nn.py 124.4 KB
Newer Older
M
minqiyang 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import print_function

from six.moves import reduce
from .. import core
from ..layers import utils
20
from ..dygraph import dygraph_utils
M
minqiyang 已提交
21
from . import layers
22
from ..framework import Variable, in_dygraph_mode, OpProtoHolder, Parameter, _dygraph_tracer_
M
minqiyang 已提交
23
from ..param_attr import ParamAttr
24
from ..initializer import Normal, Constant, NumpyArrayInitializer
L
lujun 已提交
25
import numpy as np
26
import numbers
27
import logging
28

29
__all__ = [
S
songyouwei 已提交
30 31 32 33
    'Conv2D', 'Conv3D', 'Pool2D', 'FC', 'Linear', 'BatchNorm', 'Embedding',
    'GRUUnit', 'LayerNorm', 'NCE', 'PRelu', 'BilinearTensorProduct',
    'Conv2DTranspose', 'Conv3DTranspose', 'GroupNorm', 'SpectralNorm',
    'TreeConv'
34
]
M
minqiyang 已提交
35 36


X
Xin Pan 已提交
37
class Conv2D(layers.Layer):
38
    """
39 40
    This interface is used to construct a callable object of the ``Conv2D`` class.
    For more details, refer to code examples.
41 42 43
    The convolution2D layer calculates the output based on the input, filter
    and strides, paddings, dilations, groups parameters. Input and
    Output are in NCHW format, where N is batch size, C is the number of
44 45 46
    the feature map, H is the height of the feature map, and W is the width of the feature map.
    Filter's shape is [MCHW] , where M is the number of output feature map,
    C is the number of input feature map, H is the height of the filter,
47
    and W is the width of the filter. If the groups is greater than 1,
48
    C will equal the number of input feature map divided by the groups.
49
    Please refer to UFLDL's `convolution
50
    <http://ufldl.stanford.edu/tutorial/supervised/FeatureExtractionUsingConvolution/>`_
51 52 53 54 55 56 57 58 59
    for more detials.
    If bias attribution and activation type are provided, bias is added to the
    output of the convolution, and the corresponding activation function is
    applied to the final result.

    For each input :math:`X`, the equation is:

    .. math::

60
        Out = \\sigma (W \\ast X + b)
61 62 63

    Where:

64 65
    * :math:`X`: Input value, a ``Tensor`` with NCHW format.
    * :math:`W`: Filter value, a ``Tensor`` with shape [MCHW] .
66
    * :math:`\\ast`: Convolution operation.
67
    * :math:`b`: Bias value, a 2-D ``Tensor`` with shape [M, 1].
68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89
    * :math:`\\sigma`: Activation function.
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.

    Example:

        - Input:

          Input shape: :math:`(N, C_{in}, H_{in}, W_{in})`

          Filter shape: :math:`(C_{out}, C_{in}, H_f, W_f)`

        - Output:

          Output shape: :math:`(N, C_{out}, H_{out}, W_{out})`

        Where

        .. math::

            H_{out}&= \\frac{(H_{in} + 2 * paddings[0] - (dilations[0] * (H_f - 1) + 1))}{strides[0]} + 1 \\\\
            W_{out}&= \\frac{(W_{in} + 2 * paddings[1] - (dilations[1] * (W_f - 1) + 1))}{strides[1]} + 1

90
    Parameters:
91
        num_channels(int): The number of channels in the input image.
92
        num_filters(int): The number of filter. It is as same as the output
93 94
            feature map.
        filter_size (int or tuple): The filter size. If filter_size is a tuple,
95 96
            it must contain two integers, (filter_size_H, filter_size_W).
            Otherwise, the filter will be a square.
97
        stride (int or tuple, optional): The stride size. If stride is a tuple, it must
98
            contain two integers, (stride_H, stride_W). Otherwise, the
99 100
            stride_H = stride_W = stride. Default: 1.
        padding (int or tuple, optional): The padding size. If padding is a tuple, it must
101
            contain two integers, (padding_H, padding_W). Otherwise, the
102 103
            padding_H = padding_W = padding. Default: 0.
        dilation (int or tuple, optional): The dilation size. If dilation is a tuple, it must
104
            contain two integers, (dilation_H, dilation_W). Otherwise, the
105 106
            dilation_H = dilation_W = dilation. Default: 1.
        groups (int, optional): The groups number of the Conv2d Layer. According to grouped
107 108 109
            convolution in Alex Krizhevsky's Deep CNN paper: when group=2,
            the first half of the filters is only connected to the first half
            of the input channels, while the second half of the filters is only
110 111
            connected to the second half of the input channels. Default: 1.
        param_attr (ParamAttr, optional): The parameter attribute for learnable weights(Parameter)
112 113 114 115
            of conv2d. If it is set to None or one attribute of ParamAttr, conv2d
            will create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with :math:`Normal(0.0, std)`,
            and the :math:`std` is :math:`(\\frac{2.0 }{filter\_elem\_num})^{0.5}`. Default: None.
116
        bias_attr (ParamAttr or bool, optional): The attribute for the bias of conv2d.
117 118 119 120
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, conv2d
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. Default: None.
121 122 123 124 125
        use_cudnn (bool, optional): Use cudnn kernel or not, it is valid only when the cudnn
            library is installed. Default: True.
        act (str, optional): Activation type, if it is set to None, activation is not appended.
            Default: None.
        dtype (str, optional): Data type, it can be "float32" or "float64". Default: "float32".
126

127 128 129 130
    Attribute:
        **weight** (Parameter): the learnable weights of filter of this layer.

        **bias** (Parameter or None): the learnable bias of this layer.
131

132 133 134
    Returns:
        None
    
135
    Raises:
136
        ValueError: if ``use_cudnn`` is not a bool value.
137 138 139

    Examples:
        .. code-block:: python
L
lujun 已提交
140

141 142 143 144 145
          from paddle.fluid.dygraph.base import to_variable
          import paddle.fluid as fluid
          from paddle.fluid.dygraph import Conv2D
          import numpy as np

146
          data = np.random.uniform(-1, 1, [10, 3, 32, 32]).astype('float32')
147
          with fluid.dygraph.guard():
148
              conv2d = Conv2D(3, 2, 3)
149 150
              data = to_variable(data)
              conv = conv2d(data)
151 152 153

    """

M
minqiyang 已提交
154
    def __init__(self,
155
                 num_channels,
M
minqiyang 已提交
156 157 158 159 160 161 162 163
                 num_filters,
                 filter_size,
                 stride=1,
                 padding=0,
                 dilation=1,
                 groups=None,
                 param_attr=None,
                 bias_attr=None,
164 165 166
                 use_cudnn=True,
                 act=None,
                 dtype='float32'):
M
minqiyang 已提交
167
        assert param_attr is not False, "param_attr should not be False here."
168 169
        super(Conv2D, self).__init__()
        self._num_channels = num_channels
M
minqiyang 已提交
170 171 172 173
        self._groups = groups
        self._stride = utils.convert_to_list(stride, 2, 'stride')
        self._padding = utils.convert_to_list(padding, 2, 'padding')
        self._dilation = utils.convert_to_list(dilation, 2, 'dilation')
174
        self._act = act
M
minqiyang 已提交
175 176 177
        if not isinstance(use_cudnn, bool):
            raise ValueError("use_cudnn should be True or False")
        self._use_cudnn = use_cudnn
178 179 180 181 182
        self._filter_size = filter_size
        self._num_filters = num_filters
        self._param_attr = param_attr
        self._bias_attr = bias_attr
        self._dtype = dtype
183 184 185 186 187 188 189 190 191

        # TODO: recover the usage of depthwise_conv2d when it's
        #  kernel fixed https://github.com/PaddlePaddle/Paddle/issues/17098
        # if (self._num_channels == self._groups and
        #         num_filters % self._num_channels == 0 and not self._use_cudnn):
        #     self._l_type = 'depthwise_conv2d'
        # else:
        #     self._l_type = 'conv2d'
        self._l_type = 'conv2d'
M
minqiyang 已提交
192

193
        self._num_channels = num_channels
194 195
        if self._groups is None:
            num_filter_channels = self._num_channels
M
minqiyang 已提交
196
        else:
197
            if self._num_channels % self._groups != 0:
M
minqiyang 已提交
198
                raise ValueError("num_channels must be divisible by groups.")
199 200
            num_filter_channels = self._num_channels // self._groups
        filter_size = utils.convert_to_list(self._filter_size, 2, 'filter_size')
201
        filter_shape = [self._num_filters, num_filter_channels] + filter_size
M
minqiyang 已提交
202 203

        def _get_default_param_initializer():
204 205
            filter_elem_num = filter_size[0] * filter_size[
                1] * self._num_channels
M
minqiyang 已提交
206 207 208
            std = (2.0 / filter_elem_num)**0.5
            return Normal(0.0, std, 0)

209
        self._filter_param = self.create_parameter(
210
            attr=self._param_attr,
M
minqiyang 已提交
211 212 213 214
            shape=filter_shape,
            dtype=self._dtype,
            default_initializer=_get_default_param_initializer())

215
        self._bias_param = self.create_parameter(
216 217
            attr=self._bias_attr,
            shape=[self._num_filters],
M
minqiyang 已提交
218 219
            dtype=self._dtype,
            is_bias=True)
M
minqiyang 已提交
220

221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236
    @property
    def weight(self):
        return self._filter_param

    @weight.setter
    def weight(self, value):
        self._filter_param = value

    @property
    def bias(self):
        return self._bias_param

    @bias.setter
    def bias(self, value):
        self._bias_param = value

M
minqiyang 已提交
237
    def forward(self, input):
238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260
        inputs = {
            'Input': [input],
            'Filter': [self._filter_param],
        }
        attrs = {
            'strides': self._stride,
            'paddings': self._padding,
            'dilations': self._dilation,
            'groups': self._groups if self._groups else 1,
            'use_cudnn': self._use_cudnn,
            'use_mkldnn': False,
        }

        if in_dygraph_mode():
            outs = core.ops.conv2d(inputs, attrs)
            pre_bias = outs['Output'][0]

            pre_act = dygraph_utils._append_bias_in_dygraph(pre_bias,
                                                            self._bias_param, 1)

            return dygraph_utils._append_activation_in_dygraph(pre_act,
                                                               self._act)

M
minqiyang 已提交
261 262 263
        pre_bias = self._helper.create_variable_for_type_inference(
            dtype=self._dtype)

M
minqiyang 已提交
264 265 266 267 268 269
        self._helper.append_op(
            type=self._l_type,
            inputs={
                'Input': input,
                'Filter': self._filter_param,
            },
M
minqiyang 已提交
270
            outputs={"Output": pre_bias},
271
            attrs=attrs)
M
minqiyang 已提交
272

273 274 275 276 277 278 279 280 281 282 283
        if self._bias_param is not None:
            pre_act = self._helper.create_variable_for_type_inference(
                dtype=self._dtype)
            self._helper.append_op(
                type='elementwise_add',
                inputs={'X': [pre_bias],
                        'Y': [self._bias_param]},
                outputs={'Out': [pre_act]},
                attrs={'axis': 1})
        else:
            pre_act = pre_bias
M
minqiyang 已提交
284

L
lujun 已提交
285
        # Currently, we don't support inplace in dygraph mode
286
        return self._helper.append_activation(pre_act, act=self._act)
M
minqiyang 已提交
287 288


L
lujun 已提交
289
class Conv3D(layers.Layer):
290 291 292 293 294
    """
    **Convlution3D Layer**

    The convolution3D layer calculates the output based on the input, filter
    and strides, paddings, dilations, groups parameters. Input(Input) and
D
DuYao 已提交
295 296
    Output(Output) are multidimensional tensors with a shape of 
    :math:`[N, C, D, H, W]` . Where N is batch size, C is the number of
297 298 299 300 301 302 303 304 305 306 307 308 309 310
    channels, D is the depth of the feature, H is the height of the feature,
    and W is the width of the feature. Convlution3D is similar with Convlution2D
    but adds one dimension(depth). If bias attribution and activation type are
    provided, bias is added to the output of the convolution, and the
    corresponding activation function is applied to the final result.

    For each input :math:`X`, the equation is:

    .. math::

        Out = \sigma (W \\ast X + b)

    In the above equation:

D
DuYao 已提交
311
    * :math:`X`: Input value, a tensor with NCDHW or NDHWC format.
312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336
    * :math:`W`: Filter value, a tensor with MCDHW format.
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D tensor with shape [M, 1].
    * :math:`\\sigma`: Activation function.
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.

    Example:

        - Input:

          Input shape: :math:`(N, C_{in}, D_{in}, H_{in}, W_{in})`

          Filter shape: :math:`(C_{out}, C_{in}, D_f, H_f, W_f)`

        - Output:
          Output shape: :math:`(N, C_{out}, D_{out}, H_{out}, W_{out})`

        Where

        .. math::

            D_{out}&= \\frac{(D_{in} + 2 * paddings[0] - (dilations[0] * (D_f - 1) + 1))}{strides[0]} + 1 \\\\
            H_{out}&= \\frac{(H_{in} + 2 * paddings[1] - (dilations[1] * (H_f - 1) + 1))}{strides[1]} + 1 \\\\
            W_{out}&= \\frac{(W_{in} + 2 * paddings[2] - (dilations[2] * (W_f - 1) + 1))}{strides[2]} + 1

337
    Parameters:
338
        num_channels(int): The number of channels in the input image.
L
lujun 已提交
339
        num_filters(int): The number of filter. It is as same as the output image channel.
D
DuYao 已提交
340
        filter_size (int|tuple, optional): The filter size. If filter_size is a tuple,
341
            it must contain three integers, (filter_size_D, filter_size_H, filter_size_W).
D
DuYao 已提交
342 343 344
            Otherwise, the filter will be a square, filter_size_depth = filter_size_height
            = filter_size_width = filter_size.
        stride (int|tuple, optional): The stride size. If stride is a tuple, it must
345
            contain three integers, (stride_D, stride_H, stride_W). Otherwise, the
D
DuYao 已提交
346 347
            stride_D = stride_H = stride_W = stride. The default value is 1.
        padding (int|tuple, optional): The padding size. If padding is a tuple, it must
348
            contain three integers, (padding_D, padding_H, padding_W). Otherwise, the
D
DuYao 已提交
349 350
            padding_D = padding_H = padding_W = padding. The default value is 0.
        dilation (int|tuple, optional): The dilation size. If dilation is a tuple, it must
351
            contain three integers, (dilation_D, dilation_H, dilation_W). Otherwise, the
D
DuYao 已提交
352 353
            dilation_D = dilation_H = dilation_W = dilation. The default value is 1.
        groups (int, optional): The groups number of the Conv3d Layer. According to grouped
354 355 356
            convolution in Alex Krizhevsky's Deep CNN paper: when group=2,
            the first half of the filters is only connected to the first half
            of the input channels, while the second half of the filters is only
D
DuYao 已提交
357 358
            connected to the second half of the input channels. The default value is 1.
        param_attr (ParamAttr, optional): The parameter attribute for learnable parameters/weights
359 360 361
            of conv3d. If it is set to None or one attribute of ParamAttr, conv3d
            will create ParamAttr as param_attr. If it is set to None, the parameter
            is initialized with :math:`Normal(0.0, std)`, and the :math:`std` is
D
DuYao 已提交
362 363
            :math:`(\\frac{2.0 }{filter\_elem\_num})^{0.5}`. The default value is None.
        bias_attr (ParamAttr|bool, optional): The parameter attribute for the bias of conv3d.
364 365 366
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, conv3d
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
D
DuYao 已提交
367 368 369 370 371
            is not set, the bias is initialized zero. The default value is None.
        use_cudnn (bool, optional): Use cudnn kernel or not, it is valid only when the cudnn
            library is installed. The default value is True.
        act (str, optional): Activation type, if it is set to None, activation is not appended.
            The default value is None.
372
        dtype (str, optional): Data type, it can be "float32" or "float64". Default: "float32".
373

D
DuYao 已提交
374 375 376 377
    Attribute:
        **weight** (Parameter): the learnable weights of filters of this layer.

        **bias** (Parameter): the learnable bias of this layer.
378

379
    Returns:
D
DuYao 已提交
380
        None.
381 382 383 384 385 386 387 388

    Raises:
        ValueError: If the shapes of input, filter_size, stride, padding and
                    groups mismatch.

    Examples:
        .. code-block:: python

389 390 391 392 393 394
          import paddle.fluid as fluid
          import numpy

          with fluid.dygraph.guard():
              data = numpy.random.random((5, 3, 12, 32, 32)).astype('float32')
              conv3d = fluid.dygraph.nn.Conv3D(
395
                    num_channels=3, num_filters=2, filter_size=3, act="relu")
396 397
              ret = conv3d(fluid.dygraph.base.to_variable(data))

398 399
    """

L
lujun 已提交
400
    def __init__(self,
401
                 num_channels,
L
lujun 已提交
402 403 404 405 406 407 408 409 410
                 num_filters,
                 filter_size,
                 stride=1,
                 padding=0,
                 dilation=1,
                 groups=None,
                 param_attr=None,
                 bias_attr=None,
                 use_cudnn=True,
411 412
                 act=None,
                 dtype='float32'):
L
lujun 已提交
413
        assert param_attr is not False, "param_attr should not be False here."
414 415
        super(Conv3D, self).__init__()
        self._num_channels = num_channels
L
lujun 已提交
416 417 418
        self._groups = groups
        self._stride = utils.convert_to_list(stride, 3, 'stride')
        self._padding = utils.convert_to_list(padding, 3, 'padding')
419
        self._dilation = utils.convert_to_list(dilation, 3, 'dilation')
L
lujun 已提交
420 421
        self._act = act
        self._use_cudnn = use_cudnn
422 423 424 425
        self._filter_size = filter_size
        self._num_filters = num_filters
        self._param_attr = param_attr
        self._bias_attr = bias_attr
426
        self._dtype = dtype
427 428

        if self._groups is None:
429
            num_filter_channels = self._num_channels
L
lujun 已提交
430
        else:
431
            if self._num_channels % self._groups != 0:
L
lujun 已提交
432
                raise ValueError("num_channels must be divisible by groups.")
433
            num_filter_channels = self._num_channels // self._groups
L
lujun 已提交
434

435 436
        filter_size = utils.convert_to_list(self._filter_size, 3, 'filter_size')
        filter_shape = [self._num_filters, num_filter_channels] + filter_size
L
lujun 已提交
437 438 439

        def _get_default_param_initializer():
            filter_elem_num = filter_size[0] * filter_size[1] * filter_size[
440
                2] * self._num_channels
L
lujun 已提交
441 442 443 444
            std = (2.0 / filter_elem_num)**0.5
            return Normal(0.0, std, 0)

        self._filter_param = self.create_parameter(
445
            attr=self._param_attr,
L
lujun 已提交
446 447 448 449 450
            shape=filter_shape,
            dtype=self._dtype,
            default_initializer=_get_default_param_initializer())

        self._bias_param = self.create_parameter(
451 452
            attr=self._bias_attr,
            shape=[self._num_filters],
L
lujun 已提交
453 454 455
            dtype=self._dtype,
            is_bias=True)

456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471
    @property
    def weight(self):
        return self._filter_param

    @weight.setter
    def weight(self, value):
        self._filter_param = value

    @property
    def bias(self):
        return self._bias_param

    @bias.setter
    def bias(self, value):
        self._bias_param = value

L
lujun 已提交
472 473 474 475 476
    def forward(self, input):
        pre_bias = self._helper.create_variable_for_type_inference(
            dtype=self._dtype)

        self._helper.append_op(
477
            type='conv3d',
L
lujun 已提交
478 479 480 481 482 483 484 485 486 487 488 489 490 491
            inputs={
                'Input': input,
                'Filter': self._filter_param,
            },
            outputs={"Output": pre_bias},
            attrs={
                'strides': self._stride,
                'paddings': self._padding,
                'dilations': self._dilation,
                'groups': self._groups if self._groups else 1,
                'use_cudnn': self._use_cudnn,
                'use_mkldnn': False
            })

492 493 494 495 496 497 498 499 500 501 502
        if self._bias_param is not None:
            pre_act = self._helper.create_variable_for_type_inference(
                dtype=self._dtype)
            self._helper.append_op(
                type='elementwise_add',
                inputs={'X': [pre_bias],
                        'Y': [self._bias_param]},
                outputs={'Out': [pre_act]},
                attrs={'axis': 1})
        else:
            pre_act = pre_bias
L
lujun 已提交
503 504 505 506 507

        return self._helper.append_activation(pre_act, act=self._act)


class Conv3DTranspose(layers.Layer):
L
lujun 已提交
508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553
    """
    **Convlution3D transpose layer**

    The convolution3D transpose layer calculates the output based on the input,
    filter, and dilations, strides, paddings. Input(Input) and output(Output)
    are in NCDHW format. Where N is batch size, C is the number of channels,
    D is the depth of the feature, H is the height of the feature, and W
    is the width of the feature. Parameters(dilations, strides, paddings) are
    two elements. These two elements represent height and width, respectively.
    The details of convolution transpose layer, please refer to the following
    explanation and references `therein <http://www.matthewzeiler.com/wp-content/uploads/2017/07/cvpr2010.pdf>`_.
    If bias attribution and activation type are provided, bias is added to
    the output of the convolution, and the corresponding activation function
    is applied to the final result.

    For each input :math:`X`, the equation is:

    .. math::

        Out = \sigma (W \\ast X + b)

    In the above equation:

    * :math:`X`: Input value, a tensor with NCDHW format.
    * :math:`W`: Filter value, a tensor with MCDHW format.
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D tensor with shape [M, 1].
    * :math:`\\sigma`: Activation function.
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.

    Example:

        - Input:

          Input shape: :math:`(N, C_{in}, D_{in}, H_{in}, W_{in})`

          Filter shape: :math:`(C_{in}, C_{out}, D_f, H_f, W_f)`

        - Output:

          Output shape: :math:`(N, C_{out}, D_{out}, H_{out}, W_{out})`

        Where

        .. math::

D
DuYao 已提交
554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572
           D^\prime_{out} &= (D_{in} - 1) * strides[0] - 2 * paddings[0] + dilations[0] * (D_f - 1) + 1 \\\\
           H^\prime_{out} &= (H_{in} - 1) * strides[1] - 2 * paddings[1] + dilations[1] * (H_f - 1) + 1 \\\\
           W^\prime_{out} &= (W_{in} - 1) * strides[2] - 2 * paddings[2] + dilations[2] * (W_f - 1) + 1 \\\\
           D_{out} &\in [ D^\prime_{out}, D^\prime_{out} + strides[0] ] \\\\
           H_{out} &\in [ H^\prime_{out}, H^\prime_{out} + strides[1] ] \\\\

    **Note**:

          The conv3d_transpose can be seen as the backward of the conv3d. For conv3d, 
          when stride > 1, conv3d maps multiple input shape to the same output shape, 
          so for conv3d_transpose, when stride > 1, input shape maps multiple output shape.
          If output_size is None, :math:`H_{out} = H^\prime_{out}, :math:`H_{out} = \
          H^\prime_{out}, W_{out} = W^\prime_{out}`; else, the :math:`D_{out}` of the output 
          size must between :math:`D^\prime_{out}` and :math:`D^\prime_{out} + strides[0]`, 
          the :math:`H_{out}` of the output size must between :math:`H^\prime_{out}` 
          and :math:`H^\prime_{out} + strides[1]`, and the :math:`W_{out}` of the output size must 
          between :math:`W^\prime_{out}` and :math:`W^\prime_{out} + strides[2]`, 
          conv3d_transpose can compute the kernel size automatically.

L
lujun 已提交
573

574
    Parameters:
575
        num_channels(int): The number of channels in the input image.
L
lujun 已提交
576 577
        num_filters(int): The number of the filter. It is as same as the output
            image channel.
578
        filter_size(int|tuple): The filter size. If filter_size is a tuple,
L
lujun 已提交
579
            it must contain three integers, (filter_size_D, filter_size_H, filter_size_W).
580
            Otherwise, the filter will be a square.
D
DuYao 已提交
581 582 583 584 585 586 587 588 589 590 591 592 593 594 595
        padding(int|tuple, optional): The padding size. The padding argument effectively
             adds `dilation * (kernel - 1)` amount of zero-padding on both sides of input. If `padding` is a string,
             either 'VALID' or 'SAME' supported, which is the padding algorithm. If `padding`
             is a tuple or list, it could be in three forms: `[pad_depth, pad_height, pad_width]` or
            `[pad_depth_front, pad_depth_back, pad_height_top, pad_height_bottom, pad_width_left, pad_width_right]`,
            and when `data_format` is `'NCDHW'`, `padding` can be in the form
            `[[0,0], [0,0], [pad_depth_front, pad_depth_back], [pad_height_top, pad_height_bottom], [pad_width_left, pad_width_right]]`.
            when `data_format` is `'NDHWC'`, `padding` can be in the form
            `[[0,0], [pad_depth_front, pad_depth_back], [pad_height_top, pad_height_bottom], [pad_width_left, pad_width_right], [0,0]]`.
            The default value is 0.
        stride(int|tuple, optional): The stride size. It means the stride in transposed convolution. 
            If stride is a tuple, it must contain three integers, (stride_depth, stride_height, 
            stride_width). Otherwise, stride_depth = stride_height = stride_width = stride. 
            The default value is 1.
        dilation(int|tuple, optional): The dilation size. If dilation is a tuple, it must
L
lujun 已提交
596
            contain three integers, (dilation_D, dilation_H, dilation_W). Otherwise, the
D
DuYao 已提交
597 598
            dilation_D = dilation_H = dilation_W = dilation. The default value is 1.
        groups(int, optional): The groups number of the Conv3d transpose layer. Inspired by
L
lujun 已提交
599 600 601 602
            grouped convolution in Alex Krizhevsky's Deep CNN paper, in which
            when group=2, the first half of the filters is only connected to the
            first half of the input channels, while the second half of the
            filters is only connected to the second half of the input channels.
D
DuYao 已提交
603 604
            The default value is 1.
        param_attr (ParamAttr, optional): The parameter attribute for learnable parameters/weights
L
lujun 已提交
605 606
            of conv3d_transpose. If it is set to None or one attribute of ParamAttr, conv3d_transpose
            will create ParamAttr as param_attr. If the Initializer of the param_attr
D
DuYao 已提交
607 608
            is not set, the parameter is initialized with Xavier. The default value is None.
        bias_attr (ParamAttr|bool, optional): The parameter attribute for the bias of conv3d_transpose.
L
lujun 已提交
609 610 611
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, conv3d_transpose
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
D
DuYao 已提交
612 613 614 615 616 617 618
            is not set, the bias is initialized zero. The default value is None.
        use_cudnn(bool, optional): Use cudnn kernel or not, it is valid only when the cudnn
            library is installed. The default value is True.
        act (str, optional): Activation type, if it is set to None, activation is not appended.
            The default value is None.
        name(str, optional): The default value is None. Normally there is no need for user 
            to set this property. For more information, please refer to :ref:`api_guide_Name`.
L
lujun 已提交
619

D
DuYao 已提交
620 621 622 623
    Attribute:
        **weight** (Parameter): the learnable weights of filters of this layer.

        **bias** (Parameter): the learnable bias of this layer.
624

L
lujun 已提交
625
    Returns:
D
DuYao 已提交
626
        None.
L
lujun 已提交
627 628 629 630 631 632 633 634

    Raises:
        ValueError: If the shapes of input, filter_size, stride, padding and
                    groups mismatch.

    Examples:
       .. code-block:: python

635 636 637 638 639 640
         import paddle.fluid as fluid
         import numpy

         with fluid.dygraph.guard():
             data = numpy.random.random((5, 3, 12, 32, 32)).astype('float32')
             conv3dTranspose = fluid.dygraph.nn.Conv3DTranspose(
641
                    num_channels=3,
642 643 644 645 646
                    num_filters=12,
                    filter_size=12,
                    use_cudnn=False)
             ret = conv3dTranspose(fluid.dygraph.base.to_variable(data))

L
lujun 已提交
647 648
    """

L
lujun 已提交
649
    def __init__(self,
650
                 num_channels,
L
lujun 已提交
651
                 num_filters,
652
                 filter_size,
L
lujun 已提交
653 654 655 656 657 658 659 660
                 padding=0,
                 stride=1,
                 dilation=1,
                 groups=None,
                 param_attr=None,
                 bias_attr=None,
                 use_cudnn=True,
                 act=None,
661 662
                 dtype='float32'):
        super(Conv3DTranspose, self).__init__()
L
lujun 已提交
663 664 665 666 667 668 669
        if not isinstance(use_cudnn, bool):
            raise ValueError("use_cudnn should be True or False")
        assert param_attr is not False, "param_attr should not be False in conv3d_transpose."
        self._padding = utils.convert_to_list(padding, 3, 'padding')
        self._stride = utils.convert_to_list(stride, 3, 'stride')
        self._dilation = utils.convert_to_list(dilation, 3, 'dilation')
        self._param_attr = param_attr
670
        self._num_channels = num_channels
L
lujun 已提交
671 672 673 674 675 676
        self._filter_size = filter_size
        self._groups = 1 if groups is None else groups
        self._num_filters = num_filters
        self._use_cudnn = use_cudnn
        self._bias_attr = bias_attr
        self._act = act
677
        self._dtype = dtype
L
lujun 已提交
678

679 680
        self._filter_size = utils.convert_to_list(
            self._filter_size, 3, 'conv3d_transpose.filter_size')
L
lujun 已提交
681

682 683
        filter_shape = [self._num_channels, self._num_filters // self._groups
                        ] + self._filter_size
L
lujun 已提交
684 685 686 687 688 689 690 691 692
        self._img_filter = self.create_parameter(
            dtype=self._dtype, shape=filter_shape, attr=self._param_attr)
        if self._bias_attr:
            self._bias_param = self.create_parameter(
                attr=self._bias_attr,
                shape=[self._num_filters],
                dtype=self._dtype,
                is_bias=True)

693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708
    @property
    def weight(self):
        return self._img_filter

    @weight.setter
    def weight(self, value):
        self._img_filter = value

    @property
    def bias(self):
        return self._bias_param

    @bias.setter
    def bias(self, value):
        self._bias_param = value

L
lujun 已提交
709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740
    def forward(self, input):
        pre_bias = self._helper.create_variable_for_type_inference(
            dtype=self._dtype)
        self._helper.append_op(
            type="conv3d_transpose",
            inputs={'Input': [input],
                    'Filter': [self._img_filter]},
            outputs={'Output': pre_bias},
            attrs={
                'strides': self._stride,
                'paddings': self._padding,
                'dilations': self._dilation,
                'groups': self._groups if self._groups else 1,
                'use_cudnn': self._use_cudnn
            })

        if self._bias_attr:
            pre_act = self._helper.create_variable_for_type_inference(
                dtype=self._dtype)
            self._helper.append_op(
                type='elementwise_add',
                inputs={'X': [pre_bias],
                        'Y': [self._bias_param]},
                outputs={'Out': [pre_act]},
                attrs={'axis': 1})
        else:
            pre_act = pre_bias

        # Currently, we don't support inplace in imperative mode
        return self._helper.append_activation(pre_act, act=self._act)


X
Xin Pan 已提交
741
class Pool2D(layers.Layer):
742
    """
743 744 745 746 747
    This interface is used to construct a callable object of the ``Pool2D`` class.
    For more details, refer to code examples.
    The pooling2d operation calculates the output based on the input, pool_type and pool_size, pool_stride,
    pool_padding parameters.Input and output are in NCHW format, where N is batch size, C is the number of feature map,
    H is the height of the feature map, and W is the width of the feature map.
L
lujun 已提交
748 749
    Parameters(ksize, strides, paddings) are two elements. These two elements represent height and width, respectively.
    The input(X) size and output(Out) size may be different.
750

751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794
    Example:

        - Input:

          Input shape: :math:`(N, C, H_{in}, W_{in})`

        - Output:

          Output shape: :math:`(N, C, H_{out}, W_{out})`

        If ``ceil_mode`` = False:

        .. math::

            H_{out} = \\frac{(H_{in} - ksize[0] + 2 * paddings[0])}{strides[0]} + 1 \\\\
            W_{out} = \\frac{(W_{in} - ksize[1] + 2 * paddings[1])}{strides[1]} + 1

        If ``ceil_mode`` = True:

        .. math::

            H_{out} = \\frac{(H_{in} - ksize[0] + 2 * paddings[0] + strides[0] - 1)}{strides[0]} + 1 \\\\
            W_{out} = \\frac{(W_{in} - ksize[1] + 2 * paddings[1] + strides[1] - 1)}{strides[1]} + 1

        If ``exclusive`` = False:

        .. math::

            hstart &= i * strides[0] - paddings[0] \\\\
            hend   &= hstart + ksize[0] \\\\
            wstart &= j * strides[1] - paddings[1] \\\\
            wend   &= wstart + ksize[1] \\\\
            Output(i ,j) &= \\frac{sum(Input[hstart:hend, wstart:wend])}{ksize[0] * ksize[1]}

        If ``exclusive`` = True:

        .. math::

            hstart &= max(0, i * strides[0] - paddings[0])\\\\
            hend &= min(H, hstart + ksize[0]) \\\\
            wstart &= max(0, j * strides[1] - paddings[1]) \\\\
            wend & = min(W, wstart + ksize[1]) \\\\
            Output(i ,j) & = \\frac{sum(Input[hstart:hend, wstart:wend])}{(hend - hstart) * (wend - wstart)}

795
    Parameters:
796
        pool_size (int or list or tuple, optional): The pool kernel size. If pool kernel size is a tuple or list,
797
            it must contain two integers, (pool_size_Height, pool_size_Width).
798 799 800 801
            Otherwise, the pool kernel size will be a square of an int. Default: -1.
        pool_type(str, optional) : The pooling type, can be "max" for max-pooling and "avg" for average-pooling. 
            Default: max.
        pool_stride (int or list or tuple, optional): The pool stride size. If pool stride size is a tuple or list,
L
lujun 已提交
802
            it must contain two integers, (pool_stride_Height, pool_stride_Width). Otherwise,
803 804 805
            the pool stride size will be a square of an int. Default: 1.
        pool_padding (int or list or tuple, optional): The padding size for pooling operation. 
            If ``pool_padding`` is a tuple,
806
            it must contain two integers, (pool_padding_on_Height, pool_padding_on_Width).
807 808 809 810 811 812 813
            Otherwise, the padding size for pooling operation will be a square of an int. Default: 0.
        global_pooling (bool, optional): Whether to use the global pooling. If global_pooling = true,
            kernel size and paddings will be ignored. Default: False.
        use_cudnn (bool, optional): Only used in cudnn kernel, need install cudnn. Default: True.
        ceil_mode (bool, optional): Whether to use the ceil function to calculate output height and width.
            False is the default. If it is set to False, the floor function will be used. Default: False.
        exclusive (bool, optional): Whether to exclude padding points in average pooling mode. Default: True.
814 815

    Returns:
816
        None
817 818 819 820 821 822 823 824 825 826

    Raises:
        ValueError: If 'pool_type' is not "max" nor "avg"
        ValueError: If 'global_pooling' is False and 'pool_size' is -1
        ValueError: If 'use_cudnn' is not a bool value.

    Examples:

        .. code-block:: python

L
lujun 已提交
827
          import paddle.fluid as fluid
828 829
          from paddle.fluid.dygraph.base import to_variable
          import numpy as np
L
lujun 已提交
830 831

          with fluid.dygraph.guard():
832
             data = numpy.random.random((3, 32, 32, 5)).astype('float32')
833
             pool2d = fluid.dygraph.Pool2D(pool_size=2,
834 835 836
                            pool_type='max',
                            pool_stride=1,
                            global_pooling=False)
837
             pool2d_res = pool2d(to_variable(data))
838 839 840

    """

M
minqiyang 已提交
841 842 843 844 845 846 847 848
    def __init__(self,
                 pool_size=-1,
                 pool_type="max",
                 pool_stride=1,
                 pool_padding=0,
                 global_pooling=False,
                 use_cudnn=True,
                 ceil_mode=False,
849
                 exclusive=True):
M
minqiyang 已提交
850 851 852 853 854 855 856 857 858 859 860 861 862
        if pool_type not in ["max", "avg"]:
            raise ValueError(
                "Unknown pool_type: '%s'. It can only be 'max' or 'avg'.",
                str(pool_type))

        if global_pooling is False and pool_size == -1:
            raise ValueError(
                "When the global_pooling is False, pool_size must be passed "
                "and be a valid value. Received pool_size: " + str(pool_size))

        if not isinstance(use_cudnn, bool):
            raise ValueError("use_cudnn should be True or False")

863
        super(Pool2D, self).__init__()
M
minqiyang 已提交
864 865 866 867 868 869 870 871 872 873 874 875 876

        self._pool_type = pool_type
        self._pool_size = utils.convert_to_list(pool_size, 2, 'pool_size')
        self._pool_padding = utils.convert_to_list(pool_padding, 2,
                                                   'pool_padding')
        self._pool_stride = utils.convert_to_list(pool_stride, 2, 'pool_stride')
        self._global_pooling = global_pooling
        self._use_cudnn = use_cudnn
        self._ceil_mode = ceil_mode
        self._exclusive = exclusive
        self._l_type = 'pool2d'

    def forward(self, input):
877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893
        attrs = {
            "pooling_type": self._pool_type,
            "ksize": self._pool_size,
            "global_pooling": self._global_pooling,
            "strides": self._pool_stride,
            "paddings": self._pool_padding,
            "use_cudnn": self._use_cudnn,
            "ceil_mode": self._ceil_mode,
            "use_mkldnn": False,
            "exclusive": self._exclusive,
        }
        inputs = {"X": [input]}

        if in_dygraph_mode():
            outs = core.ops.pool2d(inputs, attrs)
            return outs['Out'][0]

M
minqiyang 已提交
894 895
        pool_out = self._helper.create_variable_for_type_inference(self._dtype)

M
minqiyang 已提交
896 897 898
        self._helper.append_op(
            type=self._l_type,
            inputs={"X": input},
M
minqiyang 已提交
899
            outputs={"Out": pool_out},
900
            attrs=attrs)
M
minqiyang 已提交
901
        return pool_out
M
minqiyang 已提交
902 903


S
songyouwei 已提交
904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973
class Linear(layers.Layer):
    """
    Fully-connected linear transformation layer:

    .. math::

        Out = Act({XW + b})

    where :math:`X` is the input Tensor, :math:`W` and :math:`b` are weight and bias respectively.

    Different from FC layer, Linear layer takes only one ``Tensor`` input.
    The Linear layer multiplies input tensor with weight matrix and
    produces an output Tensor of shape [N, *, `output_dim`],
    where N is batch size and `*` means any number of additional dimensions.
    If ``bias_attr`` is not None, a bias variable will be created and added to the output.
    Finally, if ``act`` is not None, it will be applied to the output as well.

    Parameters:
        input_dim(int): The number of input units in this layer.
        output_dim(int): The number of output units in this layer.
        param_attr(ParamAttr or list of ParamAttr, optional): The parameter attribute for learnable
            weights(Parameter) of this layer. Default: None.
        bias_attr(ParamAttr or list of ParamAttr, optional): The attribute for the bias
            of this layer. If it is set to False, no bias will be added to the output units.
            If it is set to None, the bias is initialized zero. Default: None.
        act(str, optional): Activation to be applied to the output of this layer. Default: None.
        dtype(str, optional): Dtype used for weight, it can be "float32" or "float64". Default: "float32".

    Attributes:
        **weight** (Parameter): the learnable weights of this layer.

        **bias** (Parameter or None): the learnable bias of this layer.

    Returns:
        None

    Examples:
        .. code-block:: python

          from paddle.fluid.dygraph.base import to_variable
          import paddle.fluid as fluid
          from paddle.fluid.dygraph import Linear
          import numpy as np

          data = np.random.uniform(-1, 1, [30, 10, 32]).astype('float32')
          with fluid.dygraph.guard():
              linear = Linear(32, 64)
              data = to_variable(data)
              res = linear(data)  # [30, 10, 64]
    """

    def __init__(self,
                 input_dim,
                 output_dim,
                 param_attr=None,
                 bias_attr=None,
                 act=None,
                 dtype="float32"):
        super(Linear, self).__init__()
        self._act = act
        self._dtype = dtype
        self.weight = self.create_parameter(
            shape=[input_dim, output_dim],
            attr=param_attr,
            dtype=dtype,
            is_bias=False)
        self.bias = self.create_parameter(
            shape=[output_dim], attr=bias_attr, dtype=dtype, is_bias=True)

    def forward(self, input):
974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990
        attrs = {
            "transpose_X": False,
            "transpose_Y": False,
            "alpha": 1,
        }
        inputs = {"X": [input], "Y": [self.weight]}

        if in_dygraph_mode():
            outs = core.ops.matmul(inputs, attrs)
            pre_bias = outs['Out'][0]

            pre_act = dygraph_utils._append_bias_in_dygraph(
                pre_bias, self.bias, axis=len(input.shape) - 1)

            return dygraph_utils._append_activation_in_dygraph(pre_act,
                                                               self._act)

S
songyouwei 已提交
991 992
        tmp = self._helper.create_variable_for_type_inference(self._dtype)
        self._helper.append_op(
993
            type="matmul", inputs=inputs, outputs={"Out": tmp}, attrs=attrs)
S
songyouwei 已提交
994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007
        if self.bias:
            pre_activation = self._helper.create_variable_for_type_inference(
                dtype=self._dtype)
            self._helper.append_op(
                type='elementwise_add',
                inputs={'X': [tmp],
                        'Y': [self.bias]},
                outputs={'Out': [pre_activation]},
                attrs={'axis': len(input.shape) - 1})
        else:
            pre_activation = tmp
        return self._helper.append_activation(pre_activation, act=self._act)


X
Xin Pan 已提交
1008
class FC(layers.Layer):
1009
    """
1010 1011 1012 1013
    This interface is used to construct a callable object of the ``FC`` class.
    For more details, refer to code examples.
    It creates a fully connected layer in the network. It can take
    one or multiple ``Tensor`` as its inputs. It creates a Variable called weights for each input tensor,
1014 1015
    which represents a fully connected weight matrix from each input unit to
    each output unit. The fully connected layer multiplies each input tensor
1016 1017 1018
    with its corresponding weight to produce an output Tensor with shape [N, `size`],
    where N is batch size. If multiple input tensors are given, the results of
    multiple output tensors with shape [N, `size`] will be summed up. If ``bias_attr``
1019
    is not None, a bias variable will be created and added to the output.
1020
    Finally, if ``act`` is not None, it will be applied to the output as well.
1021

1022
    When the input is single ``Tensor`` :
1023 1024 1025 1026 1027

    .. math::

        Out = Act({XW + b})

1028
    When the input are multiple ``Tensor`` :
1029 1030 1031 1032 1033 1034 1035

    .. math::

        Out = Act({\sum_{i=0}^{N-1}X_iW_i + b})

    In the above equation:

1036 1037
    * :math:`N`: Number of the input. N equals to len(input) if input is list of ``Tensor`` .
    * :math:`X_i`: The i-th input ``Tensor`` .
1038 1039 1040
    * :math:`W_i`: The i-th weights matrix corresponding i-th input tensor.
    * :math:`b`: The bias parameter created by this layer (if needed).
    * :math:`Act`: The activation function.
1041
    * :math:`Out`: The output ``Tensor`` .
1042 1043 1044 1045 1046 1047

    See below for an example.

    .. code-block:: text

        Given:
1048 1049
            data_1.data = [[[0.1, 0.2]]]
            data_1.shape = (1, 1, 2) # 1 is batch_size
1050

1051 1052
            data_2.data = [[[0.1, 0.2, 0.3]]]
            data_2.shape = (1, 1, 3) # 1 is batch_size
1053

1054 1055
            fc = FC("fc", 2, num_flatten_dims=2)
            out = fc(input=[data_1, data_2])
1056 1057

        Then:
1058 1059
            out.data = [[[0.182996 -0.474117]]]
            out.shape = (1, 1, 2)
1060

1061
    Parameters:
L
lujun 已提交
1062
        name_scope(str): The name of this class.
1063
        size(int): The number of output units in this layer.
1064 1065
        num_flatten_dims (int, optional): The fc layer can accept an input tensor with more than
            two dimensions. If this happens, the multi-dimension tensor will first be flattened
1066 1067 1068 1069 1070 1071
            into a 2-dimensional matrix. The parameter `num_flatten_dims` determines how the input
            tensor is flattened: the first `num_flatten_dims` (inclusive, index starts from 1)
            dimensions will be flatten to form the first dimension of the final matrix (height of
            the matrix), and the rest `rank(X) - num_flatten_dims` dimensions are flattened to
            form the second dimension of the final matrix (width of the matrix). For example, suppose
            `X` is a 5-dimensional tensor with a shape [2, 3, 4, 5, 6], and `num_flatten_dims` = 3.
L
lujun 已提交
1072
            Then, the flattened matrix will have a shape [2 x 3 x 4, 5 x 6] = [24, 30]. Default: 1
1073 1074 1075
        param_attr (ParamAttr or list of ParamAttr, optional): The parameter attribute for learnable
            weights(Parameter) of this layer. Default: None.
        bias_attr (ParamAttr or list of ParamAttr, optional): The attribute for the bias
1076 1077
            of this layer. If it is set to False, no bias will be added to the output units.
            If it is set to None, the bias is initialized zero. Default: None.
1078 1079 1080
        act (str, optional): Activation to be applied to the output of this layer. Default: None.
        is_test(bool, optional): A flag indicating whether execution is in test phase. Default: False.
        dtype(str, optional): Dtype used for weight, it can be "float32" or "float64". Default: "float32".
1081

1082 1083
    Attribute:
        **weight** (list of Parameter): the learnable weights of this layer.
1084

1085
        **bias** (Parameter or None): the learnable bias of this layer.
1086

1087 1088 1089
    Returns:
        None
    
1090 1091
    Examples:
        .. code-block:: python
L
lujun 已提交
1092

1093 1094 1095 1096
          from paddle.fluid.dygraph.base import to_variable
          import paddle.fluid as fluid
          from paddle.fluid.dygraph import FC
          import numpy as np
L
lujun 已提交
1097

1098
          data = np.random.uniform(-1, 1, [30, 10, 32]).astype('float32')
1099
          with fluid.dygraph.guard():
1100 1101 1102
              fc = FC("fc", 64, num_flatten_dims=2)
              data = to_variable(data)
              conv = fc(data)
1103 1104 1105

    """

M
minqiyang 已提交
1106
    def __init__(self,
X
Xin Pan 已提交
1107
                 name_scope,
M
minqiyang 已提交
1108
                 size,
1109
                 num_flatten_dims=1,
M
minqiyang 已提交
1110
                 param_attr=None,
M
minqiyang 已提交
1111
                 bias_attr=None,
1112 1113 1114
                 act=None,
                 is_test=False,
                 dtype="float32"):
1115
        super(FC, self).__init__(name_scope, dtype)
M
minqiyang 已提交
1116

M
minqiyang 已提交
1117
        self._size = size
M
minqiyang 已提交
1118 1119
        self._num_flatten_dims = num_flatten_dims
        self._dtype = dtype
1120
        self._param_attr = param_attr
1121
        self._bias_attr = bias_attr
1122
        self._act = act
1123 1124
        self.__w = list()

1125
    def _build_once(self, input):
1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147
        i = 0
        for inp, param in self._helper.iter_inputs_and_params(input,
                                                              self._param_attr):
            input_shape = inp.shape

            param_shape = [
                reduce(lambda a, b: a * b, input_shape[self._num_flatten_dims:],
                       1)
            ] + [self._size]
            self.__w.append(
                self.add_parameter(
                    '_w%d' % i,
                    self.create_parameter(
                        attr=param,
                        shape=param_shape,
                        dtype=self._dtype,
                        is_bias=False)))
            i += 1

        size = list([self._size])
        self._b = self.create_parameter(
            attr=self._bias_attr, shape=size, dtype=self._dtype, is_bias=True)
M
minqiyang 已提交
1148

1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178
    # TODO(songyouwei): We should remove _w property
    @property
    def _w(self, i=0):
        return self.__w[i]

    @_w.setter
    def _w(self, value, i=0):
        assert isinstance(self.__w[i], Variable)
        self.__w[i].set_value(value)

    @property
    def weight(self):
        if len(self.__w) > 1:
            return self.__w
        else:
            return self.__w[0]

    @weight.setter
    def weight(self, value):
        if len(self.__w) == 1:
            self.__w[0] = value

    @property
    def bias(self):
        return self._b

    @bias.setter
    def bias(self, value):
        self._b = value

M
minqiyang 已提交
1179
    def forward(self, input):
1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206
        mul_results = list()
        i = 0
        for inp, param in self._helper.iter_inputs_and_params(input,
                                                              self._param_attr):
            tmp = self._helper.create_variable_for_type_inference(self._dtype)
            self._helper.append_op(
                type="mul",
                inputs={"X": inp,
                        "Y": self.__w[i]},
                outputs={"Out": tmp},
                attrs={
                    "x_num_col_dims": self._num_flatten_dims,
                    "y_num_col_dims": 1
                })
            i += 1
            mul_results.append(tmp)

        if len(mul_results) == 1:
            pre_bias = mul_results[0]
        else:
            pre_bias = self._helper.create_variable_for_type_inference(
                self._dtype)
            self._helper.append_op(
                type="sum",
                inputs={"X": mul_results},
                outputs={"Out": pre_bias},
                attrs={"use_mkldnn": False})
M
minqiyang 已提交
1207

1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218
        if self._b:
            pre_activation = self._helper.create_variable_for_type_inference(
                dtype=self._dtype)
            self._helper.append_op(
                type='elementwise_add',
                inputs={'X': [pre_bias],
                        'Y': [self._b]},
                outputs={'Out': [pre_activation]},
                attrs={'axis': self._num_flatten_dims})
        else:
            pre_activation = pre_bias
L
lujun 已提交
1219
        # Currently, we don't support inplace in dygraph mode
1220
        return self._helper.append_activation(pre_activation, act=self._act)
M
minqiyang 已提交
1221 1222 1223


class BatchNorm(layers.Layer):
1224
    """
1225 1226 1227 1228 1229
    This interface is used to construct a callable object of the ``BatchNorm`` class.
    For more details, refer to code examples.
    It implements the function of the Batch Normalization Layer and can be used 
    as a normalizer function for conv2d and fully connected operations.
    The data is normalized by the mean and variance of the channel based on the current batch data.
1230 1231 1232 1233
    Refer to `Batch Normalization: Accelerating Deep Network Training by Reducing
    Internal Covariate Shift <https://arxiv.org/pdf/1502.03167.pdf>`_
    for more details.

1234 1235 1236
    When use_global_stats = False, the :math:`\\mu_{\\beta}` 
    and :math:`\\sigma_{\\beta}^{2}` are the statistics of one mini-batch.
    Calculated as follows:
1237 1238 1239 1240 1241 1242 1243 1244

    ..  math::

        \\mu_{\\beta} &\\gets \\frac{1}{m} \\sum_{i=1}^{m} x_i \\qquad &//\\
        \ mini-batch\ mean \\\\
        \\sigma_{\\beta}^{2} &\\gets \\frac{1}{m} \\sum_{i=1}^{m}(x_i - \\
        \\mu_{\\beta})^2 \\qquad &//\ mini-batch\ variance \\\\

1245 1246
    - :math:`x` : mini-batch data
    - :math:`m` : the size of the mini-batch data
1247 1248 1249

    When use_global_stats = True, the :math:`\\mu_{\\beta}`
    and :math:`\\sigma_{\\beta}^{2}` are not the statistics of one mini-batch.
1250 1251 1252 1253 1254 1255
    They are global or running statistics (moving_mean and moving_variance). It usually got from the
    pre-trained model. Calculated as follows:

    .. math::
        moving\_mean = moving\_mean * momentum + \mu_{\beta} * (1. - momentum) \quad &// global mean \\
        moving\_variance = moving\_variance * momentum + \sigma_{\beta}^{2} * (1. - momentum) \quad &// global variance \\
1256

1257 1258
    The normalization function formula is as follows:
 
1259 1260 1261
    ..  math::

        \\hat{x_i} &\\gets \\frac{x_i - \\mu_\\beta} {\\sqrt{\\
1262 1263 1264 1265 1266 1267
        \\sigma_{\\beta}^{2} + \\epsilon}} \\qquad &//\ normalize \\\\
        y_i &\\gets \\gamma \\hat{x_i} + \\beta \\qquad &//\ scale\ and\ shift

    - :math:`\\epsilon` : add a smaller value to the variance to prevent division by zero
    - :math:`\\gamma` : trainable proportional parameter
    - :math:`\\beta` : trainable deviation parameter
1268

1269
    Parameters:
1270 1271 1272 1273 1274 1275
        num_channels(int): Indicate the number of channels of the input ``Tensor``.
        act(str, optional): Activation to be applied to the output of batch normalizaiton. Default: None.
        is_test (bool, optional): A flag indicating whether it is in test phrase or not. Default: False.
        momentum(float, optional): The value used for the moving_mean and moving_var computation. Default: 0.9.
        epsilon(float, optional): The small value added to the variance to prevent division by zero. Default: 1e-5.
        param_attr(ParamAttr, optional): The parameter attribute for Parameter `scale`
1276 1277 1278
             of batch_norm. If it is set to None or one attribute of ParamAttr, batch_norm
             will create ParamAttr as param_attr. If the Initializer of the param_attr
             is not set, the parameter is initialized with Xavier. Default: None.
1279
        bias_attr(ParamAttr, optional): The parameter attribute for the bias of batch_norm.
1280 1281 1282
             If it is set to None or one attribute of ParamAttr, batch_norm
             will create ParamAttr as bias_attr. If the Initializer of the bias_attr
             is not set, the bias is initialized zero. Default: None.
1283 1284 1285 1286 1287 1288
        dtype(str, optional): Indicate the data type of the input ``Tensor``,
             which can be float32 or float64. Default: float32.
        data_layout(str, optional): Specify the input data format, the data format can be "NCHW" or "NHWC". Default: NCHW.
        in_place(bool, optional): Make the input and output of batch norm reuse memory. Default: False.
        moving_mean_name(str, optional): The name of moving_mean which store the global Mean. Default: None.
        moving_variance_name(str, optional): The name of the moving_variance which store the global Variance. Default: None.
1289 1290
        do_model_average_for_mean_and_var(bool, optional): Whether parameter mean and variance should do model
            average when model average is enabled. Default: True.
1291
        use_global_stats(bool, optional): Whether to use global mean and
1292 1293 1294
            variance. In inference or test mode, set use_global_stats to true
            or is_test to true, and the behavior is equivalent.
            In train mode, when setting use_global_stats True, the global mean
1295 1296 1297 1298
            and variance are also used during train period. Default: False.
        trainable_statistics(bool, optional): Whether to calculate mean and var in eval mode. In eval mode, when
            setting trainable_statistics True, mean and variance will be calculated by current batch statistics.
            Default: False.
1299 1300

    Returns:
1301
        None
1302 1303 1304

    Examples:
        .. code-block:: python
L
lujun 已提交
1305 1306

          import paddle.fluid as fluid
1307 1308
          from paddle.fluid.dygraph.base import to_variable
          import numpy as np
L
lujun 已提交
1309

1310
          x = np.random.random(size=(3, 10, 3, 7)).astype('float32')
L
lujun 已提交
1311
          with fluid.dygraph.guard():
1312
              x = to_variable(x)
1313
              batch_norm = fluid.BatchNorm(10)
1314
              hidden1 = batch_norm(x)
1315 1316
    """

M
minqiyang 已提交
1317 1318 1319 1320 1321 1322 1323 1324
    def __init__(self,
                 num_channels,
                 act=None,
                 is_test=False,
                 momentum=0.9,
                 epsilon=1e-05,
                 param_attr=None,
                 bias_attr=None,
1325
                 dtype='float32',
M
minqiyang 已提交
1326 1327 1328 1329
                 data_layout='NCHW',
                 in_place=False,
                 moving_mean_name=None,
                 moving_variance_name=None,
1330
                 do_model_average_for_mean_and_var=True,
1331 1332
                 use_global_stats=False,
                 trainable_statistics=False):
1333
        super(BatchNorm, self).__init__()
1334
        self._param_attr = param_attr
1335
        self._bias_attr = bias_attr
1336
        self._act = act
M
minqiyang 已提交
1337 1338 1339

        assert bias_attr is not False, "bias_attr should not be False in batch_norm."

1340 1341
        if dtype == "float16":
            self._dtype = "float32"
M
minqiyang 已提交
1342 1343 1344 1345 1346 1347
        else:
            self._dtype = dtype

        param_shape = [num_channels]

        # create parameter
1348 1349
        self._scale = self.create_parameter(
            attr=self._param_attr,
M
minqiyang 已提交
1350 1351 1352
            shape=param_shape,
            dtype=self._dtype,
            default_initializer=Constant(1.0))
1353
        if use_global_stats and self._param_attr.learning_rate == 0.:
1354
            self._scale.stop_gradient = True
M
minqiyang 已提交
1355

1356
        self._bias = self.create_parameter(
1357
            attr=self._bias_attr,
M
minqiyang 已提交
1358 1359 1360
            shape=param_shape,
            dtype=self._dtype,
            is_bias=True)
1361
        if use_global_stats and self._param_attr.learning_rate == 0.:
1362
            self._bias.stop_gradient = True
M
minqiyang 已提交
1363

1364
        self._mean = self.create_parameter(
M
minqiyang 已提交
1365 1366 1367 1368 1369 1370 1371
            attr=ParamAttr(
                name=moving_mean_name,
                initializer=Constant(0.0),
                trainable=False,
                do_model_average=do_model_average_for_mean_and_var),
            shape=param_shape,
            dtype=self._dtype)
1372
        self._mean.stop_gradient = True
M
minqiyang 已提交
1373

1374
        self._variance = self.create_parameter(
M
minqiyang 已提交
1375 1376 1377 1378 1379 1380 1381
            attr=ParamAttr(
                name=moving_variance_name,
                initializer=Constant(1.0),
                trainable=False,
                do_model_average=do_model_average_for_mean_and_var),
            shape=param_shape,
            dtype=self._dtype)
1382
        self._variance.stop_gradient = True
M
minqiyang 已提交
1383 1384

        self._in_place = in_place
1385
        self._data_layout = data_layout
M
minqiyang 已提交
1386 1387 1388
        self._momentum = momentum
        self._epsilon = epsilon
        self._is_test = is_test
1389
        self._fuse_with_relu = False
M
minqiyang 已提交
1390
        self._use_global_stats = use_global_stats
1391
        self._trainable_statistics = trainable_statistics
M
minqiyang 已提交
1392 1393 1394 1395 1396 1397 1398 1399 1400

    def forward(self, input):
        # create output
        # mean and mean_out share the same memory
        mean_out = self._mean
        # variance and variance out share the same memory
        variance_out = self._variance

        saved_mean = self._helper.create_variable_for_type_inference(
M
minqiyang 已提交
1401
            dtype=self._dtype, stop_gradient=True)
M
minqiyang 已提交
1402
        saved_variance = self._helper.create_variable_for_type_inference(
M
minqiyang 已提交
1403
            dtype=self._dtype, stop_gradient=True)
M
minqiyang 已提交
1404
        batch_norm_out = input if self._in_place else self._helper.create_variable_for_type_inference(
M
minqiyang 已提交
1405
            self._dtype)
M
minqiyang 已提交
1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426

        self._helper.append_op(
            type="batch_norm",
            inputs={
                "X": input,
                "Scale": self._scale,
                "Bias": self._bias,
                "Mean": self._mean,
                "Variance": self._variance
            },
            outputs={
                "Y": batch_norm_out,
                "MeanOut": mean_out,
                "VarianceOut": variance_out,
                "SavedMean": saved_mean,
                "SavedVariance": saved_variance
            },
            attrs={
                "momentum": self._momentum,
                "epsilon": self._epsilon,
                "is_test": self._is_test,
1427
                "data_layout": self._data_layout,
M
minqiyang 已提交
1428 1429
                "use_mkldnn": False,
                "fuse_with_relu": self._fuse_with_relu,
1430 1431
                "use_global_stats": self._use_global_stats,
                "trainable_statistics": self._trainable_statistics
M
minqiyang 已提交
1432 1433
            })

L
lujun 已提交
1434
        # Currently, we don't support inplace in dygraph mode
1435
        return self._helper.append_activation(batch_norm_out, self._act)
1436 1437


1438 1439 1440 1441
class Embedding(layers.Layer):
    """
    **Embedding Layer**

Z
zhongpu 已提交
1442 1443 1444 1445 1446 1447
    This interface is used to construct a callable object of the ``Embedding`` class.
    For specific usage, refer to code examples. It implements the function of the Embedding Layer.
    This layer is used to lookup embeddings vector of ids provided by :attr:`input` .
    It automatically constructs a 2D embedding matrix based on the
    input :attr:`size` (vocab_size, emb_size) and :attr:`dtype` .

1448 1449
    The shape of output Tensor is generated by appending an emb_size dimension to the
    last dimension of the input Tensor shape.
Z
zhongpu 已提交
1450

1451
    **Note:** The id in :attr:`input` must satisfy :math:`0 =< id < size[0]` ,
Z
zhongpu 已提交
1452 1453 1454 1455 1456 1457 1458
    otherwise the program will throw an exception and exit.

    .. code-block:: text

        Case 1:

        input is a Tensor. padding_idx = -1
1459 1460
            input.data = [[1, 3], [2, 4], [4, 127]
            input.shape = [3, 2]
Z
zhongpu 已提交
1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473
        Given size = [128, 16]
        output is a Tensor:
            out.shape = [3, 2, 16]
            out.data = [[[0.129435295, 0.244512452, ..., 0.436322452],
                        [0.345421456, 0.524563927, ..., 0.144534654]],

                        [[0.345249859, 0.124939536, ..., 0.194353745],
                        [0.945345345, 0.435394634, ..., 0.435345365]],
                        
                        [[0.945345345, 0.435394634, ..., 0.435345365],
                        [0.0,         0.0,         ..., 0.0        ]]]  # padding data
        The input padding_idx is less than 0, it is automatically converted to padding_idx = -1 + 128 = 127
        It will pad all-zero data when ids is 127.
1474

1475
    Parameters:
L
lujun 已提交
1476 1477
        size(tuple|list): The shape of the look up table parameter. It should have two elements which indicate the size
            of the dictionary of embeddings and the size of each embedding vector respectively.
Z
zhongpu 已提交
1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499
        is_sparse(bool): The flag indicating whether to use sparse update. This parameter only
            affects the performance of the backwards gradient update. It is recommended to set 
            True because sparse update is faster. But some optimizer does not support sparse update,
            such as :ref:`api_fluid_optimizer_AdadeltaOptimizer` , :ref:`api_fluid_optimizer_AdamaxOptimizer` , 
            :ref:`api_fluid_optimizer_DecayedAdagradOptimizer` , :ref:`api_fluid_optimizer_FtrlOptimizer` ,
            :ref:`api_fluid_optimizer_LambOptimizer` and :ref:`api_fluid_optimizer_LarsMomentumOptimizer` .
            In these case, is_sparse must be False. Default: False.
        is_distributed(bool): Whether to store the embedding matrix in a distributed manner. Only used
            in multi-machine distributed CPU training. Default: False.
        padding_idx(int|long|None): padding_idx needs to be in the interval [-vocab_size, vocab_size). 
            If :math:`padding\_idx < 0`, the :math:`padding\_idx` will automatically be converted
            to :math:`vocab\_size + padding\_idx` . It will output all-zero padding data whenever lookup
            encounters :math:`padding\_idx` in id. And the padding data will not be updated while training.
            If set None, it makes no effect to output. Default: None.
        param_attr(ParamAttr): To specify the weight parameter property. Default: None, which means the
            default weight parameter property is used. See usage for details in :ref:`api_fluid_ParamAttr` . In addition,
            user-defined or pre-trained word vectors can be loaded with the :attr:`param_attr` parameter. 
            The local word vector needs to be transformed into numpy format, and the shape of local word
            vector shoud be consistent with :attr:`size` . Then :ref:`api_fluid_initializer_NumpyArrayInitializer`
            is used to load custom or pre-trained word vectors. See code example 2 for details.
        dtype(np.dtype|core.VarDesc.VarType|str): It refers to the data type of output Tensor.
            It must be "float32" or "float64". Default: "float32".
1500

Z
zhongpu 已提交
1501 1502
    Attribute:
        **weight** (Parameter): the learnable weights of this layer.
1503

1504
    Returns:
Z
zhongpu 已提交
1505
        Variable: Embedding Tensor or LoDTensor mapped by input. The data type is the same as :attr:`dtype` .
1506 1507

    Examples:
1508

1509 1510
        .. code-block:: python

L
lujun 已提交
1511 1512 1513 1514
          import paddle.fluid as fluid
          import paddle.fluid.dygraph.base as base
          import numpy as np

Z
zhongpu 已提交
1515
          # example 1
1516 1517
          inp_word = np.array([[2, 3, 5], [4, 2, 1]]).astype('int64')
          inp_word.shape  # [2, 3]
1518 1519
          dict_size = 20
          with fluid.dygraph.guard():
L
lujun 已提交
1520
              emb = fluid.dygraph.Embedding(
1521 1522 1523
                  size=[dict_size, 32],
                  param_attr='emb.w',
                  is_sparse=False)
L
lujun 已提交
1524
              static_rlt3 = emb(base.to_variable(inp_word))
1525
              static_rlt3.shape  # [2, 3, 32]
Z
zhongpu 已提交
1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539

          # example 2: load custom or pre-trained word vectors
          weight_data = np.random.random(size=(128, 100))  # word vectors with numpy format
          w_param_attrs = fluid.ParamAttr(
              name="emb_weight",
              learning_rate=0.5,
              initializer=fluid.initializer.NumpyArrayInitializer(weight_data),
              trainable=True)
          with fluid.dygraph.guard():
              emb = fluid.dygraph.Embedding(
                  size=[128, 100],
                  param_attr= w_param_attrs,
                  is_sparse=False)
              static_rlt3 = emb(base.to_variable(inp_word))          
1540 1541
    """

1542 1543 1544 1545 1546 1547 1548
    def __init__(self,
                 size,
                 is_sparse=False,
                 is_distributed=False,
                 padding_idx=None,
                 param_attr=None,
                 dtype='float32'):
1549
        super(Embedding, self).__init__()
1550 1551 1552 1553
        self._size = size
        self._is_sparse = is_sparse
        self._is_distributed = is_distributed
        self._padding_idx = -1 if padding_idx is None else padding_idx if padding_idx >= 0 else (
J
JiabinYang 已提交
1554
            size[0] + padding_idx)
1555 1556 1557

        self._param_attr = param_attr
        self._dtype = dtype
J
JiabinYang 已提交
1558
        self._remote_prefetch = self._is_sparse and (not self._is_distributed)
1559 1560 1561
        if self._remote_prefetch:
            assert self._is_sparse is True and self._is_distributed is False

1562
        self._w = self.create_parameter(
1563 1564 1565 1566 1567
            attr=self._param_attr,
            shape=self._size,
            dtype=self._dtype,
            is_bias=False)

1568 1569 1570 1571 1572 1573 1574 1575
    @property
    def weight(self):
        return self._w

    @weight.setter
    def weight(self, value):
        self._w = value

1576
    def forward(self, input):
1577 1578 1579 1580 1581 1582
        attrs = {
            'is_sparse': self._is_sparse,
            'is_distributed': self._is_distributed,
            'remote_prefetch': self._remote_prefetch,
            'padding_idx': self._padding_idx
        }
1583

1584 1585 1586 1587 1588
        if in_dygraph_mode():
            inputs = {'Ids': [input], 'W': [self._w]}
            outs = core.ops.lookup_table_v2(inputs, attrs)
            return outs['Out'][0]

1589 1590
        out = self._helper.create_variable_for_type_inference(self._dtype)
        self._helper.append_op(
1591
            type='lookup_table_v2',
1592 1593 1594
            inputs={'Ids': input,
                    'W': self._w},
            outputs={'Out': out},
1595
            attrs=attrs)
1596 1597

        return out
M
minqiyang 已提交
1598 1599


1600
class LayerNorm(layers.Layer):
1601
    """
1602 1603 1604
    This interface is used to construct a callable object of the ``LayerNorm`` class.
    For more details, refer to code examples.
    It implements the function of the Layer Normalization Layer and can be applied to mini-batch input data.
1605
    Refer to `Layer Normalization <https://arxiv.org/pdf/1607.06450v1.pdf>`_
1606

1607
    The formula is as follows:
1608

1609
    ..  math::
1610

1611
        \\mu & = \\frac{1}{H}\\sum_{i=1}^{H} x_i
1612

1613
        \\sigma & = \\sqrt{\\frac{1}{H}\sum_{i=1}^{H}{(x_i - \\mu)^2} + \\epsilon}
1614

1615
        y & = f(\\frac{g}{\\sigma}(x - \\mu) + b)
1616

1617 1618 1619 1620 1621
    - :math:`x`: the vector representation of the summed inputs to the neurons in that layer.
    - :math:`H`: the number of hidden units in a layers
    - :math:`\\epsilon`: the small value added to the variance to prevent division by zero.
    - :math:`g`: the trainable scale parameter.
    - :math:`b`: the trainable bias parameter.
1622

1623
    Parameters:
1624 1625 1626 1627
        normalized_shape(int or list or tuple): Input shape from an expected input of
            size :math:`[*, normalized_shape[0], normalized_shape[1], ..., normalized_shape[-1]]`.
            If it is a single integer, this module will normalize over the last dimension
            which is expected to be of that specific size.
1628
        scale(bool, optional): Whether to learn the adaptive gain :math:`g` after
L
lujun 已提交
1629
            normalization. Default: True.
1630
        shift(bool, optional): Whether to learn the adaptive bias :math:`b` after
L
lujun 已提交
1631
            normalization. Default: True.
1632
        epsilon(float, optional): The small value added to the variance to prevent
L
lujun 已提交
1633
            division by zero. Default: 1e-05.
1634
        param_attr(ParamAttr, optional): The parameter attribute for the learnable
1635 1636 1637
            gain :math:`g`. If :attr:`scale` is False, :attr:`param_attr` is
            omitted. If :attr:`scale` is True and :attr:`param_attr` is None,
            a default :code:`ParamAttr` would be added as scale. The
L
lujun 已提交
1638
            :attr:`param_attr` is initialized as 1 if it is added. Default: None.
1639
        bias_attr(ParamAttr, optional): The parameter attribute for the learnable
1640 1641 1642
            bias :math:`b`. If :attr:`shift` is False, :attr:`bias_attr` is
            omitted. If :attr:`shift` is True and :attr:`param_attr` is None,
            a default :code:`ParamAttr` would be added as bias. The
L
lujun 已提交
1643
            :attr:`bias_attr` is initialized as 0 if it is added. Default: None.
1644
        act(str, optional): Activation to be applied to the output of layer normalizaiton.
L
lujun 已提交
1645
                  Default: None.
1646 1647
        dtype (str, optional): Data type, it can be "float32" or "float64". Default: "float32".

1648
    Returns:
1649
        None
1650

1651
    Examples:
1652

1653 1654 1655
        .. code-block:: python

          import paddle.fluid as fluid
1656
          from paddle.fluid.dygraph.base import to_variable
1657 1658
          import numpy

1659
          x = numpy.random.random((3, 32, 32)).astype('float32')
1660
          with fluid.dygraph.guard():
1661
              x = to_variable(x)
1662
              layerNorm = fluid.LayerNorm([32, 32])
1663
              ret = layerNorm(x)
1664

1665
    """
1666

1667
    def __init__(self,
1668
                 normalized_shape,
1669 1670 1671 1672 1673
                 scale=True,
                 shift=True,
                 epsilon=1e-05,
                 param_attr=None,
                 bias_attr=None,
1674 1675 1676 1677 1678 1679
                 act=None,
                 dtype='float32'):
        super(LayerNorm, self).__init__()
        if isinstance(normalized_shape, numbers.Integral):
            normalized_shape = [normalized_shape]
        self._normalized_shape = list(normalized_shape)
1680 1681 1682 1683 1684 1685
        self._scale = scale
        self._shift = shift
        self._epsilon = epsilon
        self._param_attr = param_attr
        self._bias_attr = bias_attr
        self._act = act
1686 1687
        self._dtype = dtype
        param_shape = [np.prod(self._normalized_shape)]
1688 1689 1690 1691 1692 1693
        if self._scale:
            self._scale_w = self.create_parameter(
                attr=self._param_attr,
                shape=param_shape,
                dtype=self._dtype,
                default_initializer=Constant(1.0))
1694 1695 1696 1697
        else:
            if self._param_attr:
                logging.warn("param_attr are only avaliable with scale is True")

1698 1699 1700 1701 1702 1703 1704
        if self._shift:
            assert self._bias_attr is not False
            self._bias_w = self.create_parameter(
                attr=self._bias_attr,
                shape=param_shape,
                dtype=self._dtype,
                is_bias=True)
1705 1706 1707
        else:
            if self._bias_attr:
                logging.warn("bias_attr are only avaliable with shift is True")
1708 1709

    def forward(self, input):
1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720
        input_shape = list(input.shape)
        input_ndim = len(input_shape)
        normalized_ndim = len(self._normalized_shape)
        self._begin_norm_axis = input_ndim - normalized_ndim
        if input_ndim < normalized_ndim or input_shape[
                self._begin_norm_axis:] != self._normalized_shape:
            str_normalized_shape = str(self._normalized_shape)
            raise ValueError(
                'Given normalized_shape is ' + str_normalized_shape +
                ', expected input with shape [*, ' + str_normalized_shape[
                    1:] + ', but got input shape ' + str(input_shape))
1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747
        inputs = dict()
        inputs['X'] = input
        if self._scale:
            inputs['Scale'] = self._scale_w
        if self._shift:
            inputs['Bias'] = self._bias_w
        # create output
        mean_out = self._helper.create_variable_for_type_inference(
            dtype=self._dtype, stop_gradient=True)
        variance_out = self._helper.create_variable_for_type_inference(
            dtype=self._dtype, stop_gradient=True)
        layer_norm_out = self._helper.create_variable_for_type_inference(
            self._dtype)

        self._helper.append_op(
            type="layer_norm",
            inputs=inputs,
            outputs={
                "Y": layer_norm_out,
                "Mean": mean_out,
                "Variance": variance_out,
            },
            attrs={
                "epsilon": self._epsilon,
                "begin_norm_axis": self._begin_norm_axis
            })

1748
        return self._helper.append_activation(layer_norm_out, act=self._act)
1749 1750


M
minqiyang 已提交
1751 1752 1753
class GRUUnit(layers.Layer):
    """
    **GRU unit layer**
D
DuYao 已提交
1754 1755 1756 1757 1758
    
    It creates a callable object from GRUUnit class.
    If origin_mode is True, then the equation of a gru step is from paper
    `Learning Phrase Representations using RNN Encoder-Decoder for Statistical 
    Machine Translation <https://arxiv.org/pdf/1406.1078.pdf>`_
M
minqiyang 已提交
1759 1760 1761 1762 1763 1764 1765 1766 1767 1768

        .. math::
            u_t & = actGate(xu_{t} + W_u h_{t-1} + b_u)

            r_t & = actGate(xr_{t} + W_r h_{t-1} + b_r)

            m_t & = actNode(xm_t + W_c dot(r_t, h_{t-1}) + b_m)

            h_t & = dot(u_t, h_{t-1}) + dot((1-u_t), m_t)

D
DuYao 已提交
1769
    If origin_mode is False, then the equation of a gru step is from paper
M
minqiyang 已提交
1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794
    `Empirical Evaluation of Gated Recurrent Neural Networks on Sequence
    Modeling <https://arxiv.org/pdf/1412.3555.pdf>`_

        .. math::
            u_t & = actGate(xu_{t} + W_u h_{t-1} + b_u)

            r_t & = actGate(xr_{t} + W_r h_{t-1} + b_r)

            m_t & = actNode(xm_t + W_c dot(r_t, h_{t-1}) + b_m)

            h_t & = dot((1-u_t), h_{t-1}) + dot(u_t, m_t)


    The inputs of gru unit includes :math:`z_t`, :math:`h_{t-1}`. In terms
    of the equation above, the :math:`z_t` is split into 3 parts -
    :math:`xu_t`, :math:`xr_t` and :math:`xm_t`. This means that in order to
    implement a full GRU unit operator for an input, a fully
    connected layer has to be applied, such that :math:`z_t = W_{fc}x_t`.

    The terms :math:`u_t` and :math:`r_t` represent the update and reset gates
    of the GRU cell. Unlike LSTM, GRU has one lesser gate. However, there is
    an intermediate candidate hidden output, which is denoted by :math:`m_t`.
    This layer has three outputs :math:`h_t`, :math:`dot(r_t, h_{t-1})`
    and concatenation of :math:`u_t`, :math:`r_t` and :math:`m_t`.

1795
    Parameters:
L
lujun 已提交
1796
        size (int): The input dimension value.
D
DuYao 已提交
1797 1798 1799 1800 1801 1802 1803 1804 1805
        param_attr(ParamAttr, optional): The parameter attribute for the learnable
            hidden-hidden weight matrix. 
            
            **Note**:
    
                1. The shape of the weight matrix is :math:`[T, 3*D]`, where D is the hidden size.
                2. All elements in the weight matrix can be divided into two parts. The first 
                   part are weights of the update gate and reset gate with shape :math:`[D, 2*D]`, 
                   and the second part are weights for candidate hidden state with shape :math:`[D, D]`.
M
minqiyang 已提交
1806 1807 1808 1809


            If it is set to None or one attribute of ParamAttr, gru_unit will
            create ParamAttr as param_attr. If the Initializer of the param_attr
D
DuYao 已提交
1810 1811 1812 1813
            is not set, the parameter is initialized with Xavier. The default 
            value is None.
        bias_attr (ParamAttr|bool, optional): The parameter attribute for the bias
            of GRU.Note that the bias with :math:`[1, 3*D]` concatenates
M
minqiyang 已提交
1814 1815 1816 1817 1818
            the bias in the update gate, reset gate and candidate calculations.
            If it is set to False, no bias will be applied to the update gate,
            reset gate and candidate calculations. If it is set to None or one
            attribute of ParamAttr, gru_unit will create ParamAttr as
            bias_attr. If the Initializer of the bias_attr is not set, the bias
D
DuYao 已提交
1819
            is initialized zero. The default value is None.
L
lujun 已提交
1820
        activation (str): The activation type for cell (actNode).
D
DuYao 已提交
1821
                             The default value is 'tanh'.
L
lujun 已提交
1822
        gate_activation (str): The activation type for gates (actGate).
D
DuYao 已提交
1823 1824 1825
                                  The default value is 'sigmoid'.
        dtype(str): The dtype of the layers. The data type can be set as
            'float32', 'float64'. The default value is 'float32'.
M
minqiyang 已提交
1826

D
DuYao 已提交
1827 1828 1829 1830
    Attribute:
        **weight** (Parameter): the learnable weights of this layer.

        **bias** (Parameter): the learnable bias of this layer.
1831

M
minqiyang 已提交
1832
    Returns:
D
DuYao 已提交
1833 1834 1835 1836
        tuple: The hidden value, reset-hidden value and gate values. The hidden value
        is a 2-D tensor with shape  :math:`[T, D]` . The reset-hidden value is a
        2-D tensor with shape  :math:`[T, D]` . The gate value is a 2-D tensor with 
        shape  :math:`[T, 3*D]`.
L
lujun 已提交
1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849

    Examples:

        .. code-block:: python

          import paddle.fluid as fluid
          import paddle.fluid.dygraph.base as base
          import numpy

          lod = [[2, 4, 3]]
          D = 5
          T = sum(lod[0])

D
DuYao 已提交
1850
          input = numpy.random.rand(T, 3 * D).astype('float32')
L
lujun 已提交
1851 1852 1853
          hidden_input = numpy.random.rand(T, D).astype('float32')
          with fluid.dygraph.guard():
              x = numpy.random.random((3, 32, 32)).astype('float32')
1854
              gru = fluid.dygraph.GRUUnit(size=D * 3)
L
lujun 已提交
1855 1856 1857
              dy_ret = gru(
                base.to_variable(input), base.to_variable(hidden_input))

M
minqiyang 已提交
1858 1859 1860 1861 1862 1863 1864 1865 1866 1867
    """

    def __init__(self,
                 size,
                 param_attr=None,
                 bias_attr=None,
                 activation='tanh',
                 gate_activation='sigmoid',
                 origin_mode=False,
                 dtype='float32'):
1868
        super(GRUUnit, self).__init__()
1869
        self._bias_attr = bias_attr
M
minqiyang 已提交
1870 1871 1872 1873 1874
        activation_dict = dict(
            identity=0,
            sigmoid=1,
            tanh=2,
            relu=3, )
H
Hongyu Liu 已提交
1875 1876
        self.activation = activation_dict[activation]
        self.gate_activation = activation_dict[gate_activation]
M
minqiyang 已提交
1877

M
minqiyang 已提交
1878
        self._dtype = dtype
M
minqiyang 已提交
1879 1880
        size = size // 3
        # create weight
M
minqiyang 已提交
1881 1882
        self._weight = self.create_parameter(
            attr=param_attr, shape=[size, 3 * size], dtype=dtype)
M
minqiyang 已提交
1883 1884

        # create bias
M
minqiyang 已提交
1885
        bias_size = [1, 3 * size]
1886
        self._bias_size = bias_size
M
minqiyang 已提交
1887 1888
        self._bias = self.create_parameter(
            attr=bias_attr, shape=bias_size, dtype=dtype, is_bias=True)
M
minqiyang 已提交
1889

1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905
    @property
    def weight(self):
        return self._weight

    @weight.setter
    def weight(self, value):
        self._weight = value

    @property
    def bias(self):
        return self._bias

    @bias.setter
    def bias(self, value):
        self._bias = value

M
minqiyang 已提交
1906 1907 1908 1909 1910 1911 1912 1913 1914 1915
    def forward(self, input, hidden):
        inputs = {'Input': input, 'HiddenPrev': hidden, 'Weight': self._weight}
        if self._bias:
            inputs['Bias'] = self._bias

        gate = self._helper.create_variable_for_type_inference(self._dtype)
        reset_hidden_pre = self._helper.create_variable_for_type_inference(
            self._dtype)
        updated_hidden = self._helper.create_variable_for_type_inference(
            self._dtype)
M
minqiyang 已提交
1916 1917 1918 1919 1920 1921 1922 1923 1924
        self._helper.append_op(
            type='gru_unit',
            inputs=inputs,
            outputs={
                'Gate': gate,
                'ResetHiddenPrev': reset_hidden_pre,
                'Hidden': updated_hidden,
            },
            attrs={
H
Hongyu Liu 已提交
1925 1926
                'activation': self.activation,
                'gate_activation': self.gate_activation,
M
minqiyang 已提交
1927 1928 1929
            })

        return updated_hidden, reset_hidden_pre, gate
1930 1931 1932 1933


class NCE(layers.Layer):
    """
1934 1935 1936 1937 1938
    This interface is used to construct a callable object of the ``NCE`` class.
    For more details, refer to code examples.
    It implements the function of the ``NCE`` loss function.
    By default this function uses a uniform distribution for sampling, and it
    compute and return the noise-contrastive estimation training loss. See
1939
    `Noise-contrastive estimation: A new estimation principle for unnormalized statistical models <http://www.jmlr.org/proceedings/papers/v9/gutmann10a/gutmann10a.pdf>`_ .
1940

1941
    Parameters:
1942 1943
        num_total_classes (int): Total number of classes in all samples.
        dim (int): Dimension of input (possibly embedding dim).
1944
        param_attr (ParamAttr, optional): The parameter attribute for learnable weights(Parameter)
1945 1946 1947
             of nce. If it is set to None or one attribute of ParamAttr, nce
             will create ParamAttr as param_attr. If the Initializer of the param_attr
             is not set, the parameter is initialized with Xavier. Default: None.
1948
        bias_attr (ParamAttr or bool, optional): The attribute for the bias of nce.
1949 1950 1951 1952
             If it is set to False, no bias will be added to the output units.
             If it is set to None or one attribute of ParamAttr, nce
             will create ParamAttr as bias_attr. If the Initializer of the bias_attr
             is not set, the bias is initialized zero. Default: None.
1953 1954
        num_neg_samples (int, optional): The number of negative classes. The default value is 10.
        sampler (str, optional): The sampler used to sample class from negtive classes.
1955 1956
                       It can be 'uniform', 'log_uniform' or 'custom_dist'.
                       default: 'uniform'.
1957
        custom_dist (float[], optional): A float[] with size=num_total_classes.
1958
                       It is used when sampler is set to 'custom_dist'.
1959
                       custom_dist[i] is the probability of i-th class to be sampled.
L
lujun 已提交
1960
                       Default: None.
1961 1962
        seed (int, optional): The seed used in sampler. Default: 0.
        is_sparse(bool, optional): The flag indicating whether to use sparse update. If is_sparse is True, the weight@GRAD and bias@GRAD will be changed to SelectedRows. Default: False.
1963
        dtype (str, optional): Data type, it can be "float32" or "float64". Default: "float32".
1964

1965 1966
    Attribute:
        **weight** (Parameter): the learnable weights of this layer.
1967

1968 1969
        **bias** (Parameter or None): the learnable bias of this layer.
    
1970
    Returns:
1971
        None
1972 1973 1974 1975

    Examples:
        .. code-block:: python

1976 1977 1978
            import numpy as np
            import paddle.fluid as fluid

1979
            window_size = 5
1980 1981
            dict_size = 20
            label_word = int(window_size // 2) + 1
1982
            inp_word = np.array([[1], [2], [3], [4], [5]]).astype('int64')
1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003
            nid_freq_arr = np.random.dirichlet(np.ones(20) * 1000).astype('float32')

            with fluid.dygraph.guard():
                words = []
                for i in range(window_size):
                    words.append(fluid.dygraph.base.to_variable(inp_word[i]))

                emb = fluid.Embedding(
                    size=[dict_size, 32],
                    param_attr='emb.w',
                    is_sparse=False)

                embs3 = []
                for i in range(window_size):
                    if i == label_word:
                        continue

                    emb_rlt = emb(words[i])
                    embs3.append(emb_rlt)

                embs3 = fluid.layers.concat(input=embs3, axis=1)
2004
                nce = fluid.NCE(
2005
                             num_total_classes=dict_size,
2006
                             dim=embs3.shape[1],
2007 2008 2009 2010 2011 2012 2013
                             num_neg_samples=2,
                             sampler="custom_dist",
                             custom_dist=nid_freq_arr.tolist(),
                             seed=1,
                             param_attr='nce.w',
                             bias_attr='nce.b')

2014 2015
                wl = fluid.layers.unsqueeze(words[label_word], axes=[0])
                nce_loss3 = nce(embs3, wl)
2016 2017 2018 2019 2020

    """

    def __init__(self,
                 num_total_classes,
2021
                 dim,
2022
                 sample_weight=None,
2023 2024 2025 2026 2027 2028
                 param_attr=None,
                 bias_attr=None,
                 num_neg_samples=None,
                 sampler="uniform",
                 custom_dist=None,
                 seed=0,
2029 2030 2031
                 is_sparse=False,
                 dtype='float32'):
        super(NCE, self).__init__()
2032 2033 2034
        self._param_attr = param_attr
        self._bias_attr = bias_attr
        self._num_total_classes = num_total_classes
2035
        self._dtype = dtype
2036
        self._inputs = dict()
2037
        self._inputs['SampleWeight'] = sample_weight if sample_weight is not None else []
2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128
        if sampler == "uniform":
            sampler = 0
        elif sampler == "log_uniform":
            sampler = 1
        elif sampler == "custom_dist":
            assert custom_dist is not None
            # assert isinstance(custom_dist, Variable)

            custom_dist_len = len(custom_dist)
            alias_probs_ = [0] * custom_dist_len
            alias_ = [0] * custom_dist_len
            bigs = []
            littles = []
            for i in range(custom_dist_len):
                normal_prob = custom_dist[i] * custom_dist_len
                if normal_prob - 1.0 > 0:
                    bigs.append((i, normal_prob))
                elif 1.0 - normal_prob > 0:
                    littles.append((i, normal_prob))
                else:
                    alias_probs_[i] = normal_prob
                    alias_[i] = -1

            while len(bigs) and len(littles):
                big = bigs.pop(0)
                little = littles.pop(0)

                big_idx = big[0]
                big_prob = big[1]

                alias_probs_[little[0]] = little[1]
                alias_[little[0]] = big_idx
                big_left = big[1] + little[1] - 1
                if big_left - 1.0 > 0:
                    bigs.append((big_idx, big_left))
                elif 1.0 - big_left > 0:
                    littles.append((big_idx, big_left))
                else:
                    alias_probs_[big_idx] = big_left
                    alias_[big_idx] = -1

            if len(bigs):
                big = bigs.pop(0)
                alias_probs_[big[0]] = 1.0
                alias_[big[0]] = -1
            if len(littles):
                little = littles.pop(0)
                alias_probs_[little[0]] = 1.0
                alias_[little[0]] = -1

            def _init_by_numpy_array(numpy_array):
                ret = self.create_parameter(
                    attr=ParamAttr(),
                    shape=numpy_array.shape,
                    dtype=numpy_array.dtype,
                    default_initializer=NumpyArrayInitializer(numpy_array))
                ret.stop_gradient = True
                return ret

            self._inputs['CustomDistProbs'] = _init_by_numpy_array(
                np.array(custom_dist).astype('float32'))
            self._inputs['CustomDistAlias'] = _init_by_numpy_array(
                np.array(alias_).astype('int32'))
            self._inputs['CustomDistAliasProbs'] = _init_by_numpy_array(
                np.array(alias_probs_).astype('float32'))
            sampler = 2
        else:
            raise Exception("Unsupported sampler type.")

        if num_neg_samples is None:
            num_neg_samples = 10
        else:
            num_neg_samples = int(num_neg_samples)
        self._num_neg_samples = num_neg_samples
        remote_prefetch = is_sparse
        print(
            "With sparse mode, if your models has only small parameter prefetch may cause speed down"
        )
        self._attrs = {
            'num_total_classes': int(num_total_classes),
            'num_neg_samples': num_neg_samples,
            'seed': seed,
            'sampler': sampler,
            'is_sparse': is_sparse,
            'remote_prefetch': remote_prefetch
        }

        self._w = self.create_parameter(
            attr=self._param_attr,
            shape=[self._num_total_classes, dim],
            is_bias=False,
2129
            dtype=self._dtype)
2130 2131 2132 2133 2134
        if self._bias_attr:
            self._b = self.create_parameter(
                attr=self._bias_attr,
                shape=[self._num_total_classes, 1],
                is_bias=True,
2135
                dtype=self._dtype)
2136 2137 2138
            self._inputs['Bias'] = self._b
        self._inputs['Weight'] = self._w

2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154
    @property
    def weight(self):
        return self._w

    @weight.setter
    def weight(self, value):
        self._w = value

    @property
    def bias(self):
        return self._b

    @bias.setter
    def bias(self, value):
        self._b = value

2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183
    def forward(self, input, label, sample_weight=None):
        assert isinstance(input, Variable)
        assert isinstance(label, Variable)

        self._inputs['Input'] = input
        self._inputs['Label'] = label
        self._inputs['SampleWeight'] = sample_weight if sample_weight is not None else []

        cost = self._helper.create_variable_for_type_inference(
            dtype=input.dtype)
        sample_logits = self._helper.create_variable_for_type_inference(
            dtype=input.dtype)
        sample_labels = self._helper.create_variable_for_type_inference(
            dtype=label.dtype)

        self._helper.append_op(
            type='nce',
            inputs=self._inputs,
            outputs={
                'Cost': cost,
                'SampleLogits': sample_logits,
                'SampleLabels': sample_labels
            },
            attrs=self._attrs)
        return cost / (self._num_neg_samples + 1)


class PRelu(layers.Layer):
    """
2184 2185 2186 2187
    This interface is used to construct a callable object of the ``PRelu`` class.
    For more details, refer to code examples.
    It implements three activation methods of the ``PRelu`` activation function.

2188 2189 2190 2191 2192
    Equation:

    .. math::
        y = \max(0, x) + \\alpha * \min(0, x)

2193
    Parameters:
L
lujun 已提交
2194
        mode (str): The mode for weight sharing. It supports all, channel
2195 2196 2197
          and element. all: all elements share same weight
          channel:elements in a channel share same weight
          element:each element has a weight
2198 2199
        input_shape (list or tuple, optional): The shape of input.
          This parameter is required when mode is not "all". Default: None.
2200 2201
        param_attr(ParamAttr, optional): The parameter attribute for the learnable
          weight (alpha). Default: None.
2202
        dtype (str, optional): Data type, it can be "float32" or "float64". Default: "float32".
2203

2204 2205 2206
    Attribute:
        **weight** (Parameter): the learnable weights of this layer.
    
2207
    Returns:
2208
        None
2209 2210 2211 2212 2213

    Examples:

        .. code-block:: python

L
lujun 已提交
2214
          import paddle.fluid as fluid
2215
          from paddle.fluid.dygraph.base import to_variable
L
lujun 已提交
2216 2217 2218 2219
          import numpy as np

          inp_np = np.ones([5, 200, 100, 100]).astype('float32')
          with fluid.dygraph.guard():
2220
              inp_np = to_variable(inp_np)
L
lujun 已提交
2221 2222 2223
              mode = 'channel'
              prelu = fluid.PRelu(
                 mode=mode,
2224
                 input_shape=inp_np.shape,
L
lujun 已提交
2225
                 param_attr=fluid.ParamAttr(initializer=fluid.initializer.Constant(1.0)))
2226
              dy_rlt = prelu(inp_np)
L
lujun 已提交
2227

2228 2229
    """

2230 2231 2232
    def __init__(self, mode, input_shape=None, param_attr=None,
                 dtype='float32'):
        super(PRelu, self).__init__()
2233 2234 2235 2236
        self._mode = mode
        self._param_attr = param_attr
        if self._mode not in ['all', 'channel', 'element']:
            raise ValueError('mode should be one of all, channel, element.')
2237
        self._dtype = dtype
2238
        self._alpha_shape = [1]
2239 2240 2241 2242 2243 2244 2245
        if mode is not 'all':
            assert input_shape is not None
            input_shape = list(input_shape)
            if self._mode == 'channel':
                self._alpha_shape = [1, input_shape[1], 1, 1]
            elif self._mode == 'element':
                self._alpha_shape = input_shape
2246 2247 2248 2249 2250 2251 2252
        self._alpha = self.create_parameter(
            attr=self._param_attr,
            shape=self._alpha_shape,
            dtype='float32',
            is_bias=False,
            default_initializer=Constant(1.0))

2253 2254 2255 2256 2257 2258 2259 2260
    @property
    def weight(self):
        return self._alpha

    @weight.setter
    def weight(self, value):
        self._alpha = value

2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287
    def forward(self, input):

        out = self._helper.create_variable_for_type_inference(self._dtype)
        self._helper.append_op(
            type="prelu",
            inputs={"X": input,
                    'Alpha': self._alpha},
            attrs={"mode": self._mode},
            outputs={"Out": out})
        return out


class BilinearTensorProduct(layers.Layer):
    """
    **Add Bilinear Tensor Product Layer**

    This layer performs bilinear tensor product on two inputs.
    For example:

    .. math::
      out_{i} = x * W_{i} * {y^\mathrm{T}}, i=0,1,...,size-1

    In this formula:
     - :math:`x`: the first input contains M elements, shape is [batch_size, M].
     - :math:`y`: the second input contains N elements, shape is [batch_size, N].
     - :math:`W_{i}`: the i-th learned weight, shape is [M, N]
     - :math:`out_{i}`: the i-th element of out, shape is [batch_size, size].
D
DuYao 已提交
2288
     - :math:`y^\mathrm{T}`: the transpose of :math:`y`.
2289

2290
    Parameters:
2291 2292 2293 2294 2295
       input1_dim (int): The dimension of each first input.
       input2_dim (int): The dimension of each second input.
       output_dim (int): The dimension of output of this layer.
       name (str, optional): The default value is None. Normally there is no need for user
           to set this property. For more information, please refer to :ref:`api_guide_Name`. Default: None.
D
DuYao 已提交
2296 2297 2298 2299
       act (str, optional): Activation to be applied to the output of this layer. The default value is None.
       param_attr (ParamAttr, optional): The parameter attribute for the learnable w, parameters/weights of 
           this layer. The default value is None.
       bias_attr (ParamAttr, optional): The parameter attribute for the bias
2300
           of this layer. If it is set to False, no bias will be added to the output units.
D
DuYao 已提交
2301
           If it is set to None, the bias is initialized zero. The default value is None.
2302
       dtype (str, optional): Data type, it can be "float32" or "float64". Default: "float32".
2303

D
DuYao 已提交
2304 2305 2306 2307
    Attribute:
        **weight** (Parameter): the learnable weights of this layer.

        **bias** (Parameter): the learnable bias of this layer.
2308

2309 2310 2311 2312 2313 2314
    Returns:
       Variable: A 2-D Tensor of shape [batch_size, size].

    Examples:
       .. code-block:: python

2315 2316 2317 2318 2319 2320 2321
         import paddle.fluid as fluid
         import numpy

         with fluid.dygraph.guard():
             layer1 = numpy.random.random((5, 5)).astype('float32')
             layer2 = numpy.random.random((5, 4)).astype('float32')
             bilinearTensorProduct = fluid.dygraph.nn.BilinearTensorProduct(
2322
                    input1_dim=5, input2_dim=4, output_dim=1000)
2323 2324
             ret = bilinearTensorProduct(fluid.dygraph.base.to_variable(layer1),
                                fluid.dygraph.base.to_variable(layer2))
2325 2326 2327
    """

    def __init__(self,
2328 2329 2330
                 input1_dim,
                 input2_dim,
                 output_dim,
2331 2332 2333
                 name=None,
                 act=None,
                 param_attr=None,
2334 2335 2336
                 bias_attr=None,
                 dtype='float32'):
        super(BilinearTensorProduct, self).__init__()
2337 2338 2339 2340
        self._param_attr = param_attr
        self._bias_attr = bias_attr
        self._act = act
        self._name = name
2341 2342 2343
        self._input1_dim = input1_dim
        self._input2_dim = input2_dim
        self._output_dim = output_dim
2344
        self._inputs = dict()
2345
        self._dtype = dtype
2346

2347
        param_shape = [self._output_dim, self._input1_dim, self._input2_dim]
2348 2349 2350 2351 2352
        self._w = self.create_parameter(
            attr=self._param_attr,
            shape=param_shape,
            dtype=self._dtype,
            is_bias=False)
2353
        bias_size = [1, self._output_dim]
2354 2355 2356 2357 2358
        self._bias_param = self.create_parameter(
            attr=self._bias_attr,
            shape=bias_size,
            dtype=self._dtype,
            is_bias=True)
2359

2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375
    @property
    def weight(self):
        return self._w

    @weight.setter
    def weight(self, value):
        self._w = value

    @property
    def bias(self):
        return self._bias_param

    @bias.setter
    def bias(self, value):
        self._bias_param = value

2376 2377
    def forward(self, x, y):
        self._inputs = {"X": x, "Y": y, "Weight": self._w}
2378 2379
        if self._bias_param:
            self._inputs["Bias"] = self._bias_param
2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393
        if self._name is not None:
            out = self._helper.create_variable(
                name=".".join([self.full_name(), self._name]),
                dtype=self._dtype,
                persistable=False)
        else:
            out = self._helper.create_variable(
                dtype=self._dtype, persistable=False)
        self._helper.append_op(
            type="bilinear_tensor_product",
            inputs=self._inputs,
            outputs={"Out": out})

        # add activation
2394
        return self._helper.append_activation(out, act=self._act)
2395 2396 2397 2398


class Conv2DTranspose(layers.Layer):
    """
2399 2400
    This interface is used to construct a callable object of the ``Conv2DTranspose`` class.
    For more details, refer to code examples.
2401
    The convolution2D transpose layer calculates the output based on the input,
2402 2403 2404
    filter, and dilations, strides, paddings. Input and output
    are in NCHW format. Where N is batch size, C is the number of feature map,
    H is the height of the feature map, and W is the width of the feature map.
2405 2406
    Filter's shape is [MCHW] , where M is the number of input feature map,
    C is the number of output feature map, H is the height of the filter,
2407 2408
    and W is the width of the filter. If the groups is greater than 1,
    C will equal the number of input feature map divided by the groups.
2409 2410 2411
    If bias attribution and activation type are provided, bias is added to
    the output of the convolution, and the corresponding activation function
    is applied to the final result.
2412 2413
    The details of convolution transpose layer, please refer to the following explanation and references
    `conv2dtranspose <http://www.matthewzeiler.com/wp-content/uploads/2017/07/cvpr2010.pdf>`_ .
2414 2415 2416 2417 2418 2419 2420 2421 2422

    For each input :math:`X`, the equation is:

    .. math::

        Out = \sigma (W \\ast X + b)

    Where:

2423 2424
    * :math:`X`: Input value, a ``Tensor`` with NCHW format.
    * :math:`W`: Filter value, a ``Tensor`` with shape [MCHW] .
2425
    * :math:`\\ast`: Convolution operation.
2426
    * :math:`b`: Bias value, a 2-D ``Tensor`` with shape [M, 1].
2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450
    * :math:`\\sigma`: Activation function.
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.

    Example:

        - Input:

          Input shape: :math:`(N, C_{in}, H_{in}, W_{in})`

          Filter shape: :math:`(C_{in}, C_{out}, H_f, W_f)`

        - Output:

          Output shape: :math:`(N, C_{out}, H_{out}, W_{out})`

        Where

        .. math::

           H^\prime_{out} &= (H_{in} - 1) * strides[0] - 2 * paddings[0] + dilations[0] * (H_f - 1) + 1 \\\\
           W^\prime_{out} &= (W_{in} - 1) * strides[1] - 2 * paddings[1] + dilations[1] * (W_f - 1) + 1 \\\\
           H_{out} &\in [ H^\prime_{out}, H^\prime_{out} + strides[0] ) \\\\
           W_{out} &\in [ W^\prime_{out}, W^\prime_{out} + strides[1] )

2451
    Parameters:
2452
        num_channels(int): The number of channels in the input image.
2453
        num_filters(int): The number of the filter. It is as same as the output
2454
            feature map.
2455 2456 2457
        filter_size(int or tuple): The filter size. If filter_size is a tuple,
            it must contain two integers, (filter_size_H, filter_size_W).
            Otherwise, the filter will be a square.
2458
        output_size(int or tuple, optional): The output image size. If output size is a
2459 2460 2461
            tuple, it must contain two integers, (image_H, image_W). None if use
            filter_size, padding, and stride to calculate output_size.
            if output_size and filter_size are specified at the same time, They
L
lujun 已提交
2462
            should follow the formula above. Default: None.
2463
        padding(int or tuple, optional): The padding size. If padding is a tuple, it must
2464
            contain two integers, (padding_H, padding_W). Otherwise, the
2465 2466
            padding_H = padding_W = padding. Default: 0.
        stride(int or tuple, optional): The stride size. If stride is a tuple, it must
2467
            contain two integers, (stride_H, stride_W). Otherwise, the
2468 2469
            stride_H = stride_W = stride. Default: 1.
        dilation(int or tuple, optional): The dilation size. If dilation is a tuple, it must
2470
            contain two integers, (dilation_H, dilation_W). Otherwise, the
2471 2472
            dilation_H = dilation_W = dilation. Default: 1.
        groups(int, optional): The groups number of the Conv2d transpose layer. Inspired by
2473 2474 2475 2476
            grouped convolution in Alex Krizhevsky's Deep CNN paper, in which
            when group=2, the first half of the filters is only connected to the
            first half of the input channels, while the second half of the
            filters is only connected to the second half of the input channels.
2477 2478
            Default: 1.
        param_attr (ParamAttr, optional): The parameter attribute for learnable weights(Parameter)
2479 2480 2481
            of conv2d_transpose. If it is set to None or one attribute of ParamAttr, conv2d_transpose
            will create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with Xavier. Default: None.
2482
        bias_attr (ParamAttr or bool, optional): The attribute for the bias of conv2d_transpose.
2483 2484 2485 2486
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, conv2d_transpose
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. Default: None.
2487
        use_cudnn(bool, optional): Use cudnn kernel or not, it is valid only when the cudnn
2488
            library is installed. Default: True.
2489
        act (str, optional): Activation type, if it is set to None, activation is not appended.
2490
            Default: None.
2491
        dtype (str, optional): Data type, it can be "float32" or "float64". Default: "float32".
2492

2493 2494
    Attribute:
        **weight** (Parameter): the learnable weights of filters of this layer.
2495

2496
        **bias** (Parameter or None): the learnable bias of this layer.
2497

2498 2499
    Returns:
        None
2500 2501 2502 2503

    Examples:
       .. code-block:: python

2504
          import paddle.fluid as fluid
2505
          import numpy as np
2506 2507

          with fluid.dygraph.guard():
2508
              data = np.random.random((3, 32, 32, 5)).astype('float32')
2509
              conv2DTranspose = fluid.dygraph.nn.Conv2DTranspose(
2510
                    num_channels=32, num_filters=2, filter_size=3)
2511 2512
              ret = conv2DTranspose(fluid.dygraph.base.to_variable(data))

2513 2514 2515
    """

    def __init__(self,
2516
                 num_channels,
2517
                 num_filters,
2518
                 filter_size,
2519 2520 2521 2522 2523 2524 2525 2526
                 output_size=None,
                 padding=0,
                 stride=1,
                 dilation=1,
                 groups=None,
                 param_attr=None,
                 bias_attr=None,
                 use_cudnn=True,
2527 2528 2529
                 act=None,
                 dtype='float32'):
        super(Conv2DTranspose, self).__init__()
2530 2531 2532
        assert param_attr is not False, "param_attr should not be False in conv2d_transpose."
        self._param_attr = param_attr
        self._bias_attr = bias_attr
2533
        self._act = act
2534
        self._groups = groups
2535
        self._num_channels = num_channels
2536 2537 2538 2539 2540 2541 2542
        self._num_filters = num_filters
        self._use_cudnn = use_cudnn
        self._padding = padding
        self._stride = stride
        self._dilation = dilation
        self._filter_size = filter_size
        self._output_size = output_size
2543
        self._dtype = dtype
2544

2545 2546 2547
        if (self._num_channels == self._groups and
                self._num_filters == self._num_channels and
                not self._use_cudnn):
2548
            self._op_type = 'depthwise_conv2d_transpose'
2549 2550
        else:
            self._op_type = 'conv2d_transpose'
2551 2552 2553 2554 2555

        self._padding = utils.convert_to_list(self._padding, 2, 'padding')
        self._stride = utils.convert_to_list(self._stride, 2, 'stride')
        self._dilation = utils.convert_to_list(self._dilation, 2, 'dilation')

2556 2557
        self._filter_size = utils.convert_to_list(
            self._filter_size, 2, 'conv2d_transpose.filter_size')
2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568

        if self._output_size is None:
            self._output_size = []
        elif isinstance(self._output_size, list) or isinstance(
                self._output_size, int):
            self._output_size = utils.convert_to_list(self._output_size, 2,
                                                      'output_size')
        else:
            raise ValueError("output_size should be list or int")
        self._padding = utils.convert_to_list(self._padding, 2, 'padding')
        self._groups = 1 if self._groups is None else self._groups
2569
        filter_shape = [self._num_channels, self._num_filters // self._groups
2570 2571 2572
                        ] + self._filter_size

        self._img_filter = self.create_parameter(
2573
            dtype=self._dtype, shape=filter_shape, attr=self._param_attr)
2574

2575 2576 2577 2578 2579 2580
        self._bias_param = self.create_parameter(
            attr=self._bias_attr,
            shape=[self._num_filters],
            dtype=self._dtype,
            is_bias=True)

2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596
    @property
    def weight(self):
        return self._img_filter

    @weight.setter
    def weight(self, value):
        self._img_filter = value

    @property
    def bias(self):
        return self._bias_param

    @bias.setter
    def bias(self, value):
        self._bias_param = value

2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613
    def forward(self, input):
        pre_bias = self._helper.create_variable_for_type_inference(
            dtype=input.dtype)
        self._helper.append_op(
            type=self._op_type,
            inputs={'Input': [input],
                    'Filter': [self._img_filter]},
            outputs={'Output': pre_bias},
            attrs={
                'output_size': self._output_size,
                'strides': self._stride,
                'paddings': self._padding,
                'dilations': self._dilation,
                'groups': self._groups,
                'use_cudnn': self._use_cudnn
            })

2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626
        if self._bias_param is not None:
            pre_act = self._helper.create_variable_for_type_inference(
                dtype=self._dtype)
            self._helper.append_op(
                type='elementwise_add',
                inputs={'X': [pre_bias],
                        'Y': [self._bias_param]},
                outputs={'Out': [pre_act]},
                attrs={'axis': 1})
        else:
            pre_act = pre_bias

        out = self._helper.append_activation(pre_act, act=self._act)
2627 2628 2629 2630 2631 2632 2633 2634 2635
        return out


class SequenceConv(layers.Layer):
    """
    This function creates the op for sequence_conv, using the inputs and
    other convolutional configurations for the filters and stride as given
    in the input parameters to the function.

2636
    Parameters:
L
lujun 已提交
2637
        name_scope(str): The name of this class.
2638
        num_filters (int): number of filters.
L
lujun 已提交
2639 2640 2641
        filter_size (int): the filter size (H and W). Default: 3.
        filter_stride (int): stride of the filter. Default: 1.
        padding (bool|None): if True, add paddings. Default: None
2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of sequence_conv.
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, sequence_conv
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. Default: None.
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
            of sequence_conv. If it is set to None or one attribute of ParamAttr, sequence_conv
            will create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with Xavier. Default: None.
        act (str): Activation type, if it is set to None, activation is not appended.
            Default: None.

2654 2655 2656 2657
    Attributes:
        weight (Parameter): the learnable weights of filters of this layer.
        bias (Parameter|None): the learnable bias of this layer.

2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670
    Returns:
        Variable: output of sequence_conv
    """

    def __init__(self,
                 name_scope,
                 num_filters,
                 filter_size=3,
                 filter_stride=1,
                 padding=None,
                 bias_attr=None,
                 param_attr=None,
                 act=None):
L
lujun 已提交
2671
        assert not in_dygraph_mode(
2672
        ), "SequenceConv is not supported by dynamic graph mode yet!"
2673 2674 2675 2676 2677 2678 2679
        super(SequenceConv, self).__init__(name_scope)
        self._num_filters = num_filters
        self._filter_size = filter_size
        self._filter_stride = filter_stride
        self._padding = padding
        self._bias_attr = bias_attr
        self._param_attr = param_attr
2680
        self._act = act
2681

2682
    def _build_once(self, input):
2683 2684 2685
        self._dtype = self._helper.input_dtype(input)
        filter_shape = [self._filter_size * input.shape[1], self._num_filters]
        self._filter_param = self.create_parameter(
2686
            attr=self._param_attr, shape=filter_shape, dtype=self._dtype)
2687

2688 2689 2690 2691 2692 2693
        self._bias_param = self.create_parameter(
            attr=self._bias_attr,
            shape=[self._num_filters],
            dtype=self._dtype,
            is_bias=True)

2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707
    def forward(self, input):
        pre_bias = self._helper.create_variable_for_type_inference(self._dtype)
        self._helper.append_op(
            type='sequence_conv',
            inputs={
                'X': [input],
                'Filter': [self._filter_param],
            },
            outputs={"Out": pre_bias},
            attrs={
                'contextStride': self._filter_stride,
                'contextStart': -int(self._filter_size // 2),
                'contextLength': self._filter_size
            })
2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721

        if self._bias_param is not None:
            pre_act = self._helper.create_variable_for_type_inference(
                dtype=self._dtype)
            self._helper.append_op(
                type='elementwise_add',
                inputs={'X': [pre_bias],
                        'Y': [self._bias_param]},
                outputs={'Out': [pre_act]},
                attrs={'axis': 1})
        else:
            pre_act = pre_bias

        return self._helper.append_activation(pre_act, act=self._act)
L
lujun 已提交
2722 2723 2724


class RowConv(layers.Layer):
2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742
    """
    ***Row-convolution operator***

    The row convolution is called lookahead convolution.  This operator was introduced in the following paper for DeepSpeech2:
    http://www.cs.cmu.edu/~dyogatam/papers/wang+etal.iclrworkshop2016.pdf

    The main motivation is that a bidirectional RNN, useful in DeepSpeech like speech models, learns representation for a sequence by performing a
    forward and a backward pass through the entire sequence. However, unlike
    unidirectional RNNs, bidirectional RNNs are challenging to deploy in an online
    and low-latency setting. The lookahead convolution incorporates information
    from future subsequences in a computationally efficient manner to improve
    unidirectional recurrent neural networks. The row convolution operator is
    different from the 1D sequence convolution, and is computed as follows:

    Given an input sequence X of length t and input dimension D, and a filter (W) of size context * D.

    More details about row_conv please refer to the design document https://github.com/PaddlePaddle/Paddle/issues/2228#issuecomment-303903645 .

2743
    Parameters:
L
lujun 已提交
2744
        name_scope(str): The name of this class.
2745 2746 2747
        future_context_size (int): Future context size. Please note, the shape
            of convolution kernel is [future_context_size + 1, D].
        param_attr (ParamAttr): Attributes of parameters, including
L
lujun 已提交
2748 2749
            name, initializer etc. Default: None.
        act (str): Non-linear activation to be applied to output variable. Default: None.
2750

2751 2752 2753
    Attributes:
        weight (Parameter): the learnable weights of this layer.

2754
    Returns:
L
lujun 已提交
2755 2756
        the output(Out) is a LodTensor, which supports variable time-length input sequences.
        The underlying tensor in this LodTensor is a matrix with shape T x N, i.e., the same shape as X.
2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771

    Examples:
        .. code-block:: python

          import paddle.fluid as fluid
          import numpy

          with fluid.dygraph.guard():
              x = numpy.random.random((16)).astype('float32')
              rowConv = fluid.dygraph.nn.RowConv(
                    'RowConv', future_context_size=2)
              ret = rowConv(fluid.dygraph.base.to_variable(x))

    """

L
lujun 已提交
2772 2773 2774 2775 2776
    def __init__(self,
                 name_scope,
                 future_context_size,
                 param_attr=None,
                 act=None):
L
lujun 已提交
2777
        assert not in_dygraph_mode(
2778
        ), "RowConv is not supported by dynamic graph mode yet!"
L
lujun 已提交
2779 2780 2781 2782 2783
        super(RowConv, self).__init__(name_scope)
        self._act = act
        self._param_attr = param_attr
        self._future_context_size = future_context_size

2784
    def _build_once(self, input):
L
lujun 已提交
2785 2786
        self._dtype = self._helper.input_dtype(input)
        filter_shape = [self._future_context_size + 1, input.shape[1]]
2787 2788 2789 2790 2791
        self._filter_param = self.create_parameter(
            attr=self._param_attr,
            shape=filter_shape,
            dtype=self._dtype,
            is_bias=False)
L
lujun 已提交
2792 2793 2794 2795 2796 2797

    def forward(self, input):
        out = self._helper.create_variable_for_type_inference(self._dtype)
        self._helper.append_op(
            type='row_conv',
            inputs={'X': [input],
2798
                    'Filter': [self._filter_param]},
L
lujun 已提交
2799 2800 2801 2802 2803 2804
            outputs={'Out': [out]})
        return self._helper.append_activation(out, act=self._act)


class GroupNorm(layers.Layer):
    """
2805 2806 2807 2808 2809 2810
    This interface is used to construct a callable object of the ``GroupNorm`` class.
    For more details, refer to code examples.
    It implements the function of the Group Normalization Layer.
    Refer to `Group Normalization <https://arxiv.org/abs/1803.08494>`_ .

    Parameters:
2811
        channels(int): The number of channels of input.
2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834
        groups(int): The number of groups that divided from channels.
        epsilon(float, optional): The small value added to the variance to prevent
                                  division by zero. Default: 1e-05.
        param_attr(ParamAttr, optional): The parameter attribute for the learnable
                                         scale :math:`g`. If it is set to False, no scale will be added to the output units.
                                         If it is set to None, the bias is initialized one. Default: None.
        bias_attr(ParamAttr, optional): The parameter attribute for the learnable
                                        bias :math:`b`. If it is set to False, no bias will be added to the output units.
                                        If it is set to None, the bias is initialized zero. Default: None.
        act(str, optional): Activation to be applied to the output of group normalizaiton. Default: None.
        data_layout(str, optional): Specify the input data format. Only NCHW is supported. Default: NCHW.

    Returns:
        None

    Examples:
        .. code-block:: python

          import paddle.fluid as fluid
          import numpy as np

          with fluid.dygraph.guard():
              x = np.random.random((8, 32, 32)).astype('float32')
2835
              groupNorm = fluid.dygraph.nn.GroupNorm(channels=32, groups=4)
2836
              ret = groupNorm(fluid.dygraph.base.to_variable(x))
L
lujun 已提交
2837 2838 2839 2840

    """

    def __init__(self,
2841
                 channels,
L
lujun 已提交
2842 2843 2844 2845 2846
                 groups,
                 epsilon=1e-05,
                 param_attr=None,
                 bias_attr=None,
                 act=None,
2847 2848 2849
                 data_layout='NCHW',
                 dtype='float32'):
        super(GroupNorm, self).__init__()
L
lujun 已提交
2850 2851 2852
        self._param_attr = param_attr
        self._bias_attr = bias_attr
        self._epsilon = epsilon
2853
        self._channels = channels
L
lujun 已提交
2854 2855
        self._groups = groups
        self._act = act
2856
        self._dtype = dtype
L
lujun 已提交
2857 2858 2859
        if data_layout != 'NCHW':
            raise ValueError("unsupported data layout:" + data_layout)

2860
        param_shape = [self._channels]
L
lujun 已提交
2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876
        if self._bias_attr:
            self._bias = self.create_parameter(
                attr=self._bias_attr,
                shape=param_shape,
                dtype=self._dtype,
                is_bias=True)

        if self._param_attr:
            self._scale = self.create_parameter(
                attr=self._param_attr,
                shape=param_shape,
                dtype=self._dtype,
                default_initializer=Constant(1.0))

    def forward(self, input):
        inputs = {'X': input}
2877
        if self._bias_attr:
L
lujun 已提交
2878
            inputs['Bias'] = self._bias
2879
        if self._param_attr:
L
lujun 已提交
2880 2881 2882
            inputs['Scale'] = self._scale

        # create output
2883
        mean_out = self._helper.create_variable_for_type_inference(
L
lujun 已提交
2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904
            dtype=self._dtype, stop_gradient=True)
        variance_out = self._helper.create_variable_for_type_inference(
            dtype=self._dtype, stop_gradient=True)
        group_norm_out = self._helper.create_variable_for_type_inference(
            dtype=self._dtype)

        self._helper.append_op(
            type="group_norm",
            inputs=inputs,
            outputs={
                "Y": group_norm_out,
                "Mean": mean_out,
                "Variance": variance_out,
            },
            attrs={"epsilon": self._epsilon,
                   "groups": self._groups})

        return self._helper.append_activation(group_norm_out, self._act)


class SpectralNorm(layers.Layer):
2905
    """
2906 2907
    This interface is used to construct a callable object of the ``SpectralNorm`` class.
    For more details, refer to code examples. It implements the function of the Spectral Normalization Layer.
2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938
    This layer calculates the spectral normalization value of weight parameters of
    fc, conv1d, conv2d, conv3d layers which should be 2-D, 3-D, 4-D, 5-D
    Parameters. Calculations are showed as follows.

    Step 1:
    Generate vector U in shape of [H], and V in shape of [W].
    While H is the :attr:`dim` th dimension of the input weights,
    and W is the product result of remaining dimensions.

    Step 2:
    :attr:`power_iters` shoule be a positive interger, do following
    calculations with U and V for :attr:`power_iters` rounds.

    .. math::

        \mathbf{v} := \\frac{\mathbf{W}^{T} \mathbf{u}}{\|\mathbf{W}^{T} \mathbf{u}\|_2}

        \mathbf{u} := \\frac{\mathbf{W}^{T} \mathbf{v}}{\|\mathbf{W}^{T} \mathbf{v}\|_2}

    Step 3:
    Calculate :math:`\sigma(\mathbf{W})` and normalize weight values.

    .. math::

        \sigma(\mathbf{W}) = \mathbf{u}^{T} \mathbf{W} \mathbf{v}

        \mathbf{W} = \\frac{\mathbf{W}}{\sigma(\mathbf{W})}


    Refer to `Spectral Normalization <https://arxiv.org/abs/1802.05957>`_ .

2939
    Parameters:
2940
        weight_shape(list or tuple): The shape of weight parameter.
2941 2942 2943 2944
        dim(int, optional): The index of dimension which should be permuted to the first before reshaping Input(Weight) to matrix, it should be set as 0 if Input(Weight) is the weight of fc layer, and should be set as 1 if Input(Weight) is the weight of conv layer. Default: 0.
        power_iters(int, optional): The number of power iterations to calculate spectral norm. Default: 1.
        eps(float, optional): The epsilon for numerical stability in calculating norms. Default: 1e-12.
        name (str, optional): The default value is None.  Normally there is no need for user to set this property.  For more information, please refer to :ref:`api_guide_Name` .
2945
        dtype (str, optional): Data type, it can be "float32" or "float64". Default: "float32".
2946 2947

    Returns:
2948
        None
2949 2950 2951 2952 2953

    Examples:
       .. code-block:: python

            import paddle.fluid as fluid
2954
            import numpy as np
2955 2956

            with fluid.dygraph.guard():
2957 2958 2959
                weight = np.random.random((2, 8, 32, 32)).astype('float32')
                spectralNorm = fluid.dygraph.nn.SpectralNorm(weight.shape, dim=1, power_iters=2)
                ret = spectralNorm(fluid.dygraph.base.to_variable(weight))
2960 2961 2962

    """

2963 2964 2965 2966 2967 2968 2969
    def __init__(self,
                 weight_shape,
                 dim=0,
                 power_iters=1,
                 eps=1e-12,
                 dtype='float32'):
        super(SpectralNorm, self).__init__()
L
lujun 已提交
2970 2971 2972
        self._power_iters = power_iters
        self._eps = eps
        self._dim = dim
2973
        self._dtype = dtype
L
lujun 已提交
2974

2975 2976 2977
        self._weight_shape = list(weight_shape)
        h = self._weight_shape[self._dim]
        w = np.prod(self._weight_shape) // h
L
lujun 已提交
2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009

        self.u = self.create_parameter(
            attr=ParamAttr(),
            shape=[h],
            dtype=self._dtype,
            default_initializer=Normal(0., 1.))
        self.u.stop_gradient = True

        self.v = self.create_parameter(
            attr=ParamAttr(),
            shape=[w],
            dtype=self._dtype,
            default_initializer=Normal(0., 1.))
        self.v.stop_gradient = True

    def forward(self, weight):
        inputs = {'Weight': weight, 'U': self.u, 'V': self.v}
        out = self._helper.create_variable_for_type_inference(self._dtype)
        self._helper.append_op(
            type="spectral_norm",
            inputs=inputs,
            outputs={"Out": out, },
            attrs={
                "dim": self._dim,
                "power_iters": self._power_iters,
                "eps": self._eps,
            })

        return out


class TreeConv(layers.Layer):
3010
    """
3011 3012 3013 3014 3015 3016 3017 3018 3019 3020
    This interface is used to construct a callable object of the ``TreeConv`` class.
    For more details, refer to code examples.
    Tree-Based Convolution is a kind of convolution based on tree structure.
    Tree-Based Convolution is a part of Tree-Based Convolution Neural Network(TBCNN),
    which is used to classify tree structures, such as Abstract Syntax Tree.
    Tree-Based Convolution proposed a kind of data structure called continuous binary tree,
    which regards multiway tree as binary tree.
    The paper of Tree-Based Convolution Operator is here: `tree-based convolution <https://arxiv.org/abs/1409.5718v1/>`_ .
    
    Parameters:
3021
        feature_size(int): last dimension of nodes_vector.
3022 3023 3024 3025 3026 3027 3028
        output_size(int): output feature width.
        num_filters(int, optional): number of filters, Default: 1.
        max_depth(int, optional): max depth of filters, Default: 2.
        act(str, optional): activation function, Default: tanh.
        param_attr(ParamAttr, optional): the parameter attribute for the filters, Default: None.
        bias_attr(ParamAttr, optional): the parameter attribute for the bias of this layer, Default: None.
        name(str, optional): The default value is None. Normally there is no need for user to set this property. For more information, please refer to :ref:`api_guide_Name` .
3029
        dtype (str, optional): Data type, it can be "float32" or "float64". Default: "float32".
3030

3031 3032
    Attribute:
        **weight** (Parameter): the learnable weights of filters of this layer.
3033

3034
        **bias** (Parameter or None): the learnable bias of this layer.
3035

3036 3037
    Returns:
        None
L
lujun 已提交
3038

3039
    Examples:
L
lujun 已提交
3040

3041
        .. code-block:: python
3042

3043 3044
          import paddle.fluid as fluid
          import numpy
3045

3046 3047 3048 3049
          with fluid.dygraph.guard():
              nodes_vector = numpy.random.random((1, 10, 5)).astype('float32')
              edge_set = numpy.random.random((1, 9, 2)).astype('int32')
              treeConv = fluid.dygraph.nn.TreeConv(
3050
                feature_size=5, output_size=6, num_filters=1, max_depth=2)
3051
              ret = treeConv(fluid.dygraph.base.to_variable(nodes_vector), fluid.dygraph.base.to_variable(edge_set))
3052 3053
    """

L
lujun 已提交
3054
    def __init__(self,
3055
                 feature_size,
L
lujun 已提交
3056 3057 3058 3059 3060 3061
                 output_size,
                 num_filters=1,
                 max_depth=2,
                 act='tanh',
                 param_attr=None,
                 bias_attr=None,
3062 3063 3064
                 name=None,
                 dtype='float32'):
        super(TreeConv, self).__init__()
L
lujun 已提交
3065
        self._name = name
3066
        self._feature_size = feature_size
L
lujun 已提交
3067 3068 3069 3070 3071 3072
        self._output_size = output_size
        self._act = act
        self._max_depth = max_depth
        self._num_filters = num_filters
        self._bias_attr = bias_attr
        self._param_attr = param_attr
3073 3074
        self._dtype = dtype
        w_shape = [self._feature_size, 3, self._output_size, self._num_filters]
L
lujun 已提交
3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086
        if self._bias_attr:
            self._bias_param = self.create_parameter(
                attr=self._bias_attr,
                shape=[self._num_filters],
                dtype=self._dtype,
                is_bias=True)
        self.W = self.create_parameter(
            attr=self._param_attr,
            shape=w_shape,
            dtype=self._dtype,
            is_bias=False)

3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102
    @property
    def weight(self):
        return self.W

    @weight.setter
    def weight(self, value):
        self.W = value

    @property
    def bias(self):
        return self._bias_param

    @bias.setter
    def bias(self, value):
        self._bias_param = value

L
lujun 已提交
3103
    def forward(self, nodes_vector, edge_set):
3104

L
lujun 已提交
3105 3106 3107 3108
        if self._name:
            out = self.create_variable(
                name=self._name, dtype=self._dtype, persistable=False)
        else:
3109

L
lujun 已提交
3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133
            out = self._helper.create_variable_for_type_inference(
                dtype=self._dtype)

        self._helper.append_op(
            type='tree_conv',
            inputs={
                'NodesVector': nodes_vector,
                'EdgeSet': edge_set,
                'Filter': self.W
            },
            outputs={'Out': out, },
            attrs={'max_depth': self._max_depth})
        if self._bias_attr:
            pre_activation = self._helper.create_variable_for_type_inference(
                dtype=self._dtype)
            self._helper.append_op(
                type='elementwise_add',
                inputs={'X': [out],
                        'Y': [self._bias_param]},
                outputs={'Out': [pre_activation]},
                attrs={'axis': 1})
        else:
            pre_activation = out
        return self._helper.append_activation(pre_activation, act=self._act)