pybind.cc 114.6 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
2 3 4 5 6

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

7
http://www.apache.org/licenses/LICENSE-2.0
8 9 10 11 12 13

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
L
lgone2000 已提交
14
#include <Python.h>
15

C
chengduoZH 已提交
16
#include <algorithm>
17
#include <cstdlib>
C
chengduoZH 已提交
18
#include <map>
S
sneaxiy 已提交
19
#include <memory>
C
chengduoZH 已提交
20 21 22
#include <mutex>  // NOLINT // for call_once
#include <string>
#include <unordered_map>
23
#include <unordered_set>
C
chengduoZH 已提交
24 25
#include <utility>
#include <vector>
26

27
#include "paddle/fluid/framework/custom_operator.h"
28
#include "paddle/fluid/framework/data_layout.h"
Y
Yi Wang 已提交
29 30
#include "paddle/fluid/framework/executor.h"
#include "paddle/fluid/framework/feed_fetch_method.h"
Z
Zhen Wang 已提交
31
#include "paddle/fluid/framework/feed_fetch_type.h"
Y
Yi Wang 已提交
32
#include "paddle/fluid/framework/framework.pb.h"
S
sneaxiy 已提交
33
#include "paddle/fluid/framework/garbage_collector.h"
H
hutuxian 已提交
34
#include "paddle/fluid/framework/io/fs.h"
35
#include "paddle/fluid/framework/ir/coalesce_grad_tensor_pass.h"
36
#include "paddle/fluid/framework/ir/pass_builder.h"
37
#include "paddle/fluid/framework/load_op_lib.h"
Y
Yi Wang 已提交
38 39 40
#include "paddle/fluid/framework/lod_rank_table.h"
#include "paddle/fluid/framework/lod_tensor.h"
#include "paddle/fluid/framework/lod_tensor_array.h"
S
sneaxiy 已提交
41
#include "paddle/fluid/framework/op_info.h"
42
#include "paddle/fluid/framework/op_registry.h"
43
#include "paddle/fluid/framework/op_version_registry.h"
Y
Yu Yang 已提交
44
#include "paddle/fluid/framework/parallel_executor.h"
Y
Yi Wang 已提交
45
#include "paddle/fluid/framework/prune.h"
Y
Refine  
Yu Yang 已提交
46
#include "paddle/fluid/framework/reader.h"
H
hong 已提交
47
#include "paddle/fluid/framework/save_load_util.h"
S
sneaxiy 已提交
48
#include "paddle/fluid/framework/scope_pool.h"
Y
Yi Wang 已提交
49
#include "paddle/fluid/framework/selected_rows.h"
50
#include "paddle/fluid/framework/tensor_util.h"
51
#include "paddle/fluid/framework/trainer.h"
52
#include "paddle/fluid/framework/type_defs.h"
X
Xin Pan 已提交
53
#include "paddle/fluid/framework/version.h"
H
hong 已提交
54
#include "paddle/fluid/imperative/layer.h"
Y
Refine  
Yu Yang 已提交
55
#include "paddle/fluid/memory/allocation/allocator_strategy.h"
56
#include "paddle/fluid/memory/allocation/mmap_allocator.h"
D
dzhwinter 已提交
57
#include "paddle/fluid/operators/activation_op.h"
L
Leo Chen 已提交
58
#include "paddle/fluid/operators/common_infer_shape_functions.h"
S
sneaxiy 已提交
59
#include "paddle/fluid/operators/py_func_op.h"
60
#include "paddle/fluid/platform/cpu_helper.h"
Y
Yu Yang 已提交
61
#include "paddle/fluid/platform/cpu_info.h"
62
#include "paddle/fluid/platform/device_context.h"
63
#include "paddle/fluid/platform/dynload/dynamic_loader.h"
Y
Yi Wang 已提交
64
#include "paddle/fluid/platform/enforce.h"
65
#include "paddle/fluid/platform/init.h"
H
hutuxian 已提交
66
#include "paddle/fluid/platform/monitor.h"
Y
Yi Wang 已提交
67 68
#include "paddle/fluid/platform/place.h"
#include "paddle/fluid/platform/profiler.h"
69 70 71
#ifdef PADDLE_WITH_ASCEND
#include "paddle/fluid/pybind/ascend_wrapper_py.h"
#endif
H
hutuxian 已提交
72
#include "paddle/fluid/pybind/box_helper_py.h"
73
#include "paddle/fluid/pybind/compatible.h"
Y
Yi Wang 已提交
74
#include "paddle/fluid/pybind/const_value.h"
D
dongdaxiang 已提交
75
#include "paddle/fluid/pybind/data_set_py.h"
Y
Yi Wang 已提交
76
#include "paddle/fluid/pybind/exception.h"
D
dongdaxiang 已提交
77
#include "paddle/fluid/pybind/fleet_wrapper_py.h"
Y
yaoxuefeng 已提交
78
#include "paddle/fluid/pybind/generator_py.h"
79
#include "paddle/fluid/pybind/global_value_getter_setter.h"
80
#include "paddle/fluid/pybind/gloo_context_py.h"
81
#include "paddle/fluid/pybind/gloo_wrapper_py.h"
T
Thunderbrook 已提交
82
#include "paddle/fluid/pybind/heter_wrapper_py.h"
83
#include "paddle/fluid/pybind/imperative.h"
F
flame 已提交
84
#include "paddle/fluid/pybind/inference_api.h"
F
flame 已提交
85
#include "paddle/fluid/pybind/ir.h"
T
Thunderbrook 已提交
86
#include "paddle/fluid/pybind/ps_gpu_wrapper_py.h"
87
#include "paddle/fluid/pybind/pybind_boost_headers.h"
88

89
#ifdef PADDLE_WITH_NCCL
D
dongdaxiang 已提交
90
#include "paddle/fluid/pybind/nccl_wrapper_py.h"
W
wopeizl 已提交
91
#endif
92
#include "paddle/fluid/framework/data_type.h"
93 94
#include "paddle/fluid/pybind/protobuf.h"
#include "paddle/fluid/pybind/pybind.h"  // NOLINT
S
sneaxiy 已提交
95
#include "paddle/fluid/pybind/reader_py.h"
Y
Yi Wang 已提交
96
#include "paddle/fluid/pybind/tensor_py.h"
97
#include "paddle/fluid/string/to_string.h"
D
Dong Zhihong 已提交
98
#ifdef PADDLE_WITH_CUDA
99
#ifdef PADDLE_WITH_NCCL
Y
Yi Wang 已提交
100
#include "paddle/fluid/operators/nccl/nccl_gpu_common.h"
P
peizhilin 已提交
101
#endif
Y
Yi Wang 已提交
102 103
#include "paddle/fluid/platform/cuda_profiler.h"
#include "paddle/fluid/platform/gpu_info.h"
D
Dong Zhihong 已提交
104 105
#endif

106 107 108 109
#ifdef PADDLE_WITH_XPU
#include "paddle/fluid/platform/xpu_info.h"
#endif

Y
Yanghello 已提交
110 111 112 113
#ifdef PADDLE_WITH_CRYPTO
#include "paddle/fluid/pybind/crypto.h"
#endif

T
tangwei12 已提交
114
#if defined PADDLE_WITH_PSCORE
T
tangwei12 已提交
115 116 117
#include "paddle/fluid/pybind/fleet_py.h"
#endif

M
minqiyang 已提交
118 119
#include "pybind11/stl.h"

120
DECLARE_bool(use_mkldnn);
121

Q
Qiao Longfei 已提交
122 123
// disable auto conversion to list in Python
PYBIND11_MAKE_OPAQUE(paddle::framework::LoDTensorArray);
124 125 126
PYBIND11_MAKE_OPAQUE(paddle::framework::FetchUnmergedList);
PYBIND11_MAKE_OPAQUE(paddle::framework::FetchList);
PYBIND11_MAKE_OPAQUE(paddle::framework::FetchType);
Q
Qiao Longfei 已提交
127

128
namespace paddle {
129
namespace pybind {
130
bool IsCompiledWithCUDA() {
131
#ifndef PADDLE_WITH_CUDA
Q
qijun 已提交
132 133 134 135 136 137
  return false;
#else
  return true;
#endif
}

138 139 140 141 142 143 144 145
bool IsCompiledWithXPU() {
#ifndef PADDLE_WITH_XPU
  return false;
#else
  return true;
#endif
}

146 147 148 149 150 151 152 153
bool IsCompiledWithMKLDNN() {
#ifndef PADDLE_WITH_MKLDNN
  return false;
#else
  return true;
#endif
}

154 155 156 157 158 159 160 161 162 163 164
bool SupportsBfloat16() {
#ifndef PADDLE_WITH_MKLDNN
  return false;
#else
  if (platform::MayIUse(platform::cpu_isa_t::avx512_core))
    return true;
  else
    return false;
#endif
}

165 166 167 168 169 170 171 172 173 174 175
bool SupportsBfloat16FastPerformance() {
#ifndef PADDLE_WITH_MKLDNN
  return false;
#else
  if (platform::MayIUse(platform::cpu_isa_t::avx512_bf16))
    return true;
  else
    return false;
#endif
}

176
bool IsCompiledWithBrpc() {
177
#ifndef PADDLE_WITH_DISTRIBUTE
178 179
  return false;
#endif
180 181 182 183 184 185

#ifdef PADDLE_WITH_GRPC
  return false;
#endif

  return true;
186 187
}

Y
update  
Yancey1989 已提交
188
bool IsCompiledWithDIST() {
Y
Yancey1989 已提交
189
#ifdef PADDLE_WITH_DISTRIBUTE
Y
update  
Yancey1989 已提交
190 191 192 193 194 195
  return true;
#else
  return false;
#endif
}

S
sneaxiy 已提交
196 197 198 199 200 201 202 203 204 205
template <typename PlaceType1, typename PlaceType2>
static inline bool IsSamePlace(const PlaceType1 &p1, const PlaceType2 &p2) {
  return paddle::platform::Place(p1) == paddle::platform::Place(p2);
}

template <typename PlaceType>
static inline int PlaceIndex(const PlaceType &p) {
  return static_cast<int>(paddle::platform::Place(p).which());
}

H
hong 已提交
206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227
static PyObject *GetPythonAttribute(PyObject *obj, const char *attr_name) {
  // NOTE(zjl): PyObject_GetAttrString would return nullptr when attr_name
  // is not inside obj, but it would also set the error flag of Python.
  // If the error flag is set in C++, C++ code would not raise Exception,
  // but Python would raise Exception once C++ call ends.
  // To avoid unexpected Exception raised in Python, we check whether
  // attribute exists before calling PyObject_GetAttrString.
  //
  // Caution: PyObject_GetAttrString would increase reference count of PyObject.
  // Developer should call Py_DECREF manually after the attribute is not used.
  if (PyObject_HasAttrString(obj, attr_name)) {
    return PyObject_GetAttrString(obj, attr_name);
  } else {
    return nullptr;
  }
}

template <typename T>
static T PyObjectCast(PyObject *obj) {
  try {
    return py::cast<T>(py::handle(obj));
  } catch (py::cast_error &) {
228 229 230
    PADDLE_THROW(platform::errors::InvalidArgument(
        "Python object is not type of %s, the real type is %s",
        typeid(T).name(), obj->ob_type->tp_name));
H
hong 已提交
231 232 233 234 235 236 237 238 239 240 241 242 243
  }
}

using PyNameVarBaseMap = std::unordered_map<std::string, py::handle>;

static std::vector<std::shared_ptr<imperative::VarBase>> GetVarBaseList(
    const PyNameVarBaseMap &state_dict) {
  std::vector<std::shared_ptr<imperative::VarBase>> vec_res;
  vec_res.reserve(state_dict.size());

  for (auto &para : state_dict) {
    PyObject *py_obj = para.second.ptr();
    if (!py_obj || py_obj == Py_None) {
244 245
      PADDLE_THROW(platform::errors::InvalidArgument(
          "The parameter [%s] to save is None", para.first));
H
hong 已提交
246 247
    }
    vec_res.emplace_back(
248
        PyObjectCast<std::shared_ptr<imperative::VarBase>>(py_obj));
H
hong 已提交
249 250 251 252 253 254 255 256 257 258 259 260
  }

  return vec_res;
}

static std::vector<std::string> inline GetNameList(
    const py::handle &py_handle) {
  std::vector<std::string> vec_res;

  PyObject *py_obj = py_handle.ptr();  // get underlying PyObject
  // Python None is not nullptr in C++!
  if (!py_obj || py_obj == Py_None) {
261 262
    PADDLE_THROW(platform::errors::InvalidArgument(
        "The parameter list to save is None"));
H
hong 已提交
263 264 265 266 267 268 269 270 271 272 273 274
  }

  if (PyList_Check(py_obj)) {
    size_t len = PyList_GET_SIZE(py_obj);

    vec_res.reserve(len);

    const char *kNameField = "name";

    for (size_t i = 0; i < len; ++i) {
      PyObject *py_name =
          PyObject_GetAttrString(PyList_GET_ITEM(py_obj, i), kNameField);
275 276 277
      PADDLE_ENFORCE_NOT_NULL(py_name,
                              platform::errors::InvalidArgument(
                                  "The name of parameter to save is None"));
H
hong 已提交
278 279 280 281
      vec_res.emplace_back(PyObjectCast<std::string>(py_name));
      Py_DECREF(py_name);
    }
  } else {
282 283
    PADDLE_THROW(platform::errors::InvalidArgument(
        "The parameters to save is not a list"));
H
hong 已提交
284 285 286 287
  }
  return vec_res;
}

288 289 290 291 292 293 294 295
static void inline CreateVariableIfNotExit(
    const py::handle &py_handle, const framework::Scope &scope,
    const framework::Executor *exe = nullptr) {
  std::vector<std::string> vec_res;

  PyObject *py_obj = py_handle.ptr();  // get underlying PyObject
  // Python None is not nullptr in C++!
  if (!py_obj || py_obj == Py_None) {
296 297
    PADDLE_THROW(
        platform::errors::InvalidArgument("The parameter list to set is None"));
298 299 300 301 302 303 304 305 306 307 308 309 310
  }

  if (PyList_Check(py_obj)) {
    size_t len = PyList_GET_SIZE(py_obj);

    vec_res.reserve(len);

    const char *kNameField = "name";
    const char *kVarDescField = "desc";

    for (size_t i = 0; i < len; ++i) {
      PyObject *py_name =
          PyObject_GetAttrString(PyList_GET_ITEM(py_obj, i), kNameField);
311 312 313
      PADDLE_ENFORCE_NOT_NULL(py_name,
                              platform::errors::InvalidArgument(
                                  "The name of parameter to set is None"));
314 315 316 317 318
      auto para_name = PyObjectCast<std::string>(py_name);
      Py_DECREF(py_name);

      auto var = scope.FindVar(para_name);
      if (var == nullptr) {
319 320 321 322 323
        PADDLE_ENFORCE_NOT_NULL(exe,
                                platform::errors::InvalidArgument(
                                    "Parameter not Initialized, "
                                    "Please set argument [executor] not None "
                                    "or run startup program first"));
324 325
        PyObject *py_var_desc =
            PyObject_GetAttrString(PyList_GET_ITEM(py_obj, i), kVarDescField);
326 327 328
        PADDLE_ENFORCE_NOT_NULL(
            py_var_desc, platform::errors::InvalidArgument(
                             "The var_desc of parameter to set is None"));
329 330 331 332 333 334 335 336 337
        auto var_desc = PyObjectCast<framework::VarDesc>(py_var_desc);
        Py_DECREF(py_var_desc);
        var = const_cast<framework::Scope *>(&scope)->Var(para_name);
        auto *tensor_temp = var->GetMutable<framework::LoDTensor>();
        tensor_temp->Resize(framework::make_ddim(var_desc.GetShape()));
        tensor_temp->mutable_data(exe->GetPlace(), var_desc.GetDataType());
      }
    }
  } else {
338 339
    PADDLE_THROW(platform::errors::InvalidArgument(
        "The parameters to set is not a list"));
340 341 342 343 344
  }

  return;
}

345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368
static void AssertStaticGraphAndDygraphGradMakerNoDiff() {
  std::set<std::string> ops;
  for (auto &pair : framework::OpInfoMap::Instance().map()) {
    bool has_static_grad_maker = (pair.second.grad_op_maker_ != nullptr);
    bool has_dygraph_grad_maker =
        (pair.second.dygraph_grad_op_maker_ != nullptr);
    if (has_static_grad_maker ^ has_dygraph_grad_maker) {
      bool has_kernel =
          (framework::OperatorWithKernel::AllOpKernels().count(pair.first) > 0);
      if (has_kernel) {
        ops.insert(pair.first);
      } else {
        VLOG(5) << pair.first << " has no kernels, skip";
      }
    }
  }
  PADDLE_ENFORCE_EQ(ops.empty(), true,
                    platform::errors::Unimplemented(
                        "OperatorWithKernel [%s] have only static graph grad "
                        "maker or have only dygraph grad maker, which is not "
                        "allowed",
                        string::join_strings(ops, ',')));
}

369 370 371 372 373 374
#ifdef PADDLE_WITH_AVX
PYBIND11_MODULE(core_avx, m) {
#else
PYBIND11_MODULE(core_noavx, m) {
#endif

Y
Yu Yang 已提交
375 376 377
  // Not used, just make sure cpu_info.cc is linked.
  paddle::platform::CpuTotalPhysicalMemory();

Y
Refine  
Yu Yang 已提交
378
  paddle::memory::allocation::UseAllocatorStrategyGFlag();
S
sneaxiy 已提交
379

380 381
  AssertStaticGraphAndDygraphGradMakerNoDiff();

382
  m.doc() = "C++ core of PaddlePaddle";
383

384 385 386 387
  // using framework in this function. Since it is inside a function, it will
  // not cause namespace pollution.
  using namespace paddle::framework;  // NOLINT

388
  BindException(&m);
Y
Yu Yang 已提交
389

390 391
  m.def("set_num_threads", &platform::SetNumThreads);

392 393 394 395
#ifdef PADDLE_WITH_CUDA
  m.def("cudnn_version", &platform::CudnnVersion);
#endif

6
633WHU 已提交
396 397 398 399 400
  m.def("from_dlpack", [](py::capsule *dltensor) {
    DLManagedTensor *dmt = reinterpret_cast<DLManagedTensor *>(
        PyCapsule_GetPointer(dltensor->ptr(), "dltensor"));
    PyCapsule_SetName(dltensor->ptr(), "used_dltensor");
    DLTensor dl = dmt->dl_tensor;
401
    framework::Tensor tensor;
6
633WHU 已提交
402 403 404 405 406 407 408 409 410 411 412 413

    if (dl.ctx.device_type == kDLCPU) {
      paddle::framework::TensorFromDLPack(dl, &tensor);
    }
#ifdef PADDLE_WITH_CUDA
    if (dl.ctx.device_type == kDLGPU) {
      paddle::framework::TensorFromDLPack(dl, &tensor);
    }
#endif
    return tensor;
  });

H
hong 已提交
414 415 416 417 418 419 420 421 422
  m.def("_save_static_dict",
        [](const std::string &str_file_name, const py::handle &vec_var_list,
           const Scope &scope) {
          std::vector<std::string> vec_name_list = GetNameList(vec_var_list);
          SaveStaticNameListToDisk(str_file_name, vec_name_list, scope);
        });

  m.def("_load_static_dict",
        [](const std::string &str_file_name, const py::handle &vec_var_list,
423
           const Scope &scope, const Executor *executor) {
H
hong 已提交
424
          std::vector<std::string> vec_name_list = GetNameList(vec_var_list);
425
          CreateVariableIfNotExit(vec_var_list, scope, executor);
H
hong 已提交
426 427 428
          LoadStaticNameListFromDisk(str_file_name, vec_name_list, scope);
        });

429 430 431 432 433 434
  m.def("_create_loaded_parameter",
        [](const py::handle &vec_var_list, const Scope &scope,
           const Executor *executor) {
          CreateVariableIfNotExit(vec_var_list, scope, executor);
        });

H
hong 已提交
435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453
  m.def("_save_dygraph_dict", [](const std::string &str_file_name,
                                 const PyNameVarBaseMap &state_dict) {
    auto vec_var_base_list = GetVarBaseList(state_dict);

    SaveDygraphVarBaseListToDisk(str_file_name, vec_var_base_list);
  });

  m.def("_load_dygraph_dict", [](const std::string &str_file_name) {
    auto load_tensor = LoadDygraphVarBaseListFromDisk(str_file_name);

    std::unordered_map<std::string, std::shared_ptr<imperative::VarBase>>
        map_output;

    for (size_t i = 0; i < load_tensor.size(); ++i) {
      map_output.emplace(load_tensor[i]->Name(), load_tensor[i]);
    }

    return map_output;
  });
6
633WHU 已提交
454

455 456 457 458 459 460
  m.def("save_op_version_info", [](framework::ProgramDesc &desc) {
    framework::compatible::pb::OpVersionMap pb_vmap{desc.OpVersionMap()};
    framework::compatible::SaveOpVersions(
        framework::compatible::OpVersionRegistrar::GetInstance()
            .GetVersionMap(),
        &pb_vmap);
461 462
  });

463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487
  m.def("set_printoptions", [](const py::kwargs &kwargs) {
    auto &print_opt = framework::PrintOptions::Instance();
    if (kwargs.contains("precision")) {
      print_opt.precision = kwargs["precision"].cast<int>();
    }
    if (kwargs.contains("threshold")) {
      print_opt.threshold = kwargs["threshold"].cast<int>();
    }
    if (kwargs.contains("edgeitems")) {
      print_opt.edgeitems = kwargs["edgeitems"].cast<int>();
    }
    if (kwargs.contains("linewidth")) {
      print_opt.linewidth = kwargs["linewidth"].cast<int>();
    }
    if (kwargs.contains("sci_mode")) {
      print_opt.sci_mode = kwargs["sci_mode"].cast<bool>();
    }

    VLOG(4) << "Set printoptions: precision=" << print_opt.precision
            << ", threshold=" << print_opt.threshold
            << ", edgeitems=" << print_opt.edgeitems
            << ", linewidth=" << print_opt.linewidth
            << ", sci_mode=" << print_opt.sci_mode;
  });

L
Leo Chen 已提交
488 489 490 491 492 493
  m.def("broadcast_shape", [](const std::vector<int64_t> &x_dim,
                              const std::vector<int64_t> &y_dim) {
    return vectorize(operators::details::BroadcastTwoDims(
        make_ddim(x_dim), make_ddim(y_dim), -1));
  });

S
sneaxiy 已提交
494
  m.def(
S
sneaxiy 已提交
495
      "_append_python_callable_object_and_return_id",
S
sneaxiy 已提交
496 497 498 499
      [](py::object py_obj) -> size_t {
        return paddle::operators::AppendPythonCallableObjectAndReturnId(py_obj);
      });

S
sneaxiy 已提交
500 501 502
  m.def("_get_use_default_grad_op_desc_maker_ops",
        [] { return OpInfoMap::Instance().GetUseDefaultGradOpDescMakerOps(); });

503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518
  m.def("_get_all_register_op_kernels", [] {
    auto &all_kernels = paddle::framework::OperatorWithKernel::AllOpKernels();
    std::unordered_map<std::string, std::vector<std::string>> all_kernels_info;
    for (auto &kernel_pair : all_kernels) {
      auto op_type = kernel_pair.first;
      std::vector<std::string> kernel_types;
      for (auto &info_pair : kernel_pair.second) {
        paddle::framework::OpKernelType kernel_type = info_pair.first;
        kernel_types.push_back(
            paddle::framework::KernelTypeToString(kernel_type));
      }
      all_kernels_info.emplace(op_type, kernel_types);
    }
    return all_kernels_info;
  });

S
sneaxiy 已提交
519 520 521
  // NOTE(zjl): ctest would load environment variables at the beginning even
  // though we have not `import paddle.fluid as fluid`. So we add this API
  // to enable eager deletion mode in unittest.
S
sneaxiy 已提交
522
  m.def("_set_eager_deletion_mode", &paddle::framework::SetEagerDeletionMode);
S
sneaxiy 已提交
523

524
  m.def("_set_fuse_parameter_group_size",
525
        &paddle::framework::ir::SetFuseParameterGroupsSize);
526
  m.def("_set_fuse_parameter_memory_size",
527
        &paddle::framework::ir::SetFuseParameterMemorySize);
528

S
sneaxiy 已提交
529 530 531
  m.add_object("_cleanup",
               py::capsule([]() { ScopePool::Instance().Clear(); }));

532 533
  m.def("_set_paddle_lib_path", &paddle::platform::dynload::SetPaddleLibPath);

534 535 536
  m.def("_promote_types_if_complex_exists",
        &paddle::framework::PromoteTypesIfComplexExists);

537
  BindImperative(&m);
538

539 540 541
  py::class_<framework::Tensor>(m, "Tensor", py::buffer_protocol())
      .def("__array__",
           [](framework::Tensor &self) { return TensorToPyArray(self); })
S
sneaxiy 已提交
542
      .def("_is_initialized",
543
           [](const framework::Tensor &self) { return self.IsInitialized(); })
Y
yuyang18 已提交
544
      .def("_get_dims",
545
           [](const framework::Tensor &self) { return vectorize(self.dims()); })
Y
yuyang18 已提交
546
      .def("_set_dims",
547
           [](framework::Tensor &self, const std::vector<int64_t> &dim) {
Y
Yu Yang 已提交
548
             self.Resize(make_ddim(dim));
Y
Yu Yang 已提交
549
           })
Y
yuyang18 已提交
550
      .def("_set_layout",
551
           [](framework::Tensor &self, const std::string &layout) {
D
dzhwinter 已提交
552 553
             self.set_layout(StringToDataLayout(layout));
           })
Y
yuyang18 已提交
554
      .def("_alloc_float",
555
           [](framework::Tensor &self, paddle::platform::CUDAPlace &place) {
Q
qijun 已提交
556
             self.mutable_data<float>(place);
Y
Yu Yang 已提交
557
           })
558
      .def("_alloc_float",
559
           [](framework::Tensor &self, paddle::platform::XPUPlace &place) {
560 561
             self.mutable_data<float>(place);
           })
Y
yuyang18 已提交
562
      .def("_alloc_float",
563
           [](framework::Tensor &self, paddle::platform::CPUPlace &place) {
Q
qijun 已提交
564
             self.mutable_data<float>(place);
Y
Yu Yang 已提交
565
           })
566
      .def("_alloc_double",
567
           [](framework::Tensor &self, paddle::platform::CPUPlace &place) {
568 569
             self.mutable_data<double>(place);
           })
Y
yuyang18 已提交
570
      .def("_alloc_int",
571
           [](framework::Tensor &self, paddle::platform::CPUPlace &place) {
Q
qijun 已提交
572
             self.mutable_data<int>(place);
Y
Yu Yang 已提交
573
           })
574
      .def("_alloc_int",
575
           [](framework::Tensor &self, paddle::platform::XPUPlace &place) {
576 577
             self.mutable_data<int>(place);
           })
Y
yuyang18 已提交
578
      .def("_alloc_int",
579
           [](framework::Tensor &self, paddle::platform::CUDAPlace &place) {
Q
qijun 已提交
580
             self.mutable_data<int>(place);
Q
qijun 已提交
581
           })
Y
yuyang18 已提交
582
      .def("_alloc_int",
583 584
           [](framework::Tensor &self,
              paddle::platform::CUDAPinnedPlace &place) {
C
chengduoZH 已提交
585 586
             self.mutable_data<int>(place);
           })
Y
yuyang18 已提交
587
      .def("_alloc_float",
588 589
           [](framework::Tensor &self,
              paddle::platform::CUDAPinnedPlace &place) {
C
chengduoZH 已提交
590 591
             self.mutable_data<float>(place);
           })
592
      .def("_mutable_data",
593
           [](framework::Tensor &self, paddle::platform::CPUPlace &place,
594 595 596
              paddle::framework::proto::VarType::Type type) {
             return reinterpret_cast<uintptr_t>(self.mutable_data(place, type));
           })
597
      .def("_mutable_data",
598
           [](framework::Tensor &self, paddle::platform::XPUPlace &place,
599 600 601
              paddle::framework::proto::VarType::Type type) {
             return reinterpret_cast<uintptr_t>(self.mutable_data(place, type));
           })
602
      .def("_mutable_data",
603
           [](framework::Tensor &self, paddle::platform::CUDAPlace &place,
604 605 606 607
              paddle::framework::proto::VarType::Type type) {
             return reinterpret_cast<uintptr_t>(self.mutable_data(place, type));
           })
      .def("_mutable_data",
608
           [](framework::Tensor &self, paddle::platform::CUDAPinnedPlace &place,
609 610 611
              paddle::framework::proto::VarType::Type type) {
             return reinterpret_cast<uintptr_t>(self.mutable_data(place, type));
           })
612
      .def("_clear", &framework::Tensor::clear)
613
      .def("set", SetTensorFromPyArray<paddle::platform::CPUPlace>,
614
           py::arg("array"), py::arg("place"), py::arg("zero_copy") = false)
615 616
      .def("set", SetTensorFromPyArray<paddle::platform::XPUPlace>,
           py::arg("array"), py::arg("place"), py::arg("zero_copy") = false)
617
      .def("set", SetTensorFromPyArray<paddle::platform::CUDAPlace>,
618
           py::arg("array"), py::arg("place"), py::arg("zero_copy") = false)
619
      .def("set", SetTensorFromPyArray<paddle::platform::CUDAPinnedPlace>,
620 621
           py::arg("array"), py::arg("place"), py::arg("zero_copy") = false,
           R"DOC(
L
Leo Chen 已提交
622 623 624 625
        Set the data of LoDTensor on place with given numpy array.
        
        Args:
          lod (numpy.ndarray): The data to set.
626
          place (CPUPlace|CUDAPlace|XPUPlace|CUDAPinnedPlace): The place where the 
L
Leo Chen 已提交
627
          LoDTensor is to be set.
628 629
          zero_copy (bool, optional): Whether to share memory with the input numpy array.
          This parameter only works with CPUPlace. Default: False.
L
Leo Chen 已提交
630 631 632 633 634 635 636 637 638 639 640 641 642

        Returns:
            None.

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid
                import numpy as np

                t = fluid.LoDTensor()
                t.set(np.ndarray([5, 30]), fluid.CPUPlace())
          )DOC")
643

644 645 646
      .def("shape",
           [](framework::Tensor &self) { return vectorize(self.dims()); },
           R"DOC(
L
Leo Chen 已提交
647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662
           Return the shape of LoDTensor.

           Returns:
               list[int]: The shape of LoDTensor.


           Examples:
               .. code-block:: python

                  import paddle.fluid as fluid
                  import numpy as np

                  t = fluid.LoDTensor()
                  t.set(np.ndarray([5, 30]), fluid.CPUPlace())
                  print(t.shape())  # [5, 30]
           )DOC")
6
633WHU 已提交
663
      .def("_to_dlpack",
664
           [](framework::Tensor &self) {
6
633WHU 已提交
665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684
             DLPackTensor dlpack_tensor(self, 1);
             DLManagedTensor *dmt =
                 dlpack_tensor.ToCudfCompatibleDLManagedTensor();
             auto capsule = py::capsule(
                 static_cast<void *>(dmt), "dltensor", [](PyObject *ptr) {
                   if (ptr) {
                     auto dltensor = new DLManagedTensor;
                     try {
                       dltensor = reinterpret_cast<DLManagedTensor *>(
                           PyCapsule_GetPointer(ptr, "used_dltensor"));
                       return;
                     } catch (...) {
                       dltensor = reinterpret_cast<DLManagedTensor *>(
                           PyCapsule_GetPointer(ptr, "dltensor"));
                     }
                     dltensor->deleter(dltensor);
                   }
                 });
             return capsule;
           })
Y
yuyang18 已提交
685 686 687 688
      .def("_set_float_element", TensorSetElement<float>)
      .def("_get_float_element", TensorGetElement<float>)
      .def("_set_double_element", TensorSetElement<double>)
      .def("_get_double_element", TensorGetElement<double>)
689 690
      .def("_place", [](framework::Tensor &self) { return self.place(); })
      .def("_dtype", [](framework::Tensor &self) { return self.type(); })
691
      .def("_layout",
692 693 694 695
           [](framework::Tensor &self) {
             return DataLayoutToString(self.layout());
           })
      .def("_share_data_with", &framework::Tensor::ShareDataWith)
696
      .def("__getitem__", PySliceTensor, py::return_value_policy::reference)
697
      .def("__str__", [](const framework::Tensor &self) {
698 699 700 701
        std::stringstream ostr;
        ostr << self;
        return ostr.str();
      });
Y
Yu Yang 已提交
702

L
Leo Chen 已提交
703
  // TODO(cql): add reference: en_user_guide_lod_tensor
704
  py::class_<LoDTensor, framework::Tensor>(m, "LoDTensor", R"DOC(
L
Leo Chen 已提交
705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778
    LoDTensor is a Tensor with optional LoD (Level of Details) information, 
    it can be used for variable-length sequences, 
    see :ref:`user_guide_lod_tensor` for details.

    LoDTensor can be converted to numpy array using :code:`numpy.array(lod_tensor)`.

    You can skip the following explanation if you don't need to know details 
    of LoDTensor.

    The following two examples show how to use LODtensor to represent 
    variable-length sequences.
    
    Example 1:
    
    Suppose x is a LoDTensor representing a variable-length sequence. 
    It contains two logical subsequences, the length of first logical sequence 
    is 2 (e.g., number of samples is 2), the length of second logical sequence 
    is 3, and the total length is 5. The data of the first logical sequence is 
    [1, 2], [3, 4], and the data of the second logical sequence is [5, 6], 
    [7, 8], [9, 10]. The data dimension of each sample is 2. So, the final 
    shape of the LoDTensor is [5, 2], of which 5 is the total length and 2 is 
    the dimension of each sample.
    
    Logically, we can represent the variable-length sequence in two ways: one 
    is in the form of recursive sequence lengths, that is, 
    x.recursive_sequence_lengths=[[2, 3]]; the other is in the form of offsets, 
    that is, x.lod=[[0, 2, 2+3]]. These two representations are equivalent, and 
    you can set and retrieve recursive_sequence_lengths or LoD through the 
    corresponding interfaces of LoDTensor introduced later.

    Actually, in order to access sequence faster, Paddle uses offset to store 
    different lengths of sequences. 
    Therefore, the operations on recursive_sequence_lengths will be converted 
    to the operations on LoD eventually.
    
    .. code-block:: python

      y.data = [[1, 2], [3, 4],
                [5, 6], [7, 8],
                [9, 10], [11, 12], [13, 14]]

      y.shape = [2+2+3, 2]

      y.recursive_sequence_lengths = [[2, 1], [2, 2, 3]]

      y.lod = [[0, 2, 3], [0, 2, 4, 7]]

    Example 2:

    LoD may have more than one level (for example, a paragraph may have more 
    than one sentence and a sentence may have more than one word). Suppose y 
    is a LoDTensor and its lod_level is 2. 
    From level = 0, there are two logical sequences, the length of which is 
    2 and 1, respectively, indicating that the first logical sequence contains 
    two sub-sequences and the second logical sequence contains one sub-sequence. 
    From level = 1, the lengths of two sub-sequences contained by the first 
    logical sequence is 2 and 2, and the length of sub-sequence contained by 
    the second logical sequence is 3.
      
    Therefore, the LoDTensor is represented in the form of recursive sequence 
    lengths as y.recursive_sequence_lengths=[[2,1], [2,2,3]]; and equally, in 
    the form of offset, it is represented as y.lod=[[0,2,3], [0,2,4,7]].

    .. code-block:: python

      y.data = [[1, 2], [3, 4],
                [5, 6], [7, 8],
                [9, 10], [11, 12], [13, 14]]

      y.shape = [2+2+3, 2]

      y.recursive_sequence_lengths = [[2, 1], [2, 2, 3]]

      y.lod = [[0, 2, 3], [0, 2, 4, 7]]
Z
Zeng Jinle 已提交
779 780 781 782 783 784 785

    Examples:
        .. code-block:: python

          import paddle.fluid as fluid

          t = fluid.LoDTensor()
X
Xin Pan 已提交
786 787

        )DOC")
788 789
      .def("__array__",
           [](framework::Tensor &self) { return TensorToPyArray(self); })
790 791 792 793 794 795 796 797 798
      .def("__init__",
           [](LoDTensor &instance, const std::vector<std::vector<size_t>>
                                       &recursive_sequence_lengths) {
             LoD new_lod;
             new_lod.reserve(recursive_sequence_lengths.size());
             std::copy(recursive_sequence_lengths.begin(),
                       recursive_sequence_lengths.end(),
                       std::back_inserter(new_lod));
             LoD new_offset_lod = ConvertToOffsetBasedLoD(new_lod);
C
chengduo 已提交
799 800
             PADDLE_ENFORCE_EQ(
                 CheckLoD(new_offset_lod, -1), true,
801 802 803 804
                 platform::errors::InvalidArgument(
                     "The provided recursive_sequence_lengths info is invalid, "
                     "the LoD converted by recursive_sequence_lengths is %s",
                     new_lod));
805 806
             new (&instance) LoDTensor(new_offset_lod);
           })
Y
Yu Yang 已提交
807
      .def("__init__", [](LoDTensor &instance) { new (&instance) LoDTensor(); })
G
gongweibao 已提交
808
      // We implement offset based LOD in C++ while we use length based with
H
hong 已提交
809 810
      // Python API. So we changed set_lod to set_recursive_sequence_lengths
      // to
G
gongweibao 已提交
811 812 813
      // avoid misuse.
      // The discussion is here:
      // https://github.com/PaddlePaddle/Paddle/issues/10855
D
dangqingqing 已提交
814
      .def("set_lod",
815
           [](LoDTensor &self, const std::vector<std::vector<size_t>> &lod) {
816
             // the input lod is offset-based level-of-detail info
Y
Yu Yang 已提交
817
             LoD new_lod;
818 819
             new_lod.reserve(lod.size());
             std::copy(lod.begin(), lod.end(), std::back_inserter(new_lod));
C
chengduo 已提交
820 821
             PADDLE_ENFORCE_EQ(
                 CheckLoD(new_lod, vectorize(self.dims()).front()), true,
822 823
                 platform::errors::InvalidArgument(
                     "The provided LoD is invalid, the LoD is %s", new_lod));
824
             self.set_lod(new_lod);
S
sneaxiy 已提交
825 826 827 828 829
           },
           py::arg("lod"), R"DOC(
           Set LoD of the LoDTensor.

           Args:
L
Leo Chen 已提交
830 831 832 833
               lod (list[list[int]]): The lod to set.

           Returns:
                None.
Z
Zeng Jinle 已提交
834 835 836 837 838 839 840 841 842 843

           Examples:
               .. code-block:: python

                 import paddle.fluid as fluid
                 import numpy as np

                 t = fluid.LoDTensor()
                 t.set(np.ndarray([5, 30]), fluid.CPUPlace())
                 t.set_lod([[0, 2, 5]])
L
Leo Chen 已提交
844
                 print(t.lod()) # [[0, 2, 5]]
S
sneaxiy 已提交
845
           )DOC")
846 847 848 849 850 851 852 853 854 855 856
      .def("set_recursive_sequence_lengths",
           [](LoDTensor &self, const std::vector<std::vector<size_t>>
                                   &recursive_sequence_lengths) {
             // the input recursive_sequence_lengths is length-based
             // level-of-detail info
             LoD new_lod;
             new_lod.reserve(recursive_sequence_lengths.size());
             std::copy(recursive_sequence_lengths.begin(),
                       recursive_sequence_lengths.end(),
                       std::back_inserter(new_lod));
             LoD new_offset_lod = ConvertToOffsetBasedLoD(new_lod);
C
chengduo 已提交
857 858
             PADDLE_ENFORCE_EQ(
                 CheckLoD(new_offset_lod, vectorize(self.dims()).front()), true,
859 860 861 862 863
                 platform::errors::InvalidArgument(
                     "The provided recursive_sequence_lengths info is invalid, "
                     "the LoD converted by recursive_sequence_lengths is "
                     "%s",
                     new_lod));
864
             self.set_lod(new_offset_lod);
S
sneaxiy 已提交
865 866
           },
           py::arg("recursive_sequence_lengths"), R"DOC(
L
Leo Chen 已提交
867
           Set LoD of the LoDTensor according to recursive sequence lengths.
S
sneaxiy 已提交
868

L
Leo Chen 已提交
869
           For example, if recursive_sequence_lengths=[[2, 3]], which means
870
           there are two sequences with length 2 and 3 respectively, the
L
Leo Chen 已提交
871
           corresponding lod would be [[0, 2, 2+3]], i.e., [[0, 2, 5]].
S
sneaxiy 已提交
872 873

           Args:
L
Leo Chen 已提交
874 875 876 877
                recursive_sequence_lengths (list[list[int]]): The recursive sequence lengths.
           
           Returns:
                None.
Z
Zeng Jinle 已提交
878 879 880 881 882 883 884 885 886 887

           Examples:
               .. code-block:: python

                 import paddle.fluid as fluid
                 import numpy as np

                 t = fluid.LoDTensor()
                 t.set(np.ndarray([5, 30]), fluid.CPUPlace())
                 t.set_recursive_sequence_lengths([[2, 3]])
L
Leo Chen 已提交
888 889
                 print(t.recursive_sequence_length())  # [[2, 3]]
                 print(t.lod())  # [[0, 2, 5]]
S
sneaxiy 已提交
890
           )DOC")
891 892 893 894 895 896 897 898
      .def("lod",
           [](LoDTensor &self) -> std::vector<std::vector<size_t>> {
             // output the offset-based lod info
             LoD lod = self.lod();
             std::vector<std::vector<size_t>> new_lod;
             new_lod.reserve(lod.size());
             std::copy(lod.begin(), lod.end(), std::back_inserter(new_lod));
             return new_lod;
S
sneaxiy 已提交
899 900 901 902 903
           },
           R"DOC(
           Return the LoD of the LoDTensor.

           Returns:
L
Leo Chen 已提交
904 905
               list[list[int]]: The lod of the LoDTensor.
           
Z
Zeng Jinle 已提交
906 907 908 909 910 911 912 913 914 915
           Examples:
               .. code-block:: python

                 import paddle.fluid as fluid
                 import numpy as np

                 t = fluid.LoDTensor()
                 t.set(np.ndarray([5, 30]), fluid.CPUPlace())
                 t.set_lod([[0, 2, 5]])
                 print(t.lod()) # [[0, 2, 5]]
S
sneaxiy 已提交
916
           )DOC")
G
gongweibao 已提交
917
      // Set above comments of set_lod.
918 919 920 921 922 923 924 925
      .def("recursive_sequence_lengths",
           [](LoDTensor &self) -> std::vector<std::vector<size_t>> {
             // output the length-based lod info
             LoD lod = ConvertToLengthBasedLoD(self.lod());
             std::vector<std::vector<size_t>> new_lod;
             new_lod.reserve(lod.size());
             std::copy(lod.begin(), lod.end(), std::back_inserter(new_lod));
             return new_lod;
S
sneaxiy 已提交
926 927
           },
           R"DOC(
L
Leo Chen 已提交
928 929
           Return the recursive sequence lengths corresponding to of the LodD 
           of the LoDTensor.
S
sneaxiy 已提交
930 931

           Returns:
L
Leo Chen 已提交
932
                list[list[int]]: The recursive sequence lengths.
Z
Zeng Jinle 已提交
933 934 935 936 937 938 939 940 941 942 943

           Examples:
               .. code-block:: python

                 import paddle.fluid as fluid
                 import numpy as np

                 t = fluid.LoDTensor()
                 t.set(np.ndarray([5, 30]), fluid.CPUPlace())
                 t.set_recursive_sequence_lengths([[2, 3]])
                 print(t.recursive_sequence_lengths()) # [[2, 3]]
S
sneaxiy 已提交
944 945 946 947 948 949 950 951
           )DOC")
      .def("has_valid_recursive_sequence_lengths",
           [](LoDTensor &self) -> bool {
             // Check that the lod info is valid and match the outermost
             // dimension of the LoDTensor data
             return CheckLoD(self.lod(), vectorize(self.dims()).front());
           },
           R"DOC(
L
Leo Chen 已提交
952
           Check whether the LoD of the LoDTensor is valid.
S
sneaxiy 已提交
953 954

           Returns:
L
Leo Chen 已提交
955
               bool: Whether the LoD is valid.
Z
Zeng Jinle 已提交
956 957 958 959 960 961 962 963 964 965 966

           Examples:
               .. code-block:: python

                 import paddle.fluid as fluid
                 import numpy as np

                 t = fluid.LoDTensor()
                 t.set(np.ndarray([5, 30]), fluid.CPUPlace())
                 t.set_recursive_sequence_lengths([[2, 3]])
                 print(t.has_valid_recursive_sequence_lengths()) # True
W
wopeizl 已提交
967 968 969 970 971 972 973
           )DOC")
      .def("__getitem__", PySliceTensor, py::return_value_policy::reference,
           R"DOC(
           Slice the original Tensor, and remove the LoD information.

           Returns:
               out (Tensor): new Tensor(NOT LoDTensor).
974
           )DOC")
975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992
      .def("__str__",
           [](const LoDTensor &self) {
             std::stringstream ostr;
             ostr << self;
             return ostr.str();
           })
      .def("_copy", [](const LoDTensor &self, const platform::Place &place) {
        // follow fetch_op's inplementation
        LoDTensor dst;
        if (self.IsInitialized() && self.numel() > 0) {
          TensorCopySync(self, place, &dst);
        } else {
          // Not copy, if the src tensor is empty.
          dst.clear();
          dst.Resize({0});
        }
        dst.set_lod(self.lod());
        return dst;
993
#ifdef _WIN32
994
      });
995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044
#else
           })
      .def(py::pickle(
          [](const LoDTensor &t) {  // __getstate__
            auto holder = t.Holder();
            PADDLE_ENFORCE_EQ(
              platform::is_cpu_place(holder->place()), true,
              platform::errors::PreconditionNotMet(
                  "LoDTensor is not on CPU."
                  "Now only LoDTensor on CPU can be serialized."));
            auto* mmap_writer_allocation =
              dynamic_cast<memory::allocation::MemoryMapWriterAllocation *>(
                holder.get());
            PADDLE_ENFORCE_NOT_NULL(mmap_writer_allocation,
              platform::errors::PreconditionNotMet(
                "LoDTensor is not in shared memory."
                "Now only LoDTensor on shared memory can be serialized."));
            int type_idx = static_cast<int>(t.type());

            return py::make_tuple(mmap_writer_allocation->ipc_name(),
                                  mmap_writer_allocation->size(),
                                  type_idx, vectorize(t.dims()), t.lod());
          },
          [](py::tuple t) {  // __setstate__
            if (t.size() != 5)
              throw std::runtime_error("Invalid LoDTensor state!");

            // 1. Create a new C++ instance
            LoDTensor tensor;

            // 2. Rebuild Allocation
            const std::string &ipc_name = t[0].cast<std::string>();
            size_t size = t[1].cast<size_t>();
            auto shared_reader_holder =
              memory::allocation::RebuildMemoryMapReaderAllocation(
                ipc_name, size);

            // 3. Maintain global fd set
            VLOG(3) << "LoDTensor ipc name: " << ipc_name;
            memory::allocation::MemoryMapFdSet::Instance().Insert(ipc_name);

            // 4. Rebuild LoDTensor
            tensor.ResetHolderWithType(shared_reader_holder,
              static_cast<proto::VarType::Type>(t[2].cast<int>()));
            tensor.Resize(make_ddim(t[3].cast<std::vector<int>>()));
            tensor.set_lod(t[4].cast<framework::LoD>());

            return tensor;
          }));
#endif
D
dangqingqing 已提交
1045

Q
qijun 已提交
1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056
  py::class_<SelectedRows>(m, "SelectedRows")
      .def("__init__",
           [](SelectedRows &instance) { new (&instance) SelectedRows(); })
      .def("__init__",
           [](SelectedRows &instance, const std::vector<int64_t> rows,
              const int64_t &height) {
             new (&instance) SelectedRows(rows, height);
           })
      .def("get_tensor",
           [](SelectedRows &self) { return self.mutable_value(); },
           py::return_value_policy::reference)
1057 1058
      .def("numel",
           [](SelectedRows &self) -> int64_t { return self.value().numel(); })
Q
qijun 已提交
1059 1060
      .def("set_height", &SelectedRows::set_height)
      .def("height", &SelectedRows::height)
Q
qijun 已提交
1061 1062 1063 1064 1065 1066 1067 1068 1069
      .def("set_rows",
           [](SelectedRows &self, std::vector<int64_t> rows) {
#ifndef PADDLE_WITH_CUDA
             self.set_rows(rows);
#else
        Vector<int64_t> new_rows(rows);
        self.set_rows(new_rows);
#endif
           })
1070
      .def("sync_index", [](SelectedRows &instance) { instance.SyncIndex(); })
1071
      .def("rows", [](SelectedRows &self) {
1072 1073 1074 1075 1076
        auto rows = self.rows();
        std::vector<int64_t> new_rows;
        new_rows.reserve(rows.size());
        std::copy(rows.begin(), rows.end(), std::back_inserter(new_rows));
        return new_rows;
1077
      });
Q
qijun 已提交
1078

1079
  py::class_<Variable>(m, "Variable", R"DOC(Variable Class.
1080 1081 1082

All parameter, weight, gradient are variables in Paddle.
)DOC")
S
sneaxiy 已提交
1083
      .def(py::init<>())
1084
      .def("is_int", [](const Variable &var) { return var.IsType<int>(); })
1085
      .def("set_int",
1086 1087
           [](Variable &var, int val) -> void { *var.GetMutable<int>() = val; })
      .def("get_int", [](const Variable &var) -> int { return var.Get<int>(); })
1088 1089 1090 1091 1092 1093 1094
      .def("is_float", [](const Variable &var) { return var.IsType<float>(); })
      .def("set_float",
           [](Variable &var, float val) -> void {
             *var.GetMutable<float>() = val;
           })
      .def("get_float",
           [](const Variable &var) -> float { return var.Get<float>(); })
Y
Yu Yang 已提交
1095
      .def("get_tensor",
1096 1097
           [](Variable &self) -> LoDTensor * {
             return self.GetMutable<LoDTensor>();
D
dangqingqing 已提交
1098 1099
           },
           py::return_value_policy::reference)
1100 1101 1102 1103
      .def("get_bytes",
           [](Variable &self) {
             return py::bytes(*self.GetMutable<std::string>());
           })
Y
Yu Yang 已提交
1104 1105 1106
      .def("get_lod_rank_table",
           [](Variable &self) { return self.GetMutable<LoDRankTable>(); },
           py::return_value_policy::reference)
Q
qijun 已提交
1107 1108 1109 1110 1111
      .def("get_selected_rows",
           [](Variable &self) -> SelectedRows * {
             return self.GetMutable<SelectedRows>();
           },
           py::return_value_policy::reference)
Y
Yu Yang 已提交
1112 1113 1114
      .def("get_lod_tensor_array",
           [](Variable &self) { return self.GetMutable<LoDTensorArray>(); },
           py::return_value_policy::reference)
1115 1116 1117
      .def("get_fetch_list",
           [](Variable &self) { return self.GetMutable<FetchList>(); },
           py::return_value_policy::reference)
1118
#if (defined(PADDLE_WITH_NCCL))
D
Dong Zhihong 已提交
1119 1120 1121 1122 1123
      .def("get_communicator",
           [](Variable &self) -> platform::Communicator * {
             return self.GetMutable<platform::Communicator>();
           },
           py::return_value_policy::reference)
Y
Yu Yang 已提交
1124
#endif
Y
Refine  
Yu Yang 已提交
1125 1126
      .def("get_reader",
           [](Variable &self) -> framework::ReaderHolder * {
1127 1128 1129 1130
             PADDLE_ENFORCE_EQ(
                 self.IsType<framework::ReaderHolder>(), true,
                 platform::errors::InvalidArgument(
                     "The variable is not type of ReaderHolder."));
Y
Refine  
Yu Yang 已提交
1131 1132
             return self.GetMutable<framework::ReaderHolder>();
           },
1133 1134 1135 1136 1137
           py::return_value_policy::reference)
      .def("set_scope", [](Variable &self, Scope &scope) {
        auto scope_vec = self.GetMutable<std::vector<framework::Scope *>>();
        scope_vec->emplace_back(&scope);
      });
1138

S
sneaxiy 已提交
1139
  BindReader(&m);
Y
Refine  
Yu Yang 已提交
1140

S
sneaxiy 已提交
1141
  py::class_<Scope>(m, "_Scope", R"DOC(
Q
Qiao Longfei 已提交
1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154
    Scope is an association of a name to Variable. All variables belong to Scope.

    Variables in a parent scope can be retrieved from local scope.

    You need to specify a scope to run a Net, i.e., `exe.Run(&scope)`.
    One net can run in different scopes and update different variable in the
    scope.

    You can create var in a scope and get it from the scope.

    Examples:
        .. code-block:: python

1155
          import paddle.fluid as fluid
Q
Qiao Longfei 已提交
1156 1157 1158 1159 1160 1161
          # create tensor from a scope and set value to it.
          param = scope.var('Param').get_tensor()
          param_array = np.full((height, row_numel), 5.0).astype("float32")
          param.set(param_array, place)

        )DOC")
S
sneaxiy 已提交
1162 1163
      .def("_remove_from_pool",
           [](Scope &self) { ScopePool::Instance().Remove(&self); })
D
dongzhihong 已提交
1164
      .def("var",
1165
           [](Scope &self, const std::string &name) -> Variable * {
D
dongzhihong 已提交
1166
             return self.Var(name);
Y
Yu Yang 已提交
1167
           },
S
sneaxiy 已提交
1168 1169
           py::arg("name"),
           R"DOC(
1170
           Find or create variable named :code:`name` in the current scope.
S
sneaxiy 已提交
1171

1172
           If the variable named :code:`name` does not exist in the
S
sneaxiy 已提交
1173
           current scope, the variable would be created. Otherwise,
1174
           return the existing variable.
S
sneaxiy 已提交
1175 1176

           Args:
1177 1178
               name (str): the variable name.

S
sneaxiy 已提交
1179
           Returns:
1180
               out (core.Variable): the found or created variable.
S
sneaxiy 已提交
1181 1182 1183 1184
           )DOC",
           py::return_value_policy::reference)
      .def("find_var", &Scope::FindVar, py::arg("name"),
           R"DOC(
1185
           Find variable named :code:`name` in the current scope or
1186
           its parent scope. Return None if not found. 
1187

S
sneaxiy 已提交
1188 1189
           Args:
               name (str): the variable name.
1190

S
sneaxiy 已提交
1191
           Returns:
1192
               out (core.Variable|None): the found variable or None.
S
sneaxiy 已提交
1193
           )DOC",
1194
           py::return_value_policy::reference)
1195
      .def("new_scope", [](Scope &self) -> Scope * { return &self.NewScope(); },
S
sneaxiy 已提交
1196 1197 1198 1199 1200 1201
           R"DOC(
           Create a new sub-scope of the current scope.

           Returns:
               out (core._Scope): the created sub-scope.
           )DOC",
1202
           py::return_value_policy::reference)
S
sneaxiy 已提交
1203 1204 1205
      .def("drop_kids", &Scope::DropKids,
           R"DOC(
           Delete all sub-scopes of the current scope.
S
sneaxiy 已提交
1206 1207
           )DOC")
      .def("_kids", &Scope::kids);
1208

S
sneaxiy 已提交
1209 1210 1211 1212 1213 1214
  m.def("Scope",
        []() -> Scope * {
          auto *s = new Scope();
          ScopePool::Instance().Insert(std::unique_ptr<Scope>(s));
          return s;
        },
S
sneaxiy 已提交
1215 1216
        R"DOC(
        Create a new scope.
1217

S
sneaxiy 已提交
1218 1219 1220
        Returns:
            out (core._Scope): the created scope.
        )DOC",
S
sneaxiy 已提交
1221 1222
        py::return_value_policy::reference);

Y
Yu Yang 已提交
1223 1224
  //! @note: Be careful! PyBind will return std::string as an unicode, not
  //! Python str. If you want a str object, you should cast them in Python.
Y
Yu Yang 已提交
1225 1226
  m.def("get_all_op_protos", []() -> std::vector<py::bytes> {
    std::vector<py::bytes> ret_values;
1227 1228 1229 1230
    for (auto &iter : OpInfoMap::Instance().map()) {
      auto &info = iter.second;
      if (info.HasOpProtoAndChecker()) {
        std::string str;
C
chengduo 已提交
1231 1232
        PADDLE_ENFORCE_EQ(
            info.Proto().SerializeToString(&str), true,
1233 1234
            platform::errors::Fatal(
                "Serialize OpProto Error. This could be a bug of Paddle."));
1235 1236 1237
        ret_values.emplace_back(str);
      }
    }
Y
Yu Yang 已提交
1238 1239
    return ret_values;
  });
1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252
  m.def("get_op_attrs_default_value",
        [](py::bytes byte_name) -> paddle::framework::AttributeMap {
          std::string op_type = byte_name;
          paddle::framework::AttributeMap res;
          auto info = OpInfoMap::Instance().GetNullable(op_type);
          if (info != nullptr) {
            if (info->HasOpProtoAndChecker()) {
              auto op_checker = info->Checker();
              res = op_checker->GetAttrsDefaultValuesMap();
            }
          }
          return res;
        });
1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268
  m.def(
      "get_grad_op_desc", [](const OpDesc &op_desc,
                             const std::unordered_set<std::string> &no_grad_set,
                             const std::vector<BlockDesc *> &grad_sub_block) {
        std::unordered_map<std::string, std::string> grad_to_var;
        std::vector<std::unique_ptr<OpDesc>> grad_op_descs =
            framework::OpInfoMap::Instance()
                .Get(op_desc.Type())
                .GradOpMaker()(op_desc, no_grad_set, &grad_to_var,
                               grad_sub_block);
        std::vector<OpDesc *> grad_op_desc_ptrs(grad_op_descs.size());
        std::transform(grad_op_descs.begin(), grad_op_descs.end(),
                       grad_op_desc_ptrs.begin(),
                       [](std::unique_ptr<OpDesc> &p) { return p.release(); });
        return std::make_pair(grad_op_desc_ptrs, grad_to_var);
      });
1269 1270 1271
  m.def("has_grad_op_maker", [](const std::string op_type) {
    return framework::OpInfoMap::Instance().Get(op_type).HasGradOpMaker();
  });
1272 1273 1274 1275 1276
  m.def("has_non_empty_grad_op_maker", [](const std::string op_type) {
    return framework::OpInfoMap::Instance()
        .Get(op_type)
        .HasNonEmptyGradOpMaker();
  });
1277 1278 1279
  m.def("has_infer_inplace", [](const std::string op_type) {
    return framework::OpInfoMap::Instance().Get(op_type).HasInferInplace();
  });
1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293
  m.def("infer_no_need_buffer_slots",
        [](const std::string op_type, const framework::VariableNameMap &inputs,
           const framework::VariableNameMap &outputs,
           const framework::AttributeMap &attrs) {
          auto infer_func = framework::OpInfoMap::Instance()
                                .Get(op_type)
                                .NoNeedBufferVarsInferer();
          if (infer_func) {
            return infer_func(inputs, outputs, attrs);
          } else {
            std::unordered_set<std::string> empty = {};
            return empty;
          }
        });
Y
Yu Yang 已提交
1294
  m.def("prune", [](const ProgramDesc &origin,
1295
                    const std::set<std::string> &feeded_var_names,
1296
                    const std::vector<std::array<size_t, 2>> &targets) {
Y
Yu Yang 已提交
1297
    ProgramDesc prog_with_targets(origin);
1298

1299
    for (const auto &t : targets) {
1300
      prog_with_targets.MutableBlock(t[0])->Op(t[1])->SetIsTarget(true);
1301
    }
1302
    proto::ProgramDesc pruned_desc;
1303 1304 1305 1306
    auto pruned_origin_block_id_map =
        Prune(*prog_with_targets.Proto(), feeded_var_names, &pruned_desc);
    return std::make_tuple(ProgramDesc(pruned_desc),
                           pruned_origin_block_id_map);
1307
  });
1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324
  m.def("prune_backward",
        [](const framework::ProgramDesc &program) {
          return PruneBackward(program);
        },
        R"DOC(
             Prune the backward part of a program, mostly called in
             program.clone(for_test=True).
              
             Args:
                   program (ProgramDesc): The original program.

             Returns:
                   tuple(ProgramDesc, map<int, int>): The first part is 
                   the pruned program desc, and the second part is a map
                   which contains the id pair of pruned block and corresponding
                   origin block.
           )DOC");
1325 1326 1327 1328
  m.def("empty_var_name",
        []() { return std::string(framework::kEmptyVarName); });
  m.def("grad_var_suffix",
        []() { return std::string(framework::kGradVarSuffix); });
1329 1330 1331
  m.def_submodule(
       "var_names",
       "The module will return special predefined variable name in Paddle")
Y
Yi Wang 已提交
1332 1333
      .def("empty", []() { return kEmptyVarName; })
      .def("temp", []() { return kTempVarName; });
1334

Q
qijun 已提交
1335
  // clang-format off
Y
Yu Yang 已提交
1336
  py::class_<paddle::platform::DeviceContext>(m, "DeviceContext")
Q
qijun 已提交
1337 1338
      .def_static("create",
                  [](paddle::platform::CPUPlace& place)
Q
qijun 已提交
1339
                      -> paddle::platform::DeviceContext* {
Q
qijun 已提交
1340 1341
                    return new paddle::platform::CPUDeviceContext();
                  })
1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353
      .def_static("create",
                  [](paddle::platform::XPUPlace& place)
                      -> paddle::platform::DeviceContext* {
#ifndef PADDLE_WITH_XPU
             PADDLE_THROW(
                 platform::errors::PermissionDenied(
                 "Cannot use XPUPlace in CPU/GPU version, "
                 "Please recompile or reinstall Paddle with XPU support."));
#else
                    return new paddle::platform::XPUDeviceContext(place);
#endif
                  })
Q
qijun 已提交
1354
      .def_static("create",
D
dzhwinter 已提交
1355
                  [](paddle::platform::CUDAPlace& place)
Q
qijun 已提交
1356
                      -> paddle::platform::DeviceContext* {
1357
#ifndef PADDLE_WITH_CUDA
1358 1359 1360 1361
             PADDLE_THROW(
                 platform::errors::PermissionDenied(
                 "Cannot use CUDAPlace in CPU only version, "
                 "Please recompile or reinstall Paddle with CUDA support."));
Q
qijun 已提交
1362
#else
Q
qijun 已提交
1363
                    return new paddle::platform::CUDADeviceContext(place);
Q
qijun 已提交
1364
#endif
C
chengduoZH 已提交
1365 1366 1367 1368 1369
                  })
          .def_static("create",
                [](paddle::platform::CUDAPinnedPlace& place)
                        -> paddle::platform::DeviceContext* {
#ifndef PADDLE_WITH_CUDA
1370 1371 1372 1373
             PADDLE_THROW(
                 platform::errors::PermissionDenied(
                 "Cannot use CUDAPinnedPlace in CPU only version, "
                 "Please recompile or reinstall Paddle with CUDA support."));
C
chengduoZH 已提交
1374 1375 1376 1377
#else
                  return new paddle::platform::CUDAPinnedDeviceContext(place);
#endif
                });;
D
Dong Zhihong 已提交
1378
// clang-format on
1379
#if defined(PADDLE_WITH_NCCL)
D
Dong Zhihong 已提交
1380 1381
  py::class_<platform::Communicator>(m, "Communicator").def(py::init<>());
#endif
1382
  py::class_<platform::CUDAPlace>(m, "CUDAPlace", R"DOC(
1383 1384 1385 1386 1387

    CUDAPlace is a descriptor of a device.
    It represents a GPU device allocated or to be allocated with Tensor or LoDTensor.
    Each CUDAPlace has a dev_id to indicate the graphics card ID represented by the current CUDAPlace,
    staring from 0.
1388
    The memory of CUDAPlace with different dev_id is not accessible.
1389 1390 1391 1392 1393 1394 1395 1396
    Numbering here refers to the logical ID of the visible graphics card, not the actual ID of the graphics card.
    You can set visible GPU devices by setting the `CUDA_VISIBLE_DEVICES` environment variable.
    When the program starts, visible GPU devices will be numbered from 0.
    If `CUDA_VISIBLE_DEVICES` is not set, all devices are visible by default,
    and the logical ID is the same as the actual ID.

    Parameters:
        id (int): GPU device ID.
L
lujun 已提交
1397 1398 1399 1400

    Examples:
        .. code-block:: python

1401 1402 1403
          import paddle

          place = paddle.CUDAPlace(0)
L
lujun 已提交
1404

1405
        )DOC")
S
sneaxiy 已提交
1406 1407 1408
      .def("__init__",
           [](platform::CUDAPlace &self, int dev_id) {
#ifdef PADDLE_WITH_CUDA
1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432
             if (UNLIKELY(dev_id < 0)) {
               LOG(ERROR) << string::Sprintf(
                   "Invalid CUDAPlace(%d), device id must be 0 or "
                   "positive integer",
                   dev_id);
               std::exit(-1);
             }

             if (UNLIKELY(dev_id >= platform::GetCUDADeviceCount())) {
               if (platform::GetCUDADeviceCount() == 0) {
                 LOG(ERROR) << "Cannot use GPU because there is no GPU "
                               "detected on your "
                               "machine.";
                 std::exit(-1);
               } else {
                 LOG(ERROR) << string::Sprintf(
                     "Invalid CUDAPlace(%d), must inside [0, %d), because GPU "
                     "number on your machine is %d",
                     dev_id, platform::GetCUDADeviceCount(),
                     platform::GetCUDADeviceCount());
                 std::exit(-1);
               }
             }

S
sneaxiy 已提交
1433 1434
             new (&self) platform::CUDAPlace(dev_id);
#else
1435 1436 1437 1438 1439 1440 1441 1442 1443
             LOG(ERROR) << string::Sprintf(
                 "Cannot use GPU because you have installed CPU version "
                 "PaddlePaddle.\n"
                 "If you want to use GPU, please try to install GPU version "
                 "PaddlePaddle by: pip install paddlepaddle-gpu\n"
                 "If you only have CPU, please change CUDAPlace(%d) to be "
                 "CPUPlace().\n",
                 dev_id);
             std::exit(-1);
S
sneaxiy 已提交
1444 1445
#endif
           })
1446
#ifdef PADDLE_WITH_CUDA
1447 1448
      .def("get_device_id",
           [](const platform::CUDAPlace &self) { return self.GetDeviceId(); })
S
sneaxiy 已提交
1449 1450 1451 1452
      .def("_type", &PlaceIndex<platform::CUDAPlace>)
      .def("_equals", &IsSamePlace<platform::CUDAPlace, platform::Place>)
      .def("_equals", &IsSamePlace<platform::CUDAPlace, platform::CUDAPlace>)
      .def("_equals", &IsSamePlace<platform::CUDAPlace, platform::CPUPlace>)
1453
      .def("_equals", &IsSamePlace<platform::CUDAPlace, platform::XPUPlace>)
S
sneaxiy 已提交
1454 1455
      .def("_equals",
           &IsSamePlace<platform::CUDAPlace, platform::CUDAPinnedPlace>)
1456 1457 1458
      .def("_get_device_id",
           [](platform::CUDAPlace &self) -> int { return self.GetDeviceId(); })
#endif
1459
      .def("__repr__", string::to_string<const platform::CUDAPlace &>)
D
dzhwinter 已提交
1460
      .def("__str__", string::to_string<const platform::CUDAPlace &>);
Q
qijun 已提交
1461

1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506
  py::class_<platform::XPUPlace>(m, "XPUPlace", R"DOC(
    **Note**:
    Examples:
        .. code-block:: python
          import paddle.fluid as fluid
          xpu_place = fluid.XPUPlace(0)
        )DOC")
      .def("__init__",
           [](platform::XPUPlace &self, int dev_id) {
#ifdef PADDLE_WITH_XPU
             if (UNLIKELY(dev_id < 0)) {
               LOG(ERROR) << string::Sprintf(
                   "Invalid XPUPlace(%d), device id must be 0 or "
                   "positive integer",
                   dev_id);
               std::exit(-1);
             }
             if (UNLIKELY(dev_id >= platform::GetXPUDeviceCount())) {
               if (platform::GetXPUDeviceCount() == 0) {
                 LOG(ERROR) << "Cannot use XPU because there is no XPU "
                               "detected on your "
                               "machine.";
                 std::exit(-1);
               } else {
                 LOG(ERROR) << string::Sprintf(
                     "Invalid XPUPlace(%d), must inside [0, %d), because XPU "
                     "number on your machine is %d",
                     dev_id, platform::GetXPUDeviceCount(),
                     platform::GetXPUDeviceCount());
                 std::exit(-1);
               }
             }
             new (&self) platform::XPUPlace(dev_id);
#else
             LOG(ERROR) << string::Sprintf(
                 "Cannot use XPU because you have installed CPU/GPU version "
                 "PaddlePaddle.\n"
                 "If you want to use XPU, please try to install XPU version "
                 "PaddlePaddle by: pip install paddlepaddle-xpu\n"
                 "If you only have CPU, please change XPUPlace(%d) to be "
                 "CPUPlace().\n",
                 dev_id);
             std::exit(-1);
#endif
           })
1507
#ifdef PADDLE_WITH_XPU
1508 1509 1510 1511 1512 1513 1514
      .def("_type", &PlaceIndex<platform::XPUPlace>)
      .def("_equals", &IsSamePlace<platform::XPUPlace, platform::Place>)
      .def("_equals", &IsSamePlace<platform::XPUPlace, platform::CUDAPlace>)
      .def("_equals", &IsSamePlace<platform::XPUPlace, platform::CPUPlace>)
      .def("_equals", &IsSamePlace<platform::XPUPlace, platform::XPUPlace>)
      .def("_equals",
           &IsSamePlace<platform::XPUPlace, platform::CUDAPinnedPlace>)
1515 1516 1517
      .def("get_device_id",
           [](const platform::XPUPlace &self) { return self.GetDeviceId(); })
#endif
1518
      .def("__repr__", string::to_string<const platform::XPUPlace &>)
1519
      .def("__str__", string::to_string<const platform::XPUPlace &>);
1520 1521 1522
#ifdef PADDLE_WITH_XPU
  m.def("get_xpu_device_count", platform::GetXPUDeviceCount);
#endif
1523
  py::class_<paddle::platform::CPUPlace>(m, "CPUPlace", R"DOC(
1524
    CPUPlace is a descriptor of a device.
1525
    It represents a CPU device on which a tensor will be allocated and a model will run.
L
lujun 已提交
1526 1527 1528 1529

    Examples:
        .. code-block:: python

1530 1531
          import paddle
          cpu_place = paddle.CPUPlace()
L
lujun 已提交
1532

1533
        )DOC")
1534
      .def(py::init<>())
S
sneaxiy 已提交
1535 1536
      .def("_type", &PlaceIndex<platform::CPUPlace>)
      .def("_equals", &IsSamePlace<platform::CPUPlace, platform::Place>)
1537
      .def("_equals", &IsSamePlace<platform::CPUPlace, platform::XPUPlace>)
S
sneaxiy 已提交
1538 1539 1540 1541
      .def("_equals", &IsSamePlace<platform::CPUPlace, platform::CUDAPlace>)
      .def("_equals", &IsSamePlace<platform::CPUPlace, platform::CPUPlace>)
      .def("_equals",
           &IsSamePlace<platform::CPUPlace, platform::CUDAPinnedPlace>)
1542
      .def("__repr__", string::to_string<const platform::CPUPlace &>)
1543
      .def("__str__", string::to_string<const platform::CPUPlace &>);
Y
Yu Yang 已提交
1544

1545
  py::class_<paddle::platform::CUDAPinnedPlace>(m, "CUDAPinnedPlace", R"DOC(
1546 1547 1548 1549 1550 1551
    CUDAPinnedPlace is a descriptor of a device.
    It refers to the page locked memory allocated by the CUDA function `cudaHostAlloc()` in the host memory.
    The host operating system will not paging and exchanging the memory.
    It can be accessed through direct memory access technology to speed up the copy of data between the host and GPU.
    For more information on CUDA data transfer and `pinned memory`,
    please refer to `official document <https://docs.nvidia.com/cuda/cuda-c-best-practices-guide/index.html#pinned-memory>`_ .
L
lujun 已提交
1552 1553 1554 1555

    Examples:
        .. code-block:: python

1556 1557
          import paddle
          place = paddle.CUDAPinnedPlace()
L
lujun 已提交
1558

1559
        )DOC")
S
sneaxiy 已提交
1560
      .def("__init__",
S
sneaxiy 已提交
1561
           [](platform::CUDAPinnedPlace &self) {
S
sneaxiy 已提交
1562
#ifndef PADDLE_WITH_CUDA
1563 1564 1565
             PADDLE_THROW(platform::errors::PermissionDenied(
                 "Cannot use CUDAPinnedPlace in CPU only version, "
                 "Please recompile or reinstall Paddle with CUDA support."));
S
sneaxiy 已提交
1566
#endif
S
sneaxiy 已提交
1567
             new (&self) platform::CUDAPinnedPlace();
S
sneaxiy 已提交
1568
           })
S
sneaxiy 已提交
1569 1570 1571 1572
      .def("_type", &PlaceIndex<platform::CUDAPinnedPlace>)
      .def("_equals", &IsSamePlace<platform::CUDAPinnedPlace, platform::Place>)
      .def("_equals",
           &IsSamePlace<platform::CUDAPinnedPlace, platform::CUDAPlace>)
1573 1574
      .def("_equals",
           &IsSamePlace<platform::CUDAPinnedPlace, platform::XPUPlace>)
S
sneaxiy 已提交
1575 1576 1577 1578
      .def("_equals",
           &IsSamePlace<platform::CUDAPinnedPlace, platform::CPUPlace>)
      .def("_equals",
           &IsSamePlace<platform::CUDAPinnedPlace, platform::CUDAPinnedPlace>)
1579
      .def("__repr__", string::to_string<const platform::CUDAPinnedPlace &>)
C
chengduoZH 已提交
1580 1581
      .def("__str__", string::to_string<const platform::CUDAPinnedPlace &>);

Y
Yu Yang 已提交
1582 1583
  py::class_<platform::Place>(m, "Place")
      .def(py::init<>())
S
sneaxiy 已提交
1584 1585 1586 1587
      .def("_type", &PlaceIndex<platform::Place>)
      .def("_equals", &IsSamePlace<platform::Place, platform::Place>)
      .def("_equals", &IsSamePlace<platform::Place, platform::CUDAPlace>)
      .def("_equals", &IsSamePlace<platform::Place, platform::CPUPlace>)
1588
      .def("_equals", &IsSamePlace<platform::Place, platform::XPUPlace>)
S
sneaxiy 已提交
1589
      .def("_equals", &IsSamePlace<platform::Place, platform::CUDAPinnedPlace>)
X
xuezhong 已提交
1590 1591
      .def("is_gpu_place",
           [](platform::Place &self) { return platform::is_gpu_place(self); })
S
sneaxiy 已提交
1592 1593
      .def("is_cpu_place",
           [](platform::Place &self) { return platform::is_cpu_place(self); })
1594 1595
      .def("is_xpu_place",
           [](platform::Place &self) { return platform::is_xpu_place(self); })
S
sneaxiy 已提交
1596 1597 1598 1599
      .def("is_cuda_pinned_place",
           [](platform::Place &self) {
             return platform::is_cuda_pinned_place(self);
           })
X
xuezhong 已提交
1600 1601
      .def("gpu_device_id",
           [](platform::Place &self) {
1602
             return BOOST_GET_CONST(platform::CUDAPlace, self).device;
X
xuezhong 已提交
1603
           })
1604 1605 1606 1607
      .def("xpu_device_id",
           [](platform::Place &self) {
             return BOOST_GET_CONST(platform::XPUPlace, self).device;
           })
S
sneaxiy 已提交
1608 1609
      .def("set_place", [](platform::Place &self,
                           const platform::Place &other) { self = other; })
Y
Yu Yang 已提交
1610 1611 1612 1613
      .def("set_place",
           [](platform::Place &self, const platform::CPUPlace &cpu_place) {
             self = cpu_place;
           })
1614 1615 1616 1617
      .def("set_place",
           [](platform::Place &self, const platform::XPUPlace &xpu_place) {
             self = xpu_place;
           })
Y
Yu Yang 已提交
1618
      .def("set_place",
D
dzhwinter 已提交
1619
           [](platform::Place &self, const platform::CUDAPlace &gpu_place) {
Y
Yu Yang 已提交
1620
             self = gpu_place;
C
chengduoZH 已提交
1621
           })
1622 1623 1624 1625 1626 1627 1628
      .def("set_place",
           [](platform::Place &self,
              const platform::CUDAPinnedPlace &cuda_pinned_place) {
             self = cuda_pinned_place;
           })
      .def("__repr__", string::to_string<const platform::Place &>)
      .def("__str__", string::to_string<const platform::Place &>);
Y
Yu Yang 已提交
1629

Y
Yu Yang 已提交
1630
  py::class_<OperatorBase>(m, "Operator")
C
chengduo 已提交
1631 1632 1633 1634 1635
      .def_static(
          "create",
          [](py::bytes protobin) {
            proto::OpDesc desc;
            PADDLE_ENFORCE_EQ(desc.ParsePartialFromString(protobin), true,
1636 1637 1638 1639 1640 1641 1642
                              platform::errors::InvalidArgument(
                                  "Cannot parse user input to OpDesc"));
            PADDLE_ENFORCE_EQ(
                desc.IsInitialized(), true,
                platform::errors::InvalidArgument(
                    "The provided OpDesc is not initialized, the reason is: %s",
                    desc.InitializationErrorString()));
C
chengduo 已提交
1643 1644
            return OpRegistry::CreateOp(desc);
          })
1645
      .def("run",
1646
           [](OperatorBase &self, const Scope &scope,
D
dzhwinter 已提交
1647
              const platform::CPUPlace &place) { self.Run(scope, place); })
1648 1649 1650
      .def("run",
           [](OperatorBase &self, const Scope &scope,
              const platform::XPUPlace &place) { self.Run(scope, place); })
D
dzhwinter 已提交
1651 1652
      .def("run",
           [](OperatorBase &self, const Scope &scope,
D
dzhwinter 已提交
1653
              const platform::CUDAPlace &place) { self.Run(scope, place); })
C
chengduoZH 已提交
1654 1655 1656 1657 1658
      .def("run",
           [](OperatorBase &self, const Scope &scope,
              const platform::CUDAPinnedPlace &place) {
             self.Run(scope, place);
           })
Y
Yu Yang 已提交
1659 1660 1661 1662 1663 1664 1665
      .def("type",
           [](const OperatorBase &op) -> std::string { return op.Type(); })
      .def("outputs",
           [](const OperatorBase &op)
               -> std::map<std::string, std::vector<std::string>> {
                 return op.Outputs();
               })
Q
qijun 已提交
1666 1667
      .def("output_vars",
           [](const OperatorBase &op) { return op.OutputVars(true); })
Y
Yu Yang 已提交
1668
      .def("inputs", [](const OperatorBase &op) { return op.Inputs(); })
Q
qijun 已提交
1669
      .def("input_vars", [](const OperatorBase &op) { return op.InputVars(); })
Y
Yu Yang 已提交
1670 1671 1672 1673
      .def("__str__", &OperatorBase::DebugString)
      .def("no_intermediate_outputs",
           [](const OperatorBase &op) { return op.OutputVars(false); })
      .def("support_gpu", &OperatorBase::SupportGPU);
Y
Yu Yang 已提交
1674

1675 1676 1677
  py::class_<framework::ExecutorPrepareContext>(m, "ExecutorPrepareContext")
      .def(py::init<const ProgramDesc &, size_t>());

1678 1679 1680 1681 1682 1683 1684 1685 1686
  py::class_<framework::TrainerBase, std::shared_ptr<framework::TrainerBase>>(
      m, "TrainerBase")
      .def("get_worker_scope",
           [](TrainerBase &self, int thread_id) -> Scope * {
             return self.GetWorkerScope(thread_id);
           },
           py::return_value_policy::reference)
      .def("finalize", &TrainerBase::Finalize);

F
fengjiayi 已提交
1687
  py::class_<framework::Executor>(m, "Executor")
D
dzhwinter 已提交
1688
      .def(py::init<const platform::Place &>())
Y
Yancey1989 已提交
1689
      .def("close", &Executor::Close)
1690 1691
      .def("run_from_dataset", &Executor::RunFromDataset,
           py::call_guard<py::gil_scoped_release>())
D
Dong Daxiang 已提交
1692 1693
      .def("release_trainer", &Executor::ReleaseTrainer,
           py::call_guard<py::gil_scoped_release>())
1694 1695 1696 1697
      .def("init_for_dataset",
           [](Executor &self, const ProgramDesc &prog,
              const std::string &trainer_desc, Scope *scope,
              Dataset *dataset) -> std::shared_ptr<TrainerBase> {
D
Dong Daxiang 已提交
1698
             pybind11::gil_scoped_release release;
1699 1700 1701 1702 1703 1704 1705
             return self.InitForDataset(prog, trainer_desc, scope, dataset);
           })
      .def("run_from_dataset",
           [](Executor &self, std::shared_ptr<TrainerBase> trainer) {
             pybind11::gil_scoped_release release;
             self.RunFromDataset(trainer);
           })
1706 1707 1708
      .def("run_prepared_ctx",
           [](Executor &self, ExecutorPrepareContext *ctx, Scope *scope,
              std::map<std::string, const LoDTensor *> *feed_targets,
1709
              std::map<std::string, FetchType *> *fetch_targets,
1710 1711 1712 1713 1714 1715 1716 1717
              bool create_local_scope = true, bool create_vars = true,
              const std::string &feed_holder_name = "feed",
              const std::string &fetch_holder_name = "fetch") {
             pybind11::gil_scoped_release release;
             self.RunPreparedContext(ctx, scope, feed_targets, fetch_targets,
                                     create_local_scope, create_vars,
                                     feed_holder_name, fetch_holder_name);
           })
1718
      .def("run_prepared_ctx",
G
guru4elephant 已提交
1719 1720 1721 1722 1723 1724 1725
           [](Executor &self, ExecutorPrepareContext *ctx, Scope *scope,
              bool create_local_scope = true, bool create_vars = true,
              bool keep_kids = false) {
             pybind11::gil_scoped_release release;
             self.RunPreparedContext(ctx, scope, create_local_scope,
                                     create_vars, keep_kids);
           })
1726 1727 1728 1729 1730 1731 1732 1733 1734 1735
      .def("prepare",
           [](Executor &self, const ProgramDesc &program, int block_id,
              const std::vector<std::string> &skip_ref_cnt_vars =
                  std::vector<std::string>(),
              bool force_disable_gc = false) {
             pybind11::gil_scoped_release release;
             return self.Prepare(program, block_id, skip_ref_cnt_vars,
                                 force_disable_gc);
           })
      .def("create_variables", &Executor::CreateVariables)
S
sneaxiy 已提交
1736
      .def("run", [](Executor &self, const ProgramDesc &prog, Scope *scope,
S
sneaxiy 已提交
1737 1738
                     int block_id, bool create_local_scope, bool create_vars,
                     const std::vector<std::string> &fetch_vars) {
S
sneaxiy 已提交
1739
        pybind11::gil_scoped_release release;
S
sneaxiy 已提交
1740 1741
        self.Run(prog, scope, block_id, create_local_scope, create_vars,
                 fetch_vars);
S
sneaxiy 已提交
1742
      });
S
sneaxiy 已提交
1743

D
dzhwinter 已提交
1744
  m.def("init_gflags", framework::InitGflags);
Y
Yang Yu 已提交
1745
  m.def("init_glog", framework::InitGLOG);
1746
  m.def("load_op_library", framework::LoadOpLib);
1747 1748
  m.def("load_op_meta_info_and_register_op",
        framework::LoadOpMetaInfoAndRegisterOp);
1749
  m.def("init_devices", []() { framework::InitDevices(); });
1750

1751
  m.def("is_compiled_with_cuda", IsCompiledWithCUDA);
1752
  m.def("is_compiled_with_xpu", IsCompiledWithXPU);
1753
  m.def("is_compiled_with_mkldnn", IsCompiledWithMKLDNN);
1754
  m.def("supports_bfloat16", SupportsBfloat16);
1755
  m.def("supports_bfloat16_fast_performance", SupportsBfloat16FastPerformance);
1756
  m.def("is_compiled_with_brpc", IsCompiledWithBrpc);
Y
update  
Yancey1989 已提交
1757
  m.def("is_compiled_with_dist", IsCompiledWithDIST);
1758 1759 1760
  m.def("_cuda_synchronize", [](const platform::CUDAPlace &place) {
    platform::DeviceContextPool::Instance().Get(place)->Wait();
  });
H
hutuxian 已提交
1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779

  m.def("get_float_stats", []() {
    std::vector<paddle::platform::ExportedStatValue<float>> float_stats;
    paddle::platform::StatRegistry<float>::Instance().publish(float_stats);
    std::unordered_map<std::string, float> stats_map;
    for (const auto &stat : float_stats) {
      stats_map[stat.key] = stat.value;
    }
    return stats_map;
  });
  m.def("get_int_stats", []() {
    std::vector<paddle::platform::ExportedStatValue<int64_t>> int_stats;
    paddle::platform::StatRegistry<int64_t>::Instance().publish(int_stats);
    std::unordered_map<std::string, int64_t> stats_map;
    for (const auto &stat : int_stats) {
      stats_map[stat.key] = stat.value;
    }
    return stats_map;
  });
H
hutuxian 已提交
1780 1781 1782 1783 1784 1785 1786
  m.def("run_cmd",
        [](const std::string &cmd, int time_out = -1,
           int sleep_inter = -1) -> const std::string {
          return paddle::framework::shell_get_command_output(cmd, time_out,
                                                             sleep_inter);
        },
        py::arg("cmd"), py::arg("time_out") = -1, py::arg("sleep_inter") = -1);
G
gongweibao 已提交
1787 1788 1789 1790 1791 1792 1793 1794 1795
  m.def("shell_execute_cmd",
        [](const std::string &cmd, int time_out = 0, int sleep_inter = 0,
           bool redirect_stderr = false) -> std::vector<std::string> {
          return paddle::framework::shell_execute_cmd(
              cmd, time_out, sleep_inter, redirect_stderr);
        },
        py::arg("cmd"), py::arg("time_out") = 0, py::arg("sleep_inter") = 0,
        py::arg("redirect_stderr") = false);

1796 1797 1798 1799 1800 1801
#ifdef PADDLE_WITH_CUDA
  m.def("is_float16_supported", [](const platform::CUDAPlace &place) -> bool {
    // Only GPUs with Compute Capability >= 53 support float16
    return platform::GetCUDAComputeCapability(place.device) >= 53;
  });
#endif
1802

1803
  m.def("set_feed_variable", framework::SetFeedVariable);
1804 1805 1806 1807 1808
  m.def("get_fetch_variable",
        [](const Scope &scope, const std::string &var_name,
           size_t index) -> py::object {
          auto &var = framework::GetFetchVariable(scope, var_name, index);
          if (data_is_lod_tensor(var)) {
1809
            return py::cast(BOOST_GET(LoDTensor, var));
1810
          } else {
1811
            return py::cast(BOOST_GET(LoDTensorArray, var));
1812 1813
          }
        });
1814
  m.def("get_variable_tensor", framework::GetVariableTensor);
Q
qijun 已提交
1815

X
Xin Pan 已提交
1816 1817
  m.def("_is_program_version_supported", IsProgramVersionSupported);

1818 1819 1820 1821 1822
  BindProgramDesc(&m);
  BindBlockDesc(&m);
  BindVarDsec(&m);
  BindOpDesc(&m);
  BindConstValue(&m);
1823
  BindGlobalValueGetterSetter(&m);
Y
Yu Yang 已提交
1824

Y
Yu Yang 已提交
1825 1826 1827 1828 1829 1830 1831 1832 1833
  py::class_<framework::LoDRankTable>(m, "LodRankTable")
      .def("items", [](framework::LoDRankTable &table) {
        std::vector<std::pair<size_t, size_t>> res;
        for (auto &item : table.items()) {
          res.push_back({item.index, item.length});
        }
        return res;
      });

Z
Zeng Jinle 已提交
1834
  py::class_<LoDTensorArray>(m, "LoDTensorArray", R"DOC(
1835
    LoDTensorArray is array of LoDTensor, it supports operator[], len() and for-loop iteration.
Z
Zeng Jinle 已提交
1836 1837 1838

    Examples:
        .. code-block:: python
1839

Z
Zeng Jinle 已提交
1840 1841 1842 1843
          import paddle.fluid as fluid

          arr = fluid.LoDTensorArray()
)DOC")
S
sneaxiy 已提交
1844 1845
      .def("__init__",
           [](LoDTensorArray &instance) { new (&instance) LoDTensorArray(); })
Y
Yu Yang 已提交
1846 1847 1848 1849 1850 1851
      .def("__getitem__",
           [](LoDTensorArray &self, size_t i) { return &self.at(i); },
           py::return_value_policy::reference)
      .def("__len__", [](LoDTensorArray &self) { return self.size(); })
      .def("__setitem__",
           [](LoDTensorArray &self, size_t i, const LoDTensor &t) {
1852 1853 1854 1855
             PADDLE_ENFORCE_LT(i, self.size(),
                               platform::errors::InvalidArgument(
                                   "The index to set is larger than the size "
                                   "of LoDTensorArray."));
Y
Yu Yang 已提交
1856 1857 1858
             self[i].ShareDataWith(t);
             self[i].set_lod(t.lod());
           })
S
sneaxiy 已提交
1859 1860 1861 1862 1863 1864
      .def("append",
           [](LoDTensorArray &self, const LoDTensor &t) {
             self.emplace_back();
             self.back().ShareDataWith(t);
             self.back().set_lod(t.lod());
           },
Z
Zeng Jinle 已提交
1865 1866
           py::arg("tensor"), R"DOC(
             Append a LoDensor to LoDTensorArray.
1867 1868 1869 1870 1871 1872
              
             Args:
                   tensor (LoDTensor): The LoDTensor to be appended.

             Returns:
                   None.
Z
Zeng Jinle 已提交
1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883

             Examples:
                 .. code-block:: python

                   import paddle.fluid as fluid
                   import numpy as np

                   arr = fluid.LoDTensorArray()
                   t = fluid.LoDTensor()
                   t.set(np.ndarray([5, 30]), fluid.CPUPlace())
                   arr.append(t)
1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894
           )DOC")
      .def("_move_to_list",
           [](LoDTensorArray &self) -> py::list {
             py::list res(self.size());
             for (size_t i = 0; i < self.size(); ++i) {
               res[i] = py::cast(std::move(self[i]));
             }
             self.clear();
             return res;
           },
           py::return_value_policy::take_ownership);
Y
Yu Yang 已提交
1895

1896 1897 1898 1899 1900 1901 1902 1903
  py::class_<FetchList>(m, "FetchList", R"DOC( FetchList is a
        vector of boost::variant<LoDTensor, LoDTensorArray>.
        )DOC")
      .def("_move_to_list",
           [](FetchList &self) -> py::list {
             py::list res(self.size());
             for (size_t i = 0; i < self.size(); ++i) {
               if (data_is_lod_tensor(self[i])) {
1904
                 auto &data = BOOST_GET(LoDTensor, self[i]);
1905 1906
                 res[i] = py::cast(std::move(data));
               } else {
1907
                 auto &data = BOOST_GET(LoDTensorArray, self[i]);
1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922
                 py::list tmp(data.size());
                 for (size_t j = 0; j < data.size(); ++j) {
                   tmp[j] = py::cast(std::move(data[j]));
                 }
                 res[i] = std::move(tmp);
               }
             }
             self.clear();
             return res;
           },
           py::return_value_policy::take_ownership)

      .def("append",
           [](FetchList &self, const LoDTensor &t) {
             self.emplace_back();
1923
             auto &lod_tensor = BOOST_GET(LoDTensor, self.back());
1924 1925 1926 1927 1928 1929 1930 1931
             lod_tensor.ShareDataWith(t);
             lod_tensor.set_lod(t.lod());
           },
           py::arg("var"))

      .def("append",
           [](FetchList &self, const LoDTensorArray &t) {
             self.emplace_back();
1932
             auto &lod_tensor_array = BOOST_GET(LoDTensorArray, self.back());
1933 1934 1935 1936 1937 1938 1939 1940 1941
             for (size_t i = 0; i < t.size(); ++i) {
               lod_tensor_array[i].ShareDataWith(t[i]);
               lod_tensor_array[i].set_lod(t[i].lod());
             }
           },
           py::arg("var"));

  py::class_<FetchUnmergedList>(m, "FetchUnmergedList", R"DOC(
        FetchUnmergedList is 2-D array of FetchType(boost::variant(LoDTensor, LoDTensorArray)).
Z
Zhen Wang 已提交
1942 1943
        )DOC")
      .def("_move_to_list",
1944
           [](FetchUnmergedList &self) -> py::list {
Z
Zhen Wang 已提交
1945 1946 1947 1948
             py::list res(self.size());
             for (size_t i = 0; i < self.size(); ++i) {
               py::list tmp(self[i].size());
               for (size_t j = 0; j < self[i].size(); ++j) {
1949
                 if (data_is_lod_tensor(self[i][j])) {
1950
                   auto &var = BOOST_GET(LoDTensor, self[i][j]);
1951 1952
                   tmp[j] = py::cast(std::move(var));
                 } else {
1953
                   auto &var = BOOST_GET(LoDTensorArray, self[i][j]);
1954 1955 1956 1957 1958 1959
                   py::list tmp_array(var.size());
                   for (size_t k = 0; k < var.size(); ++k) {
                     tmp_array[k] = std::move(var[k]);
                   }
                   tmp[j] = std::move(tmp_array);
                 }
Z
Zhen Wang 已提交
1960 1961 1962 1963 1964 1965 1966 1967 1968
               }
               res[i] = std::move(tmp);
               self[i].clear();
             }
             self.clear();
             return res;
           },
           py::return_value_policy::take_ownership);

Y
Yu Yang 已提交
1969
  m.def("op_support_gpu", OpSupportGPU);
D
Dong Zhihong 已提交
1970
#ifdef PADDLE_WITH_CUDA
D
Dong Zhihong 已提交
1971
  m.def("get_cuda_device_count", platform::GetCUDADeviceCount);
D
dangqingqing 已提交
1972

P
peizhilin 已提交
1973
#ifndef _WIN32
D
dangqingqing 已提交
1974 1975 1976
  m.def("nvprof_init", platform::CudaProfilerInit);
  m.def("nvprof_start", platform::CudaProfilerStart);
  m.def("nvprof_stop", platform::CudaProfilerStop);
1977 1978 1979 1980
  m.def("nvprof_nvtx_push", platform::CudaNvtxRangePush);
  m.def("nvprof_nvtx_pop", platform::CudaNvtxRangePop);
  m.def("nvprof_enable_record_event", platform::NvprofEnableRecordEvent);
  m.def("nvprof_disable_record_event", platform::NvprofDisableRecordEvent);
D
Dong Zhihong 已提交
1981
#endif
P
peizhilin 已提交
1982
#endif
Y
Yu Yang 已提交
1983

1984 1985 1986 1987 1988 1989
  py::enum_<platform::TracerOption>(m, "TracerOption", py::arithmetic())
      .value("kDefault", platform::TracerOption::kDefault)
      .value("kOpDetail", platform::TracerOption::kOpDetail)
      .value("kAllOpDetail", platform::TracerOption::kAllOpDetail)
      .export_values();

1990 1991 1992 1993
  py::enum_<platform::ProfilerState>(m, "ProfilerState", py::arithmetic())
      .value("kDisabled", platform::ProfilerState::kDisabled)
      .value("kCPU", platform::ProfilerState::kCPU)
      .value("kCUDA", platform::ProfilerState::kCUDA)
1994
      .value("kAll", platform::ProfilerState::kAll)
1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005
      .export_values();

  py::enum_<platform::EventSortingKey>(m, "EventSortingKey", py::arithmetic())
      .value("kDefault", platform::EventSortingKey::kDefault)
      .value("kCalls", platform::EventSortingKey::kCalls)
      .value("kTotal", platform::EventSortingKey::kTotal)
      .value("kMin", platform::EventSortingKey::kMin)
      .value("kMax", platform::EventSortingKey::kMax)
      .value("kAve", platform::EventSortingKey::kAve)
      .export_values();

2006
  m.def("set_tracer_option", platform::SetTracerOption);
2007 2008
  m.def("enable_profiler", platform::EnableProfiler);
  m.def("disable_profiler", platform::DisableProfiler);
X
Xin Pan 已提交
2009
  m.def("is_profiler_enabled", platform::IsProfileEnabled);
2010
  m.def("reset_profiler", platform::ResetProfiler);
2011
  m.def("get_pass", [](const std::string &pass_type) {
W
WangZhen 已提交
2012 2013 2014
    auto pass = framework::ir::PassRegistry::Instance().Get(pass_type);
    return std::shared_ptr<framework::ir::Pass>(std::move(pass));
  });
Y
Yu Yang 已提交
2015

2016 2017
  m.def("size_of_dtype", framework::SizeOfType);

2018 2019 2020
#ifdef PADDLE_WITH_CUDA
  m.def("set_cublas_switch", platform::SetAllowTF32Cublas);
  m.def("get_cublas_switch", platform::AllowTF32Cublas);
A
AshburnLee 已提交
2021 2022
  m.def("set_cudnn_switch", platform::SetAllowTF32Cudnn);
  m.def("get_cudnn_switch", platform::AllowTF32Cudnn);
2023 2024
#endif  // PADDLE_WITH_CUDA

2025 2026 2027
  using VarQuantScale =
      std::unordered_map<std::string, std::pair<bool, LoDTensor>>;

2028 2029
  py::class_<ir::Pass, std::shared_ptr<ir::Pass>> pass(m, "Pass");
  pass.def(py::init())
W
WangZhen 已提交
2030
      .def("has", &ir::Pass::Has)
2031 2032 2033
      .def("set_not_owned",
           [](ir::Pass &self, const std::string &attr_name, ProgramDesc &attr) {
             self.SetNotOwned<ProgramDesc>(attr_name, &attr);
W
WangZhen 已提交
2034
           })
2035
      .def(
2036
          "set",
2037 2038 2039
          [](ir::Pass &self, const std::string &name, const std::string &attr) {
            self.Set<std::string>(name, new std::string(attr));
          })
2040 2041
      .def("set", [](ir::Pass &self, const std::string &name,
                     bool val) { self.Set<bool>(name, new bool(val)); })
2042 2043
      .def("set", [](ir::Pass &self, const std::string &name,
                     int val) { self.Set<const int>(name, new int(val)); })
2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057
      .def("set",
           [](ir::Pass &self, const std::string &name,
              std::unordered_set<std::string> set) {
             self.Set(name, new std::unordered_set<std::string>(set));
           })
      .def("set",
           [](ir::Pass &self, const std::string &name,
              std::unordered_set<int> set) {
             self.Set(name, new std::unordered_set<int>(set));
           })
      .def("set",
           [](ir::Pass &self, const std::string &name, VarQuantScale scales) {
             self.Set(name, new VarQuantScale(scales));
           })
F
flame 已提交
2058 2059
      .def("type", &ir::Pass::Type)
      .def("apply", [](ir::Pass &self, std::shared_ptr<ir::Graph> graph) {
2060
        self.Apply(graph.get());
F
flame 已提交
2061
      });
2062

X
fix  
Xin Pan 已提交
2063 2064
  py::class_<ir::PassBuilder, std::shared_ptr<ir::PassBuilder>> pb(
      m, "PassBuilder");
2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078
  pb.def(py::init())
      .def("append_pass",
           [](ir::PassBuilder &self,
              const std::string &pass_type) -> std::shared_ptr<ir::Pass> {
             return self.AppendPass(pass_type);
           })
      .def("all_passes", [](ir::PassBuilder &self) { return self.AllPasses(); })
      .def("insert_pass",
           [](ir::PassBuilder &self, size_t idx, const std::string &pass_type) {
             return self.InsertPass(idx, pass_type);
           })
      .def("remove_pass",
           [](ir::PassBuilder &self, size_t idx) { self.RemovePass(idx); });

Y
yuyang18 已提交
2079
  // -- python binds for parallel executor.
X
Xin Pan 已提交
2080

Y
yuyang18 已提交
2081
  py::class_<ParallelExecutor> pe(m, "ParallelExecutor");
C
chengduo 已提交
2082 2083 2084 2085
  py::class_<ExecutionStrategy> exec_strategy(pe, "ExecutionStrategy", R"DOC(
    ExecutionStrategy allows the user to more preciously control how to run
    the program in ParallelExecutor by setting the property.

2086 2087 2088
    Returns:
        ExecutionStrategy: An ExecutionStrategy object.

C
chengduo 已提交
2089 2090 2091
    Examples:
        .. code-block:: python

2092 2093 2094 2095 2096 2097 2098 2099 2100
          import paddle
          import paddle.static as static
          import paddle.nn.functional as F

          paddle.enable_static()

          x = static.data(name='x', shape=[None, 13], dtype='float32')
          y = static.data(name='y', shape=[None, 1], dtype='float32')
          y_predict = static.nn.fc(input=x, size=1, act=None)
2101

2102 2103
          cost = F.square_error_cost(input=y_predict, label=y)
          avg_loss = paddle.mean(cost)
2104

2105
          sgd_optimizer = paddle.optimizer.SGD(learning_rate=0.001)
2106 2107
          sgd_optimizer.minimize(avg_loss)

2108
          exec_strategy = static.ExecutionStrategy()
C
chengduo 已提交
2109 2110
          exec_strategy.num_threads = 4

2111 2112 2113
          train_exe = static.ParallelExecutor(use_cuda=False,
                                              loss_name=avg_loss.name,
                                              exec_strategy=exec_strategy)
C
chengduo 已提交
2114 2115
        )DOC");

2116 2117 2118 2119
  py::enum_<paddle::platform::DeviceType>(m, "DeviceType", py::arithmetic())
      .value("CPU", paddle::platform::DeviceType::CPU)
      .value("CUDA", paddle::platform::DeviceType::CUDA)
      .value("XPU", paddle::platform::DeviceType::XPU);
2120

Y
yuyang18 已提交
2121
  exec_strategy.def(py::init())
Y
yuyang18 已提交
2122 2123 2124 2125 2126
      .def_property(
          "num_threads",
          [](const ExecutionStrategy &self) { return self.num_threads_; },
          [](ExecutionStrategy &self, size_t num_threads) {
            self.num_threads_ = num_threads;
C
chengduo 已提交
2127
          },
2128 2129
          R"DOC(
            The type is INT, num_threads represents the size of thread pool that
C
chengduo 已提交
2130 2131 2132 2133 2134 2135 2136
            used to run the operators of the current program in ParallelExecutor.
            If :math:`num\_threads=1`, all the operators will execute one by one,
            but the order maybe difference between iterations.
            If it is not set, it will be set in ParallelExecutor according to the
            device type and device count, for GPU, :math:`num\_threads=device\_count*4`, for CPU,
            :math:`num\_threads=CPU\_NUM*4`, the explanation of:math:`CPU\_NUM` is in ParallelExecutor.
            if it is not set, ParallelExecutor will get the cpu count by calling
2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149
            `multiprocessing.cpu_count()`. Default 0.

            Examples:
                .. code-block:: python

                    import paddle
                    import paddle.static as static

                    paddle.enable_static()

                    exec_strategy = static.ExecutionStrategy()
                    exec_strategy.num_threads = 4
            )DOC")
Y
yuyang18 已提交
2150
      .def_property(
2151 2152
          "_use_device",
          [](const ExecutionStrategy &self) { return self.use_device_; },
2153
          [](ExecutionStrategy &self, paddle::platform::DeviceType use_device) {
2154 2155 2156
            self.use_device_ = use_device;
          })  // NOTE(liuyuhui): Doesn't add doc for 'use_device', because
              // use_device isn‘t exposed to users.
Y
yuyang18 已提交
2157 2158 2159 2160 2161
      .def_property(
          "allow_op_delay",
          [](const ExecutionStrategy &self) { return self.allow_op_delay_; },
          [](ExecutionStrategy &self, bool allow_op_delay) {
            self.allow_op_delay_ = allow_op_delay;
C
chengduo 已提交
2162 2163 2164
          },
          R"DOC(The type is BOOL, allow_op_delay represents whether to delay the
                communication operators to run, it may make the execution faster.
2165 2166
                Note that this option is invalid now, and it will be removed in
                next version. Default False.)DOC")
Y
yuyang18 已提交
2167 2168 2169 2170 2171 2172 2173
      .def_property(
          "num_iteration_per_drop_scope",
          [](const ExecutionStrategy &self) {
            return self.num_iteration_per_drop_scope_;
          },
          [](ExecutionStrategy &self, size_t num_iteration_per_drop_scope) {
            self.num_iteration_per_drop_scope_ = num_iteration_per_drop_scope;
C
chengduo 已提交
2174 2175 2176 2177
          },
          R"DOC(The type is INT, num_iteration_per_drop_scope indicates how
                many iterations to clean up the temp variables which
                is generated during execution. It may make the execution faster,
2178
                because the temp variable's shape maybe the same between two iterations.
2179 2180 2181 2182 2183 2184 2185 2186 2187 2188
                Default 100.

                .. note::
                    1. If you fetch data when calling the 'run', the ParallelExecutor 
                    will clean up the temp variables at the end of the current iteration. 
                    2. In some NLP model, it may cause the GPU memory is insufficient, 
                    in this case, you should reduce `num_iteration_per_drop_scope`.

                Examples:
                    .. code-block:: python
C
chengduo 已提交
2189

2190 2191 2192 2193 2194 2195 2196
                        import paddle
                        import paddle.static as static

                        paddle.enable_static()

                        exec_strategy = static.ExecutionStrategy()
                        exec_strategy.num_iteration_per_drop_scope = 10
2197
              )DOC")
Q
Qiao Longfei 已提交
2198 2199 2200 2201 2202 2203 2204 2205 2206
      .def_property(
          "num_iteration_per_run",
          [](const ExecutionStrategy &self) {
            return self.num_iteration_per_run_;
          },
          [](ExecutionStrategy &self, size_t num_iteration_per_run) {
            self.num_iteration_per_run_ = num_iteration_per_run;
          },
          R"DOC(This config that how many iteration the executor will run when
2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218
                user call exe.run() in python。Default: 1.

                Examples:
                    .. code-block:: python

                        import paddle
                        import paddle.static as static

                        paddle.enable_static()

                        exec_strategy = static.ExecutionStrategy()
                        exec_strategy.num_iteration_per_run = 10
Q
Qiao Longfei 已提交
2219
              )DOC")
2220 2221 2222 2223 2224 2225 2226 2227
      .def_property(
          "use_thread_barrier",
          [](const ExecutionStrategy &self) { return self.thread_barrier_; },
          [](ExecutionStrategy &self, bool use_thread_barrier) {
            self.thread_barrier_ = use_thread_barrier;
          },
          R"DOC(This config that the this is distributed training with parameter server
              )DOC")
2228 2229 2230 2231 2232
      .def_property("_dry_run",
                    [](const ExecutionStrategy &self) { return self.dry_run_; },
                    [](ExecutionStrategy &self, bool dry_run) {
                      self.dry_run_ = dry_run;
                    });
C
chengduo 已提交
2233

Y
yuyang18 已提交
2234
  exec_strategy.def_property(
Y
yuyang18 已提交
2235 2236 2237 2238 2239 2240 2241
      "use_experimental_executor",
      [](const ExecutionStrategy &self) {
        return self.type_ == ExecutionStrategy::kExperimental;
      },
      [](ExecutionStrategy &self, bool experimental) {
        self.type_ = experimental ? ExecutionStrategy::kExperimental
                                  : ExecutionStrategy::kDefault;
Y
yuyang18 已提交
2242 2243
      });

C
chengduo 已提交
2244 2245 2246 2247
  py::class_<BuildStrategy> build_strategy(pe, "BuildStrategy", R"DOC(
    BuildStrategy allows the user to more preciously control how to
    build the SSA Graph in ParallelExecutor by setting the property.

2248 2249 2250
    Returns:
        BuildStrategy: An BuildStrategy object.

C
chengduo 已提交
2251 2252 2253
    Examples:
        .. code-block:: python

2254
            import os
2255 2256 2257 2258
            import paddle
            import paddle.static as static

            paddle.enable_static()
2259

2260 2261
            os.environ['CPU_NUM'] = str(2)
            places = static.cpu_places()
2262

2263 2264 2265 2266
            data = static.data(name="x", shape=[None, 1], dtype="float32")
            hidden = static.nn.fc(input=data, size=10)
            loss = paddle.mean(hidden)
            paddle.optimizer.SGD(learning_rate=0.01).minimize(loss)
2267

2268
            build_strategy = static.BuildStrategy()
2269 2270
            build_strategy.enable_inplace = True
            build_strategy.memory_optimize = True
2271 2272
            build_strategy.reduce_strategy = static.BuildStrategy.ReduceStrategy.Reduce
            program = static.CompiledProgram(static.default_main_program())
2273
            program = program.with_data_parallel(loss_name=loss.name,
2274 2275
                                                  build_strategy=build_strategy,
                                                  places=places)
C
chengduo 已提交
2276
)DOC");
Y
yuyang18 已提交
2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292

  py::enum_<BuildStrategy::ReduceStrategy>(build_strategy, "ReduceStrategy")
      .value("Reduce", BuildStrategy::ReduceStrategy::kReduce)
      .value("AllReduce", BuildStrategy::ReduceStrategy::kAllReduce);
  py::enum_<BuildStrategy::GradientScaleStrategy>(build_strategy,
                                                  "GradientScaleStrategy")
      .value("CoeffNumDevice",
             BuildStrategy::GradientScaleStrategy::kCoeffNumDevice)
      .value("One", BuildStrategy::GradientScaleStrategy::kOne)
      .value("Customized", BuildStrategy::GradientScaleStrategy::kCustomized);

  build_strategy.def(py::init())
      .def_property(
          "reduce_strategy",
          [](const BuildStrategy &self) { return self.reduce_; },
          [](BuildStrategy &self, BuildStrategy::ReduceStrategy strategy) {
2293 2294 2295 2296
            PADDLE_ENFORCE_NE(self.IsFinalized(), true,
                              platform::errors::PreconditionNotMet(
                                  "BuildStrategy has been finlaized, cannot be "
                                  "configured again."));
Y
yuyang18 已提交
2297
            self.reduce_ = strategy;
C
chengduo 已提交
2298
          },
2299
          R"DOC((fluid.BuildStrategy.ReduceStrategy, optional): there are two reduce
C
chengduo 已提交
2300 2301
                strategies in ParallelExecutor, AllReduce and Reduce. If you want
                that all the parameters' optimization are done on all devices independently,
2302
                you should choose AllReduce; otherwise, if you choose Reduce, all the parameters'
C
chengduo 已提交
2303 2304
                optimization will be evenly distributed to different devices, and then
                broadcast the optimized parameter to other devices.
2305
                Default is 'AllReduce'.
F
flame 已提交
2306 2307 2308 2309

                Examples:
                    .. code-block:: python

2310 2311 2312 2313 2314 2315 2316
                        import paddle
                        import paddle.static as static

                        paddle.enable_static()

                        build_strategy = static.BuildStrategy()
                        build_strategy.reduce_strategy = static.BuildStrategy.ReduceStrategy.Reduce
F
flame 已提交
2317
                  )DOC")
Y
yuyang18 已提交
2318 2319 2320 2321 2322
      .def_property(
          "gradient_scale_strategy",
          [](const BuildStrategy &self) { return self.gradient_scale_; },
          [](BuildStrategy &self,
             BuildStrategy::GradientScaleStrategy strategy) {
2323 2324 2325 2326
            PADDLE_ENFORCE_NE(self.IsFinalized(), true,
                              platform::errors::PreconditionNotMet(
                                  "BuildStrategy has been finlaized, cannot be "
                                  "configured again."));
Y
yuyang18 已提交
2327
            self.gradient_scale_ = strategy;
C
chengduo 已提交
2328
          },
2329
          R"DOC((paddle.static.BuildStrategy.GradientScaleStrategy, optional): there are three
2330
                ways of defining :math:`loss@grad` in ParallelExecutor, that is, CoeffNumDevice,
C
chengduo 已提交
2331 2332
                One and Customized. By default, ParallelExecutor sets the :math:`loss@grad`
                according to the number of devices. If you want to customize :math:`loss@grad`,
2333
                you can choose Customized. Default is 'CoeffNumDevice'.
F
flame 已提交
2334 2335 2336 2337

                Examples:
                    .. code-block:: python

C
chengduo 已提交
2338 2339
                        import numpy
                        import os
2340 2341 2342 2343
                        import paddle
                        import paddle.static as static

                        paddle.enable_static()
C
chengduo 已提交
2344 2345

                        use_cuda = True
2346 2347
                        place = paddle.CUDAPlace(0) if use_cuda else paddle.CPUPlace()
                        exe = static.Executor(place)
C
chengduo 已提交
2348 2349

                        # NOTE: If you use CPU to run the program, you need
2350
                        # to specify the CPU_NUM, otherwise, paddle will use
C
chengduo 已提交
2351 2352 2353 2354 2355 2356
                        # all the number of the logic core as the CPU_NUM,
                        # in that case, the batch size of the input should be
                        # greater than CPU_NUM, if not, the process will be
                        # failed by an exception.
                        if not use_cuda:
                            os.environ['CPU_NUM'] = str(2)
2357
                            places = static.cpu_places()
C
chengduo 已提交
2358
                        else:
2359
                            places = static.cuda_places()
C
chengduo 已提交
2360

2361 2362 2363 2364
                        data = static.data(name='X', shape=[None, 1], dtype='float32')
                        hidden = static.nn.fc(input=data, size=10)
                        loss = paddle.mean(hidden)
                        paddle.optimizer.SGD(learning_rate=0.01).minimize(loss)
C
chengduo 已提交
2365

2366
                        exe.run(static.default_startup_program())
C
chengduo 已提交
2367

2368
                        build_strategy = static.BuildStrategy()
C
chengduo 已提交
2369
                        build_strategy.gradient_scale_strategy = \
2370 2371 2372
                                  static.BuildStrategy.GradientScaleStrategy.Customized
                        compiled_prog = static.CompiledProgram(
                                  static.default_main_program()).with_data_parallel(
C
chengduo 已提交
2373
                                          loss_name=loss.name, build_strategy=build_strategy,
2374
                                          places=places)
C
chengduo 已提交
2375 2376 2377 2378 2379 2380

                        dev_count =  len(places)
                        x = numpy.random.random(size=(10, 1)).astype('float32')
                        loss_grad = numpy.ones((dev_count)).astype("float32") * 0.01
                        loss_grad_name = loss.name+"@GRAD"
                        loss_data = exe.run(compiled_prog,
2381 2382
                                              feed={"X": x, loss_grad_name : loss_grad},
                                              fetch_list=[loss.name, loss_grad_name])
F
flame 已提交
2383
                   )DOC")
Y
yuyang18 已提交
2384 2385 2386 2387
      .def_property(
          "debug_graphviz_path",
          [](const BuildStrategy &self) { return self.debug_graphviz_path_; },
          [](BuildStrategy &self, const std::string &path) {
2388 2389 2390 2391
            PADDLE_ENFORCE_NE(self.IsFinalized(), true,
                              platform::errors::PreconditionNotMet(
                                  "BuildStrategy has been finlaized, cannot be "
                                  "configured again."));
Y
yuyang18 已提交
2392
            self.debug_graphviz_path_ = path;
C
chengduo 已提交
2393
          },
2394
          R"DOC((str, optional): debug_graphviz_path indicates the path that
F
flame 已提交
2395
                writing the SSA Graph to file in the form of graphviz.
2396
                It is useful for debugging. Default is empty string, that is, ""
F
flame 已提交
2397 2398 2399 2400

                Examples:
                    .. code-block:: python

2401 2402 2403 2404
                        import paddle
                        import paddle.static as static

                        paddle.enable_static()
C
chengduo 已提交
2405

2406 2407
                        build_strategy = static.BuildStrategy()
                        build_strategy.debug_graphviz_path = "./graph"
F
flame 已提交
2408
                    )DOC")
S
sneaxiy 已提交
2409 2410 2411 2412 2413 2414
      .def_property(
          "enable_sequential_execution",
          [](const BuildStrategy &self) {
            return self.enable_sequential_execution_;
          },
          [](BuildStrategy &self, bool b) {
2415 2416 2417 2418
            PADDLE_ENFORCE_NE(self.IsFinalized(), true,
                              platform::errors::PreconditionNotMet(
                                  "BuildStrategy has been finlaized, cannot be "
                                  "configured again."));
S
sneaxiy 已提交
2419 2420
            self.enable_sequential_execution_ = b;
          },
2421 2422
          R"DOC((bool, optional): If set True, the execution order of ops would
                be the same as what is in the program. Default is False.
F
flame 已提交
2423 2424 2425 2426

                Examples:
                    .. code-block:: python

2427 2428 2429 2430 2431 2432
                        import paddle
                        import paddle.static as static

                        paddle.enable_static()

                        build_strategy = static.BuildStrategy()
F
flame 已提交
2433 2434
                        build_strategy.enable_sequential_execution = True
          )DOC")
S
sneaxiy 已提交
2435 2436 2437 2438 2439 2440
      .def_property(
          "remove_unnecessary_lock",
          [](const BuildStrategy &self) {
            return self.remove_unnecessary_lock_;
          },
          [](BuildStrategy &self, bool b) {
2441 2442 2443 2444
            PADDLE_ENFORCE_NE(self.IsFinalized(), true,
                              platform::errors::PreconditionNotMet(
                                  "BuildStrategy has been finlaized, cannot be "
                                  "configured again."));
S
sneaxiy 已提交
2445 2446
            self.remove_unnecessary_lock_ = b;
          },
2447 2448
          R"DOC((bool, optional): If set True, some locks in GPU ops would be
                released and ParallelExecutor would run faster. Default is True.
F
flame 已提交
2449 2450 2451 2452

                Examples:
                    .. code-block:: python

2453 2454 2455 2456 2457 2458
                        import paddle
                        import paddle.static as static

                        paddle.enable_static()

                        build_strategy = static.BuildStrategy()
F
flame 已提交
2459 2460
                        build_strategy.remove_unnecessary_lock = True
          )DOC")
2461 2462 2463 2464
      .def_property(
          "num_trainers",
          [](const BuildStrategy &self) { return self.num_trainers_; },
          [](BuildStrategy &self, int num_trainers) {
2465
#ifdef WIN32
2466
            PADDLE_THROW(platform::errors::Unavailable(
2467
                "Distribution mode is not supported on Windows platform."));
2468
#endif
2469 2470
            self.num_trainers_ = num_trainers;
          })
2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482
      .def_property(
          "trainers_endpoints",
          [](const BuildStrategy &self) { return self.trainers_endpoints_; },
          [](BuildStrategy &self,
             const std::vector<std::string> &trainers_endpoints) {
            self.trainers_endpoints_ = trainers_endpoints;
          })
      .def_property("trainer_id",
                    [](const BuildStrategy &self) { return self.trainer_id_; },
                    [](BuildStrategy &self, int trainer_id) {
                      self.trainer_id_ = trainer_id;
                    })
2483 2484 2485 2486 2487 2488
      .def_property(
          "nccl_comm_num",
          [](const BuildStrategy &self) { return self.nccl_comm_num_; },
          [](BuildStrategy &self, int nccl_comm_num) {
            self.nccl_comm_num_ = nccl_comm_num;
          })
2489
      .def_property("use_hierarchical_allreduce",
2490 2491 2492 2493 2494 2495
                    [](const BuildStrategy &self) {
                      return self.use_hierarchical_allreduce_;
                    },
                    [](BuildStrategy &self, bool use) {
                      self.use_hierarchical_allreduce_ = use;
                    })
2496
      .def_property("hierarchical_allreduce_inter_nranks",
2497 2498 2499 2500 2501 2502 2503
                    [](const BuildStrategy &self) {
                      return self.hierarchical_allreduce_inter_nranks_;
                    },
                    [](BuildStrategy &self, int nranks) {
                      self.hierarchical_allreduce_inter_nranks_ = nranks;
                    })

C
chengduo 已提交
2504 2505 2506 2507 2508 2509
      .def_property(
          "fuse_elewise_add_act_ops",
          [](const BuildStrategy &self) {
            return self.fuse_elewise_add_act_ops_;
          },
          [](BuildStrategy &self, bool b) {
2510 2511 2512 2513
            PADDLE_ENFORCE_NE(self.IsFinalized(), true,
                              platform::errors::PreconditionNotMet(
                                  "BuildStrategy has been finlaized, cannot be "
                                  "configured again."));
C
chengduo 已提交
2514 2515
            self.fuse_elewise_add_act_ops_ = b;
          },
2516
          R"DOC((bool, optional): fuse_elewise_add_act_ops indicate whether
F
flame 已提交
2517
                to fuse elementwise_add_op and activation_op,
2518
                it may make the execution faster. Default is False.
F
flame 已提交
2519 2520 2521 2522

                Examples:
                    .. code-block:: python

2523 2524 2525 2526 2527 2528
                        import paddle
                        import paddle.static as static

                        paddle.enable_static()

                        build_strategy = static.BuildStrategy()
F
flame 已提交
2529 2530
                        build_strategy.fuse_elewise_add_act_ops = True
                     )DOC")
Z
Zhen Wang 已提交
2531 2532 2533 2534
      .def_property(
          "fuse_bn_act_ops",
          [](const BuildStrategy &self) { return self.fuse_bn_act_ops_; },
          [](BuildStrategy &self, bool b) {
2535
            PADDLE_ENFORCE_NE(self.IsFinalized(), true,
Z
Zhen Wang 已提交
2536
                              platform::errors::PreconditionNotMet(
2537 2538
                                  "BuildStrategy has been finlaized, cannot be "
                                  "configured again."));
Z
Zhen Wang 已提交
2539 2540 2541 2542 2543 2544 2545 2546 2547
            self.fuse_bn_act_ops_ = b;
          },
          R"DOC((bool, optional): fuse_bn_act_ops indicate whether
                to fuse batch_norm and activation_op,
                it may make the execution faster. Default is False.

                Examples:
                    .. code-block:: python

2548 2549 2550 2551 2552 2553
                        import paddle
                        import paddle.static as static

                        paddle.enable_static()

                        build_strategy = static.BuildStrategy()
Z
Zhen Wang 已提交
2554 2555
                        build_strategy.fuse_bn_act_ops = True
                     )DOC")
Z
Zhang Ting 已提交
2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580
      .def_property(
          "fuse_bn_add_act_ops",
          [](const BuildStrategy &self) { return self.fuse_bn_add_act_ops_; },
          [](BuildStrategy &self, bool b) {
            PADDLE_ENFORCE_NE(self.IsFinalized(), true,
                              platform::errors::PreconditionNotMet(
                                  "BuildStrategy has been finlaized, cannot be "
                                  "configured again."));
            self.fuse_bn_add_act_ops_ = b;
          },
          R"DOC((bool, optional): fuse_bn_add_act_ops indicate whether
                to fuse batch_norm, elementwise_add and activation_op,
                it may make the execution faster. Default is True

                Examples:
                    .. code-block:: python

                        import paddle
                        import paddle.static as static

                        paddle.enable_static()

                        build_strategy = static.BuildStrategy()
                        build_strategy.fuse_bn_add_act_ops = True
                     )DOC")
2581 2582 2583 2584
      .def_property(
          "enable_auto_fusion",
          [](const BuildStrategy &self) { return self.enable_auto_fusion_; },
          [](BuildStrategy &self, bool b) {
2585
            PADDLE_ENFORCE_NE(self.IsFinalized(), true,
2586
                              platform::errors::PreconditionNotMet(
2587 2588
                                  "BuildStrategy has been finlaized, cannot be "
                                  "configured again."));
2589 2590 2591 2592 2593 2594 2595 2596 2597 2598
            self.enable_auto_fusion_ = b;
          },
          R"DOC((bool, optional): Whether to enable fusing subgraph to a
                fusion_group. Now we only support fusing subgraph that composed
                of elementwise-like operators, such as elementwise_add/mul
                without broadcast and activations.

                Examples:
                    .. code-block:: python

2599 2600 2601 2602 2603 2604
                        import paddle
                        import paddle.static as static

                        paddle.enable_static()

                        build_strategy = static.BuildStrategy()
2605 2606
                        build_strategy.enable_auto_fusion = True
                    )DOC")
2607 2608 2609 2610 2611 2612
      .def_property(
          "fuse_relu_depthwise_conv",
          [](const BuildStrategy &self) {
            return self.fuse_relu_depthwise_conv_;
          },
          [](BuildStrategy &self, bool b) {
2613 2614 2615 2616
            PADDLE_ENFORCE_NE(self.IsFinalized(), true,
                              platform::errors::PreconditionNotMet(
                                  "BuildStrategy has been finlaized, cannot be "
                                  "configured again."));
2617 2618
            self.fuse_relu_depthwise_conv_ = b;
          },
2619
          R"DOC((bool, optional): fuse_relu_depthwise_conv indicate whether
F
flame 已提交
2620 2621 2622
                to fuse relu and depthwise_conv2d,
                it will save GPU memory and may make the execution faster.
                This options is only available in GPU devices.
2623
                Default is False.
F
flame 已提交
2624 2625 2626 2627

                Examples:
                    .. code-block:: python

2628 2629 2630 2631 2632 2633
                        import paddle
                        import paddle.static as static

                        paddle.enable_static()

                        build_strategy = static.BuildStrategy()
F
flame 已提交
2634 2635
                        build_strategy.fuse_relu_depthwise_conv = True
          )DOC")
C
chengduo 已提交
2636 2637 2638 2639 2640 2641
      .def_property("fuse_broadcast_ops",
                    [](const BuildStrategy &self) {
                      return self.fuse_broadcast_ops_ == true ||
                             self.fuse_broadcast_ops_ == boost::none;
                    },
                    [](BuildStrategy &self, bool b) {
2642 2643 2644 2645
                      PADDLE_ENFORCE_NE(self.IsFinalized(), true,
                                        platform::errors::PreconditionNotMet(
                                            "BuildStrategy has been finlaized, "
                                            "cannot be configured again."));
C
chengduo 已提交
2646 2647
                      self.fuse_broadcast_ops_ = b;
                    },
2648
                    R"DOC((bool, optional): fuse_broadcast_op indicates whether
2649 2650 2651 2652
                      to fuse the broadcast ops. Note that, in Reduce mode,
                      fusing broadcast ops may make the program faster. Because
                      fusing broadcast OP equals delaying the execution of all
                      broadcast Ops, in this case, all nccl streams are used only
2653 2654 2655 2656 2657
                      for NCCLReduce operations for a period of time. Default False.

                      Examples:
                          .. code-block:: python

2658 2659 2660 2661 2662 2663
                              import paddle
                              import paddle.static as static

                              paddle.enable_static()

                              build_strategy = static.BuildStrategy()
2664 2665
                              build_strategy.fuse_broadcast_ops = True
                    )DOC")
C
chengduo 已提交
2666 2667
      .def_property("fuse_all_optimizer_ops",
                    [](const BuildStrategy &self) {
C
chengduo 已提交
2668 2669
                      return self.fuse_all_optimizer_ops_ == true ||
                             self.fuse_all_optimizer_ops_ == boost::none;
C
chengduo 已提交
2670 2671
                    },
                    [](BuildStrategy &self, bool b) {
2672 2673 2674 2675
                      PADDLE_ENFORCE_NE(self.IsFinalized(), true,
                                        platform::errors::PreconditionNotMet(
                                            "BuildStrategy has been finlaized, "
                                            "cannot be configured again."));
C
chengduo 已提交
2676 2677
                      self.fuse_all_optimizer_ops_ = b;
                    })
Q
qingqing01 已提交
2678 2679 2680 2681
      .def_property(
          "sync_batch_norm",
          [](const BuildStrategy &self) { return self.sync_batch_norm_; },
          [](BuildStrategy &self, bool b) {
2682 2683 2684 2685
            PADDLE_ENFORCE_NE(self.IsFinalized(), true,
                              platform::errors::PreconditionNotMet(
                                  "BuildStrategy has been finlaized, cannot be "
                                  "configured again."));
Q
qingqing01 已提交
2686 2687
            self.sync_batch_norm_ = b;
          },
2688
          R"DOC((bool, optional): sync_batch_norm indicates whether to use
Q
qingqing01 已提交
2689 2690 2691
                synchronous batch normalization which synchronizes the mean
                and variance through multi-devices in training phase.
                Current implementation doesn't support FP16 training and CPU.
2692 2693
                And only synchronous on one machine, not all machines. 
                Default is False.
F
flame 已提交
2694 2695 2696 2697

                Examples:
                    .. code-block:: python

2698 2699 2700 2701 2702 2703
                        import paddle
                        import paddle.static as static

                        paddle.enable_static()

                        build_strategy = static.BuildStrategy()
F
flame 已提交
2704 2705
                        build_strategy.sync_batch_norm = True
                )DOC")
D
dzhwinter 已提交
2706 2707
      .def_property(
          "memory_optimize",
2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721
          [](const BuildStrategy &self) -> py::object {
            if (self.memory_optimize_) {
              return py::cast(self.memory_optimize_.get());
            } else {
              return py::cast(nullptr);
            }
          },
          [](BuildStrategy &self, const py::handle &value) {
            auto *py_obj = value.ptr();
            if (py_obj == nullptr || py_obj == Py_None) {
              self.memory_optimize_ = boost::none;
            } else if (PyBool_Check(py_obj)) {
              self.memory_optimize_ = (py_obj == Py_True);
            } else {
2722 2723 2724
              PADDLE_THROW(platform::errors::InvalidArgument(
                  "BuildStrategy.memory_optimize must be set to None, False or "
                  "True"));
2725 2726
            }
          },
2727
          R"DOC((bool, optional): memory opitimize aims to save total memory
2728
                consumption, set to True to enable it.
2729

2730 2731 2732
                Default None. None means framework would choose to use or not use 
                this strategy automatically. Currently, None means that it is 
                enabled when GC is disabled, and disabled when GC is enabled. 
2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746
                True means enabling and False means disabling. Default is None.

                Examples:
                    .. code-block:: python

                        import paddle
                        import paddle.static as static

                        paddle.enable_static()

                        build_strategy = static.BuildStrategy()
                        build_strategy.memory_optimize = True
                
                )DOC")
2747 2748 2749
      .def_property(
          "is_distribution",
          [](const BuildStrategy &self) { return self.is_distribution_; },
2750 2751 2752
          [](BuildStrategy &self, bool b) {
#ifdef WIN32
            if (b) {
2753
              PADDLE_THROW(platform::errors::Unavailable(
2754
                  "Distribution mode is not supported on Windows platform."));
2755 2756 2757 2758 2759
            }
#else
            self.is_distribution_ = b;
#endif
          })
Q
can run  
Qiao Longfei 已提交
2760 2761 2762
      .def_property("async_mode",
                    [](const BuildStrategy &self) { return self.async_mode_; },
                    [](BuildStrategy &self, bool b) { self.async_mode_ = b; })
D
dzhwinter 已提交
2763
      .def_property(
D
dzhwinter 已提交
2764 2765 2766
          "enable_inplace",
          [](const BuildStrategy &self) { return self.enable_inplace_; },
          [](BuildStrategy &self, bool b) { self.enable_inplace_ = b; })
2767 2768 2769 2770
      .def_property(
          "enable_addto",
          [](const BuildStrategy &self) { return self.enable_addto_; },
          [](BuildStrategy &self, bool b) { self.enable_addto_ = b; })
C
chengduo 已提交
2771 2772
      .def_property(
          "fuse_all_reduce_ops",
C
chengduo 已提交
2773 2774 2775 2776
          [](const BuildStrategy &self) {
            return self.fuse_all_reduce_ops_ == true ||
                   self.fuse_all_reduce_ops_ == boost::none;
          },
C
chengduo 已提交
2777
          [](BuildStrategy &self, bool b) { self.fuse_all_reduce_ops_ = b; })
2778 2779 2780 2781 2782 2783 2784
      .def_property("enable_backward_optimizer_op_deps",
                    [](const BuildStrategy &self) {
                      return self.enable_backward_optimizer_op_deps_;
                    },
                    [](BuildStrategy &self, bool b) {
                      self.enable_backward_optimizer_op_deps_ = b;
                    })
2785 2786 2787 2788
      .def_property(
          "cache_runtime_context",
          [](const BuildStrategy &self) { return self.cache_runtime_context_; },
          [](BuildStrategy &self, bool b) { self.cache_runtime_context_ = b; })
2789 2790 2791 2792 2793 2794 2795 2796 2797
      .def_property(
          "mkldnn_enabled_op_types",
          [](const BuildStrategy &self) {
            return self.mkldnn_enabled_op_types_;
          },
          [](BuildStrategy &self,
             const std::unordered_set<std::string> &mkldnn_enabled_op_types) {
            self.mkldnn_enabled_op_types_ = mkldnn_enabled_op_types;
          })
2798
      .def("_finalize_strategy_and_create_passes",
X
fix  
Xin Pan 已提交
2799
           [](BuildStrategy &self) -> std::shared_ptr<ir::PassBuilder> {
2800 2801 2802 2803 2804
             return self.CreatePassesFromStrategy(true);
           },
           R"DOC(Allow user to customized passes. Normally model-specific
                optimization passes should be defined in this way. BuildStrategy
                cannot be updated after being finalized.)DOC");
Y
yuyang18 已提交
2805 2806

  pe.def(py::init<const std::vector<platform::Place> &,
Y
Yan Xu 已提交
2807
                  const std::vector<std::string> &, const std::string &,
X
Xin Pan 已提交
2808
                  Scope *, std::vector<Scope *> &, const ExecutionStrategy &,
X
Xin Pan 已提交
2809
                  const BuildStrategy &, ir::Graph *>())
Y
Yu Yang 已提交
2810 2811 2812 2813
      // NOTE: even we return a vec<Scope*>* to Python use reference policy.
      // We still cannot get local_scope from this vector, since the element
      // of vec<Scope*> will be freed by Python GC. We can only return Scope*
      // one by one and mark them as reference.
2814 2815 2816 2817 2818
      .def("local_scopes",
           [](ParallelExecutor &self) -> std::vector<Scope *> * {
             return &self.GetLocalScopes();
           },
           py::return_value_policy::reference)
2819 2820 2821
      .def("drop_local_exe_scopes", &ParallelExecutor::DropLocalExeScopes)
      .def("_need_create_local_exe_scopes",
           &ParallelExecutor::NeedCreateLocalExeScope)
Y
Yu Yang 已提交
2822 2823 2824 2825
      .def("feed_tensors_into_local_scopes",
           &ParallelExecutor::FeedTensorsIntoLocalScopes)
      .def("feed_and_split_tensor_into_local_scopes",
           &ParallelExecutor::FeedAndSplitTensorIntoLocalScopes)
2826 2827
      .def("run",
           [](ParallelExecutor &self,
Z
Zhen Wang 已提交
2828 2829 2830 2831 2832 2833 2834 2835
              const std::vector<std::string> &fetch_tensors,
              bool return_merged) -> py::object {
             paddle::framework::FetchResultType ret;
             {
               pybind11::gil_scoped_release release;
               ret = self.Run(fetch_tensors, return_merged);
             }
             if (return_merged) {
2836
               return py::cast(
2837
                   std::move(BOOST_GET(paddle::framework::FetchList, ret)));
Z
Zhen Wang 已提交
2838 2839
             } else {
               return py::cast(std::move(
2840
                   BOOST_GET(paddle::framework::FetchUnmergedList, ret)));
Z
Zhen Wang 已提交
2841
             }
2842 2843
           })
      .def("device_count", &ParallelExecutor::DeviceCount);
Y
Yu Yang 已提交
2844

D
dongdaxiang 已提交
2845
  BindFleetWrapper(&m);
T
Thunderbrook 已提交
2846

T
Thunderbrook 已提交
2847 2848
#ifdef PADDLE_WITH_PSLIB
  BindHeterWrapper(&m);
T
Thunderbrook 已提交
2849 2850 2851
#endif
#if (defined PADDLE_WITH_NCCL) && (defined PADDLE_WITH_PSLIB)
  BindPSGPUWrapper(&m);
T
Thunderbrook 已提交
2852
#endif
2853
  BindGlooWrapper(&m);
H
hutuxian 已提交
2854
  BindBoxHelper(&m);
H
hutuxian 已提交
2855 2856 2857
#ifdef PADDLE_WITH_BOX_PS
  BindBoxWrapper(&m);
#endif
2858
#ifdef PADDLE_WITH_NCCL
D
dongdaxiang 已提交
2859
  BindNCCLWrapper(&m);
2860 2861 2862
#endif
#ifdef PADDLE_WITH_GLOO
  BindGlooContext(&m);
W
wopeizl 已提交
2863
#endif
F
flame 已提交
2864 2865
  BindGraph(&m);
  BindNode(&m);
F
flame 已提交
2866
  BindInferenceApi(&m);
2867
  BindCompatible(&m);
2868
  BindDataset(&m);
Y
yaoxuefeng 已提交
2869
  BindGenerator(&m);
2870 2871 2872 2873
#ifdef PADDLE_WITH_ASCEND
  BindAscendWrapper(&m);
  BindAscendGraph(&m);
#endif
Y
Yanghello 已提交
2874 2875 2876
#ifdef PADDLE_WITH_CRYPTO
  BindCrypto(&m);
#endif
T
tangwei12 已提交
2877

T
tangwei12 已提交
2878
#if defined PADDLE_WITH_PSCORE
T
tangwei12 已提交
2879 2880
  BindDistFleetWrapper(&m);
  BindPSHost(&m);
2881
  BindCommunicatorContext(&m);
T
tangwei12 已提交
2882 2883
  BindDistCommunicator(&m);
  BindHeterClient(&m);
2884
#endif
L
Luo Tao 已提交
2885
}
2886
}  // namespace pybind
2887
}  // namespace paddle