nn.py 128.4 KB
Newer Older
M
minqiyang 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import print_function

from six.moves import reduce
from .. import core
from ..layers import utils
20
from ..layers import nn as F
21
from .. import dygraph_utils
M
minqiyang 已提交
22
from . import layers
23
from ..framework import Variable, in_dygraph_mode, OpProtoHolder, Parameter, _dygraph_tracer, _varbase_creator, default_main_program
24
from ..data_feeder import convert_dtype, check_variable_and_dtype, check_type, check_dtype
M
minqiyang 已提交
25
from ..param_attr import ParamAttr
26
from ..initializer import Normal, Constant, NumpyArrayInitializer
H
hong 已提交
27 28
from .. import unique_name
from .layer_object_helper import LayerObjectHelper
29
from ..data_feeder import check_variable_and_dtype, check_type
L
lujun 已提交
30
import numpy as np
31
import numbers
32
import logging
33

34
__all__ = [
35
    'Conv2D', 'Conv3D', 'Pool2D', 'Linear', 'BatchNorm', 'Dropout', 'Embedding',
36 37 38
    'GRUUnit', 'InstanceNorm', 'LayerNorm', 'NCE', 'PRelu',
    'BilinearTensorProduct', 'Conv2DTranspose', 'Conv3DTranspose', 'GroupNorm',
    'SpectralNorm', 'TreeConv'
39
]
M
minqiyang 已提交
40 41


X
Xin Pan 已提交
42
class Conv2D(layers.Layer):
43
    """
44 45
    This interface is used to construct a callable object of the ``Conv2D`` class.
    For more details, refer to code examples.
46 47 48
    The convolution2D layer calculates the output based on the input, filter
    and strides, paddings, dilations, groups parameters. Input and
    Output are in NCHW format, where N is batch size, C is the number of
49 50 51
    the feature map, H is the height of the feature map, and W is the width of the feature map.
    Filter's shape is [MCHW] , where M is the number of output feature map,
    C is the number of input feature map, H is the height of the filter,
52
    and W is the width of the filter. If the groups is greater than 1,
53
    C will equal the number of input feature map divided by the groups.
54
    Please refer to UFLDL's `convolution
55
    <http://ufldl.stanford.edu/tutorial/supervised/FeatureExtractionUsingConvolution/>`_
T
tianshuo78520a 已提交
56
    for more details.
57 58 59 60 61 62 63 64
    If bias attribution and activation type are provided, bias is added to the
    output of the convolution, and the corresponding activation function is
    applied to the final result.

    For each input :math:`X`, the equation is:

    .. math::

65
        Out = \\sigma (W \\ast X + b)
66 67 68

    Where:

69 70
    * :math:`X`: Input value, a ``Tensor`` with NCHW format.
    * :math:`W`: Filter value, a ``Tensor`` with shape [MCHW] .
71
    * :math:`\\ast`: Convolution operation.
72
    * :math:`b`: Bias value, a 2-D ``Tensor`` with shape [M, 1].
73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94
    * :math:`\\sigma`: Activation function.
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.

    Example:

        - Input:

          Input shape: :math:`(N, C_{in}, H_{in}, W_{in})`

          Filter shape: :math:`(C_{out}, C_{in}, H_f, W_f)`

        - Output:

          Output shape: :math:`(N, C_{out}, H_{out}, W_{out})`

        Where

        .. math::

            H_{out}&= \\frac{(H_{in} + 2 * paddings[0] - (dilations[0] * (H_f - 1) + 1))}{strides[0]} + 1 \\\\
            W_{out}&= \\frac{(W_{in} + 2 * paddings[1] - (dilations[1] * (W_f - 1) + 1))}{strides[1]} + 1

95
    Parameters:
96
        num_channels(int): The number of channels in the input image.
97
        num_filters(int): The number of filter. It is as same as the output
98 99
            feature map.
        filter_size (int or tuple): The filter size. If filter_size is a tuple,
100 101
            it must contain two integers, (filter_size_H, filter_size_W).
            Otherwise, the filter will be a square.
102
        stride (int or tuple, optional): The stride size. If stride is a tuple, it must
103
            contain two integers, (stride_H, stride_W). Otherwise, the
104 105
            stride_H = stride_W = stride. Default: 1.
        padding (int or tuple, optional): The padding size. If padding is a tuple, it must
106
            contain two integers, (padding_H, padding_W). Otherwise, the
107 108
            padding_H = padding_W = padding. Default: 0.
        dilation (int or tuple, optional): The dilation size. If dilation is a tuple, it must
109
            contain two integers, (dilation_H, dilation_W). Otherwise, the
110 111
            dilation_H = dilation_W = dilation. Default: 1.
        groups (int, optional): The groups number of the Conv2d Layer. According to grouped
112 113 114
            convolution in Alex Krizhevsky's Deep CNN paper: when group=2,
            the first half of the filters is only connected to the first half
            of the input channels, while the second half of the filters is only
115 116
            connected to the second half of the input channels. Default: 1.
        param_attr (ParamAttr, optional): The parameter attribute for learnable weights(Parameter)
117 118 119 120
            of conv2d. If it is set to None or one attribute of ParamAttr, conv2d
            will create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with :math:`Normal(0.0, std)`,
            and the :math:`std` is :math:`(\\frac{2.0 }{filter\_elem\_num})^{0.5}`. Default: None.
121
        bias_attr (ParamAttr or bool, optional): The attribute for the bias of conv2d.
122 123 124 125
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, conv2d
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. Default: None.
126 127 128 129 130
        use_cudnn (bool, optional): Use cudnn kernel or not, it is valid only when the cudnn
            library is installed. Default: True.
        act (str, optional): Activation type, if it is set to None, activation is not appended.
            Default: None.
        dtype (str, optional): Data type, it can be "float32" or "float64". Default: "float32".
131

132 133 134 135
    Attribute:
        **weight** (Parameter): the learnable weights of filter of this layer.

        **bias** (Parameter or None): the learnable bias of this layer.
136

137 138 139
    Returns:
        None
    
140
    Raises:
141
        ValueError: if ``use_cudnn`` is not a bool value.
142 143 144

    Examples:
        .. code-block:: python
L
lujun 已提交
145

146 147 148 149 150
          from paddle.fluid.dygraph.base import to_variable
          import paddle.fluid as fluid
          from paddle.fluid.dygraph import Conv2D
          import numpy as np

151
          data = np.random.uniform(-1, 1, [10, 3, 32, 32]).astype('float32')
152
          with fluid.dygraph.guard():
153
              conv2d = Conv2D(3, 2, 3)
154 155
              data = to_variable(data)
              conv = conv2d(data)
156 157 158

    """

M
minqiyang 已提交
159
    def __init__(self,
160
                 num_channels,
M
minqiyang 已提交
161 162 163 164 165 166 167 168
                 num_filters,
                 filter_size,
                 stride=1,
                 padding=0,
                 dilation=1,
                 groups=None,
                 param_attr=None,
                 bias_attr=None,
169 170 171
                 use_cudnn=True,
                 act=None,
                 dtype='float32'):
M
minqiyang 已提交
172
        assert param_attr is not False, "param_attr should not be False here."
173 174
        super(Conv2D, self).__init__()
        self._num_channels = num_channels
M
minqiyang 已提交
175 176 177 178
        self._groups = groups
        self._stride = utils.convert_to_list(stride, 2, 'stride')
        self._padding = utils.convert_to_list(padding, 2, 'padding')
        self._dilation = utils.convert_to_list(dilation, 2, 'dilation')
179
        self._act = act
M
minqiyang 已提交
180 181 182
        if not isinstance(use_cudnn, bool):
            raise ValueError("use_cudnn should be True or False")
        self._use_cudnn = use_cudnn
183 184 185 186 187
        self._filter_size = filter_size
        self._num_filters = num_filters
        self._param_attr = param_attr
        self._bias_attr = bias_attr
        self._dtype = dtype
188

189 190 191 192 193
        if (self._num_channels == self._groups and
                num_filters % self._num_channels == 0 and not self._use_cudnn):
            self._l_type = 'depthwise_conv2d'
        else:
            self._l_type = 'conv2d'
M
minqiyang 已提交
194

195
        self._num_channels = num_channels
196 197
        if self._groups is None:
            num_filter_channels = self._num_channels
M
minqiyang 已提交
198
        else:
199
            if self._num_channels % self._groups != 0:
M
minqiyang 已提交
200
                raise ValueError("num_channels must be divisible by groups.")
201 202
            num_filter_channels = self._num_channels // self._groups
        filter_size = utils.convert_to_list(self._filter_size, 2, 'filter_size')
203
        filter_shape = [self._num_filters, num_filter_channels] + filter_size
M
minqiyang 已提交
204 205

        def _get_default_param_initializer():
206 207
            filter_elem_num = filter_size[0] * filter_size[
                1] * self._num_channels
M
minqiyang 已提交
208 209 210
            std = (2.0 / filter_elem_num)**0.5
            return Normal(0.0, std, 0)

211
        self.weight = self.create_parameter(
212
            attr=self._param_attr,
M
minqiyang 已提交
213 214 215 216
            shape=filter_shape,
            dtype=self._dtype,
            default_initializer=_get_default_param_initializer())

217
        self.bias = self.create_parameter(
218 219
            attr=self._bias_attr,
            shape=[self._num_filters],
M
minqiyang 已提交
220 221
            dtype=self._dtype,
            is_bias=True)
M
minqiyang 已提交
222 223

    def forward(self, input):
224 225 226 227 228 229 230 231 232 233 234
        if in_dygraph_mode() and self._l_type == 'conv2d':
            attrs = ('strides', self._stride, 'paddings', self._padding,
                     'dilations', self._dilation, 'groups', self._groups
                     if self._groups else 1, 'use_cudnn', self._use_cudnn)
            out = core.ops.conv2d(input, self.weight, *attrs)
            pre_bias = out

            pre_act = dygraph_utils._append_bias_in_dygraph(pre_bias, self.bias,
                                                            1)
            return dygraph_utils._append_activation_in_dygraph(pre_act,
                                                               self._act)
235 236
        inputs = {
            'Input': [input],
237
            'Filter': [self.weight],
238 239 240 241 242 243 244 245 246
        }
        attrs = {
            'strides': self._stride,
            'paddings': self._padding,
            'dilations': self._dilation,
            'groups': self._groups if self._groups else 1,
            'use_cudnn': self._use_cudnn,
            'use_mkldnn': False,
        }
247 248 249

        check_variable_and_dtype(input, 'input',
                                 ['float16', 'float32', 'float64'], 'Conv2D')
M
minqiyang 已提交
250 251 252
        pre_bias = self._helper.create_variable_for_type_inference(
            dtype=self._dtype)

M
minqiyang 已提交
253 254 255 256
        self._helper.append_op(
            type=self._l_type,
            inputs={
                'Input': input,
257
                'Filter': self.weight,
M
minqiyang 已提交
258
            },
M
minqiyang 已提交
259
            outputs={"Output": pre_bias},
260
            attrs=attrs)
M
minqiyang 已提交
261

262
        if self.bias is not None:
263 264 265 266 267
            pre_act = self._helper.create_variable_for_type_inference(
                dtype=self._dtype)
            self._helper.append_op(
                type='elementwise_add',
                inputs={'X': [pre_bias],
268
                        'Y': [self.bias]},
269 270 271 272
                outputs={'Out': [pre_act]},
                attrs={'axis': 1})
        else:
            pre_act = pre_bias
M
minqiyang 已提交
273

L
lujun 已提交
274
        # Currently, we don't support inplace in dygraph mode
275
        return self._helper.append_activation(pre_act, act=self._act)
M
minqiyang 已提交
276 277


L
lujun 已提交
278
class Conv3D(layers.Layer):
279 280 281 282 283
    """
    **Convlution3D Layer**

    The convolution3D layer calculates the output based on the input, filter
    and strides, paddings, dilations, groups parameters. Input(Input) and
D
DuYao 已提交
284 285
    Output(Output) are multidimensional tensors with a shape of 
    :math:`[N, C, D, H, W]` . Where N is batch size, C is the number of
286 287 288 289 290 291 292 293 294 295 296 297 298 299
    channels, D is the depth of the feature, H is the height of the feature,
    and W is the width of the feature. Convlution3D is similar with Convlution2D
    but adds one dimension(depth). If bias attribution and activation type are
    provided, bias is added to the output of the convolution, and the
    corresponding activation function is applied to the final result.

    For each input :math:`X`, the equation is:

    .. math::

        Out = \sigma (W \\ast X + b)

    In the above equation:

D
DuYao 已提交
300
    * :math:`X`: Input value, a tensor with NCDHW or NDHWC format.
301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325
    * :math:`W`: Filter value, a tensor with MCDHW format.
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D tensor with shape [M, 1].
    * :math:`\\sigma`: Activation function.
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.

    Example:

        - Input:

          Input shape: :math:`(N, C_{in}, D_{in}, H_{in}, W_{in})`

          Filter shape: :math:`(C_{out}, C_{in}, D_f, H_f, W_f)`

        - Output:
          Output shape: :math:`(N, C_{out}, D_{out}, H_{out}, W_{out})`

        Where

        .. math::

            D_{out}&= \\frac{(D_{in} + 2 * paddings[0] - (dilations[0] * (D_f - 1) + 1))}{strides[0]} + 1 \\\\
            H_{out}&= \\frac{(H_{in} + 2 * paddings[1] - (dilations[1] * (H_f - 1) + 1))}{strides[1]} + 1 \\\\
            W_{out}&= \\frac{(W_{in} + 2 * paddings[2] - (dilations[2] * (W_f - 1) + 1))}{strides[2]} + 1

326
    Parameters:
327
        num_channels(int): The number of channels in the input image.
L
lujun 已提交
328
        num_filters(int): The number of filter. It is as same as the output image channel.
D
DuYao 已提交
329
        filter_size (int|tuple, optional): The filter size. If filter_size is a tuple,
330
            it must contain three integers, (filter_size_D, filter_size_H, filter_size_W).
D
DuYao 已提交
331 332 333
            Otherwise, the filter will be a square, filter_size_depth = filter_size_height
            = filter_size_width = filter_size.
        stride (int|tuple, optional): The stride size. If stride is a tuple, it must
334
            contain three integers, (stride_D, stride_H, stride_W). Otherwise, the
D
DuYao 已提交
335 336
            stride_D = stride_H = stride_W = stride. The default value is 1.
        padding (int|tuple, optional): The padding size. If padding is a tuple, it must
337
            contain three integers, (padding_D, padding_H, padding_W). Otherwise, the
D
DuYao 已提交
338 339
            padding_D = padding_H = padding_W = padding. The default value is 0.
        dilation (int|tuple, optional): The dilation size. If dilation is a tuple, it must
340
            contain three integers, (dilation_D, dilation_H, dilation_W). Otherwise, the
D
DuYao 已提交
341 342
            dilation_D = dilation_H = dilation_W = dilation. The default value is 1.
        groups (int, optional): The groups number of the Conv3d Layer. According to grouped
343 344 345
            convolution in Alex Krizhevsky's Deep CNN paper: when group=2,
            the first half of the filters is only connected to the first half
            of the input channels, while the second half of the filters is only
D
DuYao 已提交
346 347
            connected to the second half of the input channels. The default value is 1.
        param_attr (ParamAttr, optional): The parameter attribute for learnable parameters/weights
348 349 350
            of conv3d. If it is set to None or one attribute of ParamAttr, conv3d
            will create ParamAttr as param_attr. If it is set to None, the parameter
            is initialized with :math:`Normal(0.0, std)`, and the :math:`std` is
D
DuYao 已提交
351 352
            :math:`(\\frac{2.0 }{filter\_elem\_num})^{0.5}`. The default value is None.
        bias_attr (ParamAttr|bool, optional): The parameter attribute for the bias of conv3d.
353 354 355
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, conv3d
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
D
DuYao 已提交
356 357 358 359 360
            is not set, the bias is initialized zero. The default value is None.
        use_cudnn (bool, optional): Use cudnn kernel or not, it is valid only when the cudnn
            library is installed. The default value is True.
        act (str, optional): Activation type, if it is set to None, activation is not appended.
            The default value is None.
361
        dtype (str, optional): Data type, it can be "float32" or "float64". Default: "float32".
362

D
DuYao 已提交
363 364 365 366
    Attribute:
        **weight** (Parameter): the learnable weights of filters of this layer.

        **bias** (Parameter): the learnable bias of this layer.
367

368
    Returns:
D
DuYao 已提交
369
        None.
370 371 372 373 374 375 376 377

    Raises:
        ValueError: If the shapes of input, filter_size, stride, padding and
                    groups mismatch.

    Examples:
        .. code-block:: python

378 379 380 381 382 383
          import paddle.fluid as fluid
          import numpy

          with fluid.dygraph.guard():
              data = numpy.random.random((5, 3, 12, 32, 32)).astype('float32')
              conv3d = fluid.dygraph.nn.Conv3D(
384
                    num_channels=3, num_filters=2, filter_size=3, act="relu")
385 386
              ret = conv3d(fluid.dygraph.base.to_variable(data))

387 388
    """

L
lujun 已提交
389
    def __init__(self,
390
                 num_channels,
L
lujun 已提交
391 392 393 394 395 396 397 398 399
                 num_filters,
                 filter_size,
                 stride=1,
                 padding=0,
                 dilation=1,
                 groups=None,
                 param_attr=None,
                 bias_attr=None,
                 use_cudnn=True,
400 401
                 act=None,
                 dtype='float32'):
L
lujun 已提交
402
        assert param_attr is not False, "param_attr should not be False here."
403 404
        super(Conv3D, self).__init__()
        self._num_channels = num_channels
L
lujun 已提交
405 406 407
        self._groups = groups
        self._stride = utils.convert_to_list(stride, 3, 'stride')
        self._padding = utils.convert_to_list(padding, 3, 'padding')
408
        self._dilation = utils.convert_to_list(dilation, 3, 'dilation')
L
lujun 已提交
409 410
        self._act = act
        self._use_cudnn = use_cudnn
411 412 413 414
        self._filter_size = filter_size
        self._num_filters = num_filters
        self._param_attr = param_attr
        self._bias_attr = bias_attr
415
        self._dtype = dtype
416 417

        if self._groups is None:
418
            num_filter_channels = self._num_channels
L
lujun 已提交
419
        else:
420
            if self._num_channels % self._groups != 0:
L
lujun 已提交
421
                raise ValueError("num_channels must be divisible by groups.")
422
            num_filter_channels = self._num_channels // self._groups
L
lujun 已提交
423

424 425
        filter_size = utils.convert_to_list(self._filter_size, 3, 'filter_size')
        filter_shape = [self._num_filters, num_filter_channels] + filter_size
L
lujun 已提交
426 427 428

        def _get_default_param_initializer():
            filter_elem_num = filter_size[0] * filter_size[1] * filter_size[
429
                2] * self._num_channels
L
lujun 已提交
430 431 432
            std = (2.0 / filter_elem_num)**0.5
            return Normal(0.0, std, 0)

433
        self.weight = self.create_parameter(
434
            attr=self._param_attr,
L
lujun 已提交
435 436 437 438
            shape=filter_shape,
            dtype=self._dtype,
            default_initializer=_get_default_param_initializer())

439
        self.bias = self.create_parameter(
440 441
            attr=self._bias_attr,
            shape=[self._num_filters],
L
lujun 已提交
442 443 444 445 446 447 448 449
            dtype=self._dtype,
            is_bias=True)

    def forward(self, input):
        pre_bias = self._helper.create_variable_for_type_inference(
            dtype=self._dtype)

        self._helper.append_op(
450
            type='conv3d',
L
lujun 已提交
451 452
            inputs={
                'Input': input,
453
                'Filter': self.weight,
L
lujun 已提交
454 455 456 457 458 459 460 461 462 463 464
            },
            outputs={"Output": pre_bias},
            attrs={
                'strides': self._stride,
                'paddings': self._padding,
                'dilations': self._dilation,
                'groups': self._groups if self._groups else 1,
                'use_cudnn': self._use_cudnn,
                'use_mkldnn': False
            })

465
        if self.bias is not None:
466 467 468 469 470
            pre_act = self._helper.create_variable_for_type_inference(
                dtype=self._dtype)
            self._helper.append_op(
                type='elementwise_add',
                inputs={'X': [pre_bias],
471
                        'Y': [self.bias]},
472 473 474 475
                outputs={'Out': [pre_act]},
                attrs={'axis': 1})
        else:
            pre_act = pre_bias
L
lujun 已提交
476 477 478 479 480

        return self._helper.append_activation(pre_act, act=self._act)


class Conv3DTranspose(layers.Layer):
L
lujun 已提交
481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526
    """
    **Convlution3D transpose layer**

    The convolution3D transpose layer calculates the output based on the input,
    filter, and dilations, strides, paddings. Input(Input) and output(Output)
    are in NCDHW format. Where N is batch size, C is the number of channels,
    D is the depth of the feature, H is the height of the feature, and W
    is the width of the feature. Parameters(dilations, strides, paddings) are
    two elements. These two elements represent height and width, respectively.
    The details of convolution transpose layer, please refer to the following
    explanation and references `therein <http://www.matthewzeiler.com/wp-content/uploads/2017/07/cvpr2010.pdf>`_.
    If bias attribution and activation type are provided, bias is added to
    the output of the convolution, and the corresponding activation function
    is applied to the final result.

    For each input :math:`X`, the equation is:

    .. math::

        Out = \sigma (W \\ast X + b)

    In the above equation:

    * :math:`X`: Input value, a tensor with NCDHW format.
    * :math:`W`: Filter value, a tensor with MCDHW format.
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D tensor with shape [M, 1].
    * :math:`\\sigma`: Activation function.
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.

    Example:

        - Input:

          Input shape: :math:`(N, C_{in}, D_{in}, H_{in}, W_{in})`

          Filter shape: :math:`(C_{in}, C_{out}, D_f, H_f, W_f)`

        - Output:

          Output shape: :math:`(N, C_{out}, D_{out}, H_{out}, W_{out})`

        Where

        .. math::

D
DuYao 已提交
527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545
           D^\prime_{out} &= (D_{in} - 1) * strides[0] - 2 * paddings[0] + dilations[0] * (D_f - 1) + 1 \\\\
           H^\prime_{out} &= (H_{in} - 1) * strides[1] - 2 * paddings[1] + dilations[1] * (H_f - 1) + 1 \\\\
           W^\prime_{out} &= (W_{in} - 1) * strides[2] - 2 * paddings[2] + dilations[2] * (W_f - 1) + 1 \\\\
           D_{out} &\in [ D^\prime_{out}, D^\prime_{out} + strides[0] ] \\\\
           H_{out} &\in [ H^\prime_{out}, H^\prime_{out} + strides[1] ] \\\\

    **Note**:

          The conv3d_transpose can be seen as the backward of the conv3d. For conv3d, 
          when stride > 1, conv3d maps multiple input shape to the same output shape, 
          so for conv3d_transpose, when stride > 1, input shape maps multiple output shape.
          If output_size is None, :math:`H_{out} = H^\prime_{out}, :math:`H_{out} = \
          H^\prime_{out}, W_{out} = W^\prime_{out}`; else, the :math:`D_{out}` of the output 
          size must between :math:`D^\prime_{out}` and :math:`D^\prime_{out} + strides[0]`, 
          the :math:`H_{out}` of the output size must between :math:`H^\prime_{out}` 
          and :math:`H^\prime_{out} + strides[1]`, and the :math:`W_{out}` of the output size must 
          between :math:`W^\prime_{out}` and :math:`W^\prime_{out} + strides[2]`, 
          conv3d_transpose can compute the kernel size automatically.

L
lujun 已提交
546

547
    Parameters:
548
        num_channels(int): The number of channels in the input image.
L
lujun 已提交
549 550
        num_filters(int): The number of the filter. It is as same as the output
            image channel.
551
        filter_size(int|tuple): The filter size. If filter_size is a tuple,
L
lujun 已提交
552
            it must contain three integers, (filter_size_D, filter_size_H, filter_size_W).
553
            Otherwise, the filter will be a square.
D
DuYao 已提交
554 555 556 557 558 559 560 561 562 563 564 565 566 567 568
        padding(int|tuple, optional): The padding size. The padding argument effectively
             adds `dilation * (kernel - 1)` amount of zero-padding on both sides of input. If `padding` is a string,
             either 'VALID' or 'SAME' supported, which is the padding algorithm. If `padding`
             is a tuple or list, it could be in three forms: `[pad_depth, pad_height, pad_width]` or
            `[pad_depth_front, pad_depth_back, pad_height_top, pad_height_bottom, pad_width_left, pad_width_right]`,
            and when `data_format` is `'NCDHW'`, `padding` can be in the form
            `[[0,0], [0,0], [pad_depth_front, pad_depth_back], [pad_height_top, pad_height_bottom], [pad_width_left, pad_width_right]]`.
            when `data_format` is `'NDHWC'`, `padding` can be in the form
            `[[0,0], [pad_depth_front, pad_depth_back], [pad_height_top, pad_height_bottom], [pad_width_left, pad_width_right], [0,0]]`.
            The default value is 0.
        stride(int|tuple, optional): The stride size. It means the stride in transposed convolution. 
            If stride is a tuple, it must contain three integers, (stride_depth, stride_height, 
            stride_width). Otherwise, stride_depth = stride_height = stride_width = stride. 
            The default value is 1.
        dilation(int|tuple, optional): The dilation size. If dilation is a tuple, it must
L
lujun 已提交
569
            contain three integers, (dilation_D, dilation_H, dilation_W). Otherwise, the
D
DuYao 已提交
570 571
            dilation_D = dilation_H = dilation_W = dilation. The default value is 1.
        groups(int, optional): The groups number of the Conv3d transpose layer. Inspired by
L
lujun 已提交
572 573 574 575
            grouped convolution in Alex Krizhevsky's Deep CNN paper, in which
            when group=2, the first half of the filters is only connected to the
            first half of the input channels, while the second half of the
            filters is only connected to the second half of the input channels.
D
DuYao 已提交
576 577
            The default value is 1.
        param_attr (ParamAttr, optional): The parameter attribute for learnable parameters/weights
L
lujun 已提交
578 579
            of conv3d_transpose. If it is set to None or one attribute of ParamAttr, conv3d_transpose
            will create ParamAttr as param_attr. If the Initializer of the param_attr
D
DuYao 已提交
580 581
            is not set, the parameter is initialized with Xavier. The default value is None.
        bias_attr (ParamAttr|bool, optional): The parameter attribute for the bias of conv3d_transpose.
L
lujun 已提交
582 583 584
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, conv3d_transpose
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
D
DuYao 已提交
585 586 587 588 589 590 591
            is not set, the bias is initialized zero. The default value is None.
        use_cudnn(bool, optional): Use cudnn kernel or not, it is valid only when the cudnn
            library is installed. The default value is True.
        act (str, optional): Activation type, if it is set to None, activation is not appended.
            The default value is None.
        name(str, optional): The default value is None. Normally there is no need for user 
            to set this property. For more information, please refer to :ref:`api_guide_Name`.
L
lujun 已提交
592

D
DuYao 已提交
593 594 595 596
    Attribute:
        **weight** (Parameter): the learnable weights of filters of this layer.

        **bias** (Parameter): the learnable bias of this layer.
597

L
lujun 已提交
598
    Returns:
D
DuYao 已提交
599
        None.
L
lujun 已提交
600 601 602 603 604 605 606 607

    Raises:
        ValueError: If the shapes of input, filter_size, stride, padding and
                    groups mismatch.

    Examples:
       .. code-block:: python

608 609 610 611 612 613
         import paddle.fluid as fluid
         import numpy

         with fluid.dygraph.guard():
             data = numpy.random.random((5, 3, 12, 32, 32)).astype('float32')
             conv3dTranspose = fluid.dygraph.nn.Conv3DTranspose(
614
                    num_channels=3,
615 616 617 618 619
                    num_filters=12,
                    filter_size=12,
                    use_cudnn=False)
             ret = conv3dTranspose(fluid.dygraph.base.to_variable(data))

L
lujun 已提交
620 621
    """

L
lujun 已提交
622
    def __init__(self,
623
                 num_channels,
L
lujun 已提交
624
                 num_filters,
625
                 filter_size,
L
lujun 已提交
626 627 628 629 630 631 632 633
                 padding=0,
                 stride=1,
                 dilation=1,
                 groups=None,
                 param_attr=None,
                 bias_attr=None,
                 use_cudnn=True,
                 act=None,
634 635
                 dtype='float32'):
        super(Conv3DTranspose, self).__init__()
L
lujun 已提交
636 637 638 639 640 641 642
        if not isinstance(use_cudnn, bool):
            raise ValueError("use_cudnn should be True or False")
        assert param_attr is not False, "param_attr should not be False in conv3d_transpose."
        self._padding = utils.convert_to_list(padding, 3, 'padding')
        self._stride = utils.convert_to_list(stride, 3, 'stride')
        self._dilation = utils.convert_to_list(dilation, 3, 'dilation')
        self._param_attr = param_attr
643
        self._num_channels = num_channels
L
lujun 已提交
644 645 646 647 648 649
        self._filter_size = filter_size
        self._groups = 1 if groups is None else groups
        self._num_filters = num_filters
        self._use_cudnn = use_cudnn
        self._bias_attr = bias_attr
        self._act = act
650
        self._dtype = dtype
L
lujun 已提交
651

652 653
        self._filter_size = utils.convert_to_list(
            self._filter_size, 3, 'conv3d_transpose.filter_size')
L
lujun 已提交
654

655 656
        filter_shape = [self._num_channels, self._num_filters // self._groups
                        ] + self._filter_size
657
        self.weight = self.create_parameter(
L
lujun 已提交
658
            dtype=self._dtype, shape=filter_shape, attr=self._param_attr)
659 660 661 662 663
        self.bias = self.create_parameter(
            attr=self._bias_attr,
            shape=[self._num_filters],
            dtype=self._dtype,
            is_bias=True)
L
lujun 已提交
664 665 666 667 668 669 670

    def forward(self, input):
        pre_bias = self._helper.create_variable_for_type_inference(
            dtype=self._dtype)
        self._helper.append_op(
            type="conv3d_transpose",
            inputs={'Input': [input],
671
                    'Filter': [self.weight]},
L
lujun 已提交
672 673 674 675 676 677 678 679 680 681 682 683 684 685 686
            outputs={'Output': pre_bias},
            attrs={
                'strides': self._stride,
                'paddings': self._padding,
                'dilations': self._dilation,
                'groups': self._groups if self._groups else 1,
                'use_cudnn': self._use_cudnn
            })

        if self._bias_attr:
            pre_act = self._helper.create_variable_for_type_inference(
                dtype=self._dtype)
            self._helper.append_op(
                type='elementwise_add',
                inputs={'X': [pre_bias],
687
                        'Y': [self.bias]},
L
lujun 已提交
688 689 690 691 692 693 694 695 696
                outputs={'Out': [pre_act]},
                attrs={'axis': 1})
        else:
            pre_act = pre_bias

        # Currently, we don't support inplace in imperative mode
        return self._helper.append_activation(pre_act, act=self._act)


X
Xin Pan 已提交
697
class Pool2D(layers.Layer):
698
    """
699 700 701 702 703
    This interface is used to construct a callable object of the ``Pool2D`` class.
    For more details, refer to code examples.
    The pooling2d operation calculates the output based on the input, pool_type and pool_size, pool_stride,
    pool_padding parameters.Input and output are in NCHW format, where N is batch size, C is the number of feature map,
    H is the height of the feature map, and W is the width of the feature map.
L
lujun 已提交
704 705
    Parameters(ksize, strides, paddings) are two elements. These two elements represent height and width, respectively.
    The input(X) size and output(Out) size may be different.
706

707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750
    Example:

        - Input:

          Input shape: :math:`(N, C, H_{in}, W_{in})`

        - Output:

          Output shape: :math:`(N, C, H_{out}, W_{out})`

        If ``ceil_mode`` = False:

        .. math::

            H_{out} = \\frac{(H_{in} - ksize[0] + 2 * paddings[0])}{strides[0]} + 1 \\\\
            W_{out} = \\frac{(W_{in} - ksize[1] + 2 * paddings[1])}{strides[1]} + 1

        If ``ceil_mode`` = True:

        .. math::

            H_{out} = \\frac{(H_{in} - ksize[0] + 2 * paddings[0] + strides[0] - 1)}{strides[0]} + 1 \\\\
            W_{out} = \\frac{(W_{in} - ksize[1] + 2 * paddings[1] + strides[1] - 1)}{strides[1]} + 1

        If ``exclusive`` = False:

        .. math::

            hstart &= i * strides[0] - paddings[0] \\\\
            hend   &= hstart + ksize[0] \\\\
            wstart &= j * strides[1] - paddings[1] \\\\
            wend   &= wstart + ksize[1] \\\\
            Output(i ,j) &= \\frac{sum(Input[hstart:hend, wstart:wend])}{ksize[0] * ksize[1]}

        If ``exclusive`` = True:

        .. math::

            hstart &= max(0, i * strides[0] - paddings[0])\\\\
            hend &= min(H, hstart + ksize[0]) \\\\
            wstart &= max(0, j * strides[1] - paddings[1]) \\\\
            wend & = min(W, wstart + ksize[1]) \\\\
            Output(i ,j) & = \\frac{sum(Input[hstart:hend, wstart:wend])}{(hend - hstart) * (wend - wstart)}

751
    Parameters:
752
        pool_size (int or list or tuple, optional): The pool kernel size. If pool kernel size is a tuple or list,
753
            it must contain two integers, (pool_size_Height, pool_size_Width).
754 755 756 757
            Otherwise, the pool kernel size will be a square of an int. Default: -1.
        pool_type(str, optional) : The pooling type, can be "max" for max-pooling and "avg" for average-pooling. 
            Default: max.
        pool_stride (int or list or tuple, optional): The pool stride size. If pool stride size is a tuple or list,
L
lujun 已提交
758
            it must contain two integers, (pool_stride_Height, pool_stride_Width). Otherwise,
759 760 761
            the pool stride size will be a square of an int. Default: 1.
        pool_padding (int or list or tuple, optional): The padding size for pooling operation. 
            If ``pool_padding`` is a tuple,
762
            it must contain two integers, (pool_padding_on_Height, pool_padding_on_Width).
763 764 765 766 767 768 769
            Otherwise, the padding size for pooling operation will be a square of an int. Default: 0.
        global_pooling (bool, optional): Whether to use the global pooling. If global_pooling = true,
            kernel size and paddings will be ignored. Default: False.
        use_cudnn (bool, optional): Only used in cudnn kernel, need install cudnn. Default: True.
        ceil_mode (bool, optional): Whether to use the ceil function to calculate output height and width.
            False is the default. If it is set to False, the floor function will be used. Default: False.
        exclusive (bool, optional): Whether to exclude padding points in average pooling mode. Default: True.
770 771

    Returns:
772
        None
773 774 775 776 777 778 779 780 781 782

    Raises:
        ValueError: If 'pool_type' is not "max" nor "avg"
        ValueError: If 'global_pooling' is False and 'pool_size' is -1
        ValueError: If 'use_cudnn' is not a bool value.

    Examples:

        .. code-block:: python

L
lujun 已提交
783
          import paddle.fluid as fluid
784 785
          from paddle.fluid.dygraph.base import to_variable
          import numpy as np
L
lujun 已提交
786 787

          with fluid.dygraph.guard():
788
             data = numpy.random.random((3, 32, 32, 5)).astype('float32')
789
             pool2d = fluid.dygraph.Pool2D(pool_size=2,
790 791 792
                            pool_type='max',
                            pool_stride=1,
                            global_pooling=False)
793
             pool2d_res = pool2d(to_variable(data))
794 795 796

    """

M
minqiyang 已提交
797 798 799 800 801 802 803 804
    def __init__(self,
                 pool_size=-1,
                 pool_type="max",
                 pool_stride=1,
                 pool_padding=0,
                 global_pooling=False,
                 use_cudnn=True,
                 ceil_mode=False,
805
                 exclusive=True):
M
minqiyang 已提交
806 807 808 809 810 811 812 813 814 815 816 817 818
        if pool_type not in ["max", "avg"]:
            raise ValueError(
                "Unknown pool_type: '%s'. It can only be 'max' or 'avg'.",
                str(pool_type))

        if global_pooling is False and pool_size == -1:
            raise ValueError(
                "When the global_pooling is False, pool_size must be passed "
                "and be a valid value. Received pool_size: " + str(pool_size))

        if not isinstance(use_cudnn, bool):
            raise ValueError("use_cudnn should be True or False")

819
        super(Pool2D, self).__init__()
M
minqiyang 已提交
820 821 822 823 824 825 826 827 828 829 830 831 832

        self._pool_type = pool_type
        self._pool_size = utils.convert_to_list(pool_size, 2, 'pool_size')
        self._pool_padding = utils.convert_to_list(pool_padding, 2,
                                                   'pool_padding')
        self._pool_stride = utils.convert_to_list(pool_stride, 2, 'pool_stride')
        self._global_pooling = global_pooling
        self._use_cudnn = use_cudnn
        self._ceil_mode = ceil_mode
        self._exclusive = exclusive
        self._l_type = 'pool2d'

    def forward(self, input):
833 834 835 836 837 838 839 840
        if in_dygraph_mode():
            attrs = ('pooling_type', self._pool_type, 'ksize', self._pool_size,
                     'global_pooling', self._global_pooling, 'strides',
                     self._pool_stride, 'paddings', self._pool_padding,
                     'use_cudnn', self._use_cudnn, 'ceil_mode', self._ceil_mode,
                     'use_mkldnn', False, 'exclusive', self._exclusive)
            return core.ops.pool2d(input, *attrs)

841 842 843 844
        check_variable_and_dtype(
            input, 'input', ['int8', 'uint8', 'float16', 'float32', 'float64'],
            'Pool2D')

845 846 847 848 849 850 851 852 853 854 855 856 857
        attrs = {
            "pooling_type": self._pool_type,
            "ksize": self._pool_size,
            "global_pooling": self._global_pooling,
            "strides": self._pool_stride,
            "paddings": self._pool_padding,
            "use_cudnn": self._use_cudnn,
            "ceil_mode": self._ceil_mode,
            "use_mkldnn": False,
            "exclusive": self._exclusive,
        }
        inputs = {"X": [input]}

M
minqiyang 已提交
858 859
        pool_out = self._helper.create_variable_for_type_inference(self._dtype)

M
minqiyang 已提交
860 861 862
        self._helper.append_op(
            type=self._l_type,
            inputs={"X": input},
M
minqiyang 已提交
863
            outputs={"Out": pool_out},
864
            attrs=attrs)
M
minqiyang 已提交
865
        return pool_out
M
minqiyang 已提交
866 867


S
songyouwei 已提交
868 869 870 871 872 873 874 875 876 877
class Linear(layers.Layer):
    """
    Fully-connected linear transformation layer:

    .. math::

        Out = Act({XW + b})

    where :math:`X` is the input Tensor, :math:`W` and :math:`b` are weight and bias respectively.

878
    Linear layer takes only one ``Tensor`` input.
S
songyouwei 已提交
879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937
    The Linear layer multiplies input tensor with weight matrix and
    produces an output Tensor of shape [N, *, `output_dim`],
    where N is batch size and `*` means any number of additional dimensions.
    If ``bias_attr`` is not None, a bias variable will be created and added to the output.
    Finally, if ``act`` is not None, it will be applied to the output as well.

    Parameters:
        input_dim(int): The number of input units in this layer.
        output_dim(int): The number of output units in this layer.
        param_attr(ParamAttr or list of ParamAttr, optional): The parameter attribute for learnable
            weights(Parameter) of this layer. Default: None.
        bias_attr(ParamAttr or list of ParamAttr, optional): The attribute for the bias
            of this layer. If it is set to False, no bias will be added to the output units.
            If it is set to None, the bias is initialized zero. Default: None.
        act(str, optional): Activation to be applied to the output of this layer. Default: None.
        dtype(str, optional): Dtype used for weight, it can be "float32" or "float64". Default: "float32".

    Attributes:
        **weight** (Parameter): the learnable weights of this layer.

        **bias** (Parameter or None): the learnable bias of this layer.

    Returns:
        None

    Examples:
        .. code-block:: python

          from paddle.fluid.dygraph.base import to_variable
          import paddle.fluid as fluid
          from paddle.fluid.dygraph import Linear
          import numpy as np

          data = np.random.uniform(-1, 1, [30, 10, 32]).astype('float32')
          with fluid.dygraph.guard():
              linear = Linear(32, 64)
              data = to_variable(data)
              res = linear(data)  # [30, 10, 64]
    """

    def __init__(self,
                 input_dim,
                 output_dim,
                 param_attr=None,
                 bias_attr=None,
                 act=None,
                 dtype="float32"):
        super(Linear, self).__init__()
        self._act = act
        self._dtype = dtype
        self.weight = self.create_parameter(
            shape=[input_dim, output_dim],
            attr=param_attr,
            dtype=dtype,
            is_bias=False)
        self.bias = self.create_parameter(
            shape=[output_dim], attr=bias_attr, dtype=dtype, is_bias=True)

    def forward(self, input):
938
        if in_dygraph_mode():
939 940
            pre_bias = core.ops.mul(input, self.weight, 'x_num_col_dims',
                                    len(input.shape) - 1, 'y_num_col_dims', 1)
941 942 943 944 945 946

            pre_act = dygraph_utils._append_bias_in_dygraph(
                pre_bias, self.bias, axis=len(input.shape) - 1)

            return dygraph_utils._append_activation_in_dygraph(pre_act,
                                                               self._act)
947 948 949 950

        check_variable_and_dtype(input, 'input',
                                 ['float16', 'float32', 'float64'], "Linear")

951 952 953 954 955
        attrs = {
            "x_num_col_dims": len(input.shape) - 1,
            "y_num_col_dims": 1,
        }
        inputs = {"X": [input], "Y": [self.weight]}
956

S
songyouwei 已提交
957 958
        tmp = self._helper.create_variable_for_type_inference(self._dtype)
        self._helper.append_op(
S
songyouwei 已提交
959
            type="mul", inputs=inputs, outputs={"Out": tmp}, attrs=attrs)
S
songyouwei 已提交
960 961 962 963 964 965 966 967 968 969 970 971 972 973
        if self.bias:
            pre_activation = self._helper.create_variable_for_type_inference(
                dtype=self._dtype)
            self._helper.append_op(
                type='elementwise_add',
                inputs={'X': [tmp],
                        'Y': [self.bias]},
                outputs={'Out': [pre_activation]},
                attrs={'axis': len(input.shape) - 1})
        else:
            pre_activation = tmp
        return self._helper.append_activation(pre_activation, act=self._act)


974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099
class InstanceNorm(layers.Layer):
    """
    This interface is used to construct a callable object of the ``InstanceNorm`` class.
    For more details, refer to code examples.

    Can be used as a normalizer function for convolution or fully_connected operations.
    The required data format for this layer is one of the following:

    DataLayout: NCHW `[batch, in_channels, in_height, in_width]`

    Refer to `Instance Normalization: The Missing Ingredient for Fast Stylization <https://arxiv.org/pdf/1607.08022.pdf>`_
    for more details.

    :math:`input` is the input features over a mini-batch.

    ..  math::
        
        \\mu_{\\beta} &\\gets \\frac{1}{HW} \\sum_{i=1}^{HW} x_i \\qquad &//\\
        \\ mean\ of\ one\  feature\ map\ in\ mini-batch \\\\
        \\sigma_{\\beta}^{2} &\\gets \\frac{1}{HW} \\sum_{i=1}^{HW}(x_i - \\
        \\mu_{\\beta})^2 \\qquad &//\ variance\ of\ one\ feature\ map\ in\ mini-batch \\\\
        \\hat{x_i} &\\gets \\frac{x_i - \\mu_\\beta} {\\sqrt{\\
        \\sigma_{\\beta}^{2} + \\epsilon}} \\qquad &//\ normalize \\\\
        y_i &\\gets \\gamma \\hat{x_i} + \\beta \\qquad &//\ scale\ and\ shift

    Note:
        `H` means height of feature map, `W` means width of feature map.

    Parameters:
        num_channels(int): Indicate the number of channels of the input ``Tensor``.
        epsilon(float, optional): A value added to the denominator for
            numerical stability. Default is 1e-5.
        param_attr(ParamAttr, optional): The parameter attribute for Parameter `scale`
             of instance_norm. If it is set to None or one attribute of ParamAttr, instance_norm
	     will create ParamAttr as param_attr, the name of scale can be set in ParamAttr.
	     If the Initializer of the param_attr is not set, the parameter is initialized 
	     one. Default: None.
        bias_attr(ParamAttr, optional): The parameter attribute for the bias of instance_norm.
             If it is set to None or one attribute of ParamAttr, instance_norm
	     will create ParamAttr as bias_attr, the name of bias can be set in ParamAttr. 
	     If the Initializer of the bias_attr is not set, the bias is initialized zero. 
	     Default: None.
        dtype(str, optional): Indicate the data type of the input ``Tensor``,
             which can be float32 or float64. Default: float32.

    Returns:
        None.

    Examples:

        .. code-block:: python

          import paddle.fluid as fluid
          from paddle.fluid.dygraph.base import to_variable
          import numpy as np
          import paddle

          # x's shape is [1, 3, 1, 2] 
          x = np.array([[[[1.0, 8.0]], [[10.0, 5.0]], [[4.0, 6.0]]]]).astype('float32')
          with fluid.dygraph.guard():
              x = to_variable(x)
              instanceNorm = paddle.nn.InstanceNorm(3)
              ret = instanceNorm(x)
              # ret's shape is [1, 3, 1, 2]; value is [-1 1 0.999999 -0.999999 -0.999995 0.999995] 
              print(ret)

    """

    def __init__(self,
                 num_channels,
                 epsilon=1e-5,
                 param_attr=None,
                 bias_attr=None,
                 dtype='float32'):
        super(InstanceNorm, self).__init__()
        assert bias_attr is not False, "bias_attr should not be False in InstanceNorm."

        self._epsilon = epsilon
        self._param_attr = param_attr
        self._bias_attr = bias_attr
        self._dtype = dtype

        self.scale = self.create_parameter(
            attr=self._param_attr,
            shape=[num_channels],
            dtype=self._dtype,
            default_initializer=Constant(1.0),
            is_bias=False)
        self.bias = self.create_parameter(
            attr=self._bias_attr,
            shape=[num_channels],
            dtype=self._dtype,
            default_initializer=Constant(0.0),
            is_bias=True)

    def forward(self, input):
        if in_dygraph_mode():
            out, _, _ = core.ops.instance_norm(input, self.scale, self.bias,
                                               'epsilon', self._epsilon)
            return out

        check_variable_and_dtype(input, 'input', ['float32', 'float64'],
                                 "InstanceNorm")

        attrs = {"epsilon": self._epsilon}

        inputs = {"X": [input], "Scale": [self.scale], "Bias": [self.bias]}

        saved_mean = self._helper.create_variable_for_type_inference(
            dtype=self._dtype, stop_gradient=True)
        saved_variance = self._helper.create_variable_for_type_inference(
            dtype=self._dtype, stop_gradient=True)
        instance_norm_out = self._helper.create_variable_for_type_inference(
            self._dtype)

        outputs = {
            "Y": [instance_norm_out],
            "SavedMean": [saved_mean],
            "SavedVariance": [saved_variance]
        }

        self._helper.append_op(
            type="instance_norm", inputs=inputs, outputs=outputs, attrs=attrs)
        return instance_norm_out


M
minqiyang 已提交
1100
class BatchNorm(layers.Layer):
1101
    """
1102 1103 1104 1105 1106
    This interface is used to construct a callable object of the ``BatchNorm`` class.
    For more details, refer to code examples.
    It implements the function of the Batch Normalization Layer and can be used 
    as a normalizer function for conv2d and fully connected operations.
    The data is normalized by the mean and variance of the channel based on the current batch data.
1107 1108 1109 1110
    Refer to `Batch Normalization: Accelerating Deep Network Training by Reducing
    Internal Covariate Shift <https://arxiv.org/pdf/1502.03167.pdf>`_
    for more details.

1111 1112 1113
    When use_global_stats = False, the :math:`\\mu_{\\beta}` 
    and :math:`\\sigma_{\\beta}^{2}` are the statistics of one mini-batch.
    Calculated as follows:
1114 1115 1116 1117 1118 1119 1120 1121

    ..  math::

        \\mu_{\\beta} &\\gets \\frac{1}{m} \\sum_{i=1}^{m} x_i \\qquad &//\\
        \ mini-batch\ mean \\\\
        \\sigma_{\\beta}^{2} &\\gets \\frac{1}{m} \\sum_{i=1}^{m}(x_i - \\
        \\mu_{\\beta})^2 \\qquad &//\ mini-batch\ variance \\\\

1122 1123
    - :math:`x` : mini-batch data
    - :math:`m` : the size of the mini-batch data
1124 1125 1126

    When use_global_stats = True, the :math:`\\mu_{\\beta}`
    and :math:`\\sigma_{\\beta}^{2}` are not the statistics of one mini-batch.
1127 1128 1129 1130 1131 1132
    They are global or running statistics (moving_mean and moving_variance). It usually got from the
    pre-trained model. Calculated as follows:

    .. math::
        moving\_mean = moving\_mean * momentum + \mu_{\beta} * (1. - momentum) \quad &// global mean \\
        moving\_variance = moving\_variance * momentum + \sigma_{\beta}^{2} * (1. - momentum) \quad &// global variance \\
1133

1134 1135
    The normalization function formula is as follows:
 
1136 1137 1138
    ..  math::

        \\hat{x_i} &\\gets \\frac{x_i - \\mu_\\beta} {\\sqrt{\\
1139 1140 1141 1142 1143 1144
        \\sigma_{\\beta}^{2} + \\epsilon}} \\qquad &//\ normalize \\\\
        y_i &\\gets \\gamma \\hat{x_i} + \\beta \\qquad &//\ scale\ and\ shift

    - :math:`\\epsilon` : add a smaller value to the variance to prevent division by zero
    - :math:`\\gamma` : trainable proportional parameter
    - :math:`\\beta` : trainable deviation parameter
1145

1146
    Parameters:
1147
        num_channels(int): Indicate the number of channels of the input ``Tensor``.
T
tianshuo78520a 已提交
1148
        act(str, optional): Activation to be applied to the output of batch normalization. Default: None.
1149 1150 1151
        is_test (bool, optional): A flag indicating whether it is in test phrase or not.
             This flag only has effect on static graph mode. For dygraph mode, please use ``eval()``.
             Default: False.
1152 1153 1154
        momentum(float, optional): The value used for the moving_mean and moving_var computation. Default: 0.9.
        epsilon(float, optional): The small value added to the variance to prevent division by zero. Default: 1e-5.
        param_attr(ParamAttr, optional): The parameter attribute for Parameter `scale`
1155 1156 1157
             of batch_norm. If it is set to None or one attribute of ParamAttr, batch_norm
             will create ParamAttr as param_attr. If the Initializer of the param_attr
             is not set, the parameter is initialized with Xavier. Default: None.
1158
        bias_attr(ParamAttr, optional): The parameter attribute for the bias of batch_norm.
1159 1160 1161
             If it is set to None or one attribute of ParamAttr, batch_norm
             will create ParamAttr as bias_attr. If the Initializer of the bias_attr
             is not set, the bias is initialized zero. Default: None.
1162 1163 1164 1165 1166 1167
        dtype(str, optional): Indicate the data type of the input ``Tensor``,
             which can be float32 or float64. Default: float32.
        data_layout(str, optional): Specify the input data format, the data format can be "NCHW" or "NHWC". Default: NCHW.
        in_place(bool, optional): Make the input and output of batch norm reuse memory. Default: False.
        moving_mean_name(str, optional): The name of moving_mean which store the global Mean. Default: None.
        moving_variance_name(str, optional): The name of the moving_variance which store the global Variance. Default: None.
1168 1169
        do_model_average_for_mean_and_var(bool, optional): Whether parameter mean and variance should do model
            average when model average is enabled. Default: True.
1170
        use_global_stats(bool, optional): Whether to use global mean and
1171 1172 1173
            variance. In inference or test mode, set use_global_stats to true
            or is_test to true, and the behavior is equivalent.
            In train mode, when setting use_global_stats True, the global mean
1174 1175 1176 1177
            and variance are also used during train period. Default: False.
        trainable_statistics(bool, optional): Whether to calculate mean and var in eval mode. In eval mode, when
            setting trainable_statistics True, mean and variance will be calculated by current batch statistics.
            Default: False.
1178 1179

    Returns:
1180
        None
1181 1182 1183

    Examples:
        .. code-block:: python
L
lujun 已提交
1184 1185

          import paddle.fluid as fluid
1186 1187
          from paddle.fluid.dygraph.base import to_variable
          import numpy as np
L
lujun 已提交
1188

1189
          x = np.random.random(size=(3, 10, 3, 7)).astype('float32')
L
lujun 已提交
1190
          with fluid.dygraph.guard():
1191
              x = to_variable(x)
1192
              batch_norm = fluid.BatchNorm(10)
1193
              hidden1 = batch_norm(x)
1194 1195
    """

M
minqiyang 已提交
1196 1197 1198 1199 1200 1201 1202 1203
    def __init__(self,
                 num_channels,
                 act=None,
                 is_test=False,
                 momentum=0.9,
                 epsilon=1e-05,
                 param_attr=None,
                 bias_attr=None,
1204
                 dtype='float32',
M
minqiyang 已提交
1205 1206 1207 1208
                 data_layout='NCHW',
                 in_place=False,
                 moving_mean_name=None,
                 moving_variance_name=None,
1209
                 do_model_average_for_mean_and_var=True,
1210 1211
                 use_global_stats=False,
                 trainable_statistics=False):
1212
        super(BatchNorm, self).__init__()
1213
        self._param_attr = param_attr
1214
        self._bias_attr = bias_attr
1215
        self._act = act
M
minqiyang 已提交
1216 1217 1218

        assert bias_attr is not False, "bias_attr should not be False in batch_norm."

1219 1220
        if dtype == "float16":
            self._dtype = "float32"
M
minqiyang 已提交
1221 1222 1223 1224 1225 1226
        else:
            self._dtype = dtype

        param_shape = [num_channels]

        # create parameter
1227
        self.weight = self.create_parameter(
1228
            attr=self._param_attr,
M
minqiyang 已提交
1229 1230 1231
            shape=param_shape,
            dtype=self._dtype,
            default_initializer=Constant(1.0))
1232
        self.weight.stop_gradient = use_global_stats and self._param_attr.learning_rate == 0.
M
minqiyang 已提交
1233

1234
        self.bias = self.create_parameter(
1235
            attr=self._bias_attr,
M
minqiyang 已提交
1236 1237 1238
            shape=param_shape,
            dtype=self._dtype,
            is_bias=True)
1239
        self.bias.stop_gradient = use_global_stats and self._param_attr.learning_rate == 0.
M
minqiyang 已提交
1240

1241
        self._mean = self.create_parameter(
M
minqiyang 已提交
1242 1243 1244 1245 1246 1247 1248
            attr=ParamAttr(
                name=moving_mean_name,
                initializer=Constant(0.0),
                trainable=False,
                do_model_average=do_model_average_for_mean_and_var),
            shape=param_shape,
            dtype=self._dtype)
1249
        self._mean.stop_gradient = True
M
minqiyang 已提交
1250

1251
        self._variance = self.create_parameter(
M
minqiyang 已提交
1252 1253 1254 1255 1256 1257 1258
            attr=ParamAttr(
                name=moving_variance_name,
                initializer=Constant(1.0),
                trainable=False,
                do_model_average=do_model_average_for_mean_and_var),
            shape=param_shape,
            dtype=self._dtype)
1259
        self._variance.stop_gradient = True
M
minqiyang 已提交
1260 1261

        self._in_place = in_place
1262
        self._data_layout = data_layout
M
minqiyang 已提交
1263 1264 1265
        self._momentum = momentum
        self._epsilon = epsilon
        self._is_test = is_test
1266
        self._fuse_with_relu = False
M
minqiyang 已提交
1267
        self._use_global_stats = use_global_stats
1268
        self._trainable_statistics = trainable_statistics
M
minqiyang 已提交
1269 1270 1271 1272 1273 1274 1275

    def forward(self, input):
        # create output
        # mean and mean_out share the same memory
        mean_out = self._mean
        # variance and variance out share the same memory
        variance_out = self._variance
1276 1277

        if in_dygraph_mode():
1278
            _is_test = not self.training and not self._trainable_statistics
1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289
            attrs = ("momentum", self._momentum, "epsilon", self._epsilon,
                     "is_test", _is_test, "data_layout", self._data_layout,
                     "use_mkldnn", False, "fuse_with_relu",
                     self._fuse_with_relu, "use_global_stats",
                     self._use_global_stats)
            batch_norm_out, _, _, _, _ = core.ops.batch_norm(
                input, self.weight, self.bias, self._mean, self._variance,
                mean_out, variance_out, *attrs)
            return dygraph_utils._append_activation_in_dygraph(
                batch_norm_out, act=self._act)

1290 1291 1292
        check_variable_and_dtype(input, 'input',
                                 ['float16', 'float32', 'float64'], 'BatchNorm')

1293 1294 1295 1296 1297 1298 1299
        attrs = {
            "momentum": self._momentum,
            "epsilon": self._epsilon,
            "is_test": self._is_test,
            "data_layout": self._data_layout,
            "use_mkldnn": False,
            "fuse_with_relu": self._fuse_with_relu,
1300
            "use_global_stats": self._use_global_stats
1301
        }
M
minqiyang 已提交
1302

1303 1304 1305 1306 1307 1308 1309 1310
        inputs = {
            "X": [input],
            "Scale": [self.weight],
            "Bias": [self.bias],
            "Mean": [self._mean],
            "Variance": [self._variance]
        }

1311 1312 1313 1314 1315 1316
        saved_mean = self._helper.create_variable_for_type_inference(
            dtype=self._dtype, stop_gradient=True)
        saved_variance = self._helper.create_variable_for_type_inference(
            dtype=self._dtype, stop_gradient=True)
        batch_norm_out = input if self._in_place else self._helper.create_variable_for_type_inference(
            self._dtype)
1317 1318 1319 1320 1321 1322 1323 1324 1325

        outputs = {
            "Y": [batch_norm_out],
            "MeanOut": [mean_out],
            "VarianceOut": [variance_out],
            "SavedMean": [saved_mean],
            "SavedVariance": [saved_variance]
        }

M
minqiyang 已提交
1326
        self._helper.append_op(
1327
            type="batch_norm", inputs=inputs, outputs=outputs, attrs=attrs)
M
minqiyang 已提交
1328

L
lujun 已提交
1329
        # Currently, we don't support inplace in dygraph mode
1330
        return self._helper.append_activation(batch_norm_out, self._act)
1331 1332


1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441
class Dropout(layers.Layer):
    """
   This interface is used to construct a callable object of the ``Dropout`` class.
   For more details, refer to code examples.

   Drop or keep each element of input independently. Dropout is a regularization
   technique for reducing overfitting by preventing neuron co-adaption during
   training. The dropout operator randomly sets (according to the given dropout
   probability) the outputs of some units to zero, while others are remain
   unchanged.

   Dropout layer can be removed for efficiency concern.

   Parameters:
       p (float, optional): Probability of setting units to zero. Default: 0.5
       seed (int, optional): A Python integer used to create random seeds. If this
                   parameter is set to None, a random seed is used.
                   NOTE: If an integer seed is given, always the same output
                   units will be dropped. DO NOT use a fixed seed in training. Default: None.
       dropout_implementation(string, optional): ['downgrade_in_infer'(default)|'upscale_in_train']

                                       1. downgrade_in_infer(default), downgrade the outcome at inference

                                          - train: out = input * mask
                                          - inference: out = input * (1.0 - p)

                                          (mask is a tensor same shape with input, value is 0 or 1
                                          ratio of 0 is dropout_prob)
                                       2. upscale_in_train, upscale the outcome at training time

                                          - train: out = input * mask / ( 1.0 - p )
                                          - inference: out = input

                                          (mask is a tensor same shape with input, value is 0 or 1
                                          ratio of 0 is p)
       is_test (bool, optional): A flag indicating whether it is in test phrase or not.
                   This flag only has effect on static graph mode. For dygraph mode, please use ``eval()``.
                   Default: False.

   Returns:
       None

   Examples:

       .. code-block:: python

           import paddle.fluid as fluid
           from paddle.fluid.dygraph.base import to_variable
           import numpy as np

           x = np.random.random(size=(3, 10, 3, 7)).astype('float32')
           with fluid.dygraph.guard():
               x = to_variable(x)
               m = fluid.dygraph.Dropout(p=0.5)
               droped_train = m(x)
               # switch to eval mode
               m.eval()
               droped_eval = m(x)
   """

    def __init__(self,
                 p=0.5,
                 seed=None,
                 dropout_implementation="downgrade_in_infer",
                 is_test=False):
        super(Dropout, self).__init__()
        assert isinstance(p, (float, int)), "p argument should be a number"
        assert 0 <= p <= 1, "p argument should between 0 and 1"
        self._dropout_prob = p
        assert seed is None or isinstance(
            seed, int), "seed argument should be None or a integer"
        self._seed = seed
        assert dropout_implementation in (
            'downgrade_in_infer', 'upscale_in_train'
        ), "dropout_implementation argument should be 'downgrade_in_infer' or 'upscale_in_train'"
        self._dropout_implementation = dropout_implementation
        self._is_test = is_test

    def forward(self, input):
        prog = default_main_program()
        if (self._seed is None or self._seed == 0) and prog.random_seed != 0:
            self._seed = prog.random_seed
        attrs = {
            'dropout_prob': self._dropout_prob,
            'is_test': not self.training
            if in_dygraph_mode() else self._is_test,
            'fix_seed': self._seed is not None,
            'seed': self._seed if self._seed is not None else 0,
            'dropout_implementation': self._dropout_implementation,
        }

        if in_dygraph_mode():
            attrs = sum(attrs.items(), ())
            out, mask = core.ops.dropout(input, *attrs)
            return out

        out = self._helper.create_variable_for_type_inference(dtype=input.dtype)
        mask = self._helper.create_variable_for_type_inference(
            dtype=core.VarDesc.VarType.UINT8, stop_gradient=True)

        self._helper.append_op(
            type='dropout',
            inputs={'X': [input]},
            outputs={'Out': [out],
                     'Mask': [mask]},
            attrs=attrs)
        return out


1442 1443 1444 1445
class Embedding(layers.Layer):
    """
    **Embedding Layer**

Z
zhongpu 已提交
1446 1447 1448 1449 1450 1451
    This interface is used to construct a callable object of the ``Embedding`` class.
    For specific usage, refer to code examples. It implements the function of the Embedding Layer.
    This layer is used to lookup embeddings vector of ids provided by :attr:`input` .
    It automatically constructs a 2D embedding matrix based on the
    input :attr:`size` (vocab_size, emb_size) and :attr:`dtype` .

1452 1453
    The shape of output Tensor is generated by appending an emb_size dimension to the
    last dimension of the input Tensor shape.
Z
zhongpu 已提交
1454

1455
    **Note:** The id in :attr:`input` must satisfy :math:`0 =< id < size[0]` ,
Z
zhongpu 已提交
1456 1457 1458 1459 1460 1461 1462
    otherwise the program will throw an exception and exit.

    .. code-block:: text

        Case 1:

        input is a Tensor. padding_idx = -1
1463 1464
            input.data = [[1, 3], [2, 4], [4, 127]
            input.shape = [3, 2]
Z
zhongpu 已提交
1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477
        Given size = [128, 16]
        output is a Tensor:
            out.shape = [3, 2, 16]
            out.data = [[[0.129435295, 0.244512452, ..., 0.436322452],
                        [0.345421456, 0.524563927, ..., 0.144534654]],

                        [[0.345249859, 0.124939536, ..., 0.194353745],
                        [0.945345345, 0.435394634, ..., 0.435345365]],
                        
                        [[0.945345345, 0.435394634, ..., 0.435345365],
                        [0.0,         0.0,         ..., 0.0        ]]]  # padding data
        The input padding_idx is less than 0, it is automatically converted to padding_idx = -1 + 128 = 127
        It will pad all-zero data when ids is 127.
1478

1479
    Parameters:
L
lujun 已提交
1480 1481
        size(tuple|list): The shape of the look up table parameter. It should have two elements which indicate the size
            of the dictionary of embeddings and the size of each embedding vector respectively.
Z
zhongpu 已提交
1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499
        is_sparse(bool): The flag indicating whether to use sparse update. This parameter only
            affects the performance of the backwards gradient update. It is recommended to set 
            True because sparse update is faster. But some optimizer does not support sparse update,
            such as :ref:`api_fluid_optimizer_AdadeltaOptimizer` , :ref:`api_fluid_optimizer_AdamaxOptimizer` , 
            :ref:`api_fluid_optimizer_DecayedAdagradOptimizer` , :ref:`api_fluid_optimizer_FtrlOptimizer` ,
            :ref:`api_fluid_optimizer_LambOptimizer` and :ref:`api_fluid_optimizer_LarsMomentumOptimizer` .
            In these case, is_sparse must be False. Default: False.
        is_distributed(bool): Whether to store the embedding matrix in a distributed manner. Only used
            in multi-machine distributed CPU training. Default: False.
        padding_idx(int|long|None): padding_idx needs to be in the interval [-vocab_size, vocab_size). 
            If :math:`padding\_idx < 0`, the :math:`padding\_idx` will automatically be converted
            to :math:`vocab\_size + padding\_idx` . It will output all-zero padding data whenever lookup
            encounters :math:`padding\_idx` in id. And the padding data will not be updated while training.
            If set None, it makes no effect to output. Default: None.
        param_attr(ParamAttr): To specify the weight parameter property. Default: None, which means the
            default weight parameter property is used. See usage for details in :ref:`api_fluid_ParamAttr` . In addition,
            user-defined or pre-trained word vectors can be loaded with the :attr:`param_attr` parameter. 
            The local word vector needs to be transformed into numpy format, and the shape of local word
T
tianshuo78520a 已提交
1500
            vector should be consistent with :attr:`size` . Then :ref:`api_fluid_initializer_NumpyArrayInitializer`
Z
zhongpu 已提交
1501 1502 1503
            is used to load custom or pre-trained word vectors. See code example 2 for details.
        dtype(np.dtype|core.VarDesc.VarType|str): It refers to the data type of output Tensor.
            It must be "float32" or "float64". Default: "float32".
1504

Z
zhongpu 已提交
1505 1506
    Attribute:
        **weight** (Parameter): the learnable weights of this layer.
1507

1508
    Returns:
Z
zhongpu 已提交
1509
        Variable: Embedding Tensor or LoDTensor mapped by input. The data type is the same as :attr:`dtype` .
1510 1511

    Examples:
1512

1513 1514
        .. code-block:: python

L
lujun 已提交
1515 1516 1517 1518
          import paddle.fluid as fluid
          import paddle.fluid.dygraph.base as base
          import numpy as np

Z
zhongpu 已提交
1519
          # example 1
1520 1521
          inp_word = np.array([[2, 3, 5], [4, 2, 1]]).astype('int64')
          inp_word.shape  # [2, 3]
1522 1523
          dict_size = 20
          with fluid.dygraph.guard():
L
lujun 已提交
1524
              emb = fluid.dygraph.Embedding(
1525 1526 1527
                  size=[dict_size, 32],
                  param_attr='emb.w',
                  is_sparse=False)
L
lujun 已提交
1528
              static_rlt3 = emb(base.to_variable(inp_word))
1529
              static_rlt3.shape  # [2, 3, 32]
Z
zhongpu 已提交
1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543

          # example 2: load custom or pre-trained word vectors
          weight_data = np.random.random(size=(128, 100))  # word vectors with numpy format
          w_param_attrs = fluid.ParamAttr(
              name="emb_weight",
              learning_rate=0.5,
              initializer=fluid.initializer.NumpyArrayInitializer(weight_data),
              trainable=True)
          with fluid.dygraph.guard():
              emb = fluid.dygraph.Embedding(
                  size=[128, 100],
                  param_attr= w_param_attrs,
                  is_sparse=False)
              static_rlt3 = emb(base.to_variable(inp_word))          
1544 1545
    """

1546 1547 1548 1549 1550 1551 1552
    def __init__(self,
                 size,
                 is_sparse=False,
                 is_distributed=False,
                 padding_idx=None,
                 param_attr=None,
                 dtype='float32'):
1553
        super(Embedding, self).__init__()
1554 1555 1556 1557
        self._size = size
        self._is_sparse = is_sparse
        self._is_distributed = is_distributed
        self._padding_idx = -1 if padding_idx is None else padding_idx if padding_idx >= 0 else (
J
JiabinYang 已提交
1558
            size[0] + padding_idx)
1559 1560 1561

        self._param_attr = param_attr
        self._dtype = dtype
J
JiabinYang 已提交
1562
        self._remote_prefetch = self._is_sparse and (not self._is_distributed)
1563 1564 1565
        if self._remote_prefetch:
            assert self._is_sparse is True and self._is_distributed is False

1566
        self.weight = self.create_parameter(
1567 1568 1569 1570 1571 1572
            attr=self._param_attr,
            shape=self._size,
            dtype=self._dtype,
            is_bias=False)

    def forward(self, input):
1573 1574 1575 1576 1577 1578
        if in_dygraph_mode():
            return core.ops.lookup_table_v2(
                self.weight, input, 'is_sparse', self._is_sparse,
                'is_distributed', self._is_distributed, 'remote_prefetch',
                self._remote_prefetch, 'padding_idx', self._padding_idx)

1579 1580 1581 1582 1583 1584
        attrs = {
            'is_sparse': self._is_sparse,
            'is_distributed': self._is_distributed,
            'remote_prefetch': self._remote_prefetch,
            'padding_idx': self._padding_idx
        }
1585

1586 1587
        out = self._helper.create_variable_for_type_inference(self._dtype)
        self._helper.append_op(
1588
            type='lookup_table_v2',
1589
            inputs={'Ids': input,
1590
                    'W': self.weight},
1591
            outputs={'Out': out},
1592
            attrs=attrs)
1593 1594

        return out
M
minqiyang 已提交
1595 1596


1597
class LayerNorm(layers.Layer):
1598
    """
1599 1600 1601
    This interface is used to construct a callable object of the ``LayerNorm`` class.
    For more details, refer to code examples.
    It implements the function of the Layer Normalization Layer and can be applied to mini-batch input data.
1602
    Refer to `Layer Normalization <https://arxiv.org/pdf/1607.06450v1.pdf>`_
1603

1604
    The formula is as follows:
1605

1606
    ..  math::
1607

1608
        \\mu & = \\frac{1}{H}\\sum_{i=1}^{H} x_i
1609

1610
        \\sigma & = \\sqrt{\\frac{1}{H}\sum_{i=1}^{H}{(x_i - \\mu)^2} + \\epsilon}
1611

1612
        y & = f(\\frac{g}{\\sigma}(x - \\mu) + b)
1613

1614 1615 1616 1617 1618
    - :math:`x`: the vector representation of the summed inputs to the neurons in that layer.
    - :math:`H`: the number of hidden units in a layers
    - :math:`\\epsilon`: the small value added to the variance to prevent division by zero.
    - :math:`g`: the trainable scale parameter.
    - :math:`b`: the trainable bias parameter.
1619

1620
    Parameters:
1621 1622 1623 1624
        normalized_shape(int or list or tuple): Input shape from an expected input of
            size :math:`[*, normalized_shape[0], normalized_shape[1], ..., normalized_shape[-1]]`.
            If it is a single integer, this module will normalize over the last dimension
            which is expected to be of that specific size.
1625
        scale(bool, optional): Whether to learn the adaptive gain :math:`g` after
L
lujun 已提交
1626
            normalization. Default: True.
1627
        shift(bool, optional): Whether to learn the adaptive bias :math:`b` after
L
lujun 已提交
1628
            normalization. Default: True.
1629
        epsilon(float, optional): The small value added to the variance to prevent
L
lujun 已提交
1630
            division by zero. Default: 1e-05.
1631
        param_attr(ParamAttr, optional): The parameter attribute for the learnable
1632 1633 1634
            gain :math:`g`. If :attr:`scale` is False, :attr:`param_attr` is
            omitted. If :attr:`scale` is True and :attr:`param_attr` is None,
            a default :code:`ParamAttr` would be added as scale. The
L
lujun 已提交
1635
            :attr:`param_attr` is initialized as 1 if it is added. Default: None.
1636
        bias_attr(ParamAttr, optional): The parameter attribute for the learnable
1637 1638 1639
            bias :math:`b`. If :attr:`shift` is False, :attr:`bias_attr` is
            omitted. If :attr:`shift` is True and :attr:`param_attr` is None,
            a default :code:`ParamAttr` would be added as bias. The
L
lujun 已提交
1640
            :attr:`bias_attr` is initialized as 0 if it is added. Default: None.
T
tianshuo78520a 已提交
1641
        act(str, optional): Activation to be applied to the output of layer normalization.
L
lujun 已提交
1642
                  Default: None.
1643 1644
        dtype (str, optional): Data type, it can be "float32" or "float64". Default: "float32".

1645
    Returns:
1646
        None
1647

1648
    Examples:
1649

1650 1651 1652
        .. code-block:: python

          import paddle.fluid as fluid
1653
          from paddle.fluid.dygraph.base import to_variable
1654 1655
          import numpy

1656
          x = numpy.random.random((3, 32, 32)).astype('float32')
1657
          with fluid.dygraph.guard():
1658
              x = to_variable(x)
1659
              layerNorm = fluid.LayerNorm([32, 32])
1660
              ret = layerNorm(x)
1661

1662
    """
1663

1664
    def __init__(self,
1665
                 normalized_shape,
1666 1667 1668 1669 1670
                 scale=True,
                 shift=True,
                 epsilon=1e-05,
                 param_attr=None,
                 bias_attr=None,
1671 1672 1673 1674 1675
                 act=None,
                 dtype='float32'):
        super(LayerNorm, self).__init__()
        if isinstance(normalized_shape, numbers.Integral):
            normalized_shape = [normalized_shape]
H
hong 已提交
1676

1677
        self._normalized_shape = list(normalized_shape)
1678 1679 1680 1681 1682 1683
        self._scale = scale
        self._shift = shift
        self._epsilon = epsilon
        self._param_attr = param_attr
        self._bias_attr = bias_attr
        self._act = act
1684 1685
        self._dtype = dtype
        param_shape = [np.prod(self._normalized_shape)]
1686
        if self._scale:
1687
            self.weight = self.create_parameter(
1688 1689 1690 1691
                attr=self._param_attr,
                shape=param_shape,
                dtype=self._dtype,
                default_initializer=Constant(1.0))
1692 1693
        else:
            if self._param_attr:
T
tianshuo78520a 已提交
1694
                logging.warn("param_attr are only available with scale is True")
1695
            self.weight = None
1696

1697 1698
        if self._shift:
            assert self._bias_attr is not False
1699
            self.bias = self.create_parameter(
1700 1701 1702 1703
                attr=self._bias_attr,
                shape=param_shape,
                dtype=self._dtype,
                is_bias=True)
1704 1705
        else:
            if self._bias_attr:
T
tianshuo78520a 已提交
1706
                logging.warn("bias_attr are only available with shift is True")
1707
            self.bias = None
1708 1709

    def forward(self, input):
1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720
        input_shape = list(input.shape)
        input_ndim = len(input_shape)
        normalized_ndim = len(self._normalized_shape)
        self._begin_norm_axis = input_ndim - normalized_ndim
        if input_ndim < normalized_ndim or input_shape[
                self._begin_norm_axis:] != self._normalized_shape:
            str_normalized_shape = str(self._normalized_shape)
            raise ValueError(
                'Given normalized_shape is ' + str_normalized_shape +
                ', expected input with shape [*, ' + str_normalized_shape[
                    1:] + ', but got input shape ' + str(input_shape))
1721 1722 1723 1724 1725 1726 1727 1728

        if in_dygraph_mode():
            pre_act, _, _ = core.ops.layer_norm(
                input, self.weight, self.bias, 'epsilon', self._epsilon,
                'begin_norm_axis', self._begin_norm_axis)
            return dygraph_utils._append_activation_in_dygraph(
                pre_act, act=self._act)

1729 1730 1731
        check_variable_and_dtype(input, 'input', ['float32', 'float64'],
                                 'LayerNorm')

1732
        inputs = dict()
1733
        inputs['X'] = [input]
1734
        if self._scale:
1735
            inputs['Scale'] = [self.weight]
1736
        if self._shift:
1737 1738 1739 1740 1741 1742
            inputs['Bias'] = [self.bias]
        attrs = {
            "epsilon": self._epsilon,
            "begin_norm_axis": self._begin_norm_axis
        }

1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763
        # create output
        mean_out = self._helper.create_variable_for_type_inference(
            dtype=self._dtype, stop_gradient=True)
        variance_out = self._helper.create_variable_for_type_inference(
            dtype=self._dtype, stop_gradient=True)
        layer_norm_out = self._helper.create_variable_for_type_inference(
            self._dtype)

        self._helper.append_op(
            type="layer_norm",
            inputs=inputs,
            outputs={
                "Y": layer_norm_out,
                "Mean": mean_out,
                "Variance": variance_out,
            },
            attrs={
                "epsilon": self._epsilon,
                "begin_norm_axis": self._begin_norm_axis
            })

1764
        return self._helper.append_activation(layer_norm_out, act=self._act)
1765 1766


M
minqiyang 已提交
1767 1768 1769
class GRUUnit(layers.Layer):
    """
    **GRU unit layer**
D
DuYao 已提交
1770 1771 1772 1773 1774
    
    It creates a callable object from GRUUnit class.
    If origin_mode is True, then the equation of a gru step is from paper
    `Learning Phrase Representations using RNN Encoder-Decoder for Statistical 
    Machine Translation <https://arxiv.org/pdf/1406.1078.pdf>`_
M
minqiyang 已提交
1775 1776 1777 1778 1779 1780 1781 1782 1783 1784

        .. math::
            u_t & = actGate(xu_{t} + W_u h_{t-1} + b_u)

            r_t & = actGate(xr_{t} + W_r h_{t-1} + b_r)

            m_t & = actNode(xm_t + W_c dot(r_t, h_{t-1}) + b_m)

            h_t & = dot(u_t, h_{t-1}) + dot((1-u_t), m_t)

D
DuYao 已提交
1785
    If origin_mode is False, then the equation of a gru step is from paper
M
minqiyang 已提交
1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810
    `Empirical Evaluation of Gated Recurrent Neural Networks on Sequence
    Modeling <https://arxiv.org/pdf/1412.3555.pdf>`_

        .. math::
            u_t & = actGate(xu_{t} + W_u h_{t-1} + b_u)

            r_t & = actGate(xr_{t} + W_r h_{t-1} + b_r)

            m_t & = actNode(xm_t + W_c dot(r_t, h_{t-1}) + b_m)

            h_t & = dot((1-u_t), h_{t-1}) + dot(u_t, m_t)


    The inputs of gru unit includes :math:`z_t`, :math:`h_{t-1}`. In terms
    of the equation above, the :math:`z_t` is split into 3 parts -
    :math:`xu_t`, :math:`xr_t` and :math:`xm_t`. This means that in order to
    implement a full GRU unit operator for an input, a fully
    connected layer has to be applied, such that :math:`z_t = W_{fc}x_t`.

    The terms :math:`u_t` and :math:`r_t` represent the update and reset gates
    of the GRU cell. Unlike LSTM, GRU has one lesser gate. However, there is
    an intermediate candidate hidden output, which is denoted by :math:`m_t`.
    This layer has three outputs :math:`h_t`, :math:`dot(r_t, h_{t-1})`
    and concatenation of :math:`u_t`, :math:`r_t` and :math:`m_t`.

1811
    Parameters:
L
lujun 已提交
1812
        size (int): The input dimension value.
D
DuYao 已提交
1813 1814 1815 1816 1817 1818 1819 1820 1821
        param_attr(ParamAttr, optional): The parameter attribute for the learnable
            hidden-hidden weight matrix. 
            
            **Note**:
    
                1. The shape of the weight matrix is :math:`[T, 3*D]`, where D is the hidden size.
                2. All elements in the weight matrix can be divided into two parts. The first 
                   part are weights of the update gate and reset gate with shape :math:`[D, 2*D]`, 
                   and the second part are weights for candidate hidden state with shape :math:`[D, D]`.
M
minqiyang 已提交
1822 1823 1824 1825


            If it is set to None or one attribute of ParamAttr, gru_unit will
            create ParamAttr as param_attr. If the Initializer of the param_attr
D
DuYao 已提交
1826 1827 1828 1829
            is not set, the parameter is initialized with Xavier. The default 
            value is None.
        bias_attr (ParamAttr|bool, optional): The parameter attribute for the bias
            of GRU.Note that the bias with :math:`[1, 3*D]` concatenates
M
minqiyang 已提交
1830 1831 1832 1833 1834
            the bias in the update gate, reset gate and candidate calculations.
            If it is set to False, no bias will be applied to the update gate,
            reset gate and candidate calculations. If it is set to None or one
            attribute of ParamAttr, gru_unit will create ParamAttr as
            bias_attr. If the Initializer of the bias_attr is not set, the bias
D
DuYao 已提交
1835
            is initialized zero. The default value is None.
L
lujun 已提交
1836
        activation (str): The activation type for cell (actNode).
D
DuYao 已提交
1837
                             The default value is 'tanh'.
L
lujun 已提交
1838
        gate_activation (str): The activation type for gates (actGate).
D
DuYao 已提交
1839 1840 1841
                                  The default value is 'sigmoid'.
        dtype(str): The dtype of the layers. The data type can be set as
            'float32', 'float64'. The default value is 'float32'.
M
minqiyang 已提交
1842

D
DuYao 已提交
1843 1844 1845 1846
    Attribute:
        **weight** (Parameter): the learnable weights of this layer.

        **bias** (Parameter): the learnable bias of this layer.
1847

M
minqiyang 已提交
1848
    Returns:
D
DuYao 已提交
1849 1850 1851 1852
        tuple: The hidden value, reset-hidden value and gate values. The hidden value
        is a 2-D tensor with shape  :math:`[T, D]` . The reset-hidden value is a
        2-D tensor with shape  :math:`[T, D]` . The gate value is a 2-D tensor with 
        shape  :math:`[T, 3*D]`.
L
lujun 已提交
1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865

    Examples:

        .. code-block:: python

          import paddle.fluid as fluid
          import paddle.fluid.dygraph.base as base
          import numpy

          lod = [[2, 4, 3]]
          D = 5
          T = sum(lod[0])

D
DuYao 已提交
1866
          input = numpy.random.rand(T, 3 * D).astype('float32')
L
lujun 已提交
1867 1868 1869
          hidden_input = numpy.random.rand(T, D).astype('float32')
          with fluid.dygraph.guard():
              x = numpy.random.random((3, 32, 32)).astype('float32')
1870
              gru = fluid.dygraph.GRUUnit(size=D * 3)
L
lujun 已提交
1871 1872 1873
              dy_ret = gru(
                base.to_variable(input), base.to_variable(hidden_input))

M
minqiyang 已提交
1874 1875 1876 1877 1878 1879 1880 1881 1882 1883
    """

    def __init__(self,
                 size,
                 param_attr=None,
                 bias_attr=None,
                 activation='tanh',
                 gate_activation='sigmoid',
                 origin_mode=False,
                 dtype='float32'):
1884
        super(GRUUnit, self).__init__()
1885
        self._bias_attr = bias_attr
M
minqiyang 已提交
1886 1887 1888 1889 1890
        activation_dict = dict(
            identity=0,
            sigmoid=1,
            tanh=2,
            relu=3, )
H
Hongyu Liu 已提交
1891 1892
        self.activation = activation_dict[activation]
        self.gate_activation = activation_dict[gate_activation]
M
minqiyang 已提交
1893

M
minqiyang 已提交
1894
        self._dtype = dtype
M
minqiyang 已提交
1895 1896
        size = size // 3
        # create weight
1897
        self.weight = self.create_parameter(
M
minqiyang 已提交
1898
            attr=param_attr, shape=[size, 3 * size], dtype=dtype)
M
minqiyang 已提交
1899 1900

        # create bias
M
minqiyang 已提交
1901
        bias_size = [1, 3 * size]
1902
        self._bias_size = bias_size
1903
        self.bias = self.create_parameter(
M
minqiyang 已提交
1904
            attr=bias_attr, shape=bias_size, dtype=dtype, is_bias=True)
M
minqiyang 已提交
1905

M
minqiyang 已提交
1906
    def forward(self, input, hidden):
1907 1908 1909 1910 1911 1912
        if in_dygraph_mode():
            gate, reset_hidden_pre, updated_hidden = core.ops.gru_unit(
                input, hidden, self.weight, self.bias, 'activation',
                self.activation, 'gate_activation', self.gate_activation)
            return updated_hidden, reset_hidden_pre, gate

1913 1914 1915 1916 1917
        inputs = {
            'Input': [input],
            'HiddenPrev': [hidden],
            'Weight': [self.weight]
        }
1918
        if self.bias is not None:
1919 1920 1921 1922 1923
            inputs['Bias'] = [self.bias]
        attrs = {
            'activation': self.activation,
            'gate_activation': self.gate_activation,
        }
M
minqiyang 已提交
1924 1925 1926 1927 1928
        gate = self._helper.create_variable_for_type_inference(self._dtype)
        reset_hidden_pre = self._helper.create_variable_for_type_inference(
            self._dtype)
        updated_hidden = self._helper.create_variable_for_type_inference(
            self._dtype)
M
minqiyang 已提交
1929 1930 1931 1932 1933 1934 1935 1936 1937
        self._helper.append_op(
            type='gru_unit',
            inputs=inputs,
            outputs={
                'Gate': gate,
                'ResetHiddenPrev': reset_hidden_pre,
                'Hidden': updated_hidden,
            },
            attrs={
H
Hongyu Liu 已提交
1938 1939
                'activation': self.activation,
                'gate_activation': self.gate_activation,
M
minqiyang 已提交
1940 1941 1942
            })

        return updated_hidden, reset_hidden_pre, gate
1943 1944 1945 1946


class NCE(layers.Layer):
    """
1947 1948 1949 1950 1951
    This interface is used to construct a callable object of the ``NCE`` class.
    For more details, refer to code examples.
    It implements the function of the ``NCE`` loss function.
    By default this function uses a uniform distribution for sampling, and it
    compute and return the noise-contrastive estimation training loss. See
1952
    `Noise-contrastive estimation: A new estimation principle for unnormalized statistical models <http://www.jmlr.org/proceedings/papers/v9/gutmann10a/gutmann10a.pdf>`_ .
1953

1954
    Parameters:
1955 1956
        num_total_classes (int): Total number of classes in all samples.
        dim (int): Dimension of input (possibly embedding dim).
1957
        param_attr (ParamAttr, optional): The parameter attribute for learnable weights(Parameter)
1958 1959 1960
             of nce. If it is set to None or one attribute of ParamAttr, nce
             will create ParamAttr as param_attr. If the Initializer of the param_attr
             is not set, the parameter is initialized with Xavier. Default: None.
1961
        bias_attr (ParamAttr or bool, optional): The attribute for the bias of nce.
1962 1963 1964 1965
             If it is set to False, no bias will be added to the output units.
             If it is set to None or one attribute of ParamAttr, nce
             will create ParamAttr as bias_attr. If the Initializer of the bias_attr
             is not set, the bias is initialized zero. Default: None.
1966
        num_neg_samples (int, optional): The number of negative classes. The default value is 10.
T
tianshuo78520a 已提交
1967
        sampler (str, optional): The sampler used to sample class from negative classes.
1968 1969
                       It can be 'uniform', 'log_uniform' or 'custom_dist'.
                       default: 'uniform'.
1970
        custom_dist (float[], optional): A float[] with size=num_total_classes.
1971
                       It is used when sampler is set to 'custom_dist'.
1972
                       custom_dist[i] is the probability of i-th class to be sampled.
L
lujun 已提交
1973
                       Default: None.
1974 1975
        seed (int, optional): The seed used in sampler. Default: 0.
        is_sparse(bool, optional): The flag indicating whether to use sparse update. If is_sparse is True, the weight@GRAD and bias@GRAD will be changed to SelectedRows. Default: False.
1976
        dtype (str, optional): Data type, it can be "float32" or "float64". Default: "float32".
1977

1978 1979
    Attribute:
        **weight** (Parameter): the learnable weights of this layer.
1980

1981 1982
        **bias** (Parameter or None): the learnable bias of this layer.
    
1983
    Returns:
1984
        None
1985 1986 1987 1988

    Examples:
        .. code-block:: python

1989 1990 1991
            import numpy as np
            import paddle.fluid as fluid

1992
            window_size = 5
1993 1994
            dict_size = 20
            label_word = int(window_size // 2) + 1
1995
            inp_word = np.array([[1], [2], [3], [4], [5]]).astype('int64')
1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016
            nid_freq_arr = np.random.dirichlet(np.ones(20) * 1000).astype('float32')

            with fluid.dygraph.guard():
                words = []
                for i in range(window_size):
                    words.append(fluid.dygraph.base.to_variable(inp_word[i]))

                emb = fluid.Embedding(
                    size=[dict_size, 32],
                    param_attr='emb.w',
                    is_sparse=False)

                embs3 = []
                for i in range(window_size):
                    if i == label_word:
                        continue

                    emb_rlt = emb(words[i])
                    embs3.append(emb_rlt)

                embs3 = fluid.layers.concat(input=embs3, axis=1)
2017
                nce = fluid.NCE(
2018
                             num_total_classes=dict_size,
2019
                             dim=embs3.shape[1],
2020 2021 2022 2023 2024 2025 2026
                             num_neg_samples=2,
                             sampler="custom_dist",
                             custom_dist=nid_freq_arr.tolist(),
                             seed=1,
                             param_attr='nce.w',
                             bias_attr='nce.b')

2027 2028
                wl = fluid.layers.unsqueeze(words[label_word], axes=[0])
                nce_loss3 = nce(embs3, wl)
2029 2030 2031 2032 2033

    """

    def __init__(self,
                 num_total_classes,
2034
                 dim,
2035
                 sample_weight=None,
2036 2037 2038 2039 2040 2041
                 param_attr=None,
                 bias_attr=None,
                 num_neg_samples=None,
                 sampler="uniform",
                 custom_dist=None,
                 seed=0,
2042 2043 2044
                 is_sparse=False,
                 dtype='float32'):
        super(NCE, self).__init__()
2045 2046 2047
        self._param_attr = param_attr
        self._bias_attr = bias_attr
        self._num_total_classes = num_total_classes
2048
        self._dtype = dtype
2049
        self._inputs = dict()
2050
        self._inputs['SampleWeight'] = sample_weight if sample_weight is not None else []
2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137
        if sampler == "uniform":
            sampler = 0
        elif sampler == "log_uniform":
            sampler = 1
        elif sampler == "custom_dist":
            assert custom_dist is not None
            # assert isinstance(custom_dist, Variable)

            custom_dist_len = len(custom_dist)
            alias_probs_ = [0] * custom_dist_len
            alias_ = [0] * custom_dist_len
            bigs = []
            littles = []
            for i in range(custom_dist_len):
                normal_prob = custom_dist[i] * custom_dist_len
                if normal_prob - 1.0 > 0:
                    bigs.append((i, normal_prob))
                elif 1.0 - normal_prob > 0:
                    littles.append((i, normal_prob))
                else:
                    alias_probs_[i] = normal_prob
                    alias_[i] = -1

            while len(bigs) and len(littles):
                big = bigs.pop(0)
                little = littles.pop(0)

                big_idx = big[0]
                big_prob = big[1]

                alias_probs_[little[0]] = little[1]
                alias_[little[0]] = big_idx
                big_left = big[1] + little[1] - 1
                if big_left - 1.0 > 0:
                    bigs.append((big_idx, big_left))
                elif 1.0 - big_left > 0:
                    littles.append((big_idx, big_left))
                else:
                    alias_probs_[big_idx] = big_left
                    alias_[big_idx] = -1

            if len(bigs):
                big = bigs.pop(0)
                alias_probs_[big[0]] = 1.0
                alias_[big[0]] = -1
            if len(littles):
                little = littles.pop(0)
                alias_probs_[little[0]] = 1.0
                alias_[little[0]] = -1

            def _init_by_numpy_array(numpy_array):
                ret = self.create_parameter(
                    attr=ParamAttr(),
                    shape=numpy_array.shape,
                    dtype=numpy_array.dtype,
                    default_initializer=NumpyArrayInitializer(numpy_array))
                ret.stop_gradient = True
                return ret

            self._inputs['CustomDistProbs'] = _init_by_numpy_array(
                np.array(custom_dist).astype('float32'))
            self._inputs['CustomDistAlias'] = _init_by_numpy_array(
                np.array(alias_).astype('int32'))
            self._inputs['CustomDistAliasProbs'] = _init_by_numpy_array(
                np.array(alias_probs_).astype('float32'))
            sampler = 2
        else:
            raise Exception("Unsupported sampler type.")

        if num_neg_samples is None:
            num_neg_samples = 10
        else:
            num_neg_samples = int(num_neg_samples)
        self._num_neg_samples = num_neg_samples
        remote_prefetch = is_sparse
        print(
            "With sparse mode, if your models has only small parameter prefetch may cause speed down"
        )
        self._attrs = {
            'num_total_classes': int(num_total_classes),
            'num_neg_samples': num_neg_samples,
            'seed': seed,
            'sampler': sampler,
            'is_sparse': is_sparse,
            'remote_prefetch': remote_prefetch
        }

2138
        self.weight = self.create_parameter(
2139 2140 2141
            attr=self._param_attr,
            shape=[self._num_total_classes, dim],
            is_bias=False,
2142
            dtype=self._dtype)
2143
        if self._bias_attr:
2144
            self.bias = self.create_parameter(
2145 2146 2147
                attr=self._bias_attr,
                shape=[self._num_total_classes, 1],
                is_bias=True,
2148
                dtype=self._dtype)
2149 2150
            self._inputs['Bias'] = self.bias
        self._inputs['Weight'] = self.weight
2151

2152
    def forward(self, input, label, sample_weight=None):
2153 2154 2155 2156
        check_variable_and_dtype(input, "input", ['float32', 'float64'], "NCE")
        check_variable_and_dtype(label, "label", ['int64'], "NCE")
        check_type(sample_weight, 'sample_weight', (Variable, type(None)),
                   'NCE')
2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184
        assert isinstance(input, Variable)
        assert isinstance(label, Variable)

        self._inputs['Input'] = input
        self._inputs['Label'] = label
        self._inputs['SampleWeight'] = sample_weight if sample_weight is not None else []

        cost = self._helper.create_variable_for_type_inference(
            dtype=input.dtype)
        sample_logits = self._helper.create_variable_for_type_inference(
            dtype=input.dtype)
        sample_labels = self._helper.create_variable_for_type_inference(
            dtype=label.dtype)

        self._helper.append_op(
            type='nce',
            inputs=self._inputs,
            outputs={
                'Cost': cost,
                'SampleLogits': sample_logits,
                'SampleLabels': sample_labels
            },
            attrs=self._attrs)
        return cost / (self._num_neg_samples + 1)


class PRelu(layers.Layer):
    """
2185 2186 2187 2188
    This interface is used to construct a callable object of the ``PRelu`` class.
    For more details, refer to code examples.
    It implements three activation methods of the ``PRelu`` activation function.

2189 2190 2191 2192 2193
    Equation:

    .. math::
        y = \max(0, x) + \\alpha * \min(0, x)

2194
    Parameters:
L
lujun 已提交
2195
        mode (str): The mode for weight sharing. It supports all, channel
2196 2197 2198
          and element. all: all elements share same weight
          channel:elements in a channel share same weight
          element:each element has a weight
S
songyouwei 已提交
2199 2200 2201
        channel (int, optional): The number of channels.
          This argument is required when mode is "channel".
          Default: None.
2202
        input_shape (list or tuple, optional): The shape of input.
S
songyouwei 已提交
2203 2204
          This argument is required when mode is "element".
          Default: None.
2205 2206
        param_attr(ParamAttr, optional): The parameter attribute for the learnable
          weight (alpha). Default: None.
2207
        dtype (str, optional): Data type, it can be "float32" or "float64". Default: "float32".
2208

2209 2210 2211
    Attribute:
        **weight** (Parameter): the learnable weights of this layer.
    
2212
    Returns:
2213
        None
2214 2215 2216 2217 2218

    Examples:

        .. code-block:: python

L
lujun 已提交
2219
          import paddle.fluid as fluid
2220
          from paddle.fluid.dygraph.base import to_variable
L
lujun 已提交
2221 2222 2223 2224
          import numpy as np

          inp_np = np.ones([5, 200, 100, 100]).astype('float32')
          with fluid.dygraph.guard():
2225
              inp_np = to_variable(inp_np)
S
songyouwei 已提交
2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236
              prelu0 = fluid.PRelu(
                 mode='all',
                 param_attr=fluid.ParamAttr(initializer=fluid.initializer.Constant(1.0)))
              dy_rlt0 = prelu0(inp_np)
              prelu1 = fluid.PRelu(
                 mode='channel',
                 channel=200,
                 param_attr=fluid.ParamAttr(initializer=fluid.initializer.Constant(1.0)))
              dy_rlt1 = prelu1(inp_np)
              prelu2 = fluid.PRelu(
                 mode='element',
2237
                 input_shape=inp_np.shape,
L
lujun 已提交
2238
                 param_attr=fluid.ParamAttr(initializer=fluid.initializer.Constant(1.0)))
S
songyouwei 已提交
2239
              dy_rlt2 = prelu2(inp_np)
L
lujun 已提交
2240

2241 2242
    """

S
songyouwei 已提交
2243 2244 2245 2246 2247
    def __init__(self,
                 mode,
                 channel=None,
                 input_shape=None,
                 param_attr=None,
2248
                 dtype='float32'):
2249 2250
        # need specify name_scope since snake-cased 'PRelu' is 'p_relu'
        super(PRelu, self).__init__(name_scope='prelu')
2251 2252
        self._mode = mode
        self._param_attr = param_attr
2253
        self._dtype = dtype
S
songyouwei 已提交
2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267
        if mode == 'all':
            self._alpha_shape = [1]
        elif mode == 'channel':
            assert isinstance(
                channel,
                int), "channel argument is required when mode is 'channel'."
            self._alpha_shape = [1, channel, 1, 1]
        elif mode == 'element':
            assert isinstance(input_shape, (
                list, tuple
            )), "input_shape argument is required when mode is 'element'."
            self._alpha_shape = [1] + list(input_shape)[1:]
        else:
            raise ValueError('mode should be one of all, channel, element.')
2268
        self.weight = self.create_parameter(
2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279
            attr=self._param_attr,
            shape=self._alpha_shape,
            dtype='float32',
            is_bias=False,
            default_initializer=Constant(1.0))

    def forward(self, input):
        out = self._helper.create_variable_for_type_inference(self._dtype)
        self._helper.append_op(
            type="prelu",
            inputs={"X": input,
2280
                    'Alpha': self.weight},
2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300
            attrs={"mode": self._mode},
            outputs={"Out": out})
        return out


class BilinearTensorProduct(layers.Layer):
    """
    **Add Bilinear Tensor Product Layer**

    This layer performs bilinear tensor product on two inputs.
    For example:

    .. math::
      out_{i} = x * W_{i} * {y^\mathrm{T}}, i=0,1,...,size-1

    In this formula:
     - :math:`x`: the first input contains M elements, shape is [batch_size, M].
     - :math:`y`: the second input contains N elements, shape is [batch_size, N].
     - :math:`W_{i}`: the i-th learned weight, shape is [M, N]
     - :math:`out_{i}`: the i-th element of out, shape is [batch_size, size].
D
DuYao 已提交
2301
     - :math:`y^\mathrm{T}`: the transpose of :math:`y`.
2302

2303
    Parameters:
2304 2305 2306 2307 2308
       input1_dim (int): The dimension of each first input.
       input2_dim (int): The dimension of each second input.
       output_dim (int): The dimension of output of this layer.
       name (str, optional): The default value is None. Normally there is no need for user
           to set this property. For more information, please refer to :ref:`api_guide_Name`. Default: None.
D
DuYao 已提交
2309 2310 2311 2312
       act (str, optional): Activation to be applied to the output of this layer. The default value is None.
       param_attr (ParamAttr, optional): The parameter attribute for the learnable w, parameters/weights of 
           this layer. The default value is None.
       bias_attr (ParamAttr, optional): The parameter attribute for the bias
2313
           of this layer. If it is set to False, no bias will be added to the output units.
D
DuYao 已提交
2314
           If it is set to None, the bias is initialized zero. The default value is None.
2315
       dtype (str, optional): Data type, it can be "float32" or "float64". Default: "float32".
2316

D
DuYao 已提交
2317 2318 2319 2320
    Attribute:
        **weight** (Parameter): the learnable weights of this layer.

        **bias** (Parameter): the learnable bias of this layer.
2321

2322 2323 2324 2325 2326 2327
    Returns:
       Variable: A 2-D Tensor of shape [batch_size, size].

    Examples:
       .. code-block:: python

2328 2329 2330 2331 2332 2333 2334
         import paddle.fluid as fluid
         import numpy

         with fluid.dygraph.guard():
             layer1 = numpy.random.random((5, 5)).astype('float32')
             layer2 = numpy.random.random((5, 4)).astype('float32')
             bilinearTensorProduct = fluid.dygraph.nn.BilinearTensorProduct(
2335
                    input1_dim=5, input2_dim=4, output_dim=1000)
2336 2337
             ret = bilinearTensorProduct(fluid.dygraph.base.to_variable(layer1),
                                fluid.dygraph.base.to_variable(layer2))
2338 2339 2340
    """

    def __init__(self,
2341 2342 2343
                 input1_dim,
                 input2_dim,
                 output_dim,
2344 2345 2346
                 name=None,
                 act=None,
                 param_attr=None,
2347 2348 2349
                 bias_attr=None,
                 dtype='float32'):
        super(BilinearTensorProduct, self).__init__()
2350 2351 2352 2353
        self._param_attr = param_attr
        self._bias_attr = bias_attr
        self._act = act
        self._name = name
2354 2355 2356
        self._input1_dim = input1_dim
        self._input2_dim = input2_dim
        self._output_dim = output_dim
2357
        self._inputs = dict()
2358
        self._dtype = dtype
2359

2360
        param_shape = [self._output_dim, self._input1_dim, self._input2_dim]
2361
        self.weight = self.create_parameter(
2362 2363 2364 2365
            attr=self._param_attr,
            shape=param_shape,
            dtype=self._dtype,
            is_bias=False)
2366
        bias_size = [1, self._output_dim]
2367
        self.bias = self.create_parameter(
2368 2369 2370 2371
            attr=self._bias_attr,
            shape=bias_size,
            dtype=self._dtype,
            is_bias=True)
2372 2373

    def forward(self, x, y):
2374
        self._inputs = {"X": x, "Y": y, "Weight": self.weight}
2375
        if self.bias is not None:
2376
            self._inputs["Bias"] = self.bias
2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390
        if self._name is not None:
            out = self._helper.create_variable(
                name=".".join([self.full_name(), self._name]),
                dtype=self._dtype,
                persistable=False)
        else:
            out = self._helper.create_variable(
                dtype=self._dtype, persistable=False)
        self._helper.append_op(
            type="bilinear_tensor_product",
            inputs=self._inputs,
            outputs={"Out": out})

        # add activation
2391
        return self._helper.append_activation(out, act=self._act)
2392 2393 2394 2395


class Conv2DTranspose(layers.Layer):
    """
2396 2397
    This interface is used to construct a callable object of the ``Conv2DTranspose`` class.
    For more details, refer to code examples.
2398
    The convolution2D transpose layer calculates the output based on the input,
2399 2400 2401
    filter, and dilations, strides, paddings. Input and output
    are in NCHW format. Where N is batch size, C is the number of feature map,
    H is the height of the feature map, and W is the width of the feature map.
2402 2403
    Filter's shape is [MCHW] , where M is the number of input feature map,
    C is the number of output feature map, H is the height of the filter,
2404 2405
    and W is the width of the filter. If the groups is greater than 1,
    C will equal the number of input feature map divided by the groups.
2406 2407 2408
    If bias attribution and activation type are provided, bias is added to
    the output of the convolution, and the corresponding activation function
    is applied to the final result.
2409 2410
    The details of convolution transpose layer, please refer to the following explanation and references
    `conv2dtranspose <http://www.matthewzeiler.com/wp-content/uploads/2017/07/cvpr2010.pdf>`_ .
2411 2412 2413 2414 2415 2416 2417 2418 2419

    For each input :math:`X`, the equation is:

    .. math::

        Out = \sigma (W \\ast X + b)

    Where:

2420 2421
    * :math:`X`: Input value, a ``Tensor`` with NCHW format.
    * :math:`W`: Filter value, a ``Tensor`` with shape [MCHW] .
2422
    * :math:`\\ast`: Convolution operation.
2423
    * :math:`b`: Bias value, a 2-D ``Tensor`` with shape [M, 1].
2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447
    * :math:`\\sigma`: Activation function.
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.

    Example:

        - Input:

          Input shape: :math:`(N, C_{in}, H_{in}, W_{in})`

          Filter shape: :math:`(C_{in}, C_{out}, H_f, W_f)`

        - Output:

          Output shape: :math:`(N, C_{out}, H_{out}, W_{out})`

        Where

        .. math::

           H^\prime_{out} &= (H_{in} - 1) * strides[0] - 2 * paddings[0] + dilations[0] * (H_f - 1) + 1 \\\\
           W^\prime_{out} &= (W_{in} - 1) * strides[1] - 2 * paddings[1] + dilations[1] * (W_f - 1) + 1 \\\\
           H_{out} &\in [ H^\prime_{out}, H^\prime_{out} + strides[0] ) \\\\
           W_{out} &\in [ W^\prime_{out}, W^\prime_{out} + strides[1] )

2448
    Parameters:
2449
        num_channels(int): The number of channels in the input image.
2450
        num_filters(int): The number of the filter. It is as same as the output
2451
            feature map.
2452 2453 2454
        filter_size(int or tuple): The filter size. If filter_size is a tuple,
            it must contain two integers, (filter_size_H, filter_size_W).
            Otherwise, the filter will be a square.
2455
        output_size(int or tuple, optional): The output image size. If output size is a
2456 2457 2458
            tuple, it must contain two integers, (image_H, image_W). None if use
            filter_size, padding, and stride to calculate output_size.
            if output_size and filter_size are specified at the same time, They
L
lujun 已提交
2459
            should follow the formula above. Default: None.
2460
        padding(int or tuple, optional): The padding size. If padding is a tuple, it must
2461
            contain two integers, (padding_H, padding_W). Otherwise, the
2462 2463
            padding_H = padding_W = padding. Default: 0.
        stride(int or tuple, optional): The stride size. If stride is a tuple, it must
2464
            contain two integers, (stride_H, stride_W). Otherwise, the
2465 2466
            stride_H = stride_W = stride. Default: 1.
        dilation(int or tuple, optional): The dilation size. If dilation is a tuple, it must
2467
            contain two integers, (dilation_H, dilation_W). Otherwise, the
2468 2469
            dilation_H = dilation_W = dilation. Default: 1.
        groups(int, optional): The groups number of the Conv2d transpose layer. Inspired by
2470 2471 2472 2473
            grouped convolution in Alex Krizhevsky's Deep CNN paper, in which
            when group=2, the first half of the filters is only connected to the
            first half of the input channels, while the second half of the
            filters is only connected to the second half of the input channels.
2474 2475
            Default: 1.
        param_attr (ParamAttr, optional): The parameter attribute for learnable weights(Parameter)
2476 2477 2478
            of conv2d_transpose. If it is set to None or one attribute of ParamAttr, conv2d_transpose
            will create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with Xavier. Default: None.
2479
        bias_attr (ParamAttr or bool, optional): The attribute for the bias of conv2d_transpose.
2480 2481 2482 2483
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, conv2d_transpose
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. Default: None.
2484
        use_cudnn(bool, optional): Use cudnn kernel or not, it is valid only when the cudnn
2485
            library is installed. Default: True.
2486
        act (str, optional): Activation type, if it is set to None, activation is not appended.
2487
            Default: None.
2488
        dtype (str, optional): Data type, it can be "float32" or "float64". Default: "float32".
2489

2490 2491
    Attribute:
        **weight** (Parameter): the learnable weights of filters of this layer.
2492

2493
        **bias** (Parameter or None): the learnable bias of this layer.
2494

2495 2496
    Returns:
        None
2497 2498 2499 2500

    Examples:
       .. code-block:: python

2501
          import paddle.fluid as fluid
2502
          import numpy as np
2503 2504

          with fluid.dygraph.guard():
2505
              data = np.random.random((3, 32, 32, 5)).astype('float32')
2506
              conv2DTranspose = fluid.dygraph.nn.Conv2DTranspose(
2507
                    num_channels=32, num_filters=2, filter_size=3)
2508 2509
              ret = conv2DTranspose(fluid.dygraph.base.to_variable(data))

2510 2511 2512
    """

    def __init__(self,
2513
                 num_channels,
2514
                 num_filters,
2515
                 filter_size,
2516 2517 2518 2519 2520 2521 2522 2523
                 output_size=None,
                 padding=0,
                 stride=1,
                 dilation=1,
                 groups=None,
                 param_attr=None,
                 bias_attr=None,
                 use_cudnn=True,
2524 2525 2526
                 act=None,
                 dtype='float32'):
        super(Conv2DTranspose, self).__init__()
2527 2528 2529
        assert param_attr is not False, "param_attr should not be False in conv2d_transpose."
        self._param_attr = param_attr
        self._bias_attr = bias_attr
2530
        self._act = act
2531
        self._groups = groups
2532
        self._num_channels = num_channels
2533 2534 2535 2536 2537 2538 2539
        self._num_filters = num_filters
        self._use_cudnn = use_cudnn
        self._padding = padding
        self._stride = stride
        self._dilation = dilation
        self._filter_size = filter_size
        self._output_size = output_size
2540
        self._dtype = dtype
2541

2542 2543 2544
        if (self._num_channels == self._groups and
                self._num_filters == self._num_channels and
                not self._use_cudnn):
2545
            self._op_type = 'depthwise_conv2d_transpose'
2546 2547
        else:
            self._op_type = 'conv2d_transpose'
2548 2549 2550 2551 2552

        self._padding = utils.convert_to_list(self._padding, 2, 'padding')
        self._stride = utils.convert_to_list(self._stride, 2, 'stride')
        self._dilation = utils.convert_to_list(self._dilation, 2, 'dilation')

2553 2554
        self._filter_size = utils.convert_to_list(
            self._filter_size, 2, 'conv2d_transpose.filter_size')
2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565

        if self._output_size is None:
            self._output_size = []
        elif isinstance(self._output_size, list) or isinstance(
                self._output_size, int):
            self._output_size = utils.convert_to_list(self._output_size, 2,
                                                      'output_size')
        else:
            raise ValueError("output_size should be list or int")
        self._padding = utils.convert_to_list(self._padding, 2, 'padding')
        self._groups = 1 if self._groups is None else self._groups
2566
        filter_shape = [self._num_channels, self._num_filters // self._groups
2567 2568
                        ] + self._filter_size

2569
        self.weight = self.create_parameter(
2570
            dtype=self._dtype, shape=filter_shape, attr=self._param_attr)
2571

2572
        self.bias = self.create_parameter(
2573 2574 2575 2576 2577
            attr=self._bias_attr,
            shape=[self._num_filters],
            dtype=self._dtype,
            is_bias=True)

2578
    def forward(self, input):
2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590
        if in_dygraph_mode():
            op = getattr(core.ops, self._op_type)
            out = op(input, self.weight, 'output_size', self._output_size,
                     'strides', self._stride, 'paddings', self._padding,
                     'dilations', self._dilation, 'groups', self._groups,
                     'use_cudnn', self._use_cudnn)
            pre_bias = out
            pre_act = dygraph_utils._append_bias_in_dygraph(pre_bias, self.bias,
                                                            1)
            return dygraph_utils._append_activation_in_dygraph(
                pre_act, act=self._act)

2591 2592 2593 2594
        check_variable_and_dtype(input, 'input',
                                 ['float16', 'float32', 'float64'],
                                 "Conv2DTranspose")

2595 2596 2597 2598 2599 2600 2601 2602 2603 2604
        inputs = {'Input': [input], 'Filter': [self.weight]}
        attrs = {
            'output_size': self._output_size,
            'strides': self._stride,
            'paddings': self._padding,
            'dilations': self._dilation,
            'groups': self._groups,
            'use_cudnn': self._use_cudnn
        }

2605 2606 2607 2608
        pre_bias = self._helper.create_variable_for_type_inference(
            dtype=input.dtype)
        self._helper.append_op(
            type=self._op_type,
2609
            inputs=inputs,
2610
            outputs={'Output': pre_bias},
2611
            attrs=attrs)
2612

2613
        if self.bias is not None:
2614 2615 2616 2617 2618
            pre_act = self._helper.create_variable_for_type_inference(
                dtype=self._dtype)
            self._helper.append_op(
                type='elementwise_add',
                inputs={'X': [pre_bias],
2619
                        'Y': [self.bias]},
2620 2621 2622 2623 2624 2625
                outputs={'Out': [pre_act]},
                attrs={'axis': 1})
        else:
            pre_act = pre_bias

        out = self._helper.append_activation(pre_act, act=self._act)
2626 2627 2628 2629 2630 2631 2632 2633 2634
        return out


class SequenceConv(layers.Layer):
    """
    This function creates the op for sequence_conv, using the inputs and
    other convolutional configurations for the filters and stride as given
    in the input parameters to the function.

2635
    Parameters:
L
lujun 已提交
2636
        name_scope(str): The name of this class.
2637
        num_filters (int): number of filters.
L
lujun 已提交
2638 2639 2640
        filter_size (int): the filter size (H and W). Default: 3.
        filter_stride (int): stride of the filter. Default: 1.
        padding (bool|None): if True, add paddings. Default: None
2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of sequence_conv.
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, sequence_conv
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. Default: None.
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
            of sequence_conv. If it is set to None or one attribute of ParamAttr, sequence_conv
            will create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with Xavier. Default: None.
        act (str): Activation type, if it is set to None, activation is not appended.
            Default: None.

2653 2654 2655 2656
    Attributes:
        weight (Parameter): the learnable weights of filters of this layer.
        bias (Parameter|None): the learnable bias of this layer.

2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669
    Returns:
        Variable: output of sequence_conv
    """

    def __init__(self,
                 name_scope,
                 num_filters,
                 filter_size=3,
                 filter_stride=1,
                 padding=None,
                 bias_attr=None,
                 param_attr=None,
                 act=None):
L
lujun 已提交
2670
        assert not in_dygraph_mode(
2671
        ), "SequenceConv is not supported by dynamic graph mode yet!"
2672 2673 2674 2675 2676 2677 2678
        super(SequenceConv, self).__init__(name_scope)
        self._num_filters = num_filters
        self._filter_size = filter_size
        self._filter_stride = filter_stride
        self._padding = padding
        self._bias_attr = bias_attr
        self._param_attr = param_attr
2679
        self._act = act
2680

2681
    def _build_once(self, input):
2682 2683
        self._dtype = self._helper.input_dtype(input)
        filter_shape = [self._filter_size * input.shape[1], self._num_filters]
2684
        self.weight = self.create_parameter(
2685
            attr=self._param_attr, shape=filter_shape, dtype=self._dtype)
2686

2687
        self.bias = self.create_parameter(
2688 2689 2690 2691 2692
            attr=self._bias_attr,
            shape=[self._num_filters],
            dtype=self._dtype,
            is_bias=True)

2693 2694 2695 2696 2697 2698
    def forward(self, input):
        pre_bias = self._helper.create_variable_for_type_inference(self._dtype)
        self._helper.append_op(
            type='sequence_conv',
            inputs={
                'X': [input],
2699
                'Filter': [self.weight],
2700 2701 2702 2703 2704 2705 2706
            },
            outputs={"Out": pre_bias},
            attrs={
                'contextStride': self._filter_stride,
                'contextStart': -int(self._filter_size // 2),
                'contextLength': self._filter_size
            })
2707

2708
        if self.bias is not None:
2709 2710 2711 2712 2713
            pre_act = self._helper.create_variable_for_type_inference(
                dtype=self._dtype)
            self._helper.append_op(
                type='elementwise_add',
                inputs={'X': [pre_bias],
2714
                        'Y': [self.bias]},
2715 2716 2717 2718 2719 2720
                outputs={'Out': [pre_act]},
                attrs={'axis': 1})
        else:
            pre_act = pre_bias

        return self._helper.append_activation(pre_act, act=self._act)
L
lujun 已提交
2721 2722 2723


class RowConv(layers.Layer):
2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741
    """
    ***Row-convolution operator***

    The row convolution is called lookahead convolution.  This operator was introduced in the following paper for DeepSpeech2:
    http://www.cs.cmu.edu/~dyogatam/papers/wang+etal.iclrworkshop2016.pdf

    The main motivation is that a bidirectional RNN, useful in DeepSpeech like speech models, learns representation for a sequence by performing a
    forward and a backward pass through the entire sequence. However, unlike
    unidirectional RNNs, bidirectional RNNs are challenging to deploy in an online
    and low-latency setting. The lookahead convolution incorporates information
    from future subsequences in a computationally efficient manner to improve
    unidirectional recurrent neural networks. The row convolution operator is
    different from the 1D sequence convolution, and is computed as follows:

    Given an input sequence X of length t and input dimension D, and a filter (W) of size context * D.

    More details about row_conv please refer to the design document https://github.com/PaddlePaddle/Paddle/issues/2228#issuecomment-303903645 .

2742
    Parameters:
L
lujun 已提交
2743
        name_scope(str): The name of this class.
2744 2745 2746
        future_context_size (int): Future context size. Please note, the shape
            of convolution kernel is [future_context_size + 1, D].
        param_attr (ParamAttr): Attributes of parameters, including
L
lujun 已提交
2747 2748
            name, initializer etc. Default: None.
        act (str): Non-linear activation to be applied to output variable. Default: None.
2749

2750 2751 2752
    Attributes:
        weight (Parameter): the learnable weights of this layer.

2753
    Returns:
L
lujun 已提交
2754 2755
        the output(Out) is a LodTensor, which supports variable time-length input sequences.
        The underlying tensor in this LodTensor is a matrix with shape T x N, i.e., the same shape as X.
2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770

    Examples:
        .. code-block:: python

          import paddle.fluid as fluid
          import numpy

          with fluid.dygraph.guard():
              x = numpy.random.random((16)).astype('float32')
              rowConv = fluid.dygraph.nn.RowConv(
                    'RowConv', future_context_size=2)
              ret = rowConv(fluid.dygraph.base.to_variable(x))

    """

L
lujun 已提交
2771 2772 2773 2774 2775
    def __init__(self,
                 name_scope,
                 future_context_size,
                 param_attr=None,
                 act=None):
L
lujun 已提交
2776
        assert not in_dygraph_mode(
2777
        ), "RowConv is not supported by dynamic graph mode yet!"
L
lujun 已提交
2778 2779 2780 2781 2782
        super(RowConv, self).__init__(name_scope)
        self._act = act
        self._param_attr = param_attr
        self._future_context_size = future_context_size

2783
    def _build_once(self, input):
L
lujun 已提交
2784 2785
        self._dtype = self._helper.input_dtype(input)
        filter_shape = [self._future_context_size + 1, input.shape[1]]
2786
        self.weight = self.create_parameter(
2787 2788 2789 2790
            attr=self._param_attr,
            shape=filter_shape,
            dtype=self._dtype,
            is_bias=False)
L
lujun 已提交
2791 2792 2793 2794 2795 2796

    def forward(self, input):
        out = self._helper.create_variable_for_type_inference(self._dtype)
        self._helper.append_op(
            type='row_conv',
            inputs={'X': [input],
2797
                    'Filter': [self.weight]},
L
lujun 已提交
2798 2799 2800 2801 2802 2803
            outputs={'Out': [out]})
        return self._helper.append_activation(out, act=self._act)


class GroupNorm(layers.Layer):
    """
2804 2805 2806 2807 2808 2809
    This interface is used to construct a callable object of the ``GroupNorm`` class.
    For more details, refer to code examples.
    It implements the function of the Group Normalization Layer.
    Refer to `Group Normalization <https://arxiv.org/abs/1803.08494>`_ .

    Parameters:
2810
        channels(int): The number of channels of input.
2811 2812 2813 2814 2815 2816 2817 2818 2819
        groups(int): The number of groups that divided from channels.
        epsilon(float, optional): The small value added to the variance to prevent
                                  division by zero. Default: 1e-05.
        param_attr(ParamAttr, optional): The parameter attribute for the learnable
                                         scale :math:`g`. If it is set to False, no scale will be added to the output units.
                                         If it is set to None, the bias is initialized one. Default: None.
        bias_attr(ParamAttr, optional): The parameter attribute for the learnable
                                        bias :math:`b`. If it is set to False, no bias will be added to the output units.
                                        If it is set to None, the bias is initialized zero. Default: None.
T
tianshuo78520a 已提交
2820
        act(str, optional): Activation to be applied to the output of group normalization. Default: None.
2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833
        data_layout(str, optional): Specify the input data format. Only NCHW is supported. Default: NCHW.

    Returns:
        None

    Examples:
        .. code-block:: python

          import paddle.fluid as fluid
          import numpy as np

          with fluid.dygraph.guard():
              x = np.random.random((8, 32, 32)).astype('float32')
2834
              groupNorm = fluid.dygraph.nn.GroupNorm(channels=32, groups=4)
2835
              ret = groupNorm(fluid.dygraph.base.to_variable(x))
L
lujun 已提交
2836 2837 2838 2839

    """

    def __init__(self,
2840
                 channels,
L
lujun 已提交
2841 2842 2843 2844 2845
                 groups,
                 epsilon=1e-05,
                 param_attr=None,
                 bias_attr=None,
                 act=None,
2846 2847 2848
                 data_layout='NCHW',
                 dtype='float32'):
        super(GroupNorm, self).__init__()
L
lujun 已提交
2849 2850 2851
        self._param_attr = param_attr
        self._bias_attr = bias_attr
        self._epsilon = epsilon
2852
        self._channels = channels
L
lujun 已提交
2853 2854
        self._groups = groups
        self._act = act
2855
        self._dtype = dtype
L
lujun 已提交
2856 2857 2858
        if data_layout != 'NCHW':
            raise ValueError("unsupported data layout:" + data_layout)

2859
        param_shape = [self._channels]
L
lujun 已提交
2860

2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871
        self.weight = self.create_parameter(
            attr=self._param_attr or False,
            shape=param_shape,
            dtype=self._dtype,
            default_initializer=Constant(1.0))

        self.bias = self.create_parameter(
            attr=self._bias_attr or False,
            shape=param_shape,
            dtype=self._dtype,
            is_bias=True)
L
lujun 已提交
2872 2873 2874

    def forward(self, input):
        inputs = {'X': input}
2875
        if self.bias is not None:
2876
            inputs['Bias'] = self.bias
2877
        if self.weight is not None:
2878
            inputs['Scale'] = self.weight
L
lujun 已提交
2879 2880

        # create output
2881
        mean_out = self._helper.create_variable_for_type_inference(
L
lujun 已提交
2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902
            dtype=self._dtype, stop_gradient=True)
        variance_out = self._helper.create_variable_for_type_inference(
            dtype=self._dtype, stop_gradient=True)
        group_norm_out = self._helper.create_variable_for_type_inference(
            dtype=self._dtype)

        self._helper.append_op(
            type="group_norm",
            inputs=inputs,
            outputs={
                "Y": group_norm_out,
                "Mean": mean_out,
                "Variance": variance_out,
            },
            attrs={"epsilon": self._epsilon,
                   "groups": self._groups})

        return self._helper.append_activation(group_norm_out, self._act)


class SpectralNorm(layers.Layer):
2903
    """
2904 2905
    This interface is used to construct a callable object of the ``SpectralNorm`` class.
    For more details, refer to code examples. It implements the function of the Spectral Normalization Layer.
2906 2907 2908 2909 2910 2911 2912 2913 2914 2915
    This layer calculates the spectral normalization value of weight parameters of
    fc, conv1d, conv2d, conv3d layers which should be 2-D, 3-D, 4-D, 5-D
    Parameters. Calculations are showed as follows.

    Step 1:
    Generate vector U in shape of [H], and V in shape of [W].
    While H is the :attr:`dim` th dimension of the input weights,
    and W is the product result of remaining dimensions.

    Step 2:
T
tianshuo78520a 已提交
2916
    :attr:`power_iters` should be a positive integer, do following
2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936
    calculations with U and V for :attr:`power_iters` rounds.

    .. math::

        \mathbf{v} := \\frac{\mathbf{W}^{T} \mathbf{u}}{\|\mathbf{W}^{T} \mathbf{u}\|_2}

        \mathbf{u} := \\frac{\mathbf{W}^{T} \mathbf{v}}{\|\mathbf{W}^{T} \mathbf{v}\|_2}

    Step 3:
    Calculate :math:`\sigma(\mathbf{W})` and normalize weight values.

    .. math::

        \sigma(\mathbf{W}) = \mathbf{u}^{T} \mathbf{W} \mathbf{v}

        \mathbf{W} = \\frac{\mathbf{W}}{\sigma(\mathbf{W})}


    Refer to `Spectral Normalization <https://arxiv.org/abs/1802.05957>`_ .

2937
    Parameters:
2938
        weight_shape(list or tuple): The shape of weight parameter.
2939 2940 2941 2942
        dim(int, optional): The index of dimension which should be permuted to the first before reshaping Input(Weight) to matrix, it should be set as 0 if Input(Weight) is the weight of fc layer, and should be set as 1 if Input(Weight) is the weight of conv layer. Default: 0.
        power_iters(int, optional): The number of power iterations to calculate spectral norm. Default: 1.
        eps(float, optional): The epsilon for numerical stability in calculating norms. Default: 1e-12.
        name (str, optional): The default value is None.  Normally there is no need for user to set this property.  For more information, please refer to :ref:`api_guide_Name` .
2943
        dtype (str, optional): Data type, it can be "float32" or "float64". Default: "float32".
2944 2945

    Returns:
2946
        None
2947 2948 2949 2950 2951

    Examples:
       .. code-block:: python

            import paddle.fluid as fluid
2952
            import numpy as np
2953 2954

            with fluid.dygraph.guard():
2955 2956 2957
                weight = np.random.random((2, 8, 32, 32)).astype('float32')
                spectralNorm = fluid.dygraph.nn.SpectralNorm(weight.shape, dim=1, power_iters=2)
                ret = spectralNorm(fluid.dygraph.base.to_variable(weight))
2958 2959 2960

    """

2961 2962 2963 2964 2965 2966 2967
    def __init__(self,
                 weight_shape,
                 dim=0,
                 power_iters=1,
                 eps=1e-12,
                 dtype='float32'):
        super(SpectralNorm, self).__init__()
L
lujun 已提交
2968 2969 2970
        self._power_iters = power_iters
        self._eps = eps
        self._dim = dim
2971
        self._dtype = dtype
L
lujun 已提交
2972

2973 2974 2975
        self._weight_shape = list(weight_shape)
        h = self._weight_shape[self._dim]
        w = np.prod(self._weight_shape) // h
L
lujun 已提交
2976

2977
        self.weight_u = self.create_parameter(
L
lujun 已提交
2978 2979 2980 2981
            attr=ParamAttr(),
            shape=[h],
            dtype=self._dtype,
            default_initializer=Normal(0., 1.))
2982
        self.weight_u.stop_gradient = True
L
lujun 已提交
2983

2984
        self.weight_v = self.create_parameter(
L
lujun 已提交
2985 2986 2987 2988
            attr=ParamAttr(),
            shape=[w],
            dtype=self._dtype,
            default_initializer=Normal(0., 1.))
2989
        self.weight_v.stop_gradient = True
L
lujun 已提交
2990 2991

    def forward(self, weight):
2992 2993
        check_variable_and_dtype(weight, "weight", ['float32', 'float64'],
                                 'SpectralNorm')
2994
        inputs = {'Weight': weight, 'U': self.weight_u, 'V': self.weight_v}
L
lujun 已提交
2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009
        out = self._helper.create_variable_for_type_inference(self._dtype)
        self._helper.append_op(
            type="spectral_norm",
            inputs=inputs,
            outputs={"Out": out, },
            attrs={
                "dim": self._dim,
                "power_iters": self._power_iters,
                "eps": self._eps,
            })

        return out


class TreeConv(layers.Layer):
3010
    """
3011 3012 3013 3014 3015 3016 3017 3018 3019 3020
    This interface is used to construct a callable object of the ``TreeConv`` class.
    For more details, refer to code examples.
    Tree-Based Convolution is a kind of convolution based on tree structure.
    Tree-Based Convolution is a part of Tree-Based Convolution Neural Network(TBCNN),
    which is used to classify tree structures, such as Abstract Syntax Tree.
    Tree-Based Convolution proposed a kind of data structure called continuous binary tree,
    which regards multiway tree as binary tree.
    The paper of Tree-Based Convolution Operator is here: `tree-based convolution <https://arxiv.org/abs/1409.5718v1/>`_ .
    
    Parameters:
3021
        feature_size(int): last dimension of nodes_vector.
3022 3023 3024 3025 3026 3027 3028
        output_size(int): output feature width.
        num_filters(int, optional): number of filters, Default: 1.
        max_depth(int, optional): max depth of filters, Default: 2.
        act(str, optional): activation function, Default: tanh.
        param_attr(ParamAttr, optional): the parameter attribute for the filters, Default: None.
        bias_attr(ParamAttr, optional): the parameter attribute for the bias of this layer, Default: None.
        name(str, optional): The default value is None. Normally there is no need for user to set this property. For more information, please refer to :ref:`api_guide_Name` .
3029
        dtype (str, optional): Data type, it can be "float32" or "float64". Default: "float32".
3030

3031 3032
    Attribute:
        **weight** (Parameter): the learnable weights of filters of this layer.
3033

3034
        **bias** (Parameter or None): the learnable bias of this layer.
3035

3036 3037
    Returns:
        None
L
lujun 已提交
3038

3039
    Examples:
L
lujun 已提交
3040

3041
        .. code-block:: python
3042

3043 3044
          import paddle.fluid as fluid
          import numpy
3045

3046 3047 3048 3049
          with fluid.dygraph.guard():
              nodes_vector = numpy.random.random((1, 10, 5)).astype('float32')
              edge_set = numpy.random.random((1, 9, 2)).astype('int32')
              treeConv = fluid.dygraph.nn.TreeConv(
3050
                feature_size=5, output_size=6, num_filters=1, max_depth=2)
3051
              ret = treeConv(fluid.dygraph.base.to_variable(nodes_vector), fluid.dygraph.base.to_variable(edge_set))
3052 3053
    """

L
lujun 已提交
3054
    def __init__(self,
3055
                 feature_size,
L
lujun 已提交
3056 3057 3058 3059 3060 3061
                 output_size,
                 num_filters=1,
                 max_depth=2,
                 act='tanh',
                 param_attr=None,
                 bias_attr=None,
3062 3063 3064
                 name=None,
                 dtype='float32'):
        super(TreeConv, self).__init__()
L
lujun 已提交
3065
        self._name = name
3066
        self._feature_size = feature_size
L
lujun 已提交
3067 3068 3069 3070 3071 3072
        self._output_size = output_size
        self._act = act
        self._max_depth = max_depth
        self._num_filters = num_filters
        self._bias_attr = bias_attr
        self._param_attr = param_attr
3073 3074
        self._dtype = dtype
        w_shape = [self._feature_size, 3, self._output_size, self._num_filters]
L
lujun 已提交
3075
        if self._bias_attr:
3076
            self.bias = self.create_parameter(
L
lujun 已提交
3077 3078 3079 3080
                attr=self._bias_attr,
                shape=[self._num_filters],
                dtype=self._dtype,
                is_bias=True)
3081
        self.weight = self.create_parameter(
L
lujun 已提交
3082 3083 3084 3085 3086 3087
            attr=self._param_attr,
            shape=w_shape,
            dtype=self._dtype,
            is_bias=False)

    def forward(self, nodes_vector, edge_set):
3088 3089
        check_type(nodes_vector, 'nodes_vector', (Variable), 'TreeConv')
        check_type(edge_set, 'edge_set', (Variable), 'TreeConv')
L
lujun 已提交
3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100
        if self._name:
            out = self.create_variable(
                name=self._name, dtype=self._dtype, persistable=False)
        else:
            out = self._helper.create_variable_for_type_inference(
                dtype=self._dtype)
        self._helper.append_op(
            type='tree_conv',
            inputs={
                'NodesVector': nodes_vector,
                'EdgeSet': edge_set,
3101
                'Filter': self.weight
L
lujun 已提交
3102 3103 3104 3105 3106 3107 3108 3109 3110
            },
            outputs={'Out': out, },
            attrs={'max_depth': self._max_depth})
        if self._bias_attr:
            pre_activation = self._helper.create_variable_for_type_inference(
                dtype=self._dtype)
            self._helper.append_op(
                type='elementwise_add',
                inputs={'X': [out],
3111
                        'Y': [self.bias]},
L
lujun 已提交
3112 3113 3114 3115 3116
                outputs={'Out': [pre_activation]},
                attrs={'axis': 1})
        else:
            pre_activation = out
        return self._helper.append_activation(pre_activation, act=self._act)