nn.py 121.6 KB
Newer Older
M
minqiyang 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import print_function

from six.moves import reduce
from .. import core
from ..layers import utils
20
from ..dygraph import dygraph_utils
M
minqiyang 已提交
21
from . import layers
22
from ..framework import Variable, in_dygraph_mode, OpProtoHolder, Parameter, _dygraph_tracer_
M
minqiyang 已提交
23
from ..param_attr import ParamAttr
24
from ..initializer import Normal, Constant, NumpyArrayInitializer
L
lujun 已提交
25
import numpy as np
26
import numbers
27
import logging
28

29
__all__ = [
S
songyouwei 已提交
30 31 32 33
    'Conv2D', 'Conv3D', 'Pool2D', 'FC', 'Linear', 'BatchNorm', 'Embedding',
    'GRUUnit', 'LayerNorm', 'NCE', 'PRelu', 'BilinearTensorProduct',
    'Conv2DTranspose', 'Conv3DTranspose', 'GroupNorm', 'SpectralNorm',
    'TreeConv'
34
]
M
minqiyang 已提交
35 36


X
Xin Pan 已提交
37
class Conv2D(layers.Layer):
38
    """
39 40
    This interface is used to construct a callable object of the ``Conv2D`` class.
    For more details, refer to code examples.
41 42 43
    The convolution2D layer calculates the output based on the input, filter
    and strides, paddings, dilations, groups parameters. Input and
    Output are in NCHW format, where N is batch size, C is the number of
44 45 46
    the feature map, H is the height of the feature map, and W is the width of the feature map.
    Filter's shape is [MCHW] , where M is the number of output feature map,
    C is the number of input feature map, H is the height of the filter,
47
    and W is the width of the filter. If the groups is greater than 1,
48
    C will equal the number of input feature map divided by the groups.
49
    Please refer to UFLDL's `convolution
50
    <http://ufldl.stanford.edu/tutorial/supervised/FeatureExtractionUsingConvolution/>`_
51 52 53 54 55 56 57 58 59
    for more detials.
    If bias attribution and activation type are provided, bias is added to the
    output of the convolution, and the corresponding activation function is
    applied to the final result.

    For each input :math:`X`, the equation is:

    .. math::

60
        Out = \\sigma (W \\ast X + b)
61 62 63

    Where:

64 65
    * :math:`X`: Input value, a ``Tensor`` with NCHW format.
    * :math:`W`: Filter value, a ``Tensor`` with shape [MCHW] .
66
    * :math:`\\ast`: Convolution operation.
67
    * :math:`b`: Bias value, a 2-D ``Tensor`` with shape [M, 1].
68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89
    * :math:`\\sigma`: Activation function.
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.

    Example:

        - Input:

          Input shape: :math:`(N, C_{in}, H_{in}, W_{in})`

          Filter shape: :math:`(C_{out}, C_{in}, H_f, W_f)`

        - Output:

          Output shape: :math:`(N, C_{out}, H_{out}, W_{out})`

        Where

        .. math::

            H_{out}&= \\frac{(H_{in} + 2 * paddings[0] - (dilations[0] * (H_f - 1) + 1))}{strides[0]} + 1 \\\\
            W_{out}&= \\frac{(W_{in} + 2 * paddings[1] - (dilations[1] * (W_f - 1) + 1))}{strides[1]} + 1

90
    Parameters:
91
        num_channels(int): The number of channels in the input image.
92
        num_filters(int): The number of filter. It is as same as the output
93 94
            feature map.
        filter_size (int or tuple): The filter size. If filter_size is a tuple,
95 96
            it must contain two integers, (filter_size_H, filter_size_W).
            Otherwise, the filter will be a square.
97
        stride (int or tuple, optional): The stride size. If stride is a tuple, it must
98
            contain two integers, (stride_H, stride_W). Otherwise, the
99 100
            stride_H = stride_W = stride. Default: 1.
        padding (int or tuple, optional): The padding size. If padding is a tuple, it must
101
            contain two integers, (padding_H, padding_W). Otherwise, the
102 103
            padding_H = padding_W = padding. Default: 0.
        dilation (int or tuple, optional): The dilation size. If dilation is a tuple, it must
104
            contain two integers, (dilation_H, dilation_W). Otherwise, the
105 106
            dilation_H = dilation_W = dilation. Default: 1.
        groups (int, optional): The groups number of the Conv2d Layer. According to grouped
107 108 109
            convolution in Alex Krizhevsky's Deep CNN paper: when group=2,
            the first half of the filters is only connected to the first half
            of the input channels, while the second half of the filters is only
110 111
            connected to the second half of the input channels. Default: 1.
        param_attr (ParamAttr, optional): The parameter attribute for learnable weights(Parameter)
112 113 114 115
            of conv2d. If it is set to None or one attribute of ParamAttr, conv2d
            will create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with :math:`Normal(0.0, std)`,
            and the :math:`std` is :math:`(\\frac{2.0 }{filter\_elem\_num})^{0.5}`. Default: None.
116
        bias_attr (ParamAttr or bool, optional): The attribute for the bias of conv2d.
117 118 119 120
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, conv2d
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. Default: None.
121 122 123 124 125
        use_cudnn (bool, optional): Use cudnn kernel or not, it is valid only when the cudnn
            library is installed. Default: True.
        act (str, optional): Activation type, if it is set to None, activation is not appended.
            Default: None.
        dtype (str, optional): Data type, it can be "float32" or "float64". Default: "float32".
126

127 128 129 130
    Attribute:
        **weight** (Parameter): the learnable weights of filter of this layer.

        **bias** (Parameter or None): the learnable bias of this layer.
131

132 133 134
    Returns:
        None
    
135
    Raises:
136
        ValueError: if ``use_cudnn`` is not a bool value.
137 138 139

    Examples:
        .. code-block:: python
L
lujun 已提交
140

141 142 143 144 145
          from paddle.fluid.dygraph.base import to_variable
          import paddle.fluid as fluid
          from paddle.fluid.dygraph import Conv2D
          import numpy as np

146
          data = np.random.uniform(-1, 1, [10, 3, 32, 32]).astype('float32')
147
          with fluid.dygraph.guard():
148
              conv2d = Conv2D(3, 2, 3)
149 150
              data = to_variable(data)
              conv = conv2d(data)
151 152 153

    """

M
minqiyang 已提交
154
    def __init__(self,
155
                 num_channels,
M
minqiyang 已提交
156 157 158 159 160 161 162 163
                 num_filters,
                 filter_size,
                 stride=1,
                 padding=0,
                 dilation=1,
                 groups=None,
                 param_attr=None,
                 bias_attr=None,
164 165 166
                 use_cudnn=True,
                 act=None,
                 dtype='float32'):
M
minqiyang 已提交
167
        assert param_attr is not False, "param_attr should not be False here."
168 169
        super(Conv2D, self).__init__()
        self._num_channels = num_channels
M
minqiyang 已提交
170 171 172 173
        self._groups = groups
        self._stride = utils.convert_to_list(stride, 2, 'stride')
        self._padding = utils.convert_to_list(padding, 2, 'padding')
        self._dilation = utils.convert_to_list(dilation, 2, 'dilation')
174
        self._act = act
M
minqiyang 已提交
175 176 177
        if not isinstance(use_cudnn, bool):
            raise ValueError("use_cudnn should be True or False")
        self._use_cudnn = use_cudnn
178 179 180 181 182
        self._filter_size = filter_size
        self._num_filters = num_filters
        self._param_attr = param_attr
        self._bias_attr = bias_attr
        self._dtype = dtype
183 184 185 186 187 188 189 190 191

        # TODO: recover the usage of depthwise_conv2d when it's
        #  kernel fixed https://github.com/PaddlePaddle/Paddle/issues/17098
        # if (self._num_channels == self._groups and
        #         num_filters % self._num_channels == 0 and not self._use_cudnn):
        #     self._l_type = 'depthwise_conv2d'
        # else:
        #     self._l_type = 'conv2d'
        self._l_type = 'conv2d'
M
minqiyang 已提交
192

193
        self._num_channels = num_channels
194 195
        if self._groups is None:
            num_filter_channels = self._num_channels
M
minqiyang 已提交
196
        else:
197
            if self._num_channels % self._groups != 0:
M
minqiyang 已提交
198
                raise ValueError("num_channels must be divisible by groups.")
199 200
            num_filter_channels = self._num_channels // self._groups
        filter_size = utils.convert_to_list(self._filter_size, 2, 'filter_size')
201
        filter_shape = [self._num_filters, num_filter_channels] + filter_size
M
minqiyang 已提交
202 203

        def _get_default_param_initializer():
204 205
            filter_elem_num = filter_size[0] * filter_size[
                1] * self._num_channels
M
minqiyang 已提交
206 207 208
            std = (2.0 / filter_elem_num)**0.5
            return Normal(0.0, std, 0)

209
        self.weight = self.create_parameter(
210
            attr=self._param_attr,
M
minqiyang 已提交
211 212 213 214
            shape=filter_shape,
            dtype=self._dtype,
            default_initializer=_get_default_param_initializer())

215
        self.bias = self.create_parameter(
216 217
            attr=self._bias_attr,
            shape=[self._num_filters],
M
minqiyang 已提交
218 219
            dtype=self._dtype,
            is_bias=True)
M
minqiyang 已提交
220 221

    def forward(self, input):
222 223
        inputs = {
            'Input': [input],
224
            'Filter': [self.weight],
225 226 227 228 229 230 231 232 233 234 235 236 237 238
        }
        attrs = {
            'strides': self._stride,
            'paddings': self._padding,
            'dilations': self._dilation,
            'groups': self._groups if self._groups else 1,
            'use_cudnn': self._use_cudnn,
            'use_mkldnn': False,
        }

        if in_dygraph_mode():
            outs = core.ops.conv2d(inputs, attrs)
            pre_bias = outs['Output'][0]

239 240
            pre_act = dygraph_utils._append_bias_in_dygraph(pre_bias, self.bias,
                                                            1)
241 242 243 244

            return dygraph_utils._append_activation_in_dygraph(pre_act,
                                                               self._act)

M
minqiyang 已提交
245 246 247
        pre_bias = self._helper.create_variable_for_type_inference(
            dtype=self._dtype)

M
minqiyang 已提交
248 249 250 251
        self._helper.append_op(
            type=self._l_type,
            inputs={
                'Input': input,
252
                'Filter': self.weight,
M
minqiyang 已提交
253
            },
M
minqiyang 已提交
254
            outputs={"Output": pre_bias},
255
            attrs=attrs)
M
minqiyang 已提交
256

257
        if self.bias is not None:
258 259 260 261 262
            pre_act = self._helper.create_variable_for_type_inference(
                dtype=self._dtype)
            self._helper.append_op(
                type='elementwise_add',
                inputs={'X': [pre_bias],
263
                        'Y': [self.bias]},
264 265 266 267
                outputs={'Out': [pre_act]},
                attrs={'axis': 1})
        else:
            pre_act = pre_bias
M
minqiyang 已提交
268

L
lujun 已提交
269
        # Currently, we don't support inplace in dygraph mode
270
        return self._helper.append_activation(pre_act, act=self._act)
M
minqiyang 已提交
271 272


L
lujun 已提交
273
class Conv3D(layers.Layer):
274 275 276 277 278
    """
    **Convlution3D Layer**

    The convolution3D layer calculates the output based on the input, filter
    and strides, paddings, dilations, groups parameters. Input(Input) and
D
DuYao 已提交
279 280
    Output(Output) are multidimensional tensors with a shape of 
    :math:`[N, C, D, H, W]` . Where N is batch size, C is the number of
281 282 283 284 285 286 287 288 289 290 291 292 293 294
    channels, D is the depth of the feature, H is the height of the feature,
    and W is the width of the feature. Convlution3D is similar with Convlution2D
    but adds one dimension(depth). If bias attribution and activation type are
    provided, bias is added to the output of the convolution, and the
    corresponding activation function is applied to the final result.

    For each input :math:`X`, the equation is:

    .. math::

        Out = \sigma (W \\ast X + b)

    In the above equation:

D
DuYao 已提交
295
    * :math:`X`: Input value, a tensor with NCDHW or NDHWC format.
296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320
    * :math:`W`: Filter value, a tensor with MCDHW format.
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D tensor with shape [M, 1].
    * :math:`\\sigma`: Activation function.
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.

    Example:

        - Input:

          Input shape: :math:`(N, C_{in}, D_{in}, H_{in}, W_{in})`

          Filter shape: :math:`(C_{out}, C_{in}, D_f, H_f, W_f)`

        - Output:
          Output shape: :math:`(N, C_{out}, D_{out}, H_{out}, W_{out})`

        Where

        .. math::

            D_{out}&= \\frac{(D_{in} + 2 * paddings[0] - (dilations[0] * (D_f - 1) + 1))}{strides[0]} + 1 \\\\
            H_{out}&= \\frac{(H_{in} + 2 * paddings[1] - (dilations[1] * (H_f - 1) + 1))}{strides[1]} + 1 \\\\
            W_{out}&= \\frac{(W_{in} + 2 * paddings[2] - (dilations[2] * (W_f - 1) + 1))}{strides[2]} + 1

321
    Parameters:
322
        num_channels(int): The number of channels in the input image.
L
lujun 已提交
323
        num_filters(int): The number of filter. It is as same as the output image channel.
D
DuYao 已提交
324
        filter_size (int|tuple, optional): The filter size. If filter_size is a tuple,
325
            it must contain three integers, (filter_size_D, filter_size_H, filter_size_W).
D
DuYao 已提交
326 327 328
            Otherwise, the filter will be a square, filter_size_depth = filter_size_height
            = filter_size_width = filter_size.
        stride (int|tuple, optional): The stride size. If stride is a tuple, it must
329
            contain three integers, (stride_D, stride_H, stride_W). Otherwise, the
D
DuYao 已提交
330 331
            stride_D = stride_H = stride_W = stride. The default value is 1.
        padding (int|tuple, optional): The padding size. If padding is a tuple, it must
332
            contain three integers, (padding_D, padding_H, padding_W). Otherwise, the
D
DuYao 已提交
333 334
            padding_D = padding_H = padding_W = padding. The default value is 0.
        dilation (int|tuple, optional): The dilation size. If dilation is a tuple, it must
335
            contain three integers, (dilation_D, dilation_H, dilation_W). Otherwise, the
D
DuYao 已提交
336 337
            dilation_D = dilation_H = dilation_W = dilation. The default value is 1.
        groups (int, optional): The groups number of the Conv3d Layer. According to grouped
338 339 340
            convolution in Alex Krizhevsky's Deep CNN paper: when group=2,
            the first half of the filters is only connected to the first half
            of the input channels, while the second half of the filters is only
D
DuYao 已提交
341 342
            connected to the second half of the input channels. The default value is 1.
        param_attr (ParamAttr, optional): The parameter attribute for learnable parameters/weights
343 344 345
            of conv3d. If it is set to None or one attribute of ParamAttr, conv3d
            will create ParamAttr as param_attr. If it is set to None, the parameter
            is initialized with :math:`Normal(0.0, std)`, and the :math:`std` is
D
DuYao 已提交
346 347
            :math:`(\\frac{2.0 }{filter\_elem\_num})^{0.5}`. The default value is None.
        bias_attr (ParamAttr|bool, optional): The parameter attribute for the bias of conv3d.
348 349 350
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, conv3d
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
D
DuYao 已提交
351 352 353 354 355
            is not set, the bias is initialized zero. The default value is None.
        use_cudnn (bool, optional): Use cudnn kernel or not, it is valid only when the cudnn
            library is installed. The default value is True.
        act (str, optional): Activation type, if it is set to None, activation is not appended.
            The default value is None.
356
        dtype (str, optional): Data type, it can be "float32" or "float64". Default: "float32".
357

D
DuYao 已提交
358 359 360 361
    Attribute:
        **weight** (Parameter): the learnable weights of filters of this layer.

        **bias** (Parameter): the learnable bias of this layer.
362

363
    Returns:
D
DuYao 已提交
364
        None.
365 366 367 368 369 370 371 372

    Raises:
        ValueError: If the shapes of input, filter_size, stride, padding and
                    groups mismatch.

    Examples:
        .. code-block:: python

373 374 375 376 377 378
          import paddle.fluid as fluid
          import numpy

          with fluid.dygraph.guard():
              data = numpy.random.random((5, 3, 12, 32, 32)).astype('float32')
              conv3d = fluid.dygraph.nn.Conv3D(
379
                    num_channels=3, num_filters=2, filter_size=3, act="relu")
380 381
              ret = conv3d(fluid.dygraph.base.to_variable(data))

382 383
    """

L
lujun 已提交
384
    def __init__(self,
385
                 num_channels,
L
lujun 已提交
386 387 388 389 390 391 392 393 394
                 num_filters,
                 filter_size,
                 stride=1,
                 padding=0,
                 dilation=1,
                 groups=None,
                 param_attr=None,
                 bias_attr=None,
                 use_cudnn=True,
395 396
                 act=None,
                 dtype='float32'):
L
lujun 已提交
397
        assert param_attr is not False, "param_attr should not be False here."
398 399
        super(Conv3D, self).__init__()
        self._num_channels = num_channels
L
lujun 已提交
400 401 402
        self._groups = groups
        self._stride = utils.convert_to_list(stride, 3, 'stride')
        self._padding = utils.convert_to_list(padding, 3, 'padding')
403
        self._dilation = utils.convert_to_list(dilation, 3, 'dilation')
L
lujun 已提交
404 405
        self._act = act
        self._use_cudnn = use_cudnn
406 407 408 409
        self._filter_size = filter_size
        self._num_filters = num_filters
        self._param_attr = param_attr
        self._bias_attr = bias_attr
410
        self._dtype = dtype
411 412

        if self._groups is None:
413
            num_filter_channels = self._num_channels
L
lujun 已提交
414
        else:
415
            if self._num_channels % self._groups != 0:
L
lujun 已提交
416
                raise ValueError("num_channels must be divisible by groups.")
417
            num_filter_channels = self._num_channels // self._groups
L
lujun 已提交
418

419 420
        filter_size = utils.convert_to_list(self._filter_size, 3, 'filter_size')
        filter_shape = [self._num_filters, num_filter_channels] + filter_size
L
lujun 已提交
421 422 423

        def _get_default_param_initializer():
            filter_elem_num = filter_size[0] * filter_size[1] * filter_size[
424
                2] * self._num_channels
L
lujun 已提交
425 426 427
            std = (2.0 / filter_elem_num)**0.5
            return Normal(0.0, std, 0)

428
        self.weight = self.create_parameter(
429
            attr=self._param_attr,
L
lujun 已提交
430 431 432 433
            shape=filter_shape,
            dtype=self._dtype,
            default_initializer=_get_default_param_initializer())

434
        self.bias = self.create_parameter(
435 436
            attr=self._bias_attr,
            shape=[self._num_filters],
L
lujun 已提交
437 438 439 440 441 442 443 444
            dtype=self._dtype,
            is_bias=True)

    def forward(self, input):
        pre_bias = self._helper.create_variable_for_type_inference(
            dtype=self._dtype)

        self._helper.append_op(
445
            type='conv3d',
L
lujun 已提交
446 447
            inputs={
                'Input': input,
448
                'Filter': self.weight,
L
lujun 已提交
449 450 451 452 453 454 455 456 457 458 459
            },
            outputs={"Output": pre_bias},
            attrs={
                'strides': self._stride,
                'paddings': self._padding,
                'dilations': self._dilation,
                'groups': self._groups if self._groups else 1,
                'use_cudnn': self._use_cudnn,
                'use_mkldnn': False
            })

460
        if self.bias is not None:
461 462 463 464 465
            pre_act = self._helper.create_variable_for_type_inference(
                dtype=self._dtype)
            self._helper.append_op(
                type='elementwise_add',
                inputs={'X': [pre_bias],
466
                        'Y': [self.bias]},
467 468 469 470
                outputs={'Out': [pre_act]},
                attrs={'axis': 1})
        else:
            pre_act = pre_bias
L
lujun 已提交
471 472 473 474 475

        return self._helper.append_activation(pre_act, act=self._act)


class Conv3DTranspose(layers.Layer):
L
lujun 已提交
476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521
    """
    **Convlution3D transpose layer**

    The convolution3D transpose layer calculates the output based on the input,
    filter, and dilations, strides, paddings. Input(Input) and output(Output)
    are in NCDHW format. Where N is batch size, C is the number of channels,
    D is the depth of the feature, H is the height of the feature, and W
    is the width of the feature. Parameters(dilations, strides, paddings) are
    two elements. These two elements represent height and width, respectively.
    The details of convolution transpose layer, please refer to the following
    explanation and references `therein <http://www.matthewzeiler.com/wp-content/uploads/2017/07/cvpr2010.pdf>`_.
    If bias attribution and activation type are provided, bias is added to
    the output of the convolution, and the corresponding activation function
    is applied to the final result.

    For each input :math:`X`, the equation is:

    .. math::

        Out = \sigma (W \\ast X + b)

    In the above equation:

    * :math:`X`: Input value, a tensor with NCDHW format.
    * :math:`W`: Filter value, a tensor with MCDHW format.
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D tensor with shape [M, 1].
    * :math:`\\sigma`: Activation function.
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.

    Example:

        - Input:

          Input shape: :math:`(N, C_{in}, D_{in}, H_{in}, W_{in})`

          Filter shape: :math:`(C_{in}, C_{out}, D_f, H_f, W_f)`

        - Output:

          Output shape: :math:`(N, C_{out}, D_{out}, H_{out}, W_{out})`

        Where

        .. math::

D
DuYao 已提交
522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540
           D^\prime_{out} &= (D_{in} - 1) * strides[0] - 2 * paddings[0] + dilations[0] * (D_f - 1) + 1 \\\\
           H^\prime_{out} &= (H_{in} - 1) * strides[1] - 2 * paddings[1] + dilations[1] * (H_f - 1) + 1 \\\\
           W^\prime_{out} &= (W_{in} - 1) * strides[2] - 2 * paddings[2] + dilations[2] * (W_f - 1) + 1 \\\\
           D_{out} &\in [ D^\prime_{out}, D^\prime_{out} + strides[0] ] \\\\
           H_{out} &\in [ H^\prime_{out}, H^\prime_{out} + strides[1] ] \\\\

    **Note**:

          The conv3d_transpose can be seen as the backward of the conv3d. For conv3d, 
          when stride > 1, conv3d maps multiple input shape to the same output shape, 
          so for conv3d_transpose, when stride > 1, input shape maps multiple output shape.
          If output_size is None, :math:`H_{out} = H^\prime_{out}, :math:`H_{out} = \
          H^\prime_{out}, W_{out} = W^\prime_{out}`; else, the :math:`D_{out}` of the output 
          size must between :math:`D^\prime_{out}` and :math:`D^\prime_{out} + strides[0]`, 
          the :math:`H_{out}` of the output size must between :math:`H^\prime_{out}` 
          and :math:`H^\prime_{out} + strides[1]`, and the :math:`W_{out}` of the output size must 
          between :math:`W^\prime_{out}` and :math:`W^\prime_{out} + strides[2]`, 
          conv3d_transpose can compute the kernel size automatically.

L
lujun 已提交
541

542
    Parameters:
543
        num_channels(int): The number of channels in the input image.
L
lujun 已提交
544 545
        num_filters(int): The number of the filter. It is as same as the output
            image channel.
546
        filter_size(int|tuple): The filter size. If filter_size is a tuple,
L
lujun 已提交
547
            it must contain three integers, (filter_size_D, filter_size_H, filter_size_W).
548
            Otherwise, the filter will be a square.
D
DuYao 已提交
549 550 551 552 553 554 555 556 557 558 559 560 561 562 563
        padding(int|tuple, optional): The padding size. The padding argument effectively
             adds `dilation * (kernel - 1)` amount of zero-padding on both sides of input. If `padding` is a string,
             either 'VALID' or 'SAME' supported, which is the padding algorithm. If `padding`
             is a tuple or list, it could be in three forms: `[pad_depth, pad_height, pad_width]` or
            `[pad_depth_front, pad_depth_back, pad_height_top, pad_height_bottom, pad_width_left, pad_width_right]`,
            and when `data_format` is `'NCDHW'`, `padding` can be in the form
            `[[0,0], [0,0], [pad_depth_front, pad_depth_back], [pad_height_top, pad_height_bottom], [pad_width_left, pad_width_right]]`.
            when `data_format` is `'NDHWC'`, `padding` can be in the form
            `[[0,0], [pad_depth_front, pad_depth_back], [pad_height_top, pad_height_bottom], [pad_width_left, pad_width_right], [0,0]]`.
            The default value is 0.
        stride(int|tuple, optional): The stride size. It means the stride in transposed convolution. 
            If stride is a tuple, it must contain three integers, (stride_depth, stride_height, 
            stride_width). Otherwise, stride_depth = stride_height = stride_width = stride. 
            The default value is 1.
        dilation(int|tuple, optional): The dilation size. If dilation is a tuple, it must
L
lujun 已提交
564
            contain three integers, (dilation_D, dilation_H, dilation_W). Otherwise, the
D
DuYao 已提交
565 566
            dilation_D = dilation_H = dilation_W = dilation. The default value is 1.
        groups(int, optional): The groups number of the Conv3d transpose layer. Inspired by
L
lujun 已提交
567 568 569 570
            grouped convolution in Alex Krizhevsky's Deep CNN paper, in which
            when group=2, the first half of the filters is only connected to the
            first half of the input channels, while the second half of the
            filters is only connected to the second half of the input channels.
D
DuYao 已提交
571 572
            The default value is 1.
        param_attr (ParamAttr, optional): The parameter attribute for learnable parameters/weights
L
lujun 已提交
573 574
            of conv3d_transpose. If it is set to None or one attribute of ParamAttr, conv3d_transpose
            will create ParamAttr as param_attr. If the Initializer of the param_attr
D
DuYao 已提交
575 576
            is not set, the parameter is initialized with Xavier. The default value is None.
        bias_attr (ParamAttr|bool, optional): The parameter attribute for the bias of conv3d_transpose.
L
lujun 已提交
577 578 579
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, conv3d_transpose
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
D
DuYao 已提交
580 581 582 583 584 585 586
            is not set, the bias is initialized zero. The default value is None.
        use_cudnn(bool, optional): Use cudnn kernel or not, it is valid only when the cudnn
            library is installed. The default value is True.
        act (str, optional): Activation type, if it is set to None, activation is not appended.
            The default value is None.
        name(str, optional): The default value is None. Normally there is no need for user 
            to set this property. For more information, please refer to :ref:`api_guide_Name`.
L
lujun 已提交
587

D
DuYao 已提交
588 589 590 591
    Attribute:
        **weight** (Parameter): the learnable weights of filters of this layer.

        **bias** (Parameter): the learnable bias of this layer.
592

L
lujun 已提交
593
    Returns:
D
DuYao 已提交
594
        None.
L
lujun 已提交
595 596 597 598 599 600 601 602

    Raises:
        ValueError: If the shapes of input, filter_size, stride, padding and
                    groups mismatch.

    Examples:
       .. code-block:: python

603 604 605 606 607 608
         import paddle.fluid as fluid
         import numpy

         with fluid.dygraph.guard():
             data = numpy.random.random((5, 3, 12, 32, 32)).astype('float32')
             conv3dTranspose = fluid.dygraph.nn.Conv3DTranspose(
609
                    num_channels=3,
610 611 612 613 614
                    num_filters=12,
                    filter_size=12,
                    use_cudnn=False)
             ret = conv3dTranspose(fluid.dygraph.base.to_variable(data))

L
lujun 已提交
615 616
    """

L
lujun 已提交
617
    def __init__(self,
618
                 num_channels,
L
lujun 已提交
619
                 num_filters,
620
                 filter_size,
L
lujun 已提交
621 622 623 624 625 626 627 628
                 padding=0,
                 stride=1,
                 dilation=1,
                 groups=None,
                 param_attr=None,
                 bias_attr=None,
                 use_cudnn=True,
                 act=None,
629 630
                 dtype='float32'):
        super(Conv3DTranspose, self).__init__()
L
lujun 已提交
631 632 633 634 635 636 637
        if not isinstance(use_cudnn, bool):
            raise ValueError("use_cudnn should be True or False")
        assert param_attr is not False, "param_attr should not be False in conv3d_transpose."
        self._padding = utils.convert_to_list(padding, 3, 'padding')
        self._stride = utils.convert_to_list(stride, 3, 'stride')
        self._dilation = utils.convert_to_list(dilation, 3, 'dilation')
        self._param_attr = param_attr
638
        self._num_channels = num_channels
L
lujun 已提交
639 640 641 642 643 644
        self._filter_size = filter_size
        self._groups = 1 if groups is None else groups
        self._num_filters = num_filters
        self._use_cudnn = use_cudnn
        self._bias_attr = bias_attr
        self._act = act
645
        self._dtype = dtype
L
lujun 已提交
646

647 648
        self._filter_size = utils.convert_to_list(
            self._filter_size, 3, 'conv3d_transpose.filter_size')
L
lujun 已提交
649

650 651
        filter_shape = [self._num_channels, self._num_filters // self._groups
                        ] + self._filter_size
652
        self.weight = self.create_parameter(
L
lujun 已提交
653 654
            dtype=self._dtype, shape=filter_shape, attr=self._param_attr)
        if self._bias_attr:
655
            self.bias = self.create_parameter(
L
lujun 已提交
656 657 658 659 660 661 662 663 664 665 666
                attr=self._bias_attr,
                shape=[self._num_filters],
                dtype=self._dtype,
                is_bias=True)

    def forward(self, input):
        pre_bias = self._helper.create_variable_for_type_inference(
            dtype=self._dtype)
        self._helper.append_op(
            type="conv3d_transpose",
            inputs={'Input': [input],
667
                    'Filter': [self.weight]},
L
lujun 已提交
668 669 670 671 672 673 674 675 676 677 678 679 680 681 682
            outputs={'Output': pre_bias},
            attrs={
                'strides': self._stride,
                'paddings': self._padding,
                'dilations': self._dilation,
                'groups': self._groups if self._groups else 1,
                'use_cudnn': self._use_cudnn
            })

        if self._bias_attr:
            pre_act = self._helper.create_variable_for_type_inference(
                dtype=self._dtype)
            self._helper.append_op(
                type='elementwise_add',
                inputs={'X': [pre_bias],
683
                        'Y': [self.bias]},
L
lujun 已提交
684 685 686 687 688 689 690 691 692
                outputs={'Out': [pre_act]},
                attrs={'axis': 1})
        else:
            pre_act = pre_bias

        # Currently, we don't support inplace in imperative mode
        return self._helper.append_activation(pre_act, act=self._act)


X
Xin Pan 已提交
693
class Pool2D(layers.Layer):
694
    """
695 696 697 698 699
    This interface is used to construct a callable object of the ``Pool2D`` class.
    For more details, refer to code examples.
    The pooling2d operation calculates the output based on the input, pool_type and pool_size, pool_stride,
    pool_padding parameters.Input and output are in NCHW format, where N is batch size, C is the number of feature map,
    H is the height of the feature map, and W is the width of the feature map.
L
lujun 已提交
700 701
    Parameters(ksize, strides, paddings) are two elements. These two elements represent height and width, respectively.
    The input(X) size and output(Out) size may be different.
702

703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746
    Example:

        - Input:

          Input shape: :math:`(N, C, H_{in}, W_{in})`

        - Output:

          Output shape: :math:`(N, C, H_{out}, W_{out})`

        If ``ceil_mode`` = False:

        .. math::

            H_{out} = \\frac{(H_{in} - ksize[0] + 2 * paddings[0])}{strides[0]} + 1 \\\\
            W_{out} = \\frac{(W_{in} - ksize[1] + 2 * paddings[1])}{strides[1]} + 1

        If ``ceil_mode`` = True:

        .. math::

            H_{out} = \\frac{(H_{in} - ksize[0] + 2 * paddings[0] + strides[0] - 1)}{strides[0]} + 1 \\\\
            W_{out} = \\frac{(W_{in} - ksize[1] + 2 * paddings[1] + strides[1] - 1)}{strides[1]} + 1

        If ``exclusive`` = False:

        .. math::

            hstart &= i * strides[0] - paddings[0] \\\\
            hend   &= hstart + ksize[0] \\\\
            wstart &= j * strides[1] - paddings[1] \\\\
            wend   &= wstart + ksize[1] \\\\
            Output(i ,j) &= \\frac{sum(Input[hstart:hend, wstart:wend])}{ksize[0] * ksize[1]}

        If ``exclusive`` = True:

        .. math::

            hstart &= max(0, i * strides[0] - paddings[0])\\\\
            hend &= min(H, hstart + ksize[0]) \\\\
            wstart &= max(0, j * strides[1] - paddings[1]) \\\\
            wend & = min(W, wstart + ksize[1]) \\\\
            Output(i ,j) & = \\frac{sum(Input[hstart:hend, wstart:wend])}{(hend - hstart) * (wend - wstart)}

747
    Parameters:
748
        pool_size (int or list or tuple, optional): The pool kernel size. If pool kernel size is a tuple or list,
749
            it must contain two integers, (pool_size_Height, pool_size_Width).
750 751 752 753
            Otherwise, the pool kernel size will be a square of an int. Default: -1.
        pool_type(str, optional) : The pooling type, can be "max" for max-pooling and "avg" for average-pooling. 
            Default: max.
        pool_stride (int or list or tuple, optional): The pool stride size. If pool stride size is a tuple or list,
L
lujun 已提交
754
            it must contain two integers, (pool_stride_Height, pool_stride_Width). Otherwise,
755 756 757
            the pool stride size will be a square of an int. Default: 1.
        pool_padding (int or list or tuple, optional): The padding size for pooling operation. 
            If ``pool_padding`` is a tuple,
758
            it must contain two integers, (pool_padding_on_Height, pool_padding_on_Width).
759 760 761 762 763 764 765
            Otherwise, the padding size for pooling operation will be a square of an int. Default: 0.
        global_pooling (bool, optional): Whether to use the global pooling. If global_pooling = true,
            kernel size and paddings will be ignored. Default: False.
        use_cudnn (bool, optional): Only used in cudnn kernel, need install cudnn. Default: True.
        ceil_mode (bool, optional): Whether to use the ceil function to calculate output height and width.
            False is the default. If it is set to False, the floor function will be used. Default: False.
        exclusive (bool, optional): Whether to exclude padding points in average pooling mode. Default: True.
766 767

    Returns:
768
        None
769 770 771 772 773 774 775 776 777 778

    Raises:
        ValueError: If 'pool_type' is not "max" nor "avg"
        ValueError: If 'global_pooling' is False and 'pool_size' is -1
        ValueError: If 'use_cudnn' is not a bool value.

    Examples:

        .. code-block:: python

L
lujun 已提交
779
          import paddle.fluid as fluid
780 781
          from paddle.fluid.dygraph.base import to_variable
          import numpy as np
L
lujun 已提交
782 783

          with fluid.dygraph.guard():
784
             data = numpy.random.random((3, 32, 32, 5)).astype('float32')
785
             pool2d = fluid.dygraph.Pool2D(pool_size=2,
786 787 788
                            pool_type='max',
                            pool_stride=1,
                            global_pooling=False)
789
             pool2d_res = pool2d(to_variable(data))
790 791 792

    """

M
minqiyang 已提交
793 794 795 796 797 798 799 800
    def __init__(self,
                 pool_size=-1,
                 pool_type="max",
                 pool_stride=1,
                 pool_padding=0,
                 global_pooling=False,
                 use_cudnn=True,
                 ceil_mode=False,
801
                 exclusive=True):
M
minqiyang 已提交
802 803 804 805 806 807 808 809 810 811 812 813 814
        if pool_type not in ["max", "avg"]:
            raise ValueError(
                "Unknown pool_type: '%s'. It can only be 'max' or 'avg'.",
                str(pool_type))

        if global_pooling is False and pool_size == -1:
            raise ValueError(
                "When the global_pooling is False, pool_size must be passed "
                "and be a valid value. Received pool_size: " + str(pool_size))

        if not isinstance(use_cudnn, bool):
            raise ValueError("use_cudnn should be True or False")

815
        super(Pool2D, self).__init__()
M
minqiyang 已提交
816 817 818 819 820 821 822 823 824 825 826 827 828

        self._pool_type = pool_type
        self._pool_size = utils.convert_to_list(pool_size, 2, 'pool_size')
        self._pool_padding = utils.convert_to_list(pool_padding, 2,
                                                   'pool_padding')
        self._pool_stride = utils.convert_to_list(pool_stride, 2, 'pool_stride')
        self._global_pooling = global_pooling
        self._use_cudnn = use_cudnn
        self._ceil_mode = ceil_mode
        self._exclusive = exclusive
        self._l_type = 'pool2d'

    def forward(self, input):
829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845
        attrs = {
            "pooling_type": self._pool_type,
            "ksize": self._pool_size,
            "global_pooling": self._global_pooling,
            "strides": self._pool_stride,
            "paddings": self._pool_padding,
            "use_cudnn": self._use_cudnn,
            "ceil_mode": self._ceil_mode,
            "use_mkldnn": False,
            "exclusive": self._exclusive,
        }
        inputs = {"X": [input]}

        if in_dygraph_mode():
            outs = core.ops.pool2d(inputs, attrs)
            return outs['Out'][0]

M
minqiyang 已提交
846 847
        pool_out = self._helper.create_variable_for_type_inference(self._dtype)

M
minqiyang 已提交
848 849 850
        self._helper.append_op(
            type=self._l_type,
            inputs={"X": input},
M
minqiyang 已提交
851
            outputs={"Out": pool_out},
852
            attrs=attrs)
M
minqiyang 已提交
853
        return pool_out
M
minqiyang 已提交
854 855


S
songyouwei 已提交
856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925
class Linear(layers.Layer):
    """
    Fully-connected linear transformation layer:

    .. math::

        Out = Act({XW + b})

    where :math:`X` is the input Tensor, :math:`W` and :math:`b` are weight and bias respectively.

    Different from FC layer, Linear layer takes only one ``Tensor`` input.
    The Linear layer multiplies input tensor with weight matrix and
    produces an output Tensor of shape [N, *, `output_dim`],
    where N is batch size and `*` means any number of additional dimensions.
    If ``bias_attr`` is not None, a bias variable will be created and added to the output.
    Finally, if ``act`` is not None, it will be applied to the output as well.

    Parameters:
        input_dim(int): The number of input units in this layer.
        output_dim(int): The number of output units in this layer.
        param_attr(ParamAttr or list of ParamAttr, optional): The parameter attribute for learnable
            weights(Parameter) of this layer. Default: None.
        bias_attr(ParamAttr or list of ParamAttr, optional): The attribute for the bias
            of this layer. If it is set to False, no bias will be added to the output units.
            If it is set to None, the bias is initialized zero. Default: None.
        act(str, optional): Activation to be applied to the output of this layer. Default: None.
        dtype(str, optional): Dtype used for weight, it can be "float32" or "float64". Default: "float32".

    Attributes:
        **weight** (Parameter): the learnable weights of this layer.

        **bias** (Parameter or None): the learnable bias of this layer.

    Returns:
        None

    Examples:
        .. code-block:: python

          from paddle.fluid.dygraph.base import to_variable
          import paddle.fluid as fluid
          from paddle.fluid.dygraph import Linear
          import numpy as np

          data = np.random.uniform(-1, 1, [30, 10, 32]).astype('float32')
          with fluid.dygraph.guard():
              linear = Linear(32, 64)
              data = to_variable(data)
              res = linear(data)  # [30, 10, 64]
    """

    def __init__(self,
                 input_dim,
                 output_dim,
                 param_attr=None,
                 bias_attr=None,
                 act=None,
                 dtype="float32"):
        super(Linear, self).__init__()
        self._act = act
        self._dtype = dtype
        self.weight = self.create_parameter(
            shape=[input_dim, output_dim],
            attr=param_attr,
            dtype=dtype,
            is_bias=False)
        self.bias = self.create_parameter(
            shape=[output_dim], attr=bias_attr, dtype=dtype, is_bias=True)

    def forward(self, input):
926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942
        attrs = {
            "transpose_X": False,
            "transpose_Y": False,
            "alpha": 1,
        }
        inputs = {"X": [input], "Y": [self.weight]}

        if in_dygraph_mode():
            outs = core.ops.matmul(inputs, attrs)
            pre_bias = outs['Out'][0]

            pre_act = dygraph_utils._append_bias_in_dygraph(
                pre_bias, self.bias, axis=len(input.shape) - 1)

            return dygraph_utils._append_activation_in_dygraph(pre_act,
                                                               self._act)

S
songyouwei 已提交
943 944
        tmp = self._helper.create_variable_for_type_inference(self._dtype)
        self._helper.append_op(
945
            type="matmul", inputs=inputs, outputs={"Out": tmp}, attrs=attrs)
S
songyouwei 已提交
946 947 948 949 950 951 952 953 954 955 956 957 958 959
        if self.bias:
            pre_activation = self._helper.create_variable_for_type_inference(
                dtype=self._dtype)
            self._helper.append_op(
                type='elementwise_add',
                inputs={'X': [tmp],
                        'Y': [self.bias]},
                outputs={'Out': [pre_activation]},
                attrs={'axis': len(input.shape) - 1})
        else:
            pre_activation = tmp
        return self._helper.append_activation(pre_activation, act=self._act)


X
Xin Pan 已提交
960
class FC(layers.Layer):
961
    """
962 963 964 965
    This interface is used to construct a callable object of the ``FC`` class.
    For more details, refer to code examples.
    It creates a fully connected layer in the network. It can take
    one or multiple ``Tensor`` as its inputs. It creates a Variable called weights for each input tensor,
966 967
    which represents a fully connected weight matrix from each input unit to
    each output unit. The fully connected layer multiplies each input tensor
968 969 970
    with its corresponding weight to produce an output Tensor with shape [N, `size`],
    where N is batch size. If multiple input tensors are given, the results of
    multiple output tensors with shape [N, `size`] will be summed up. If ``bias_attr``
971
    is not None, a bias variable will be created and added to the output.
972
    Finally, if ``act`` is not None, it will be applied to the output as well.
973

974
    When the input is single ``Tensor`` :
975 976 977 978 979

    .. math::

        Out = Act({XW + b})

980
    When the input are multiple ``Tensor`` :
981 982 983 984 985 986 987

    .. math::

        Out = Act({\sum_{i=0}^{N-1}X_iW_i + b})

    In the above equation:

988 989
    * :math:`N`: Number of the input. N equals to len(input) if input is list of ``Tensor`` .
    * :math:`X_i`: The i-th input ``Tensor`` .
990 991 992
    * :math:`W_i`: The i-th weights matrix corresponding i-th input tensor.
    * :math:`b`: The bias parameter created by this layer (if needed).
    * :math:`Act`: The activation function.
993
    * :math:`Out`: The output ``Tensor`` .
994 995 996 997 998 999

    See below for an example.

    .. code-block:: text

        Given:
1000 1001
            data_1.data = [[[0.1, 0.2]]]
            data_1.shape = (1, 1, 2) # 1 is batch_size
1002

1003 1004
            data_2.data = [[[0.1, 0.2, 0.3]]]
            data_2.shape = (1, 1, 3) # 1 is batch_size
1005

1006 1007
            fc = FC("fc", 2, num_flatten_dims=2)
            out = fc(input=[data_1, data_2])
1008 1009

        Then:
1010 1011
            out.data = [[[0.182996 -0.474117]]]
            out.shape = (1, 1, 2)
1012

1013
    Parameters:
L
lujun 已提交
1014
        name_scope(str): The name of this class.
1015
        size(int): The number of output units in this layer.
1016 1017
        num_flatten_dims (int, optional): The fc layer can accept an input tensor with more than
            two dimensions. If this happens, the multi-dimension tensor will first be flattened
1018 1019 1020 1021 1022 1023
            into a 2-dimensional matrix. The parameter `num_flatten_dims` determines how the input
            tensor is flattened: the first `num_flatten_dims` (inclusive, index starts from 1)
            dimensions will be flatten to form the first dimension of the final matrix (height of
            the matrix), and the rest `rank(X) - num_flatten_dims` dimensions are flattened to
            form the second dimension of the final matrix (width of the matrix). For example, suppose
            `X` is a 5-dimensional tensor with a shape [2, 3, 4, 5, 6], and `num_flatten_dims` = 3.
L
lujun 已提交
1024
            Then, the flattened matrix will have a shape [2 x 3 x 4, 5 x 6] = [24, 30]. Default: 1
1025 1026 1027
        param_attr (ParamAttr or list of ParamAttr, optional): The parameter attribute for learnable
            weights(Parameter) of this layer. Default: None.
        bias_attr (ParamAttr or list of ParamAttr, optional): The attribute for the bias
1028 1029
            of this layer. If it is set to False, no bias will be added to the output units.
            If it is set to None, the bias is initialized zero. Default: None.
1030 1031 1032
        act (str, optional): Activation to be applied to the output of this layer. Default: None.
        is_test(bool, optional): A flag indicating whether execution is in test phase. Default: False.
        dtype(str, optional): Dtype used for weight, it can be "float32" or "float64". Default: "float32".
1033

1034 1035
    Attribute:
        **weight** (list of Parameter): the learnable weights of this layer.
1036

1037
        **bias** (Parameter or None): the learnable bias of this layer.
1038

1039 1040 1041
    Returns:
        None
    
1042 1043
    Examples:
        .. code-block:: python
L
lujun 已提交
1044

1045 1046 1047 1048
          from paddle.fluid.dygraph.base import to_variable
          import paddle.fluid as fluid
          from paddle.fluid.dygraph import FC
          import numpy as np
L
lujun 已提交
1049

1050
          data = np.random.uniform(-1, 1, [30, 10, 32]).astype('float32')
1051
          with fluid.dygraph.guard():
1052 1053 1054
              fc = FC("fc", 64, num_flatten_dims=2)
              data = to_variable(data)
              conv = fc(data)
1055 1056 1057

    """

M
minqiyang 已提交
1058
    def __init__(self,
X
Xin Pan 已提交
1059
                 name_scope,
M
minqiyang 已提交
1060
                 size,
1061
                 num_flatten_dims=1,
M
minqiyang 已提交
1062
                 param_attr=None,
M
minqiyang 已提交
1063
                 bias_attr=None,
1064 1065 1066
                 act=None,
                 is_test=False,
                 dtype="float32"):
1067
        super(FC, self).__init__(name_scope, dtype)
M
minqiyang 已提交
1068

M
minqiyang 已提交
1069
        self._size = size
M
minqiyang 已提交
1070 1071
        self._num_flatten_dims = num_flatten_dims
        self._dtype = dtype
1072
        self._param_attr = param_attr
1073
        self._bias_attr = bias_attr
1074
        self._act = act
1075 1076
        self.__w = list()

1077
    def _build_once(self, input):
1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099
        i = 0
        for inp, param in self._helper.iter_inputs_and_params(input,
                                                              self._param_attr):
            input_shape = inp.shape

            param_shape = [
                reduce(lambda a, b: a * b, input_shape[self._num_flatten_dims:],
                       1)
            ] + [self._size]
            self.__w.append(
                self.add_parameter(
                    '_w%d' % i,
                    self.create_parameter(
                        attr=param,
                        shape=param_shape,
                        dtype=self._dtype,
                        is_bias=False)))
            i += 1

        size = list([self._size])
        self._b = self.create_parameter(
            attr=self._bias_attr, shape=size, dtype=self._dtype, is_bias=True)
M
minqiyang 已提交
1100

1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130
    # TODO(songyouwei): We should remove _w property
    @property
    def _w(self, i=0):
        return self.__w[i]

    @_w.setter
    def _w(self, value, i=0):
        assert isinstance(self.__w[i], Variable)
        self.__w[i].set_value(value)

    @property
    def weight(self):
        if len(self.__w) > 1:
            return self.__w
        else:
            return self.__w[0]

    @weight.setter
    def weight(self, value):
        if len(self.__w) == 1:
            self.__w[0] = value

    @property
    def bias(self):
        return self._b

    @bias.setter
    def bias(self, value):
        self._b = value

M
minqiyang 已提交
1131
    def forward(self, input):
1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158
        mul_results = list()
        i = 0
        for inp, param in self._helper.iter_inputs_and_params(input,
                                                              self._param_attr):
            tmp = self._helper.create_variable_for_type_inference(self._dtype)
            self._helper.append_op(
                type="mul",
                inputs={"X": inp,
                        "Y": self.__w[i]},
                outputs={"Out": tmp},
                attrs={
                    "x_num_col_dims": self._num_flatten_dims,
                    "y_num_col_dims": 1
                })
            i += 1
            mul_results.append(tmp)

        if len(mul_results) == 1:
            pre_bias = mul_results[0]
        else:
            pre_bias = self._helper.create_variable_for_type_inference(
                self._dtype)
            self._helper.append_op(
                type="sum",
                inputs={"X": mul_results},
                outputs={"Out": pre_bias},
                attrs={"use_mkldnn": False})
M
minqiyang 已提交
1159

1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170
        if self._b:
            pre_activation = self._helper.create_variable_for_type_inference(
                dtype=self._dtype)
            self._helper.append_op(
                type='elementwise_add',
                inputs={'X': [pre_bias],
                        'Y': [self._b]},
                outputs={'Out': [pre_activation]},
                attrs={'axis': self._num_flatten_dims})
        else:
            pre_activation = pre_bias
L
lujun 已提交
1171
        # Currently, we don't support inplace in dygraph mode
1172
        return self._helper.append_activation(pre_activation, act=self._act)
M
minqiyang 已提交
1173 1174 1175


class BatchNorm(layers.Layer):
1176
    """
1177 1178 1179 1180 1181
    This interface is used to construct a callable object of the ``BatchNorm`` class.
    For more details, refer to code examples.
    It implements the function of the Batch Normalization Layer and can be used 
    as a normalizer function for conv2d and fully connected operations.
    The data is normalized by the mean and variance of the channel based on the current batch data.
1182 1183 1184 1185
    Refer to `Batch Normalization: Accelerating Deep Network Training by Reducing
    Internal Covariate Shift <https://arxiv.org/pdf/1502.03167.pdf>`_
    for more details.

1186 1187 1188
    When use_global_stats = False, the :math:`\\mu_{\\beta}` 
    and :math:`\\sigma_{\\beta}^{2}` are the statistics of one mini-batch.
    Calculated as follows:
1189 1190 1191 1192 1193 1194 1195 1196

    ..  math::

        \\mu_{\\beta} &\\gets \\frac{1}{m} \\sum_{i=1}^{m} x_i \\qquad &//\\
        \ mini-batch\ mean \\\\
        \\sigma_{\\beta}^{2} &\\gets \\frac{1}{m} \\sum_{i=1}^{m}(x_i - \\
        \\mu_{\\beta})^2 \\qquad &//\ mini-batch\ variance \\\\

1197 1198
    - :math:`x` : mini-batch data
    - :math:`m` : the size of the mini-batch data
1199 1200 1201

    When use_global_stats = True, the :math:`\\mu_{\\beta}`
    and :math:`\\sigma_{\\beta}^{2}` are not the statistics of one mini-batch.
1202 1203 1204 1205 1206 1207
    They are global or running statistics (moving_mean and moving_variance). It usually got from the
    pre-trained model. Calculated as follows:

    .. math::
        moving\_mean = moving\_mean * momentum + \mu_{\beta} * (1. - momentum) \quad &// global mean \\
        moving\_variance = moving\_variance * momentum + \sigma_{\beta}^{2} * (1. - momentum) \quad &// global variance \\
1208

1209 1210
    The normalization function formula is as follows:
 
1211 1212 1213
    ..  math::

        \\hat{x_i} &\\gets \\frac{x_i - \\mu_\\beta} {\\sqrt{\\
1214 1215 1216 1217 1218 1219
        \\sigma_{\\beta}^{2} + \\epsilon}} \\qquad &//\ normalize \\\\
        y_i &\\gets \\gamma \\hat{x_i} + \\beta \\qquad &//\ scale\ and\ shift

    - :math:`\\epsilon` : add a smaller value to the variance to prevent division by zero
    - :math:`\\gamma` : trainable proportional parameter
    - :math:`\\beta` : trainable deviation parameter
1220

1221
    Parameters:
1222 1223 1224 1225 1226 1227
        num_channels(int): Indicate the number of channels of the input ``Tensor``.
        act(str, optional): Activation to be applied to the output of batch normalizaiton. Default: None.
        is_test (bool, optional): A flag indicating whether it is in test phrase or not. Default: False.
        momentum(float, optional): The value used for the moving_mean and moving_var computation. Default: 0.9.
        epsilon(float, optional): The small value added to the variance to prevent division by zero. Default: 1e-5.
        param_attr(ParamAttr, optional): The parameter attribute for Parameter `scale`
1228 1229 1230
             of batch_norm. If it is set to None or one attribute of ParamAttr, batch_norm
             will create ParamAttr as param_attr. If the Initializer of the param_attr
             is not set, the parameter is initialized with Xavier. Default: None.
1231
        bias_attr(ParamAttr, optional): The parameter attribute for the bias of batch_norm.
1232 1233 1234
             If it is set to None or one attribute of ParamAttr, batch_norm
             will create ParamAttr as bias_attr. If the Initializer of the bias_attr
             is not set, the bias is initialized zero. Default: None.
1235 1236 1237 1238 1239 1240
        dtype(str, optional): Indicate the data type of the input ``Tensor``,
             which can be float32 or float64. Default: float32.
        data_layout(str, optional): Specify the input data format, the data format can be "NCHW" or "NHWC". Default: NCHW.
        in_place(bool, optional): Make the input and output of batch norm reuse memory. Default: False.
        moving_mean_name(str, optional): The name of moving_mean which store the global Mean. Default: None.
        moving_variance_name(str, optional): The name of the moving_variance which store the global Variance. Default: None.
1241 1242
        do_model_average_for_mean_and_var(bool, optional): Whether parameter mean and variance should do model
            average when model average is enabled. Default: True.
1243
        use_global_stats(bool, optional): Whether to use global mean and
1244 1245 1246
            variance. In inference or test mode, set use_global_stats to true
            or is_test to true, and the behavior is equivalent.
            In train mode, when setting use_global_stats True, the global mean
1247 1248 1249 1250
            and variance are also used during train period. Default: False.
        trainable_statistics(bool, optional): Whether to calculate mean and var in eval mode. In eval mode, when
            setting trainable_statistics True, mean and variance will be calculated by current batch statistics.
            Default: False.
1251 1252

    Returns:
1253
        None
1254 1255 1256

    Examples:
        .. code-block:: python
L
lujun 已提交
1257 1258

          import paddle.fluid as fluid
1259 1260
          from paddle.fluid.dygraph.base import to_variable
          import numpy as np
L
lujun 已提交
1261

1262
          x = np.random.random(size=(3, 10, 3, 7)).astype('float32')
L
lujun 已提交
1263
          with fluid.dygraph.guard():
1264
              x = to_variable(x)
1265
              batch_norm = fluid.BatchNorm(10)
1266
              hidden1 = batch_norm(x)
1267 1268
    """

M
minqiyang 已提交
1269 1270 1271 1272 1273 1274 1275 1276
    def __init__(self,
                 num_channels,
                 act=None,
                 is_test=False,
                 momentum=0.9,
                 epsilon=1e-05,
                 param_attr=None,
                 bias_attr=None,
1277
                 dtype='float32',
M
minqiyang 已提交
1278 1279 1280 1281
                 data_layout='NCHW',
                 in_place=False,
                 moving_mean_name=None,
                 moving_variance_name=None,
1282
                 do_model_average_for_mean_and_var=True,
1283 1284
                 use_global_stats=False,
                 trainable_statistics=False):
1285
        super(BatchNorm, self).__init__()
1286
        self._param_attr = param_attr
1287
        self._bias_attr = bias_attr
1288
        self._act = act
M
minqiyang 已提交
1289 1290 1291

        assert bias_attr is not False, "bias_attr should not be False in batch_norm."

1292 1293
        if dtype == "float16":
            self._dtype = "float32"
M
minqiyang 已提交
1294 1295 1296 1297 1298 1299
        else:
            self._dtype = dtype

        param_shape = [num_channels]

        # create parameter
1300
        self.weight = self.create_parameter(
1301
            attr=self._param_attr,
M
minqiyang 已提交
1302 1303 1304
            shape=param_shape,
            dtype=self._dtype,
            default_initializer=Constant(1.0))
1305
        self.weight.stop_gradient = use_global_stats and self._param_attr.learning_rate == 0.
M
minqiyang 已提交
1306

1307
        self.bias = self.create_parameter(
1308
            attr=self._bias_attr,
M
minqiyang 已提交
1309 1310 1311
            shape=param_shape,
            dtype=self._dtype,
            is_bias=True)
1312
        self.bias.stop_gradient = use_global_stats and self._param_attr.learning_rate == 0.
M
minqiyang 已提交
1313

1314
        self._mean = self.create_parameter(
M
minqiyang 已提交
1315 1316 1317 1318 1319 1320 1321
            attr=ParamAttr(
                name=moving_mean_name,
                initializer=Constant(0.0),
                trainable=False,
                do_model_average=do_model_average_for_mean_and_var),
            shape=param_shape,
            dtype=self._dtype)
1322
        self._mean.stop_gradient = True
M
minqiyang 已提交
1323

1324
        self._variance = self.create_parameter(
M
minqiyang 已提交
1325 1326 1327 1328 1329 1330 1331
            attr=ParamAttr(
                name=moving_variance_name,
                initializer=Constant(1.0),
                trainable=False,
                do_model_average=do_model_average_for_mean_and_var),
            shape=param_shape,
            dtype=self._dtype)
1332
        self._variance.stop_gradient = True
M
minqiyang 已提交
1333 1334

        self._in_place = in_place
1335
        self._data_layout = data_layout
M
minqiyang 已提交
1336 1337 1338
        self._momentum = momentum
        self._epsilon = epsilon
        self._is_test = is_test
1339
        self._fuse_with_relu = False
M
minqiyang 已提交
1340
        self._use_global_stats = use_global_stats
1341
        self._trainable_statistics = trainable_statistics
M
minqiyang 已提交
1342 1343 1344 1345 1346 1347 1348 1349 1350

    def forward(self, input):
        # create output
        # mean and mean_out share the same memory
        mean_out = self._mean
        # variance and variance out share the same memory
        variance_out = self._variance

        saved_mean = self._helper.create_variable_for_type_inference(
M
minqiyang 已提交
1351
            dtype=self._dtype, stop_gradient=True)
M
minqiyang 已提交
1352
        saved_variance = self._helper.create_variable_for_type_inference(
M
minqiyang 已提交
1353
            dtype=self._dtype, stop_gradient=True)
M
minqiyang 已提交
1354
        batch_norm_out = input if self._in_place else self._helper.create_variable_for_type_inference(
M
minqiyang 已提交
1355
            self._dtype)
M
minqiyang 已提交
1356 1357 1358 1359 1360

        self._helper.append_op(
            type="batch_norm",
            inputs={
                "X": input,
1361 1362
                "Scale": self.weight,
                "Bias": self.bias,
M
minqiyang 已提交
1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376
                "Mean": self._mean,
                "Variance": self._variance
            },
            outputs={
                "Y": batch_norm_out,
                "MeanOut": mean_out,
                "VarianceOut": variance_out,
                "SavedMean": saved_mean,
                "SavedVariance": saved_variance
            },
            attrs={
                "momentum": self._momentum,
                "epsilon": self._epsilon,
                "is_test": self._is_test,
1377
                "data_layout": self._data_layout,
M
minqiyang 已提交
1378 1379
                "use_mkldnn": False,
                "fuse_with_relu": self._fuse_with_relu,
1380 1381
                "use_global_stats": self._use_global_stats,
                "trainable_statistics": self._trainable_statistics
M
minqiyang 已提交
1382 1383
            })

L
lujun 已提交
1384
        # Currently, we don't support inplace in dygraph mode
1385
        return self._helper.append_activation(batch_norm_out, self._act)
1386 1387


1388 1389 1390 1391
class Embedding(layers.Layer):
    """
    **Embedding Layer**

Z
zhongpu 已提交
1392 1393 1394 1395 1396 1397
    This interface is used to construct a callable object of the ``Embedding`` class.
    For specific usage, refer to code examples. It implements the function of the Embedding Layer.
    This layer is used to lookup embeddings vector of ids provided by :attr:`input` .
    It automatically constructs a 2D embedding matrix based on the
    input :attr:`size` (vocab_size, emb_size) and :attr:`dtype` .

1398 1399
    The shape of output Tensor is generated by appending an emb_size dimension to the
    last dimension of the input Tensor shape.
Z
zhongpu 已提交
1400

1401
    **Note:** The id in :attr:`input` must satisfy :math:`0 =< id < size[0]` ,
Z
zhongpu 已提交
1402 1403 1404 1405 1406 1407 1408
    otherwise the program will throw an exception and exit.

    .. code-block:: text

        Case 1:

        input is a Tensor. padding_idx = -1
1409 1410
            input.data = [[1, 3], [2, 4], [4, 127]
            input.shape = [3, 2]
Z
zhongpu 已提交
1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423
        Given size = [128, 16]
        output is a Tensor:
            out.shape = [3, 2, 16]
            out.data = [[[0.129435295, 0.244512452, ..., 0.436322452],
                        [0.345421456, 0.524563927, ..., 0.144534654]],

                        [[0.345249859, 0.124939536, ..., 0.194353745],
                        [0.945345345, 0.435394634, ..., 0.435345365]],
                        
                        [[0.945345345, 0.435394634, ..., 0.435345365],
                        [0.0,         0.0,         ..., 0.0        ]]]  # padding data
        The input padding_idx is less than 0, it is automatically converted to padding_idx = -1 + 128 = 127
        It will pad all-zero data when ids is 127.
1424

1425
    Parameters:
L
lujun 已提交
1426 1427
        size(tuple|list): The shape of the look up table parameter. It should have two elements which indicate the size
            of the dictionary of embeddings and the size of each embedding vector respectively.
Z
zhongpu 已提交
1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449
        is_sparse(bool): The flag indicating whether to use sparse update. This parameter only
            affects the performance of the backwards gradient update. It is recommended to set 
            True because sparse update is faster. But some optimizer does not support sparse update,
            such as :ref:`api_fluid_optimizer_AdadeltaOptimizer` , :ref:`api_fluid_optimizer_AdamaxOptimizer` , 
            :ref:`api_fluid_optimizer_DecayedAdagradOptimizer` , :ref:`api_fluid_optimizer_FtrlOptimizer` ,
            :ref:`api_fluid_optimizer_LambOptimizer` and :ref:`api_fluid_optimizer_LarsMomentumOptimizer` .
            In these case, is_sparse must be False. Default: False.
        is_distributed(bool): Whether to store the embedding matrix in a distributed manner. Only used
            in multi-machine distributed CPU training. Default: False.
        padding_idx(int|long|None): padding_idx needs to be in the interval [-vocab_size, vocab_size). 
            If :math:`padding\_idx < 0`, the :math:`padding\_idx` will automatically be converted
            to :math:`vocab\_size + padding\_idx` . It will output all-zero padding data whenever lookup
            encounters :math:`padding\_idx` in id. And the padding data will not be updated while training.
            If set None, it makes no effect to output. Default: None.
        param_attr(ParamAttr): To specify the weight parameter property. Default: None, which means the
            default weight parameter property is used. See usage for details in :ref:`api_fluid_ParamAttr` . In addition,
            user-defined or pre-trained word vectors can be loaded with the :attr:`param_attr` parameter. 
            The local word vector needs to be transformed into numpy format, and the shape of local word
            vector shoud be consistent with :attr:`size` . Then :ref:`api_fluid_initializer_NumpyArrayInitializer`
            is used to load custom or pre-trained word vectors. See code example 2 for details.
        dtype(np.dtype|core.VarDesc.VarType|str): It refers to the data type of output Tensor.
            It must be "float32" or "float64". Default: "float32".
1450

Z
zhongpu 已提交
1451 1452
    Attribute:
        **weight** (Parameter): the learnable weights of this layer.
1453

1454
    Returns:
Z
zhongpu 已提交
1455
        Variable: Embedding Tensor or LoDTensor mapped by input. The data type is the same as :attr:`dtype` .
1456 1457

    Examples:
1458

1459 1460
        .. code-block:: python

L
lujun 已提交
1461 1462 1463 1464
          import paddle.fluid as fluid
          import paddle.fluid.dygraph.base as base
          import numpy as np

Z
zhongpu 已提交
1465
          # example 1
1466 1467
          inp_word = np.array([[2, 3, 5], [4, 2, 1]]).astype('int64')
          inp_word.shape  # [2, 3]
1468 1469
          dict_size = 20
          with fluid.dygraph.guard():
L
lujun 已提交
1470
              emb = fluid.dygraph.Embedding(
1471 1472 1473
                  size=[dict_size, 32],
                  param_attr='emb.w',
                  is_sparse=False)
L
lujun 已提交
1474
              static_rlt3 = emb(base.to_variable(inp_word))
1475
              static_rlt3.shape  # [2, 3, 32]
Z
zhongpu 已提交
1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489

          # example 2: load custom or pre-trained word vectors
          weight_data = np.random.random(size=(128, 100))  # word vectors with numpy format
          w_param_attrs = fluid.ParamAttr(
              name="emb_weight",
              learning_rate=0.5,
              initializer=fluid.initializer.NumpyArrayInitializer(weight_data),
              trainable=True)
          with fluid.dygraph.guard():
              emb = fluid.dygraph.Embedding(
                  size=[128, 100],
                  param_attr= w_param_attrs,
                  is_sparse=False)
              static_rlt3 = emb(base.to_variable(inp_word))          
1490 1491
    """

1492 1493 1494 1495 1496 1497 1498
    def __init__(self,
                 size,
                 is_sparse=False,
                 is_distributed=False,
                 padding_idx=None,
                 param_attr=None,
                 dtype='float32'):
1499
        super(Embedding, self).__init__()
1500 1501 1502 1503
        self._size = size
        self._is_sparse = is_sparse
        self._is_distributed = is_distributed
        self._padding_idx = -1 if padding_idx is None else padding_idx if padding_idx >= 0 else (
J
JiabinYang 已提交
1504
            size[0] + padding_idx)
1505 1506 1507

        self._param_attr = param_attr
        self._dtype = dtype
J
JiabinYang 已提交
1508
        self._remote_prefetch = self._is_sparse and (not self._is_distributed)
1509 1510 1511
        if self._remote_prefetch:
            assert self._is_sparse is True and self._is_distributed is False

1512
        self.weight = self.create_parameter(
1513 1514 1515 1516 1517 1518
            attr=self._param_attr,
            shape=self._size,
            dtype=self._dtype,
            is_bias=False)

    def forward(self, input):
1519 1520 1521 1522 1523 1524
        attrs = {
            'is_sparse': self._is_sparse,
            'is_distributed': self._is_distributed,
            'remote_prefetch': self._remote_prefetch,
            'padding_idx': self._padding_idx
        }
1525

1526
        if in_dygraph_mode():
1527
            inputs = {'Ids': [input], 'W': [self.weight]}
1528 1529 1530
            outs = core.ops.lookup_table_v2(inputs, attrs)
            return outs['Out'][0]

1531 1532
        out = self._helper.create_variable_for_type_inference(self._dtype)
        self._helper.append_op(
1533
            type='lookup_table_v2',
1534
            inputs={'Ids': input,
1535
                    'W': self.weight},
1536
            outputs={'Out': out},
1537
            attrs=attrs)
1538 1539

        return out
M
minqiyang 已提交
1540 1541


1542
class LayerNorm(layers.Layer):
1543
    """
1544 1545 1546
    This interface is used to construct a callable object of the ``LayerNorm`` class.
    For more details, refer to code examples.
    It implements the function of the Layer Normalization Layer and can be applied to mini-batch input data.
1547
    Refer to `Layer Normalization <https://arxiv.org/pdf/1607.06450v1.pdf>`_
1548

1549
    The formula is as follows:
1550

1551
    ..  math::
1552

1553
        \\mu & = \\frac{1}{H}\\sum_{i=1}^{H} x_i
1554

1555
        \\sigma & = \\sqrt{\\frac{1}{H}\sum_{i=1}^{H}{(x_i - \\mu)^2} + \\epsilon}
1556

1557
        y & = f(\\frac{g}{\\sigma}(x - \\mu) + b)
1558

1559 1560 1561 1562 1563
    - :math:`x`: the vector representation of the summed inputs to the neurons in that layer.
    - :math:`H`: the number of hidden units in a layers
    - :math:`\\epsilon`: the small value added to the variance to prevent division by zero.
    - :math:`g`: the trainable scale parameter.
    - :math:`b`: the trainable bias parameter.
1564

1565
    Parameters:
1566 1567 1568 1569
        normalized_shape(int or list or tuple): Input shape from an expected input of
            size :math:`[*, normalized_shape[0], normalized_shape[1], ..., normalized_shape[-1]]`.
            If it is a single integer, this module will normalize over the last dimension
            which is expected to be of that specific size.
1570
        scale(bool, optional): Whether to learn the adaptive gain :math:`g` after
L
lujun 已提交
1571
            normalization. Default: True.
1572
        shift(bool, optional): Whether to learn the adaptive bias :math:`b` after
L
lujun 已提交
1573
            normalization. Default: True.
1574
        epsilon(float, optional): The small value added to the variance to prevent
L
lujun 已提交
1575
            division by zero. Default: 1e-05.
1576
        param_attr(ParamAttr, optional): The parameter attribute for the learnable
1577 1578 1579
            gain :math:`g`. If :attr:`scale` is False, :attr:`param_attr` is
            omitted. If :attr:`scale` is True and :attr:`param_attr` is None,
            a default :code:`ParamAttr` would be added as scale. The
L
lujun 已提交
1580
            :attr:`param_attr` is initialized as 1 if it is added. Default: None.
1581
        bias_attr(ParamAttr, optional): The parameter attribute for the learnable
1582 1583 1584
            bias :math:`b`. If :attr:`shift` is False, :attr:`bias_attr` is
            omitted. If :attr:`shift` is True and :attr:`param_attr` is None,
            a default :code:`ParamAttr` would be added as bias. The
L
lujun 已提交
1585
            :attr:`bias_attr` is initialized as 0 if it is added. Default: None.
1586
        act(str, optional): Activation to be applied to the output of layer normalizaiton.
L
lujun 已提交
1587
                  Default: None.
1588 1589
        dtype (str, optional): Data type, it can be "float32" or "float64". Default: "float32".

1590
    Returns:
1591
        None
1592

1593
    Examples:
1594

1595 1596 1597
        .. code-block:: python

          import paddle.fluid as fluid
1598
          from paddle.fluid.dygraph.base import to_variable
1599 1600
          import numpy

1601
          x = numpy.random.random((3, 32, 32)).astype('float32')
1602
          with fluid.dygraph.guard():
1603
              x = to_variable(x)
1604
              layerNorm = fluid.LayerNorm([32, 32])
1605
              ret = layerNorm(x)
1606

1607
    """
1608

1609
    def __init__(self,
1610
                 normalized_shape,
1611 1612 1613 1614 1615
                 scale=True,
                 shift=True,
                 epsilon=1e-05,
                 param_attr=None,
                 bias_attr=None,
1616 1617 1618 1619 1620 1621
                 act=None,
                 dtype='float32'):
        super(LayerNorm, self).__init__()
        if isinstance(normalized_shape, numbers.Integral):
            normalized_shape = [normalized_shape]
        self._normalized_shape = list(normalized_shape)
1622 1623 1624 1625 1626 1627
        self._scale = scale
        self._shift = shift
        self._epsilon = epsilon
        self._param_attr = param_attr
        self._bias_attr = bias_attr
        self._act = act
1628 1629
        self._dtype = dtype
        param_shape = [np.prod(self._normalized_shape)]
1630
        if self._scale:
1631
            self.weight = self.create_parameter(
1632 1633 1634 1635
                attr=self._param_attr,
                shape=param_shape,
                dtype=self._dtype,
                default_initializer=Constant(1.0))
1636 1637 1638 1639
        else:
            if self._param_attr:
                logging.warn("param_attr are only avaliable with scale is True")

1640 1641
        if self._shift:
            assert self._bias_attr is not False
1642
            self.bias = self.create_parameter(
1643 1644 1645 1646
                attr=self._bias_attr,
                shape=param_shape,
                dtype=self._dtype,
                is_bias=True)
1647 1648 1649
        else:
            if self._bias_attr:
                logging.warn("bias_attr are only avaliable with shift is True")
1650 1651

    def forward(self, input):
1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662
        input_shape = list(input.shape)
        input_ndim = len(input_shape)
        normalized_ndim = len(self._normalized_shape)
        self._begin_norm_axis = input_ndim - normalized_ndim
        if input_ndim < normalized_ndim or input_shape[
                self._begin_norm_axis:] != self._normalized_shape:
            str_normalized_shape = str(self._normalized_shape)
            raise ValueError(
                'Given normalized_shape is ' + str_normalized_shape +
                ', expected input with shape [*, ' + str_normalized_shape[
                    1:] + ', but got input shape ' + str(input_shape))
1663 1664 1665
        inputs = dict()
        inputs['X'] = input
        if self._scale:
1666
            inputs['Scale'] = self.weight
1667
        if self._shift:
1668
            inputs['Bias'] = self.bias
1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689
        # create output
        mean_out = self._helper.create_variable_for_type_inference(
            dtype=self._dtype, stop_gradient=True)
        variance_out = self._helper.create_variable_for_type_inference(
            dtype=self._dtype, stop_gradient=True)
        layer_norm_out = self._helper.create_variable_for_type_inference(
            self._dtype)

        self._helper.append_op(
            type="layer_norm",
            inputs=inputs,
            outputs={
                "Y": layer_norm_out,
                "Mean": mean_out,
                "Variance": variance_out,
            },
            attrs={
                "epsilon": self._epsilon,
                "begin_norm_axis": self._begin_norm_axis
            })

1690
        return self._helper.append_activation(layer_norm_out, act=self._act)
1691 1692


M
minqiyang 已提交
1693 1694 1695
class GRUUnit(layers.Layer):
    """
    **GRU unit layer**
D
DuYao 已提交
1696 1697 1698 1699 1700
    
    It creates a callable object from GRUUnit class.
    If origin_mode is True, then the equation of a gru step is from paper
    `Learning Phrase Representations using RNN Encoder-Decoder for Statistical 
    Machine Translation <https://arxiv.org/pdf/1406.1078.pdf>`_
M
minqiyang 已提交
1701 1702 1703 1704 1705 1706 1707 1708 1709 1710

        .. math::
            u_t & = actGate(xu_{t} + W_u h_{t-1} + b_u)

            r_t & = actGate(xr_{t} + W_r h_{t-1} + b_r)

            m_t & = actNode(xm_t + W_c dot(r_t, h_{t-1}) + b_m)

            h_t & = dot(u_t, h_{t-1}) + dot((1-u_t), m_t)

D
DuYao 已提交
1711
    If origin_mode is False, then the equation of a gru step is from paper
M
minqiyang 已提交
1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736
    `Empirical Evaluation of Gated Recurrent Neural Networks on Sequence
    Modeling <https://arxiv.org/pdf/1412.3555.pdf>`_

        .. math::
            u_t & = actGate(xu_{t} + W_u h_{t-1} + b_u)

            r_t & = actGate(xr_{t} + W_r h_{t-1} + b_r)

            m_t & = actNode(xm_t + W_c dot(r_t, h_{t-1}) + b_m)

            h_t & = dot((1-u_t), h_{t-1}) + dot(u_t, m_t)


    The inputs of gru unit includes :math:`z_t`, :math:`h_{t-1}`. In terms
    of the equation above, the :math:`z_t` is split into 3 parts -
    :math:`xu_t`, :math:`xr_t` and :math:`xm_t`. This means that in order to
    implement a full GRU unit operator for an input, a fully
    connected layer has to be applied, such that :math:`z_t = W_{fc}x_t`.

    The terms :math:`u_t` and :math:`r_t` represent the update and reset gates
    of the GRU cell. Unlike LSTM, GRU has one lesser gate. However, there is
    an intermediate candidate hidden output, which is denoted by :math:`m_t`.
    This layer has three outputs :math:`h_t`, :math:`dot(r_t, h_{t-1})`
    and concatenation of :math:`u_t`, :math:`r_t` and :math:`m_t`.

1737
    Parameters:
L
lujun 已提交
1738
        size (int): The input dimension value.
D
DuYao 已提交
1739 1740 1741 1742 1743 1744 1745 1746 1747
        param_attr(ParamAttr, optional): The parameter attribute for the learnable
            hidden-hidden weight matrix. 
            
            **Note**:
    
                1. The shape of the weight matrix is :math:`[T, 3*D]`, where D is the hidden size.
                2. All elements in the weight matrix can be divided into two parts. The first 
                   part are weights of the update gate and reset gate with shape :math:`[D, 2*D]`, 
                   and the second part are weights for candidate hidden state with shape :math:`[D, D]`.
M
minqiyang 已提交
1748 1749 1750 1751


            If it is set to None or one attribute of ParamAttr, gru_unit will
            create ParamAttr as param_attr. If the Initializer of the param_attr
D
DuYao 已提交
1752 1753 1754 1755
            is not set, the parameter is initialized with Xavier. The default 
            value is None.
        bias_attr (ParamAttr|bool, optional): The parameter attribute for the bias
            of GRU.Note that the bias with :math:`[1, 3*D]` concatenates
M
minqiyang 已提交
1756 1757 1758 1759 1760
            the bias in the update gate, reset gate and candidate calculations.
            If it is set to False, no bias will be applied to the update gate,
            reset gate and candidate calculations. If it is set to None or one
            attribute of ParamAttr, gru_unit will create ParamAttr as
            bias_attr. If the Initializer of the bias_attr is not set, the bias
D
DuYao 已提交
1761
            is initialized zero. The default value is None.
L
lujun 已提交
1762
        activation (str): The activation type for cell (actNode).
D
DuYao 已提交
1763
                             The default value is 'tanh'.
L
lujun 已提交
1764
        gate_activation (str): The activation type for gates (actGate).
D
DuYao 已提交
1765 1766 1767
                                  The default value is 'sigmoid'.
        dtype(str): The dtype of the layers. The data type can be set as
            'float32', 'float64'. The default value is 'float32'.
M
minqiyang 已提交
1768

D
DuYao 已提交
1769 1770 1771 1772
    Attribute:
        **weight** (Parameter): the learnable weights of this layer.

        **bias** (Parameter): the learnable bias of this layer.
1773

M
minqiyang 已提交
1774
    Returns:
D
DuYao 已提交
1775 1776 1777 1778
        tuple: The hidden value, reset-hidden value and gate values. The hidden value
        is a 2-D tensor with shape  :math:`[T, D]` . The reset-hidden value is a
        2-D tensor with shape  :math:`[T, D]` . The gate value is a 2-D tensor with 
        shape  :math:`[T, 3*D]`.
L
lujun 已提交
1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791

    Examples:

        .. code-block:: python

          import paddle.fluid as fluid
          import paddle.fluid.dygraph.base as base
          import numpy

          lod = [[2, 4, 3]]
          D = 5
          T = sum(lod[0])

D
DuYao 已提交
1792
          input = numpy.random.rand(T, 3 * D).astype('float32')
L
lujun 已提交
1793 1794 1795
          hidden_input = numpy.random.rand(T, D).astype('float32')
          with fluid.dygraph.guard():
              x = numpy.random.random((3, 32, 32)).astype('float32')
1796
              gru = fluid.dygraph.GRUUnit(size=D * 3)
L
lujun 已提交
1797 1798 1799
              dy_ret = gru(
                base.to_variable(input), base.to_variable(hidden_input))

M
minqiyang 已提交
1800 1801 1802 1803 1804 1805 1806 1807 1808 1809
    """

    def __init__(self,
                 size,
                 param_attr=None,
                 bias_attr=None,
                 activation='tanh',
                 gate_activation='sigmoid',
                 origin_mode=False,
                 dtype='float32'):
1810
        super(GRUUnit, self).__init__()
1811
        self._bias_attr = bias_attr
M
minqiyang 已提交
1812 1813 1814 1815 1816
        activation_dict = dict(
            identity=0,
            sigmoid=1,
            tanh=2,
            relu=3, )
H
Hongyu Liu 已提交
1817 1818
        self.activation = activation_dict[activation]
        self.gate_activation = activation_dict[gate_activation]
M
minqiyang 已提交
1819

M
minqiyang 已提交
1820
        self._dtype = dtype
M
minqiyang 已提交
1821 1822
        size = size // 3
        # create weight
1823
        self.weight = self.create_parameter(
M
minqiyang 已提交
1824
            attr=param_attr, shape=[size, 3 * size], dtype=dtype)
M
minqiyang 已提交
1825 1826

        # create bias
M
minqiyang 已提交
1827
        bias_size = [1, 3 * size]
1828
        self._bias_size = bias_size
1829
        self.bias = self.create_parameter(
M
minqiyang 已提交
1830
            attr=bias_attr, shape=bias_size, dtype=dtype, is_bias=True)
M
minqiyang 已提交
1831

M
minqiyang 已提交
1832
    def forward(self, input, hidden):
1833 1834 1835
        inputs = {'Input': input, 'HiddenPrev': hidden, 'Weight': self.weight}
        if self.bias:
            inputs['Bias'] = self.bias
M
minqiyang 已提交
1836 1837 1838 1839 1840 1841

        gate = self._helper.create_variable_for_type_inference(self._dtype)
        reset_hidden_pre = self._helper.create_variable_for_type_inference(
            self._dtype)
        updated_hidden = self._helper.create_variable_for_type_inference(
            self._dtype)
M
minqiyang 已提交
1842 1843 1844 1845 1846 1847 1848 1849 1850
        self._helper.append_op(
            type='gru_unit',
            inputs=inputs,
            outputs={
                'Gate': gate,
                'ResetHiddenPrev': reset_hidden_pre,
                'Hidden': updated_hidden,
            },
            attrs={
H
Hongyu Liu 已提交
1851 1852
                'activation': self.activation,
                'gate_activation': self.gate_activation,
M
minqiyang 已提交
1853 1854 1855
            })

        return updated_hidden, reset_hidden_pre, gate
1856 1857 1858 1859


class NCE(layers.Layer):
    """
1860 1861 1862 1863 1864
    This interface is used to construct a callable object of the ``NCE`` class.
    For more details, refer to code examples.
    It implements the function of the ``NCE`` loss function.
    By default this function uses a uniform distribution for sampling, and it
    compute and return the noise-contrastive estimation training loss. See
1865
    `Noise-contrastive estimation: A new estimation principle for unnormalized statistical models <http://www.jmlr.org/proceedings/papers/v9/gutmann10a/gutmann10a.pdf>`_ .
1866

1867
    Parameters:
1868 1869
        num_total_classes (int): Total number of classes in all samples.
        dim (int): Dimension of input (possibly embedding dim).
1870
        param_attr (ParamAttr, optional): The parameter attribute for learnable weights(Parameter)
1871 1872 1873
             of nce. If it is set to None or one attribute of ParamAttr, nce
             will create ParamAttr as param_attr. If the Initializer of the param_attr
             is not set, the parameter is initialized with Xavier. Default: None.
1874
        bias_attr (ParamAttr or bool, optional): The attribute for the bias of nce.
1875 1876 1877 1878
             If it is set to False, no bias will be added to the output units.
             If it is set to None or one attribute of ParamAttr, nce
             will create ParamAttr as bias_attr. If the Initializer of the bias_attr
             is not set, the bias is initialized zero. Default: None.
1879 1880
        num_neg_samples (int, optional): The number of negative classes. The default value is 10.
        sampler (str, optional): The sampler used to sample class from negtive classes.
1881 1882
                       It can be 'uniform', 'log_uniform' or 'custom_dist'.
                       default: 'uniform'.
1883
        custom_dist (float[], optional): A float[] with size=num_total_classes.
1884
                       It is used when sampler is set to 'custom_dist'.
1885
                       custom_dist[i] is the probability of i-th class to be sampled.
L
lujun 已提交
1886
                       Default: None.
1887 1888
        seed (int, optional): The seed used in sampler. Default: 0.
        is_sparse(bool, optional): The flag indicating whether to use sparse update. If is_sparse is True, the weight@GRAD and bias@GRAD will be changed to SelectedRows. Default: False.
1889
        dtype (str, optional): Data type, it can be "float32" or "float64". Default: "float32".
1890

1891 1892
    Attribute:
        **weight** (Parameter): the learnable weights of this layer.
1893

1894 1895
        **bias** (Parameter or None): the learnable bias of this layer.
    
1896
    Returns:
1897
        None
1898 1899 1900 1901

    Examples:
        .. code-block:: python

1902 1903 1904
            import numpy as np
            import paddle.fluid as fluid

1905
            window_size = 5
1906 1907
            dict_size = 20
            label_word = int(window_size // 2) + 1
1908
            inp_word = np.array([[1], [2], [3], [4], [5]]).astype('int64')
1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929
            nid_freq_arr = np.random.dirichlet(np.ones(20) * 1000).astype('float32')

            with fluid.dygraph.guard():
                words = []
                for i in range(window_size):
                    words.append(fluid.dygraph.base.to_variable(inp_word[i]))

                emb = fluid.Embedding(
                    size=[dict_size, 32],
                    param_attr='emb.w',
                    is_sparse=False)

                embs3 = []
                for i in range(window_size):
                    if i == label_word:
                        continue

                    emb_rlt = emb(words[i])
                    embs3.append(emb_rlt)

                embs3 = fluid.layers.concat(input=embs3, axis=1)
1930
                nce = fluid.NCE(
1931
                             num_total_classes=dict_size,
1932
                             dim=embs3.shape[1],
1933 1934 1935 1936 1937 1938 1939
                             num_neg_samples=2,
                             sampler="custom_dist",
                             custom_dist=nid_freq_arr.tolist(),
                             seed=1,
                             param_attr='nce.w',
                             bias_attr='nce.b')

1940 1941
                wl = fluid.layers.unsqueeze(words[label_word], axes=[0])
                nce_loss3 = nce(embs3, wl)
1942 1943 1944 1945 1946

    """

    def __init__(self,
                 num_total_classes,
1947
                 dim,
1948
                 sample_weight=None,
1949 1950 1951 1952 1953 1954
                 param_attr=None,
                 bias_attr=None,
                 num_neg_samples=None,
                 sampler="uniform",
                 custom_dist=None,
                 seed=0,
1955 1956 1957
                 is_sparse=False,
                 dtype='float32'):
        super(NCE, self).__init__()
1958 1959 1960
        self._param_attr = param_attr
        self._bias_attr = bias_attr
        self._num_total_classes = num_total_classes
1961
        self._dtype = dtype
1962
        self._inputs = dict()
1963
        self._inputs['SampleWeight'] = sample_weight if sample_weight is not None else []
1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050
        if sampler == "uniform":
            sampler = 0
        elif sampler == "log_uniform":
            sampler = 1
        elif sampler == "custom_dist":
            assert custom_dist is not None
            # assert isinstance(custom_dist, Variable)

            custom_dist_len = len(custom_dist)
            alias_probs_ = [0] * custom_dist_len
            alias_ = [0] * custom_dist_len
            bigs = []
            littles = []
            for i in range(custom_dist_len):
                normal_prob = custom_dist[i] * custom_dist_len
                if normal_prob - 1.0 > 0:
                    bigs.append((i, normal_prob))
                elif 1.0 - normal_prob > 0:
                    littles.append((i, normal_prob))
                else:
                    alias_probs_[i] = normal_prob
                    alias_[i] = -1

            while len(bigs) and len(littles):
                big = bigs.pop(0)
                little = littles.pop(0)

                big_idx = big[0]
                big_prob = big[1]

                alias_probs_[little[0]] = little[1]
                alias_[little[0]] = big_idx
                big_left = big[1] + little[1] - 1
                if big_left - 1.0 > 0:
                    bigs.append((big_idx, big_left))
                elif 1.0 - big_left > 0:
                    littles.append((big_idx, big_left))
                else:
                    alias_probs_[big_idx] = big_left
                    alias_[big_idx] = -1

            if len(bigs):
                big = bigs.pop(0)
                alias_probs_[big[0]] = 1.0
                alias_[big[0]] = -1
            if len(littles):
                little = littles.pop(0)
                alias_probs_[little[0]] = 1.0
                alias_[little[0]] = -1

            def _init_by_numpy_array(numpy_array):
                ret = self.create_parameter(
                    attr=ParamAttr(),
                    shape=numpy_array.shape,
                    dtype=numpy_array.dtype,
                    default_initializer=NumpyArrayInitializer(numpy_array))
                ret.stop_gradient = True
                return ret

            self._inputs['CustomDistProbs'] = _init_by_numpy_array(
                np.array(custom_dist).astype('float32'))
            self._inputs['CustomDistAlias'] = _init_by_numpy_array(
                np.array(alias_).astype('int32'))
            self._inputs['CustomDistAliasProbs'] = _init_by_numpy_array(
                np.array(alias_probs_).astype('float32'))
            sampler = 2
        else:
            raise Exception("Unsupported sampler type.")

        if num_neg_samples is None:
            num_neg_samples = 10
        else:
            num_neg_samples = int(num_neg_samples)
        self._num_neg_samples = num_neg_samples
        remote_prefetch = is_sparse
        print(
            "With sparse mode, if your models has only small parameter prefetch may cause speed down"
        )
        self._attrs = {
            'num_total_classes': int(num_total_classes),
            'num_neg_samples': num_neg_samples,
            'seed': seed,
            'sampler': sampler,
            'is_sparse': is_sparse,
            'remote_prefetch': remote_prefetch
        }

2051
        self.weight = self.create_parameter(
2052 2053 2054
            attr=self._param_attr,
            shape=[self._num_total_classes, dim],
            is_bias=False,
2055
            dtype=self._dtype)
2056
        if self._bias_attr:
2057
            self.bias = self.create_parameter(
2058 2059 2060
                attr=self._bias_attr,
                shape=[self._num_total_classes, 1],
                is_bias=True,
2061
                dtype=self._dtype)
2062 2063
            self._inputs['Bias'] = self.bias
        self._inputs['Weight'] = self.weight
2064

2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093
    def forward(self, input, label, sample_weight=None):
        assert isinstance(input, Variable)
        assert isinstance(label, Variable)

        self._inputs['Input'] = input
        self._inputs['Label'] = label
        self._inputs['SampleWeight'] = sample_weight if sample_weight is not None else []

        cost = self._helper.create_variable_for_type_inference(
            dtype=input.dtype)
        sample_logits = self._helper.create_variable_for_type_inference(
            dtype=input.dtype)
        sample_labels = self._helper.create_variable_for_type_inference(
            dtype=label.dtype)

        self._helper.append_op(
            type='nce',
            inputs=self._inputs,
            outputs={
                'Cost': cost,
                'SampleLogits': sample_logits,
                'SampleLabels': sample_labels
            },
            attrs=self._attrs)
        return cost / (self._num_neg_samples + 1)


class PRelu(layers.Layer):
    """
2094 2095 2096 2097
    This interface is used to construct a callable object of the ``PRelu`` class.
    For more details, refer to code examples.
    It implements three activation methods of the ``PRelu`` activation function.

2098 2099 2100 2101 2102
    Equation:

    .. math::
        y = \max(0, x) + \\alpha * \min(0, x)

2103
    Parameters:
L
lujun 已提交
2104
        mode (str): The mode for weight sharing. It supports all, channel
2105 2106 2107
          and element. all: all elements share same weight
          channel:elements in a channel share same weight
          element:each element has a weight
2108 2109
        input_shape (list or tuple, optional): The shape of input.
          This parameter is required when mode is not "all". Default: None.
2110 2111
        param_attr(ParamAttr, optional): The parameter attribute for the learnable
          weight (alpha). Default: None.
2112
        dtype (str, optional): Data type, it can be "float32" or "float64". Default: "float32".
2113

2114 2115 2116
    Attribute:
        **weight** (Parameter): the learnable weights of this layer.
    
2117
    Returns:
2118
        None
2119 2120 2121 2122 2123

    Examples:

        .. code-block:: python

L
lujun 已提交
2124
          import paddle.fluid as fluid
2125
          from paddle.fluid.dygraph.base import to_variable
L
lujun 已提交
2126 2127 2128 2129
          import numpy as np

          inp_np = np.ones([5, 200, 100, 100]).astype('float32')
          with fluid.dygraph.guard():
2130
              inp_np = to_variable(inp_np)
L
lujun 已提交
2131 2132 2133
              mode = 'channel'
              prelu = fluid.PRelu(
                 mode=mode,
2134
                 input_shape=inp_np.shape,
L
lujun 已提交
2135
                 param_attr=fluid.ParamAttr(initializer=fluid.initializer.Constant(1.0)))
2136
              dy_rlt = prelu(inp_np)
L
lujun 已提交
2137

2138 2139
    """

2140 2141 2142
    def __init__(self, mode, input_shape=None, param_attr=None,
                 dtype='float32'):
        super(PRelu, self).__init__()
2143 2144 2145 2146
        self._mode = mode
        self._param_attr = param_attr
        if self._mode not in ['all', 'channel', 'element']:
            raise ValueError('mode should be one of all, channel, element.')
2147
        self._dtype = dtype
2148
        self._alpha_shape = [1]
2149 2150 2151 2152 2153 2154 2155
        if mode is not 'all':
            assert input_shape is not None
            input_shape = list(input_shape)
            if self._mode == 'channel':
                self._alpha_shape = [1, input_shape[1], 1, 1]
            elif self._mode == 'element':
                self._alpha_shape = input_shape
2156
        self.weight = self.create_parameter(
2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167
            attr=self._param_attr,
            shape=self._alpha_shape,
            dtype='float32',
            is_bias=False,
            default_initializer=Constant(1.0))

    def forward(self, input):
        out = self._helper.create_variable_for_type_inference(self._dtype)
        self._helper.append_op(
            type="prelu",
            inputs={"X": input,
2168
                    'Alpha': self.weight},
2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188
            attrs={"mode": self._mode},
            outputs={"Out": out})
        return out


class BilinearTensorProduct(layers.Layer):
    """
    **Add Bilinear Tensor Product Layer**

    This layer performs bilinear tensor product on two inputs.
    For example:

    .. math::
      out_{i} = x * W_{i} * {y^\mathrm{T}}, i=0,1,...,size-1

    In this formula:
     - :math:`x`: the first input contains M elements, shape is [batch_size, M].
     - :math:`y`: the second input contains N elements, shape is [batch_size, N].
     - :math:`W_{i}`: the i-th learned weight, shape is [M, N]
     - :math:`out_{i}`: the i-th element of out, shape is [batch_size, size].
D
DuYao 已提交
2189
     - :math:`y^\mathrm{T}`: the transpose of :math:`y`.
2190

2191
    Parameters:
2192 2193 2194 2195 2196
       input1_dim (int): The dimension of each first input.
       input2_dim (int): The dimension of each second input.
       output_dim (int): The dimension of output of this layer.
       name (str, optional): The default value is None. Normally there is no need for user
           to set this property. For more information, please refer to :ref:`api_guide_Name`. Default: None.
D
DuYao 已提交
2197 2198 2199 2200
       act (str, optional): Activation to be applied to the output of this layer. The default value is None.
       param_attr (ParamAttr, optional): The parameter attribute for the learnable w, parameters/weights of 
           this layer. The default value is None.
       bias_attr (ParamAttr, optional): The parameter attribute for the bias
2201
           of this layer. If it is set to False, no bias will be added to the output units.
D
DuYao 已提交
2202
           If it is set to None, the bias is initialized zero. The default value is None.
2203
       dtype (str, optional): Data type, it can be "float32" or "float64". Default: "float32".
2204

D
DuYao 已提交
2205 2206 2207 2208
    Attribute:
        **weight** (Parameter): the learnable weights of this layer.

        **bias** (Parameter): the learnable bias of this layer.
2209

2210 2211 2212 2213 2214 2215
    Returns:
       Variable: A 2-D Tensor of shape [batch_size, size].

    Examples:
       .. code-block:: python

2216 2217 2218 2219 2220 2221 2222
         import paddle.fluid as fluid
         import numpy

         with fluid.dygraph.guard():
             layer1 = numpy.random.random((5, 5)).astype('float32')
             layer2 = numpy.random.random((5, 4)).astype('float32')
             bilinearTensorProduct = fluid.dygraph.nn.BilinearTensorProduct(
2223
                    input1_dim=5, input2_dim=4, output_dim=1000)
2224 2225
             ret = bilinearTensorProduct(fluid.dygraph.base.to_variable(layer1),
                                fluid.dygraph.base.to_variable(layer2))
2226 2227 2228
    """

    def __init__(self,
2229 2230 2231
                 input1_dim,
                 input2_dim,
                 output_dim,
2232 2233 2234
                 name=None,
                 act=None,
                 param_attr=None,
2235 2236 2237
                 bias_attr=None,
                 dtype='float32'):
        super(BilinearTensorProduct, self).__init__()
2238 2239 2240 2241
        self._param_attr = param_attr
        self._bias_attr = bias_attr
        self._act = act
        self._name = name
2242 2243 2244
        self._input1_dim = input1_dim
        self._input2_dim = input2_dim
        self._output_dim = output_dim
2245
        self._inputs = dict()
2246
        self._dtype = dtype
2247

2248
        param_shape = [self._output_dim, self._input1_dim, self._input2_dim]
2249
        self.weight = self.create_parameter(
2250 2251 2252 2253
            attr=self._param_attr,
            shape=param_shape,
            dtype=self._dtype,
            is_bias=False)
2254
        bias_size = [1, self._output_dim]
2255
        self.bias = self.create_parameter(
2256 2257 2258 2259
            attr=self._bias_attr,
            shape=bias_size,
            dtype=self._dtype,
            is_bias=True)
2260 2261

    def forward(self, x, y):
2262 2263 2264
        self._inputs = {"X": x, "Y": y, "Weight": self.weight}
        if self.bias:
            self._inputs["Bias"] = self.bias
2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278
        if self._name is not None:
            out = self._helper.create_variable(
                name=".".join([self.full_name(), self._name]),
                dtype=self._dtype,
                persistable=False)
        else:
            out = self._helper.create_variable(
                dtype=self._dtype, persistable=False)
        self._helper.append_op(
            type="bilinear_tensor_product",
            inputs=self._inputs,
            outputs={"Out": out})

        # add activation
2279
        return self._helper.append_activation(out, act=self._act)
2280 2281 2282 2283


class Conv2DTranspose(layers.Layer):
    """
2284 2285
    This interface is used to construct a callable object of the ``Conv2DTranspose`` class.
    For more details, refer to code examples.
2286
    The convolution2D transpose layer calculates the output based on the input,
2287 2288 2289
    filter, and dilations, strides, paddings. Input and output
    are in NCHW format. Where N is batch size, C is the number of feature map,
    H is the height of the feature map, and W is the width of the feature map.
2290 2291
    Filter's shape is [MCHW] , where M is the number of input feature map,
    C is the number of output feature map, H is the height of the filter,
2292 2293
    and W is the width of the filter. If the groups is greater than 1,
    C will equal the number of input feature map divided by the groups.
2294 2295 2296
    If bias attribution and activation type are provided, bias is added to
    the output of the convolution, and the corresponding activation function
    is applied to the final result.
2297 2298
    The details of convolution transpose layer, please refer to the following explanation and references
    `conv2dtranspose <http://www.matthewzeiler.com/wp-content/uploads/2017/07/cvpr2010.pdf>`_ .
2299 2300 2301 2302 2303 2304 2305 2306 2307

    For each input :math:`X`, the equation is:

    .. math::

        Out = \sigma (W \\ast X + b)

    Where:

2308 2309
    * :math:`X`: Input value, a ``Tensor`` with NCHW format.
    * :math:`W`: Filter value, a ``Tensor`` with shape [MCHW] .
2310
    * :math:`\\ast`: Convolution operation.
2311
    * :math:`b`: Bias value, a 2-D ``Tensor`` with shape [M, 1].
2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335
    * :math:`\\sigma`: Activation function.
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.

    Example:

        - Input:

          Input shape: :math:`(N, C_{in}, H_{in}, W_{in})`

          Filter shape: :math:`(C_{in}, C_{out}, H_f, W_f)`

        - Output:

          Output shape: :math:`(N, C_{out}, H_{out}, W_{out})`

        Where

        .. math::

           H^\prime_{out} &= (H_{in} - 1) * strides[0] - 2 * paddings[0] + dilations[0] * (H_f - 1) + 1 \\\\
           W^\prime_{out} &= (W_{in} - 1) * strides[1] - 2 * paddings[1] + dilations[1] * (W_f - 1) + 1 \\\\
           H_{out} &\in [ H^\prime_{out}, H^\prime_{out} + strides[0] ) \\\\
           W_{out} &\in [ W^\prime_{out}, W^\prime_{out} + strides[1] )

2336
    Parameters:
2337
        num_channels(int): The number of channels in the input image.
2338
        num_filters(int): The number of the filter. It is as same as the output
2339
            feature map.
2340 2341 2342
        filter_size(int or tuple): The filter size. If filter_size is a tuple,
            it must contain two integers, (filter_size_H, filter_size_W).
            Otherwise, the filter will be a square.
2343
        output_size(int or tuple, optional): The output image size. If output size is a
2344 2345 2346
            tuple, it must contain two integers, (image_H, image_W). None if use
            filter_size, padding, and stride to calculate output_size.
            if output_size and filter_size are specified at the same time, They
L
lujun 已提交
2347
            should follow the formula above. Default: None.
2348
        padding(int or tuple, optional): The padding size. If padding is a tuple, it must
2349
            contain two integers, (padding_H, padding_W). Otherwise, the
2350 2351
            padding_H = padding_W = padding. Default: 0.
        stride(int or tuple, optional): The stride size. If stride is a tuple, it must
2352
            contain two integers, (stride_H, stride_W). Otherwise, the
2353 2354
            stride_H = stride_W = stride. Default: 1.
        dilation(int or tuple, optional): The dilation size. If dilation is a tuple, it must
2355
            contain two integers, (dilation_H, dilation_W). Otherwise, the
2356 2357
            dilation_H = dilation_W = dilation. Default: 1.
        groups(int, optional): The groups number of the Conv2d transpose layer. Inspired by
2358 2359 2360 2361
            grouped convolution in Alex Krizhevsky's Deep CNN paper, in which
            when group=2, the first half of the filters is only connected to the
            first half of the input channels, while the second half of the
            filters is only connected to the second half of the input channels.
2362 2363
            Default: 1.
        param_attr (ParamAttr, optional): The parameter attribute for learnable weights(Parameter)
2364 2365 2366
            of conv2d_transpose. If it is set to None or one attribute of ParamAttr, conv2d_transpose
            will create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with Xavier. Default: None.
2367
        bias_attr (ParamAttr or bool, optional): The attribute for the bias of conv2d_transpose.
2368 2369 2370 2371
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, conv2d_transpose
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. Default: None.
2372
        use_cudnn(bool, optional): Use cudnn kernel or not, it is valid only when the cudnn
2373
            library is installed. Default: True.
2374
        act (str, optional): Activation type, if it is set to None, activation is not appended.
2375
            Default: None.
2376
        dtype (str, optional): Data type, it can be "float32" or "float64". Default: "float32".
2377

2378 2379
    Attribute:
        **weight** (Parameter): the learnable weights of filters of this layer.
2380

2381
        **bias** (Parameter or None): the learnable bias of this layer.
2382

2383 2384
    Returns:
        None
2385 2386 2387 2388

    Examples:
       .. code-block:: python

2389
          import paddle.fluid as fluid
2390
          import numpy as np
2391 2392

          with fluid.dygraph.guard():
2393
              data = np.random.random((3, 32, 32, 5)).astype('float32')
2394
              conv2DTranspose = fluid.dygraph.nn.Conv2DTranspose(
2395
                    num_channels=32, num_filters=2, filter_size=3)
2396 2397
              ret = conv2DTranspose(fluid.dygraph.base.to_variable(data))

2398 2399 2400
    """

    def __init__(self,
2401
                 num_channels,
2402
                 num_filters,
2403
                 filter_size,
2404 2405 2406 2407 2408 2409 2410 2411
                 output_size=None,
                 padding=0,
                 stride=1,
                 dilation=1,
                 groups=None,
                 param_attr=None,
                 bias_attr=None,
                 use_cudnn=True,
2412 2413 2414
                 act=None,
                 dtype='float32'):
        super(Conv2DTranspose, self).__init__()
2415 2416 2417
        assert param_attr is not False, "param_attr should not be False in conv2d_transpose."
        self._param_attr = param_attr
        self._bias_attr = bias_attr
2418
        self._act = act
2419
        self._groups = groups
2420
        self._num_channels = num_channels
2421 2422 2423 2424 2425 2426 2427
        self._num_filters = num_filters
        self._use_cudnn = use_cudnn
        self._padding = padding
        self._stride = stride
        self._dilation = dilation
        self._filter_size = filter_size
        self._output_size = output_size
2428
        self._dtype = dtype
2429

2430 2431 2432
        if (self._num_channels == self._groups and
                self._num_filters == self._num_channels and
                not self._use_cudnn):
2433
            self._op_type = 'depthwise_conv2d_transpose'
2434 2435
        else:
            self._op_type = 'conv2d_transpose'
2436 2437 2438 2439 2440

        self._padding = utils.convert_to_list(self._padding, 2, 'padding')
        self._stride = utils.convert_to_list(self._stride, 2, 'stride')
        self._dilation = utils.convert_to_list(self._dilation, 2, 'dilation')

2441 2442
        self._filter_size = utils.convert_to_list(
            self._filter_size, 2, 'conv2d_transpose.filter_size')
2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453

        if self._output_size is None:
            self._output_size = []
        elif isinstance(self._output_size, list) or isinstance(
                self._output_size, int):
            self._output_size = utils.convert_to_list(self._output_size, 2,
                                                      'output_size')
        else:
            raise ValueError("output_size should be list or int")
        self._padding = utils.convert_to_list(self._padding, 2, 'padding')
        self._groups = 1 if self._groups is None else self._groups
2454
        filter_shape = [self._num_channels, self._num_filters // self._groups
2455 2456
                        ] + self._filter_size

2457
        self.weight = self.create_parameter(
2458
            dtype=self._dtype, shape=filter_shape, attr=self._param_attr)
2459

2460
        self.bias = self.create_parameter(
2461 2462 2463 2464 2465
            attr=self._bias_attr,
            shape=[self._num_filters],
            dtype=self._dtype,
            is_bias=True)

2466 2467 2468 2469 2470 2471
    def forward(self, input):
        pre_bias = self._helper.create_variable_for_type_inference(
            dtype=input.dtype)
        self._helper.append_op(
            type=self._op_type,
            inputs={'Input': [input],
2472
                    'Filter': [self.weight]},
2473 2474 2475 2476 2477 2478 2479 2480 2481 2482
            outputs={'Output': pre_bias},
            attrs={
                'output_size': self._output_size,
                'strides': self._stride,
                'paddings': self._padding,
                'dilations': self._dilation,
                'groups': self._groups,
                'use_cudnn': self._use_cudnn
            })

2483
        if self.bias is not None:
2484 2485 2486 2487 2488
            pre_act = self._helper.create_variable_for_type_inference(
                dtype=self._dtype)
            self._helper.append_op(
                type='elementwise_add',
                inputs={'X': [pre_bias],
2489
                        'Y': [self.bias]},
2490 2491 2492 2493 2494 2495
                outputs={'Out': [pre_act]},
                attrs={'axis': 1})
        else:
            pre_act = pre_bias

        out = self._helper.append_activation(pre_act, act=self._act)
2496 2497 2498 2499 2500 2501 2502 2503 2504
        return out


class SequenceConv(layers.Layer):
    """
    This function creates the op for sequence_conv, using the inputs and
    other convolutional configurations for the filters and stride as given
    in the input parameters to the function.

2505
    Parameters:
L
lujun 已提交
2506
        name_scope(str): The name of this class.
2507
        num_filters (int): number of filters.
L
lujun 已提交
2508 2509 2510
        filter_size (int): the filter size (H and W). Default: 3.
        filter_stride (int): stride of the filter. Default: 1.
        padding (bool|None): if True, add paddings. Default: None
2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of sequence_conv.
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, sequence_conv
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. Default: None.
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
            of sequence_conv. If it is set to None or one attribute of ParamAttr, sequence_conv
            will create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with Xavier. Default: None.
        act (str): Activation type, if it is set to None, activation is not appended.
            Default: None.

2523 2524 2525 2526
    Attributes:
        weight (Parameter): the learnable weights of filters of this layer.
        bias (Parameter|None): the learnable bias of this layer.

2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539
    Returns:
        Variable: output of sequence_conv
    """

    def __init__(self,
                 name_scope,
                 num_filters,
                 filter_size=3,
                 filter_stride=1,
                 padding=None,
                 bias_attr=None,
                 param_attr=None,
                 act=None):
L
lujun 已提交
2540
        assert not in_dygraph_mode(
2541
        ), "SequenceConv is not supported by dynamic graph mode yet!"
2542 2543 2544 2545 2546 2547 2548
        super(SequenceConv, self).__init__(name_scope)
        self._num_filters = num_filters
        self._filter_size = filter_size
        self._filter_stride = filter_stride
        self._padding = padding
        self._bias_attr = bias_attr
        self._param_attr = param_attr
2549
        self._act = act
2550

2551
    def _build_once(self, input):
2552 2553
        self._dtype = self._helper.input_dtype(input)
        filter_shape = [self._filter_size * input.shape[1], self._num_filters]
2554
        self.weight = self.create_parameter(
2555
            attr=self._param_attr, shape=filter_shape, dtype=self._dtype)
2556

2557
        self.bias = self.create_parameter(
2558 2559 2560 2561 2562
            attr=self._bias_attr,
            shape=[self._num_filters],
            dtype=self._dtype,
            is_bias=True)

2563 2564 2565 2566 2567 2568
    def forward(self, input):
        pre_bias = self._helper.create_variable_for_type_inference(self._dtype)
        self._helper.append_op(
            type='sequence_conv',
            inputs={
                'X': [input],
2569
                'Filter': [self.weight],
2570 2571 2572 2573 2574 2575 2576
            },
            outputs={"Out": pre_bias},
            attrs={
                'contextStride': self._filter_stride,
                'contextStart': -int(self._filter_size // 2),
                'contextLength': self._filter_size
            })
2577

2578
        if self.bias is not None:
2579 2580 2581 2582 2583
            pre_act = self._helper.create_variable_for_type_inference(
                dtype=self._dtype)
            self._helper.append_op(
                type='elementwise_add',
                inputs={'X': [pre_bias],
2584
                        'Y': [self.bias]},
2585 2586 2587 2588 2589 2590
                outputs={'Out': [pre_act]},
                attrs={'axis': 1})
        else:
            pre_act = pre_bias

        return self._helper.append_activation(pre_act, act=self._act)
L
lujun 已提交
2591 2592 2593


class RowConv(layers.Layer):
2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611
    """
    ***Row-convolution operator***

    The row convolution is called lookahead convolution.  This operator was introduced in the following paper for DeepSpeech2:
    http://www.cs.cmu.edu/~dyogatam/papers/wang+etal.iclrworkshop2016.pdf

    The main motivation is that a bidirectional RNN, useful in DeepSpeech like speech models, learns representation for a sequence by performing a
    forward and a backward pass through the entire sequence. However, unlike
    unidirectional RNNs, bidirectional RNNs are challenging to deploy in an online
    and low-latency setting. The lookahead convolution incorporates information
    from future subsequences in a computationally efficient manner to improve
    unidirectional recurrent neural networks. The row convolution operator is
    different from the 1D sequence convolution, and is computed as follows:

    Given an input sequence X of length t and input dimension D, and a filter (W) of size context * D.

    More details about row_conv please refer to the design document https://github.com/PaddlePaddle/Paddle/issues/2228#issuecomment-303903645 .

2612
    Parameters:
L
lujun 已提交
2613
        name_scope(str): The name of this class.
2614 2615 2616
        future_context_size (int): Future context size. Please note, the shape
            of convolution kernel is [future_context_size + 1, D].
        param_attr (ParamAttr): Attributes of parameters, including
L
lujun 已提交
2617 2618
            name, initializer etc. Default: None.
        act (str): Non-linear activation to be applied to output variable. Default: None.
2619

2620 2621 2622
    Attributes:
        weight (Parameter): the learnable weights of this layer.

2623
    Returns:
L
lujun 已提交
2624 2625
        the output(Out) is a LodTensor, which supports variable time-length input sequences.
        The underlying tensor in this LodTensor is a matrix with shape T x N, i.e., the same shape as X.
2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640

    Examples:
        .. code-block:: python

          import paddle.fluid as fluid
          import numpy

          with fluid.dygraph.guard():
              x = numpy.random.random((16)).astype('float32')
              rowConv = fluid.dygraph.nn.RowConv(
                    'RowConv', future_context_size=2)
              ret = rowConv(fluid.dygraph.base.to_variable(x))

    """

L
lujun 已提交
2641 2642 2643 2644 2645
    def __init__(self,
                 name_scope,
                 future_context_size,
                 param_attr=None,
                 act=None):
L
lujun 已提交
2646
        assert not in_dygraph_mode(
2647
        ), "RowConv is not supported by dynamic graph mode yet!"
L
lujun 已提交
2648 2649 2650 2651 2652
        super(RowConv, self).__init__(name_scope)
        self._act = act
        self._param_attr = param_attr
        self._future_context_size = future_context_size

2653
    def _build_once(self, input):
L
lujun 已提交
2654 2655
        self._dtype = self._helper.input_dtype(input)
        filter_shape = [self._future_context_size + 1, input.shape[1]]
2656
        self.weight = self.create_parameter(
2657 2658 2659 2660
            attr=self._param_attr,
            shape=filter_shape,
            dtype=self._dtype,
            is_bias=False)
L
lujun 已提交
2661 2662 2663 2664 2665 2666

    def forward(self, input):
        out = self._helper.create_variable_for_type_inference(self._dtype)
        self._helper.append_op(
            type='row_conv',
            inputs={'X': [input],
2667
                    'Filter': [self.weight]},
L
lujun 已提交
2668 2669 2670 2671 2672 2673
            outputs={'Out': [out]})
        return self._helper.append_activation(out, act=self._act)


class GroupNorm(layers.Layer):
    """
2674 2675 2676 2677 2678 2679
    This interface is used to construct a callable object of the ``GroupNorm`` class.
    For more details, refer to code examples.
    It implements the function of the Group Normalization Layer.
    Refer to `Group Normalization <https://arxiv.org/abs/1803.08494>`_ .

    Parameters:
2680
        channels(int): The number of channels of input.
2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703
        groups(int): The number of groups that divided from channels.
        epsilon(float, optional): The small value added to the variance to prevent
                                  division by zero. Default: 1e-05.
        param_attr(ParamAttr, optional): The parameter attribute for the learnable
                                         scale :math:`g`. If it is set to False, no scale will be added to the output units.
                                         If it is set to None, the bias is initialized one. Default: None.
        bias_attr(ParamAttr, optional): The parameter attribute for the learnable
                                        bias :math:`b`. If it is set to False, no bias will be added to the output units.
                                        If it is set to None, the bias is initialized zero. Default: None.
        act(str, optional): Activation to be applied to the output of group normalizaiton. Default: None.
        data_layout(str, optional): Specify the input data format. Only NCHW is supported. Default: NCHW.

    Returns:
        None

    Examples:
        .. code-block:: python

          import paddle.fluid as fluid
          import numpy as np

          with fluid.dygraph.guard():
              x = np.random.random((8, 32, 32)).astype('float32')
2704
              groupNorm = fluid.dygraph.nn.GroupNorm(channels=32, groups=4)
2705
              ret = groupNorm(fluid.dygraph.base.to_variable(x))
L
lujun 已提交
2706 2707 2708 2709

    """

    def __init__(self,
2710
                 channels,
L
lujun 已提交
2711 2712 2713 2714 2715
                 groups,
                 epsilon=1e-05,
                 param_attr=None,
                 bias_attr=None,
                 act=None,
2716 2717 2718
                 data_layout='NCHW',
                 dtype='float32'):
        super(GroupNorm, self).__init__()
L
lujun 已提交
2719 2720 2721
        self._param_attr = param_attr
        self._bias_attr = bias_attr
        self._epsilon = epsilon
2722
        self._channels = channels
L
lujun 已提交
2723 2724
        self._groups = groups
        self._act = act
2725
        self._dtype = dtype
L
lujun 已提交
2726 2727 2728
        if data_layout != 'NCHW':
            raise ValueError("unsupported data layout:" + data_layout)

2729
        param_shape = [self._channels]
L
lujun 已提交
2730

2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741
        self.weight = self.create_parameter(
            attr=self._param_attr or False,
            shape=param_shape,
            dtype=self._dtype,
            default_initializer=Constant(1.0))

        self.bias = self.create_parameter(
            attr=self._bias_attr or False,
            shape=param_shape,
            dtype=self._dtype,
            is_bias=True)
L
lujun 已提交
2742 2743 2744

    def forward(self, input):
        inputs = {'X': input}
2745 2746 2747 2748
        if self.bias:
            inputs['Bias'] = self.bias
        if self.weight:
            inputs['Scale'] = self.weight
L
lujun 已提交
2749 2750

        # create output
2751
        mean_out = self._helper.create_variable_for_type_inference(
L
lujun 已提交
2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772
            dtype=self._dtype, stop_gradient=True)
        variance_out = self._helper.create_variable_for_type_inference(
            dtype=self._dtype, stop_gradient=True)
        group_norm_out = self._helper.create_variable_for_type_inference(
            dtype=self._dtype)

        self._helper.append_op(
            type="group_norm",
            inputs=inputs,
            outputs={
                "Y": group_norm_out,
                "Mean": mean_out,
                "Variance": variance_out,
            },
            attrs={"epsilon": self._epsilon,
                   "groups": self._groups})

        return self._helper.append_activation(group_norm_out, self._act)


class SpectralNorm(layers.Layer):
2773
    """
2774 2775
    This interface is used to construct a callable object of the ``SpectralNorm`` class.
    For more details, refer to code examples. It implements the function of the Spectral Normalization Layer.
2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806
    This layer calculates the spectral normalization value of weight parameters of
    fc, conv1d, conv2d, conv3d layers which should be 2-D, 3-D, 4-D, 5-D
    Parameters. Calculations are showed as follows.

    Step 1:
    Generate vector U in shape of [H], and V in shape of [W].
    While H is the :attr:`dim` th dimension of the input weights,
    and W is the product result of remaining dimensions.

    Step 2:
    :attr:`power_iters` shoule be a positive interger, do following
    calculations with U and V for :attr:`power_iters` rounds.

    .. math::

        \mathbf{v} := \\frac{\mathbf{W}^{T} \mathbf{u}}{\|\mathbf{W}^{T} \mathbf{u}\|_2}

        \mathbf{u} := \\frac{\mathbf{W}^{T} \mathbf{v}}{\|\mathbf{W}^{T} \mathbf{v}\|_2}

    Step 3:
    Calculate :math:`\sigma(\mathbf{W})` and normalize weight values.

    .. math::

        \sigma(\mathbf{W}) = \mathbf{u}^{T} \mathbf{W} \mathbf{v}

        \mathbf{W} = \\frac{\mathbf{W}}{\sigma(\mathbf{W})}


    Refer to `Spectral Normalization <https://arxiv.org/abs/1802.05957>`_ .

2807
    Parameters:
2808
        weight_shape(list or tuple): The shape of weight parameter.
2809 2810 2811 2812
        dim(int, optional): The index of dimension which should be permuted to the first before reshaping Input(Weight) to matrix, it should be set as 0 if Input(Weight) is the weight of fc layer, and should be set as 1 if Input(Weight) is the weight of conv layer. Default: 0.
        power_iters(int, optional): The number of power iterations to calculate spectral norm. Default: 1.
        eps(float, optional): The epsilon for numerical stability in calculating norms. Default: 1e-12.
        name (str, optional): The default value is None.  Normally there is no need for user to set this property.  For more information, please refer to :ref:`api_guide_Name` .
2813
        dtype (str, optional): Data type, it can be "float32" or "float64". Default: "float32".
2814 2815

    Returns:
2816
        None
2817 2818 2819 2820 2821

    Examples:
       .. code-block:: python

            import paddle.fluid as fluid
2822
            import numpy as np
2823 2824

            with fluid.dygraph.guard():
2825 2826 2827
                weight = np.random.random((2, 8, 32, 32)).astype('float32')
                spectralNorm = fluid.dygraph.nn.SpectralNorm(weight.shape, dim=1, power_iters=2)
                ret = spectralNorm(fluid.dygraph.base.to_variable(weight))
2828 2829 2830

    """

2831 2832 2833 2834 2835 2836 2837
    def __init__(self,
                 weight_shape,
                 dim=0,
                 power_iters=1,
                 eps=1e-12,
                 dtype='float32'):
        super(SpectralNorm, self).__init__()
L
lujun 已提交
2838 2839 2840
        self._power_iters = power_iters
        self._eps = eps
        self._dim = dim
2841
        self._dtype = dtype
L
lujun 已提交
2842

2843 2844 2845
        self._weight_shape = list(weight_shape)
        h = self._weight_shape[self._dim]
        w = np.prod(self._weight_shape) // h
L
lujun 已提交
2846

2847
        self.weight_u = self.create_parameter(
L
lujun 已提交
2848 2849 2850 2851
            attr=ParamAttr(),
            shape=[h],
            dtype=self._dtype,
            default_initializer=Normal(0., 1.))
2852
        self.weight_u.stop_gradient = True
L
lujun 已提交
2853

2854
        self.weight_v = self.create_parameter(
L
lujun 已提交
2855 2856 2857 2858
            attr=ParamAttr(),
            shape=[w],
            dtype=self._dtype,
            default_initializer=Normal(0., 1.))
2859
        self.weight_v.stop_gradient = True
L
lujun 已提交
2860 2861

    def forward(self, weight):
2862
        inputs = {'Weight': weight, 'U': self.weight_u, 'V': self.weight_v}
L
lujun 已提交
2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877
        out = self._helper.create_variable_for_type_inference(self._dtype)
        self._helper.append_op(
            type="spectral_norm",
            inputs=inputs,
            outputs={"Out": out, },
            attrs={
                "dim": self._dim,
                "power_iters": self._power_iters,
                "eps": self._eps,
            })

        return out


class TreeConv(layers.Layer):
2878
    """
2879 2880 2881 2882 2883 2884 2885 2886 2887 2888
    This interface is used to construct a callable object of the ``TreeConv`` class.
    For more details, refer to code examples.
    Tree-Based Convolution is a kind of convolution based on tree structure.
    Tree-Based Convolution is a part of Tree-Based Convolution Neural Network(TBCNN),
    which is used to classify tree structures, such as Abstract Syntax Tree.
    Tree-Based Convolution proposed a kind of data structure called continuous binary tree,
    which regards multiway tree as binary tree.
    The paper of Tree-Based Convolution Operator is here: `tree-based convolution <https://arxiv.org/abs/1409.5718v1/>`_ .
    
    Parameters:
2889
        feature_size(int): last dimension of nodes_vector.
2890 2891 2892 2893 2894 2895 2896
        output_size(int): output feature width.
        num_filters(int, optional): number of filters, Default: 1.
        max_depth(int, optional): max depth of filters, Default: 2.
        act(str, optional): activation function, Default: tanh.
        param_attr(ParamAttr, optional): the parameter attribute for the filters, Default: None.
        bias_attr(ParamAttr, optional): the parameter attribute for the bias of this layer, Default: None.
        name(str, optional): The default value is None. Normally there is no need for user to set this property. For more information, please refer to :ref:`api_guide_Name` .
2897
        dtype (str, optional): Data type, it can be "float32" or "float64". Default: "float32".
2898

2899 2900
    Attribute:
        **weight** (Parameter): the learnable weights of filters of this layer.
2901

2902
        **bias** (Parameter or None): the learnable bias of this layer.
2903

2904 2905
    Returns:
        None
L
lujun 已提交
2906

2907
    Examples:
L
lujun 已提交
2908

2909
        .. code-block:: python
2910

2911 2912
          import paddle.fluid as fluid
          import numpy
2913

2914 2915 2916 2917
          with fluid.dygraph.guard():
              nodes_vector = numpy.random.random((1, 10, 5)).astype('float32')
              edge_set = numpy.random.random((1, 9, 2)).astype('int32')
              treeConv = fluid.dygraph.nn.TreeConv(
2918
                feature_size=5, output_size=6, num_filters=1, max_depth=2)
2919
              ret = treeConv(fluid.dygraph.base.to_variable(nodes_vector), fluid.dygraph.base.to_variable(edge_set))
2920 2921
    """

L
lujun 已提交
2922
    def __init__(self,
2923
                 feature_size,
L
lujun 已提交
2924 2925 2926 2927 2928 2929
                 output_size,
                 num_filters=1,
                 max_depth=2,
                 act='tanh',
                 param_attr=None,
                 bias_attr=None,
2930 2931 2932
                 name=None,
                 dtype='float32'):
        super(TreeConv, self).__init__()
L
lujun 已提交
2933
        self._name = name
2934
        self._feature_size = feature_size
L
lujun 已提交
2935 2936 2937 2938 2939 2940
        self._output_size = output_size
        self._act = act
        self._max_depth = max_depth
        self._num_filters = num_filters
        self._bias_attr = bias_attr
        self._param_attr = param_attr
2941 2942
        self._dtype = dtype
        w_shape = [self._feature_size, 3, self._output_size, self._num_filters]
L
lujun 已提交
2943
        if self._bias_attr:
2944
            self.bias = self.create_parameter(
L
lujun 已提交
2945 2946 2947 2948
                attr=self._bias_attr,
                shape=[self._num_filters],
                dtype=self._dtype,
                is_bias=True)
2949
        self.weight = self.create_parameter(
L
lujun 已提交
2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966
            attr=self._param_attr,
            shape=w_shape,
            dtype=self._dtype,
            is_bias=False)

    def forward(self, nodes_vector, edge_set):
        if self._name:
            out = self.create_variable(
                name=self._name, dtype=self._dtype, persistable=False)
        else:
            out = self._helper.create_variable_for_type_inference(
                dtype=self._dtype)
        self._helper.append_op(
            type='tree_conv',
            inputs={
                'NodesVector': nodes_vector,
                'EdgeSet': edge_set,
2967
                'Filter': self.weight
L
lujun 已提交
2968 2969 2970 2971 2972 2973 2974 2975 2976
            },
            outputs={'Out': out, },
            attrs={'max_depth': self._max_depth})
        if self._bias_attr:
            pre_activation = self._helper.create_variable_for_type_inference(
                dtype=self._dtype)
            self._helper.append_op(
                type='elementwise_add',
                inputs={'X': [out],
2977
                        'Y': [self.bias]},
L
lujun 已提交
2978 2979 2980 2981 2982
                outputs={'Out': [pre_activation]},
                attrs={'axis': 1})
        else:
            pre_activation = out
        return self._helper.append_activation(pre_activation, act=self._act)