac{1}{HW} \\sum_{i=1}^{HW} x_i \\qquad &//\\
        \\ mean\ of\ one\  feature\ map\ in\ mini-batch \\\\
        \\sigma_{\\beta}^{2} &\\gets \\frac{1}{HW} \\sum_{i=1}^{HW}(x_i - \\
        \\mu_{\\beta})^2 \\qquad &//\ variance\ of\ one\ feature\ map\ in\ mini-batch \\\\
        \\hat{x_i} &\\gets \\frac{x_i - \\mu_\\beta} {\\sqrt{\\
        \\sigma_{\\beta}^{2} + \\epsilon}} \\qquad &//\ normalize \\\\
        y_i &\\gets \\gamma \\hat{x_i} + \\beta \\qquad &//\ scale\ and\ shift

    Note:
        `H` means height of feature map, `W` means width of feature map.

    Parameters:
        num_channels(int): Indicate the number of channels of the input ``Tensor``.
        epsilon(float, optional): A value added to the denominator for
            numerical stability. Default is 1e-5.
C
ceci3 已提交
1048
        param_attr(ParamAttr|bool, optional): The parameter attribute for Parameter `scale`
1049 1050 1051
             of instance_norm. If it is set to None or one attribute of ParamAttr, instance_norm
	     will create ParamAttr as param_attr, the name of scale can be set in ParamAttr.
	     If the Initializer of the param_attr is not set, the parameter is initialized 
C
ceci3 已提交
1052 1053
	     one. If it is set to False, will not create param_attr. Default: None.
        bias_attr(ParamAttr|bool, optional): The parameter attribute for the bias of instance_norm.
1054 1055 1056
             If it is set to None or one attribute of ParamAttr, instance_norm
	     will create ParamAttr as bias_attr, the name of bias can be set in ParamAttr. 
	     If the Initializer of the bias_attr is not set, the bias is initialized zero. 
C
ceci3 已提交
1057
             If it is set to False, will not create bias_attr. Default: None.
1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091
        dtype(str, optional): Indicate the data type of the input ``Tensor``,
             which can be float32 or float64. Default: float32.

    Returns:
        None.

    Examples:

        .. code-block:: python

          import paddle.fluid as fluid
          from paddle.fluid.dygraph.base import to_variable
          import numpy as np
          import paddle

          # x's shape is [1, 3, 1, 2] 
          x = np.array([[[[1.0, 8.0]], [[10.0, 5.0]], [[4.0, 6.0]]]]).astype('float32')
          with fluid.dygraph.guard():
              x = to_variable(x)
              instanceNorm = paddle.nn.InstanceNorm(3)
              ret = instanceNorm(x)
              # ret's shape is [1, 3, 1, 2]; value is [-1 1 0.999999 -0.999999 -0.999995 0.999995] 
              print(ret)

    """

    def __init__(self,
                 num_channels,
                 epsilon=1e-5,
                 param_attr=None,
                 bias_attr=None,
                 dtype='float32'):
        super(InstanceNorm, self).__init__()

C
ceci3 已提交
1092 1093
        if param_attr == False or bias_attr == False:
            assert bias_attr == param_attr, "param_attr and bias_attr must be set to Fasle at the same time in InstanceNorm"
1094 1095 1096 1097 1098
        self._epsilon = epsilon
        self._param_attr = param_attr
        self._bias_attr = bias_attr
        self._dtype = dtype

C
ceci3 已提交
1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114
        if param_attr != False and bias_attr != False:
            self.scale = self.create_parameter(
                attr=self._param_attr,
                shape=[num_channels],
                dtype=self._dtype,
                default_initializer=Constant(1.0),
                is_bias=False)
            self.bias = self.create_parameter(
                attr=self._bias_attr,
                shape=[num_channels],
                dtype=self._dtype,
                default_initializer=Constant(0.0),
                is_bias=True)
        else:
            self.scale = None
            self.bias = None
1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126

    def forward(self, input):
        if in_dygraph_mode():
            out, _, _ = core.ops.instance_norm(input, self.scale, self.bias,
                                               'epsilon', self._epsilon)
            return out

        check_variable_and_dtype(input, 'input', ['float32', 'float64'],
                                 "InstanceNorm")

        attrs = {"epsilon": self._epsilon}

C
ceci3 已提交
1127 1128 1129 1130
        if self.scale and self.bias:
            inputs = {"X": [input], "Scale": [self.scale], "Bias": [self.bias]}
        else:
            inputs = {"X": [input]}
1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149

        saved_mean = self._helper.create_variable_for_type_inference(
            dtype=self._dtype, stop_gradient=True)
        saved_variance = self._helper.create_variable_for_type_inference(
            dtype=self._dtype, stop_gradient=True)
        instance_norm_out = self._helper.create_variable_for_type_inference(
            self._dtype)

        outputs = {
            "Y": [instance_norm_out],
            "SavedMean": [saved_mean],
            "SavedVariance": [saved_variance]
        }

        self._helper.append_op(
            type="instance_norm", inputs=inputs, outputs=outputs, attrs=attrs)
        return instance_norm_out


M
minqiyang 已提交
1150
class BatchNorm(layers.Layer):
1151
    """
1152 1153 1154 1155
    :alias_main: paddle.nn.BatchNorm
	:alias: paddle.nn.BatchNorm,paddle.nn.layer.BatchNorm,paddle.nn.layer.norm.BatchNorm
	:old_api: paddle.fluid.dygraph.BatchNorm

1156 1157 1158 1159 1160
    This interface is used to construct a callable object of the ``BatchNorm`` class.
    For more details, refer to code examples.
    It implements the function of the Batch Normalization Layer and can be used 
    as a normalizer function for conv2d and fully connected operations.
    The data is normalized by the mean and variance of the channel based on the current batch data.
1161 1162 1163 1164
    Refer to `Batch Normalization: Accelerating Deep Network Training by Reducing
    Internal Covariate Shift <https://arxiv.org/pdf/1502.03167.pdf>`_
    for more details.

1165 1166 1167
    When use_global_stats = False, the :math:`\\mu_{\\beta}` 
    and :math:`\\sigma_{\\beta}^{2}` are the statistics of one mini-batch.
    Calculated as follows:
1168 1169 1170 1171 1172 1173 1174 1175

    ..  math::

        \\mu_{\\beta} &\\gets \\frac{1}{m} \\sum_{i=1}^{m} x_i \\qquad &//\\
        \ mini-batch\ mean \\\\
        \\sigma_{\\beta}^{2} &\\gets \\frac{1}{m} \\sum_{i=1}^{m}(x_i - \\
        \\mu_{\\beta})^2 \\qquad &//\ mini-batch\ variance \\\\

1176 1177
    - :math:`x` : mini-batch data
    - :math:`m` : the size of the mini-batch data
1178 1179 1180

    When use_global_stats = True, the :math:`\\mu_{\\beta}`
    and :math:`\\sigma_{\\beta}^{2}` are not the statistics of one mini-batch.
1181 1182 1183 1184 1185 1186
    They are global or running statistics (moving_mean and moving_variance). It usually got from the
    pre-trained model. Calculated as follows:

    .. math::
        moving\_mean = moving\_mean * momentum + \mu_{\beta} * (1. - momentum) \quad &// global mean \\
        moving\_variance = moving\_variance * momentum + \sigma_{\beta}^{2} * (1. - momentum) \quad &// global variance \\
1187

1188 1189
    The normalization function formula is as follows:
 
1190 1191 1192
    ..  math::

        \\hat{x_i} &\\gets \\frac{x_i - \\mu_\\beta} {\\sqrt{\\
1193 1194 1195 1196 1197 1198
        \\sigma_{\\beta}^{2} + \\epsilon}} \\qquad &//\ normalize \\\\
        y_i &\\gets \\gamma \\hat{x_i} + \\beta \\qquad &//\ scale\ and\ shift

    - :math:`\\epsilon` : add a smaller value to the variance to prevent division by zero
    - :math:`\\gamma` : trainable proportional parameter
    - :math:`\\beta` : trainable deviation parameter
1199

1200
    Parameters:
1201
        num_channels(int): Indicate the number of channels of the input ``Tensor``.
T
tianshuo78520a 已提交
1202
        act(str, optional): Activation to be applied to the output of batch normalization. Default: None.
1203 1204 1205
        is_test (bool, optional): A flag indicating whether it is in test phrase or not.
             This flag only has effect on static graph mode. For dygraph mode, please use ``eval()``.
             Default: False.
1206 1207 1208
        momentum(float, optional): The value used for the moving_mean and moving_var computation. Default: 0.9.
        epsilon(float, optional): The small value added to the variance to prevent division by zero. Default: 1e-5.
        param_attr(ParamAttr, optional): The parameter attribute for Parameter `scale`
1209 1210 1211
             of batch_norm. If it is set to None or one attribute of ParamAttr, batch_norm
             will create ParamAttr as param_attr. If the Initializer of the param_attr
             is not set, the parameter is initialized with Xavier. Default: None.
1212
        bias_attr(ParamAttr, optional): The parameter attribute for the bias of batch_norm.
1213 1214 1215
             If it is set to None or one attribute of ParamAttr, batch_norm
             will create ParamAttr as bias_attr. If the Initializer of the bias_attr
             is not set, the bias is initialized zero. Default: None.
1216 1217 1218 1219 1220 1221
        dtype(str, optional): Indicate the data type of the input ``Tensor``,
             which can be float32 or float64. Default: float32.
        data_layout(str, optional): Specify the input data format, the data format can be "NCHW" or "NHWC". Default: NCHW.
        in_place(bool, optional): Make the input and output of batch norm reuse memory. Default: False.
        moving_mean_name(str, optional): The name of moving_mean which store the global Mean. Default: None.
        moving_variance_name(str, optional): The name of the moving_variance which store the global Variance. Default: None.
1222 1223
        do_model_average_for_mean_and_var(bool, optional): Whether parameter mean and variance should do model
            average when model average is enabled. Default: True.
1224
        use_global_stats(bool, optional): Whether to use global mean and
1225 1226 1227
            variance. In inference or test mode, set use_global_stats to true
            or is_test to true, and the behavior is equivalent.
            In train mode, when setting use_global_stats True, the global mean
1228 1229 1230 1231
            and variance are also used during train period. Default: False.
        trainable_statistics(bool, optional): Whether to calculate mean and var in eval mode. In eval mode, when
            setting trainable_statistics True, mean and variance will be calculated by current batch statistics.
            Default: False.
1232 1233

    Returns:
1234
        None
1235 1236 1237

    Examples:
        .. code-block:: python
L
lujun 已提交
1238 1239

          import paddle.fluid as fluid
1240 1241
          from paddle.fluid.dygraph.base import to_variable
          import numpy as np
L
lujun 已提交
1242

1243
          x = np.random.random(size=(3, 10, 3, 7)).astype('float32')
L
lujun 已提交
1244
          with fluid.dygraph.guard():
1245
              x = to_variable(x)
1246
              batch_norm = fluid.BatchNorm(10)
1247
              hidden1 = batch_norm(x)
1248 1249
    """

M
minqiyang 已提交
1250 1251 1252 1253 1254 1255 1256 1257
    def __init__(self,
                 num_channels,
                 act=None,
                 is_test=False,
                 momentum=0.9,
                 epsilon=1e-05,
                 param_attr=None,
                 bias_attr=None,
1258
                 dtype='float32',
M
minqiyang 已提交
1259 1260 1261 1262
                 data_layout='NCHW',
                 in_place=False,
                 moving_mean_name=None,
                 moving_variance_name=None,
1263
                 do_model_average_for_mean_and_var=True,
1264 1265
                 use_global_stats=False,
                 trainable_statistics=False):
1266
        super(BatchNorm, self).__init__()
1267
        self._param_attr = param_attr
1268
        self._bias_attr = bias_attr
1269
        self._act = act
1270
        self._use_mkldnn = core.globals()["FLAGS_use_mkldnn"]
M
minqiyang 已提交
1271 1272 1273

        assert bias_attr is not False, "bias_attr should not be False in batch_norm."

1274 1275
        if dtype == "float16":
            self._dtype = "float32"
M
minqiyang 已提交
1276 1277 1278 1279 1280 1281
        else:
            self._dtype = dtype

        param_shape = [num_channels]

        # create parameter
1282
        self.weight = self.create_parameter(
1283
            attr=self._param_attr,
M
minqiyang 已提交
1284 1285 1286
            shape=param_shape,
            dtype=self._dtype,
            default_initializer=Constant(1.0))
1287
        self.weight.stop_gradient = use_global_stats and self._param_attr.learning_rate == 0.
M
minqiyang 已提交
1288

1289
        self.bias = self.create_parameter(
1290
            attr=self._bias_attr,
M
minqiyang 已提交
1291 1292 1293
            shape=param_shape,
            dtype=self._dtype,
            is_bias=True)
1294
        self.bias.stop_gradient = use_global_stats and self._param_attr.learning_rate == 0.
M
minqiyang 已提交
1295

1296
        self._mean = self.create_parameter(
M
minqiyang 已提交
1297 1298 1299 1300 1301 1302 1303
            attr=ParamAttr(
                name=moving_mean_name,
                initializer=Constant(0.0),
                trainable=False,
                do_model_average=do_model_average_for_mean_and_var),
            shape=param_shape,
            dtype=self._dtype)
1304
        self._mean.stop_gradient = True
M
minqiyang 已提交
1305

1306
        self._variance = self.create_parameter(
M
minqiyang 已提交
1307 1308 1309 1310 1311 1312 1313
            attr=ParamAttr(
                name=moving_variance_name,
                initializer=Constant(1.0),
                trainable=False,
                do_model_average=do_model_average_for_mean_and_var),
            shape=param_shape,
            dtype=self._dtype)
1314
        self._variance.stop_gradient = True
M
minqiyang 已提交
1315 1316

        self._in_place = in_place
1317
        self._data_layout = data_layout
M
minqiyang 已提交
1318 1319 1320
        self._momentum = momentum
        self._epsilon = epsilon
        self._is_test = is_test
1321
        self._fuse_with_relu = False
M
minqiyang 已提交
1322
        self._use_global_stats = use_global_stats
1323
        self._trainable_statistics = trainable_statistics
M
minqiyang 已提交
1324 1325 1326 1327 1328 1329 1330

    def forward(self, input):
        # create output
        # mean and mean_out share the same memory
        mean_out = self._mean
        # variance and variance out share the same memory
        variance_out = self._variance
1331 1332 1333

        if in_dygraph_mode():
            attrs = ("momentum", self._momentum, "epsilon", self._epsilon,
1334
                     "is_test", not self.training, "data_layout",
1335 1336
                     self._data_layout, "use_mkldnn", self._use_mkldnn,
                     "fuse_with_relu", self._fuse_with_relu, "use_global_stats",
1337 1338
                     self._use_global_stats, 'trainable_statistics',
                     self._trainable_statistics)
1339
            batch_norm_out, _, _, _, _, _ = core.ops.batch_norm(
1340 1341
                input, self.weight, self.bias, self._mean, self._variance,
                mean_out, variance_out, *attrs)
1342

1343
            return dygraph_utils._append_activation_in_dygraph(
1344
                batch_norm_out, act=self._act, use_mkldnn=self._use_mkldnn)
1345

1346 1347 1348
        check_variable_and_dtype(input, 'input',
                                 ['float16', 'float32', 'float64'], 'BatchNorm')

1349 1350 1351 1352 1353 1354 1355
        attrs = {
            "momentum": self._momentum,
            "epsilon": self._epsilon,
            "is_test": self._is_test,
            "data_layout": self._data_layout,
            "use_mkldnn": False,
            "fuse_with_relu": self._fuse_with_relu,
1356 1357
            "use_global_stats": self._use_global_stats,
            "trainable_statistics": self._trainable_statistics,
1358
        }
M
minqiyang 已提交
1359

1360 1361 1362 1363 1364 1365 1366 1367
        inputs = {
            "X": [input],
            "Scale": [self.weight],
            "Bias": [self.bias],
            "Mean": [self._mean],
            "Variance": [self._variance]
        }

1368 1369 1370 1371 1372 1373
        saved_mean = self._helper.create_variable_for_type_inference(
            dtype=self._dtype, stop_gradient=True)
        saved_variance = self._helper.create_variable_for_type_inference(
            dtype=self._dtype, stop_gradient=True)
        batch_norm_out = input if self._in_place else self._helper.create_variable_for_type_inference(
            self._dtype)
1374 1375 1376 1377 1378 1379 1380 1381 1382

        outputs = {
            "Y": [batch_norm_out],
            "MeanOut": [mean_out],
            "VarianceOut": [variance_out],
            "SavedMean": [saved_mean],
            "SavedVariance": [saved_variance]
        }

M
minqiyang 已提交
1383
        self._helper.append_op(
1384
            type="batch_norm", inputs=inputs, outputs=outputs, attrs=attrs)
M
minqiyang 已提交
1385

L
lujun 已提交
1386
        # Currently, we don't support inplace in dygraph mode
1387
        return self._helper.append_activation(batch_norm_out, self._act)
1388 1389


1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498
class Dropout(layers.Layer):
    """
   This interface is used to construct a callable object of the ``Dropout`` class.
   For more details, refer to code examples.

   Drop or keep each element of input independently. Dropout is a regularization
   technique for reducing overfitting by preventing neuron co-adaption during
   training. The dropout operator randomly sets (according to the given dropout
   probability) the outputs of some units to zero, while others are remain
   unchanged.

   Dropout layer can be removed for efficiency concern.

   Parameters:
       p (float, optional): Probability of setting units to zero. Default: 0.5
       seed (int, optional): A Python integer used to create random seeds. If this
                   parameter is set to None, a random seed is used.
                   NOTE: If an integer seed is given, always the same output
                   units will be dropped. DO NOT use a fixed seed in training. Default: None.
       dropout_implementation(string, optional): ['downgrade_in_infer'(default)|'upscale_in_train']

                                       1. downgrade_in_infer(default), downgrade the outcome at inference

                                          - train: out = input * mask
                                          - inference: out = input * (1.0 - p)

                                          (mask is a tensor same shape with input, value is 0 or 1
                                          ratio of 0 is dropout_prob)
                                       2. upscale_in_train, upscale the outcome at training time

                                          - train: out = input * mask / ( 1.0 - p )
                                          - inference: out = input

                                          (mask is a tensor same shape with input, value is 0 or 1
                                          ratio of 0 is p)
       is_test (bool, optional): A flag indicating whether it is in test phrase or not.
                   This flag only has effect on static graph mode. For dygraph mode, please use ``eval()``.
                   Default: False.

   Returns:
       None

   Examples:

       .. code-block:: python

           import paddle.fluid as fluid
           from paddle.fluid.dygraph.base import to_variable
           import numpy as np

           x = np.random.random(size=(3, 10, 3, 7)).astype('float32')
           with fluid.dygraph.guard():
               x = to_variable(x)
               m = fluid.dygraph.Dropout(p=0.5)
               droped_train = m(x)
               # switch to eval mode
               m.eval()
               droped_eval = m(x)
   """

    def __init__(self,
                 p=0.5,
                 seed=None,
                 dropout_implementation="downgrade_in_infer",
                 is_test=False):
        super(Dropout, self).__init__()
        assert isinstance(p, (float, int)), "p argument should be a number"
        assert 0 <= p <= 1, "p argument should between 0 and 1"
        self._dropout_prob = p
        assert seed is None or isinstance(
            seed, int), "seed argument should be None or a integer"
        self._seed = seed
        assert dropout_implementation in (
            'downgrade_in_infer', 'upscale_in_train'
        ), "dropout_implementation argument should be 'downgrade_in_infer' or 'upscale_in_train'"
        self._dropout_implementation = dropout_implementation
        self._is_test = is_test

    def forward(self, input):
        prog = default_main_program()
        if (self._seed is None or self._seed == 0) and prog.random_seed != 0:
            self._seed = prog.random_seed
        attrs = {
            'dropout_prob': self._dropout_prob,
            'is_test': not self.training
            if in_dygraph_mode() else self._is_test,
            'fix_seed': self._seed is not None,
            'seed': self._seed if self._seed is not None else 0,
            'dropout_implementation': self._dropout_implementation,
        }

        if in_dygraph_mode():
            attrs = sum(attrs.items(), ())
            out, mask = core.ops.dropout(input, *attrs)
            return out

        out = self._helper.create_variable_for_type_inference(dtype=input.dtype)
        mask = self._helper.create_variable_for_type_inference(
            dtype=core.VarDesc.VarType.UINT8, stop_gradient=True)

        self._helper.append_op(
            type='dropout',
            inputs={'X': [input]},
            outputs={'Out': [out],
                     'Mask': [mask]},
            attrs=attrs)
        return out


1499 1500
class Embedding(layers.Layer):
    """
1501 1502 1503 1504
    :alias_main: paddle.nn.Embedding
	:alias: paddle.nn.Embedding,paddle.nn.layer.Embedding,paddle.nn.layer.common.Embedding
	:old_api: paddle.fluid.dygraph.Embedding

1505 1506
    **Embedding Layer**

Z
zhongpu 已提交
1507 1508 1509 1510 1511 1512
    This interface is used to construct a callable object of the ``Embedding`` class.
    For specific usage, refer to code examples. It implements the function of the Embedding Layer.
    This layer is used to lookup embeddings vector of ids provided by :attr:`input` .
    It automatically constructs a 2D embedding matrix based on the
    input :attr:`size` (vocab_size, emb_size) and :attr:`dtype` .

1513 1514
    The shape of output Tensor is generated by appending an emb_size dimension to the
    last dimension of the input Tensor shape.
Z
zhongpu 已提交
1515

1516
    **Note:** The id in :attr:`input` must satisfy :math:`0 =< id < size[0]` ,
Z
zhongpu 已提交
1517 1518 1519 1520 1521 1522 1523
    otherwise the program will throw an exception and exit.

    .. code-block:: text

        Case 1:

        input is a Tensor. padding_idx = -1
1524 1525
            input.data = [[1, 3], [2, 4], [4, 127]
            input.shape = [3, 2]
Z
zhongpu 已提交
1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538
        Given size = [128, 16]
        output is a Tensor:
            out.shape = [3, 2, 16]
            out.data = [[[0.129435295, 0.244512452, ..., 0.436322452],
                        [0.345421456, 0.524563927, ..., 0.144534654]],

                        [[0.345249859, 0.124939536, ..., 0.194353745],
                        [0.945345345, 0.435394634, ..., 0.435345365]],
                        
                        [[0.945345345, 0.435394634, ..., 0.435345365],
                        [0.0,         0.0,         ..., 0.0        ]]]  # padding data
        The input padding_idx is less than 0, it is automatically converted to padding_idx = -1 + 128 = 127
        It will pad all-zero data when ids is 127.
1539

1540
    Parameters:
L
lujun 已提交
1541 1542
        size(tuple|list): The shape of the look up table parameter. It should have two elements which indicate the size
            of the dictionary of embeddings and the size of each embedding vector respectively.
Z
zhongpu 已提交
1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560
        is_sparse(bool): The flag indicating whether to use sparse update. This parameter only
            affects the performance of the backwards gradient update. It is recommended to set 
            True because sparse update is faster. But some optimizer does not support sparse update,
            such as :ref:`api_fluid_optimizer_AdadeltaOptimizer` , :ref:`api_fluid_optimizer_AdamaxOptimizer` , 
            :ref:`api_fluid_optimizer_DecayedAdagradOptimizer` , :ref:`api_fluid_optimizer_FtrlOptimizer` ,
            :ref:`api_fluid_optimizer_LambOptimizer` and :ref:`api_fluid_optimizer_LarsMomentumOptimizer` .
            In these case, is_sparse must be False. Default: False.
        is_distributed(bool): Whether to store the embedding matrix in a distributed manner. Only used
            in multi-machine distributed CPU training. Default: False.
        padding_idx(int|long|None): padding_idx needs to be in the interval [-vocab_size, vocab_size). 
            If :math:`padding\_idx < 0`, the :math:`padding\_idx` will automatically be converted
            to :math:`vocab\_size + padding\_idx` . It will output all-zero padding data whenever lookup
            encounters :math:`padding\_idx` in id. And the padding data will not be updated while training.
            If set None, it makes no effect to output. Default: None.
        param_attr(ParamAttr): To specify the weight parameter property. Default: None, which means the
            default weight parameter property is used. See usage for details in :ref:`api_fluid_ParamAttr` . In addition,
            user-defined or pre-trained word vectors can be loaded with the :attr:`param_attr` parameter. 
            The local word vector needs to be transformed into numpy format, and the shape of local word
T
tianshuo78520a 已提交
1561
            vector should be consistent with :attr:`size` . Then :ref:`api_fluid_initializer_NumpyArrayInitializer`
Z
zhongpu 已提交
1562 1563 1564
            is used to load custom or pre-trained word vectors. See code example 2 for details.
        dtype(np.dtype|core.VarDesc.VarType|str): It refers to the data type of output Tensor.
            It must be "float32" or "float64". Default: "float32".
1565

Z
zhongpu 已提交
1566 1567
    Attribute:
        **weight** (Parameter): the learnable weights of this layer.
1568

1569
    Returns:
Z
zhongpu 已提交
1570
        Variable: Embedding Tensor or LoDTensor mapped by input. The data type is the same as :attr:`dtype` .
1571 1572

    Examples:
1573

1574 1575
        .. code-block:: python

L
lujun 已提交
1576 1577 1578 1579
          import paddle.fluid as fluid
          import paddle.fluid.dygraph.base as base
          import numpy as np

Z
zhongpu 已提交
1580
          # example 1
1581 1582
          inp_word = np.array([[2, 3, 5], [4, 2, 1]]).astype('int64')
          inp_word.shape  # [2, 3]
1583 1584
          dict_size = 20
          with fluid.dygraph.guard():
L
lujun 已提交
1585
              emb = fluid.dygraph.Embedding(
1586 1587 1588
                  size=[dict_size, 32],
                  param_attr='emb.w',
                  is_sparse=False)
L
lujun 已提交
1589
              static_rlt3 = emb(base.to_variable(inp_word))
1590
              static_rlt3.shape  # [2, 3, 32]
Z
zhongpu 已提交
1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604

          # example 2: load custom or pre-trained word vectors
          weight_data = np.random.random(size=(128, 100))  # word vectors with numpy format
          w_param_attrs = fluid.ParamAttr(
              name="emb_weight",
              learning_rate=0.5,
              initializer=fluid.initializer.NumpyArrayInitializer(weight_data),
              trainable=True)
          with fluid.dygraph.guard():
              emb = fluid.dygraph.Embedding(
                  size=[128, 100],
                  param_attr= w_param_attrs,
                  is_sparse=False)
              static_rlt3 = emb(base.to_variable(inp_word))          
1605 1606
    """

1607 1608 1609 1610 1611 1612 1613
    def __init__(self,
                 size,
                 is_sparse=False,
                 is_distributed=False,
                 padding_idx=None,
                 param_attr=None,
                 dtype='float32'):
1614
        super(Embedding, self).__init__()
1615 1616 1617 1618
        self._size = size
        self._is_sparse = is_sparse
        self._is_distributed = is_distributed
        self._padding_idx = -1 if padding_idx is None else padding_idx if padding_idx >= 0 else (
J
JiabinYang 已提交
1619
            size[0] + padding_idx)
1620 1621 1622

        self._param_attr = param_attr
        self._dtype = dtype
J
JiabinYang 已提交
1623
        self._remote_prefetch = self._is_sparse and (not self._is_distributed)
1624 1625 1626
        if self._remote_prefetch:
            assert self._is_sparse is True and self._is_distributed is False

1627
        self.weight = self.create_parameter(
1628 1629 1630 1631 1632 1633
            attr=self._param_attr,
            shape=self._size,
            dtype=self._dtype,
            is_bias=False)

    def forward(self, input):
1634 1635 1636 1637 1638 1639
        if in_dygraph_mode():
            return core.ops.lookup_table_v2(
                self.weight, input, 'is_sparse', self._is_sparse,
                'is_distributed', self._is_distributed, 'remote_prefetch',
                self._remote_prefetch, 'padding_idx', self._padding_idx)

1640
        check_variable_and_dtype(input, 'input', ['int64'], 'Embedding')
1641 1642 1643 1644 1645 1646
        attrs = {
            'is_sparse': self._is_sparse,
            'is_distributed': self._is_distributed,
            'remote_prefetch': self._remote_prefetch,
            'padding_idx': self._padding_idx
        }
1647

1648 1649
        out = self._helper.create_variable_for_type_inference(self._dtype)
        self._helper.append_op(
1650
            type='lookup_table_v2',
1651
            inputs={'Ids': input,
1652
                    'W': self.weight},
1653
            outputs={'Out': out},
1654
            attrs=attrs)
1655 1656

        return out
M
minqiyang 已提交
1657 1658


1659
class LayerNorm(layers.Layer):
1660
    """
1661 1662 1663 1664
    :alias_main: paddle.nn.LayerNorm
	:alias: paddle.nn.LayerNorm,paddle.nn.layer.LayerNorm,paddle.nn.layer.norm.LayerNorm
	:old_api: paddle.fluid.dygraph.LayerNorm

1665 1666 1667
    This interface is used to construct a callable object of the ``LayerNorm`` class.
    For more details, refer to code examples.
    It implements the function of the Layer Normalization Layer and can be applied to mini-batch input data.
1668
    Refer to `Layer Normalization <https://arxiv.org/pdf/1607.06450v1.pdf>`_
1669

1670
    The formula is as follows:
1671

1672
    ..  math::
1673

1674
        \\mu & = \\frac{1}{H}\\sum_{i=1}^{H} x_i
1675

1676
        \\sigma & = \\sqrt{\\frac{1}{H}\sum_{i=1}^{H}{(x_i - \\mu)^2} + \\epsilon}
1677

1678
        y & = f(\\frac{g}{\\sigma}(x - \\mu) + b)
1679

1680 1681 1682 1683 1684
    - :math:`x`: the vector representation of the summed inputs to the neurons in that layer.
    - :math:`H`: the number of hidden units in a layers
    - :math:`\\epsilon`: the small value added to the variance to prevent division by zero.
    - :math:`g`: the trainable scale parameter.
    - :math:`b`: the trainable bias parameter.
1685

1686
    Parameters:
1687 1688 1689 1690
        normalized_shape(int or list or tuple): Input shape from an expected input of
            size :math:`[*, normalized_shape[0], normalized_shape[1], ..., normalized_shape[-1]]`.
            If it is a single integer, this module will normalize over the last dimension
            which is expected to be of that specific size.
1691
        scale(bool, optional): Whether to learn the adaptive gain :math:`g` after
L
lujun 已提交
1692
            normalization. Default: True.
1693
        shift(bool, optional): Whether to learn the adaptive bias :math:`b` after
L
lujun 已提交
1694
            normalization. Default: True.
1695
        epsilon(float, optional): The small value added to the variance to prevent
L
lujun 已提交
1696
            division by zero. Default: 1e-05.
1697
        param_attr(ParamAttr, optional): The parameter attribute for the learnable
1698 1699 1700
            gain :math:`g`. If :attr:`scale` is False, :attr:`param_attr` is
            omitted. If :attr:`scale` is True and :attr:`param_attr` is None,
            a default :code:`ParamAttr` would be added as scale. The
L
lujun 已提交
1701
            :attr:`param_attr` is initialized as 1 if it is added. Default: None.
1702
        bias_attr(ParamAttr, optional): The parameter attribute for the learnable
1703 1704 1705
            bias :math:`b`. If :attr:`shift` is False, :attr:`bias_attr` is
            omitted. If :attr:`shift` is True and :attr:`param_attr` is None,
            a default :code:`ParamAttr` would be added as bias. The
L
lujun 已提交
1706
            :attr:`bias_attr` is initialized as 0 if it is added. Default: None.
T
tianshuo78520a 已提交
1707
        act(str, optional): Activation to be applied to the output of layer normalization.
L
lujun 已提交
1708
                  Default: None.
1709 1710
        dtype (str, optional): Data type, it can be "float32" or "float64". Default: "float32".

1711
    Returns:
1712
        None
1713

1714
    Examples:
1715

1716 1717 1718
        .. code-block:: python

          import paddle.fluid as fluid
1719
          from paddle.fluid.dygraph.base import to_variable
1720 1721
          import numpy

1722
          x = numpy.random.random((3, 32, 32)).astype('float32')
1723
          with fluid.dygraph.guard():
1724
              x = to_variable(x)
1725
              layerNorm = fluid.LayerNorm([32, 32])
1726
              ret = layerNorm(x)
1727

1728
    """
1729

1730
    def __init__(self,
1731
                 normalized_shape,
1732 1733 1734 1735 1736
                 scale=True,
                 shift=True,
                 epsilon=1e-05,
                 param_attr=None,
                 bias_attr=None,
1737 1738 1739 1740 1741
                 act=None,
                 dtype='float32'):
        super(LayerNorm, self).__init__()
        if isinstance(normalized_shape, numbers.Integral):
            normalized_shape = [normalized_shape]
H
hong 已提交
1742

1743
        self._normalized_shape = list(normalized_shape)
1744 1745 1746 1747 1748 1749
        self._scale = scale
        self._shift = shift
        self._epsilon = epsilon
        self._param_attr = param_attr
        self._bias_attr = bias_attr
        self._act = act
1750 1751
        self._dtype = dtype
        param_shape = [np.prod(self._normalized_shape)]
1752
        if self._scale:
1753
            self.weight = self.create_parameter(
1754 1755 1756 1757
                attr=self._param_attr,
                shape=param_shape,
                dtype=self._dtype,
                default_initializer=Constant(1.0))
1758 1759
        else:
            if self._param_attr:
T
tianshuo78520a 已提交
1760
                logging.warn("param_attr are only available with scale is True")
1761
            self.weight = None
1762

1763 1764
        if self._shift:
            assert self._bias_attr is not False
1765
            self.bias = self.create_parameter(
1766 1767 1768 1769
                attr=self._bias_attr,
                shape=param_shape,
                dtype=self._dtype,
                is_bias=True)
1770 1771
        else:
            if self._bias_attr:
T
tianshuo78520a 已提交
1772
                logging.warn("bias_attr are only available with shift is True")
1773
            self.bias = None
1774 1775

    def forward(self, input):
1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786
        input_shape = list(input.shape)
        input_ndim = len(input_shape)
        normalized_ndim = len(self._normalized_shape)
        self._begin_norm_axis = input_ndim - normalized_ndim
        if input_ndim < normalized_ndim or input_shape[
                self._begin_norm_axis:] != self._normalized_shape:
            str_normalized_shape = str(self._normalized_shape)
            raise ValueError(
                'Given normalized_shape is ' + str_normalized_shape +
                ', expected input with shape [*, ' + str_normalized_shape[
                    1:] + ', but got input shape ' + str(input_shape))
1787 1788 1789 1790 1791 1792 1793 1794

        if in_dygraph_mode():
            pre_act, _, _ = core.ops.layer_norm(
                input, self.weight, self.bias, 'epsilon', self._epsilon,
                'begin_norm_axis', self._begin_norm_axis)
            return dygraph_utils._append_activation_in_dygraph(
                pre_act, act=self._act)

1795 1796 1797
        check_variable_and_dtype(input, 'input', ['float32', 'float64'],
                                 'LayerNorm')

1798
        inputs = dict()
1799
        inputs['X'] = [input]
1800
        if self._scale:
1801
            inputs['Scale'] = [self.weight]
1802
        if self._shift:
1803 1804 1805 1806 1807 1808
            inputs['Bias'] = [self.bias]
        attrs = {
            "epsilon": self._epsilon,
            "begin_norm_axis": self._begin_norm_axis
        }

1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829
        # create output
        mean_out = self._helper.create_variable_for_type_inference(
            dtype=self._dtype, stop_gradient=True)
        variance_out = self._helper.create_variable_for_type_inference(
            dtype=self._dtype, stop_gradient=True)
        layer_norm_out = self._helper.create_variable_for_type_inference(
            self._dtype)

        self._helper.append_op(
            type="layer_norm",
            inputs=inputs,
            outputs={
                "Y": layer_norm_out,
                "Mean": mean_out,
                "Variance": variance_out,
            },
            attrs={
                "epsilon": self._epsilon,
                "begin_norm_axis": self._begin_norm_axis
            })

1830
        return self._helper.append_activation(layer_norm_out, act=self._act)
1831 1832


M
minqiyang 已提交
1833 1834 1835
class GRUUnit(layers.Layer):
    """
    **GRU unit layer**
D
DuYao 已提交
1836 1837 1838 1839 1840
    
    It creates a callable object from GRUUnit class.
    If origin_mode is True, then the equation of a gru step is from paper
    `Learning Phrase Representations using RNN Encoder-Decoder for Statistical 
    Machine Translation <https://arxiv.org/pdf/1406.1078.pdf>`_
M
minqiyang 已提交
1841 1842 1843 1844 1845 1846 1847 1848 1849 1850

        .. math::
            u_t & = actGate(xu_{t} + W_u h_{t-1} + b_u)

            r_t & = actGate(xr_{t} + W_r h_{t-1} + b_r)

            m_t & = actNode(xm_t + W_c dot(r_t, h_{t-1}) + b_m)

            h_t & = dot(u_t, h_{t-1}) + dot((1-u_t), m_t)

D
DuYao 已提交
1851
    If origin_mode is False, then the equation of a gru step is from paper
M
minqiyang 已提交
1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876
    `Empirical Evaluation of Gated Recurrent Neural Networks on Sequence
    Modeling <https://arxiv.org/pdf/1412.3555.pdf>`_

        .. math::
            u_t & = actGate(xu_{t} + W_u h_{t-1} + b_u)

            r_t & = actGate(xr_{t} + W_r h_{t-1} + b_r)

            m_t & = actNode(xm_t + W_c dot(r_t, h_{t-1}) + b_m)

            h_t & = dot((1-u_t), h_{t-1}) + dot(u_t, m_t)


    The inputs of gru unit includes :math:`z_t`, :math:`h_{t-1}`. In terms
    of the equation above, the :math:`z_t` is split into 3 parts -
    :math:`xu_t`, :math:`xr_t` and :math:`xm_t`. This means that in order to
    implement a full GRU unit operator for an input, a fully
    connected layer has to be applied, such that :math:`z_t = W_{fc}x_t`.

    The terms :math:`u_t` and :math:`r_t` represent the update and reset gates
    of the GRU cell. Unlike LSTM, GRU has one lesser gate. However, there is
    an intermediate candidate hidden output, which is denoted by :math:`m_t`.
    This layer has three outputs :math:`h_t`, :math:`dot(r_t, h_{t-1})`
    and concatenation of :math:`u_t`, :math:`r_t` and :math:`m_t`.

1877
    Parameters:
L
lujun 已提交
1878
        size (int): The input dimension value.
D
DuYao 已提交
1879 1880 1881 1882 1883 1884 1885 1886 1887
        param_attr(ParamAttr, optional): The parameter attribute for the learnable
            hidden-hidden weight matrix. 
            
            **Note**:
    
                1. The shape of the weight matrix is :math:`[T, 3*D]`, where D is the hidden size.
                2. All elements in the weight matrix can be divided into two parts. The first 
                   part are weights of the update gate and reset gate with shape :math:`[D, 2*D]`, 
                   and the second part are weights for candidate hidden state with shape :math:`[D, D]`.
M
minqiyang 已提交
1888 1889 1890 1891


            If it is set to None or one attribute of ParamAttr, gru_unit will
            create ParamAttr as param_attr. If the Initializer of the param_attr
D
DuYao 已提交
1892 1893 1894 1895
            is not set, the parameter is initialized with Xavier. The default 
            value is None.
        bias_attr (ParamAttr|bool, optional): The parameter attribute for the bias
            of GRU.Note that the bias with :math:`[1, 3*D]` concatenates
M
minqiyang 已提交
1896 1897 1898 1899 1900
            the bias in the update gate, reset gate and candidate calculations.
            If it is set to False, no bias will be applied to the update gate,
            reset gate and candidate calculations. If it is set to None or one
            attribute of ParamAttr, gru_unit will create ParamAttr as
            bias_attr. If the Initializer of the bias_attr is not set, the bias
D
DuYao 已提交
1901
            is initialized zero. The default value is None.
L
lujun 已提交
1902
        activation (str): The activation type for cell (actNode).
D
DuYao 已提交
1903
                             The default value is 'tanh'.
L
lujun 已提交
1904
        gate_activation (str): The activation type for gates (actGate).
D
DuYao 已提交
1905 1906 1907
                                  The default value is 'sigmoid'.
        dtype(str): The dtype of the layers. The data type can be set as
            'float32', 'float64'. The default value is 'float32'.
M
minqiyang 已提交
1908

D
DuYao 已提交
1909 1910 1911 1912
    Attribute:
        **weight** (Parameter): the learnable weights of this layer.

        **bias** (Parameter): the learnable bias of this layer.
1913

M
minqiyang 已提交
1914
    Returns:
D
DuYao 已提交
1915 1916 1917 1918
        tuple: The hidden value, reset-hidden value and gate values. The hidden value
        is a 2-D tensor with shape  :math:`[T, D]` . The reset-hidden value is a
        2-D tensor with shape  :math:`[T, D]` . The gate value is a 2-D tensor with 
        shape  :math:`[T, 3*D]`.
L
lujun 已提交
1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931

    Examples:

        .. code-block:: python

          import paddle.fluid as fluid
          import paddle.fluid.dygraph.base as base
          import numpy

          lod = [[2, 4, 3]]
          D = 5
          T = sum(lod[0])

D
DuYao 已提交
1932
          input = numpy.random.rand(T, 3 * D).astype('float32')
L
lujun 已提交
1933 1934 1935
          hidden_input = numpy.random.rand(T, D).astype('float32')
          with fluid.dygraph.guard():
              x = numpy.random.random((3, 32, 32)).astype('float32')
1936
              gru = fluid.dygraph.GRUUnit(size=D * 3)
L
lujun 已提交
1937 1938 1939
              dy_ret = gru(
                base.to_variable(input), base.to_variable(hidden_input))

M
minqiyang 已提交
1940 1941 1942 1943 1944 1945 1946 1947 1948 1949
    """

    def __init__(self,
                 size,
                 param_attr=None,
                 bias_attr=None,
                 activation='tanh',
                 gate_activation='sigmoid',
                 origin_mode=False,
                 dtype='float32'):
1950
        super(GRUUnit, self).__init__()
1951
        self._bias_attr = bias_attr
M
minqiyang 已提交
1952 1953 1954 1955 1956
        activation_dict = dict(
            identity=0,
            sigmoid=1,
            tanh=2,
            relu=3, )
H
Hongyu Liu 已提交
1957 1958
        self.activation = activation_dict[activation]
        self.gate_activation = activation_dict[gate_activation]
M
minqiyang 已提交
1959

M
minqiyang 已提交
1960
        self._dtype = dtype
M
minqiyang 已提交
1961 1962
        size = size // 3
        # create weight
1963
        self.weight = self.create_parameter(
M
minqiyang 已提交
1964
            attr=param_attr, shape=[size, 3 * size], dtype=dtype)
M
minqiyang 已提交
1965 1966

        # create bias
M
minqiyang 已提交
1967
        bias_size = [1, 3 * size]
1968
        self._bias_size = bias_size
1969
        self.bias = self.create_parameter(
M
minqiyang 已提交
1970
            attr=bias_attr, shape=bias_size, dtype=dtype, is_bias=True)
M
minqiyang 已提交
1971

M
minqiyang 已提交
1972
    def forward(self, input, hidden):
1973 1974 1975 1976 1977 1978
        if in_dygraph_mode():
            gate, reset_hidden_pre, updated_hidden = core.ops.gru_unit(
                input, hidden, self.weight, self.bias, 'activation',
                self.activation, 'gate_activation', self.gate_activation)
            return updated_hidden, reset_hidden_pre, gate

1979 1980 1981 1982
        check_variable_and_dtype(input, 'input', ['float32', 'float64'],
                                 'GRUUnit')
        check_variable_and_dtype(hidden, 'hidden', ['float32', 'float64'],
                                 'GRUUnit')
1983 1984 1985 1986 1987
        inputs = {
            'Input': [input],
            'HiddenPrev': [hidden],
            'Weight': [self.weight]
        }
1988
        if self.bias is not None:
1989
            inputs['Bias'] = [self.bias]
M
minqiyang 已提交
1990 1991 1992 1993 1994
        gate = self._helper.create_variable_for_type_inference(self._dtype)
        reset_hidden_pre = self._helper.create_variable_for_type_inference(
            self._dtype)
        updated_hidden = self._helper.create_variable_for_type_inference(
            self._dtype)
M
minqiyang 已提交
1995 1996 1997 1998 1999 2000 2001 2002 2003
        self._helper.append_op(
            type='gru_unit',
            inputs=inputs,
            outputs={
                'Gate': gate,
                'ResetHiddenPrev': reset_hidden_pre,
                'Hidden': updated_hidden,
            },
            attrs={
H
Hongyu Liu 已提交
2004 2005
                'activation': self.activation,
                'gate_activation': self.gate_activation,
M
minqiyang 已提交
2006 2007 2008
            })

        return updated_hidden, reset_hidden_pre, gate
2009 2010 2011 2012


class NCE(layers.Layer):
    """
2013 2014 2015 2016 2017
    This interface is used to construct a callable object of the ``NCE`` class.
    For more details, refer to code examples.
    It implements the function of the ``NCE`` loss function.
    By default this function uses a uniform distribution for sampling, and it
    compute and return the noise-contrastive estimation training loss. See
2018
    `Noise-contrastive estimation: A new estimation principle for unnormalized statistical models <http://www.jmlr.org/proceedings/papers/v9/gutmann10a/gutmann10a.pdf>`_ .
2019

2020
    Parameters:
2021 2022
        num_total_classes (int): Total number of classes in all samples.
        dim (int): Dimension of input (possibly embedding dim).
2023
        param_attr (ParamAttr, optional): The parameter attribute for learnable weights(Parameter)
2024 2025 2026
             of nce. If it is set to None or one attribute of ParamAttr, nce
             will create ParamAttr as param_attr. If the Initializer of the param_attr
             is not set, the parameter is initialized with Xavier. Default: None.
2027
        bias_attr (ParamAttr or bool, optional): The attribute for the bias of nce.
2028 2029 2030 2031
             If it is set to False, no bias will be added to the output units.
             If it is set to None or one attribute of ParamAttr, nce
             will create ParamAttr as bias_attr. If the Initializer of the bias_attr
             is not set, the bias is initialized zero. Default: None.
2032
        num_neg_samples (int, optional): The number of negative classes. The default value is 10.
T
tianshuo78520a 已提交
2033
        sampler (str, optional): The sampler used to sample class from negative classes.
2034 2035
                       It can be 'uniform', 'log_uniform' or 'custom_dist'.
                       default: 'uniform'.
2036
        custom_dist (float[], optional): A float[] with size=num_total_classes.
2037
                       It is used when sampler is set to 'custom_dist'.
2038
                       custom_dist[i] is the probability of i-th class to be sampled.
L
lujun 已提交
2039
                       Default: None.
2040 2041
        seed (int, optional): The seed used in sampler. Default: 0.
        is_sparse(bool, optional): The flag indicating whether to use sparse update. If is_sparse is True, the weight@GRAD and bias@GRAD will be changed to SelectedRows. Default: False.
2042
        dtype (str, optional): Data type, it can be "float32" or "float64". Default: "float32".
2043

2044 2045
    Attribute:
        **weight** (Parameter): the learnable weights of this layer.
2046

2047 2048
        **bias** (Parameter or None): the learnable bias of this layer.
    
2049
    Returns:
2050
        None
2051 2052 2053 2054

    Examples:
        .. code-block:: python

2055 2056 2057
            import numpy as np
            import paddle.fluid as fluid

2058
            window_size = 5
2059 2060
            dict_size = 20
            label_word = int(window_size // 2) + 1
2061
            inp_word = np.array([[1], [2], [3], [4], [5]]).astype('int64')
2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082
            nid_freq_arr = np.random.dirichlet(np.ones(20) * 1000).astype('float32')

            with fluid.dygraph.guard():
                words = []
                for i in range(window_size):
                    words.append(fluid.dygraph.base.to_variable(inp_word[i]))

                emb = fluid.Embedding(
                    size=[dict_size, 32],
                    param_attr='emb.w',
                    is_sparse=False)

                embs3 = []
                for i in range(window_size):
                    if i == label_word:
                        continue

                    emb_rlt = emb(words[i])
                    embs3.append(emb_rlt)

                embs3 = fluid.layers.concat(input=embs3, axis=1)
2083
                nce = fluid.NCE(
2084
                             num_total_classes=dict_size,
2085
                             dim=embs3.shape[1],
2086 2087 2088 2089 2090 2091 2092
                             num_neg_samples=2,
                             sampler="custom_dist",
                             custom_dist=nid_freq_arr.tolist(),
                             seed=1,
                             param_attr='nce.w',
                             bias_attr='nce.b')

2093 2094
                wl = fluid.layers.unsqueeze(words[label_word], axes=[0])
                nce_loss3 = nce(embs3, wl)
2095 2096 2097 2098 2099

    """

    def __init__(self,
                 num_total_classes,
2100
                 dim,
2101
                 sample_weight=None,
2102 2103 2104 2105 2106 2107
                 param_attr=None,
                 bias_attr=None,
                 num_neg_samples=None,
                 sampler="uniform",
                 custom_dist=None,
                 seed=0,
2108 2109 2110
                 is_sparse=False,
                 dtype='float32'):
        super(NCE, self).__init__()
2111 2112 2113
        self._param_attr = param_attr
        self._bias_attr = bias_attr
        self._num_total_classes = num_total_classes
2114
        self._dtype = dtype
2115
        self._inputs = dict()
2116
        self._inputs['SampleWeight'] = sample_weight if sample_weight is not None else []
2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203
        if sampler == "uniform":
            sampler = 0
        elif sampler == "log_uniform":
            sampler = 1
        elif sampler == "custom_dist":
            assert custom_dist is not None
            # assert isinstance(custom_dist, Variable)

            custom_dist_len = len(custom_dist)
            alias_probs_ = [0] * custom_dist_len
            alias_ = [0] * custom_dist_len
            bigs = []
            littles = []
            for i in range(custom_dist_len):
                normal_prob = custom_dist[i] * custom_dist_len
                if normal_prob - 1.0 > 0:
                    bigs.append((i, normal_prob))
                elif 1.0 - normal_prob > 0:
                    littles.append((i, normal_prob))
                else:
                    alias_probs_[i] = normal_prob
                    alias_[i] = -1

            while len(bigs) and len(littles):
                big = bigs.pop(0)
                little = littles.pop(0)

                big_idx = big[0]
                big_prob = big[1]

                alias_probs_[little[0]] = little[1]
                alias_[little[0]] = big_idx
                big_left = big[1] + little[1] - 1
                if big_left - 1.0 > 0:
                    bigs.append((big_idx, big_left))
                elif 1.0 - big_left > 0:
                    littles.append((big_idx, big_left))
                else:
                    alias_probs_[big_idx] = big_left
                    alias_[big_idx] = -1

            if len(bigs):
                big = bigs.pop(0)
                alias_probs_[big[0]] = 1.0
                alias_[big[0]] = -1
            if len(littles):
                little = littles.pop(0)
                alias_probs_[little[0]] = 1.0
                alias_[little[0]] = -1

            def _init_by_numpy_array(numpy_array):
                ret = self.create_parameter(
                    attr=ParamAttr(),
                    shape=numpy_array.shape,
                    dtype=numpy_array.dtype,
                    default_initializer=NumpyArrayInitializer(numpy_array))
                ret.stop_gradient = True
                return ret

            self._inputs['CustomDistProbs'] = _init_by_numpy_array(
                np.array(custom_dist).astype('float32'))
            self._inputs['CustomDistAlias'] = _init_by_numpy_array(
                np.array(alias_).astype('int32'))
            self._inputs['CustomDistAliasProbs'] = _init_by_numpy_array(
                np.array(alias_probs_).astype('float32'))
            sampler = 2
        else:
            raise Exception("Unsupported sampler type.")

        if num_neg_samples is None:
            num_neg_samples = 10
        else:
            num_neg_samples = int(num_neg_samples)
        self._num_neg_samples = num_neg_samples
        remote_prefetch = is_sparse
        print(
            "With sparse mode, if your models has only small parameter prefetch may cause speed down"
        )
        self._attrs = {
            'num_total_classes': int(num_total_classes),
            'num_neg_samples': num_neg_samples,
            'seed': seed,
            'sampler': sampler,
            'is_sparse': is_sparse,
            'remote_prefetch': remote_prefetch
        }

2204
        self.weight = self.create_parameter(
2205 2206 2207
            attr=self._param_attr,
            shape=[self._num_total_classes, dim],
            is_bias=False,
2208
            dtype=self._dtype)
2209
        if self._bias_attr:
2210
            self.bias = self.create_parameter(
2211 2212 2213
                attr=self._bias_attr,
                shape=[self._num_total_classes, 1],
                is_bias=True,
2214
                dtype=self._dtype)
2215 2216
            self._inputs['Bias'] = self.bias
        self._inputs['Weight'] = self.weight
2217

2218
    def forward(self, input, label, sample_weight=None):
2219 2220 2221 2222
        check_variable_and_dtype(input, "input", ['float32', 'float64'], "NCE")
        check_variable_and_dtype(label, "label", ['int64'], "NCE")
        check_type(sample_weight, 'sample_weight', (Variable, type(None)),
                   'NCE')
2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250
        assert isinstance(input, Variable)
        assert isinstance(label, Variable)

        self._inputs['Input'] = input
        self._inputs['Label'] = label
        self._inputs['SampleWeight'] = sample_weight if sample_weight is not None else []

        cost = self._helper.create_variable_for_type_inference(
            dtype=input.dtype)
        sample_logits = self._helper.create_variable_for_type_inference(
            dtype=input.dtype)
        sample_labels = self._helper.create_variable_for_type_inference(
            dtype=label.dtype)

        self._helper.append_op(
            type='nce',
            inputs=self._inputs,
            outputs={
                'Cost': cost,
                'SampleLogits': sample_logits,
                'SampleLabels': sample_labels
            },
            attrs=self._attrs)
        return cost / (self._num_neg_samples + 1)


class PRelu(layers.Layer):
    """
2251 2252 2253 2254
    This interface is used to construct a callable object of the ``PRelu`` class.
    For more details, refer to code examples.
    It implements three activation methods of the ``PRelu`` activation function.

2255 2256 2257 2258 2259
    Equation:

    .. math::
        y = \max(0, x) + \\alpha * \min(0, x)

2260
    Parameters:
L
lujun 已提交
2261
        mode (str): The mode for weight sharing. It supports all, channel
2262 2263 2264
          and element. all: all elements share same weight
          channel:elements in a channel share same weight
          element:each element has a weight
S
songyouwei 已提交
2265 2266 2267
        channel (int, optional): The number of channels.
          This argument is required when mode is "channel".
          Default: None.
2268
        input_shape (list or tuple, optional): The shape of input.
S
songyouwei 已提交
2269 2270
          This argument is required when mode is "element".
          Default: None.
2271 2272
        param_attr(ParamAttr, optional): The parameter attribute for the learnable
          weight (alpha). Default: None.
2273
        dtype (str, optional): Data type, it can be "float32" or "float64". Default: "float32".
2274

2275 2276 2277
    Attribute:
        **weight** (Parameter): the learnable weights of this layer.
    
2278
    Returns:
2279
        None
2280 2281 2282 2283 2284

    Examples:

        .. code-block:: python

L
lujun 已提交
2285
          import paddle.fluid as fluid
2286
          from paddle.fluid.dygraph.base import to_variable
L
lujun 已提交
2287 2288 2289 2290
          import numpy as np

          inp_np = np.ones([5, 200, 100, 100]).astype('float32')
          with fluid.dygraph.guard():
2291
              inp_np = to_variable(inp_np)
S
songyouwei 已提交
2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302
              prelu0 = fluid.PRelu(
                 mode='all',
                 param_attr=fluid.ParamAttr(initializer=fluid.initializer.Constant(1.0)))
              dy_rlt0 = prelu0(inp_np)
              prelu1 = fluid.PRelu(
                 mode='channel',
                 channel=200,
                 param_attr=fluid.ParamAttr(initializer=fluid.initializer.Constant(1.0)))
              dy_rlt1 = prelu1(inp_np)
              prelu2 = fluid.PRelu(
                 mode='element',
2303
                 input_shape=inp_np.shape,
L
lujun 已提交
2304
                 param_attr=fluid.ParamAttr(initializer=fluid.initializer.Constant(1.0)))
S
songyouwei 已提交
2305
              dy_rlt2 = prelu2(inp_np)
L
lujun 已提交
2306

2307 2308
    """

S
songyouwei 已提交
2309 2310 2311 2312 2313
    def __init__(self,
                 mode,
                 channel=None,
                 input_shape=None,
                 param_attr=None,
2314
                 dtype='float32'):
2315 2316
        # need specify name_scope since snake-cased 'PRelu' is 'p_relu'
        super(PRelu, self).__init__(name_scope='prelu')
2317 2318
        self._mode = mode
        self._param_attr = param_attr
2319
        self._dtype = dtype
S
songyouwei 已提交
2320 2321 2322 2323 2324 2325
        if mode == 'all':
            self._alpha_shape = [1]
        elif mode == 'channel':
            assert isinstance(
                channel,
                int), "channel argument is required when mode is 'channel'."
2326 2327 2328
            #NOTE(zhiqiu): The _alpha_shape should be [1, channel] + [1] * len(input_shape[2:]), not [1, channel, 1, 1].
            # However, the suffix 1 in the list is useless, since the tensor is viewed as one demension array during kernel calculation. 
            # And, input_shape is not required when mode is 'channel', so it is simplified.
2329 2330
            #NOTE(zhiqiu): Revert shape to [1, channel, 1, 1] for compatibility with saved model of old version.
            self._alpha_shape = [1, channel, 1, 1]
S
songyouwei 已提交
2331 2332 2333 2334 2335 2336 2337
        elif mode == 'element':
            assert isinstance(input_shape, (
                list, tuple
            )), "input_shape argument is required when mode is 'element'."
            self._alpha_shape = [1] + list(input_shape)[1:]
        else:
            raise ValueError('mode should be one of all, channel, element.')
2338
        self.weight = self.create_parameter(
2339 2340 2341 2342 2343 2344 2345
            attr=self._param_attr,
            shape=self._alpha_shape,
            dtype='float32',
            is_bias=False,
            default_initializer=Constant(1.0))

    def forward(self, input):
2346
        check_variable_and_dtype(input, 'input', ['float32'], 'PRelu')
2347 2348 2349 2350
        out = self._helper.create_variable_for_type_inference(self._dtype)
        self._helper.append_op(
            type="prelu",
            inputs={"X": input,
2351
                    'Alpha': self.weight},
2352 2353 2354 2355 2356 2357 2358
            attrs={"mode": self._mode},
            outputs={"Out": out})
        return out


class BilinearTensorProduct(layers.Layer):
    """
2359 2360 2361 2362
    :alias_main: paddle.nn.BilinearTensorProduct
	:alias: paddle.nn.BilinearTensorProduct,paddle.nn.layer.BilinearTensorProduct,paddle.nn.layer.common.BilinearTensorProduct
	:old_api: paddle.fluid.dygraph.BilinearTensorProduct

2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375
    **Add Bilinear Tensor Product Layer**

    This layer performs bilinear tensor product on two inputs.
    For example:

    .. math::
      out_{i} = x * W_{i} * {y^\mathrm{T}}, i=0,1,...,size-1

    In this formula:
     - :math:`x`: the first input contains M elements, shape is [batch_size, M].
     - :math:`y`: the second input contains N elements, shape is [batch_size, N].
     - :math:`W_{i}`: the i-th learned weight, shape is [M, N]
     - :math:`out_{i}`: the i-th element of out, shape is [batch_size, size].
D
DuYao 已提交
2376
     - :math:`y^\mathrm{T}`: the transpose of :math:`y`.
2377

2378
    Parameters:
2379 2380 2381 2382 2383
       input1_dim (int): The dimension of each first input.
       input2_dim (int): The dimension of each second input.
       output_dim (int): The dimension of output of this layer.
       name (str, optional): The default value is None. Normally there is no need for user
           to set this property. For more information, please refer to :ref:`api_guide_Name`. Default: None.
D
DuYao 已提交
2384 2385 2386 2387
       act (str, optional): Activation to be applied to the output of this layer. The default value is None.
       param_attr (ParamAttr, optional): The parameter attribute for the learnable w, parameters/weights of 
           this layer. The default value is None.
       bias_attr (ParamAttr, optional): The parameter attribute for the bias
2388
           of this layer. If it is set to False, no bias will be added to the output units.
D
DuYao 已提交
2389
           If it is set to None, the bias is initialized zero. The default value is None.
2390
       dtype (str, optional): Data type, it can be "float32" or "float64". Default: "float32".
2391

D
DuYao 已提交
2392 2393 2394 2395
    Attribute:
        **weight** (Parameter): the learnable weights of this layer.

        **bias** (Parameter): the learnable bias of this layer.
2396

2397 2398 2399 2400 2401 2402
    Returns:
       Variable: A 2-D Tensor of shape [batch_size, size].

    Examples:
       .. code-block:: python

2403 2404 2405 2406 2407 2408 2409
         import paddle.fluid as fluid
         import numpy

         with fluid.dygraph.guard():
             layer1 = numpy.random.random((5, 5)).astype('float32')
             layer2 = numpy.random.random((5, 4)).astype('float32')
             bilinearTensorProduct = fluid.dygraph.nn.BilinearTensorProduct(
2410
                    input1_dim=5, input2_dim=4, output_dim=1000)
2411 2412
             ret = bilinearTensorProduct(fluid.dygraph.base.to_variable(layer1),
                                fluid.dygraph.base.to_variable(layer2))
2413 2414 2415
    """

    def __init__(self,
2416 2417 2418
                 input1_dim,
                 input2_dim,
                 output_dim,
2419 2420 2421
                 name=None,
                 act=None,
                 param_attr=None,
2422 2423 2424
                 bias_attr=None,
                 dtype='float32'):
        super(BilinearTensorProduct, self).__init__()
2425 2426 2427 2428
        self._param_attr = param_attr
        self._bias_attr = bias_attr
        self._act = act
        self._name = name
2429 2430 2431
        self._input1_dim = input1_dim
        self._input2_dim = input2_dim
        self._output_dim = output_dim
2432
        self._inputs = dict()
2433
        self._dtype = dtype
2434

2435
        param_shape = [self._output_dim, self._input1_dim, self._input2_dim]
2436
        self.weight = self.create_parameter(
2437 2438 2439 2440
            attr=self._param_attr,
            shape=param_shape,
            dtype=self._dtype,
            is_bias=False)
2441
        bias_size = [1, self._output_dim]
2442
        self.bias = self.create_parameter(
2443 2444 2445 2446
            attr=self._bias_attr,
            shape=bias_size,
            dtype=self._dtype,
            is_bias=True)
2447 2448

    def forward(self, x, y):
2449 2450 2451 2452
        check_variable_and_dtype(x, 'x', ['float32', 'float64'],
                                 'BilinearTensorProduct')
        check_variable_and_dtype(y, 'y', ['float32', 'float64'],
                                 'BilinearTensorProduct')
2453
        self._inputs = {"X": x, "Y": y, "Weight": self.weight}
2454
        if self.bias is not None:
2455
            self._inputs["Bias"] = self.bias
2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469
        if self._name is not None:
            out = self._helper.create_variable(
                name=".".join([self.full_name(), self._name]),
                dtype=self._dtype,
                persistable=False)
        else:
            out = self._helper.create_variable(
                dtype=self._dtype, persistable=False)
        self._helper.append_op(
            type="bilinear_tensor_product",
            inputs=self._inputs,
            outputs={"Out": out})

        # add activation
2470
        return self._helper.append_activation(out, act=self._act)
2471 2472 2473 2474


class Conv2DTranspose(layers.Layer):
    """
2475 2476
    This interface is used to construct a callable object of the ``Conv2DTranspose`` class.
    For more details, refer to code examples.
2477
    The convolution2D transpose layer calculates the output based on the input,
2478 2479 2480
    filter, and dilations, strides, paddings. Input and output
    are in NCHW format. Where N is batch size, C is the number of feature map,
    H is the height of the feature map, and W is the width of the feature map.
2481 2482
    Filter's shape is [MCHW] , where M is the number of input feature map,
    C is the number of output feature map, H is the height of the filter,
2483 2484
    and W is the width of the filter. If the groups is greater than 1,
    C will equal the number of input feature map divided by the groups.
2485 2486 2487
    If bias attribution and activation type are provided, bias is added to
    the output of the convolution, and the corresponding activation function
    is applied to the final result.
2488 2489
    The details of convolution transpose layer, please refer to the following explanation and references
    `conv2dtranspose <http://www.matthewzeiler.com/wp-content/uploads/2017/07/cvpr2010.pdf>`_ .
2490 2491 2492 2493 2494 2495 2496 2497 2498

    For each input :math:`X`, the equation is:

    .. math::

        Out = \sigma (W \\ast X + b)

    Where:

2499 2500
    * :math:`X`: Input value, a ``Tensor`` with NCHW format.
    * :math:`W`: Filter value, a ``Tensor`` with shape [MCHW] .
2501
    * :math:`\\ast`: Convolution operation.
2502
    * :math:`b`: Bias value, a 2-D ``Tensor`` with shape [M, 1].
2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526
    * :math:`\\sigma`: Activation function.
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.

    Example:

        - Input:

          Input shape: :math:`(N, C_{in}, H_{in}, W_{in})`

          Filter shape: :math:`(C_{in}, C_{out}, H_f, W_f)`

        - Output:

          Output shape: :math:`(N, C_{out}, H_{out}, W_{out})`

        Where

        .. math::

           H^\prime_{out} &= (H_{in} - 1) * strides[0] - 2 * paddings[0] + dilations[0] * (H_f - 1) + 1 \\\\
           W^\prime_{out} &= (W_{in} - 1) * strides[1] - 2 * paddings[1] + dilations[1] * (W_f - 1) + 1 \\\\
           H_{out} &\in [ H^\prime_{out}, H^\prime_{out} + strides[0] ) \\\\
           W_{out} &\in [ W^\prime_{out}, W^\prime_{out} + strides[1] )

2527
    Parameters:
2528
        num_channels(int): The number of channels in the input image.
2529
        num_filters(int): The number of the filter. It is as same as the output
2530
            feature map.
2531 2532 2533
        filter_size(int or tuple): The filter size. If filter_size is a tuple,
            it must contain two integers, (filter_size_H, filter_size_W).
            Otherwise, the filter will be a square.
2534
        output_size(int or tuple, optional): The output image size. If output size is a
2535 2536 2537
            tuple, it must contain two integers, (image_H, image_W). None if use
            filter_size, padding, and stride to calculate output_size.
            if output_size and filter_size are specified at the same time, They
L
lujun 已提交
2538
            should follow the formula above. Default: None.
2539
        padding(int or tuple, optional): The padding size. If padding is a tuple, it must
2540
            contain two integers, (padding_H, padding_W). Otherwise, the
2541 2542
            padding_H = padding_W = padding. Default: 0.
        stride(int or tuple, optional): The stride size. If stride is a tuple, it must
2543
            contain two integers, (stride_H, stride_W). Otherwise, the
2544 2545
            stride_H = stride_W = stride. Default: 1.
        dilation(int or tuple, optional): The dilation size. If dilation is a tuple, it must
2546
            contain two integers, (dilation_H, dilation_W). Otherwise, the
2547 2548
            dilation_H = dilation_W = dilation. Default: 1.
        groups(int, optional): The groups number of the Conv2d transpose layer. Inspired by
2549 2550 2551 2552
            grouped convolution in Alex Krizhevsky's Deep CNN paper, in which
            when group=2, the first half of the filters is only connected to the
            first half of the input channels, while the second half of the
            filters is only connected to the second half of the input channels.
2553 2554
            Default: 1.
        param_attr (ParamAttr, optional): The parameter attribute for learnable weights(Parameter)
2555 2556 2557
            of conv2d_transpose. If it is set to None or one attribute of ParamAttr, conv2d_transpose
            will create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with Xavier. Default: None.
2558
        bias_attr (ParamAttr or bool, optional): The attribute for the bias of conv2d_transpose.
2559 2560 2561 2562
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, conv2d_transpose
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. Default: None.
2563
        use_cudnn(bool, optional): Use cudnn kernel or not, it is valid only when the cudnn
2564
            library is installed. Default: True.
2565
        act (str, optional): Activation type, if it is set to None, activation is not appended.
2566
            Default: None.
2567
        dtype (str, optional): Data type, it can be "float32" or "float64". Default: "float32".
2568

2569 2570
    Attribute:
        **weight** (Parameter): the learnable weights of filters of this layer.
2571

2572
        **bias** (Parameter or None): the learnable bias of this layer.
2573

2574 2575
    Returns:
        None
2576 2577 2578 2579

    Examples:
       .. code-block:: python

2580
          import paddle.fluid as fluid
2581
          import numpy as np
2582 2583

          with fluid.dygraph.guard():
2584
              data = np.random.random((3, 32, 32, 5)).astype('float32')
2585
              conv2DTranspose = fluid.dygraph.nn.Conv2DTranspose(
2586
                    num_channels=32, num_filters=2, filter_size=3)
2587 2588
              ret = conv2DTranspose(fluid.dygraph.base.to_variable(data))

2589 2590 2591
    """

    def __init__(self,
2592
                 num_channels,
2593
                 num_filters,
2594
                 filter_size,
2595 2596 2597 2598 2599 2600 2601 2602
                 output_size=None,
                 padding=0,
                 stride=1,
                 dilation=1,
                 groups=None,
                 param_attr=None,
                 bias_attr=None,
                 use_cudnn=True,
2603 2604 2605
                 act=None,
                 dtype='float32'):
        super(Conv2DTranspose, self).__init__()
2606 2607 2608
        assert param_attr is not False, "param_attr should not be False in conv2d_transpose."
        self._param_attr = param_attr
        self._bias_attr = bias_attr
2609
        self._act = act
2610
        self._groups = groups
2611
        self._num_channels = num_channels
2612 2613 2614 2615 2616 2617 2618
        self._num_filters = num_filters
        self._use_cudnn = use_cudnn
        self._padding = padding
        self._stride = stride
        self._dilation = dilation
        self._filter_size = filter_size
        self._output_size = output_size
2619
        self._dtype = dtype
2620

2621 2622 2623
        if (self._num_channels == self._groups and
                self._num_filters == self._num_channels and
                not self._use_cudnn):
2624
            self._op_type = 'depthwise_conv2d_transpose'
2625 2626
        else:
            self._op_type = 'conv2d_transpose'
2627 2628 2629 2630 2631

        self._padding = utils.convert_to_list(self._padding, 2, 'padding')
        self._stride = utils.convert_to_list(self._stride, 2, 'stride')
        self._dilation = utils.convert_to_list(self._dilation, 2, 'dilation')

2632 2633
        self._filter_size = utils.convert_to_list(
            self._filter_size, 2, 'conv2d_transpose.filter_size')
2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644

        if self._output_size is None:
            self._output_size = []
        elif isinstance(self._output_size, list) or isinstance(
                self._output_size, int):
            self._output_size = utils.convert_to_list(self._output_size, 2,
                                                      'output_size')
        else:
            raise ValueError("output_size should be list or int")
        self._padding = utils.convert_to_list(self._padding, 2, 'padding')
        self._groups = 1 if self._groups is None else self._groups
2645
        filter_shape = [self._num_channels, self._num_filters // self._groups
2646 2647
                        ] + self._filter_size

2648
        self.weight = self.create_parameter(
2649
            dtype=self._dtype, shape=filter_shape, attr=self._param_attr)
2650

2651
        self.bias = self.create_parameter(
2652 2653 2654 2655 2656
            attr=self._bias_attr,
            shape=[self._num_filters],
            dtype=self._dtype,
            is_bias=True)

2657
    def forward(self, input):
2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669
        if in_dygraph_mode():
            op = getattr(core.ops, self._op_type)
            out = op(input, self.weight, 'output_size', self._output_size,
                     'strides', self._stride, 'paddings', self._padding,
                     'dilations', self._dilation, 'groups', self._groups,
                     'use_cudnn', self._use_cudnn)
            pre_bias = out
            pre_act = dygraph_utils._append_bias_in_dygraph(pre_bias, self.bias,
                                                            1)
            return dygraph_utils._append_activation_in_dygraph(
                pre_act, act=self._act)

2670 2671 2672 2673
        check_variable_and_dtype(input, 'input',
                                 ['float16', 'float32', 'float64'],
                                 "Conv2DTranspose")

2674 2675 2676 2677 2678 2679 2680 2681 2682 2683
        inputs = {'Input': [input], 'Filter': [self.weight]}
        attrs = {
            'output_size': self._output_size,
            'strides': self._stride,
            'paddings': self._padding,
            'dilations': self._dilation,
            'groups': self._groups,
            'use_cudnn': self._use_cudnn
        }

2684 2685 2686 2687
        pre_bias = self._helper.create_variable_for_type_inference(
            dtype=input.dtype)
        self._helper.append_op(
            type=self._op_type,
2688
            inputs=inputs,
2689
            outputs={'Output': pre_bias},
2690
            attrs=attrs)
2691

2692
        if self.bias is not None:
2693 2694 2695 2696 2697
            pre_act = self._helper.create_variable_for_type_inference(
                dtype=self._dtype)
            self._helper.append_op(
                type='elementwise_add',
                inputs={'X': [pre_bias],
2698
                        'Y': [self.bias]},
2699 2700 2701 2702 2703 2704
                outputs={'Out': [pre_act]},
                attrs={'axis': 1})
        else:
            pre_act = pre_bias

        out = self._helper.append_activation(pre_act, act=self._act)
2705 2706 2707 2708 2709 2710 2711 2712 2713
        return out


class SequenceConv(layers.Layer):
    """
    This function creates the op for sequence_conv, using the inputs and
    other convolutional configurations for the filters and stride as given
    in the input parameters to the function.

2714
    Parameters:
L
lujun 已提交
2715
        name_scope(str): The name of this class.
2716
        num_filters (int): number of filters.
L
lujun 已提交
2717 2718 2719
        filter_size (int): the filter size (H and W). Default: 3.
        filter_stride (int): stride of the filter. Default: 1.
        padding (bool|None): if True, add paddings. Default: None
2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of sequence_conv.
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, sequence_conv
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. Default: None.
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
            of sequence_conv. If it is set to None or one attribute of ParamAttr, sequence_conv
            will create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with Xavier. Default: None.
        act (str): Activation type, if it is set to None, activation is not appended.
            Default: None.

2732 2733 2734 2735
    Attributes:
        weight (Parameter): the learnable weights of filters of this layer.
        bias (Parameter|None): the learnable bias of this layer.

2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748
    Returns:
        Variable: output of sequence_conv
    """

    def __init__(self,
                 name_scope,
                 num_filters,
                 filter_size=3,
                 filter_stride=1,
                 padding=None,
                 bias_attr=None,
                 param_attr=None,
                 act=None):
L
lujun 已提交
2749
        assert not in_dygraph_mode(
2750
        ), "SequenceConv is not supported by dynamic graph mode yet!"
2751 2752 2753 2754 2755 2756 2757
        super(SequenceConv, self).__init__(name_scope)
        self._num_filters = num_filters
        self._filter_size = filter_size
        self._filter_stride = filter_stride
        self._padding = padding
        self._bias_attr = bias_attr
        self._param_attr = param_attr
2758
        self._act = act
2759

2760
    def _build_once(self, input):
2761 2762
        self._dtype = self._helper.input_dtype(input)
        filter_shape = [self._filter_size * input.shape[1], self._num_filters]
2763
        self.weight = self.create_parameter(
2764
            attr=self._param_attr, shape=filter_shape, dtype=self._dtype)
2765

2766
        self.bias = self.create_parameter(
2767 2768 2769 2770 2771
            attr=self._bias_attr,
            shape=[self._num_filters],
            dtype=self._dtype,
            is_bias=True)

2772 2773 2774 2775 2776 2777
    def forward(self, input):
        pre_bias = self._helper.create_variable_for_type_inference(self._dtype)
        self._helper.append_op(
            type='sequence_conv',
            inputs={
                'X': [input],
2778
                'Filter': [self.weight],
2779 2780 2781 2782 2783 2784 2785
            },
            outputs={"Out": pre_bias},
            attrs={
                'contextStride': self._filter_stride,
                'contextStart': -int(self._filter_size // 2),
                'contextLength': self._filter_size
            })
2786

2787
        if self.bias is not None:
2788 2789 2790 2791 2792
            pre_act = self._helper.create_variable_for_type_inference(
                dtype=self._dtype)
            self._helper.append_op(
                type='elementwise_add',
                inputs={'X': [pre_bias],
2793
                        'Y': [self.bias]},
2794 2795 2796 2797 2798 2799
                outputs={'Out': [pre_act]},
                attrs={'axis': 1})
        else:
            pre_act = pre_bias

        return self._helper.append_activation(pre_act, act=self._act)
L
lujun 已提交
2800 2801 2802


class RowConv(layers.Layer):
2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820
    """
    ***Row-convolution operator***

    The row convolution is called lookahead convolution.  This operator was introduced in the following paper for DeepSpeech2:
    http://www.cs.cmu.edu/~dyogatam/papers/wang+etal.iclrworkshop2016.pdf

    The main motivation is that a bidirectional RNN, useful in DeepSpeech like speech models, learns representation for a sequence by performing a
    forward and a backward pass through the entire sequence. However, unlike
    unidirectional RNNs, bidirectional RNNs are challenging to deploy in an online
    and low-latency setting. The lookahead convolution incorporates information
    from future subsequences in a computationally efficient manner to improve
    unidirectional recurrent neural networks. The row convolution operator is
    different from the 1D sequence convolution, and is computed as follows:

    Given an input sequence X of length t and input dimension D, and a filter (W) of size context * D.

    More details about row_conv please refer to the design document https://github.com/PaddlePaddle/Paddle/issues/2228#issuecomment-303903645 .

2821
    Parameters:
L
lujun 已提交
2822
        name_scope(str): The name of this class.
2823 2824 2825
        future_context_size (int): Future context size. Please note, the shape
            of convolution kernel is [future_context_size + 1, D].
        param_attr (ParamAttr): Attributes of parameters, including
L
lujun 已提交
2826 2827
            name, initializer etc. Default: None.
        act (str): Non-linear activation to be applied to output variable. Default: None.
2828

2829 2830 2831
    Attributes:
        weight (Parameter): the learnable weights of this layer.

2832
    Returns:
L
lujun 已提交
2833 2834
        the output(Out) is a LodTensor, which supports variable time-length input sequences.
        The underlying tensor in this LodTensor is a matrix with shape T x N, i.e., the same shape as X.
2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849

    Examples:
        .. code-block:: python

          import paddle.fluid as fluid
          import numpy

          with fluid.dygraph.guard():
              x = numpy.random.random((16)).astype('float32')
              rowConv = fluid.dygraph.nn.RowConv(
                    'RowConv', future_context_size=2)
              ret = rowConv(fluid.dygraph.base.to_variable(x))

    """

L
lujun 已提交
2850 2851 2852 2853 2854
    def __init__(self,
                 name_scope,
                 future_context_size,
                 param_attr=None,
                 act=None):
L
lujun 已提交
2855
        assert not in_dygraph_mode(
2856
        ), "RowConv is not supported by dynamic graph mode yet!"
L
lujun 已提交
2857 2858 2859 2860 2861
        super(RowConv, self).__init__(name_scope)
        self._act = act
        self._param_attr = param_attr
        self._future_context_size = future_context_size

2862
    def _build_once(self, input):
L
lujun 已提交
2863 2864
        self._dtype = self._helper.input_dtype(input)
        filter_shape = [self._future_context_size + 1, input.shape[1]]
2865
        self.weight = self.create_parameter(
2866 2867 2868 2869
            attr=self._param_attr,
            shape=filter_shape,
            dtype=self._dtype,
            is_bias=False)
L
lujun 已提交
2870 2871 2872 2873 2874 2875

    def forward(self, input):
        out = self._helper.create_variable_for_type_inference(self._dtype)
        self._helper.append_op(
            type='row_conv',
            inputs={'X': [input],
2876
                    'Filter': [self.weight]},
L
lujun 已提交
2877 2878 2879 2880 2881 2882
            outputs={'Out': [out]})
        return self._helper.append_activation(out, act=self._act)


class GroupNorm(layers.Layer):
    """
2883 2884 2885 2886
    :alias_main: paddle.nn.GroupNorm
	:alias: paddle.nn.GroupNorm,paddle.nn.layer.GroupNorm,paddle.nn.layer.norm.GroupNorm
	:old_api: paddle.fluid.dygraph.GroupNorm

2887 2888 2889 2890 2891 2892
    This interface is used to construct a callable object of the ``GroupNorm`` class.
    For more details, refer to code examples.
    It implements the function of the Group Normalization Layer.
    Refer to `Group Normalization <https://arxiv.org/abs/1803.08494>`_ .

    Parameters:
2893
        channels(int): The number of channels of input.
2894 2895 2896 2897 2898 2899 2900 2901 2902
        groups(int): The number of groups that divided from channels.
        epsilon(float, optional): The small value added to the variance to prevent
                                  division by zero. Default: 1e-05.
        param_attr(ParamAttr, optional): The parameter attribute for the learnable
                                         scale :math:`g`. If it is set to False, no scale will be added to the output units.
                                         If it is set to None, the bias is initialized one. Default: None.
        bias_attr(ParamAttr, optional): The parameter attribute for the learnable
                                        bias :math:`b`. If it is set to False, no bias will be added to the output units.
                                        If it is set to None, the bias is initialized zero. Default: None.
T
tianshuo78520a 已提交
2903
        act(str, optional): Activation to be applied to the output of group normalization. Default: None.
2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916
        data_layout(str, optional): Specify the input data format. Only NCHW is supported. Default: NCHW.

    Returns:
        None

    Examples:
        .. code-block:: python

          import paddle.fluid as fluid
          import numpy as np

          with fluid.dygraph.guard():
              x = np.random.random((8, 32, 32)).astype('float32')
2917
              groupNorm = fluid.dygraph.nn.GroupNorm(channels=32, groups=4)
2918
              ret = groupNorm(fluid.dygraph.base.to_variable(x))
L
lujun 已提交
2919 2920 2921 2922

    """

    def __init__(self,
2923
                 channels,
L
lujun 已提交
2924 2925 2926 2927 2928
                 groups,
                 epsilon=1e-05,
                 param_attr=None,
                 bias_attr=None,
                 act=None,
2929 2930 2931
                 data_layout='NCHW',
                 dtype='float32'):
        super(GroupNorm, self).__init__()
L
lujun 已提交
2932 2933 2934
        self._param_attr = param_attr
        self._bias_attr = bias_attr
        self._epsilon = epsilon
2935
        self._channels = channels
L
lujun 已提交
2936 2937
        self._groups = groups
        self._act = act
2938
        self._dtype = dtype
L
lujun 已提交
2939 2940 2941
        if data_layout != 'NCHW':
            raise ValueError("unsupported data layout:" + data_layout)

2942
        param_shape = [self._channels]
L
lujun 已提交
2943

2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954
        self.weight = self.create_parameter(
            attr=self._param_attr or False,
            shape=param_shape,
            dtype=self._dtype,
            default_initializer=Constant(1.0))

        self.bias = self.create_parameter(
            attr=self._bias_attr or False,
            shape=param_shape,
            dtype=self._dtype,
            is_bias=True)
L
lujun 已提交
2955 2956 2957

    def forward(self, input):
        inputs = {'X': input}
2958
        if self.bias is not None:
2959
            inputs['Bias'] = self.bias
2960
        if self.weight is not None:
2961
            inputs['Scale'] = self.weight
L
lujun 已提交
2962 2963

        # create output
2964
        mean_out = self._helper.create_variable_for_type_inference(
L
lujun 已提交
2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985
            dtype=self._dtype, stop_gradient=True)
        variance_out = self._helper.create_variable_for_type_inference(
            dtype=self._dtype, stop_gradient=True)
        group_norm_out = self._helper.create_variable_for_type_inference(
            dtype=self._dtype)

        self._helper.append_op(
            type="group_norm",
            inputs=inputs,
            outputs={
                "Y": group_norm_out,
                "Mean": mean_out,
                "Variance": variance_out,
            },
            attrs={"epsilon": self._epsilon,
                   "groups": self._groups})

        return self._helper.append_activation(group_norm_out, self._act)


class SpectralNorm(layers.Layer):
2986
    """
2987 2988 2989 2990
    :alias_main: paddle.nn.SpectralNorm
	:alias: paddle.nn.SpectralNorm,paddle.nn.layer.SpectralNorm,paddle.nn.layer.norm.SpectralNorm
	:old_api: paddle.fluid.dygraph.SpectralNorm

2991 2992
    This interface is used to construct a callable object of the ``SpectralNorm`` class.
    For more details, refer to code examples. It implements the function of the Spectral Normalization Layer.
2993 2994 2995 2996 2997 2998 2999 3000 3001 3002
    This layer calculates the spectral normalization value of weight parameters of
    fc, conv1d, conv2d, conv3d layers which should be 2-D, 3-D, 4-D, 5-D
    Parameters. Calculations are showed as follows.

    Step 1:
    Generate vector U in shape of [H], and V in shape of [W].
    While H is the :attr:`dim` th dimension of the input weights,
    and W is the product result of remaining dimensions.

    Step 2:
T
tianshuo78520a 已提交
3003
    :attr:`power_iters` should be a positive integer, do following
3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023
    calculations with U and V for :attr:`power_iters` rounds.

    .. math::

        \mathbf{v} := \\frac{\mathbf{W}^{T} \mathbf{u}}{\|\mathbf{W}^{T} \mathbf{u}\|_2}

        \mathbf{u} := \\frac{\mathbf{W}^{T} \mathbf{v}}{\|\mathbf{W}^{T} \mathbf{v}\|_2}

    Step 3:
    Calculate :math:`\sigma(\mathbf{W})` and normalize weight values.

    .. math::

        \sigma(\mathbf{W}) = \mathbf{u}^{T} \mathbf{W} \mathbf{v}

        \mathbf{W} = \\frac{\mathbf{W}}{\sigma(\mathbf{W})}


    Refer to `Spectral Normalization <https://arxiv.org/abs/1802.05957>`_ .

3024
    Parameters:
3025
        weight_shape(list or tuple): The shape of weight parameter.
3026 3027 3028 3029
        dim(int, optional): The index of dimension which should be permuted to the first before reshaping Input(Weight) to matrix, it should be set as 0 if Input(Weight) is the weight of fc layer, and should be set as 1 if Input(Weight) is the weight of conv layer. Default: 0.
        power_iters(int, optional): The number of power iterations to calculate spectral norm. Default: 1.
        eps(float, optional): The epsilon for numerical stability in calculating norms. Default: 1e-12.
        name (str, optional): The default value is None.  Normally there is no need for user to set this property.  For more information, please refer to :ref:`api_guide_Name` .
3030
        dtype (str, optional): Data type, it can be "float32" or "float64". Default: "float32".
3031 3032

    Returns:
3033
        None
3034 3035 3036 3037 3038

    Examples:
       .. code-block:: python

            import paddle.fluid as fluid
3039
            import numpy as np
3040 3041

            with fluid.dygraph.guard():
3042 3043 3044
                weight = np.random.random((2, 8, 32, 32)).astype('float32')
                spectralNorm = fluid.dygraph.nn.SpectralNorm(weight.shape, dim=1, power_iters=2)
                ret = spectralNorm(fluid.dygraph.base.to_variable(weight))
3045 3046 3047

    """

3048 3049 3050 3051 3052 3053 3054
    def __init__(self,
                 weight_shape,
                 dim=0,
                 power_iters=1,
                 eps=1e-12,
                 dtype='float32'):
        super(SpectralNorm, self).__init__()
L
lujun 已提交
3055 3056 3057
        self._power_iters = power_iters
        self._eps = eps
        self._dim = dim
3058
        self._dtype = dtype
L
lujun 已提交
3059

3060 3061 3062
        self._weight_shape = list(weight_shape)
        h = self._weight_shape[self._dim]
        w = np.prod(self._weight_shape) // h
L
lujun 已提交
3063

3064
        self.weight_u = self.create_parameter(
L
lujun 已提交
3065 3066 3067 3068
            attr=ParamAttr(),
            shape=[h],
            dtype=self._dtype,
            default_initializer=Normal(0., 1.))
3069
        self.weight_u.stop_gradient = True
L
lujun 已提交
3070

3071
        self.weight_v = self.create_parameter(
L
lujun 已提交
3072 3073 3074 3075
            attr=ParamAttr(),
            shape=[w],
            dtype=self._dtype,
            default_initializer=Normal(0., 1.))
3076
        self.weight_v.stop_gradient = True
L
lujun 已提交
3077 3078

    def forward(self, weight):
3079 3080
        check_variable_and_dtype(weight, "weight", ['float32', 'float64'],
                                 'SpectralNorm')
3081
        inputs = {'Weight': weight, 'U': self.weight_u, 'V': self.weight_v}
L
lujun 已提交
3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096
        out = self._helper.create_variable_for_type_inference(self._dtype)
        self._helper.append_op(
            type="spectral_norm",
            inputs=inputs,
            outputs={"Out": out, },
            attrs={
                "dim": self._dim,
                "power_iters": self._power_iters,
                "eps": self._eps,
            })

        return out


class TreeConv(layers.Layer):
3097
    """
3098 3099 3100 3101 3102 3103 3104 3105 3106 3107
    This interface is used to construct a callable object of the ``TreeConv`` class.
    For more details, refer to code examples.
    Tree-Based Convolution is a kind of convolution based on tree structure.
    Tree-Based Convolution is a part of Tree-Based Convolution Neural Network(TBCNN),
    which is used to classify tree structures, such as Abstract Syntax Tree.
    Tree-Based Convolution proposed a kind of data structure called continuous binary tree,
    which regards multiway tree as binary tree.
    The paper of Tree-Based Convolution Operator is here: `tree-based convolution <https://arxiv.org/abs/1409.5718v1/>`_ .
    
    Parameters:
3108
        feature_size(int): last dimension of nodes_vector.
3109 3110 3111 3112 3113 3114 3115
        output_size(int): output feature width.
        num_filters(int, optional): number of filters, Default: 1.
        max_depth(int, optional): max depth of filters, Default: 2.
        act(str, optional): activation function, Default: tanh.
        param_attr(ParamAttr, optional): the parameter attribute for the filters, Default: None.
        bias_attr(ParamAttr, optional): the parameter attribute for the bias of this layer, Default: None.
        name(str, optional): The default value is None. Normally there is no need for user to set this property. For more information, please refer to :ref:`api_guide_Name` .
3116
        dtype (str, optional): Data type, it can be "float32" or "float64". Default: "float32".
3117

3118 3119
    Attribute:
        **weight** (Parameter): the learnable weights of filters of this layer.
3120

3121
        **bias** (Parameter or None): the learnable bias of this layer.
3122

3123 3124
    Returns:
        None
L
lujun 已提交
3125

3126
    Examples:
L
lujun 已提交
3127

3128
        .. code-block:: python
3129

3130 3131
          import paddle.fluid as fluid
          import numpy
3132

3133 3134 3135 3136
          with fluid.dygraph.guard():
              nodes_vector = numpy.random.random((1, 10, 5)).astype('float32')
              edge_set = numpy.random.random((1, 9, 2)).astype('int32')
              treeConv = fluid.dygraph.nn.TreeConv(
3137
                feature_size=5, output_size=6, num_filters=1, max_depth=2)
3138
              ret = treeConv(fluid.dygraph.base.to_variable(nodes_vector), fluid.dygraph.base.to_variable(edge_set))
3139 3140
    """

L
lujun 已提交
3141
    def __init__(self,
3142
                 feature_size,
L
lujun 已提交
3143 3144 3145 3146 3147 3148
                 output_size,
                 num_filters=1,
                 max_depth=2,
                 act='tanh',
                 param_attr=None,
                 bias_attr=None,
3149 3150 3151
                 name=None,
                 dtype='float32'):
        super(TreeConv, self).__init__()
L
lujun 已提交
3152
        self._name = name
3153
        self._feature_size = feature_size
L
lujun 已提交
3154 3155 3156 3157 3158 3159
        self._output_size = output_size
        self._act = act
        self._max_depth = max_depth
        self._num_filters = num_filters
        self._bias_attr = bias_attr
        self._param_attr = param_attr
3160 3161
        self._dtype = dtype
        w_shape = [self._feature_size, 3, self._output_size, self._num_filters]
L
lujun 已提交
3162
        if self._bias_attr:
3163
            self.bias = self.create_parameter(
L
lujun 已提交
3164 3165 3166 3167
                attr=self._bias_attr,
                shape=[self._num_filters],
                dtype=self._dtype,
                is_bias=True)
3168
        self.weight = self.create_parameter(
L
lujun 已提交
3169 3170 3171 3172 3173 3174
            attr=self._param_attr,
            shape=w_shape,
            dtype=self._dtype,
            is_bias=False)

    def forward(self, nodes_vector, edge_set):
3175 3176
        check_type(nodes_vector, 'nodes_vector', (Variable), 'TreeConv')
        check_type(edge_set, 'edge_set', (Variable), 'TreeConv')
L
lujun 已提交
3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187
        if self._name:
            out = self.create_variable(
                name=self._name, dtype=self._dtype, persistable=False)
        else:
            out = self._helper.create_variable_for_type_inference(
                dtype=self._dtype)
        self._helper.append_op(
            type='tree_conv',
            inputs={
                'NodesVector': nodes_vector,
                'EdgeSet': edge_set,
3188
                'Filter': self.weight
L
lujun 已提交
3189 3190 3191 3192 3193 3194 3195 3196 3197
            },
            outputs={'Out': out, },
            attrs={'max_depth': self._max_depth})
        if self._bias_attr:
            pre_activation = self._helper.create_variable_for_type_inference(
                dtype=self._dtype)
            self._helper.append_op(
                type='elementwise_add',
                inputs={'X': [out],
3198
                        'Y': [self.bias]},
L
lujun 已提交
3199 3200 3201 3202 3203
                outputs={'Out': [pre_activation]},
                attrs={'axis': 1})
        else:
            pre_activation = out
        return self._helper.append_activation(pre_activation, act=self._act)
3204 3205


C
ceci3 已提交
3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419
class SyncBatchNorm(layers.Layer):
    """
    This interface is used to construct a callable object of the ``SyncBatchNorm`` class.
    It implements the function of the Cross-GPU Synchronized Batch Normalization Layer, and can 
    be used as a normalizer function for other operations, such as conv2d and fully connected 
    operations.
    The data is normalized by the mean and variance of the channel based on whole mini-batch
    , which including data in all gpus.
    Refer to `Batch Normalization: Accelerating Deep Network Training by Reducing
    Internal Covariate Shift <https://arxiv.org/pdf/1502.03167.pdf>`_
    for more details.

    When model in training mode, the :math:`\\mu_{\\beta}` 
    and :math:`\\sigma_{\\beta}^{2}` are the statistics of whole mini-batch data in all gpus.
    Calculated as follows:

    ..  math::

        \\mu_{\\beta} &\\gets \\frac{1}{m} \\sum_{i=1}^{m} x_i \\qquad &//\\
        \ mini-batch\ mean \\\\
        \\sigma_{\\beta}^{2} &\\gets \\frac{1}{m} \\sum_{i=1}^{m}(x_i - \\
        \\mu_{\\beta})^2 \\qquad &//\ mini-batch\ variance \\\\

    - :math:`x` : whole mini-batch data in all gpus
    - :math:`m` : the size of the whole mini-batch data

    When model in evaluation mode, the :math:`\\mu_{\\beta}`
    and :math:`\\sigma_{\\beta}^{2}` are global statistics (moving_mean and moving_variance, 
    which usually got from the pre-trained model). Global statistics calculated as follows:

    .. math::
        moving\_mean = moving\_mean * momentum + \mu_{\beta} * (1. - momentum) \quad &// global mean \\
        moving\_variance = moving\_variance * momentum + \sigma_{\beta}^{2} * (1. - momentum) \quad &// global variance \\

    The formula of normalization is as follows:
 
    ..  math::

        \\hat{x_i} &\\gets \\frac{x_i - \\mu_\\beta} {\\sqrt{\\
        \\sigma_{\\beta}^{2} + \\eps}} \\qquad &//\ normalize \\\\
        y_i &\\gets \\gamma \\hat{x_i} + \\beta \\qquad &//\ scale\ and\ shift

    - :math:`\\eps` : add a smaller value to the variance to prevent division by zero
    - :math:`\\gamma` : trainable scale parameter vector
    - :math:`\\beta` : trainable shift parameter vector 

    Parameters:
        num_features(int): Indicate the number of channels of the input ``Tensor``.
        epsilon(float, optional): The small value added to the variance to prevent division by zero. Default: 1e-5.
        momentum(float, optional): The value used for the moving_mean and moving_var computation. Default: 0.9.
        weight_attr(ParamAttr|bool, optional): The parameter attribute for Parameter `scale`
             of this layer. If it is set to None or one attribute of ParamAttr, this layerr
             will create ParamAttr as param_attr. If the Initializer of the param_attr
             is not set, the parameter is initialized with Xavier. If it is set to False, 
             this layer will not have trainable scale parameter. Default: None.
        bias_attr(ParamAttr|bool, optional): The parameter attribute for the bias of this layer.
             If it is set to None or one attribute of ParamAttr, this layer
             will create ParamAttr as bias_attr. If the Initializer of the bias_attr
             is not set, the bias is initialized zero. If it is set to False, this layer will not 
             have trainable bias parameter. Default: None.
        track_running_stats(bool, optional): Whether to compute global stats, which including running mean and 
             running variance. Default: True.

    Returns:
        None

    Examples:
        .. code-block:: python

          import paddle
          import paddle.nn as nn
          import numpy as np

          x = np.array([[[[0.3, 0.4], [0.3, 0.07]], [[0.83, 0.37], [0.18, 0.93]]]]).astype('float32')
          paddle.disable_static()
          x = paddle.to_tensor(x)
          if paddle.fluid.is_compiled_with_cuda():
              sync_batch_norm = nn.SyncBatchNorm(2)
              hidden1 = sync_batch_norm(x)
              print(hidden1.numpy())
              # [[[[0.26824948, 1.0936325],[0.26824948, -1.6301316]],[[ 0.8095662, -0.665287],[-1.2744656, 1.1301866 ]]]]
    """

    def __init__(self,
                 num_features,
                 epsilon=1e-05,
                 momentum=0.9,
                 track_running_stats=True,
                 weight_attr=None,
                 bias_attr=None,
                 data_format='NCHW',
                 name=None):
        super(SyncBatchNorm, self).__init__()
        self._weight_attr = weight_attr
        self._bias_attr = bias_attr
        self._num_features = num_features
        self._data_layout = data_format
        self._momentum = momentum
        self._epsilon = epsilon
        self._track_running_stats = track_running_stats

        if self._track_running_stats == False:
            logging.warn(
                "moving mean and moving variance will be calculated whether `track_running_stats` is set to `True` or `False`, we will fix it in the next version."
            )

        param_shape = [self._num_features]

        # create parameter
        if weight_attr == False:
            self.weight = self.create_parameter(
                attr=None, shape=param_shape, default_initializer=Constant(1.0))
            self.weight.stop_gradient = True
        else:
            self.weight = self.create_parameter(
                attr=self._weight_attr,
                shape=param_shape,
                default_initializer=Constant(1.0))
            self.weight.stop_gradient = self._weight_attr != None and self._weight_attr.learning_rate == 0.

        if bias_attr == False:
            self.bias = self.create_parameter(
                attr=None,
                shape=param_shape,
                default_initializer=Constant(0.0),
                is_bias=True)
            self.bias.stop_gradient = True
        else:
            self.bias = self.create_parameter(
                attr=self._bias_attr, shape=param_shape, is_bias=True)
            self.bias.stop_gradient = self._weight_attr != None and self._weight_attr.learning_rate == 0.

        self._mean = self.create_parameter(
            attr=ParamAttr(
                name=None,
                initializer=Constant(0.0),
                trainable=False,
                do_model_average=True),
            shape=param_shape,
            dtype=self._dtype)
        self._mean.stop_gradient = True

        self._variance = self.create_parameter(
            attr=ParamAttr(
                name=None,
                initializer=Constant(1.0),
                trainable=False,
                do_model_average=True),
            shape=param_shape,
            dtype=self._dtype)
        self._variance.stop_gradient = True

    def forward(self, x):
        # create output
        # mean and mean_out share the same memory
        mean_out = self._mean
        # variance and variance out share the same memory
        variance_out = self._variance

        ### train mode: use mini-batch stats, eval mode: use global stats
        if in_dygraph_mode():
            attrs = ("momentum", self._momentum, "epsilon", self._epsilon,
                     "is_test", not self.training, "data_layout",
                     self._data_layout, "use_mkldnn", False, "fuse_with_relu",
                     False, "use_global_stats", not self.training,
                     'trainable_statistics', False)
            sync_batch_norm_out, _, _, _, _, _ = core.ops.sync_batch_norm(
                x, self.weight, self.bias, self._mean, self._variance, mean_out,
                variance_out, *attrs)

            return sync_batch_norm_out

        check_variable_and_dtype(x, 'input', ['float16', 'float32', 'float64'],
                                 'BatchNorm')

        attrs = {
            "momentum": self._momentum,
            "epsilon": self._epsilon,
            "is_test": not self.training,
            "data_layout": self._data_layout,
            "use_mkldnn": False,
            "fuse_with_relu": False,
            "use_global_stats": not self.training,
            "trainable_statistics": False,
        }

        inputs = {
            "X": [x],
            "Scale": [self.weight],
            "Bias": [self.bias],
            "Mean": [self._mean],
            "Variance": [self._variance]
        }

        saved_mean = self._helper.create_variable_for_type_inference(
            dtype=self._dtype, stop_gradient=True)
        saved_variance = self._helper.create_variable_for_type_inference(
            dtype=self._dtype, stop_gradient=True)
        sync_batch_norm_out = self._helper.create_variable_for_type_inference(
            self._dtype)

        outputs = {
            "Y": [sync_batch_norm_out],
            "MeanOut": [mean_out],
            "VarianceOut": [variance_out],
            "SavedMean": [saved_mean],
            "SavedVariance": [saved_variance]
        }

        self._helper.append_op(
            type="sync_batch_norm", inputs=inputs, outputs=outputs, attrs=attrs)
        return sync_batch_norm_out


3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441
class Flatten(layers.Layer):
    """
    :alias_main: paddle.nn.Flatten
    :alias: paddle.nn.Flatten,paddle.nn.layer.Flatten,paddle.nn.layer.common.Flatten
    This interface is used to construct a callable object of the ``FLatten`` class.
    For more details, refer to code examples.
    It implements flatten a contiguous range of dims into a tensor.

    Equation:

    Parameters:
        start_axis(int): first dim to flatten (default = 1)
        stop_axis(int): last dim to flatten (default = -1).
    
    Returns:
        None

    Examples:

        .. code-block:: python

          import paddle
3442
          from paddle import to_variable
3443 3444 3445 3446
          import numpy as np

          inp_np = np.ones([5, 2, 3, 4]).astype('float32')
          
3447
          paddle.disable_static()
3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460
          
          inp_np = to_variable(inp_np)
          flatten = paddle.nn.Flatten(start_axis=1, stop_axis=2)
          flatten_res = flatten(inp_np)

    """

    def __init__(self, start_axis=1, stop_axis=-1):
        super(Flatten, self).__init__()
        self.start_axis = start_axis
        self.stop_axis = stop_axis

    def forward(self, input):
3461 3462
        out = paddle.tensor.manipulation.flatten(
            input, start_axis=self.start_axis, stop_axis=self.stop_axis)
3463
        return out