nn.py 265.9 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
Y
Yu Yang 已提交
14
"""
15
All layers just related to the neural network.
Y
Yu Yang 已提交
16 17
"""

18 19
from __future__ import print_function

20
import numpy as np
Y
Yu Yang 已提交
21 22
from ..layer_helper import LayerHelper
from ..initializer import Normal, Constant
S
sneaxiy 已提交
23
from ..framework import Variable, OpProtoHolder
Y
yangyaming 已提交
24
from ..param_attr import ParamAttr
S
sneaxiy 已提交
25
from .layer_function_generator import autodoc, templatedoc, _generate_doc_string_
26 27
from .tensor import concat
from . import utils
F
fengjiayi 已提交
28
from .. import unique_name
29
from functools import reduce
Y
Yu Yang 已提交
30 31

__all__ = [
X
Xin Pan 已提交
32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58
    'fc',
    'embedding',
    'dynamic_lstm',
    'dynamic_lstmp',
    'dynamic_gru',
    'gru_unit',
    'linear_chain_crf',
    'crf_decoding',
    'cos_sim',
    'cross_entropy',
    'square_error_cost',
    'chunk_eval',
    'sequence_conv',
    'conv2d',
    'conv3d',
    'sequence_pool',
    'sequence_softmax',
    'softmax',
    'pool2d',
    'pool3d',
    'batch_norm',
    'beam_search_decode',
    'conv2d_transpose',
    'conv3d_transpose',
    'sequence_expand',
    'sequence_expand_as',
    'sequence_pad',
Y
Yibing Liu 已提交
59
    'sequence_unpad',
X
Xin Pan 已提交
60 61 62 63 64 65 66 67
    'lstm_unit',
    'reduce_sum',
    'reduce_mean',
    'reduce_max',
    'reduce_min',
    'reduce_prod',
    'sequence_first_step',
    'sequence_last_step',
Y
Yibing Liu 已提交
68
    'sequence_slice',
X
Xin Pan 已提交
69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98
    'dropout',
    'split',
    'ctc_greedy_decoder',
    'edit_distance',
    'l2_normalize',
    'matmul',
    'topk',
    'warpctc',
    'sequence_reshape',
    'transpose',
    'im2sequence',
    'nce',
    'hsigmoid',
    'beam_search',
    'row_conv',
    'multiplex',
    'layer_norm',
    'softmax_with_cross_entropy',
    'smooth_l1',
    'one_hot',
    'autoincreased_step_counter',
    'reshape',
    'squeeze',
    'unsqueeze',
    'lod_reset',
    'lrn',
    'pad',
    'pad_constant_like',
    'label_smooth',
    'roi_pool',
J
jerrywgz 已提交
99
    'roi_align',
X
Xin Pan 已提交
100 101 102 103 104 105 106 107 108 109 110 111 112
    'dice_loss',
    'image_resize',
    'image_resize_short',
    'resize_bilinear',
    'gather',
    'scatter',
    'sequence_scatter',
    'random_crop',
    'mean_iou',
    'relu',
    'log',
    'crop',
    'rank_loss',
M
minqiyang 已提交
113
    'margin_rank_loss',
X
Xin Pan 已提交
114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156
    'elu',
    'relu6',
    'pow',
    'stanh',
    'hard_sigmoid',
    'swish',
    'prelu',
    'brelu',
    'leaky_relu',
    'soft_relu',
    'flatten',
    'sequence_mask',
    'stack',
    'pad2d',
    'unstack',
    'sequence_enumerate',
    'expand',
    'sequence_concat',
    'scale',
    'elementwise_add',
    'elementwise_div',
    'elementwise_sub',
    'elementwise_mul',
    'elementwise_max',
    'elementwise_min',
    'elementwise_pow',
    'uniform_random_batch_size_like',
    'gaussian_random',
    'sampling_id',
    'gaussian_random_batch_size_like',
    'sum',
    'slice',
    'shape',
    'logical_and',
    'logical_or',
    'logical_xor',
    'logical_not',
    'clip',
    'clip_by_norm',
    'mean',
    'mul',
    'sigmoid_cross_entropy_with_logits',
    'maxout',
157
    'affine_channel',
Y
Yu Yang 已提交
158 159 160 161 162 163 164 165 166
]


def fc(input,
       size,
       num_flatten_dims=1,
       param_attr=None,
       bias_attr=None,
       act=None,
J
Jacek Czaja 已提交
167
       is_test=False,
168
       name=None):
Y
Yu Yang 已提交
169
    """
170
    **Fully Connected Layer**
Y
Yu Yang 已提交
171

172 173 174 175 176 177 178 179
    This function creates a fully connected layer in the network. It can take
    multiple tensors as its inputs. It creates a variable called weights for
    each input tensor, which represents a fully connected weight matrix from
    each input unit to each output unit. The fully connected layer multiplies
    each input tensor with its coresponding weight to produce an output Tensor.
    If multiple input tensors are given, the results of multiple multiplications
    will be sumed up. If bias_attr is not None, a bias variable will be created
    and added to the output. Finally, if activation is not None, it will be applied
F
fengjiayi 已提交
180
    to the output as well.
C
caoying03 已提交
181

C
caoying03 已提交
182
    This process can be formulated as follows:
183 184 185

    .. math::

186
        Out = Act({\sum_{i=0}^{N-1}X_iW_i + b})
187 188 189

    In the above equation:

C
caoying03 已提交
190 191 192 193
    * :math:`N`: Number of the input.
    * :math:`X_i`: The input tensor.
    * :math:`W`: The weights created by this layer.
    * :math:`b`: The bias parameter created by this layer (if needed).
194
    * :math:`Act`: The activation function.
C
caoying03 已提交
195
    * :math:`Out`: The output tensor.
Y
Yu Yang 已提交
196 197

    Args:
R
ranqiu 已提交
198 199 200 201 202 203 204 205 206 207 208 209 210 211 212
        input (Variable|list of Variable): The input tensor(s) of this layer, and the dimension of
            the input tensor(s) is at least 2.
        size(int): The number of output units in this layer.
        num_flatten_dims (int, default 1): The fc layer can accept an input tensor with more than
            two dimensions. If this happens, the multidimensional tensor will first be flattened
            into a 2-dimensional matrix. The parameter `num_flatten_dims` determines how the input
            tensor is flattened: the first `num_flatten_dims` (inclusive, index starts from 1)
            dimensions will be flatten to form the first dimension of the final matrix (height of
            the matrix), and the rest `rank(X) - num_flatten_dims` dimensions are flattened to
            form the second dimension of the final matrix (width of the matrix). For example, suppose
            `X` is a 6-dimensional tensor with a shape [2, 3, 4, 5, 6], and `num_flatten_dims` = 3.
            Then, the flattened matrix will have a shape [2 x 3 x 4, 5 x 6] = [24, 30].
        param_attr (ParamAttr|list of ParamAttr, default None): The parameter attribute for learnable
            parameters/weights of this layer.
        bias_attr (ParamAttr|list of ParamAttr, default None): The parameter attribute for the bias
213 214
            of this layer. If it is set to False, no bias will be added to the output units.
            If it is set to None, the bias is initialized zero. Default: None.
R
ranqiu 已提交
215
        act (str, default None): Activation to be applied to the output of this layer.
J
Jacek Czaja 已提交
216
        is_test(bool): A flag indicating whether execution is in test phase.
R
ranqiu 已提交
217
        name (str, default None): The name of this layer.
Y
Yu Yang 已提交
218

219
    Returns:
F
fengjiayi 已提交
220
        Variable: The transformation result.
221 222

    Raises:
C
caoying03 已提交
223
        ValueError: If rank of the input tensor is less than 2.
224 225 226 227

    Examples:
        .. code-block:: python

F
fengjiayi 已提交
228
          data = fluid.layers.data(name="data", shape=[32, 32], dtype="float32")
229
          fc = fluid.layers.fc(input=data, size=1000, act="tanh")
Y
Yu Yang 已提交
230
    """
C
caoying03 已提交
231

C
caoying03 已提交
232
    helper = LayerHelper("fc", **locals())
Y
Yu Yang 已提交
233 234 235 236

    dtype = helper.input_dtype()

    mul_results = []
237 238
    for input_var, param_attr in helper.iter_inputs_and_params():
        input_shape = input_var.shape
Y
Yu Yang 已提交
239 240 241
        param_shape = [
            reduce(lambda a, b: a * b, input_shape[num_flatten_dims:], 1)
        ] + [size]
Y
ying 已提交
242

Y
Yu Yang 已提交
243
        w = helper.create_parameter(
244
            attr=param_attr, shape=param_shape, dtype=dtype, is_bias=False)
X
Xin Pan 已提交
245
        tmp = helper.create_variable_for_type_inference(dtype)
246
        helper.append_op(
247 248 249
            type="mul",
            inputs={"X": input_var,
                    "Y": w},
250
            outputs={"Out": tmp},
M
mozga-intel 已提交
251 252
            attrs={"x_num_col_dims": num_flatten_dims,
                   "y_num_col_dims": 1})
253 254 255 256
        mul_results.append(tmp)

    if len(mul_results) == 1:
        pre_bias = mul_results[0]
257
    else:
X
Xin Pan 已提交
258
        pre_bias = helper.create_variable_for_type_inference(dtype)
259
        helper.append_op(
260 261 262
            type="sum",
            inputs={"X": mul_results},
            outputs={"Out": pre_bias},
X
Xin Pan 已提交
263
            attrs={"use_mkldnn": False})
264 265 266 267
    # add bias
    pre_activation = helper.append_bias_op(pre_bias, dim_start=num_flatten_dims)
    # add activation
    return helper.append_activation(pre_activation)
Y
Yu Yang 已提交
268 269


270 271 272
def embedding(input,
              size,
              is_sparse=False,
273
              is_distributed=False,
274 275 276
              padding_idx=None,
              param_attr=None,
              dtype='float32'):
Y
Yu Yang 已提交
277
    """
278 279
    **Embedding Layer**

280
    This layer is used to lookup embeddings of IDs, provided by :attr:`input`, in
281 282
    a lookup table. The result of this lookup is the embedding of each ID in the
    :attr:`input`.
283 284 285

    All the input variables are passed in as local variables to the LayerHelper
    constructor.
Y
Yu Yang 已提交
286 287

    Args:
288 289 290 291 292
        input(Variable): The tensor variable containing the IDs.
        size(tuple|list): The shape of the look up table parameter. It should
            have two elements which indicate the size of the dictionary of
            embeddings and the size of each embedding vector respectively.
        is_sparse(bool): The flag indicating whether to use sparse update.
293
        is_distributed(bool): Whether to run lookup table from remote parameter server.
294 295
        padding_idx(int|long|None): If :attr:`None`, it makes no effect to lookup.
            Otherwise the given :attr:`padding_idx` indicates padding the output
296
            with zeros whenever lookup encounters it in :attr:`input`. If
297
            :math:`padding_idx < 0`, the :attr:`padding_idx` to use in lookup is
298 299
            :math:`size[0] + dim`.
        param_attr(ParamAttr): Parameters for this layer
300
        dtype(np.dtype|core.VarDesc.VarType|str): The type of data : float32, float_16, int etc
Y
Yu Yang 已提交
301

302 303 304
    Returns:
        Variable: The tensor variable storing the embeddings of the \
                  supplied inputs.
Y
Yu Yang 已提交
305

306 307
    Examples:
        .. code-block:: python
Y
Yu Yang 已提交
308

C
chengduoZH 已提交
309
          dict_size = len(dataset.ids)
310
          data = fluid.layers.data(name='ids', shape=[32, 32], dtype='float32')
C
chengduoZH 已提交
311
          fc = fluid.layers.embedding(input=data, size=[dict_size, 16])
Y
Yu Yang 已提交
312 313 314 315 316
    """

    helper = LayerHelper('embedding', **locals())
    w = helper.create_parameter(
        attr=helper.param_attr, shape=size, dtype=dtype, is_bias=False)
X
Xin Pan 已提交
317
    tmp = helper.create_variable_for_type_inference(dtype)
318 319
    padding_idx = -1 if padding_idx is None else padding_idx if padding_idx >= 0 else (
        size[0] + padding_idx)
Y
Yu Yang 已提交
320 321 322 323 324
    helper.append_op(
        type='lookup_table',
        inputs={'Ids': input,
                'W': w},
        outputs={'Out': tmp},
325 326 327 328 329
        attrs={
            'is_sparse': is_sparse,
            'is_distributed': is_distributed,
            'padding_idx': padding_idx
        })
Y
Yu Yang 已提交
330 331 332
    return tmp


Y
yi.wu 已提交
333
@templatedoc(op_type="lstm")
Y
Yu Yang 已提交
334 335
def dynamic_lstm(input,
                 size,
Y
Yancey 已提交
336 337
                 h_0=None,
                 c_0=None,
Y
Yu Yang 已提交
338 339 340 341 342 343 344
                 param_attr=None,
                 bias_attr=None,
                 use_peepholes=True,
                 is_reverse=False,
                 gate_activation='sigmoid',
                 cell_activation='tanh',
                 candidate_activation='tanh',
345 346
                 dtype='float32',
                 name=None):
Y
Yibing Liu 已提交
347
    """
Y
yi.wu 已提交
348
    ${comment}
Y
Yibing Liu 已提交
349 350

    Args:
Y
yi.wu 已提交
351 352
        input (Variable): ${input_comment}
        size (int): 4 * hidden size.
Y
Yancey 已提交
353 354 355 356 357 358
        h_0(Variable): The initial hidden state is an optional input, default is zero.
                       This is a tensor with shape (N x D), where N is the
                       batch size and D is the hidden size.
        c_0(Variable): The initial cell state is an optional input, default is zero.
                       This is a tensor with shape (N x D), where N is the
                       batch size. `h_0` and `c_0` can be NULL but only at the same time.
359
        param_attr(ParamAttr|None): The parameter attribute for the learnable
360
                               hidden-hidden weights.
Y
Yibing Liu 已提交
361 362 363

                               - Weights = {:math:`W_{ch}, W_{ih}, \
                                                W_{fh}, W_{oh}`}
364 365
                               - The shape is (D x 4D), where D is the hidden
                                 size.
C
chengduo 已提交
366 367 368 369 370

                               If it is set to None or one attribute of ParamAttr,
                               dynamic_lstm will create ParamAttr as param_attr.
                               If the Initializer of the param_attr is not set, the
                               parameter is initialized with Xavier. Default: None.
Y
yi.wu 已提交
371
        bias_attr (ParamAttr|None): The bias attribute for the learnable bias
372 373 374
                              weights, which contains two parts, input-hidden
                              bias weights and peephole connections weights if
                              setting `use_peepholes` to `True`.
Y
Yibing Liu 已提交
375

376
                              1. `use_peepholes = False`
Y
yi.wu 已提交
377 378
                                 - Biases = {:math:`b_c, b_i, b_f, b_o`}.
                                 - The shape is (1 x 4D).
379
                              2. `use_peepholes = True`
Y
yi.wu 已提交
380
                                 - Biases = { :math:`b_c, b_i, b_f, b_o, W_{ic}, \
Y
Yibing Liu 已提交
381
                                                 W_{fc}, W_{oc}`}.
Y
yi.wu 已提交
382
                                 - The shape is (1 x 7D).
C
chengduo 已提交
383 384 385 386 387

                              If it is set to None or one attribute of ParamAttr,
                              dynamic_lstm will create ParamAttr as bias_attr.
                              If the Initializer of the bias_attr is not set,
                              the bias is initialized zero. Default: None.
Y
yi.wu 已提交
388 389 390 391 392 393 394 395
        use_peepholes (bool): ${use_peepholes_comment}
        is_reverse (bool): ${is_reverse_comment}
        gate_activation (str): ${gate_activation_comment}
        cell_activation (str): ${cell_activation_comment}
        candidate_activation (str): ${candidate_activation_comment}
        dtype (str): Data type. Choices = ["float32", "float64"], default "float32".
        name (str|None): A name for this layer(optional). If set None, the layer
                         will be named automatically.
Y
Yibing Liu 已提交
396 397

    Returns:
Y
Yibing Liu 已提交
398 399
        tuple: The hidden state, and cell state of LSTM. The shape of both \
        is (T x D), and lod is the same with the `input`.
Y
Yibing Liu 已提交
400

Y
Yibing Liu 已提交
401
    Examples:
Y
Yibing Liu 已提交
402 403
        .. code-block:: python

Y
Yibing Liu 已提交
404 405
            hidden_dim = 512
            forward_proj = fluid.layers.fc(input=input_seq, size=hidden_dim * 4,
C
chengduo 已提交
406
                                           bias_attr=False)
Y
Yibing Liu 已提交
407 408
            forward, _ = fluid.layers.dynamic_lstm(
                input=forward_proj, size=hidden_dim * 4, use_peepholes=False)
Y
Yibing Liu 已提交
409
    """
C
chengduo 已提交
410
    assert bias_attr is not False, "bias_attr should not be False in dynamic_lstmp."
Y
Yu Yang 已提交
411
    helper = LayerHelper('lstm', **locals())
M
minqiyang 已提交
412
    size = size // 4
Y
Yu Yang 已提交
413 414 415 416 417 418 419 420
    weight = helper.create_parameter(
        attr=helper.param_attr, shape=[size, 4 * size], dtype=dtype)
    bias_size = [1, 7 * size]
    if not use_peepholes:
        bias_size[1] = 4 * size
    bias = helper.create_parameter(
        attr=helper.bias_attr, shape=bias_size, dtype=dtype, is_bias=True)

X
Xin Pan 已提交
421 422 423 424
    hidden = helper.create_variable_for_type_inference(dtype)
    cell = helper.create_variable_for_type_inference(dtype)
    batch_gate = helper.create_variable_for_type_inference(dtype)
    batch_cell_pre_act = helper.create_variable_for_type_inference(dtype)
Y
Yancey 已提交
425 426 427 428 429 430 431 432 433 434
    inputs = {'Input': input, 'Weight': weight, 'Bias': bias}
    batch_size = input.shape[0]
    if h_0:
        assert h_0.shape == (batch_size, size), \
            'The shape of h0 should be (batch_size, %d)' % size
        inputs['H0'] = h_0
    if c_0:
        assert c_0.shape == (batch_size, size), \
            'The shape of c0 should be (batch_size, %d)' % size
        inputs['C0'] = c_0
Y
Yu Yang 已提交
435 436 437

    helper.append_op(
        type='lstm',
Y
Yancey 已提交
438
        inputs=inputs,
Y
Yu Yang 已提交
439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454
        outputs={
            'Hidden': hidden,
            'Cell': cell,
            'BatchGate': batch_gate,
            'BatchCellPreAct': batch_cell_pre_act
        },
        attrs={
            'use_peepholes': use_peepholes,
            'is_reverse': is_reverse,
            'gate_activation': gate_activation,
            'cell_activation': cell_activation,
            'candidate_activation': candidate_activation
        })
    return hidden, cell


Y
Yibing Liu 已提交
455 456 457 458 459 460 461 462 463 464 465
def dynamic_lstmp(input,
                  size,
                  proj_size,
                  param_attr=None,
                  bias_attr=None,
                  use_peepholes=True,
                  is_reverse=False,
                  gate_activation='sigmoid',
                  cell_activation='tanh',
                  candidate_activation='tanh',
                  proj_activation='tanh',
466 467
                  dtype='float32',
                  name=None):
Y
Yibing Liu 已提交
468 469 470
    """
    **Dynamic LSTMP Layer**

471 472 473 474 475 476
    LSTMP (LSTM with recurrent projection) layer has a separate projection
    layer after the LSTM layer, projecting the original hidden state to a
    lower-dimensional one, which is proposed to reduce the number of total
    parameters and furthermore computational complexity for the LSTM,
    espeacially for the case that the size of output units is relative
    large (https://research.google.com/pubs/archive/43905.pdf).
Y
Yibing Liu 已提交
477 478 479 480 481

    The formula is as follows:

    .. math::

482
        i_t & = \sigma(W_{ix}x_{t} + W_{ir}r_{t-1} + W_{ic}c_{t-1} + b_i)
Y
Yibing Liu 已提交
483

484
        f_t & = \sigma(W_{fx}x_{t} + W_{fr}r_{t-1} + W_{fc}c_{t-1} + b_f)
Y
Yibing Liu 已提交
485

486
        \\tilde{c_t} & = act_g(W_{cx}x_t + W_{cr}r_{t-1} + b_c)
Y
Yibing Liu 已提交
487

488
        o_t & = \sigma(W_{ox}x_{t} + W_{or}r_{t-1} + W_{oc}c_t + b_o)
Y
Yibing Liu 已提交
489

490
        c_t & = f_t \odot c_{t-1} + i_t \odot \\tilde{c_t}
Y
Yibing Liu 已提交
491

492
        h_t & = o_t \odot act_h(c_t)
Y
Yibing Liu 已提交
493

494
        r_t & = \overline{act_h}(W_{rh}h_t)
Y
Yibing Liu 已提交
495

Y
Yibing Liu 已提交
496 497 498 499 500 501
    In the above formula:

    * :math:`W`: Denotes weight matrices (e.g. :math:`W_{xi}` is \
          the matrix of weights from the input gate to the input).
    * :math:`W_{ic}`, :math:`W_{fc}`, :math:`W_{oc}`: Diagonal weight \
          matrices for peephole connections. In our implementation, \
502
          we use vectors to reprenset these diagonal weight matrices.
Y
Yibing Liu 已提交
503
    * :math:`b`: Denotes bias vectors (e.g. :math:`b_i` is the input gate \
504
          bias vector).
Y
Yibing Liu 已提交
505 506 507
    * :math:`\sigma`: The activation, such as logistic sigmoid function.
    * :math:`i, f, o` and :math:`c`: The input gate, forget gate, output \
          gate, and cell activation vectors, respectively, all of which have \
508
          the same size as the cell output activation vector :math:`h`.
Y
Yibing Liu 已提交
509
    * :math:`h`: The hidden state.
510
    * :math:`r`: The recurrent projection of the hidden state.
Y
Yibing Liu 已提交
511 512
    * :math:`\\tilde{c_t}`: The candidate hidden state, whose \
          computation is based on the current input and previous hidden state.
513
    * :math:`\odot`: The element-wise product of the vectors.
Y
Yibing Liu 已提交
514
    * :math:`act_g` and :math:`act_h`: The cell input and cell output \
515
          activation functions and `tanh` is usually used for them.
Y
Yibing Liu 已提交
516 517
    * :math:`\overline{act_h}`: The activation function for the projection \
          output, usually using `identity` or same as :math:`act_h`.
Y
Yibing Liu 已提交
518 519 520 521

    Set `use_peepholes` to `False` to disable peephole connection. The formula
    is omitted here, please refer to the paper
    http://www.bioinf.jku.at/publications/older/2604.pdf for details.
522

Y
Yibing Liu 已提交
523 524 525 526 527 528 529 530 531 532 533 534
    Note that these :math:`W_{xi}x_{t}, W_{xf}x_{t}, W_{xc}x_{t}, W_{xo}x_{t}`
    operations on the input :math:`x_{t}` are NOT included in this operator.
    Users can choose to use fully-connected layer before LSTMP layer.

    Args:
        input(Variable): The input of dynamic_lstmp layer, which supports
                         variable-time length input sequence. The underlying
                         tensor in this Variable is a matrix with shape
                         (T X 4D), where T is the total time steps in this
                         mini-batch, D is the hidden size.
        size(int): 4 * hidden size.
        proj_size(int): The size of projection output.
535
        param_attr(ParamAttr|None): The parameter attribute for the learnable
Y
Yibing Liu 已提交
536 537
                               hidden-hidden weight and projection weight.

538 539
                               - Hidden-hidden weight = {:math:`W_{ch}, W_{ih}, \
                                                W_{fh}, W_{oh}`}.
540 541
                               - The shape of hidden-hidden weight is (P x 4D),
                                 where P is the projection size and D the hidden
Y
Yibing Liu 已提交
542 543
                                 size.
                               - Projection weight = {:math:`W_{rh}`}.
544
                               - The shape of projection weight is (D x P).
C
chengduo 已提交
545 546 547 548 549

                               If it is set to None or one attribute of ParamAttr,
                               dynamic_lstm will create ParamAttr as param_attr.
                               If the Initializer of the param_attr is not set, the
                               parameter is initialized with Xavier. Default: None.
550
        bias_attr(ParamAttr|None): The bias attribute for the learnable bias
Y
Yibing Liu 已提交
551 552 553 554 555 556
                              weights, which contains two parts, input-hidden
                              bias weights and peephole connections weights if
                              setting `use_peepholes` to `True`.

                              1. `use_peepholes = False`
                                - Biases = {:math:`b_c, b_i, b_f, b_o`}.
557
                                - The shape is (1 x 4D).
Y
Yibing Liu 已提交
558 559 560
                              2. `use_peepholes = True`
                                - Biases = { :math:`b_c, b_i, b_f, b_o, W_{ic}, \
                                                 W_{fc}, W_{oc}`}.
561
                                - The shape is (1 x 7D).
C
chengduo 已提交
562 563 564 565 566

                              If it is set to None or one attribute of ParamAttr,
                              dynamic_lstm will create ParamAttr as bias_attr.
                              If the Initializer of the bias_attr is not set,
                              the bias is initialized zero. Default: None.
Y
Yibing Liu 已提交
567 568 569 570 571 572 573 574 575
        use_peepholes(bool): Whether to enable diagonal/peephole connections,
                             default `True`.
        is_reverse(bool): Whether to compute reversed LSTM, default `False`.
        gate_activation(str): The activation for input gate, forget gate and
                              output gate. Choices = ["sigmoid", "tanh", "relu",
                              "identity"], default "sigmoid".
        cell_activation(str): The activation for cell output. Choices = ["sigmoid",
                              "tanh", "relu", "identity"], default "tanh".
        candidate_activation(str): The activation for candidate hidden state.
576
                              Choices = ["sigmoid", "tanh", "relu", "identity"],
Y
Yibing Liu 已提交
577 578
                              default "tanh".
        proj_activation(str): The activation for projection output.
579
                              Choices = ["sigmoid", "tanh", "relu", "identity"],
Y
Yibing Liu 已提交
580 581
                              default "tanh".
        dtype(str): Data type. Choices = ["float32", "float64"], default "float32".
582 583
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
Y
Yibing Liu 已提交
584 585

    Returns:
586 587 588 589
        tuple: A tuple of two output variable: the projection of hidden state, \
               and cell state of LSTMP. The shape of projection is (T x P), \
               for the cell state which is (T x D), and both LoD is the same \
               with the `input`.
Y
Yibing Liu 已提交
590 591

    Examples:
592

Y
Yibing Liu 已提交
593 594
        .. code-block:: python

595 596 597 598
            dict_dim, emb_dim = 128, 64
            data = fluid.layers.data(name='sequence', shape=[1],
                                     dtype='int32', lod_level=1)
            emb = fluid.layers.embedding(input=data, size=[dict_dim, emb_dim])
Y
Yibing Liu 已提交
599
            hidden_dim, proj_dim = 512, 256
600
            fc_out = fluid.layers.fc(input=emb, size=hidden_dim * 4,
Y
Yibing Liu 已提交
601
                                     act=None, bias_attr=None)
602 603 604
            proj_out, _ = fluid.layers.dynamic_lstmp(input=fc_out,
                                                     size=hidden_dim * 4,
                                                     proj_size=proj_dim,
Y
Yibing Liu 已提交
605 606 607 608
                                                     use_peepholes=False,
                                                     is_reverse=True,
                                                     cell_activation="tanh",
                                                     proj_activation="tanh")
Y
Yibing Liu 已提交
609
    """
610

C
chengduo 已提交
611
    assert bias_attr is not False, "bias_attr should not be False in dynamic_lstmp."
Y
Yibing Liu 已提交
612
    helper = LayerHelper('lstmp', **locals())
M
minqiyang 已提交
613
    size = size // 4
Y
Yibing Liu 已提交
614 615 616 617 618 619 620 621 622 623
    weight = helper.create_parameter(
        attr=helper.param_attr, shape=[proj_size, 4 * size], dtype=dtype)
    proj_weight = helper.create_parameter(
        attr=helper.param_attr, shape=[size, proj_size], dtype=dtype)
    bias_size = [1, 7 * size]
    if not use_peepholes:
        bias_size[1] = 4 * size
    bias = helper.create_parameter(
        attr=helper.bias_attr, shape=bias_size, dtype=dtype, is_bias=True)

X
Xin Pan 已提交
624 625 626 627 628 629
    projection = helper.create_variable_for_type_inference(dtype)
    cell = helper.create_variable_for_type_inference(dtype)
    ordered_proj0 = helper.create_variable_for_type_inference(dtype)
    batch_hidden = helper.create_variable_for_type_inference(dtype)
    batch_gate = helper.create_variable_for_type_inference(dtype)
    batch_cell_pre_act = helper.create_variable_for_type_inference(dtype)
Y
Yibing Liu 已提交
630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657

    helper.append_op(
        type='lstmp',
        inputs={
            'Input': input,
            'Weight': weight,
            'ProjWeight': proj_weight,
            'Bias': bias
        },
        outputs={
            'Projection': projection,
            'Cell': cell,
            'OrderedP0': ordered_proj0,
            'BatchHidden': batch_hidden,
            'BatchGate': batch_gate,
            'BatchCellPreAct': batch_cell_pre_act
        },
        attrs={
            'use_peepholes': use_peepholes,
            'is_reverse': is_reverse,
            'gate_activation': gate_activation,
            'cell_activation': cell_activation,
            'candidate_activation': candidate_activation,
            'proj_activation': proj_activation
        })
    return projection, cell


G
guosheng 已提交
658 659 660 661 662 663 664 665 666
def dynamic_gru(input,
                size,
                param_attr=None,
                bias_attr=None,
                is_reverse=False,
                gate_activation='sigmoid',
                candidate_activation='tanh',
                h_0=None):
    """
667
    **Gated Recurrent Unit (GRU) Layer**
G
guosheng 已提交
668

669
    Refer to `Empirical Evaluation of Gated Recurrent Neural Networks on
670
    Sequence Modeling <https://arxiv.org/abs/1412.3555>`_ .
671

G
guosheng 已提交
672 673 674 675 676 677 678 679 680
    The formula is as follows:

    .. math::

        u_t & = act_g(W_{ux}x_{t} + W_{uh}h_{t-1} + b_u)

        r_t & = act_g(W_{rx}x_{t} + W_{rh}h_{t-1} + b_r)

        \\tilde{h_t} & = act_c(W_{cx}x_{t} + W_{ch}(r_t \odot h_{t-1}) + b_c)
681

G
guosheng 已提交
682
        h_t & = (1-u_t) \odot h_{t-1} + u_t \odot \\tilde{h_t}
683

G
guosheng 已提交
684
    The :math:`\odot` is the element-wise product of the vectors. :math:`act_g`
685 686
    is the update gate and reset gate activation function and :math:`sigmoid`
    is usually used for it. :math:`act_c` is the activation function for
G
guosheng 已提交
687 688 689 690
    candidate hidden state and :math:`tanh` is usually used for it.

    Note that these :math:`W_{ux}x_{t}, W_{rx}x_{t}, W_{cx}x_{t}` operations on
    the input :math:`x_{t}` are NOT included in this operator. Users can choose
691
    to use fully-connect layer before GRU layer.
G
guosheng 已提交
692 693

    Args:
694 695
        input(Variable): The input of dynamic_gru layer, which supports
            variable-time length input sequence. The underlying tensor in this
G
guosheng 已提交
696
            Variable is a matrix with shape :math:`(T \\times 3D)`, where
697
            :math:`T` is the total time steps in this mini-batch, :math:`D`
G
guosheng 已提交
698 699
            is the hidden size.
        size(int): The dimension of the gru cell.
700
        param_attr(ParamAttr|None): The parameter attribute for the learnable
G
guosheng 已提交
701 702
            hidden-hidden weight matrix. Note:

703
            - The shape of the weight matrix is :math:`(T \\times 3D)`, where
G
guosheng 已提交
704
              :math:`D` is the hidden size.
705
            - All elements in the weight matrix can be divided into two parts.
G
guosheng 已提交
706
              The first part are weights of the update gate and reset gate with
707
              shape :math:`(D \\times 2D)`, and the second part are weights for
G
guosheng 已提交
708
              candidate hidden state with shape :math:`(D \\times D)`.
709
        bias_attr(ParamAttr): The parameter attribute for learnable the
G
guosheng 已提交
710
            hidden-hidden bias.
711
        is_reverse(bool): Whether to compute reversed GRU, default
G
guosheng 已提交
712 713 714
            :attr:`False`.
        gate_activation(str): The activation for update gate and reset gate.
            Choices = ["sigmoid", "tanh", "relu", "identity"], default "sigmoid".
715
        candidate_activation(str): The activation for candidate hidden state.
G
guosheng 已提交
716
            Choices = ["sigmoid", "tanh", "relu", "identity"], default "tanh".
717 718 719 720
        h_0 (Variable): This is initial hidden state. If not set, default is
            zero. This is a tensor with shape (N x D), where N is the number of
            total time steps of input mini-batch feature and D is the hidden
            size.
G
guosheng 已提交
721 722

    Returns:
G
guosheng 已提交
723
        Variable: The hidden state of GRU. The shape is :math:`(T \\times D)`, \
724
            and sequence length is the same with the input.
725

G
guosheng 已提交
726
    Examples:
727

G
guosheng 已提交
728 729
        .. code-block:: python

730 731 732 733
            dict_dim, emb_dim = 128, 64
            data = fluid.layers.data(name='sequence', shape=[1],
                                     dtype='int32', lod_level=1)
            emb = fluid.layers.embedding(input=data, size=[dict_dim, emb_dim])
G
guosheng 已提交
734
            hidden_dim = 512
735
            x = fluid.layers.fc(input=emb, size=hidden_dim * 3)
G
guosheng 已提交
736 737 738 739 740 741 742 743 744 745
            hidden = fluid.layers.dynamic_gru(input=x, dim=hidden_dim)
    """

    helper = LayerHelper('gru', **locals())
    dtype = helper.input_dtype()

    weight = helper.create_parameter(
        attr=helper.param_attr, shape=[size, 3 * size], dtype=dtype)
    bias = helper.create_parameter(
        attr=helper.bias_attr, shape=[1, 3 * size], dtype=dtype, is_bias=True)
Y
Yancey 已提交
746
    batch_size = input.shape[0]
G
guosheng 已提交
747 748 749
    inputs = {'Input': input, 'Weight': weight, 'Bias': bias}
    if h_0 != None:
        assert h_0.shape == (
Y
Yancey 已提交
750 751 752
            batch_size, size
        ), 'The shape of h0 should be(batch_size, %d)' % size
        inputs['H0'] = h_0
G
guosheng 已提交
753

X
Xin Pan 已提交
754 755 756 757
    hidden = helper.create_variable_for_type_inference(dtype)
    batch_gate = helper.create_variable_for_type_inference(dtype)
    batch_reset_hidden_prev = helper.create_variable_for_type_inference(dtype)
    batch_hidden = helper.create_variable_for_type_inference(dtype)
G
guosheng 已提交
758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775

    helper.append_op(
        type='gru',
        inputs=inputs,
        outputs={
            'Hidden': hidden,
            'BatchGate': batch_gate,
            'BatchResetHiddenPrev': batch_reset_hidden_prev,
            'BatchHidden': batch_hidden
        },
        attrs={
            'is_reverse': is_reverse,
            'gate_activation': gate_activation,
            'activation': candidate_activation
        })
    return hidden


Y
Yu Yang 已提交
776 777 778
def gru_unit(input,
             hidden,
             size,
779 780
             param_attr=None,
             bias_attr=None,
Y
Yu Yang 已提交
781
             activation='tanh',
782
             gate_activation='sigmoid'):
Y
Yu Yang 已提交
783
    """
784
    GRU unit layer. The equation of a gru step is:
Y
Yu Yang 已提交
785

786 787
        .. math::
            u_t & = actGate(xu_{t} + W_u h_{t-1} + b_u)
Y
Yu Yang 已提交
788

789
            r_t & = actGate(xr_{t} + W_r h_{t-1} + b_r)
Y
Yu Yang 已提交
790

791
            m_t & = actNode(xm_t + W_c dot(r_t, h_{t-1}) + b_m)
792

793
            h_t & = dot((1-u_t), m_t) + dot(u_t, h_{t-1})
794 795

    The inputs of gru unit includes :math:`z_t`, :math:`h_{t-1}`. In terms
796 797 798
    of the equation above, the :math:`z_t` is split into 3 parts -
    :math:`xu_t`, :math:`xr_t` and :math:`xm_t`. This means that in order to
    implement a full GRU unit operator for an input, a fully
799 800
    connected layer has to be applied, such that :math:`z_t = W_{fc}x_t`.

801 802
    The terms :math:`u_t` and :math:`r_t` represent the update and reset gates
    of the GRU cell. Unlike LSTM, GRU has one lesser gate. However, there is
803 804 805
    an intermediate candidate hidden output, which is denoted by :math:`m_t`.
    This layer has three outputs :math:`h_t`, :math:`dot(r_t, h_{t-1})`
    and concatenation of :math:`u_t`, :math:`r_t` and :math:`m_t`.
806 807 808 809 810

    Args:
        input (Variable): The fc transformed input value of current step.
        hidden (Variable): The hidden value of lstm unit from previous step.
        size (integer): The input dimension value.
811 812
        param_attr (ParamAttr): The weight parameters for gru unit. Default: None
        bias_attr (ParamAttr): The bias parameters for gru unit. Default: None
813 814 815 816
        activation (string): The activation type for cell (actNode).
                             Default: 'tanh'
        gate_activation (string): The activation type for gates (actGate).
                                  Default: 'sigmoid'
Y
Yu Yang 已提交
817

818 819 820 821 822 823
    Returns:
        tuple: The hidden value, reset-hidden value and gate values.

    Examples:

        .. code-block:: python
Y
Yu Yang 已提交
824

825
             # assuming we have x_t_data and prev_hidden of size=10
826
             x_t = fluid.layers.fc(input=x_t_data, size=30)
827 828
             hidden_val, r_h_val, gate_val = fluid.layers.gru_unit(input=x_t,
                                                    hidden = prev_hidden)
Y
Yu Yang 已提交
829 830 831 832 833 834 835 836 837 838 839 840

    """
    activation_dict = dict(
        identity=0,
        sigmoid=1,
        tanh=2,
        relu=3, )
    activation = activation_dict[activation]
    gate_activation = activation_dict[gate_activation]

    helper = LayerHelper('gru_unit', **locals())
    dtype = helper.input_dtype()
M
minqiyang 已提交
841
    size = size // 3
Y
Yu Yang 已提交
842 843

    # create weight
844 845
    weight = helper.create_parameter(
        attr=helper.param_attr, shape=[size, 3 * size], dtype=dtype)
Y
Yu Yang 已提交
846

X
Xin Pan 已提交
847 848 849
    gate = helper.create_variable_for_type_inference(dtype)
    reset_hidden_pre = helper.create_variable_for_type_inference(dtype)
    updated_hidden = helper.create_variable_for_type_inference(dtype)
850
    inputs = {'Input': input, 'HiddenPrev': hidden, 'Weight': weight}
Y
Yu Yang 已提交
851
    # create bias
852
    if helper.bias_attr:
Y
Yu Yang 已提交
853 854 855
        bias_size = [1, 3 * size]
        bias = helper.create_parameter(
            attr=helper.bias_attr, shape=bias_size, dtype=dtype, is_bias=True)
856
        inputs['Bias'] = bias
Y
Yu Yang 已提交
857 858 859

    helper.append_op(
        type='gru_unit',
860
        inputs=inputs,
Y
Yu Yang 已提交
861 862 863 864 865 866
        outputs={
            'Gate': gate,
            'ResetHiddenPrev': reset_hidden_pre,
            'Hidden': updated_hidden,
        },
        attrs={
867 868
            'activation': 2,  # tanh
            'gate_activation': 1,  # sigmoid
Y
Yu Yang 已提交
869 870 871 872 873
        })

    return updated_hidden, reset_hidden_pre, gate


Y
yuyang18 已提交
874
@templatedoc()
875
def linear_chain_crf(input, label, param_attr=None):
Y
yuyang18 已提交
876 877 878 879 880 881 882
    """
    Linear Chain CRF.

    ${comment}

    Args:
        input(${emission_type}): ${emission_comment}
D
dzhwinter 已提交
883
        input(${transition_type}): ${transition_comment}
Y
yuyang18 已提交
884 885 886 887
        label(${label_type}): ${label_comment}
        param_attr(ParamAttr): The attribute of the learnable parameter.

    Returns:
D
dzhwinter 已提交
888 889 890
        output(${emission_exps_type}): ${emission_exps_comment} \n
        output(${transition_exps_type}): ${transition_exps_comment} \n
        output(${log_likelihood_type}): ${log_likelihood_comment}
Y
yuyang18 已提交
891 892

    """
Y
Yu Yang 已提交
893 894 895 896 897 898
    helper = LayerHelper('linear_chain_crf', **locals())
    size = input.shape[1]
    transition = helper.create_parameter(
        attr=helper.param_attr,
        shape=[size + 2, size],
        dtype=helper.input_dtype())
X
Xin Pan 已提交
899 900 901 902 903 904 905 906
    alpha = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype())
    emission_exps = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype())
    transition_exps = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype())
    log_likelihood = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype())
Y
Yu Yang 已提交
907 908 909 910 911 912 913 914 915 916 917 918 919 920 921
    helper.append_op(
        type='linear_chain_crf',
        inputs={"Emission": [input],
                "Transition": transition,
                "Label": label},
        outputs={
            "Alpha": [alpha],
            "EmissionExps": [emission_exps],
            "TransitionExps": transition_exps,
            "LogLikelihood": log_likelihood
        })

    return log_likelihood


Y
yuyang18 已提交
922
@templatedoc()
923
def crf_decoding(input, param_attr, label=None):
Y
yuyang18 已提交
924 925 926 927 928
    """
    ${comment}

    Args:
        input(${emission_type}): ${emission_comment}
Y
yi.wu 已提交
929

Y
yuyang18 已提交
930
        param_attr(ParamAttr): The parameter attribute for training.
Y
yi.wu 已提交
931

Y
yuyang18 已提交
932 933 934
        label(${label_type}): ${label_comment}

    Returns:
Y
update  
yi.wu 已提交
935
        Variable: ${viterbi_path_comment}
936

Y
yi.wu 已提交
937 938 939 940 941
    Examples:
        .. code-block:: python

           crf_decode = layers.crf_decoding(
                input=hidden, param_attr=ParamAttr(name="crfw"))
Y
yuyang18 已提交
942
    """
Y
Yu Yang 已提交
943 944
    helper = LayerHelper('crf_decoding', **locals())
    transition = helper.get_parameter(param_attr.name)
X
Xin Pan 已提交
945 946
    viterbi_path = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype())
Y
Yu Yang 已提交
947 948 949 950 951 952 953 954 955 956
    helper.append_op(
        type='crf_decoding',
        inputs={"Emission": [input],
                "Transition": transition,
                "Label": label},
        outputs={"ViterbiPath": [viterbi_path]})

    return viterbi_path


Y
yi.wu 已提交
957
@templatedoc()
F
fengjiayi 已提交
958
def cos_sim(X, Y):
Y
Yu Yang 已提交
959
    """
Y
yi.wu 已提交
960 961 962
    ${comment}

    Args:
963 964
        X (Variable): ${x_comment}.
        Y (Variable): ${y_comment}.
F
fengjiayi 已提交
965

Y
yi.wu 已提交
966
    Returns:
967
        Variable: the output of cosine(X, Y).
Y
Yu Yang 已提交
968
    """
F
fengjiayi 已提交
969
    helper = LayerHelper('cos_sim', **locals())
X
Xin Pan 已提交
970 971 972
    out = helper.create_variable_for_type_inference(dtype=X.dtype)
    xnorm = helper.create_variable_for_type_inference(dtype=X.dtype)
    ynorm = helper.create_variable_for_type_inference(dtype=X.dtype)
Y
Yu Yang 已提交
973 974 975 976 977 978 979 980 981 982
    helper.append_op(
        type='cos_sim',
        inputs={'X': [X],
                'Y': [Y]},
        outputs={'Out': [out],
                 'XNorm': [xnorm],
                 'YNorm': [ynorm]})
    return out


983
def dropout(x, dropout_prob, is_test=False, seed=None, name=None):
984 985 986 987 988
    """
    Computes dropout.

    Drop or keep each element of `x` independently. Dropout is a regularization
    technique for reducing overfitting by preventing neuron co-adaption during
989
    training. The dropout operator randomly sets (according to the given dropout
990 991 992 993
    probability) the outputs of some units to zero, while others are remain
    unchanged.

    Args:
994 995
        x (Variable): The input tensor variable.
        dropout_prob (float): Probability of setting units to zero.
996 997 998 999 1000 1001 1002
        is_test (bool): A flag indicating whether it is in test phrase or not.
        seed (int): A Python integer used to create random seeds. If this
                    parameter is set to None, a random seed is used.
                    NOTE: If an integer seed is given, always the same output
                    units will be dropped. DO NOT use a fixed seed in training.
        name (str|None): A name for this layer(optional). If set None, the layer
                         will be named automatically.
1003 1004

    Returns:
1005
        Variable: A tensor variable is the shape with `x`.
1006 1007

    Examples:
1008

1009 1010
        .. code-block:: python

1011 1012
            x = fluid.layers.data(name="data", shape=[32, 32], dtype="float32")
            droped = fluid.layers.dropout(x, dropout_prob=0.5)
1013 1014
    """

F
fengjiayi 已提交
1015
    helper = LayerHelper('dropout', **locals())
X
Xin Pan 已提交
1016 1017 1018
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
    mask = helper.create_variable_for_type_inference(
        dtype=x.dtype, stop_gradient=True)
C
chengduo 已提交
1019 1020 1021 1022

    if (seed is None or seed == 0) and helper.main_program.random_seed != 0:
        seed = helper.main_program.random_seed

1023 1024 1025 1026 1027
    helper.append_op(
        type='dropout',
        inputs={'X': [x]},
        outputs={'Out': [out],
                 'Mask': [mask]},
1028 1029 1030 1031 1032 1033
        attrs={
            'dropout_prob': dropout_prob,
            'is_test': is_test,
            'fix_seed': seed is not None,
            'seed': seed if seed is not None else 0
        })
1034 1035 1036
    return out


1037
def cross_entropy(input, label, soft_label=False, ignore_index=-100):
Y
Yu Yang 已提交
1038
    """
Y
Yibing Liu 已提交
1039 1040
    **Cross Entropy Layer**

1041 1042 1043
    This layer computes the cross entropy between `input` and `label`. It
    supports both standard cross-entropy and soft-label cross-entropy loss
    computation.
Y
Yibing Liu 已提交
1044 1045

    1) One-hot cross-entropy:
F
fengjiayi 已提交
1046
        `soft_label = False`, `Label[i, 0]` indicates the class index for sample i:
Y
yangyaming 已提交
1047

Y
Yibing Liu 已提交
1048
        .. math::
Y
yangyaming 已提交
1049

Y
Yibing Liu 已提交
1050 1051 1052
            Y[i] = -\log(X[i, Label[i]])

    2) Soft-label cross-entropy:
F
fengjiayi 已提交
1053 1054
        `soft_label = True`, `Label[i, j]` indicates the soft label of class j
        for sample i:
Y
Yibing Liu 已提交
1055 1056 1057 1058 1059

        .. math::

            Y[i] = \sum_j{-Label[i, j] * log(X[i, j])}

Y
Yibing Liu 已提交
1060
       Please make sure that in this case the summation of each row of `label`
Y
Yibing Liu 已提交
1061 1062 1063
       equals one.

    3) One-hot cross-entropy with vecterized `label`:
F
fengjiayi 已提交
1064 1065
         As a special case of 2), when each row of 'label' has only one
         non-zero element which is equal to 1, soft-label cross-entropy degenerates
Y
Yibing Liu 已提交
1066
         to a one-hot cross-entropy with one-hot label representation.
Y
yangyaming 已提交
1067

Y
Yibing Liu 已提交
1068
    Args:
Y
yangyaming 已提交
1069
        input (Variable|list):  a 2-D tensor with shape [N x D], where N is the
1070 1071 1072 1073
                                batch size and D is the number of classes. This
                                input is a probability computed by the previous
                                operator, which is almost always the result of
                                a softmax operator.
Y
yangyaming 已提交
1074
        label (Variable|list): the ground truth which is a 2-D tensor. When
1075 1076 1077 1078
                               `soft_label` is set to `False`, `label` is a
                               tensor<int64> with shape [N x 1]. When
                               `soft_label` is set to `True`, `label` is a
                               tensor<float/double> with shape [N x D].
F
fengjiayi 已提交
1079
        soft_label (bool): a flag indicating whether to
1080
                                           interpretate the given labels as soft
1081
                                           labels. Default: `False`.
M
minqiyang 已提交
1082 1083
        ignore_index (int): Specifies a target value that is ignored and does
                            not contribute to the input gradient. Only valid
1084
                            if soft_label is set to False. Default: -100
Y
Yibing Liu 已提交
1085 1086 1087 1088 1089

    Returns:
         A 2-D tensor with shape [N x 1], the cross entropy loss.

    Raises:
1090 1091 1092 1093 1094
        `ValueError`: 1) the 1st dimension of `input` and `label` are not equal.
                      2) when `soft_label == True`, and the 2nd dimension of
                         `input` and `label` are not equal.
                      3) when `soft_label == False`, and the 2nd dimension of
                         `label` is not 1.
Y
Yibing Liu 已提交
1095 1096 1097 1098 1099 1100

    Examples:
        .. code-block:: python

          predict = fluid.layers.fc(input=net, size=classdim, act='softmax')
          cost = fluid.layers.cross_entropy(input=predict, label=label)
Y
Yu Yang 已提交
1101
    """
F
fengjiayi 已提交
1102
    helper = LayerHelper('cross_entropy', **locals())
X
Xin Pan 已提交
1103
    out = helper.create_variable_for_type_inference(dtype=input.dtype)
Y
Yu Yang 已提交
1104 1105 1106 1107 1108
    helper.append_op(
        type='cross_entropy',
        inputs={'X': [input],
                'Label': [label]},
        outputs={'Y': [out]},
1109 1110
        attrs={"soft_label": soft_label,
               "ignore_index": ignore_index})
Y
Yu Yang 已提交
1111 1112 1113
    return out


F
fengjiayi 已提交
1114
def square_error_cost(input, label):
Y
Yu Yang 已提交
1115
    """
1116 1117
    **Square error cost layer**

1118 1119
    This layer accepts input predictions and target label and returns the
    squared error cost.
Y
ying 已提交
1120

1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133
    For predictions, :math:`X`, and target labels, :math:`Y`, the equation is:

    .. math::

        Out = (X - Y)^2

    In the above equation:

        * :math:`X`: Input predictions, a tensor.
        * :math:`Y`: Input labels, a tensor.
        * :math:`Out`: Output value, same shape with :math:`X`.

    Args:
1134 1135
        input (Variable): Input tensor, has predictions.
        label (Variable): Label tensor, has target labels.
1136 1137

    Returns:
G
guosheng 已提交
1138
        Variable: The tensor variable storing the element-wise squared error \
1139
                  difference of input and label.
1140 1141 1142 1143 1144 1145 1146 1147

    Examples:
        .. code-block:: python

          y = layers.data(name='y', shape=[1], dtype='float32')
          y_predict = layers.data(name='y_predict', shape=[1], dtype='float32')
          cost = layers.square_error_cost(input=y_predict, label=y)

Y
Yu Yang 已提交
1148
    """
F
fengjiayi 已提交
1149
    helper = LayerHelper('square_error_cost', **locals())
X
Xin Pan 已提交
1150
    minus_out = helper.create_variable_for_type_inference(dtype=input.dtype)
Y
Yu Yang 已提交
1151 1152 1153 1154 1155 1156
    helper.append_op(
        type='elementwise_sub',
        inputs={'X': [input],
                'Y': [label]},
        outputs={'Out': [minus_out]})

X
Xin Pan 已提交
1157
    square_out = helper.create_variable_for_type_inference(dtype=input.dtype)
Y
Yu Yang 已提交
1158
    helper.append_op(
F
fengjiayi 已提交
1159 1160
        type='square', inputs={'X': [minus_out]},
        outputs={'Out': [square_out]})
Y
Yu Yang 已提交
1161 1162 1163
    return square_out


Y
yi.wu 已提交
1164
@templatedoc()
Y
Yu Yang 已提交
1165 1166 1167 1168
def chunk_eval(input,
               label,
               chunk_scheme,
               num_chunk_types,
F
fengjiayi 已提交
1169
               excluded_chunk_types=None):
Y
Yu Yang 已提交
1170
    """
Y
yi.wu 已提交
1171
    **Chunk Evaluator**
Y
yi.wu 已提交
1172

Y
yangyaming 已提交
1173
    This function computes and outputs the precision, recall and
1174
    F1-score of chunk detection.
Y
yi.wu 已提交
1175

Y
yi.wu 已提交
1176 1177 1178 1179 1180 1181 1182 1183
    For some basics of chunking, please refer to
    'Chunking with Support Vector Machines <https://aclanthology.info/pdf/N/N01/N01-1025.pdf>'.

    ChunkEvalOp computes the precision, recall, and F1-score of chunk detection,
    and supports IOB, IOE, IOBES and IO (also known as plain) tagging schemes.
    Here is a NER example of labeling for these tagging schemes:

    .. code-block:: python
1184

Y
yi.wu 已提交
1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209
       ====== ====== ======  =====  ==  ============   =====  ===== =====  ==  =========
              Li     Ming    works  at  Agricultural   Bank   of    China  in  Beijing.
       ====== ====== ======  =====  ==  ============   =====  ===== =====  ==  =========
       IO     I-PER  I-PER   O      O   I-ORG          I-ORG  I-ORG I-ORG  O   I-LOC
       IOB    B-PER  I-PER   O      O   B-ORG          I-ORG  I-ORG I-ORG  O   B-LOC
       IOE    I-PER  E-PER   O      O   I-ORG          I-ORG  I-ORG E-ORG  O   E-LOC
       IOBES  B-PER  E-PER   O      O   I-ORG          I-ORG  I-ORG E-ORG  O   S-LOC
       ====== ====== ======  =====  ==  ============   =====  ===== =====  ==  =========

    There are three chunk types(named entity types) including PER(person), ORG(organization)
    and LOC(LOCATION), and we can see that the labels have the form <tag type>-<chunk type>.

    Since the calculations actually use label ids rather than labels, extra attention
    should be paid when mapping labels to ids to make CheckEvalOp work. The key point
    is that the listed equations are satisfied by ids.

    .. code-block:: python

       tag_type = label % num_tag_type
       chunk_type = label / num_tag_type

    where `num_tag_type` is the num of tag types in the tagging scheme, `num_chunk_type`
    is the num of chunk types, and `tag_type` get its value from the following table.

    .. code-block:: python
1210

Y
yi.wu 已提交
1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234
       Scheme Begin Inside End   Single
        plain   0     -      -     -
        IOB     0     1      -     -
        IOE     -     0      1     -
        IOBES   0     1      2     3

    Still use NER as example, assuming the tagging scheme is IOB while chunk types are ORG,
    PER and LOC. To satisfy the above equations, the label map can be like this:

    .. code-block:: python

       B-ORG  0
       I-ORG  1
       B-PER  2
       I-PER  3
       B-LOC  4
       I-LOC  5
       O      6

    It's not hard to verify the equations noting that the num of chunk types
    is 3 and the num of tag types in IOB scheme is 2. For example, the label
    id of I-LOC is 5, the tag type id of I-LOC is 1, and the chunk type id of
    I-LOC is 2, which consistent with the results from the equations.

Y
yi.wu 已提交
1235
    Args:
1236 1237 1238 1239 1240
        input (Variable): prediction output of the network.
        label (Variable): label of the test data set.
        chunk_scheme (str): ${chunk_scheme_comment}
        num_chunk_types (int): ${num_chunk_types_comment}
        excluded_chunk_types (list): ${excluded_chunk_types_comment}
F
fengjiayi 已提交
1241

Y
yi.wu 已提交
1242
    Returns:
Y
update  
yi.wu 已提交
1243 1244 1245
        tuple: tuple containing: precision, recall, f1_score,
        num_infer_chunks, num_label_chunks,
        num_correct_chunks
1246

Y
yi.wu 已提交
1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258
    Examples:
        .. code-block:: python

            crf = fluid.layers.linear_chain_crf(
                input=hidden, label=label, param_attr=ParamAttr(name="crfw"))
            crf_decode = fluid.layers.crf_decoding(
                input=hidden, param_attr=ParamAttr(name="crfw"))
            fluid.layers.chunk_eval(
                input=crf_decode,
                label=label,
                chunk_scheme="IOB",
                num_chunk_types=(label_dict_len - 1) / 2)
Y
Yu Yang 已提交
1259
    """
F
fengjiayi 已提交
1260
    helper = LayerHelper("chunk_eval", **locals())
Y
Yu Yang 已提交
1261 1262

    # prepare output
X
Xin Pan 已提交
1263 1264 1265 1266 1267 1268 1269
    precision = helper.create_variable_for_type_inference(dtype="float32")
    recall = helper.create_variable_for_type_inference(dtype="float32")
    f1_score = helper.create_variable_for_type_inference(dtype="float32")
    num_infer_chunks = helper.create_variable_for_type_inference(dtype="int64")
    num_label_chunks = helper.create_variable_for_type_inference(dtype="int64")
    num_correct_chunks = helper.create_variable_for_type_inference(
        dtype="int64")
Y
Yu Yang 已提交
1270 1271 1272 1273 1274 1275 1276 1277

    helper.append_op(
        type="chunk_eval",
        inputs={"Inference": [input],
                "Label": [label]},
        outputs={
            "Precision": [precision],
            "Recall": [recall],
1278 1279 1280 1281
            "F1-Score": [f1_score],
            "NumInferChunks": [num_infer_chunks],
            "NumLabelChunks": [num_label_chunks],
            "NumCorrectChunks": [num_correct_chunks]
Y
Yu Yang 已提交
1282 1283 1284
        },
        attrs={
            "num_chunk_types": num_chunk_types,
G
guosheng 已提交
1285 1286
            "chunk_scheme": chunk_scheme,
            "excluded_chunk_types": excluded_chunk_types or []
Y
Yu Yang 已提交
1287
        })
1288 1289
    return (precision, recall, f1_score, num_infer_chunks, num_label_chunks,
            num_correct_chunks)
Y
Yu Yang 已提交
1290 1291


1292
@templatedoc()
Y
Yu Yang 已提交
1293 1294 1295 1296 1297 1298 1299
def sequence_conv(input,
                  num_filters,
                  filter_size=3,
                  filter_stride=1,
                  padding=None,
                  bias_attr=None,
                  param_attr=None,
C
chengduo 已提交
1300 1301
                  act=None,
                  name=None):
Y
Yu Yang 已提交
1302 1303 1304 1305
    """
    This function creates the op for sequence_conv, using the inputs and
    other convolutional configurations for the filters and stride as given
    in the input parameters to the function.
1306 1307 1308 1309 1310 1311 1312

    Args:
        input (Variable): ${x_comment}
        num_filters (int): number of filters.
        filter_size (int): the filter size (H and W).
        filter_stride (int): stride of the filter.
        padding (bool): if True, add paddings.
C
chengduo 已提交
1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of sequence_conv.
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, sequence_conv
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. Default: None.
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
            of sequence_conv. If it is set to None or one attribute of ParamAttr, sequence_conv
            will create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with Xavier. Default: None.
        act (str): Activation type, if it is set to None, activation is not appended.
            Default: None.
        name (str|None): A name for this layer(optional). If set None, the layer
            will be named automatically. Default: None.
F
fengjiayi 已提交
1326

1327 1328
    Returns:
        Variable: output of sequence_conv
Y
Yu Yang 已提交
1329 1330 1331 1332 1333 1334 1335
    """

    helper = LayerHelper('sequence_conv', **locals())
    dtype = helper.input_dtype()
    filter_shape = [filter_size * input.shape[1], num_filters]
    filter_param = helper.create_parameter(
        attr=helper.param_attr, shape=filter_shape, dtype=dtype)
X
Xin Pan 已提交
1336
    pre_bias = helper.create_variable_for_type_inference(dtype)
Y
Yu Yang 已提交
1337 1338 1339 1340 1341 1342 1343 1344 1345 1346

    helper.append_op(
        type='sequence_conv',
        inputs={
            'X': [input],
            'Filter': [filter_param],
        },
        outputs={"Out": pre_bias},
        attrs={
            'contextStride': filter_stride,
M
minqiyang 已提交
1347
            'contextStart': -int(filter_size // 2),
Y
Yu Yang 已提交
1348 1349 1350 1351 1352 1353
            'contextLength': filter_size
        })
    pre_act = helper.append_bias_op(pre_bias)
    return helper.append_activation(pre_act)


C
chengduo 已提交
1354
def sequence_softmax(input, use_cudnn=False, name=None):
1355 1356 1357
    """
    This function computes the softmax activation among all time-steps for each
    sequence. The dimension of each time-step should be 1. Thus, the shape of
1358
    input Tensor can be either :math:`[N, 1]` or :math:`[N]`, where :math:`N`
1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374
    is the sum of the length of all sequences.

    For i-th sequence in a mini-batch:

    .. math::

        Out(X[lod[i]:lod[i+1]], :) = \\frac{\exp(X[lod[i]:lod[i+1], :])}{\sum(\exp(X[lod[i]:lod[i+1], :]))}

    For example, for a mini-batch of 3 sequences with variable-length,
    each containing 2, 3, 2 time-steps, the lod of which is [0, 2, 5, 7],
    then softmax will be computed among :math:`X[0:2, :]`, :math:`X[2:5, :]`,
    :math:`X[5:7, :]`, and :math:`N` turns out to be 7.

    Args:
        input (Variable): The input variable which is a LoDTensor.
        use_cudnn (bool): Use cudnn kernel or not, it is valid only when the cudnn \
C
chengduo 已提交
1375 1376 1377
            library is installed. Default: False.
        name (str|None): A name for this layer(optional). If set None, the layer
            will be named automatically. Default: None.
1378

1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389
    Returns:
        Variable: output of sequence_softmax

    Examples:

        .. code-block:: python

             x = fluid.layers.data(name='x', shape=[7, 1],
                              dtype='float32', lod_level=1)
             x_sequence_softmax = fluid.layers.sequence_softmax(input=x)
    """
1390 1391
    helper = LayerHelper('sequence_softmax', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
1392
    softmax_out = helper.create_variable_for_type_inference(dtype)
1393 1394 1395 1396 1397 1398 1399 1400
    helper.append_op(
        type="sequence_softmax",
        inputs={"X": input},
        outputs={"Out": softmax_out},
        attrs={"use_cudnn": use_cudnn})
    return softmax_out


C
chengduo 已提交
1401
def softmax(input, use_cudnn=True, name=None):
Q
qiaolongfei 已提交
1402
    """
1403
    The input of the softmax operator is a tensor of any rank. The output tensor
F
fengjiayi 已提交
1404
    has the same shape as the input.
Q
qiaolongfei 已提交
1405

1406 1407 1408 1409 1410 1411
    The input tensor will first be logically flattened to a 2-D matrix. The matrix's
    second dimension(row length) is as same as the last dimension of the input
    tensor, and the first dimension(column length) is the product of all other
    dimensions of the input tensor. For each row of the matrix, the softmax operator
    squashes the K-dimensional(K is the width of the matrix, which is also the size
    of the input tensor's last dimension) vector of arbitrary real values to a
F
fengjiayi 已提交
1412
    K-dimensional vector of real values in the range [0, 1] that add up to 1.
Q
qiaolongfei 已提交
1413 1414 1415 1416 1417 1418 1419

    It computes the exponential of the given dimension and the sum of exponential
    values of all the other dimensions in the K-dimensional vector input.
    Then the ratio of the exponential of the given dimension and the sum of
    exponential values of all the other dimensions is the output of the softmax
    operator.

F
fengjiayi 已提交
1420
    For each row :math:`i` and each column :math:`j` in the matrix, we have:
Q
qiaolongfei 已提交
1421 1422 1423 1424 1425 1426 1427 1428

    .. math::

        Out[i, j] = \\frac{\exp(X[i, j])}{\sum_j(exp(X[i, j])}

    Args:
        input (Variable): The input variable.
        use_cudnn (bool): Use cudnn kernel or not, it is valid only when the cudnn \
C
chengduo 已提交
1429 1430 1431
            library is installed.
        name (str|None): A name for this layer(optional). If set None, the layer
            will be named automatically. Default: None.
Q
qiaolongfei 已提交
1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443

    Returns:
        Variable: output of softmax

    Examples:

        .. code-block:: python

             fc = fluid.layers.fc(input=x, size=10)
             softmax = fluid.layers.softmax(input=fc)

    """
1444 1445
    helper = LayerHelper('softmax', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
1446
    softmax_out = helper.create_variable_for_type_inference(dtype)
1447 1448 1449 1450 1451 1452 1453 1454
    helper.append_op(
        type="softmax",
        inputs={"X": input},
        outputs={"Out": softmax_out},
        attrs={"use_cudnn": use_cudnn})
    return softmax_out


Y
Yu Yang 已提交
1455 1456 1457
def conv2d(input,
           num_filters,
           filter_size,
C
chengduoZH 已提交
1458 1459
           stride=1,
           padding=0,
1460
           dilation=1,
Y
Yu Yang 已提交
1461 1462 1463
           groups=None,
           param_attr=None,
           bias_attr=None,
C
chengduoZH 已提交
1464
           use_cudnn=True,
1465 1466
           act=None,
           name=None):
Y
Yu Yang 已提交
1467
    """
C
chengduoZH 已提交
1468
    The convolution2D layer calculates the output based on the input, filter
T
tensor-tang 已提交
1469 1470
    and strides, paddings, dilations, groups parameters. Input and
    Output are in NCHW format, where N is batch size, C is the number of
1471
    channels, H is the height of the feature, and W is the width of the feature.
T
tensor-tang 已提交
1472 1473 1474 1475 1476 1477 1478
    Filter is in MCHW format, where M is the number of output image channels,
    C is the number of input image channels, H is the height of the filter,
    and W is the width of the filter. If the groups is greater than 1,
    C will equal the number of input image channels divided by the groups.
    Please refer to UFLDL's `convolution
    <http://ufldl.stanford.edu/tutorial/supervised/FeatureExtractionUsingConvolution/>`_
    for more detials.
1479 1480 1481
    If bias attribution and activation type are provided, bias is added to the
    output of the convolution, and the corresponding activation function is
    applied to the final result.
C
chengduoZH 已提交
1482

1483
    For each input :math:`X`, the equation is:
C
refine  
chengduoZH 已提交
1484

C
chengduoZH 已提交
1485 1486
    .. math::

C
refine  
chengduoZH 已提交
1487
        Out = \sigma (W \\ast X + b)
C
chengduoZH 已提交
1488

T
tensor-tang 已提交
1489
    Where:
C
chengduoZH 已提交
1490

1491 1492 1493 1494 1495
    * :math:`X`: Input value, a tensor with NCHW format.
    * :math:`W`: Filter value, a tensor with MCHW format.
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D tensor with shape [M, 1].
    * :math:`\\sigma`: Activation function.
T
tensor-tang 已提交
1496
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.
C
chengduoZH 已提交
1497 1498 1499

    Example:

1500 1501
        - Input:

W
weixing02 已提交
1502
          Input shape: :math:`(N, C_{in}, H_{in}, W_{in})`
C
refine  
chengduoZH 已提交
1503

W
weixing02 已提交
1504
          Filter shape: :math:`(C_{out}, C_{in}, H_f, W_f)`
C
refine  
chengduoZH 已提交
1505

1506
        - Output:
T
tensor-tang 已提交
1507

W
weixing02 已提交
1508
          Output shape: :math:`(N, C_{out}, H_{out}, W_{out})`
C
refine  
chengduoZH 已提交
1509

C
chengduoZH 已提交
1510
        Where
1511 1512

        .. math::
C
chengduoZH 已提交
1513

W
weixing02 已提交
1514 1515
            H_{out}&= \\frac{(H_{in} + 2 * paddings[0] - (dilations[0] * (H_f - 1) + 1))}{strides[0]} + 1 \\\\
            W_{out}&= \\frac{(W_{in} + 2 * paddings[1] - (dilations[1] * (W_f - 1) + 1))}{strides[1]} + 1
C
chengduoZH 已提交
1516 1517

    Args:
1518
        input (Variable): The input image with [N, C, H, W] format.
T
tensor-tang 已提交
1519
        num_filters(int): The number of filter. It is as same as the output
1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536
            image channel.
        filter_size (int|tuple|None): The filter size. If filter_size is a tuple,
            it must contain two integers, (filter_size_H, filter_size_W).
            Otherwise, the filter will be a square.
        stride (int|tuple): The stride size. If stride is a tuple, it must
            contain two integers, (stride_H, stride_W). Otherwise, the
            stride_H = stride_W = stride. Default: stride = 1.
        padding (int|tuple): The padding size. If padding is a tuple, it must
            contain two integers, (padding_H, padding_W). Otherwise, the
            padding_H = padding_W = padding. Default: padding = 0.
        dilation (int|tuple): The dilation size. If dilation is a tuple, it must
            contain two integers, (dilation_H, dilation_W). Otherwise, the
            dilation_H = dilation_W = dilation. Default: dilation = 1.
        groups (int): The groups number of the Conv2d Layer. According to grouped
            convolution in Alex Krizhevsky's Deep CNN paper: when group=2,
            the first half of the filters is only connected to the first half
            of the input channels, while the second half of the filters is only
C
chengduo 已提交
1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547
            connected to the second half of the input channels. Default: groups=1.
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
            of conv2d. If it is set to None or one attribute of ParamAttr, conv2d
            will create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with :math:`Normal(0.0, std)`,
             and the :math:`std` is :math:`(\\frac{2.0 }{filter\_elem\_num})^{0.5}`. Default: None.
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of conv2d.
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, conv2d
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. Default: None.
1548 1549
        use_cudnn (bool): Use cudnn kernel or not, it is valid only when the cudnn
            library is installed. Default: True
C
chengduo 已提交
1550 1551
        act (str): Activation type, if it is set to None, activation is not appended.
            Default: None
1552
        name (str|None): A name for this layer(optional). If set None, the layer
C
chengduo 已提交
1553
            will be named automatically. Default: None
C
chengduoZH 已提交
1554 1555

    Returns:
G
guosheng 已提交
1556
        Variable: The tensor variable storing the convolution and \
C
chengduoZH 已提交
1557 1558
                  non-linearity activation result.

C
refine  
chengduoZH 已提交
1559
    Raises:
1560 1561
        ValueError: If the shapes of input, filter_size, stride, padding and
                    groups mismatch.
C
refine  
chengduoZH 已提交
1562

C
chengduoZH 已提交
1563 1564 1565
    Examples:
        .. code-block:: python

1566 1567
          data = fluid.layers.data(name='data', shape=[3, 32, 32], dtype='float32')
          conv2d = fluid.layers.conv2d(input=data, num_filters=2, filter_size=3, act="relu")
Y
Yu Yang 已提交
1568 1569 1570
    """

    num_channels = input.shape[1]
C
chengduo 已提交
1571
    assert param_attr is not False, "param_attr should not be False here."
1572
    l_type = 'conv2d'
X
xzl 已提交
1573 1574
    if (num_channels == groups and num_filters % num_channels == 0 and
            not use_cudnn):
1575
        l_type = 'depthwise_conv2d'
1576 1577 1578 1579

    helper = LayerHelper(l_type, **locals())
    dtype = helper.input_dtype()

Y
Yu Yang 已提交
1580 1581 1582 1583 1584
    if groups is None:
        num_filter_channels = num_channels
    else:
        if num_channels % groups != 0:
            raise ValueError("num_channels must be divisible by groups.")
M
minqiyang 已提交
1585
        num_filter_channels = num_channels // groups
Y
Yu Yang 已提交
1586

C
chengduoZH 已提交
1587 1588 1589
    filter_size = utils.convert_to_list(filter_size, 2, 'filter_size')
    stride = utils.convert_to_list(stride, 2, 'stride')
    padding = utils.convert_to_list(padding, 2, 'padding')
1590
    dilation = utils.convert_to_list(dilation, 2, 'dilation')
C
chengduoZH 已提交
1591

C
chengduoZH 已提交
1592 1593
    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")
Y
Yu Yang 已提交
1594 1595

    input_shape = input.shape
M
minqiyang 已提交
1596
    filter_shape = [num_filters, int(num_filter_channels)] + filter_size
Y
Yu Yang 已提交
1597 1598

    def _get_default_param_initializer():
C
chengduo 已提交
1599 1600
        filter_elem_num = filter_size[0] * filter_size[1] * num_channels
        std = (2.0 / filter_elem_num)**0.5
Y
Yu Yang 已提交
1601 1602 1603 1604 1605 1606 1607 1608
        return Normal(0.0, std, 0)

    filter_param = helper.create_parameter(
        attr=helper.param_attr,
        shape=filter_shape,
        dtype=dtype,
        default_initializer=_get_default_param_initializer())

X
Xin Pan 已提交
1609
    pre_bias = helper.create_variable_for_type_inference(dtype)
Y
Yu Yang 已提交
1610 1611

    helper.append_op(
1612
        type=l_type,
Y
Yu Yang 已提交
1613 1614 1615 1616 1617
        inputs={
            'Input': input,
            'Filter': filter_param,
        },
        outputs={"Output": pre_bias},
C
chengduoZH 已提交
1618 1619 1620
        attrs={
            'strides': stride,
            'paddings': padding,
1621
            'dilations': dilation,
C
chengduoZH 已提交
1622
            'groups': groups,
1623
            'use_cudnn': use_cudnn,
X
Xin Pan 已提交
1624
            'use_mkldnn': False
C
chengduoZH 已提交
1625
        })
Y
Yu Yang 已提交
1626 1627 1628 1629 1630 1631

    pre_act = helper.append_bias_op(pre_bias, dim_start=1, dim_end=2)

    return helper.append_activation(pre_act)


C
chengduoZH 已提交
1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648
def conv3d(input,
           num_filters,
           filter_size,
           stride=1,
           padding=0,
           dilation=1,
           groups=None,
           param_attr=None,
           bias_attr=None,
           use_cudnn=True,
           act=None,
           name=None):
    """
    **Convlution3D Layer**

    The convolution3D layer calculates the output based on the input, filter
    and strides, paddings, dilations, groups parameters. Input(Input) and
1649 1650 1651 1652 1653 1654
    Output(Output) are in NCDHW format. Where N is batch size C is the number of
    channels, D is the depth of the feature, H is the height of the feature,
    and W is the width of the feature. Convlution3D is similar with Convlution2D
    but adds one dimension(depth). If bias attribution and activation type are
    provided, bias is added to the output of the convolution, and the
    corresponding activation function is applied to the final result.
C
chengduoZH 已提交
1655 1656 1657 1658 1659 1660 1661 1662 1663

    For each input :math:`X`, the equation is:

    .. math::

        Out = \sigma (W \\ast X + b)

    In the above equation:

1664 1665
    * :math:`X`: Input value, a tensor with NCDHW format.
    * :math:`W`: Filter value, a tensor with MCDHW format.
C
chengduoZH 已提交
1666 1667 1668
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D tensor with shape [M, 1].
    * :math:`\\sigma`: Activation function.
1669
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.
C
chengduoZH 已提交
1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694

    Example:

        - Input:

          Input shape: :math:`(N, C_{in}, D_{in}, H_{in}, W_{in})`

          Filter shape: :math:`(C_{out}, C_{in}, D_f, H_f, W_f)`

        - Output:
          Output shape: :math:`(N, C_{out}, D_{out}, H_{out}, W_{out})`

        Where

        .. math::

            D_{out}&= \\frac{(D_{in} + 2 * paddings[0] - (dilations[0] * (D_f - 1) + 1))}{strides[0]} + 1 \\\\
            H_{out}&= \\frac{(H_{in} + 2 * paddings[1] - (dilations[1] * (H_f - 1) + 1))}{strides[1]} + 1 \\\\
            W_{out}&= \\frac{(W_{in} + 2 * paddings[2] - (dilations[2] * (W_f - 1) + 1))}{strides[2]} + 1

    Args:
        input (Variable): The input image with [N, C, D, H, W] format.
            num_filters(int): The number of filter. It is as same as the output
            image channel.
        filter_size (int|tuple|None): The filter size. If filter_size is a tuple,
1695
            it must contain three integers, (filter_size_D, filter_size_H, filter_size_W).
C
chengduoZH 已提交
1696 1697
            Otherwise, the filter will be a square.
        stride (int|tuple): The stride size. If stride is a tuple, it must
1698
            contain three integers, (stride_D, stride_H, stride_W). Otherwise, the
C
chengduoZH 已提交
1699 1700
            stride_D = stride_H = stride_W = stride. Default: stride = 1.
        padding (int|tuple): The padding size. If padding is a tuple, it must
1701
            contain three integers, (padding_D, padding_H, padding_W). Otherwise, the
C
chengduoZH 已提交
1702 1703
            padding_D = padding_H = padding_W = padding. Default: padding = 0.
        dilation (int|tuple): The dilation size. If dilation is a tuple, it must
1704
            contain three integers, (dilation_D, dilation_H, dilation_W). Otherwise, the
C
chengduoZH 已提交
1705 1706 1707 1708 1709 1710
            dilation_D = dilation_H = dilation_W = dilation. Default: dilation = 1.
        groups (int): The groups number of the Conv3d Layer. According to grouped
            convolution in Alex Krizhevsky's Deep CNN paper: when group=2,
            the first half of the filters is only connected to the first half
            of the input channels, while the second half of the filters is only
            connected to the second half of the input channels. Default: groups=1
C
chengduo 已提交
1711 1712 1713 1714 1715 1716 1717 1718 1719 1720
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
            of conv3d. If it is set to None or one attribute of ParamAttr, conv3d
            will create ParamAttr as param_attr. If it is set to None, the parameter
            is initialized with :math:`Normal(0.0, std)`, and the :math:`std` is
            :math:`(\\frac{2.0 }{filter\_elem\_num})^{0.5}`. Default: None.
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of conv3d.
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, conv3d
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. Default: None.
C
chengduoZH 已提交
1721 1722
        use_cudnn (bool): Use cudnn kernel or not, it is valid only when the cudnn
            library is installed. Default: True
C
chengduo 已提交
1723 1724
        act (str): Activation type, if it is set to None, activation is not appended.
            Default: None.
C
chengduoZH 已提交
1725
        name (str|None): A name for this layer(optional). If set None, the layer
C
chengduo 已提交
1726
            will be named automatically. Default: None.
C
chengduoZH 已提交
1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738

    Returns:
        Variable: The tensor variable storing the convolution and \
                  non-linearity activation result.

    Raises:
        ValueError: If the shapes of input, filter_size, stride, padding and
                    groups mismatch.

    Examples:
        .. code-block:: python

1739 1740
          data = fluid.layers.data(name='data', shape=[3, 12, 32, 32], dtype='float32')
          conv3d = fluid.layers.conv3d(input=data, num_filters=2, filter_size=3, act="relu")
C
chengduoZH 已提交
1741 1742 1743
    """

    l_type = 'conv3d'
C
chengduo 已提交
1744
    assert param_attr is not False, "param_attr should not be False here."
C
chengduoZH 已提交
1745 1746 1747 1748 1749 1750 1751 1752 1753 1754
    helper = LayerHelper(l_type, **locals())
    dtype = helper.input_dtype()

    num_channels = input.shape[1]

    if groups is None:
        num_filter_channels = num_channels
    else:
        if num_channels % groups != 0:
            raise ValueError("num_channels must be divisible by groups.")
M
minqiyang 已提交
1755
        num_filter_channels = num_channels // groups
C
chengduoZH 已提交
1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768

    filter_size = utils.convert_to_list(filter_size, 3, 'filter_size')
    stride = utils.convert_to_list(stride, 3, 'stride')
    padding = utils.convert_to_list(padding, 3, 'padding')
    dilation = utils.convert_to_list(dilation, 3, 'dilation')

    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")

    input_shape = input.shape
    filter_shape = [num_filters, num_filter_channels] + filter_size

    def _get_default_param_initializer():
C
chengduo 已提交
1769 1770 1771
        filter_elem_num = filter_size[0] * filter_size[1] * filter_size[
            2] * num_channels
        std = (2.0 / filter_elem_num)**0.5
C
chengduoZH 已提交
1772 1773 1774 1775 1776 1777 1778 1779
        return Normal(0.0, std, 0)

    filter_param = helper.create_parameter(
        attr=helper.param_attr,
        shape=filter_shape,
        dtype=dtype,
        default_initializer=_get_default_param_initializer())

X
Xin Pan 已提交
1780
    pre_bias = helper.create_variable_for_type_inference(dtype)
C
chengduoZH 已提交
1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794

    helper.append_op(
        type=l_type,
        inputs={
            'Input': input,
            'Filter': filter_param,
        },
        outputs={"Output": pre_bias},
        attrs={
            'strides': stride,
            'paddings': padding,
            'dilations': dilation,
            'groups': groups,
            'use_cudnn': use_cudnn,
X
Xin Pan 已提交
1795
            'use_mkldnn': False
C
chengduoZH 已提交
1796 1797
        })

1798
    pre_act = helper.append_bias_op(pre_bias, dim_start=1, dim_end=2)
C
chengduoZH 已提交
1799 1800 1801 1802

    return helper.append_activation(pre_act)


F
fengjiayi 已提交
1803
def sequence_pool(input, pool_type):
Y
Yu Yang 已提交
1804
    """
Y
yangyaming 已提交
1805 1806 1807
    This function add the operator for sequence pooling.
    It pools features of all time-steps of each instance, and is applied
    on top of the input using pool_type mentioned in the parameters.
L
Luo Tao 已提交
1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818

    It supports four pool_type:

    - average: :math:`Out[i] = \\frac{\sum_i X_i}{N}`
    - sum:     :math:`Out[i] = \sum_jX_{ij}`
    - sqrt:    :math:`Out[i] = \\frac{\sum_jX_{ij}}{\sqrt{len(X_i)}}`
    - max:     :math:`Out[i] = max(X_i)`

    .. code-block:: text

       x is a 1-level LoDTensor:
1819
         x.lod = [[2, 3, 2]]
L
Luo Tao 已提交
1820 1821 1822 1823 1824
         x.data = [1, 3, 2, 4, 6, 5, 1]
         x.dims = [7, 1]

       then output is a Tensor:
         out.dim = [3, 1]
1825
         with condition len(x.lod[-1]) == out.dims[0]
L
Luo Tao 已提交
1826 1827 1828 1829 1830 1831 1832

       for different pool_type:
         average: out.data = [2, 4, 3], where 2=(1+3)/2, 4=(2+4+6)/3, 3=(5+1)/2
         sum    : out.data = [4, 12, 6], where 4=1+3, 12=2+4+6, 6=5+1
         sqrt   : out.data = [2.82, 6.93, 4.24], where 2.82=(1+3)/sqrt(2),
                    6.93=(2+4+6)/sqrt(3), 4.24=(5+1)/sqrt(2)
         max    : out.data = [3, 6, 5], where 3=max(1,3), 6=max(2,4,6), 5=max(5,1)
1833 1834
         last   : out.data = [3, 6, 1], where 3=last(1,3), 6=last(2,4,6), 1=last(5,1)
         first  : out.data = [1, 2, 5], where 1=first(1,3), 2=first(2,4,6), 5=first(5,1)
F
fengjiayi 已提交
1835

L
Luo Tao 已提交
1836 1837
    Args:
        input(variable): The input variable which is a LoDTensor.
Y
yangyaming 已提交
1838
        pool_type (string): The pooling type of sequence_pool.
L
Luo Tao 已提交
1839 1840 1841 1842 1843 1844 1845 1846
            It supports average, sum, sqrt and max.

    Returns:
        The sequence pooling variable which is a Tensor.

    Examples:

        .. code-block:: python
F
fengjiayi 已提交
1847

Y
yangyaming 已提交
1848
             x = fluid.layers.data(name='x', shape=[7, 1],
L
Luo Tao 已提交
1849 1850 1851 1852 1853
                              dtype='float32', lod_level=1)
             avg_x = fluid.layers.sequence_pool(input=x, pool_type='average')
             sum_x = fluid.layers.sequence_pool(input=x, pool_type='sum')
             sqrt_x = fluid.layers.sequence_pool(input=x, pool_type='sqrt')
             max_x = fluid.layers.sequence_pool(input=x, pool_type='max')
1854 1855
             last_x = fluid.layers.sequence_pool(input=x, pool_type='last')
             first_x = fluid.layers.sequence_pool(input=x, pool_type='first')
Y
Yu Yang 已提交
1856
    """
F
fengjiayi 已提交
1857
    helper = LayerHelper('sequence_pool', **locals())
Y
Yu Yang 已提交
1858
    dtype = helper.input_dtype()
X
Xin Pan 已提交
1859 1860
    pool_out = helper.create_variable_for_type_inference(dtype)
    max_index = helper.create_variable_for_type_inference(dtype)
Y
Yu Yang 已提交
1861 1862 1863 1864 1865 1866 1867 1868

    helper.append_op(
        type="sequence_pool",
        inputs={"X": input},
        outputs={"Out": pool_out,
                 "MaxIndex": max_index},
        attrs={"pooltype": pool_type.upper()})

Y
yangyaming 已提交
1869 1870 1871 1872 1873
    # when pool_type is max, variable max_index is initialized,
    # so we stop the gradient explicitly here
    if pool_type == 'max':
        max_index.stop_gradient = True

Y
Yu Yang 已提交
1874 1875 1876
    return pool_out


C
add doc  
chengduoZH 已提交
1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895
@templatedoc()
def sequence_concat(input, name=None):
    """
    ${comment}

    Args:
        input(list): List of Variables to be concatenated.
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.

    Returns:
        Variable: Output variable of the concatenation.

    Examples:
        .. code-block:: python

           out = fluid.layers.sequence_concat(input=[seq1, seq2, seq3])
    """
    helper = LayerHelper('sequence_concat', **locals())
X
Xin Pan 已提交
1896
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
C
add doc  
chengduoZH 已提交
1897 1898 1899 1900 1901
    helper.append_op(
        type='sequence_concat', inputs={'X': input}, outputs={'Out': [out]})
    return out


F
fengjiayi 已提交
1902
def sequence_first_step(input):
L
Luo Tao 已提交
1903
    """
L
Luo Tao 已提交
1904
    This function gets the first step of sequence.
L
Luo Tao 已提交
1905 1906 1907 1908

    .. code-block:: text

       x is a 1-level LoDTensor:
1909
         x.lod = [[2, 3, 2]]
L
Luo Tao 已提交
1910 1911 1912 1913 1914
         x.data = [1, 3, 2, 4, 6, 5, 1]
         x.dims = [7, 1]

       then output is a Tensor:
         out.dim = [3, 1]
1915
         with condition len(x.lod[-1]) == out.dims[0]
L
Luo Tao 已提交
1916
         out.data = [1, 2, 5], where 1=first(1,3), 2=first(2,4,6), 5=first(5,1)
F
fengjiayi 已提交
1917

L
Luo Tao 已提交
1918 1919 1920 1921 1922 1923 1924 1925 1926
    Args:
        input(variable): The input variable which is a LoDTensor.

    Returns:
        The sequence's first step variable which is a Tensor.

    Examples:

        .. code-block:: python
F
fengjiayi 已提交
1927

Y
yangyaming 已提交
1928
             x = fluid.layers.data(name='x', shape=[7, 1],
L
Luo Tao 已提交
1929 1930 1931
                              dtype='float32', lod_level=1)
             x_first_step = fluid.layers.sequence_first_step(input=x)
    """
1932 1933 1934
    return sequence_pool(input=input, pool_type="first")


F
fengjiayi 已提交
1935
def sequence_last_step(input):
L
Luo Tao 已提交
1936
    """
L
Luo Tao 已提交
1937
    This function gets the last step of sequence.
L
Luo Tao 已提交
1938 1939 1940 1941

    .. code-block:: text

       x is a 1-level LoDTensor:
1942
         x.lod = [[2, 3, 2]]
L
Luo Tao 已提交
1943 1944 1945 1946 1947
         x.data = [1, 3, 2, 4, 6, 5, 1]
         x.dims = [7, 1]

       then output is a Tensor:
         out.dim = [3, 1]
1948
         with condition len(x.lod[-1]) == out.dims[0]
L
Luo Tao 已提交
1949
         out.data = [3, 6, 1], where 3=last(1,3), 6=last(2,4,6), 1=last(5,1)
F
fengjiayi 已提交
1950

L
Luo Tao 已提交
1951 1952 1953 1954 1955 1956 1957 1958 1959
    Args:
        input(variable): The input variable which is a LoDTensor.

    Returns:
        The sequence's last step variable which is a Tensor.

    Examples:

        .. code-block:: python
F
fengjiayi 已提交
1960

Y
yangyaming 已提交
1961
             x = fluid.layers.data(name='x', shape=[7, 1],
L
Luo Tao 已提交
1962 1963 1964
                              dtype='float32', lod_level=1)
             x_last_step = fluid.layers.sequence_last_step(input=x)
    """
1965 1966 1967
    return sequence_pool(input=input, pool_type="last")


Y
Yibing Liu 已提交
1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980
def sequence_slice(input, offset, length, name=None):
    """
    **Sequence Slice Layer**

    The layer crops a subsequence from given sequence with given start 
    offset and subsequence length.

    It only supports sequence data (LoDTensor with lod_level equal to 1).

    .. code-block:: text
    
	- Case:

1981 1982 1983 1984 1985
            Given the input Variable **input**:
                
                input.data = [[a1, a2], [b1, b2], [c1, c2], [d1, d2], [e1, e2]],
                input.lod = [[3, 2]],
                input.dims = (5, 2),
Y
Yibing Liu 已提交
1986

1987
            with offset.data = [[0], [1]] and length.data = [[2], [1]],
Y
Yibing Liu 已提交
1988

1989 1990 1991 1992 1993
            the output Variable will be
                
                out.data = [[a1, a2], [b1, b2], [e1, e2]],
                out.lod = [[2, 1]],
                out.dims = (3, 2).
Y
Yibing Liu 已提交
1994
	
1995 1996
    NOTE: The first dimension size of **input**, **offset** and **length** 
          should be equal. The **offset** should start from 0.
Y
Yibing Liu 已提交
1997 1998 1999
    
    Args:
        input(Variable): The input Variable which consists of the complete 
Y
Yibing Liu 已提交
2000
                         sequences.
Y
Yibing Liu 已提交
2001 2002 2003 2004 2005 2006
        offset(Variable): The offset to slice each sequence.
        length(Variable): The length of each subsequence.
        name(str|None): A name for this layer(optional). If set None, the
                        layer will be named automatically.

    Returns:
Y
Yibing Liu 已提交
2007
        Variable: The output subsequences.
Y
Yibing Liu 已提交
2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022

    Examples:

        .. code-block:: python

             import numpy as np
             seqs = fluid.layers.data(name='x', shape=[10, 5],
                              dtype='float32', lod_level=1)
             offset = fluid.layers.assign(input=np.array([[0, 1]]).astype("int32"))
             length = fluid.layers.assign(input=np.array([[2, 1]]).astype("int32"))
             subseqs = fluid.layers.sequence_slice(input=seqs, offset=offset, 
                                                   length=length)
    """
    helper = LayerHelper("sequence_slice", **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
2023
    out = helper.create_variable_for_type_inference(dtype)
Y
Yibing Liu 已提交
2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037

    offset.stop_gradient = True
    length.stop_gradient = True

    helper.append_op(
        type="sequence_slice",
        inputs={"X": input,
                "Offset": offset,
                "Length": length},
        outputs={"Out": out})

    return out


F
fengjiayi 已提交
2038
@templatedoc()
Y
Yu Yang 已提交
2039
def pool2d(input,
C
chengduoZH 已提交
2040 2041
           pool_size=-1,
           pool_type="max",
C
chengduoZH 已提交
2042 2043
           pool_stride=1,
           pool_padding=0,
C
caoying03 已提交
2044
           global_pooling=False,
C
chengduoZH 已提交
2045
           use_cudnn=True,
2046
           ceil_mode=False,
C
caoying03 已提交
2047
           name=None):
Y
Yu Yang 已提交
2048
    """
F
fengjiayi 已提交
2049
    ${comment}
2050 2051

    Args:
2052 2053 2054
        input (Variable): The input tensor of pooling operator. The format of
                          input tensor is NCHW, where N is batch size, C is
                          the number of channels, H is the height of the
F
fengjiayi 已提交
2055
                          feature, and W is the width of the feature.
2056
        pool_size (int): The side length of pooling windows. All pooling
F
fengjiayi 已提交
2057
                         windows are squares with pool_size on a side.
F
fengjiayi 已提交
2058
        pool_type: ${pooling_type_comment}
2059 2060
        pool_stride (int): stride of the pooling layer.
        pool_padding (int): padding size.
F
fengjiayi 已提交
2061 2062 2063
        global_pooling: ${global_pooling_comment}
        use_cudnn: ${use_cudnn_comment}
        ceil_mode: ${ceil_mode_comment}
2064
        name (str|None): A name for this layer(optional). If set None, the
F
fengjiayi 已提交
2065 2066
                        layer will be named automatically.

2067
    Returns:
F
fengjiayi 已提交
2068
        Variable: The pooling result.
F
fengjiayi 已提交
2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081

    Raises:
        ValueError: If 'pool_type' is not "max" nor "avg"
        ValueError: If 'global_pooling' is False and 'pool_size' is -1
        ValueError: If 'use_cudnn' is not a bool value.

    Examples:

        .. code-block:: python

          data = fluid.layers.data(
              name='data', shape=[3, 32, 32], dtype='float32')
          conv2d = fluid.layers.pool2d(
2082 2083 2084 2085
                            input=data,
                            pool_size=2,
                            pool_type='max',
                            pool_stride=1,
F
fengjiayi 已提交
2086
                            global_pooling=False)
Y
Yu Yang 已提交
2087 2088 2089 2090 2091
    """
    if pool_type not in ["max", "avg"]:
        raise ValueError(
            "Unknown pool_type: '%s'. It can only be 'max' or 'avg'.",
            str(pool_type))
C
chengduoZH 已提交
2092

C
chengduoZH 已提交
2093 2094 2095 2096 2097
    if global_pooling is False and pool_size == -1:
        raise ValueError(
            "When the global_pooling is False, pool_size must be passed "
            "and be a valid value. Received pool_size: " + str(pool_size))

C
chengduoZH 已提交
2098 2099 2100 2101
    pool_size = utils.convert_to_list(pool_size, 2, 'pool_size')
    pool_padding = utils.convert_to_list(pool_padding, 2, 'pool_padding')
    pool_stride = utils.convert_to_list(pool_stride, 2, 'pool_stride')

C
chengduoZH 已提交
2102 2103
    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")
Y
Yu Yang 已提交
2104

C
Add doc  
chengduoZH 已提交
2105
    l_type = 'pool2d'
2106 2107

    helper = LayerHelper(l_type, **locals())
Y
Yu Yang 已提交
2108
    dtype = helper.input_dtype()
X
Xin Pan 已提交
2109
    pool_out = helper.create_variable_for_type_inference(dtype)
Y
Yu Yang 已提交
2110 2111

    helper.append_op(
2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122
        type=l_type,
        inputs={"X": input},
        outputs={"Out": pool_out},
        attrs={
            "pooling_type": pool_type,
            "ksize": pool_size,
            "global_pooling": global_pooling,
            "strides": pool_stride,
            "paddings": pool_padding,
            "use_cudnn": use_cudnn,
            "ceil_mode": ceil_mode,
X
Xin Pan 已提交
2123
            "use_mkldnn": False
2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139
        })

    return pool_out


def pool3d(input,
           pool_size=-1,
           pool_type="max",
           pool_stride=1,
           pool_padding=0,
           global_pooling=False,
           use_cudnn=True,
           ceil_mode=False,
           name=None):
    """
    This function adds the operator for pooling in 3-dimensions, using the
Y
Yu Yang 已提交
2140
    pooling configurations mentioned in input parameters.
2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152

    Args:
        input (Variable): ${input_comment}
        pool_size (int): ${ksize_comment}
        pool_type (str): ${pooling_type_comment}
        pool_stride (int): stride of the pooling layer.
        pool_padding (int): padding size.
        global_pooling (bool): ${global_pooling_comment}
        use_cudnn (bool): ${use_cudnn_comment}
        ceil_mode (bool): ${ceil_mode_comment}
        name (str): A name for this layer(optional). If set None, the layer
            will be named automatically.
2153

2154
    Returns:
2155
        Variable: output of pool3d layer.
Y
Yu Yang 已提交
2156 2157 2158 2159 2160
    """
    if pool_type not in ["max", "avg"]:
        raise ValueError(
            "Unknown pool_type: '%s'. It can only be 'max' or 'avg'.",
            str(pool_type))
C
chengduoZH 已提交
2161

C
chengduoZH 已提交
2162 2163 2164 2165 2166
    if global_pooling is False and pool_size == -1:
        raise ValueError(
            "When the global_pooling is False, pool_size must be passed "
            "and be a valid value. Received pool_size: " + str(pool_size))

2167 2168 2169
    pool_size = utils.convert_to_list(pool_size, 3, 'pool_size')
    pool_padding = utils.convert_to_list(pool_padding, 3, 'pool_padding')
    pool_stride = utils.convert_to_list(pool_stride, 3, 'pool_stride')
C
chengduoZH 已提交
2170

C
chengduoZH 已提交
2171 2172
    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")
Y
Yu Yang 已提交
2173

2174 2175
    l_type = "pool3d"
    helper = LayerHelper(l_type, **locals())
Y
Yu Yang 已提交
2176
    dtype = helper.input_dtype()
X
Xin Pan 已提交
2177
    pool_out = helper.create_variable_for_type_inference(dtype)
Y
Yu Yang 已提交
2178 2179

    helper.append_op(
2180
        type=l_type,
Y
Yu Yang 已提交
2181 2182 2183 2184 2185 2186 2187
        inputs={"X": input},
        outputs={"Out": pool_out},
        attrs={
            "pooling_type": pool_type,
            "ksize": pool_size,
            "global_pooling": global_pooling,
            "strides": pool_stride,
C
chengduoZH 已提交
2188
            "paddings": pool_padding,
2189
            "use_cudnn": use_cudnn,
2190
            "ceil_mode": ceil_mode,
X
Xin Pan 已提交
2191
            "use_mkldnn": False
Y
Yu Yang 已提交
2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203
        })

    return pool_out


def batch_norm(input,
               act=None,
               is_test=False,
               momentum=0.9,
               epsilon=1e-05,
               param_attr=None,
               bias_attr=None,
C
caoying03 已提交
2204
               data_layout='NCHW',
Y
Yang Yang 已提交
2205
               in_place=False,
2206 2207
               name=None,
               moving_mean_name=None,
W
wanghaoshuang 已提交
2208
               moving_variance_name=None,
2209 2210
               do_model_average_for_mean_and_var=False,
               fuse_with_relu=False):
Y
Yu Yang 已提交
2211
    """
Q
qiaolongfei 已提交
2212 2213 2214 2215
    **Batch Normalization Layer**

    Can be used as a normalizer function for conv2d and fully_connected operations.
    The required data format for this layer is one of the following:
Q
qiaolongfei 已提交
2216

Q
qiaolongfei 已提交
2217
    1. NHWC `[batch, in_height, in_width, in_channels]`
Q
qiaolongfei 已提交
2218

Q
qiaolongfei 已提交
2219 2220
    2. NCHW `[batch, in_channels, in_height, in_width]`

Q
qiaolongfei 已提交
2221 2222 2223
    Refer to `Batch Normalization: Accelerating Deep Network Training by Reducing
    Internal Covariate Shift <https://arxiv.org/pdf/1502.03167.pdf>`_
    for more details.
Q
qiaolongfei 已提交
2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235

    :math:`input` is the input features over a mini-batch.

    ..  math::

        \\mu_{\\beta} &\\gets \\frac{1}{m} \\sum_{i=1}^{m} x_i \\qquad &//\\
        \ mini-batch\ mean \\\\
        \\sigma_{\\beta}^{2} &\\gets \\frac{1}{m} \\sum_{i=1}^{m}(x_i - \\
        \\mu_{\\beta})^2 \\qquad &//\ mini-batch\ variance \\\\
        \\hat{x_i} &\\gets \\frac{x_i - \\mu_\\beta} {\\sqrt{\\
        \\sigma_{\\beta}^{2} + \\epsilon}} \\qquad &//\ normalize \\\\
        y_i &\\gets \\gamma \\hat{x_i} + \\beta \\qquad &//\ scale\ and\ shift
2236 2237

    Args:
Q
qiaolongfei 已提交
2238
        input(variable): The input variable which is a LoDTensor.
Q
qiaolongfei 已提交
2239 2240 2241 2242
        act(string, Default None): Activation type, linear|relu|prelu|...
        is_test(bool, Default False): Used for training or training.
        momentum(float, Default 0.9):
        epsilon(float, Default 1e-05):
C
chengduo 已提交
2243 2244 2245 2246 2247 2248 2249 2250
        param_attr(ParamAttr|None): The parameter attribute for Parameter `scale`
             of batch_norm. If it is set to None or one attribute of ParamAttr, batch_norm
             will create ParamAttr as param_attr. If the Initializer of the param_attr
             is not set, the parameter is initialized with Xavier. Default: None.
        bias_attr(ParamAttr|None): The parameter attribute for the bias of batch_norm.
             If it is set to None or one attribute of ParamAttr, batch_norm
             will create ParamAttr as bias_attr. If the Initializer of the bias_attr
             is not set, the bias is initialized zero. Default: None.
Q
qiaolongfei 已提交
2251
        data_layout(string, default NCHW): NCHW|NHWC
2252
        in_place(bool, Default False): Make the input and output of batch norm reuse memory.
Q
qiaolongfei 已提交
2253 2254 2255 2256
        name(string, Default None): A name for this layer(optional). If set None, the layer
            will be named automatically.
        moving_mean_name(string, Default None): The name of moving_mean which store the global Mean.
        moving_variance_name(string, Default None): The name of the moving_variance which store the global Variance.
Q
qiaolongfei 已提交
2257
        do_model_average_for_mean_and_var(bool, Default False): Do model average for mean and variance or not.
2258
        fuse_with_relu (bool): if True, this OP performs relu after batch norm.
2259 2260

    Returns:
Q
qiaolongfei 已提交
2261
        Variable: A tensor variable which is the result after applying batch normalization on the input.
Q
qiaolongfei 已提交
2262 2263 2264 2265 2266 2267 2268

    Examples:

        .. code-block:: python

            hidden1 = fluid.layers.fc(input=x, size=200, param_attr='fc1.w')
            hidden2 = fluid.layers.batch_norm(input=hidden1)
Y
Yu Yang 已提交
2269
    """
C
chengduo 已提交
2270
    assert bias_attr is not False, "bias_attr should not be False in batch_norm."
Y
Yu Yang 已提交
2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292
    helper = LayerHelper('batch_norm', **locals())
    dtype = helper.input_dtype()

    input_shape = input.shape
    if data_layout == 'NCHW':
        channel_num = input_shape[1]
    else:
        if data_layout == 'NHWC':
            channel_num = input_shape[-1]
        else:
            raise ValueError("unsupported data layout:" + data_layout)

    param_shape = [channel_num]

    # create parameter
    scale = helper.create_parameter(
        attr=helper.param_attr,
        shape=param_shape,
        dtype=dtype,
        default_initializer=Constant(1.0))

    bias = helper.create_parameter(
2293
        attr=helper.bias_attr, shape=param_shape, dtype=dtype, is_bias=True)
Y
Yu Yang 已提交
2294

2295 2296
    mean = helper.create_parameter(
        attr=ParamAttr(
W
wanghaoshuang 已提交
2297 2298 2299
            name=moving_mean_name,
            initializer=Constant(0.0),
            trainable=False,
W
wanghaoshuang 已提交
2300
            do_model_average=do_model_average_for_mean_and_var),
Q
QI JUN 已提交
2301
        shape=param_shape,
2302 2303 2304 2305 2306 2307 2308
        dtype=input.dtype)
    mean.stop_gradient = True

    variance = helper.create_parameter(
        attr=ParamAttr(
            name=moving_variance_name,
            initializer=Constant(1.0),
W
wanghaoshuang 已提交
2309
            trainable=False,
W
wanghaoshuang 已提交
2310
            do_model_average=do_model_average_for_mean_and_var),
Q
QI JUN 已提交
2311
        shape=param_shape,
2312 2313
        dtype=input.dtype)
    variance.stop_gradient = True
Y
Yu Yang 已提交
2314 2315 2316 2317 2318 2319

    # create output
    # mean and mean_out share the same memory
    mean_out = mean
    # variance and variance out share the same memory
    variance_out = variance
X
Xin Pan 已提交
2320 2321 2322 2323
    saved_mean = helper.create_variable_for_type_inference(
        dtype=dtype, stop_gradient=True)
    saved_variance = helper.create_variable_for_type_inference(
        dtype=dtype, stop_gradient=True)
Y
Yu Yang 已提交
2324

X
Xin Pan 已提交
2325 2326
    batch_norm_out = input if in_place else helper.create_variable_for_type_inference(
        dtype)
Y
Yu Yang 已提交
2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343

    helper.append_op(
        type="batch_norm",
        inputs={
            "X": input,
            "Scale": scale,
            "Bias": bias,
            "Mean": mean,
            "Variance": variance
        },
        outputs={
            "Y": batch_norm_out,
            "MeanOut": mean_out,
            "VarianceOut": variance_out,
            "SavedMean": saved_mean,
            "SavedVariance": saved_variance
        },
2344 2345 2346 2347
        attrs={
            "momentum": momentum,
            "epsilon": epsilon,
            "is_test": is_test,
X
Xin Pan 已提交
2348
            "use_mkldnn": False,
2349
            "fuse_with_relu": fuse_with_relu
2350
        })
Y
Yu Yang 已提交
2351 2352 2353 2354

    return helper.append_activation(batch_norm_out)


Y
yuyang18 已提交
2355
@templatedoc()
G
guosheng 已提交
2356 2357 2358 2359 2360 2361 2362 2363 2364 2365
def layer_norm(input,
               scale=True,
               shift=True,
               begin_norm_axis=1,
               epsilon=1e-05,
               param_attr=None,
               bias_attr=None,
               act=None,
               name=None):
    """
Y
yuyang18 已提交
2366
    ${comment}
G
guosheng 已提交
2367 2368 2369

    The formula is as follows:

Y
yuyang18 已提交
2370
    ..  math::
G
guosheng 已提交
2371 2372 2373 2374 2375 2376 2377

        \\mu & = \\frac{1}{H}\\sum_{i=1}^{H} a_i

        \\sigma & = \\sqrt{\\frac{1}{H}\sum_{i=1}^{H}(a_i - \\mu)^2}

        h & = f(\\frac{g}{\\sigma}(a - \\mu) + b)

Y
yuyang18 已提交
2378 2379 2380 2381 2382 2383 2384 2385
    * :math:`a`: the vector representation of the summed inputs to the neurons
    in that layer.

    * :math:`H`: the number of hidden units in a layers

    * :math:`g`: the trainable scale parameter.

    * :math:`b`: the trainable bias parameter.
Y
yuyang18 已提交
2386

G
guosheng 已提交
2387 2388
    Args:
        input(Variable): The input tensor variable.
2389
        scale(bool): Whether to learn the adaptive gain :math:`g` after
S
sneaxiy 已提交
2390
            normalization. Default True.
2391
        shift(bool): Whether to learn the adaptive bias :math:`b` after
S
sneaxiy 已提交
2392 2393
            normalization. Default True.
        begin_norm_axis(int): The normalization will be performed along
G
guosheng 已提交
2394
            dimensions from :attr:`begin_norm_axis` to :attr:`rank(input)`.
S
sneaxiy 已提交
2395
            Default 1.
2396
        epsilon(float): The small value added to the variance to prevent
S
sneaxiy 已提交
2397
            division by zero. Default 1e-05.
G
guosheng 已提交
2398
        param_attr(ParamAttr|None): The parameter attribute for the learnable
S
sneaxiy 已提交
2399 2400 2401 2402
            gain :math:`g`. If :attr:`scale` is False, :attr:`param_attr` is
            omitted. If :attr:`scale` is True and :attr:`param_attr` is None,
            a default :code:`ParamAttr` would be added as scale. The 
            :attr:`param_attr` is initialized as 1 if it is added. Default None. 
G
guosheng 已提交
2403
        bias_attr(ParamAttr|None): The parameter attribute for the learnable
S
sneaxiy 已提交
2404 2405 2406 2407
            bias :math:`b`. If :attr:`shift` is False, :attr:`bias_attr` is
            omitted. If :attr:`shift` is True and :attr:`param_attr` is None,
            a default :code:`ParamAttr` would be added as bias. The 
            :attr:`bias_attr` is initialized as 0 if it is added. Default None.
G
guosheng 已提交
2408
        act(str): Activation to be applied to the output of layer normalizaiton.
S
sneaxiy 已提交
2409 2410 2411
                  Default None.
        name(str): The name of this layer. It is optional. Default None, and a
                   unique name would be generated automatically.
G
guosheng 已提交
2412 2413

    Returns:
Y
yuyang18 已提交
2414
        ${y_comment}
G
guosheng 已提交
2415 2416 2417

    Examples:

Y
yuyang18 已提交
2418 2419 2420
        >>> data = fluid.layers.data(name='data', shape=[3, 32, 32],
        >>>                          dtype='float32')
        >>> x = fluid.layers.layer_norm(input=data, begin_norm_axis=1)
G
guosheng 已提交
2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435
    """
    helper = LayerHelper('layer_norm', **locals())
    dtype = helper.input_dtype()

    # create intput and parameters
    inputs = {'X': input}
    input_shape = input.shape
    param_shape = [reduce(lambda x, y: x * y, input_shape[begin_norm_axis:])]
    if scale:
        scale = helper.create_parameter(
            attr=helper.param_attr,
            shape=param_shape,
            dtype=dtype,
            default_initializer=Constant(1.0))
        inputs['Scale'] = scale
G
guosheng 已提交
2436
    if shift:
G
guosheng 已提交
2437 2438 2439 2440 2441 2442
        assert bias_attr is not False
        bias = helper.create_parameter(
            attr=helper.bias_attr, shape=param_shape, dtype=dtype, is_bias=True)
        inputs['Bias'] = bias

    # create output
X
Xin Pan 已提交
2443 2444 2445 2446 2447
    mean_out = helper.create_variable_for_type_inference(
        dtype=dtype, stop_gradient=True)
    variance_out = helper.create_variable_for_type_inference(
        dtype=dtype, stop_gradient=True)
    layer_norm_out = helper.create_variable_for_type_inference(dtype)
G
guosheng 已提交
2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462

    helper.append_op(
        type="layer_norm",
        inputs=inputs,
        outputs={
            "Y": layer_norm_out,
            "Mean": mean_out,
            "Variance": variance_out,
        },
        attrs={"epsilon": epsilon,
               "begin_norm_axis": begin_norm_axis})

    return helper.append_activation(layer_norm_out)


Y
Yu Yang 已提交
2463 2464 2465 2466
def conv2d_transpose(input,
                     num_filters,
                     output_size=None,
                     filter_size=None,
C
chengduoZH 已提交
2467 2468 2469
                     padding=0,
                     stride=1,
                     dilation=1,
2470
                     groups=None,
C
caoying03 已提交
2471
                     param_attr=None,
2472
                     bias_attr=None,
C
chengduoZH 已提交
2473
                     use_cudnn=True,
2474
                     act=None,
C
caoying03 已提交
2475
                     name=None):
Y
Yu Yang 已提交
2476
    """
2477 2478 2479 2480 2481 2482 2483 2484
    **Convlution2D transpose layer**

    The convolution2D transpose layer calculates the output based on the input,
    filter, and dilations, strides, paddings. Input(Input) and output(Output)
    are in NCHW format. Where N is batch size, C is the number of channels,
    H is the height of the feature, and W is the width of the feature.
    Parameters(dilations, strides, paddings) are two elements. These two elements
    represent height and width, respectively. The details of convolution transpose
2485 2486
    layer, please refer to the following explanation and references
    `therein <http://www.matthewzeiler.com/wp-content/uploads/2017/07/cvpr2010.pdf>`_.
2487 2488 2489
    If bias attribution and activation type are provided, bias is added to
    the output of the convolution, and the corresponding activation function
    is applied to the final result.
2490 2491 2492 2493 2494

    For each input :math:`X`, the equation is:

    .. math::

2495
        Out = \sigma (W \\ast X + b)
2496

2497
    Where:
2498 2499 2500

    * :math:`X`: Input value, a tensor with NCHW format.
    * :math:`W`: Filter value, a tensor with MCHW format.
2501 2502 2503 2504
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D tensor with shape [M, 1].
    * :math:`\\sigma`: Activation function.
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.
Y
Yu Yang 已提交
2505

2506 2507 2508 2509
    Example:

        - Input:

2510
          Input shape: :math:`(N, C_{in}, H_{in}, W_{in})`
2511

2512
          Filter shape: :math:`(C_{in}, C_{out}, H_f, W_f)`
2513 2514 2515

        - Output:

2516
          Output shape: :math:`(N, C_{out}, H_{out}, W_{out})`
2517 2518

        Where
Y
Yu Yang 已提交
2519

2520 2521
        .. math::

2522 2523 2524 2525
           H^\prime_{out} &= (H_{in} - 1) * strides[0] - 2 * paddings[0] + dilations[0] * (H_f - 1) + 1 \\\\
           W^\prime_{out} &= (W_{in} - 1) * strides[1] - 2 * paddings[1] + dilations[1] * (W_f - 1) + 1 \\\\
           H_{out} \in [ H^\prime_{out}, H^\prime_{out} + strides[0] ) \\\\
           W_{out} \in [ W^\prime_{out}, W^\prime_{out} + strides[1] )
Y
Yu Yang 已提交
2526 2527

    Args:
2528 2529 2530 2531
        input(Variable): The input image with [N, C, H, W] format.
        num_filters(int): The number of the filter. It is as same as the output
            image channel.
        output_size(int|tuple|None): The output image size. If output size is a
2532 2533 2534 2535
            tuple, it must contain two integers, (image_H, image_W). None if use
            filter_size, padding, and stride to calculate output_size.
            if output_size and filter_size are specified at the same time, They
            should follow the formula above.
2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553
        filter_size(int|tuple|None): The filter size. If filter_size is a tuple,
            it must contain two integers, (filter_size_H, filter_size_W).
            Otherwise, the filter will be a square. None if use output size to
            calculate filter_size.
        padding(int|tuple): The padding size. If padding is a tuple, it must
            contain two integers, (padding_H, padding_W). Otherwise, the
            padding_H = padding_W = padding. Default: padding = 0.
        stride(int|tuple): The stride size. If stride is a tuple, it must
            contain two integers, (stride_H, stride_W). Otherwise, the
            stride_H = stride_W = stride. Default: stride = 1.
        dilation(int|tuple): The dilation size. If dilation is a tuple, it must
            contain two integers, (dilation_H, dilation_W). Otherwise, the
            dilation_H = dilation_W = dilation. Default: dilation = 1.
        groups(int): The groups number of the Conv2d transpose layer. Inspired by
            grouped convolution in Alex Krizhevsky's Deep CNN paper, in which
            when group=2, the first half of the filters is only connected to the
            first half of the input channels, while the second half of the
            filters is only connected to the second half of the input channels.
C
chengduo 已提交
2554 2555 2556 2557 2558 2559 2560 2561 2562 2563
            Default: groups = 1.
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
            of conv2d_transpose. If it is set to None or one attribute of ParamAttr, conv2d_transpose
            will create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of conv2d_transpose.
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, conv2d_transpose
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. Default: None.
2564
        use_cudnn(bool): Use cudnn kernel or not, it is valid only when the cudnn
C
chengduo 已提交
2565 2566 2567
            library is installed. Default: True.
        act (str): Activation type, if it is set to None, activation is not appended.
            Default: None.
2568
        name(str|None): A name for this layer(optional). If set None, the layer
C
chengduo 已提交
2569
            will be named automatically. Default: True.
Y
Yu Yang 已提交
2570 2571

    Returns:
2572
        Variable: The tensor variable storing the convolution transpose result.
2573 2574

    Raises:
2575 2576
        ValueError: If the shapes of input, filter_size, stride, padding and
                    groups mismatch.
2577 2578 2579 2580

    Examples:
       .. code-block:: python

2581 2582
          data = fluid.layers.data(name='data', shape=[3, 32, 32], dtype='float32')
          conv2d_transpose = fluid.layers.conv2d_transpose(input=data, num_filters=2, filter_size=3)
Y
Yu Yang 已提交
2583
    """
C
chengduo 已提交
2584
    assert param_attr is not False, "param_attr should not be False in conv2d_transpose."
2585 2586 2587 2588 2589 2590 2591 2592
    input_channel = input.shape[1]

    op_type = 'conv2d_transpose'
    if (input_channel == groups and num_filters == input_channel and
            not use_cudnn):
        op_type = 'depthwise_conv2d_transpose'

    helper = LayerHelper(op_type, **locals())
Y
Yu Yang 已提交
2593 2594 2595
    if not isinstance(input, Variable):
        raise TypeError("Input of conv2d_transpose must be Variable")

C
chengduoZH 已提交
2596 2597 2598
    padding = utils.convert_to_list(padding, 2, 'padding')
    stride = utils.convert_to_list(stride, 2, 'stride')
    dilation = utils.convert_to_list(dilation, 2, 'dilation')
G
guosheng 已提交
2599

C
chengduoZH 已提交
2600 2601
    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")
G
guosheng 已提交
2602

Y
Yu Yang 已提交
2603 2604 2605 2606 2607
    if filter_size is None:
        if output_size is None:
            raise ValueError("output_size must be set when filter_size is None")
        if isinstance(output_size, int):
            output_size = [output_size, output_size]
G
guosheng 已提交
2608

Y
Yu Yang 已提交
2609 2610
        h_in = input.shape[2]
        w_in = input.shape[3]
G
guosheng 已提交
2611

C
chengduoZH 已提交
2612
        filter_size_h = (output_size[0] - (h_in - 1) * stride[0] + 2 *
M
minqiyang 已提交
2613
                         padding[0] - 1) // dilation[0] + 1
C
chengduoZH 已提交
2614
        filter_size_w = (output_size[1] - (w_in - 1) * stride[1] + 2 *
M
minqiyang 已提交
2615
                         padding[1] - 1) // dilation[1] + 1
Y
Yu Yang 已提交
2616
        filter_size = [filter_size_h, filter_size_w]
C
chengduoZH 已提交
2617 2618 2619
    else:
        filter_size = utils.convert_to_list(filter_size, 2,
                                            'conv2d_transpose.filter_size')
C
chengduo 已提交
2620

2621 2622 2623 2624 2625 2626 2627
    if output_size is None:
        output_size = []
    elif isinstance(output_size, list) or isinstance(output_size, int):
        output_size = utils.convert_to_list(output_size, 2, 'output_size')
    else:
        raise ValueError("output_size should be list or int")
    padding = utils.convert_to_list(padding, 2, 'padding')
2628
    groups = 1 if groups is None else groups
M
minqiyang 已提交
2629
    filter_shape = [input_channel, num_filters // groups] + filter_size
C
chengduo 已提交
2630

Y
Yu Yang 已提交
2631 2632 2633
    img_filter = helper.create_parameter(
        dtype=input.dtype, shape=filter_shape, attr=helper.param_attr)

X
Xin Pan 已提交
2634
    pre_bias = helper.create_variable_for_type_inference(dtype=input.dtype)
Y
Yu Yang 已提交
2635
    helper.append_op(
2636
        type=op_type,
Y
Yu Yang 已提交
2637 2638
        inputs={'Input': [input],
                'Filter': [img_filter]},
2639
        outputs={'Output': pre_bias},
C
chengduoZH 已提交
2640
        attrs={
2641
            'output_size': output_size,
2642 2643 2644 2645 2646
            'strides': stride,
            'paddings': padding,
            'dilations': dilation,
            'groups': groups,
            'use_cudnn': use_cudnn
Y
Yu Yang 已提交
2647 2648
        })

2649 2650 2651
    pre_act = helper.append_bias_op(pre_bias, dim_start=1, dim_end=2)
    out = helper.append_activation(pre_act)
    return out
Y
Yu Yang 已提交
2652 2653


2654
def conv3d_transpose(input,
Y
Yu Yang 已提交
2655 2656 2657
                     num_filters,
                     output_size=None,
                     filter_size=None,
C
chengduoZH 已提交
2658 2659 2660
                     padding=0,
                     stride=1,
                     dilation=1,
2661
                     groups=None,
C
caoying03 已提交
2662
                     param_attr=None,
2663
                     bias_attr=None,
C
chengduoZH 已提交
2664
                     use_cudnn=True,
2665
                     act=None,
C
caoying03 已提交
2666
                     name=None):
Y
Yu Yang 已提交
2667
    """
2668
    **Convlution3D transpose layer**
2669

2670
    The convolution3D transpose layer calculates the output based on the input,
2671
    filter, and dilations, strides, paddings. Input(Input) and output(Output)
2672 2673 2674 2675 2676 2677
    are in NCDHW format. Where N is batch size, C is the number of channels,
    D is the depth of the feature, H is the height of the feature, and W
    is the width of the feature. Parameters(dilations, strides, paddings) are
    two elements. These two elements represent height and width, respectively.
    The details of convolution transpose layer, please refer to the following
    explanation and references `therein <http://www.matthewzeiler.com/wp-content/uploads/2017/07/cvpr2010.pdf>`_.
2678 2679 2680
    If bias attribution and activation type are provided, bias is added to
    the output of the convolution, and the corresponding activation function
    is applied to the final result.
2681 2682 2683 2684 2685

    For each input :math:`X`, the equation is:

    .. math::

2686
        Out = \sigma (W \\ast X + b)
2687 2688 2689

    In the above equation:

2690 2691
    * :math:`X`: Input value, a tensor with NCDHW format.
    * :math:`W`: Filter value, a tensor with MCDHW format.
2692 2693 2694 2695
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D tensor with shape [M, 1].
    * :math:`\\sigma`: Activation function.
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.
Y
Yu Yang 已提交
2696

2697 2698 2699 2700
    Example:

        - Input:

2701
          Input shape: :math:`(N, C_{in}, D_{in}, H_{in}, W_{in})`
2702

2703
          Filter shape: :math:`(C_{in}, C_{out}, D_f, H_f, W_f)`
2704 2705 2706

        - Output:

2707
          Output shape: :math:`(N, C_{out}, D_{out}, H_{out}, W_{out})`
2708 2709

        Where
Y
Yu Yang 已提交
2710

2711 2712
        .. math::

2713 2714 2715
           D_{out} &= (D_{in} - 1) * strides[0] - 2 * paddings[0] + dilations[0] * (D_f - 1) + 1 \\\\
           H_{out} &= (H_{in} - 1) * strides[1] - 2 * paddings[1] + dilations[1] * (H_f - 1) + 1 \\\\
           W_{out} &= (W_{in} - 1) * strides[2] - 2 * paddings[2] + dilations[2] * (W_f - 1) + 1
Y
Yu Yang 已提交
2716 2717

    Args:
2718
        input(Variable): The input image with [N, C, D, H, W] format.
2719 2720 2721
        num_filters(int): The number of the filter. It is as same as the output
            image channel.
        output_size(int|tuple|None): The output image size. If output size is a
2722
            tuple, it must contain three integers, (image_D, image_H, image_W). This
2723 2724
            parameter only works when filter_size is None.
        filter_size(int|tuple|None): The filter size. If filter_size is a tuple,
2725
            it must contain three integers, (filter_size_D, filter_size_H, filter_size_W).
2726 2727 2728
            Otherwise, the filter will be a square. None if use output size to
            calculate filter_size.
        padding(int|tuple): The padding size. If padding is a tuple, it must
2729 2730
            contain three integers, (padding_D, padding_H, padding_W). Otherwise, the
            padding_D = padding_H = padding_W = padding. Default: padding = 0.
2731
        stride(int|tuple): The stride size. If stride is a tuple, it must
2732 2733
            contain three integers, (stride_D, stride_H, stride_W). Otherwise, the
            stride_D = stride_H = stride_W = stride. Default: stride = 1.
2734
        dilation(int|tuple): The dilation size. If dilation is a tuple, it must
2735 2736 2737
            contain three integers, (dilation_D, dilation_H, dilation_W). Otherwise, the
            dilation_D = dilation_H = dilation_W = dilation. Default: dilation = 1.
        groups(int): The groups number of the Conv3d transpose layer. Inspired by
2738 2739 2740 2741 2742
            grouped convolution in Alex Krizhevsky's Deep CNN paper, in which
            when group=2, the first half of the filters is only connected to the
            first half of the input channels, while the second half of the
            filters is only connected to the second half of the input channels.
            Default: groups=1
C
chengduo 已提交
2743 2744 2745 2746 2747 2748 2749 2750 2751
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
            of conv3d_transpose. If it is set to None or one attribute of ParamAttr, conv3d_transpose
            will create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of conv3d_transpose.
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, conv3d_transpose
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. Default: None.
2752 2753
        use_cudnn(bool): Use cudnn kernel or not, it is valid only when the cudnn
            library is installed. Default: True
C
chengduo 已提交
2754 2755
        act (str): Activation type, if it is set to None, activation is not appended.
            Default: None.
2756 2757
        name(str|None): A name for this layer(optional). If set None, the layer
            will be named automatically.
Y
Yu Yang 已提交
2758 2759

    Returns:
2760
        Variable: The tensor variable storing the convolution transpose result.
2761 2762

    Raises:
2763 2764
        ValueError: If the shapes of input, filter_size, stride, padding and
                    groups mismatch.
2765 2766 2767 2768

    Examples:
       .. code-block:: python

2769 2770
          data = fluid.layers.data(name='data', shape=[3, 12, 32, 32], dtype='float32')
          conv3d_transpose = fluid.layers.conv3d_transpose(input=data, num_filters=2, filter_size=3)
Y
Yu Yang 已提交
2771
    """
C
chengduo 已提交
2772
    assert param_attr is not False, "param_attr should not be False in conv3d_transpose."
2773 2774
    l_type = "conv3d_transpose"
    helper = LayerHelper(l_type, **locals())
Y
Yu Yang 已提交
2775
    if not isinstance(input, Variable):
2776
        raise TypeError("Input of conv3d_transpose must be Variable")
Y
Yu Yang 已提交
2777 2778
    input_channel = input.shape[1]

2779 2780 2781
    padding = utils.convert_to_list(padding, 3, 'padding')
    stride = utils.convert_to_list(stride, 3, 'stride')
    dilation = utils.convert_to_list(dilation, 3, 'dilation')
C
chengduoZH 已提交
2782

C
chengduoZH 已提交
2783 2784 2785
    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")

Y
Yu Yang 已提交
2786 2787 2788 2789 2790 2791
    if filter_size is None:
        if output_size is None:
            raise ValueError("output_size must be set when filter_size is None")
        if isinstance(output_size, int):
            output_size = [output_size, output_size]

2792 2793 2794
        d_in = input.shape[2]
        h_in = input.shape[3]
        w_in = input.shape[4]
C
chengduoZH 已提交
2795

2796
        filter_size_d = (output_size[0] - (d_in - 1) * stride[0] + 2 *
M
minqiyang 已提交
2797
                         padding[0] - 1) // dilation[0] + 1
2798
        filter_size_h = (output_size[1] - (h_in - 1) * stride[1] + 2 *
M
minqiyang 已提交
2799
                         padding[1] - 1) // dilation[1] + 1
2800
        filter_size_w = (output_size[2] - (w_in - 1) * stride[2] + 2 *
M
minqiyang 已提交
2801
                         padding[2] - 1) // dilation[2] + 1
2802
        filter_size = [filter_size_d, filter_size_h, filter_size_w]
C
chengduoZH 已提交
2803
    else:
2804 2805
        filter_size = utils.convert_to_list(filter_size, 3,
                                            'conv3d_transpose.filter_size')
Y
Yu Yang 已提交
2806

2807
    groups = 1 if groups is None else groups
M
minqiyang 已提交
2808
    filter_shape = [input_channel, num_filters // groups] + filter_size
Y
Yu Yang 已提交
2809 2810 2811
    img_filter = helper.create_parameter(
        dtype=input.dtype, shape=filter_shape, attr=helper.param_attr)

X
Xin Pan 已提交
2812
    pre_bias = helper.create_variable_for_type_inference(dtype=input.dtype)
Y
Yu Yang 已提交
2813
    helper.append_op(
2814
        type=l_type,
Y
Yu Yang 已提交
2815 2816
        inputs={'Input': [input],
                'Filter': [img_filter]},
2817
        outputs={'Output': pre_bias},
C
chengduoZH 已提交
2818 2819 2820 2821
        attrs={
            'strides': stride,
            'paddings': padding,
            'dilations': dilation,
2822
            'groups': groups,
C
chengduoZH 已提交
2823 2824
            'use_cudnn': use_cudnn
        })
Y
Yu Yang 已提交
2825

2826 2827
    pre_act = helper.append_bias_op(pre_bias, dim_start=1, dim_end=2)
    out = helper.append_activation(pre_act)
Y
Yu Yang 已提交
2828
    return out
Y
yangyaming 已提交
2829 2830


Y
yangyaming 已提交
2831
def sequence_expand(x, y, ref_level=-1, name=None):
2832
    """Sequence Expand Layer. This layer will expand the input variable **x**
Y
yangyaming 已提交
2833 2834 2835 2836
    according to specified level lod of **y**. Please note that lod level of
    **x** is at most 1 and rank of **x** is at least 2. When rank of **x**
    is greater than 2, then it would be viewed as a 2-D tensor.
    Following examples will explain how sequence_expand works:
2837 2838 2839 2840 2841

    .. code-block:: text

        * Case 1
            x is a LoDTensor:
2842
                x.lod  = [[2,        2]]
Y
yangyaming 已提交
2843
                x.data = [[a], [b], [c], [d]]
2844 2845 2846
                x.dims = [4, 1]

            y is a LoDTensor:
2847 2848
                y.lod = [[2,    2],
                         [3, 3, 1, 1]]
2849

Y
yangyaming 已提交
2850
            ref_level: 0
2851

Y
yangyaming 已提交
2852
            then output is a 1-level LoDTensor:
2853
                out.lod =  [[2,        2,        2,        2]]
Y
yangyaming 已提交
2854
                out.data = [[a], [b], [a], [b], [c], [d], [c], [d]]
2855 2856 2857 2858
                out.dims = [8, 1]

        * Case 2
            x is a Tensor:
Y
yangyaming 已提交
2859
                x.data = [[a], [b], [c]]
2860 2861 2862
                x.dims = [3, 1]

            y is a LoDTensor:
2863
                y.lod = [[2, 0, 3]]
2864

Y
yangyaming 已提交
2865
            ref_level: -1
2866

Y
yangyaming 已提交
2867 2868 2869
            then output is a Tensor:
                out.data = [[a], [a], [c], [c], [c]]
                out.dims = [5, 1]
2870 2871 2872
    Args:
        x (Variable): The input variable which is a Tensor or LoDTensor.
        y (Variable): The input variable which is a LoDTensor.
Y
yangyaming 已提交
2873 2874
        ref_level (int): Lod level of `y` to be referred by `x`. If set to -1,
                         refer the last level of lod.
C
caoying03 已提交
2875
        name(str|None): A name for this layer(optional). If set None, the layer
Y
yangyaming 已提交
2876
                        will be named automatically.
2877 2878 2879 2880 2881 2882 2883 2884 2885 2886

    Returns:
        Variable: The expanded variable which is a LoDTensor.

    Examples:
        .. code-block:: python

            x = fluid.layers.data(name='x', shape=[10], dtype='float32')
            y = fluid.layers.data(name='y', shape=[10, 20],
                             dtype='float32', lod_level=1)
Y
yangyaming 已提交
2887
            out = layers.sequence_expand(x=x, y=y, ref_level=0)
2888
    """
Y
yangyaming 已提交
2889
    helper = LayerHelper('sequence_expand', input=x, **locals())
2890
    dtype = helper.input_dtype()
X
Xin Pan 已提交
2891
    tmp = helper.create_variable_for_type_inference(dtype)
2892
    helper.append_op(
Y
yangyaming 已提交
2893 2894 2895 2896 2897
        type='sequence_expand',
        inputs={'X': x,
                'Y': y},
        outputs={'Out': tmp},
        attrs={'ref_level': ref_level})
2898
    return tmp
2899 2900


C
chengduo 已提交
2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956
def sequence_expand_as(x, y, name=None):
    """Sequence Expand As Layer. This layer will expand the input variable **x**
    according to the zeroth level lod of **y**. Current implementation requires
    the level number of Input(Y)'s lod must be 1, and the first dimension of
    Input(X) should be equal to the size of Input(Y)'s zeroth level lod, and
    lod of Input(X) is not considered.

    Following examples will explain how sequence_expand_as works:

    .. code-block:: text

        * Case 1:

            Given a 1-level LoDTensor input(X)
                X.data = [[a], [b], [c], [d]]
                X.dims = [4, 1]
            and input(Y)
                Y.lod = [[0, 3, 6, 7, 8]]
            ref_level: 0
            then we get 1-level LoDTensor
                Out.lod =  [[0,            3,              6,  7,  8]]
                Out.data = [[a], [a], [a], [b], [b], [b], [c], [d]]
                Out.dims = [8, 1]

        * Case 2:

            Given a common Tensor input(X)
                X.data = [[a, b], [c, d], [e, f]]
                X.dims = [3, 2]
            and input(Y)
                Y.lod = [[0, 2, 3, 6]]
            ref_level: 0
            then we get a common LoDTensor
                Out.lod =  [[0,             2,     3,                    6]]
                Out.data = [[a, b], [a, b] [c, d], [e, f], [e, f], [e, f]]
                Out.dims = [6, 2]

    Args:
        x (Variable): The input variable which is a Tensor or LoDTensor.
        y (Variable): The input variable which is a LoDTensor.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: The expanded variable which is a LoDTensor.

    Examples:
        .. code-block:: python

            x = fluid.layers.data(name='x', shape=[10], dtype='float32')
            y = fluid.layers.data(name='y', shape=[10, 20],
                             dtype='float32', lod_level=1)
            out = layers.sequence_expand_as(x=x, y=y)
    """
    helper = LayerHelper('sequence_expand_as', input=x, **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
2957
    tmp = helper.create_variable_for_type_inference(dtype)
C
chengduo 已提交
2958 2959 2960 2961 2962 2963 2964 2965
    helper.append_op(
        type='sequence_expand_as',
        inputs={'X': x,
                'Y': y},
        outputs={'Out': tmp})
    return tmp


F
fengjiayi 已提交
2966
@templatedoc()
2967
def sequence_pad(x, pad_value, maxlen=None, name=None):
F
fengjiayi 已提交
2968 2969 2970 2971 2972
    """
    ${comment}

    Args:
        x(Variable): Input variable which should contain lod information.
M
minqiyang 已提交
2973 2974 2975
        pad_value(Variable): The Variable that holds values that will be fill
            into padded steps. It can be a scalar or a tensor whose shape
            equals to time steps in sequences. If it's a scalar, it will be
F
fengjiayi 已提交
2976
            automatically broadcasted to the shape of time step.
M
minqiyang 已提交
2977 2978 2979 2980
        maxlen(int, default None): The length of padded sequences. It can be
            None or any positive int. When it is None, all sequences will be
            padded up to the length of the longest one among them; when it a
            certain positive value, it must be greater than the length of the
2981 2982 2983
            longest original sequence.
        name(str|None): A name for this layer(optional). If set None, the layer
            will be named automatically.
M
minqiyang 已提交
2984

F
fengjiayi 已提交
2985
    Returns:
M
minqiyang 已提交
2986
        Variable: The padded sequence batch and the original lengths before
2987
                  padding. All sequences has the same length.
M
minqiyang 已提交
2988

F
fengjiayi 已提交
2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001
    Examples:
        .. code-block:: python

            import numpy

            x = fluid.layers.data(name='y', shape=[10, 5],
                             dtype='float32', lod_level=1)
            pad_value = fluid.layers.assign(input=numpy.array([0]))
            out = fluid.layers.sequence_pad(x=x, pad_value=pad_value)
    """

    helper = LayerHelper('sequence_pad', input=x, **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
3002 3003
    out = helper.create_variable_for_type_inference(dtype)
    length = helper.create_variable_for_type_inference(dtype)
3004 3005 3006 3007

    pad_value.stop_gradient = True
    length.stop_gradient = True

F
fengjiayi 已提交
3008 3009 3010 3011 3012 3013
    if maxlen is None:
        maxlen = -1
    helper.append_op(
        type='sequence_pad',
        inputs={'X': x,
                'PadValue': pad_value},
3014 3015
        outputs={'Out': out,
                 'Length': length},
F
fengjiayi 已提交
3016
        attrs={'padded_length': maxlen})
3017
    return out, length
F
fengjiayi 已提交
3018 3019


3020
def sequence_unpad(x, length, name=None):
Y
Yibing Liu 已提交
3021
    """
3022
    **Sequence Unpad Layer**
Y
Yibing Liu 已提交
3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037

    This layer removes the padding data in the input sequences and convert 
    them into sequences with actual length as output, identitied by lod 
    information.

    .. code-block:: text

	Example:

	Given input Variable **x**:
	    x.data = [[ 1.0,  2.0,  3.0,  4.0,  5.0],
		      [ 6.0,  7.0,  8.0,  9.0, 10.0],
		      [11.0, 12.0, 13.0, 14.0, 15.0]], 
     
	in which there are 3 sequences padded to length 5, and the acutal length 
3038
	specified by input Variable **length**:
Y
Yibing Liu 已提交
3039 3040 3041 3042 3043 3044

	    length.data = [[2], [3], [4]],

	after unpadding, the output Variable will be:

	    out.data = [[1.0, 2.0, 6.0, 7.0, 8.0, 11.0, 12.0, 13.0, 14.0]]
3045
	    out.lod = [[2, 3, 4]]      
Y
Yibing Liu 已提交
3046 3047 3048 3049 3050 3051

    Args:
        x(Variable): Input Variable which contains the padded sequences with
            equal length.
        length(Variable): The Variable that specifies the actual ength of
            sequences after unpadding.
3052 3053
        name(str|None): A name for this layer(optional). If set None, the layer
            will be named automatically.
Y
Yibing Liu 已提交
3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067

    Returns:
        Variable: The Variable contains the unpadded sequences.

    Examples:
        .. code-block:: python

            x = fluid.layers.data(name='x', shape=[10, 5], dtype='float32')
            len = fluid.layers.data(name='length', shape=[1], dtype='int64')
            out = fluid.layers.sequence_unpad(x=x, length=len)
    """

    helper = LayerHelper('sequence_unpad', input=x, **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
3068
    out = helper.create_variable_for_type_inference(dtype)
Y
Yibing Liu 已提交
3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079

    length.stop_gradient = True

    helper.append_op(
        type='sequence_unpad',
        inputs={'X': x,
                'Length': length},
        outputs={'Out': out})
    return out


3080 3081 3082 3083 3084 3085 3086 3087 3088
def beam_search(pre_ids,
                pre_scores,
                ids,
                scores,
                beam_size,
                end_id,
                level=0,
                name=None):
    """
3089 3090
    Beam search is a classical algorithm for selecting candidate words in a
    machine translation task.
Y
Yan Chunwei 已提交
3091 3092 3093

    Refer to `Beam search <https://en.wikipedia.org/wiki/Beam_search>`_
    for more details.
M
minqiyang 已提交
3094 3095

    This layer does the search in beams for one time step. Specifically, it
3096 3097 3098 3099 3100 3101
    selects the top-K candidate word ids of current step from :attr:`ids`
    according to their :attr:`scores` for all source sentences, where K is
    :attr:`beam_size` and :attr:`ids, scores` are predicted results from the
    computation cell. Additionally, :attr:`pre_ids` and :attr:`pre_scores` are
    the output of beam_search at previous step, they are needed for special use
    to handle ended candidate translations.
M
minqiyang 已提交
3102

3103 3104 3105 3106 3107 3108 3109 3110
    Note that the :attr:`scores` passed in should be accumulated scores, and
    length penalty should be done with extra operators before calculating the
    accumulated scores if needed, also suggest finding top-K before it and
    using the top-K candidates following.

    Please see the following demo for a fully beam search usage example:

        fluid/tests/book/test_machine_translation.py
Y
Yan Chunwei 已提交
3111

3112
    Args:
3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137
        pre_ids(Variable): The LodTensor variable which is the output of
            beam_search at previous step. It should be a LodTensor with shape
            :math:`(batch_size, 1)` and lod
            :math:`[[0, 1, ... , batch_size], [0, 1, ..., batch_size]]` at the
            first step.
        pre_scores(Variable): The LodTensor variable which is the output of
            beam_search at previous step.
        ids(Variable): The LodTensor variable containing the candidates ids.
            Its shape should be :math:`(batch_size \\times beam_size, K)`,
            where :math:`K` supposed to be :attr:`beam_size`.
        scores(Variable): The LodTensor variable containing the accumulated
            scores corresponding to :attr:`ids` and its shape is the same as
            the shape of :attr:`ids`.
        beam_size(int): The beam width used in beam search.
        end_id(int): The id of end token.
        level(int, default 0): It can be ignored and mustn't change currently.
            It means the source level of lod, which is explained as following.
            The lod level of :attr:`ids` should be 2. The first level is source
            level which describes how many prefixes (branchs) for each source
            sentece (beam), and the second level is sentence level which
            describes how these candidates belong to the prefix. The paths
            linking prefixes and selected candidates are organized and reserved
            in lod.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
F
fengjiayi 已提交
3138

3139
    Returns:
3140 3141
        Variable: The LodTensor pair containing the selected ids and the \
            corresponding scores.
Y
Yan Chunwei 已提交
3142 3143 3144 3145

    Examples:
        .. code-block:: python

3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162
            # Suppose `probs` contains predicted results from the computation
            # cell and `pre_ids` and `pre_scores` is the output of beam_search
            # at previous step.
            topk_scores, topk_indices = layers.topk(probs, k=beam_size)
            accu_scores = layers.elementwise_add(
                x=layers.log(x=topk_scores)),
                y=layers.reshape(
                    pre_scores, shape=[-1]),
                axis=0)
            selected_ids, selected_scores = layers.beam_search(
                pre_ids=pre_ids,
                pre_scores=pre_scores,
                ids=topk_indices,
                scores=accu_scores,
                beam_size=beam_size,
                end_id=end_id)
    """
Q
Qiao Longfei 已提交
3163 3164 3165 3166
    helper = LayerHelper('beam_search', **locals())
    score_type = scores.dtype
    id_type = ids.dtype

X
Xin Pan 已提交
3167 3168 3169
    selected_scores = helper.create_variable_for_type_inference(
        dtype=score_type)
    selected_ids = helper.create_variable_for_type_inference(dtype=id_type)
Q
Qiao Longfei 已提交
3170 3171 3172 3173 3174

    helper.append_op(
        type='beam_search',
        inputs={
            'pre_ids': pre_ids,
3175
            'pre_scores': pre_scores,
Q
Qiao Longfei 已提交
3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192
            'ids': ids,
            'scores': scores,
        },
        outputs={
            'selected_ids': selected_ids,
            'selected_scores': selected_scores,
        },
        attrs={
            # TODO(ChunweiYan) to assure other value support
            'level': level,
            'beam_size': beam_size,
            'end_id': end_id,
        })

    return selected_ids, selected_scores


3193 3194 3195 3196 3197 3198 3199
def beam_search_decode(ids, scores, beam_size, end_id, name=None):
    """
    Beam Search Decode Layer. This layer constructs the full hypotheses for
    each source sentence by walking back along the LoDTensorArray :attr:`ids`
    whose lods can be used to restore the path in the beam search tree.
    Please see the following demo for a fully beam search usage example:
        fluid/tests/book/test_machine_translation.py
G
guosheng 已提交
3200

3201 3202 3203 3204 3205 3206 3207 3208 3209
    Args:
        ids(Variable): The LodTensorArray variable containing the selected ids
            of all steps.
        scores(Variable): The LodTensorArray variable containing the selected
            scores of all steps.
        beam_size(int): The beam width used in beam search.
        end_id(int): The id of end token.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
G
guosheng 已提交
3210

3211 3212 3213 3214 3215 3216
    Returns:
        Variable: The LodTensor pair containing the generated id sequences \
            and the corresponding scores. The shapes and lods of the two \
            LodTensor are same. The lod level is 2 and the two levels \
            separately indicate how many hypotheses each source sentence has \
            and how many ids each hypothesis has.
G
guosheng 已提交
3217

3218 3219 3220 3221 3222 3223 3224 3225
    Examples:
        .. code-block:: python
            # Suppose `ids` and `scores` are LodTensorArray variables reserving
            # the selected ids and scores of all steps
            finished_ids, finished_scores = layers.beam_search_decode(
                ids, scores, beam_size=5, end_id=0)
    """
    helper = LayerHelper('beam_search_decode', **locals())
X
Xin Pan 已提交
3226 3227
    sentence_ids = helper.create_variable_for_type_inference(dtype=ids.dtype)
    sentence_scores = helper.create_variable_for_type_inference(dtype=ids.dtype)
3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242

    helper.append_op(
        type="beam_search_decode",
        inputs={"Ids": ids,
                "Scores": scores},
        outputs={
            "SentenceIds": sentence_ids,
            "SentenceScores": sentence_scores
        },
        attrs={"beam_size": beam_size,
               "end_id": end_id})

    return sentence_ids, sentence_scores


Y
yangyaming 已提交
3243 3244 3245 3246
def lstm_unit(x_t,
              hidden_t_prev,
              cell_t_prev,
              forget_bias=0.0,
Y
yangyaming 已提交
3247
              param_attr=None,
C
caoying03 已提交
3248 3249
              bias_attr=None,
              name=None):
Y
yangyaming 已提交
3250 3251 3252 3253
    """Lstm unit layer. The equation of a lstm step is:

        .. math::

3254
            i_t & = \sigma(W_{x_i}x_{t} + W_{h_i}h_{t-1} + b_i)
Y
yangyaming 已提交
3255

3256
            f_t & = \sigma(W_{x_f}x_{t} + W_{h_f}h_{t-1} + b_f)
Y
yangyaming 已提交
3257

3258
            c_t & = f_tc_{t-1} + i_t tanh (W_{x_c}x_t + W_{h_c}h_{t-1} + b_c)
Y
yangyaming 已提交
3259

3260
            o_t & = \sigma(W_{x_o}x_{t} + W_{h_o}h_{t-1} + b_o)
Y
yangyaming 已提交
3261 3262 3263

            h_t & = o_t tanh(c_t)

3264 3265 3266 3267 3268 3269
    The inputs of lstm unit include :math:`x_t`, :math:`h_{t-1}` and
    :math:`c_{t-1}`. The 2nd dimensions of :math:`h_{t-1}` and :math:`c_{t-1}`
    should be same. The implementation separates the linear transformation and
    non-linear transformation apart. Here, we take :math:`i_t` as an example.
    The linear transformation is applied by calling a `fc` layer and the
    equation is:
Y
yangyaming 已提交
3270 3271 3272

        .. math::

3273
            L_{i_t} = W_{x_i}x_{t} + W_{h_i}h_{t-1} + b_i
Y
yangyaming 已提交
3274 3275 3276 3277 3278 3279 3280 3281

    The non-linear transformation is applied by calling `lstm_unit_op` and the
    equation is:

        .. math::

            i_t = \sigma(L_{i_t})

Y
yangyaming 已提交
3282
    This layer has two outputs including :math:`h_t` and :math:`o_t`.
Y
yangyaming 已提交
3283 3284

    Args:
Y
yangyaming 已提交
3285 3286 3287 3288 3289 3290
        x_t (Variable): The input value of current step, a 2-D tensor with shape
            M x N, M for batch size and N for input size.
        hidden_t_prev (Variable): The hidden value of lstm unit, a 2-D tensor
            with shape M x S, M for batch size and S for size of lstm unit.
        cell_t_prev (Variable): The cell value of lstm unit, a 2-D tensor with
            shape M x S, M for batch size and S for size of lstm unit.
Y
yangyaming 已提交
3291
        forget_bias (float): The forget bias of lstm unit.
C
chengduo 已提交
3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303
        param_attr(ParamAttr|None): The parameter attribute for the learnable
                               hidden-hidden weights.
                               If it is set to None or one attribute of ParamAttr,
                               lstm_unit will create ParamAttr as param_attr.
                               If the Initializer of the param_attr is not set, the
                               parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr|None): The bias attribute for the learnable bias
                              weights. If it is set to False, no bias will be added
                              to the output units. If it is set to None or one attribute of ParamAttr,
                              lstm_unit will create ParamAttr as bias_attr.
                              If the Initializer of the bias_attr is not set,
                              the bias is initialized zero. Default: None.
C
caoying03 已提交
3304 3305
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
Y
yangyaming 已提交
3306 3307

    Returns:
Y
yangyaming 已提交
3308
        tuple: The hidden value and cell value of lstm unit.
Y
yangyaming 已提交
3309 3310

    Raises:
3311 3312 3313 3314
        ValueError: The ranks of **x_t**, **hidden_t_prev** and **cell_t_prev**
                    not be 2 or the 1st dimensions of **x_t**, **hidden_t_prev**
                    and **cell_t_prev** not be the same or the 2nd dimensions of
                    **hidden_t_prev** and **cell_t_prev** not be the same.
Y
yangyaming 已提交
3315 3316 3317 3318 3319 3320

    Examples:

        .. code-block:: python

             x_t = fluid.layers.fc(input=x_t_data, size=10)
3321
             prev_hidden = fluid.layers.fc(input=prev_hidden_data, size=30)
Y
yangyaming 已提交
3322
             prev_cell = fluid.layers.fc(input=prev_cell_data, size=30)
Y
yangyaming 已提交
3323
             hidden_value, cell_value = fluid.layers.lstm_unit(x_t=x_t,
Y
yangyaming 已提交
3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339
                                                    hidden_t_prev=prev_hidden,
                                                    cell_t_prev=prev_cell)
    """
    helper = LayerHelper('lstm_unit', **locals())

    if len(x_t.shape) != 2:
        raise ValueError("Rank of x_t must be 2.")

    if len(hidden_t_prev.shape) != 2:
        raise ValueError("Rank of hidden_t_prev must be 2.")

    if len(cell_t_prev.shape) != 2:
        raise ValueError("Rank of cell_t_prev must be 2.")

    if x_t.shape[0] != hidden_t_prev.shape[0] or x_t.shape[
            0] != cell_t_prev.shape[0]:
Y
yangyaming 已提交
3340
        raise ValueError("The 1st dimensions of x_t, hidden_t_prev and "
3341 3342 3343 3344
                         "cell_t_prev must be the same.")

    if hidden_t_prev.shape[1] != cell_t_prev.shape[1]:
        raise ValueError("The 2nd dimensions of hidden_t_prev and "
Y
yangyaming 已提交
3345 3346
                         "cell_t_prev must be the same.")

Y
yangyaming 已提交
3347 3348 3349
    if bias_attr is None:
        bias_attr = ParamAttr()

Y
yangyaming 已提交
3350
    size = cell_t_prev.shape[1]
3351
    concat_out = concat(input=[x_t, hidden_t_prev], axis=1)
Y
yangyaming 已提交
3352 3353
    fc_out = fc(input=concat_out,
                size=4 * size,
Y
yangyaming 已提交
3354
                param_attr=param_attr,
3355
                bias_attr=bias_attr)
Y
yangyaming 已提交
3356
    dtype = x_t.dtype
X
Xin Pan 已提交
3357 3358
    c = helper.create_variable_for_type_inference(dtype)
    h = helper.create_variable_for_type_inference(dtype)
Y
yangyaming 已提交
3359 3360 3361 3362 3363 3364 3365 3366 3367

    helper.append_op(
        type='lstm_unit',
        inputs={"X": fc_out,
                "C_prev": cell_t_prev},
        outputs={"C": c,
                 "H": h},
        attrs={"forget_bias": forget_bias})

Y
yangyaming 已提交
3368
    return h, c
G
guosheng 已提交
3369 3370


C
caoying03 已提交
3371
def reduce_sum(input, dim=None, keep_dim=False, name=None):
G
guosheng 已提交
3372
    """
Y
yangyaming 已提交
3373
    Computes the sum of tensor elements over the given dimension.
G
guosheng 已提交
3374 3375 3376

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
W
whs 已提交
3377
        dim (list|int|None): The dimensions along which the sum is performed. If
Y
yangyaming 已提交
3378 3379
            :attr:`None`, sum all elements of :attr:`input` and return a
            Tensor variable with a single element, otherwise must be in the
W
whs 已提交
3380 3381
            range :math:`[-rank(input), rank(input))`. If :math:`dim[i] < 0`,
            the dimension to reduce is :math:`rank + dim[i]`.
3382
        keep_dim (bool|False): Whether to reserve the reduced dimension in the
Y
yangyaming 已提交
3383
            output Tensor. The result tensor will have one fewer dimension
G
guosheng 已提交
3384
            than the :attr:`input` unless :attr:`keep_dim` is true.
C
caoying03 已提交
3385 3386
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
G
guosheng 已提交
3387 3388 3389

    Returns:
        Variable: The reduced Tensor variable.
F
fengjiayi 已提交
3390

G
guosheng 已提交
3391 3392 3393 3394 3395 3396
    Examples:
        .. code-block:: python

            # x is a Tensor variable with following elements:
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
Q
qiaolongfei 已提交
3397
            # Each example is followed by the corresponding output tensor.
G
guosheng 已提交
3398 3399 3400 3401
            fluid.layers.reduce_sum(x)  # [3.5]
            fluid.layers.reduce_sum(x, dim=0)  # [0.3, 0.5, 1.1, 1.6]
            fluid.layers.reduce_sum(x, dim=-1)  # [1.9, 1.6]
            fluid.layers.reduce_sum(x, dim=1, keep_dim=True)  # [[1.9], [1.6]]
W
whs 已提交
3402 3403 3404 3405

            # x is a Tensor variable with shape [2, 2, 2] and elements as below:
            #      [[[1, 2], [3, 4]],
            #      [[5, 6], [7, 8]]]
Q
qiaolongfei 已提交
3406
            # Each example is followed by the corresponding output tensor.
W
whs 已提交
3407 3408 3409
            fluid.layers.reduce_sum(x, dim=[1, 2]) # [10, 26]
            fluid.layers.reduce_sum(x, dim=[0, 1]) # [16, 20]

G
guosheng 已提交
3410 3411
    """
    helper = LayerHelper('reduce_sum', **locals())
X
Xin Pan 已提交
3412
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
W
whs 已提交
3413 3414
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
G
guosheng 已提交
3415 3416 3417 3418 3419
    helper.append_op(
        type='reduce_sum',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
W
whs 已提交
3420
            'dim': dim if dim != None else [0],
G
guosheng 已提交
3421 3422 3423 3424
            'keep_dim': keep_dim,
            'reduce_all': True if dim == None else False
        })
    return out
G
guosheng 已提交
3425 3426


C
caoying03 已提交
3427
def reduce_mean(input, dim=None, keep_dim=False, name=None):
G
guosheng 已提交
3428
    """
Y
Yibing Liu 已提交
3429
    Computes the mean of the input tensor's elements along the given dimension.
G
guosheng 已提交
3430 3431 3432

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
Y
Yibing Liu 已提交
3433 3434 3435
        dim (list|int|None): The dimension along which the mean is computed. If
            `None`, compute the mean over all elements of :attr:`input`
            and return a variable with a single element, otherwise it
Y
yangyaming 已提交
3436
            must be in the range :math:`[-rank(input), rank(input))`. If
3437
            :math:`dim[i] < 0`, the dimension to reduce is
Y
Yibing Liu 已提交
3438
            :math:`rank(input) + dim[i]`.
Y
yangyaming 已提交
3439 3440
        keep_dim (bool): Whether to reserve the reduced dimension in the
            output Tensor. The result tensor will have one fewer dimension
G
guosheng 已提交
3441
            than the :attr:`input` unless :attr:`keep_dim` is true.
Y
Yibing Liu 已提交
3442
        name(str|None): A name for this layer(optional). If set `None`, the layer
C
caoying03 已提交
3443
                       will be named automatically.
G
guosheng 已提交
3444 3445

    Returns:
Y
Yibing Liu 已提交
3446
        Variable: The reduced mean Variable.
F
fengjiayi 已提交
3447

G
guosheng 已提交
3448 3449 3450 3451 3452 3453 3454 3455 3456 3457
    Examples:
        .. code-block:: python

            # x is a Tensor variable with following elements:
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_mean(x)  # [0.4375]
            fluid.layers.reduce_mean(x, dim=0)  # [0.15, 0.25, 0.55, 0.8]
            fluid.layers.reduce_mean(x, dim=-1)  # [0.475, 0.4]
F
stash  
fengjiayi 已提交
3458 3459
            fluid.layers.reduce_mean(
                x, dim=1, keep_dim=True)  # [[0.475], [0.4]]
W
whs 已提交
3460 3461 3462 3463 3464 3465 3466

            # x is a Tensor variable with shape [2, 2, 2] and elements as below:
            #      [[[1.0, 2.0], [3.0, 4.0]],
            #      [[5.0, 6.0], [7.0, 8.0]]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_mean(x, dim=[1, 2]) # [2.5, 6.5]
            fluid.layers.reduce_mean(x, dim=[0, 1]) # [4.0, 5.0]
G
guosheng 已提交
3467 3468
    """
    helper = LayerHelper('reduce_mean', **locals())
X
Xin Pan 已提交
3469
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
W
whs 已提交
3470 3471
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
G
guosheng 已提交
3472 3473 3474 3475 3476
    helper.append_op(
        type='reduce_mean',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
W
whs 已提交
3477
            'dim': dim if dim != None else [0],
G
guosheng 已提交
3478 3479 3480 3481
            'keep_dim': keep_dim,
            'reduce_all': True if dim == None else False
        })
    return out
3482 3483


C
caoying03 已提交
3484
def reduce_max(input, dim=None, keep_dim=False, name=None):
3485
    """
Y
yangyaming 已提交
3486
    Computes the maximum of tensor elements over the given dimension.
3487 3488 3489

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
W
whs 已提交
3490
        dim (list|int|None): The dimension along which the maximum is computed.
Y
yangyaming 已提交
3491 3492 3493
            If :attr:`None`, compute the maximum over all elements of
            :attr:`input` and return a Tensor variable with a single element,
            otherwise must be in the range :math:`[-rank(input), rank(input))`.
W
whs 已提交
3494
            If :math:`dim[i] < 0`, the dimension to reduce is :math:`rank + dim[i]`.
Y
yangyaming 已提交
3495 3496
        keep_dim (bool): Whether to reserve the reduced dimension in the
            output Tensor. The result tensor will have one fewer dimension
3497
            than the :attr:`input` unless :attr:`keep_dim` is true.
C
caoying03 已提交
3498 3499
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
3500 3501 3502

    Returns:
        Variable: The reduced Tensor variable.
Y
yangyaming 已提交
3503

3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514
    Examples:
        .. code-block:: python

            # x is a Tensor variable with following elements:
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_max(x)  # [0.9]
            fluid.layers.reduce_max(x, dim=0)  # [0.2, 0.3, 0.6, 0.9]
            fluid.layers.reduce_max(x, dim=-1)  # [0.9, 0.7]
            fluid.layers.reduce_max(x, dim=1, keep_dim=True)  # [[0.9], [0.7]]
W
whs 已提交
3515 3516 3517 3518 3519 3520 3521

            # x is a Tensor variable with shape [2, 2, 2] and elements as below:
            #      [[[1.0, 2.0], [3.0, 4.0]],
            #      [[5.0, 6.0], [7.0, 8.0]]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_max(x, dim=[1, 2]) # [4.0, 8.0]
            fluid.layers.reduce_max(x, dim=[0, 1]) # [7.0, 8.0]
3522 3523
    """
    helper = LayerHelper('reduce_max', **locals())
X
Xin Pan 已提交
3524
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
W
whs 已提交
3525 3526
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
3527 3528 3529 3530 3531
    helper.append_op(
        type='reduce_max',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
W
whs 已提交
3532
            'dim': dim if dim != None else [0],
3533 3534 3535 3536 3537 3538
            'keep_dim': keep_dim,
            'reduce_all': True if dim == None else False
        })
    return out


C
caoying03 已提交
3539
def reduce_min(input, dim=None, keep_dim=False, name=None):
3540
    """
Y
yangyaming 已提交
3541
    Computes the minimum of tensor elements over the given dimension.
3542 3543 3544

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
W
whs 已提交
3545
        dim (list|int|None): The dimensions along which the minimum is computed.
Y
yangyaming 已提交
3546 3547 3548
            If :attr:`None`, compute the minimum over all elements of
            :attr:`input` and return a Tensor variable with a single element,
            otherwise must be in the range :math:`[-rank(input), rank(input))`.
W
whs 已提交
3549
            If :math:`dim[i] < 0`, the dimension to reduce is :math:`rank + dim[i]`.
Y
yangyaming 已提交
3550 3551
        keep_dim (bool): Whether to reserve the reduced dimension in the
            output Tensor. The result tensor will have one fewer dimension
3552
            than the :attr:`input` unless :attr:`keep_dim` is true.
C
caoying03 已提交
3553 3554
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
3555 3556 3557

    Returns:
        Variable: The reduced Tensor variable.
Y
yangyaming 已提交
3558

3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569
    Examples:
        .. code-block:: python

            # x is a Tensor variable with following elements:
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_min(x)  # [0.1]
            fluid.layers.reduce_min(x, dim=0)  # [0.1, 0.2, 0.5, 0.7]
            fluid.layers.reduce_min(x, dim=-1)  # [0.2, 0.1]
            fluid.layers.reduce_min(x, dim=1, keep_dim=True)  # [[0.2], [0.1]]
W
whs 已提交
3570 3571 3572 3573 3574 3575 3576

            # x is a Tensor variable with shape [2, 2, 2] and elements as below:
            #      [[[1.0, 2.0], [3.0, 4.0]],
            #      [[5.0, 6.0], [7.0, 8.0]]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_min(x, dim=[1, 2]) # [1.0, 5.0]
            fluid.layers.reduce_min(x, dim=[0, 1]) # [1.0, 2.0]
3577 3578
    """
    helper = LayerHelper('reduce_min', **locals())
X
Xin Pan 已提交
3579
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
W
whs 已提交
3580 3581
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
3582 3583 3584 3585 3586
    helper.append_op(
        type='reduce_min',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
W
whs 已提交
3587
            'dim': dim if dim != None else [0],
3588 3589 3590 3591
            'keep_dim': keep_dim,
            'reduce_all': True if dim == None else False
        })
    return out
G
guosheng 已提交
3592 3593


3594 3595 3596 3597 3598 3599
def reduce_prod(input, dim=None, keep_dim=False, name=None):
    """
    Computes the product of tensor elements over the given dimension.

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
W
whs 已提交
3600
        dim (list|int|None): The dimensions along which the product is performed. If
3601 3602
            :attr:`None`, multipy all elements of :attr:`input` and return a
            Tensor variable with a single element, otherwise must be in the
W
whs 已提交
3603 3604
            range :math:`[-rank(input), rank(input))`. If :math:`dim[i] < 0`,
            the dimension to reduce is :math:`rank + dim[i]`.
3605 3606 3607
        keep_dim (bool|False): Whether to reserve the reduced dimension in the
            output Tensor. The result tensor will have one fewer dimension
            than the :attr:`input` unless :attr:`keep_dim` is true.
Y
yangyaming 已提交
3608
        name(str|None): A name for this layer(optional). If set None, the
Z
zhouhanqing 已提交
3609
            layer will be named automatically.
3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623

    Returns:
        Variable: The reduced Tensor variable.

    Examples:
        .. code-block:: python

            # x is a Tensor variable with following elements:
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_prod(x)  # [0.0002268]
            fluid.layers.reduce_prod(x, dim=0)  # [0.02, 0.06, 0.3, 0.63]
            fluid.layers.reduce_prod(x, dim=-1)  # [0.027, 0.0084]
Y
yangyaming 已提交
3624
            fluid.layers.reduce_prod(x, dim=1,
Z
zhouhanqing 已提交
3625
                                     keep_dim=True)  # [[0.027], [0.0084]]
W
whs 已提交
3626 3627 3628 3629 3630 3631 3632

            # x is a Tensor variable with shape [2, 2, 2] and elements as below:
            #      [[[1.0, 2.0], [3.0, 4.0]],
            #      [[5.0, 6.0], [7.0, 8.0]]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_prod(x, dim=[1, 2]) # [24.0, 1680.0]
            fluid.layers.reduce_prod(x, dim=[0, 1]) # [105.0, 384.0]
3633 3634
    """
    helper = LayerHelper('reduce_prod', **locals())
X
Xin Pan 已提交
3635
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
W
whs 已提交
3636 3637
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
3638 3639 3640 3641 3642
    helper.append_op(
        type='reduce_prod',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
W
whs 已提交
3643
            'dim': dim if dim != None else [0],
3644 3645 3646 3647 3648 3649
            'keep_dim': keep_dim,
            'reduce_all': True if dim == None else False
        })
    return out


C
caoying03 已提交
3650
def split(input, num_or_sections, dim=-1, name=None):
G
guosheng 已提交
3651
    """
C
caoying03 已提交
3652
    Split the input tensor into multiple sub-tensors.
G
guosheng 已提交
3653 3654 3655

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
C
caoying03 已提交
3656 3657 3658 3659 3660
        num_or_sections (int|list): If :attr:`num_or_sections` is an integer,
            then the integer indicates the number of equal sized sub-tensors
            that the tensor will be divided into. If :attr:`num_or_sections`
            is a list of integers, the length of list indicates the number of
            sub-tensors and the integers indicate the sizes of sub-tensors'
G
guosheng 已提交
3661
            :attr:`dim` dimension orderly.
C
caoying03 已提交
3662
        dim (int): The dimension along which to split. If :math:`dim < 0`, the
G
guosheng 已提交
3663
            dimension to split along is :math:`rank(input) + dim`.
C
caoying03 已提交
3664 3665
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
G
guosheng 已提交
3666 3667

    Returns:
D
dzhwinter 已提交
3668
        list(Variable): The list of segmented tensor variables.
G
guosheng 已提交
3669 3670 3671 3672 3673 3674 3675 3676 3677

    Examples:
        .. code-block:: python

            # x is a Tensor variable with shape [3, 9, 5]:
            x0, x1, x2 = fluid.layers.split(x, num_or_sections=3, dim=1)
            x0.shape  # [3, 3, 5]
            x1.shape  # [3, 3, 5]
            x2.shape  # [3, 3, 5]
F
stash  
fengjiayi 已提交
3678 3679
            x0, x1, x2 = fluid.layers.split(
                x, num_or_sections=[2, 3, 4], dim=1)
G
guosheng 已提交
3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694
            x0.shape  # [3, 2, 5]
            x1.shape  # [3, 3, 5]
            x2.shape  # [3, 4, 5]
    """
    helper = LayerHelper('split', **locals())
    input_shape = input.shape
    dim = (len(input_shape) + dim) if dim < 0 else dim
    if isinstance(num_or_sections, int):
        assert num_or_sections > 1, 'num_or_sections must be more than 1.'
        num = num_or_sections
    else:
        assert len(num_or_sections) < input_shape[
            dim], 'len(num_or_sections) must not be more than input.shape[dim].'
        num = len(num_or_sections)
    outs = [
X
Xin Pan 已提交
3695
        helper.create_variable_for_type_inference(dtype=helper.input_dtype())
G
guosheng 已提交
3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708
        for i in range(num)
    ]
    helper.append_op(
        type='split',
        inputs={'X': input},
        outputs={'Out': outs},
        attrs={
            'num': num_or_sections if isinstance(num_or_sections, int) else 0,
            'sections': num_or_sections
            if isinstance(num_or_sections, list) else [],
            'axis': dim
        })
    return outs
C
caoying03 已提交
3709 3710 3711 3712 3713 3714 3715 3716 3717


def l2_normalize(x, axis, epsilon=1e-12, name=None):
    """
    **L2 normalize Layer**

    The l2 normalize layer normalizes `x` along dimension `axis` using an L2
    norm. For a 1-D tensor (`dim` is fixed to 0), this layer computes

3718
    .. math::
3719 3720

        y = \\frac{x}{ \sqrt{\sum {x^2} + epsion }}
C
caoying03 已提交
3721 3722 3723 3724 3725

    For `x` with more dimensions, this layer independently normalizes each 1-D
    slice along dimension `axis`.

    Args:
3726
        x(Variable|list): The input tensor to l2_normalize layer.
3727
        axis(int): The axis on which to apply normalization. If `axis < 0`, \
3728 3729
            the dimension to normalization is rank(X) + axis. -1 is the
            last dimension.
3730
        epsilon(float): The epsilon value is used to avoid division by zero, \
3731
            the defalut value is 1e-10.
3732
        name(str|None): A name for this layer(optional). If set None, the layer \
3733
            will be named automatically.
C
caoying03 已提交
3734 3735

    Returns:
3736
        Variable: The output tensor variable is the same shape with `x`.
C
caoying03 已提交
3737 3738

    Examples:
3739

C
caoying03 已提交
3740 3741
        .. code-block:: python

3742 3743 3744 3745
            data = fluid.layers.data(name="data",
                                     shape=(3, 17, 13),
                                     dtype="float32")
            normed = fluid.layers.l2_normalize(x=data, axis=1)
C
caoying03 已提交
3746 3747
    """

F
fengjiayi 已提交
3748 3749
    if len(x.shape) == 1:
        axis = 0
C
caoying03 已提交
3750 3751
    helper = LayerHelper("l2_normalize", **locals())

X
Xin Pan 已提交
3752 3753
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
    norm = helper.create_variable_for_type_inference(dtype=x.dtype)
C
caoying03 已提交
3754
    helper.append_op(
3755 3756 3757 3758
        type="norm",
        inputs={"X": x},
        outputs={"Out": out,
                 "Norm": norm},
C
caoying03 已提交
3759
        attrs={
3760 3761
            "axis": 1 if axis is None else axis,
            "epsilon": epsilon,
C
caoying03 已提交
3762 3763
        })
    return out
3764 3765


S
sneaxiy 已提交
3766
def matmul(x, y, transpose_x=False, transpose_y=False, alpha=1.0, name=None):
G
guosheng 已提交
3767
    """
Y
ying 已提交
3768 3769 3770 3771
    Applies matrix multiplication to two tensors.

    Currently, the input tensors' rank can be any, but when the rank of any
    inputs is bigger than 3, this two inputs' rank should be equal.
G
guosheng 已提交
3772

C
chengduoZH 已提交
3773
    The actual behavior depends on the shapes of :math:`x`, :math:`y` and the
3774
    flag values of :attr:`transpose_x`, :attr:`transpose_y`. Specifically:
G
guosheng 已提交
3775

3776 3777 3778 3779 3780
    - If a transpose flag is specified, the last two dimensions of the tensor
      are transposed. If the tensor is rank-1 of shape :math:`[D]`, then for
      :math:`x` it is treated as :math:`[1, D]` in nontransposed form and as
      :math:`[D, 1]` in transposed form, whereas for :math:`y` it is the
      opposite: It is treated as :math:`[D, 1]` in nontransposed form and as
3781
      :math:`[1, D]` in transposed form.
G
guosheng 已提交
3782

C
chengduoZH 已提交
3783
    - After transpose, the two tensors are 2-D or n-D and matrix multiplication
3784
      performs in the following way.
G
guosheng 已提交
3785

3786
      - If both are 2-D, they are multiplied like conventional matrices.
C
chengduoZH 已提交
3787
      - If either is n-D, it is treated as a stack of matrices residing in the
Y
ying 已提交
3788
        last two dimensions and a batched matrix multiply supporting broadcast
3789
        applies on the two tensors.
G
guosheng 已提交
3790

Y
ying 已提交
3791 3792
    Also note that if the raw tensor :math:`x` or :math:`y` is rank-1 and
    nontransposed, the prepended or appended dimension :math:`1` will be
C
chengduoZH 已提交
3793
    removed after matrix multiplication.
G
guosheng 已提交
3794 3795 3796

    Args:
        x (Variable): The input variable which is a Tensor or LoDTensor.
3797 3798 3799
        y (Variable): The input variable which is a Tensor or LoDTensor.
        transpose_x (bool): Whether to transpose :math:`x` before multiplication.
        transpose_y (bool): Whether to transpose :math:`y` before multiplication.
S
sneaxiy 已提交
3800
        alpha (float): The scale of output. Default 1.0.
3801
        name(str|None): A name for this layer(optional). If set None, the layer
3802
            will be named automatically.
G
guosheng 已提交
3803 3804

    Returns:
3805
        Variable: The product Tensor variable.
G
guosheng 已提交
3806

G
guosheng 已提交
3807 3808 3809
    Examples:
        .. code-block:: python

3810
            # Examples to clarify shapes of the inputs and output
C
chengduoZH 已提交
3811 3812
            # x: [B, ..., M, K], y: [B, ..., K, N]
            fluid.layers.matmul(x, y)  # out: [B, ..., M, N]
Y
ying 已提交
3813

3814 3815
            # x: [B, M, K], y: [B, K, N]
            fluid.layers.matmul(x, y)  # out: [B, M, N]
Y
ying 已提交
3816

3817 3818
            # x: [B, M, K], y: [K, N]
            fluid.layers.matmul(x, y)  # out: [B, M, N]
Y
ying 已提交
3819

3820 3821
            # x: [M, K], y: [K, N]
            fluid.layers.matmul(x, y)  # out: [M, N]
Y
ying 已提交
3822 3823 3824 3825

            # x: [B, M, K], y: [K]
            fluid.layers.matmul(x, y)  # out: [B, M]

3826 3827
            # x: [K], y: [K]
            fluid.layers.matmul(x, y)  # out: [1]
3828

Y
ying 已提交
3829
            # x: [M], y: [N]
3830
            fluid.layers.matmul(x, y, True, True)  # out: [M, N]
G
guosheng 已提交
3831
    """
Y
ying 已提交
3832 3833 3834 3835 3836 3837 3838 3839 3840 3841 3842 3843

    def __check_input(x, y):
        if len(y.shape) > len(x.shape):
            raise ValueError(
                "Invalid inputs for matmul. "
                "x's rank should be always greater than or equal to y'rank.")

        x_shape = list(x.shape)
        y_shape = list(y.shape)
        if len(x_shape) == 1:
            x_shape = [1] + x_shape
        if len(y_shape) == 1:
Y
ying 已提交
3844
            y_shape = y_shape + [1]
Y
ying 已提交
3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856 3857 3858 3859 3860

        # check the inner 2 dimensions
        if transpose_x:
            x_shape[-2], x_shape[-1] = x_shape[-1], x_shape[-2]
        if transpose_y:
            y_shape[-2], y_shape[-1] = y_shape[-1], y_shape[-2]
        if x_shape[-1] != y_shape[-2]:
            raise ValueError("Invalid inputs for matmul.")

        if len(y_shape) > 2:
            for i, dim_x in enumerate(x_shape[:-2]):
                if dim_x != y_shape[i]:
                    raise ValueError("Invalid inputs for matmul.")

    __check_input(x, y)

3861
    helper = LayerHelper('matmul', **locals())
X
Xin Pan 已提交
3862
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
G
guosheng 已提交
3863
    helper.append_op(
3864 3865 3866 3867
        type='matmul',
        inputs={'X': x,
                'Y': y},
        outputs={'Out': out},
S
sneaxiy 已提交
3868 3869 3870
        attrs={
            'transpose_X': transpose_x,
            'transpose_Y': transpose_y,
S
sneaxiy 已提交
3871
            'alpha': float(alpha),
S
sneaxiy 已提交
3872
        })
3873
    return out
3874 3875


3876
def topk(input, k, name=None):
Q
qingqing01 已提交
3877 3878 3879 3880
    """
    This operator is used to find values and indices of the k largest entries
    for the last dimension.

F
fengjiayi 已提交
3881
    If the input is a vector (1-D Tensor), finds the k largest entries in the vector
Q
qingqing01 已提交
3882 3883 3884 3885 3886 3887
    and outputs their values and indices as vectors. Thus values[j] is the j-th
    largest entry in input, and its index is indices[j].

    If the input is a Tensor with higher rank, this operator computes the top k
    entries along the last dimension.

F
fengjiayi 已提交
3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903 3904 3905 3906 3907 3908
    For example:

    .. code-block:: text

        If:
            input = [[5, 4, 2, 3],
                     [9, 7, 10, 25],
                     [6, 2, 10, 1]]
            k = 2

        Then:
            The first output:
            values = [[5, 4],
                      [10, 25],
                      [6, 10]]

            The second output:
            indices = [[0, 1],
                       [2, 3],
                       [0, 2]]

Q
qingqing01 已提交
3909 3910 3911
    Args:
        input(Variable): The input variable which can be a vector or Tensor with
            higher rank.
3912
        k(int):  The number of top elements to look for along the last dimension
F
fengjiayi 已提交
3913
                 of input.
3914
        name(str|None): A name for this layer(optional). If set None, the layer
3915
                       will be named automatically.
F
fengjiayi 已提交
3916
                       Default: None
Q
qingqing01 已提交
3917 3918

    Returns:
3919 3920 3921
        Tuple[Variable]: A tuple with two elements. Each element is a Variable.
        The first one is k largest elements along each last
        dimensional slice. The second one is indices of values
F
fengjiayi 已提交
3922
        within the last dimension of input.
Q
qingqing01 已提交
3923

F
fengjiayi 已提交
3924 3925
    Raises:
        ValueError: If k < 1 or k is not less than the last dimension of input
Q
qingqing01 已提交
3926 3927 3928 3929 3930 3931 3932

    Examples:
        .. code-block:: python

            top5_values, top5_indices = layers.topk(input, k=5)
    """
    helper = LayerHelper("top_k", **locals())
X
Xin Pan 已提交
3933 3934
    values = helper.create_variable_for_type_inference(dtype=input.dtype)
    indices = helper.create_variable_for_type_inference(dtype="int64")
Q
qingqing01 已提交
3935 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945
    helper.append_op(
        type="top_k",
        inputs={"X": [input]},
        outputs={"Out": [values],
                 "Indices": [indices]},
        attrs={"k": k})
    values.stop_gradient = True
    indices.stop_gradient = True
    return values, indices


3946
def edit_distance(input, label, normalized=True, ignored_tokens=None):
3947
    """
Y
ying 已提交
3948 3949 3950 3951 3952 3953 3954 3955 3956
    EditDistance operator computes the edit distances between a batch of
    hypothesis strings and their references. Edit distance, also called
    Levenshtein distance, measures how dissimilar two strings are by counting
    the minimum number of operations to transform one string into anthor.
    Here the operations include insertion, deletion, and substitution.

    For example, given hypothesis string A = "kitten" and reference
    B = "sitting", the edit distance is 3 for A will be transformed into B
    at least after two substitutions and one insertion:
W
wanghaoshuang 已提交
3957

Y
ying 已提交
3958
    "kitten" -> "sitten" -> "sittin" -> "sitting"
W
wanghaoshuang 已提交
3959

3960
    The input is a LoDTensor consisting of all the hypothesis strings with
Y
ying 已提交
3961 3962
    the total number denoted by `batch_size`, and the separation is specified
    by the LoD information. And the `batch_size` reference strings are arranged
3963
    in order in the same way in the input LoDTensor.
W
wanghaoshuang 已提交
3964

3965
    The output contains the `batch_size` results and each stands for the edit
Y
ying 已提交
3966 3967
    distance for a pair of strings respectively. If Attr(normalized) is true,
    the edit distance will be divided by the length of reference string.
W
wanghaoshuang 已提交
3968

3969 3970 3971
    Args:
        input(Variable): The indices for hypothesis strings.
        label(Variable): The indices for reference strings.
3972
        normalized(bool, default True): Indicated whether to normalize the edit distance by
Y
ying 已提交
3973
                          the length of reference string.
3974
        ignored_tokens(list<int>, default None): Tokens that should be removed before
Y
ying 已提交
3975
                                     calculating edit distance.
3976
        name (str): The name of this layer. It is optional.
3977

W
wanghaoshuang 已提交
3978
    Returns:
W
wanghaoshuang 已提交
3979
        Variable: sequence-to-sequence edit distance in shape [batch_size, 1].
W
wanghaoshuang 已提交
3980 3981 3982 3983 3984

    Examples:
        .. code-block:: python

            x = fluid.layers.data(name='x', shape=[8], dtype='float32')
3985
            y = fluid.layers.data(name='y', shape=[7], dtype='float32')
3986
            cost = fluid.layers.edit_distance(input=x,label=y)
3987
    """
3988
    helper = LayerHelper("edit_distance", **locals())
3989

3990
    # remove some tokens from input and labels
W
wanghaoshuang 已提交
3991
    if ignored_tokens is not None and len(ignored_tokens) > 0:
X
Xin Pan 已提交
3992 3993
        erased_input = helper.create_variable_for_type_inference(dtype="int64")
        erased_label = helper.create_variable_for_type_inference(dtype="int64")
3994 3995 3996 3997 3998

        helper.append_op(
            type="sequence_erase",
            inputs={"X": [input]},
            outputs={"Out": [erased_input]},
W
wanghaoshuang 已提交
3999
            attrs={"tokens": ignored_tokens})
4000 4001 4002 4003 4004
        input = erased_input

        helper.append_op(
            type="sequence_erase",
            inputs={"X": [label]},
W
whs 已提交
4005
            outputs={"Out": [erased_label]},
W
wanghaoshuang 已提交
4006
            attrs={"tokens": ignored_tokens})
4007 4008
        label = erased_label

4009
    # edit distance op
X
Xin Pan 已提交
4010 4011
    edit_distance_out = helper.create_variable_for_type_inference(dtype="int64")
    sequence_num = helper.create_variable_for_type_inference(dtype="int64")
4012 4013 4014 4015
    helper.append_op(
        type="edit_distance",
        inputs={"Hyps": [input],
                "Refs": [label]},
4016 4017
        outputs={"Out": [edit_distance_out],
                 "SequenceNum": [sequence_num]},
4018 4019
        attrs={"normalized": normalized})

4020
    return edit_distance_out, sequence_num
4021 4022 4023 4024 4025


def ctc_greedy_decoder(input, blank, name=None):
    """
    This op is used to decode sequences by greedy policy by below steps:
Y
yi.wu 已提交
4026

Y
ying 已提交
4027 4028 4029 4030
    1. Get the indexes of max value for each row in input. a.k.a.
       numpy.argmax(input, axis=0).
    2. For each sequence in result of step1, merge repeated tokens between two
       blanks and delete all blanks.
4031 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047

    A simple example as below:

    .. code-block:: text

        Given:

        input.data = [[0.6, 0.1, 0.3, 0.1],
                      [0.3, 0.2, 0.4, 0.1],
                      [0.1, 0.5, 0.1, 0.3],
                      [0.5, 0.1, 0.3, 0.1],

                      [0.5, 0.1, 0.3, 0.1],
                      [0.2, 0.2, 0.2, 0.4],
                      [0.2, 0.2, 0.1, 0.5],
                      [0.5, 0.1, 0.3, 0.1]]

4048
        input.lod = [[4, 4]]
4049 4050 4051 4052 4053 4054 4055

        Then:

        output.data = [[2],
                       [1],
                       [3]]

4056
        output.lod = [[2, 1]]
4057 4058 4059

    Args:

Y
ying 已提交
4060 4061 4062 4063 4064 4065 4066 4067 4068
        input(Variable): (LoDTensor<float>), the probabilities of
                         variable-length sequences, which is a 2-D Tensor with
                         LoD information. It's shape is [Lp, num_classes + 1],
                         where Lp is the sum of all input sequences' length and
                         num_classes is the true number of classes. (not
                         including the blank label).
        blank(int): the blank label index of Connectionist Temporal
                    Classification (CTC) loss, which is in thehalf-opened
                    interval [0, num_classes + 1).
4069
        name (str): The name of this layer. It is optional.
4070 4071

    Returns:
4072
        Variable: CTC greedy decode result. If all the sequences in result were
4073
        empty, the result LoDTensor will be [-1] with LoD [[]] and dims [1, 1].
4074 4075 4076 4077 4078

    Examples:
        .. code-block:: python

            x = fluid.layers.data(name='x', shape=[8], dtype='float32')
W
wanghaoshuang 已提交
4079

4080
            cost = fluid.layers.ctc_greedy_decoder(input=x, blank=0)
W
wanghaoshuang 已提交
4081
    """
4082
    helper = LayerHelper("ctc_greedy_decoder", **locals())
Q
qingqing01 已提交
4083
    _, topk_indices = topk(input, k=1)
4084 4085

    # ctc align op
X
Xin Pan 已提交
4086
    ctc_out = helper.create_variable_for_type_inference(dtype="int64")
4087 4088 4089
    helper.append_op(
        type="ctc_align",
        inputs={"Input": [topk_indices]},
W
wanghaoshuang 已提交
4090
        outputs={"Output": [ctc_out]},
4091 4092
        attrs={"merge_repeated": True,
               "blank": blank})
4093
    return ctc_out
4094 4095


F
fengjiayi 已提交
4096
def warpctc(input, label, blank=0, norm_by_times=False):
W
wanghaoshuang 已提交
4097
    """
4098 4099
    An operator integrating the open source Warp-CTC library
    (https://github.com/baidu-research/warp-ctc)
W
wanghaoshuang 已提交
4100
    to compute Connectionist Temporal Classification (CTC) loss.
4101 4102
    It can be aliased as softmax with CTC, since a native softmax activation is
    interated to the Warp-CTC library, to to normlize values for each row of the
W
wanghaoshuang 已提交
4103 4104 4105
    input tensor.

    Args:
4106
       input (Variable): The unscaled probabilities of variable-length sequences,
W
wanghaoshuang 已提交
4107 4108 4109 4110
         which is a 2-D Tensor with LoD information.
         It's shape is [Lp, num_classes + 1], where Lp is the sum of all input
         sequences' length and num_classes is the true number of classes.
         (not including the blank label).
4111
       label (Variable): The ground truth of variable-length sequence,
4112 4113 4114
         which is a 2-D Tensor with LoD information. It is of the shape [Lg, 1],
         where Lg is th sum of all labels' length.
       blank (int, default 0): The blank label index of Connectionist
W
wanghaoshuang 已提交
4115 4116
         Temporal Classification (CTC) loss, which is in the
         half-opened interval [0, num_classes + 1).
4117 4118 4119
       norm_by_times(bool, default false): Whether to normalize the gradients
         by the number of time-step, which is also the sequence's length.
         There is no need to normalize the gradients if warpctc layer was
4120
         follewed by a mean_op.
W
wanghaoshuang 已提交
4121 4122

    Returns:
4123 4124
        Variable: The Connectionist Temporal Classification (CTC) loss,
        which is a 2-D Tensor of the shape [batch_size, 1].
W
wanghaoshuang 已提交
4125 4126

    Examples:
4127

W
wanghaoshuang 已提交
4128
        .. code-block:: python
4129

4130 4131 4132
            label = fluid.layers.data(shape=[11, 8], dtype='float32', lod_level=1)
            predict = fluid.layers.data(shape=[11, 1], dtype='float32')
            cost = fluid.layers.warpctc(input=predict, label=label)
W
wanghaoshuang 已提交
4133 4134

    """
F
fengjiayi 已提交
4135
    helper = LayerHelper('warpctc', **locals())
X
Xin Pan 已提交
4136 4137
    loss_out = helper.create_variable_for_type_inference(dtype=input.dtype)
    grad_out = helper.create_variable_for_type_inference(dtype=input.dtype)
W
wanghaoshuang 已提交
4138 4139 4140 4141 4142 4143 4144 4145 4146
    helper.append_op(
        type='warpctc',
        inputs={'Logits': [input],
                'Label': [label]},
        outputs={'WarpCTCGrad': [grad_out],
                 'Loss': [loss_out]},
        attrs={'blank': blank,
               'norm_by_times': norm_by_times})
    return loss_out
4147 4148 4149 4150 4151 4152 4153 4154 4155 4156 4157 4158 4159 4160 4161


def sequence_reshape(input, new_dim):
    """
    **Sequence Reshape Layer**

    This layer will rearrange the input sequences. The new dimension is set by
    user. Length of each sequence is computed according to original length,
    original dimension and new dimension. The following example will help to
    illustrate the function of this layer:

    .. code-block:: text

        x is a LoDTensor:
            x.lod  = [[0, 2, 6]]
4162 4163 4164
            x.data = [[1,  2], [3,  4],
                      [5,  6], [7,  8],
                      [9, 10], [11, 12]]
4165 4166 4167 4168 4169
            x.dims = [6, 2]

        set new_dim = 4

        then out is a LoDTensor:
4170

4171
            out.lod  = [[0, 1, 3]]
4172 4173 4174 4175

            out.data = [[1,  2,  3,  4],
                        [5,  6,  7,  8],
                        [9, 10, 11, 12]]
4176 4177 4178 4179 4180 4181 4182
            out.dims = [3, 4]

    Currently, only 1-level LoDTensor is supported and please make sure
    (original length * original dimension) can be divided by new dimension with
    no remainder for each sequence.

    Args:
4183 4184 4185

       input (Variable): A 2-D LoDTensor with shape being [N, M] where M for dimension.
       new_dim (int): New dimension that the input LoDTensor is reshaped to.
4186 4187

    Returns:
4188

4189 4190 4191 4192 4193
        Variable: Reshaped LoDTensor according to new dimension.

    Examples:
        .. code-block:: python

4194
            x = fluid.layers.data(shape=[5, 20], dtype='float32', lod_level=1)
4195
            x_reshaped = fluid.layers.sequence_reshape(input=x, new_dim=10)
4196 4197
    """
    helper = LayerHelper('sequence_reshape', **locals())
X
Xin Pan 已提交
4198
    out = helper.create_variable_for_type_inference(helper.input_dtype())
4199 4200 4201 4202 4203 4204
    helper.append_op(
        type='sequence_reshape',
        inputs={'X': [input]},
        outputs={'Out': [out]},
        attrs={'new_dim': new_dim})
    return out
Y
ying 已提交
4205 4206


4207 4208 4209 4210
# FIXME(wuyi): let docstring_checker.py understand @autodoc.
# For now, the comments in c++ use types like Tensor, but in python side
# the type is often "Variable", and arguments may vary.
@templatedoc(op_type="nce")
Y
Yang Yu 已提交
4211 4212 4213 4214 4215 4216
def nce(input,
        label,
        num_total_classes,
        sample_weight=None,
        param_attr=None,
        bias_attr=None,
C
chengduo 已提交
4217 4218
        num_neg_samples=None,
        name=None):
4219 4220 4221 4222 4223 4224 4225
    """
    ${comment}

    Args:
        input (Variable): input variable.
        label (Variable): label.
        num_total_classes (int):${num_total_classes_comment}
4226 4227
        sample_weight (Variable|None): A Variable of shape [batch_size, 1]
            storing a weight for each sample. The default weight for each
4228
            sample is 1.0.
C
chengduo 已提交
4229 4230 4231 4232 4233 4234 4235 4236 4237
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
             of nce. If it is set to None or one attribute of ParamAttr, nce
             will create ParamAttr as param_attr. If the Initializer of the param_attr
             is not set, the parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of nce.
             If it is set to False, no bias will be added to the output units.
             If it is set to None or one attribute of ParamAttr, nce
             will create ParamAttr as bias_attr. If the Initializer of the bias_attr
             is not set, the bias is initialized zero. Default: None.
4238
        num_neg_samples (int): ${num_neg_samples_comment}
C
chengduo 已提交
4239 4240
        name (str|None): A name for this layer(optional). If set None, the layer
             will be named automatically. Default: None.
F
fengjiayi 已提交
4241

4242
    Returns:
Y
Yibing Liu 已提交
4243 4244 4245 4246 4247 4248 4249 4250 4251 4252 4253 4254 4255 4256 4257 4258 4259 4260 4261 4262 4263 4264 4265 4266 4267 4268 4269
        Variable: The output nce loss.

    Examples:
        .. code-block:: python

            window_size = 5
            words = []
            for i in xrange(window_size):
                words.append(layers.data(
                    name='word_{0}'.format(i), shape=[1], dtype='int64'))

            dict_size = 10000
            label_word = int(window_size / 2) + 1

            embs = []
            for i in xrange(window_size):
                if i == label_word:
                    continue

                emb = layers.embedding(input=words[i], size=[dict_size, 32],
                                       param_attr='emb.w', is_sparse=True)
                embs.append(emb)

            embs = layers.concat(input=embs, axis=1)
            loss = layers.nce(input=embs, label=words[label_word],
                          num_total_classes=dict_size, param_attr='nce.w',
                          bias_attr='nce.b')
4270
    """
Y
Yang Yu 已提交
4271 4272 4273
    helper = LayerHelper('nce', **locals())
    assert isinstance(input, Variable)
    assert isinstance(label, Variable)
C
chengduo 已提交
4274 4275

    dim = input.shape[1]
Y
Yang Yu 已提交
4276 4277 4278 4279 4280 4281
    num_true_class = label.shape[1]
    w = helper.create_parameter(
        attr=helper.param_attr,
        shape=[num_total_classes, dim],
        is_bias=False,
        dtype=input.dtype)
C
chengduo 已提交
4282 4283 4284 4285 4286 4287 4288 4289 4290 4291 4292 4293 4294
    inputs = {
        'Input': input,
        'Label': label,
        'Weight': w,
        'SampleWeight': sample_weight if sample_weight is not None else []
    }
    if helper.bias_attr:
        b = helper.create_parameter(
            attr=helper.bias_attr,
            shape=[num_total_classes, 1],
            is_bias=True,
            dtype=input.dtype)
        inputs['Bias'] = b
X
Xin Pan 已提交
4295 4296 4297
    cost = helper.create_variable_for_type_inference(dtype=input.dtype)
    sample_logits = helper.create_variable_for_type_inference(dtype=input.dtype)
    sample_labels = helper.create_variable_for_type_inference(dtype=label.dtype)
Y
Yang Yu 已提交
4298

Y
Yang Yu 已提交
4299 4300 4301 4302 4303 4304 4305 4306 4307
    if num_neg_samples is None:
        num_neg_samples = 10
    else:
        num_neg_samples = int(num_neg_samples)

    attrs = {
        'num_total_classes': int(num_total_classes),
        'num_neg_samples': num_neg_samples
    }
Y
Yang Yu 已提交
4308 4309 4310

    helper.append_op(
        type='nce',
C
chengduo 已提交
4311
        inputs=inputs,
Y
Yang Yu 已提交
4312 4313 4314 4315 4316 4317
        outputs={
            'Cost': cost,
            'SampleLogits': sample_logits,
            'SampleLabels': sample_labels
        },
        attrs=attrs)
Y
Yang Yu 已提交
4318
    return cost / (num_neg_samples + 1)
4319 4320


C
chengduo 已提交
4321 4322 4323 4324 4325 4326
def hsigmoid(input,
             label,
             num_classes,
             param_attr=None,
             bias_attr=None,
             name=None):
W
weixing02 已提交
4327 4328
    """
    The hierarchical sigmoid operator is used to accelerate the training
M
minqiyang 已提交
4329
    process of language model. This operator organizes the classes into a
G
guosheng 已提交
4330 4331 4332 4333 4334 4335 4336 4337 4338
    complete binary tree, each leaf node represents a class(a word) and each
    internal node acts as a binary classifier. For each word there's a unique
    path from root to it's leaf node, hsigmoid calculate the cost for each
    internal node on the path, and sum them to get a total cost. hsigmoid can
    achive a acceleration from :math:`O(N)` to :math:`O(logN)`, where :math:`N`
    represents the size of word dict.

    Refer to `Hierarchical Probabilistic Neural Network Language Model
    <http://www.iro.umontreal.ca/~lisa/pointeurs/hierarchical-nnlm-aistats05.pdf>`_
M
minqiyang 已提交
4339

W
weixing02 已提交
4340
    Args:
M
minqiyang 已提交
4341
        input (Variable): The input tensor variable with shape
G
guosheng 已提交
4342 4343 4344 4345 4346
            :math:`[N \\times D]`, where :math:`N` is the size of mini-batch,
            and :math:`D` is the feature size.
        label (Variable): The tensor variable contains labels of training data.
            It's a tensor with shape is :math:`[N \\times 1]`.
        num_classes: (int), The number of classes, must not be less than 2.
C
chengduo 已提交
4347 4348 4349 4350 4351 4352 4353 4354 4355 4356 4357
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
             of hsigmoid. If it is set to None or one attribute of ParamAttr, hsigmoid
             will create ParamAttr as param_attr. If the Initializer of the param_attr
             is not set, the parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of hsigmoid.
             If it is set to False, no bias will be added to the output units.
             If it is set to None or one attribute of ParamAttr, hsigmoid
             will create ParamAttr as bias_attr. If the Initializer of the bias_attr
             is not set, the bias is initialized zero. Default: None.
        name (str|None): A name for this layer(optional). If set None, the layer
             will be named automatically. Default: None.
W
weixing02 已提交
4358 4359 4360 4361 4362 4363 4364 4365

    Returns:
        Out: (Tensor) The cost of hierarchical sigmoid operator. the shape is [N, 1]

    Examples:

        .. code-block:: python

G
guosheng 已提交
4366 4367 4368
            x = fluid.layers.data(name='x', shape=[2], dtype='float32')
            y = fluid.layers.data(name='y', shape=[1], dtype='int64')
            out = fluid.layers.hsigmoid(input=x, label=y, num_classes=6)
W
weixing02 已提交
4369 4370 4371 4372
    """

    helper = LayerHelper('hierarchical_sigmoid', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
4373 4374
    out = helper.create_variable_for_type_inference(dtype)
    pre_out = helper.create_variable_for_type_inference(dtype)
W
weixing02 已提交
4375 4376
    dim = input.shape[1]
    if num_classes < 2:
G
guosheng 已提交
4377
        raise ValueError("num_classes must not be less than 2.")
W
weixing02 已提交
4378 4379 4380 4381 4382
    weights = helper.create_parameter(
        attr=helper.param_attr,
        shape=[num_classes - 1, dim],
        is_bias=False,
        dtype=input.dtype)
W
weixing02 已提交
4383 4384 4385 4386 4387 4388 4389 4390
    inputs = {"X": input, "W": weights, "Label": label}
    if helper.bias_attr:
        bias = helper.create_parameter(
            attr=helper.bias_attr,
            shape=[1, num_classes - 1],
            is_bias=True,
            dtype=input.dtype)
        inputs['Bias'] = bias
W
weixing02 已提交
4391 4392
    helper.append_op(
        type="hierarchical_sigmoid",
W
weixing02 已提交
4393
        inputs=inputs,
W
weixing02 已提交
4394 4395 4396 4397 4398 4399
        outputs={"Out": out,
                 "PreOut": pre_out},
        attrs={"num_classes": num_classes})
    return out


Y
fix ci.  
ying 已提交
4400
def transpose(x, perm, name=None):
Y
ying 已提交
4401 4402 4403 4404 4405 4406 4407
    """
    Permute the dimensions of `input` according to `perm`.

    The `i`-th dimension  of the returned tensor will correspond to the
    perm[i]-th dimension of `input`.

    Args:
4408 4409 4410
        x (Variable): The input Tensor.
        perm (list): A permutation of the dimensions of `input`.
        name (str): The name of this layer. It is optional.
Y
ying 已提交
4411 4412 4413 4414 4415 4416 4417 4418

    Returns:
        Variable: A transposed Tensor.

    Examples:
        .. code-block:: python

            x = fluid.layers.data(name='x', shape=[5, 10, 15], dtype='float32')
Y
fix ci.  
ying 已提交
4419
            x_transposed = layers.transpose(x, perm=[1, 0, 2])
Y
ying 已提交
4420 4421
    """

Y
fix ci.  
ying 已提交
4422
    if len(perm) != len(x.shape):
Y
ying 已提交
4423 4424 4425
        raise ValueError(
            "Input(perm) is the permutation of dimensions of Input(input). "
            "It's length shoud be equal to Input(input)'s rank.")
Y
ying 已提交
4426 4427 4428 4429 4430 4431
    for idx, dim in enumerate(perm):
        if dim >= len(x.shape):
            raise ValueError(
                "Each element in perm should be less than x's rank. "
                "%d-th element in perm is %d which accesses x's rank %d." %
                (idx, perm[idx], len(x.shape)))
Y
ying 已提交
4432 4433

    helper = LayerHelper('transpose', **locals())
X
Xin Pan 已提交
4434 4435
    out = helper.create_variable_for_type_inference(x.dtype)
    x_shape = helper.create_variable_for_type_inference(x.dtype)
Y
ying 已提交
4436
    helper.append_op(
4437
        type='transpose2',
Y
fix ci.  
ying 已提交
4438
        inputs={'X': [x]},
4439 4440
        outputs={'Out': [out],
                 'XShape': [x_shape]},
Y
ying 已提交
4441 4442
        attrs={'axis': perm})
    return out
4443 4444


4445 4446 4447 4448 4449 4450 4451
def im2sequence(input,
                filter_size=1,
                stride=1,
                padding=0,
                input_image_size=None,
                out_stride=1,
                name=None):
4452
    """
4453 4454 4455 4456 4457 4458 4459
    Extracts image patches from the input tensor to form a tensor of shape
    {input.batch_size * output_height * output_width, filter_size_H *
    filter_size_W * input.channels} which is similar with im2col.
    This op use filter / kernel to scan images and convert these images to
    sequences. After expanding, the number of time step are
    output_height * output_width for an image, in which output_height and
    output_width are calculated by below equation:
4460 4461 4462 4463 4464 4465 4466 4467 4468 4469

    .. math::

        output\_size = 1 + \
            (2 * padding + img\_size - block\_size + stride - 1) / stride

    And the dimension of each time step is block_y * block_x * input.channels.

    Args:
        input (Variable): The input should be a tensor in NCHW format.
W
wanghaoshuang 已提交
4470 4471 4472 4473 4474 4475 4476 4477 4478 4479 4480 4481 4482 4483 4484 4485 4486 4487

        filter_size(int|tuple|None): The filter size. If filter_size is a tuple,
            it must contain two integers, (filter_size_H, filter_size_W).
            Otherwise, the filter will be a square.

        stride(int|tuple): The stride size. If stride is a tuple, it must
            contain two integers, (stride_H, stride_W). Otherwise, the
            stride_H = stride_W = stride. Default: stride = 1.

        padding(int|tuple): The padding size. If padding is a tuple, it can
            contain two integers like (padding_H, padding_W) which means
            padding_up = padding_down = padding_H and
            padding_left = padding_right = padding_W. Or it can use
            (padding_up, padding_left, padding_down, padding_right) to indicate
            paddings of four direction. Otherwise, a scalar padding means
            padding_up = padding_down = padding_left = padding_right = padding
            Default: padding = 0.

4488 4489 4490 4491 4492 4493 4494 4495 4496
        input_image_size(Variable): the input contains image real size.It's dim
            is [batchsize, 2]. It is dispensable.It is just for batch inference.

        out_stride(int|tuple): The scaling of image through CNN. It is
            dispensable. It is valid only when input_image_size is not null.
            If out_stride is tuple,  it must contain two intergers,
            (out_stride_H, out_stride_W). Otherwise,
            the out_stride_H = out_stride_W = out_stride.

4497 4498 4499
        name (int): The name of this layer. It is optional.

    Returns:
W
wanghaoshuang 已提交
4500 4501 4502 4503 4504
        output: The output is a LoDTensor with shape
        {input.batch_size * output_height * output_width,
        filter_size_H * filter_size_W * input.channels}.
        If we regard output as a matrix, each row of this matrix is
        a step of a sequence.
4505 4506 4507 4508 4509 4510 4511 4512 4513 4514 4515 4516 4517 4518 4519 4520 4521 4522 4523 4524 4525 4526 4527 4528 4529 4530 4531

    Examples:

        .. code-block:: text

            Given:

            x = [[[[ 6.  2.  1.]
                   [ 8.  3.  5.]
                   [ 0.  2.  6.]]

                  [[ 2.  4.  4.]
                   [ 6.  3.  0.]
                   [ 6.  4.  7.]]]

                 [[[ 6.  7.  1.]
                   [ 5.  7.  9.]
                   [ 2.  4.  8.]]

                  [[ 1.  2.  1.]
                   [ 1.  3.  5.]
                   [ 9.  0.  8.]]]]

            x.dims = {2, 2, 3, 3}

            And:

W
wanghaoshuang 已提交
4532 4533 4534
            filter = [2, 2]
            stride = [1, 1]
            padding = [0, 0]
4535 4536 4537 4538 4539 4540 4541 4542 4543 4544 4545 4546

            Then:

            output.data = [[ 6.  2.  8.  3.  2.  4.  6.  3.]
                           [ 2.  1.  3.  5.  4.  4.  3.  0.]
                           [ 8.  3.  0.  2.  6.  3.  6.  4.]
                           [ 3.  5.  2.  6.  3.  0.  4.  7.]
                           [ 6.  7.  5.  7.  1.  2.  1.  3.]
                           [ 7.  1.  7.  9.  2.  1.  3.  5.]
                           [ 5.  7.  2.  4.  1.  3.  9.  0.]
                           [ 7.  9.  4.  8.  3.  5.  0.  8.]]

4547
            output.dims = {8, 8}
4548

4549
            output.lod = [[4, 4]]
4550

D
dzhwinter 已提交
4551
     Examples:
4552 4553 4554

        .. code-block:: python

4555 4556
            output = fluid.layers.im2sequence(
                input=layer, stride=[1, 1], filter_size=[2, 2])
4557 4558

    """
W
wanghaoshuang 已提交
4559 4560 4561 4562 4563 4564 4565 4566 4567 4568

    if isinstance(filter_size, int):
        filter_size = [filter_size, filter_size]
    if isinstance(stride, int):
        stride = [stride, stride]
    if isinstance(padding, int):
        padding = [padding, padding]
    if len(padding) == 2:
        padding.append(padding[0])
        padding.append(padding[1])
4569 4570 4571 4572 4573 4574 4575
    inputs = {"X": input}
    attrs = {"kernels": filter_size, "strides": stride, "padding": padding}
    if input_image_size:
        if isinstance(out_stride, int):
            out_stride = [out_stride, out_stride]
        inputs["Y"] = input_image_size
        attrs["out_stride"] = out_stride
4576
    helper = LayerHelper('im2sequence', **locals())
X
Xin Pan 已提交
4577
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
4578
    helper.append_op(
4579
        type='im2sequence', inputs=inputs, outputs={'Out': out}, attrs=attrs)
4580
    return out
4581 4582


Y
yuyang18 已提交
4583
@templatedoc()
4584
def row_conv(input, future_context_size, param_attr=None, act=None):
Y
yuyang18 已提交
4585 4586
    """
    ${comment}
4587 4588

    Args:
Y
yuyang18 已提交
4589
        input (${x_type}): ${x_comment}.
Y
yangyaming 已提交
4590 4591
        future_context_size (int): Future context size. Please note, the shape
            of convolution kernel is [future_context_size + 1, D].
4592 4593 4594 4595 4596
        param_attr (ParamAttr): Attributes of parameters, including
            name, initializer etc.
        act (str): Non-linear activation to be applied to output variable.

    Returns:
Y
yuyang18 已提交
4597
        ${out_comment}.
4598 4599

    Examples:
Y
yuyang18 已提交
4600 4601 4602 4603
        >>> import paddle.fluid as fluid
        >>> x = fluid.layers.data(name='x', shape=[16],
        >>>                        dtype='float32', lod_level=1)
        >>> out = fluid.layers.row_conv(input=x, future_context_size=2)
4604 4605 4606 4607 4608 4609
    """
    helper = LayerHelper('row_conv', **locals())
    dtype = helper.input_dtype()
    filter_shape = [future_context_size + 1, input.shape[1]]
    filter_param = helper.create_parameter(
        attr=helper.param_attr, shape=filter_shape, dtype=dtype)
X
Xin Pan 已提交
4610
    out = helper.create_variable_for_type_inference(dtype)
4611 4612 4613 4614 4615
    helper.append_op(
        type='row_conv',
        inputs={'X': [input],
                'Filter': [filter_param]},
        outputs={'Out': [out]})
Y
yangyaming 已提交
4616
    return helper.append_activation(out)
4617 4618


Y
yuyang18 已提交
4619
@templatedoc()
4620 4621
def multiplex(inputs, index):
    """
Y
yuyang18 已提交
4622 4623 4624 4625 4626 4627 4628
    ${comment}

    >>> import paddle.fluid as fluid
    >>> x1 = fluid.layers.data(name='x1', shape=[4], dtype='float32')
    >>> x2 = fluid.layers.data(name='x2', shape=[4], dtype='float32')
    >>> index = fluid.layers.data(name='index', shape=[1], dtype='int32')
    >>> out = fluid.layers.multiplex(inputs=[x1, x2], index=index)
4629 4630

    Args:
Y
yuyang18 已提交
4631 4632
       inputs (list): ${x_comment}.
       index (${ids_type}): ${ids_comment}.
4633 4634

    Returns:
Y
yuyang18 已提交
4635
        ${out_comment}.
4636 4637
    """
    helper = LayerHelper('multiplex', **locals())
Y
yangyaming 已提交
4638 4639 4640 4641 4642

    if not isinstance(inputs, list) and len(inputs) < 2:
        raise ValueError("inputs should be a list object and contains at least "
                         "2 elements.")

X
Xin Pan 已提交
4643
    out = helper.create_variable_for_type_inference(inputs[0].dtype)
4644 4645 4646 4647 4648 4649
    helper.append_op(
        type='multiplex',
        inputs={'X': inputs,
                'Ids': index},
        outputs={'Out': [out]})
    return out
4650 4651


4652 4653 4654 4655
def softmax_with_cross_entropy(logits,
                               label,
                               soft_label=False,
                               ignore_index=-100):
4656 4657
    """
    **Softmax With Cross Entropy Operator.**
4658

4659 4660 4661 4662
    Cross entropy loss with softmax is used as the output layer extensively. This
    operator computes the softmax normalized values for each row of the input
    tensor, after which cross-entropy loss is computed. This provides a more
    numerically stable gradient.
4663

4664 4665 4666
    Because this operator performs a softmax on logits internally, it expects
    unscaled logits. This operator should not be used with the output of
    softmax operator since that would produce incorrect results.
4667

4668 4669 4670
    When the attribute soft_label is set false, this operators expects mutually
    exclusive hard labels, each sample in a batch is in exactly one class with a
    probability of 1.0. Each sample in the batch will have a single label.
4671

4672
    The equation is as follows:
4673

4674
    1) Hard label (one-hot label, so every sample has exactly one class)
4675

4676 4677 4678 4679
    .. math::

        loss_j =  -\\text{logit}_{label_j} +
        \\log\\left(\\sum_{i=0}^{K}\\exp(\\text{logit}_i)\\right), j = 1,..., K
4680

4681 4682 4683
    2) Soft label (each sample can have a distribution over all classes)

    .. math::
4684

4685 4686 4687 4688 4689 4690 4691 4692 4693 4694 4695 4696
        loss_j =  -\\sum_{i=0}^{K}\\text{label}_i
        \\left(\\text{logit}_i - \\log\\left(\\sum_{i=0}^{K}
        \\exp(\\text{logit}_i)\\right)\\right), j = 1,...,K

    Args:
        logits (Variable): The unscaled log probabilities, which is a 2-D tensor
            with shape [N x K]. N is the batch_size, and K is the class number.
        label (Variable): The ground truth which is a 2-D tensor. If soft_label
            is set to false, Label is a Tensor<int64> with shape [N x 1]. If
            soft_label is set to true, Label is a Tensor<float/double> with
        soft_label (bool): A flag to indicate whether to interpretate the given
            labels as soft labels. By default, `soft_label` is set to False.
M
minqiyang 已提交
4697 4698
        ignore_index (int): Specifies a target value that is ignored and does
                            not contribute to the input gradient. Only valid
4699 4700
                            if soft_label is set to False. Default: -100

4701 4702 4703 4704 4705 4706 4707 4708 4709
    Returns:
        Variable: The cross entropy loss is a 2-D tensor with shape [N x 1].

    Examples:
        .. code-block:: python

            data = fluid.layers.data(name='data', shape=[128], dtype='float32')
            label = fluid.layers.data(name='label', shape=[1], dtype='int64')
            fc = fluid.layers.fc(input=data, size=100)
F
stash  
fengjiayi 已提交
4710 4711
            out = fluid.layers.softmax_with_cross_entropy(
                logits=fc, label=label)
4712 4713
    """
    helper = LayerHelper('softmax_with_cross_entropy', **locals())
X
Xin Pan 已提交
4714 4715
    softmax = helper.create_variable_for_type_inference(dtype=logits.dtype)
    loss = helper.create_variable_for_type_inference(dtype=logits.dtype)
4716 4717 4718 4719 4720 4721
    helper.append_op(
        type='softmax_with_cross_entropy',
        inputs={'Logits': logits,
                'Label': label},
        outputs={'Softmax': softmax,
                 'Loss': loss},
4722 4723
        attrs={'soft_label': soft_label,
               'ignore_index': ignore_index})
4724 4725 4726 4727 4728
    return loss


def smooth_l1(x, y, inside_weight=None, outside_weight=None, sigma=None):
    """
Y
Yibing Liu 已提交
4729 4730
    This layer computes the smooth L1 loss for Variable :attr:`x` and :attr:`y`.
    It takes the first dimension of :attr:`x` and :attr:`y` as batch size.
Q
qingqing01 已提交
4731
    For each instance, it computes the smooth L1 loss element by element first
4732
    and then sums all the losses. So the shape of ouput Variable is
4733
    [batch_size, 1].
4734

4735 4736
    Args:
        x (Variable): A tensor with rank at least 2. The input value of smooth
Q
qingqing01 已提交
4737
            L1 loss op with shape [batch_size, dim1, ..., dimN].
4738
        y (Variable): A tensor with rank at least 2. The target value of smooth
Y
Yibing Liu 已提交
4739
            L1 loss op with same shape as :attr:`x`.
4740
        inside_weight (Variable|None):  A tensor with rank at least 2. This
4741 4742
            input is optional and should have same shape with :attr:`x`. If
            provided, the result of (:attr:`x` - :attr:`y`) will be multiplied
Y
Yibing Liu 已提交
4743
            by this tensor element by element.
4744
        outside_weight (Variable|None): A tensor with rank at least 2. This
4745 4746
            input is optional and should have same shape with :attr:`x`. If
            provided, the out smooth L1 loss will be multiplied by this tensor
Y
Yibing Liu 已提交
4747
            element by element.
4748
        sigma (float|None): Hyper parameter of smooth L1 loss layer. A float
4749 4750
           scalar with default value 1.0.

4751
    Returns:
4752
        Variable: The output smooth L1 loss with shape [batch_size, 1].
4753 4754 4755 4756 4757

    Examples:
        .. code-block:: python

            data = fluid.layers.data(name='data', shape=[128], dtype='float32')
F
stash  
fengjiayi 已提交
4758 4759
            label = fluid.layers.data(
                name='label', shape=[100], dtype='float32')
4760
            fc = fluid.layers.fc(input=data, size=100)
F
fengjiayi 已提交
4761
            out = fluid.layers.smooth_l1(x=fc, y=label)
4762
    """
4763

4764
    helper = LayerHelper('smooth_l1_loss', **locals())
X
Xin Pan 已提交
4765 4766
    diff = helper.create_variable_for_type_inference(dtype=x.dtype)
    loss = helper.create_variable_for_type_inference(dtype=x.dtype)
4767 4768 4769 4770 4771 4772 4773 4774 4775 4776 4777 4778
    helper.append_op(
        type='smooth_l1_loss',
        inputs={
            'X': x,
            'Y': y,
            'InsideWeight': inside_weight,
            'OutsideWeight': outside_weight
        },
        outputs={'Diff': diff,
                 'Out': loss},
        attrs={'sigma': sigma})
    return loss
4779 4780 4781 4782


def one_hot(input, depth):
    """
Y
Yibing Liu 已提交
4783
    This layer creates the one-hot representations for input indices.
4784 4785

    Args:
Y
Yibing Liu 已提交
4786 4787
        input(Variable): Input indices, last dimension must be 1.
        depth(scalar): An interger defining the depth of the one-hot dimension.
4788 4789

    Returns:
Y
Yibing Liu 已提交
4790
        Variable: The one-hot representations of input.
4791 4792

    Examples:
C
caoying03 已提交
4793
        .. code-block:: python
4794

Y
Yibing Liu 已提交
4795 4796
            label = layers.data(name="label", shape=[1], dtype="float32")
            one_hot_label = layers.one_hot(input=label, depth=10)
4797 4798
    """
    helper = LayerHelper("one_hot", **locals())
X
Xin Pan 已提交
4799
    one_hot_out = helper.create_variable_for_type_inference(dtype='float32')
4800 4801 4802 4803 4804 4805
    helper.append_op(
        type="one_hot",
        inputs={'X': input},
        attrs={'depth': depth},
        outputs={'Out': one_hot_out})
    return one_hot_out
Y
Yu Yang 已提交
4806 4807


Y
Yu Yang 已提交
4808
def autoincreased_step_counter(counter_name=None, begin=1, step=1):
Y
Yu Yang 已提交
4809
    """
Y
yi.wu 已提交
4810 4811 4812
    Create an auto-increase variable
    which will be automatically increased by 1 every mini-batch
    Return the run counter of the main program, default is started from 1.
Y
Yu Yang 已提交
4813 4814 4815 4816 4817 4818

    Args:
        counter_name(str): The counter name, default is '@STEP_COUNTER@'.
        begin(int): The first value of this counter.
        step(int): The increment step between each execution.

4819 4820
    Returns:
        Variable: The global run counter.
Y
yi.wu 已提交
4821 4822 4823 4824 4825 4826

    Examples:
        .. code-block:: python

           global_step = fluid.layers.autoincreased_step_counter(
               counter_name='@LR_DECAY_COUNTER@', begin=begin, step=1)
Y
Yu Yang 已提交
4827 4828
    """
    helper = LayerHelper('global_step_counter')
Y
Yu Yang 已提交
4829 4830
    if counter_name is None:
        counter_name = '@STEP_COUNTER@'
Y
Yu Yang 已提交
4831 4832 4833 4834 4835
    counter, is_new_var = helper.create_or_get_global_variable(
        name=counter_name, dtype='int64', shape=[1], persistable=True)
    if is_new_var:
        helper.set_variable_initializer(
            counter, initializer=Constant(
Y
Yu Yang 已提交
4836
                value=begin - 1, force_cpu=True))
W
Wu Yi 已提交
4837
        helper.main_program.global_block()._prepend_op(
Y
Yu Yang 已提交
4838 4839
            type='increment',
            inputs={'X': [counter]},
Y
Yu Yang 已提交
4840 4841
            outputs={'Out': [counter]},
            attrs={'step': float(step)})
Y
Yu Yang 已提交
4842 4843 4844
        counter.stop_gradient = True

    return counter
Y
yangyaming 已提交
4845 4846


4847
def reshape(x, shape, actual_shape=None, act=None, inplace=False, name=None):
C
caoying03 已提交
4848
    """
C
caoying03 已提交
4849 4850
    Gives a new shape to the input Tensor without changing its data.

4851 4852 4853 4854 4855
    The target shape can be given by :attr:`shape` or :attr:`actual_shape`.
    :attr:`shape` is a list of integer while :attr:`actual_shape` is a tensor
    variable. :attr:`actual_shape` has a higher priority than :attr:`shape`
    if it is provided, while :attr:`shape` still should be set correctly to
    gurantee shape inference in compile-time.
C
caoying03 已提交
4856

4857
    Some tricks exist when specifying the target shape.
C
caoying03 已提交
4858

4859 4860 4861 4862
    1. -1 means the value of this dimension is inferred from the total element
    number of x and remaining dimensions. Thus one and only one dimension can
    be set -1.

4863
    2. 0 means the actual dimension value is going to be copied from the
4864 4865 4866 4867
    corresponding dimension of x. The indice of 0s in shape can not exceed
    Rank(X).

    Here are some examples to explain it.
C
caoying03 已提交
4868 4869

    1. Given a 3-D tensor x with a shape [2, 4, 6], and the target shape
W
wanghaoshuang 已提交
4870
    is [6, 8], the reshape operator will transform x into a 2-D tensor with
4871
    shape [6, 8] and leaving x's data unchanged.
C
caoying03 已提交
4872

4873
    2. Given a 3-D tensor x with a shape [2, 4, 6], and the target shape
4874 4875
    specified is [2, 3, -1, 2], the reshape operator will transform x into a
    4-D tensor with shape [2, 3, 4, 2] and leaving x's data unchanged. In this
W
wanghaoshuang 已提交
4876 4877
    case, one dimension of the target shape is set to -1, the value of this
    dimension is inferred from the total element number of x and remaining
4878
    dimensions.
C
caoying03 已提交
4879

4880
    3. Given a 3-D tensor x with a shape [2, 4, 6], and the target shape
4881 4882 4883 4884
    is [-1, 0, 3, 2], the reshape operator will transform x into a 4-D tensor
    with shape [2, 4, 3, 2] and leaving x's data unchanged. In this case,
    besides -1, 0 means the actual dimension value is going to be copied from
    the corresponding dimension of x.
C
caoying03 已提交
4885 4886

    Args:
4887
        x(variable): The input tensor.
C
caoying03 已提交
4888 4889
        shape(list): The new shape. At most one dimension of the new shape can
                     be -1.
4890 4891 4892 4893 4894
        actual_shape(variable): An optional input. If provided, reshape
                                according to this given shape rather than
                                :attr:`shape` specifying shape. That is to
                                say :attr:`actual_shape` has a higher priority
                                than :attr:`shape`.
4895 4896
        act (str): The non-linear activation to be applied to the reshaped tensor
                   variable.
4897 4898 4899 4900 4901 4902 4903
        inplace(bool): Must use :attr:`False` if :attr:`x` is used in multiple
                       operators. If this flag is set :attr:`True`, reuse input
                       :attr:`x` to reshape, which will change the shape of
                       tensor variable :attr:`x` and might cause errors when
                       :attr:`x` is used in multiple operators. If :attr:`False`,
                       preserve the shape :attr:`x` and create a new output tensor
                       variable whose data is copied from input x but reshaped.
4904
        name (str): The name of this layer. It is optional.
C
caoying03 已提交
4905

4906
    Returns:
G
guosheng 已提交
4907 4908 4909 4910
        Variable: The reshaped tensor variable if :attr:`act` is None. It is a \
                  new tensor variable if :attr:`inplace` is :attr:`False`, \
                  otherwise it is :attr:`x`. If :attr:`act` is not None, return \
                  the activated tensor variable.
C
caoying03 已提交
4911

X
Xin Pan 已提交
4912 4913 4914
    Raises:
        TypeError: if actual_shape is neither Variable nor None.

C
caoying03 已提交
4915 4916
    Examples:
        .. code-block:: python
G
guosheng 已提交
4917

4918
            data = fluid.layers.data(
4919
                name='data', shape=[2, 4, 6], dtype='float32')
C
caoying03 已提交
4920
            reshaped = fluid.layers.reshape(
G
guosheng 已提交
4921
                x=data, shape=[-1, 0, 3, 2], inplace=True)
C
caoying03 已提交
4922 4923 4924
    """

    if not (isinstance(shape, list) or isinstance(shape, tuple)):
L
luotao1 已提交
4925
        raise ValueError("Input shape must be a python list or tuple.")
X
Xin Pan 已提交
4926 4927 4928 4929 4930
    inputs = {"X": x}
    if isinstance(actual_shape, Variable):
        inputs["Shape"] = actual_shape
    elif actual_shape is not None:
        raise TypeError("actual_shape should either be Variable or None")
C
caoying03 已提交
4931

4932 4933 4934 4935 4936 4937 4938 4939 4940 4941 4942 4943 4944 4945 4946
    # Validate the shape
    unk_dim_idx = -1
    for dim_idx, dim_size in enumerate(shape):
        if dim_size == -1:
            assert unk_dim_idx == -1, (
                "Only one dimension in shape can be unknown.")
            unk_dim_idx = dim_idx
        elif dim_size == 0:
            assert dim_idx < len(x.shape), (
                "The indice of 0s in shape can not exceed Rank(X).")
        else:
            assert dim_size > 0, (
                "Each dimension size given in shape must not be negtive "
                "except one unknown dimension.")

4947
    helper = LayerHelper("reshape2", **locals())
4948 4949
    out = x if inplace else helper.create_variable_for_type_inference(
        dtype=x.dtype)
X
Xin Pan 已提交
4950
    x_shape = helper.create_variable_for_type_inference(dtype=x.dtype)
C
caoying03 已提交
4951
    helper.append_op(
4952
        type="reshape2",
X
Xin Pan 已提交
4953
        inputs=inputs,
D
dzhwinter 已提交
4954
        attrs={"shape": shape},
4955 4956
        outputs={"Out": out,
                 "XShape": x_shape})
C
caoying03 已提交
4957

4958
    return helper.append_activation(out)
4959

4960

4961
def squeeze(input, axes, name=None):
Y
Yibing Liu 已提交
4962
    """
M
minqiyang 已提交
4963 4964 4965
    Remove single-dimensional entries from the shape of a tensor. Takes a
    parameter axes with a list of axes to squeeze. If axes is not provided, all
    the single dimensions will be removed from the shape. If an axis is
Y
Yibing Liu 已提交
4966
    selected with shape entry not equal to one, an error is raised.
M
minqiyang 已提交
4967

Y
Yibing Liu 已提交
4968 4969
    Examples:
    Case 1:
M
minqiyang 已提交
4970
      Given
Y
Yibing Liu 已提交
4971 4972 4973 4974 4975 4976 4977 4978
        X.shape = (1, 3, 1, 5)
      and
        axes = [0]
      we get:
        Out.shape = (3, 1, 5)
      Case 2:
        Given
          X.shape = (1, 3, 1, 5)
M
minqiyang 已提交
4979
        and
Y
Yibing Liu 已提交
4980 4981 4982
          axes = []
        we get:
          Out.shape = (3, 5)
M
minqiyang 已提交
4983

Y
Yibing Liu 已提交
4984
    Args:
4985
        input (Variable): The input variable to be squeezed.
Y
Yibing Liu 已提交
4986
        axes (list): List of integers, indicating the dimensions to be squeezed.
4987
        name (str|None): Name for this layer.
Y
Yibing Liu 已提交
4988 4989 4990 4991 4992 4993 4994 4995

    Returns:
        Variable: Output squeezed variable.

    Examples:
        .. code-block:: python

            x = layers.data(name='x', shape=[5, 1, 10])
4996
            y = layers.sequeeze(input=x, axes=[1])
Y
Yibing Liu 已提交
4997 4998
    """
    helper = LayerHelper("squeeze", **locals())
X
Xin Pan 已提交
4999 5000
    out = helper.create_variable_for_type_inference(dtype=input.dtype)
    x_shape = helper.create_variable_for_type_inference(dtype=input.dtype)
Y
Yibing Liu 已提交
5001
    helper.append_op(
5002
        type="squeeze2",
5003
        inputs={"X": input},
Y
Yibing Liu 已提交
5004
        attrs={"axes": axes},
5005 5006
        outputs={"Out": out,
                 "XShape": x_shape})
Y
Yibing Liu 已提交
5007

5008 5009 5010
    return out


5011
def unsqueeze(input, axes, name=None):
Y
Yibing Liu 已提交
5012
    """
M
minqiyang 已提交
5013 5014 5015
    Insert single-dimensional entries to the shape of a tensor. Takes one
    required argument axes, a list of dimensions that will be inserted.
    Dimension indices in axes are as seen in the output tensor.
Y
Yibing Liu 已提交
5016

M
minqiyang 已提交
5017 5018
    For example:
      Given a tensor such that tensor with shape [3, 4, 5],
Y
Yibing Liu 已提交
5019
      then Unsqueezed tensor with axes=[0, 4] has shape [1, 3, 4, 5, 1].
M
minqiyang 已提交
5020

Y
Yibing Liu 已提交
5021
    Args:
5022
        input (Variable): The input variable to be unsqueezed.
Y
Yibing Liu 已提交
5023
        axes (list): List of integers, indicating the dimensions to be inserted.
5024
        name (str|None): Name for this layer.
Y
Yibing Liu 已提交
5025 5026 5027 5028 5029 5030 5031 5032

    Returns:
        Variable: Output unsqueezed variable.

    Examples:
        .. code-block:: python

            x = layers.data(name='x', shape=[5, 10])
5033
            y = layers.unsequeeze(input=x, axes=[1])
Y
Yibing Liu 已提交
5034 5035
    """
    helper = LayerHelper("unsqueeze", **locals())
X
Xin Pan 已提交
5036 5037
    out = helper.create_variable_for_type_inference(dtype=input.dtype)
    x_shape = helper.create_variable_for_type_inference(dtype=input.dtype)
Y
Yibing Liu 已提交
5038
    helper.append_op(
5039
        type="unsqueeze2",
5040
        inputs={"X": input},
Y
Yibing Liu 已提交
5041
        attrs={"axes": axes},
5042 5043
        outputs={"Out": out,
                 "XShape": x_shape})
Y
Yibing Liu 已提交
5044

5045 5046
    return out

5047

Y
yangyaming 已提交
5048
def lod_reset(x, y=None, target_lod=None):
Y
yangyaming 已提交
5049
    """
Y
Yibing Liu 已提交
5050
    Set LoD of :attr:`x` to a new one specified by :attr:`y` or
5051 5052 5053 5054
    :attr:`target_lod`. When :attr:`y` provided, :attr:`y.lod` would be
    considered as target LoD first, otherwise :attr:`y.data` would be
    considered as target LoD. If :attr:`y` is not provided, target LoD should
    be specified by :attr:`target_lod`. If target LoD is specified by
Y
Yibing Liu 已提交
5055
    :attr:`Y.data` or :attr:`target_lod`, only one level LoD is supported.
Y
yangyaming 已提交
5056 5057 5058 5059 5060 5061

    .. code-block:: text

        * Example 1:

            Given a 1-level LoDTensor x:
5062
                x.lod =  [[ 2,           3,                   1 ]]
Y
yangyaming 已提交
5063 5064 5065
                x.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                x.dims = [6, 1]

5066
            target_lod: [4, 2]
Y
yangyaming 已提交
5067 5068

            then we get a 1-level LoDTensor:
5069
                out.lod =  [[4,                          2]]
Y
yangyaming 已提交
5070 5071 5072 5073 5074 5075
                out.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                out.dims = [6, 1]

        * Example 2:

            Given a 1-level LoDTensor x:
5076
                x.lod =  [[2,            3,                   1]]
Y
yangyaming 已提交
5077 5078 5079 5080
                x.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                x.dims = [6, 1]

            y is a Tensor:
5081
                y.data = [[2, 4]]
Y
yangyaming 已提交
5082 5083 5084
                y.dims = [1, 3]

            then we get a 1-level LoDTensor:
5085
                out.lod =  [[2,            4]]
Y
yangyaming 已提交
5086 5087 5088 5089 5090 5091
                out.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                out.dims = [6, 1]

        * Example 3:

            Given a 1-level LoDTensor x:
5092
                x.lod =  [[2,            3,                   1]]
Y
yangyaming 已提交
5093 5094 5095 5096
                x.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                x.dims = [6, 1]

            y is a 2-level LoDTensor:
5097
                y.lod =  [[2, 2], [2, 2, 1, 1]]
Y
yangyaming 已提交
5098 5099 5100 5101
                y.data = [[1.1], [2.1], [3.1], [4.1], [5.1], [6.1]]
                y.dims = [6, 1]

            then we get a 2-level LoDTensor:
5102
                out.lod =  [[2, 2], [2, 2, 1, 1]]
Y
yangyaming 已提交
5103 5104 5105 5106 5107
                out.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                out.dims = [6, 1]

    Args:
        x (Variable): Input variable which could be a Tensor or LodTensor.
5108
        y (Variable|None): If provided, output's LoD would be derived
Y
Yibing Liu 已提交
5109
                           from :attr:`y`.
Y
yangyaming 已提交
5110
        target_lod (list|tuple|None): One level LoD which should be considered
Y
Yibing Liu 已提交
5111
                                      as target LoD when :attr:`y` not provided.
Y
yangyaming 已提交
5112 5113

    Returns:
Y
Yibing Liu 已提交
5114
        Variable: Output variable with LoD specified by this layer.
Y
yangyaming 已提交
5115 5116

    Raises:
Y
Yibing Liu 已提交
5117
        ValueError: If :attr:`y` and :attr:`target_lod` are both None.
Y
yangyaming 已提交
5118 5119 5120 5121 5122 5123 5124 5125 5126

    Examples:
        .. code-block:: python

            x = layers.data(name='x', shape=[10])
            y = layers.data(name='y', shape=[10, 20], lod_level=2)
            out = layers.lod_reset(x=x, y=y)
    """
    helper = LayerHelper("lod_reset", **locals())
X
Xin Pan 已提交
5127
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
Y
yangyaming 已提交
5128 5129 5130 5131 5132 5133 5134 5135 5136 5137 5138 5139 5140 5141
    if y is not None:
        helper.append_op(
            type="lod_reset", inputs={'X': x,
                                      'Y': y}, outputs={'Out': out})
    elif target_lod is not None:
        helper.append_op(
            type="lod_reset",
            inputs={'X': x},
            attrs={'target_lod': target_lod},
            outputs={'Out': out})
    else:
        raise ValueError("y and target_lod should not be both None.")

    return out
D
dragonwarrior 已提交
5142 5143 5144 5145 5146 5147 5148 5149 5150 5151 5152


def lrn(input, n=5, k=1.0, alpha=1e-4, beta=0.75, name=None):
    """
    Local Response Normalization Layer. This layer performs a type of
    "lateral inhibition" by normalizing over local input regions.

    The formula is as follows:

    .. math::

D
dzhwinter 已提交
5153
      Output(i, x, y) = Input(i, x, y) / \\left(k + \\alpha \\sum\\limits^{\\min(C, c + n/2)}_{j = \\max(0, c - n/2)}(Input(j, x, y))^2\\right)^{\\beta}
D
dragonwarrior 已提交
5154 5155 5156 5157 5158 5159 5160 5161 5162 5163 5164 5165 5166 5167 5168 5169 5170 5171 5172 5173 5174 5175 5176 5177 5178 5179 5180 5181

    In the above equation:

    * :math:`n`: The number of channels to sum over.
    * :math:`k`: The offset (avoid being divided by 0).
    * :math:`alpha`: The scaling parameter.
    * :math:`beta`: The exponent parameter.

    Refer to `ImageNet Classification with Deep Convolutional Neural Networks
    <https://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf>`_

    Args:
        input (Variable): The input tensor of this layer, and the dimension of input tensor must be 4.
        n (int, default 5): The number of channels to sum over.
        k (float, default 1.0): An offset (usually positive to avoid dividing by 0).
        alpha (float, default 1e-4): The scaling parameter.
        beta (float, default 0.75): The exponent.
        name (str, default None): A name for this operation.

    Raises:
        ValueError: If rank of the input tensor is not 4.

    Returns:
        A tensor variable storing the transformation result.

    Examples:
        .. code-block:: python

F
stash  
fengjiayi 已提交
5182 5183
          data = fluid.layers.data(
              name="data", shape=[3, 112, 112], dtype="float32")
D
dragonwarrior 已提交
5184 5185 5186 5187 5188 5189 5190 5191 5192 5193 5194 5195
          lrn = fluid.layers.lrn(input=data)
    """
    helper = LayerHelper('lrn', **locals())
    dtype = helper.input_dtype()
    input_shape = input.shape
    dims = len(input_shape)

    if dims != 4:
        raise ValueError(
            "dims of input must be 4(not %d), and it's order must be NCHW" %
            (dims))

X
Xin Pan 已提交
5196 5197 5198
    mid_out = helper.create_variable_for_type_inference(
        dtype=dtype, stop_gradient=True)
    lrn_out = helper.create_variable_for_type_inference(dtype)
D
dragonwarrior 已提交
5199 5200 5201 5202 5203 5204 5205 5206 5207 5208 5209 5210 5211
    helper.append_op(
        type="lrn",
        inputs={"X": input},
        outputs={
            "Out": lrn_out,
            "MidOut": mid_out,
        },
        attrs={"n": n,
               "k": k,
               "alpha": alpha,
               "beta": beta})

    return lrn_out
G
guosheng 已提交
5212 5213 5214 5215


def pad(x, paddings, pad_value=0., name=None):
    """
G
guosheng 已提交
5216
    Pads a tensor with a constant value given by :attr:`pad_value`, and the
W
wanghaoshuang 已提交
5217
    padded width is specified by :attr:`paddings`.
G
guosheng 已提交
5218

G
guosheng 已提交
5219 5220 5221 5222
    Specifically, the number of values padded before the contents of :attr:`x`
    in dimension :attr:`i` is indicated by :attr:`paddings[i]`, and the number
    of values padded after the contents of :attr:`x` in dimension :attr:`i` is
    indicated by :attr:`paddings[i+1]`.
G
guosheng 已提交
5223 5224 5225 5226 5227 5228 5229 5230 5231 5232 5233 5234 5235 5236 5237 5238 5239 5240 5241 5242 5243 5244

    See below for an example.

    .. code-block:: text

        Given:
            x = [[1, 2], [3, 4]]

            paddings = [0, 1, 1, 2]

            pad_value = 0

        Return:

            out = [[0, 1, 2, 0, 0]
                   [0, 3, 4, 0, 0]
                   [0, 0, 0, 0, 0]]

    Args:
        x (Variable): The input tensor variable.
        paddings (list): A list of integers. Its elements specify the padded
                         width before and after for each dimension in turn.
W
wanghaoshuang 已提交
5245
                         The length of :attr:paddings must be
G
guosheng 已提交
5246 5247 5248 5249 5250 5251 5252 5253 5254 5255
                         :math:`rank(x) \\times 2`.
        pad_value (float): The constant value used to pad.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: The padded tensor variable.

    Examples:
        .. code-block:: python
G
guosheng 已提交
5256

G
guosheng 已提交
5257 5258 5259 5260 5261 5262
            # x is a rank 2 tensor variable.
            out = fluid.layers.pad(
                x=x, paddings=[0, 1, 1, 2], pad_value=0.)
    """
    helper = LayerHelper('pad', input=x, **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
5263
    out = helper.create_variable_for_type_inference(dtype)
G
guosheng 已提交
5264 5265 5266 5267 5268 5269 5270
    helper.append_op(
        type='pad',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'paddings': paddings,
               'pad_value': float(pad_value)})
    return out
5271 5272


C
chengduo 已提交
5273 5274 5275 5276 5277 5278 5279 5280 5281 5282 5283 5284 5285 5286 5287 5288 5289 5290 5291 5292 5293 5294 5295 5296 5297 5298 5299 5300 5301 5302 5303 5304 5305 5306 5307 5308 5309 5310 5311 5312 5313 5314 5315 5316 5317 5318 5319 5320 5321 5322 5323 5324 5325 5326 5327 5328 5329 5330 5331 5332 5333 5334 5335 5336 5337 5338 5339 5340 5341 5342
def pad_constant_like(x, y, pad_value=0., name=None):
    """
    Pad input(Y) with :attr:`pad_value`, the number of values padded to
    the edges of each axis is specified by the difference of the shape
    of X and Y. ((0, shape_x_0 - shape_y_0), ... (0, shape_x_n - shape_y_n))
    unique pad widths for each axis. The input should be a k-D
    tensor(k > 0 and k < 7).

    See below for an example.

    .. code-block:: text

        Given:
            X = [[[[ 0,  1,  2],
                   [ 3,  4,  5]],
                  [[ 6,  7,  8],
                   [ 9, 10, 11]],
                  [[12, 13, 14],
                   [15, 16, 17]]],
                 [[[18, 19, 20],
                   [21, 22, 23]],
                  [[24, 25, 26],
                   [27, 28, 29]],
                  [[30, 31, 32],
                   [33, 34, 35]]]]
            X.shape = (2, 3, 2, 3)

            Y = [[[[35, 36, 37]],
                  [[38, 39, 40]],
                  [[41, 42, 43]]]]
            Y.shape = (1, 3, 1, 3)

    And
        pad_value = -1,

    Return:
        Out = [[[[35, 36, 37],
                  [-1, -1, -1]],
                [[38, 39, 40],
                  [-1, -1, -1]],
                 [[41, 42, 43],
                  [-1, -1, -1]]],
                [[[-1, -1, -1],
                  [-1, -1, -1]],
                 [[-1, -1, -1],
                  [-1, -1, -1]],
                 [[-1, -1, -1],
                  [-1, -1, -1]]]]
        Out.shape = (2, 3, 2, 3)

    Args:
        x (Variable): The input tensor variable.
        y (Variable): The input tensor variable.
        pad_value (float): The constant value used to pad.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: The padded tensor variable.

    Examples:
        .. code-block:: python

            # x is a rank 4 tensor variable, x.shape = (2, 3, 2, 3)
            # y is a rank 4 tensor variable, y.shape = (1, 3, 1, 3)
            out = fluid.layers.pad_constant_like(x=x, y=y, pad_value=0.)
            # out is a rank 4 tensor variable, and out.shape = [2, 3 ,2 , 3]
    """
    helper = LayerHelper('pad_constant_like', input=x, **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
5343
    out = helper.create_variable_for_type_inference(dtype)
C
chengduo 已提交
5344 5345 5346 5347 5348 5349 5350 5351 5352
    helper.append_op(
        type='pad_constant_like',
        inputs={'X': x,
                'Y': y},
        outputs={'Out': out},
        attrs={'pad_value': float(pad_value)})
    return out


5353 5354 5355 5356 5357 5358 5359
def label_smooth(label,
                 prior_dist=None,
                 epsilon=0.1,
                 dtype="float32",
                 name=None):
    """
    Label smoothing is a mechanism to regularize the classifier layer and is
5360 5361
    called label-smoothing regularization (LSR).

5362 5363 5364 5365 5366 5367 5368 5369 5370 5371 5372 5373 5374 5375 5376 5377 5378 5379 5380 5381 5382 5383 5384
    Label smoothing is proposed to encourage the model to be less confident,
    since optimizing the log-likelihood of the correct label directly may
    cause overfitting and reduce the ability of the model to adapt. Label
    smoothing replaces the ground-truth label :math:`y` with the weighted sum
    of itself and some fixed distribution :math:`\mu`. For class :math:`k`,
    i.e.

    .. math::

        \\tilde{y_k} = (1 - \epsilon) * y_k + \epsilon * \mu_k,

    where :math:`1 - \epsilon` and :math:`\epsilon` are the weights
    respectively, and :math:`\\tilde{y}_k` is the smoothed label. Usually
    uniform distribution is used for :math:`\mu`.

    See more details about label smoothing in https://arxiv.org/abs/1512.00567.

    Args:
        label(Variable): The input variable containing the label data. The
                          label data should use one-hot representation.
        prior_dist(Variable): The prior distribution to be used to smooth
                              labels. If not provided, an uniform distribution
                              is used. The shape of :attr:`prior_dist` should
5385
                              be :math:`(1, class\_num)`.
5386 5387
        epsilon(float): The weight used to mix up the original ground-truth
                        distribution and the fixed distribution.
5388
        dtype(np.dtype|core.VarDesc.VarType|str): The type of data : float32,
5389 5390 5391 5392 5393 5394 5395 5396 5397 5398 5399 5400 5401 5402 5403 5404 5405 5406 5407
                                                  float_64, int etc.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: The tensor variable containing the smoothed labels.

    Examples:
        .. code-block:: python

            label = layers.data(name="label", shape=[1], dtype="float32")
            one_hot_label = layers.one_hot(input=label, depth=10)
            smooth_label = layers.label_smooth(
                label=one_hot_label, epsilon=0.1, dtype="float32")
    """
    if epsilon > 1. or epsilon < 0.:
        raise ValueError("The value of epsilon must be between 0 and 1.")
    helper = LayerHelper("label_smooth", **locals())
    label.stop_gradient = True
X
Xin Pan 已提交
5408
    smooth_label = helper.create_variable_for_type_inference(dtype)
5409 5410 5411 5412 5413 5414 5415
    helper.append_op(
        type="label_smooth",
        inputs={"X": label,
                "PriorDist": prior_dist} if prior_dist else {"X": label},
        outputs={"Out": smooth_label},
        attrs={"epsilon": float(epsilon)})
    return smooth_label
5416 5417


Y
yi.wu 已提交
5418
@templatedoc()
5419 5420
def roi_pool(input, rois, pooled_height=1, pooled_width=1, spatial_scale=1.0):
    """
Y
yi.wu 已提交
5421
    ${comment}
5422 5423

    Args:
Y
yi.wu 已提交
5424 5425
        input (Variable): ${x_comment}
        rois (Variable): ROIs (Regions of Interest) to pool over.
Y
yi.wu 已提交
5426 5427 5428
        pooled_height (integer): ${pooled_height_comment} Default: 1
        pooled_width (integer): ${pooled_width_comment} Default: 1
        spatial_scale (float): ${spatial_scale_comment} Default: 1.0
5429 5430

    Returns:
Y
update  
yi.wu 已提交
5431
        Variable: ${out_comment}.
5432 5433

    Examples:
5434 5435
        .. code-block:: python

5436
            pool_out = fluid.layers.roi_pool(input=x, rois=rois, 7, 7, 1.0)
5437 5438 5439
    """
    helper = LayerHelper('roi_pool', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
5440 5441
    pool_out = helper.create_variable_for_type_inference(dtype)
    argmaxes = helper.create_variable_for_type_inference(dtype='int32')
5442 5443 5444 5445 5446 5447 5448 5449 5450 5451 5452 5453
    helper.append_op(
        type="roi_pool",
        inputs={"X": input,
                "ROIs": rois},
        outputs={"Out": pool_out,
                 "Argmax": argmaxes},
        attrs={
            "pooled_height": pooled_height,
            "pooled_width": pooled_width,
            "spatial_scale": spatial_scale
        })
    return pool_out
W
whs 已提交
5454 5455


J
jerrywgz 已提交
5456 5457 5458 5459 5460 5461
@templatedoc()
def roi_align(input,
              rois,
              pooled_height=1,
              pooled_width=1,
              spatial_scale=1.0,
J
jerrywgz 已提交
5462 5463
              sampling_ratio=-1,
              name=None):
J
jerrywgz 已提交
5464 5465 5466 5467 5468 5469 5470 5471 5472 5473 5474 5475 5476 5477 5478 5479 5480 5481 5482 5483 5484 5485 5486 5487 5488
    """
    ${comment}

    Args:
        input (Variable): ${x_comment}
        rois (Variable): ROIs (Regions of Interest) to pool over.
        pooled_height (integer): ${pooled_height_comment} Default: 1
        pooled_width (integer): ${pooled_width_comment} Default: 1
        spatial_scale (float): ${spatial_scale_comment} Default: 1.0
        sampling_ratio(intger): ${sampling_ratio_comment} Default: -1

    Returns:
        Variable: ${out_comment}.
    Examples:
        .. code-block:: python

            align_out = fluid.layers.roi_align(input=x, 
                                               rois=rois, 
                                               pooled_height=7, 
                                               pooled_width=7,
                                               spatial_scale=0.5,
                                               sampling_ratio=-1)
    """
    helper = LayerHelper('roi_align', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
5489
    align_out = helper.create_variable_for_type_inference(dtype)
J
jerrywgz 已提交
5490 5491 5492 5493 5494 5495 5496 5497 5498 5499 5500 5501 5502 5503
    helper.append_op(
        type="roi_align",
        inputs={"X": input,
                "ROIs": rois},
        outputs={"Out": align_out},
        attrs={
            "pooled_height": pooled_height,
            "pooled_width": pooled_width,
            "spatial_scale": spatial_scale,
            "sampling_ratio": sampling_ratio
        })
    return align_out


W
whs 已提交
5504 5505 5506 5507 5508 5509 5510 5511 5512 5513 5514 5515 5516 5517 5518 5519 5520 5521 5522 5523 5524 5525 5526 5527 5528 5529
def dice_loss(input, label, epsilon=0.00001):
    """
    Dice loss for comparing the similarity of two batch of data,
    usually is used for binary image segmentation i.e. labels are binary.
    The dice loss can be defined as below equation:

    .. math::

        dice\_loss &= 1 - \\frac{2 * intersection\_area}{total\_area} \\\\
                  &= \\frac{(total\_area - intersection\_area) - intersection\_area}{total\_area} \\\\
                  &= \\frac{(union\_area - intersection\_area)}{total\_area}


    Args:
        input (Variable): The predictions with rank>=2. The first dimension is batch size,
                          and the last dimension is class number.
        label (Variable): The groud truth with the same rank with input. The first dimension
                          is batch size, and the last dimension is 1.
        epsilon (float): The epsilon will be added to the numerator and denominator.
                         If both input and label are empty, it makes sure dice is 1.
                         Default: 0.00001

    Returns:
        dice_loss (Variable): The dice loss with shape [1].

    Examples:
5530 5531
        .. code-block:: python

W
whs 已提交
5532 5533 5534 5535
            predictions = fluid.layers.softmax(x)
            loss = fluid.layers.dice_loss(input=predictions, label=label, 2)
    """
    label = one_hot(label, depth=input.shape[-1])
5536
    reduce_dim = list(range(1, len(input.shape)))
W
whs 已提交
5537 5538 5539 5540 5541 5542
    inse = reduce_sum(input * label, dim=reduce_dim)
    dice_denominator = reduce_sum(
        input, dim=reduce_dim) + reduce_sum(
            label, dim=reduce_dim)
    dice_score = 1 - inse * 2 / (dice_denominator + epsilon)
    return reduce_mean(dice_score)
5543 5544


5545 5546 5547 5548 5549
def image_resize(input,
                 out_shape=None,
                 scale=None,
                 name=None,
                 resample='BILINEAR'):
5550
    """
Q
qiaolongfei 已提交
5551
    **Resize a Batch of Images**
F
stash  
fengjiayi 已提交
5552

5553
    The input must be a tensor of the shape (num_batches, channels, in_h, in_w),
5554 5555 5556
    and the resizing only applies on the last two dimensions(hight and width).

    Supporting resample methods:
Q
update  
qiaolongfei 已提交
5557

5558
        'BILINEAR' : Bilinear interpolation
F
stash  
fengjiayi 已提交
5559

5560
    Args:
5561
        input (Variable): The input tensor of image resize layer,
5562 5563
                          This is a 4-D tensor of the shape
                          (num_batches, channels, in_h, in_w).
5564
        out_shape(list|tuple|Variable|None): Output shape of image resize
5565 5566
                                    layer, the shape is (out_h, out_w).
                                    Default: None
B
baiyf 已提交
5567
        scale(float|None): The multiplier for the input height or width.
5568 5569 5570
                         At least one of out_shape or scale must be set.
                         And out_shape has a higher priority than scale.
                         Default: None
5571 5572
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
5573 5574
        resample(str): The resample method. It can only be 'BILINEAR' currently.
                       Default: 'BILINEAR'
5575 5576

    Returns:
Q
update  
qiaolongfei 已提交
5577 5578
        Variable: The output is a 4-D tensor of the shape
        (num_batches, channls, out_h, out_w).
F
stash  
fengjiayi 已提交
5579

5580 5581 5582
    Examples:
        .. code-block:: python

5583
            out = fluid.layers.image_resize(input, out_shape=[12, 12])
5584
    """
5585 5586 5587 5588
    resample_methods = {'BILINEAR': 'bilinear_interp'}
    if resample not in resample_methods:
        raise ValueError(
            "The 'resample' of image_resize can only be 'BILINEAR' currently.")
5589 5590
    if out_shape is None and scale is None:
        raise ValueError("One of out_shape and scale must not be None")
5591 5592
    helper = LayerHelper('bilinear_interp', **locals())
    dtype = helper.input_dtype()
5593 5594 5595 5596

    def _is_list_or_turple_(data):
        return (isinstance(data, list) or isinstance(data, tuple))

5597 5598 5599
    out_h = 0
    out_w = 0
    inputs = {"X": input}
5600
    if out_shape is not None:
B
baiyf 已提交
5601 5602 5603
        if not (_is_list_or_turple_(out_shape) and
                len(out_shape) == 2) and not isinstance(out_shape, Variable):
            raise ValueError('out_shape should be a list or tuple or variable')
5604 5605 5606 5607 5608 5609
        if _is_list_or_turple_(out_shape):
            out_shape = list(map(int, out_shape))
            out_h = out_shape[0]
            out_w = out_shape[1]
        else:
            inputs['OutSize'] = out_shape
5610 5611 5612 5613
    else:
        out_h = int(input.shape[2] * scale)
        out_w = int(input.shape[3] * scale)

X
Xin Pan 已提交
5614
    out = helper.create_variable_for_type_inference(dtype)
5615
    helper.append_op(
5616
        type=resample_methods[resample],
5617
        inputs=inputs,
5618 5619 5620 5621
        outputs={"Out": out},
        attrs={"out_h": out_h,
               "out_w": out_w})
    return out
F
stash  
fengjiayi 已提交
5622 5623


Y
yuyang18 已提交
5624
@templatedoc(op_type="bilinear_interp")
5625 5626
def resize_bilinear(input, out_shape=None, scale=None, name=None):
    """
Y
yuyang18 已提交
5627 5628 5629 5630 5631 5632
    ${comment}

    Args:
        input(${x_type}): ${x_comment}.

        out_shape(${out_size_type}): ${out_size_comment}.
5633

Y
yuyang18 已提交
5634 5635 5636 5637 5638 5639 5640 5641
        scale(float|None): The multiplier for the input height or width. At
             least one of out_shape or scale must be set. And out_shape has
             a higher priority than scale. Default: None.

        name(str|None): The output variable name.

    Returns:
        ${out_comment}.
5642 5643 5644 5645 5646 5647 5648
    """

    return image_resize(input, out_shape, scale, name, 'BILINEAR')


def image_resize_short(input, out_short_len, resample='BILINEAR'):
    """
5649 5650 5651
    Resize a batch of images. The short edge of input images will be
    resized to the given 'out_short_len'. The long edge of input images
    will be resized proportionately to make images' length-width ratio
5652 5653 5654 5655 5656 5657 5658
    constant.

    Args:
        input (Variable): The input tensor of image resize layer,
                          This is a 4-D tensor of the shape
                          (num_batches, channels, in_h, in_w).
        out_short_len(int): The length of output images' short edge.
5659
        resample (str): resample method, default: BILINEAR.
F
fengjiayi 已提交
5660

5661
    Returns:
Q
update  
qiaolongfei 已提交
5662
        Variable: The output is a 4-D tensor of the shape
5663
        (num_batches, channls, out_h, out_w).
5664 5665 5666 5667 5668 5669 5670 5671 5672 5673
    """
    in_shape = input.shape
    if len(in_shape) != 4:
        raise ValueError(
            "The rank of input must be 4 (num_batches, channels, in_h, in_w).")
    hw = in_shape[2:4]
    short_idx = hw.index(min(hw))
    long_idx = 1 - short_idx
    out_shape = list(hw)
    out_shape[short_idx] = out_short_len
F
fengjiayi 已提交
5674 5675 5676
    out_shape[long_idx] = int(
        float(out_shape[long_idx]) * (float(out_short_len) / float(hw[
            short_idx])) + 0.5)
5677 5678 5679
    return image_resize(input=input, out_shape=out_shape, resample=resample)


W
whs 已提交
5680 5681
def gather(input, index):
    """
Q
qiaolongfei 已提交
5682 5683
    **Gather Layer**

5684
    Output is obtained by gathering entries of the outer-most dimension
W
whs 已提交
5685 5686 5687 5688
    of X indexed by `index` and concatenate them together.

    .. math::

5689
        Out = X[Index]
W
whs 已提交
5690 5691 5692 5693 5694 5695 5696


    .. code-block:: text


                Given:

5697 5698
                X = [[1, 2],
                     [3, 4],
W
whs 已提交
5699 5700 5701 5702 5703 5704 5705 5706 5707 5708
                     [5, 6]]

                Index = [1, 2]

                Then:

                Out = [[3, 4],
                       [5, 6]]

    Args:
5709
        input (Variable): The source input with rank>=1.
W
whs 已提交
5710 5711 5712 5713 5714 5715
        index (Variable): The index input with rank=1.

    Returns:
        output (Variable): The output is a tensor with the same rank as input.

    Examples:
W
whs 已提交
5716

W
whs 已提交
5717 5718 5719 5720 5721 5722
        .. code-block:: python

            output = fluid.layers.gather(x, index)
    """
    helper = LayerHelper('gather', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
5723
    out = helper.create_variable_for_type_inference(dtype)
W
whs 已提交
5724 5725 5726 5727 5728 5729 5730 5731
    helper.append_op(
        type="gather",
        inputs={"X": input,
                "Index": index},
        outputs={"Out": out})
    return out


5732 5733 5734 5735 5736 5737 5738 5739 5740 5741 5742 5743 5744 5745 5746 5747 5748 5749 5750 5751 5752 5753 5754 5755 5756 5757 5758 5759 5760 5761 5762
def scatter(input, index, updates, name=None):
    """
    **Scatter Layer**

    Output is obtained by updating the input on selected indices on the first
    axis.

    .. math::

        Out = X
        Out[Ids] = Updates

    Args:
        input (Variable): The source input with rank>=1.
        index (Variable): The index input with rank=1. Its dtype should be
                          int32 or int64 as it is used as indexes.
        updates (Variable): The updated value of scatter op.
        name (str|None): The output variable name. Default None.

    Returns:
        output (Variable): The output is a tensor with the same shape as input.

    Examples:

        .. code-block:: python

            output = fluid.layers.scatter(input, index, updates)

    """
    helper = LayerHelper('scatter', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
5763
    out = helper.create_variable_for_type_inference(dtype)
5764 5765 5766 5767 5768 5769 5770 5771 5772
    helper.append_op(
        type="scatter",
        inputs={"X": input,
                "Ids": index,
                "Updates": updates},
        outputs={"Out": out})
    return out


Q
Qingsheng Li 已提交
5773 5774 5775 5776 5777 5778 5779 5780 5781 5782 5783 5784 5785 5786 5787 5788 5789 5790 5791 5792 5793 5794 5795 5796 5797 5798 5799 5800 5801 5802 5803 5804 5805 5806 5807 5808 5809 5810 5811 5812 5813 5814 5815 5816 5817 5818 5819 5820 5821 5822
def sequence_scatter(input, index, updates, name=None):
    """
    **Sequence Scatter Layer**

    This operator scatters the Updates tensor to the input X. It uses the LoD
    information of Ids to select the rows to update, and use the values in Ids as
    the columns to update in each row of X.

    Here is an example:
    Given the following input:
    .. code-block:: text
        input.data = [[1.0, 1.0, 1.0, 1.0, 1.0, 1.0],
                      [1.0, 1.0, 1.0, 1.0, 1.0, 1.0],
                      [1.0, 1.0, 1.0, 1.0, 1.0, 1.0]]
        input.dims = [3, 6]

        index.data = [[0], [1], [2], [5], [4], [3], [2], [1], [3], [2], [5], [4]]
        index.lod =  [[0,        3,                       8,                 12]]

        updates.data = [[0.3], [0.3], [0.4], [0.1], [0.2], [0.3], [0.4], [0.0], [0.2], [0.3], [0.1], [0.4]]
        updates.lod =  [[  0,            3,                                 8,                         12]]

    Then we have the output:
    .. code-block:: text
        out.data = [[1.3, 1.3, 1.4, 1.0, 1.0, 1.0],
                    [1.0, 1.0, 1.4, 1.3, 1.2, 1.1],
                    [1.0, 1.0, 1.3, 1.2, 1.4, 1.1]]
        out.dims = X.dims = [3, 6]

    Args:
        input (Variable): The source input with rank>=1.
        index (Variable): A LoD Tensor. The index input of sequence scatter op
            where input will be  updated. The index input with rank=1. Its dtype
            should be int32 or int64 as it is used as indexes.
        updates (Variable): A LoD Tensor. The values to scatter to the input
            tensor X, must be a LoDTensor with the same LoD information as index.
        name (str|None): The output variable name. Default None.

    Returns:
        output (Variable): The output is a tensor with the same shape as input.

    Examples:

        .. code-block:: python

            output = fluid.layers.sequence_scatter(input, index, updates)

    """
    helper = LayerHelper('sequence_scatter', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
5823
    out = helper.create_variable_for_type_inference(dtype)
Q
Qingsheng Li 已提交
5824 5825 5826 5827 5828 5829 5830 5831 5832
    helper.append_op(
        type="sequence_scatter",
        inputs={"X": input,
                "Ids": index,
                "Updates": updates},
        outputs={"Out": out})
    return out


Y
yuyang18 已提交
5833 5834 5835 5836 5837 5838 5839 5840 5841 5842 5843 5844 5845
@templatedoc()
def random_crop(x, shape, seed=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        shape(${shape_type}): ${shape_comment}
        seed(int|${seed_type}|None): ${seed_comment} By default, the seed will
            get from `random.randint(-65536, 65535)`.

    Returns:
        ${out_comment}
5846

5847 5848 5849
    Examples:
        >>> img = fluid.layers.data("img", [3, 256, 256])
        >>> cropped_img = fluid.layers.random_crop(img, shape=[3, 224, 224])
Y
yuyang18 已提交
5850
    """
F
stash  
fengjiayi 已提交
5851
    helper = LayerHelper("random_crop", **locals())
F
fengjiayi 已提交
5852
    dtype = x.dtype
X
Xin Pan 已提交
5853
    out = helper.create_variable_for_type_inference(dtype)
Y
yuyang18 已提交
5854
    if seed is None:
5855
        seed = np.random.randint(-65536, 65536)
F
fengjiayi 已提交
5856
    op_attrs = {"shape": shape}
F
stash  
fengjiayi 已提交
5857
    if isinstance(seed, int):
F
fengjiayi 已提交
5858 5859 5860 5861 5862
        op_attrs["startup_seed"] = seed
        seed = helper.create_variable(
            name=unique_name.generate("random_crop_seed"),
            dtype="int64",
            persistable=True)
F
stash  
fengjiayi 已提交
5863 5864 5865 5866
    elif not isinstance(seed, Variable):
        raise ValueError("'seed' must be a Variable or an int.")
    helper.append_op(
        type="random_crop",
F
fix  
fengjiayi 已提交
5867
        inputs={"X": x,
F
stash  
fengjiayi 已提交
5868 5869
                "Seed": seed},
        outputs={"Out": out,
F
fengjiayi 已提交
5870 5871
                 "SeedOut": seed},
        attrs=op_attrs)
F
stash  
fengjiayi 已提交
5872
    return out
W
whs 已提交
5873 5874


5875
def log(x, name=None):
W
wanghaoshuang 已提交
5876 5877 5878 5879 5880
    """
    Calculates the natural log of the given input tensor, element-wise.

    .. math::

5881
        Out = \\ln(x)
W
wanghaoshuang 已提交
5882 5883

    Args:
5884
        x (Variable): Input tensor.
5885 5886
        name (str|None, default None): A name for this layer If set None,
            the layer will be named automatically.
W
wanghaoshuang 已提交
5887 5888 5889 5890 5891 5892 5893 5894

    Returns:
        Variable: The natural log of the input tensor computed element-wise.

    Examples:

        .. code-block:: python

5895
            output = fluid.layers.log(x)
W
wanghaoshuang 已提交
5896 5897
    """
    helper = LayerHelper('log', **locals())
W
wanghaoshuang 已提交
5898
    dtype = helper.input_dtype(input_param_name='x')
X
Xin Pan 已提交
5899
    out = helper.create_variable_for_type_inference(dtype)
W
wanghaoshuang 已提交
5900
    helper.append_op(type="log", inputs={"X": x}, outputs={"Out": out})
W
wanghaoshuang 已提交
5901 5902 5903
    return out


5904
def relu(x, name=None):
W
wanghaoshuang 已提交
5905 5906
    """
    Relu takes one input data (Tensor) and produces one output data (Tensor)
5907
    where the rectified linear function, y = max(0, x), is applied to
W
wanghaoshuang 已提交
5908 5909 5910 5911
    the tensor elementwise.

    .. math::

5912
        Out = \\max(0, x)
W
wanghaoshuang 已提交
5913 5914

    Args:
5915
        x (Variable): The input tensor.
5916 5917
        name (str|None, default None): A name for this layer If set None,
            the layer will be named automatically.
W
wanghaoshuang 已提交
5918 5919 5920 5921 5922 5923 5924 5925

    Returns:
        Variable: The output tensor with the same shape as input.

    Examples:

        .. code-block:: python

5926
            output = fluid.layers.relu(x)
W
wanghaoshuang 已提交
5927 5928
    """
    helper = LayerHelper('relu', **locals())
W
wanghaoshuang 已提交
5929
    dtype = helper.input_dtype(input_param_name='x')
X
Xin Pan 已提交
5930
    out = helper.create_variable_for_type_inference(dtype)
W
wanghaoshuang 已提交
5931
    helper.append_op(type="relu", inputs={"X": x}, outputs={"Out": out})
W
wanghaoshuang 已提交
5932
    return out
5933 5934


W
whs 已提交
5935 5936 5937
def mean_iou(input, label, num_classes):
    """
    Mean Intersection-Over-Union is a common evaluation metric for
5938 5939 5940 5941
    semantic image segmentation, which first computes the IOU for each
    semantic class and then computes the average over classes.
    IOU is defined as follows:

W
whs 已提交
5942
    .. math::
5943 5944

        IOU = \\frac{true\_positiv}{(true\_positive + false\_positive + false\_negative)}.
W
whs 已提交
5945

5946
    The predictions are accumulated in a confusion matrix and mean-IOU
W
whs 已提交
5947 5948 5949 5950 5951
    is then calculated from it.


    Args:
        input (Variable): A Tensor of prediction results for semantic labels with type int32 or int64.
5952
        label (Variable): A Tensor of ground truth labels with type int32 or int64.
W
whs 已提交
5953
                           Its shape should be the same as input.
5954
        num_classes (int): The possible number of labels.
W
whs 已提交
5955 5956 5957 5958

    Returns:
        mean_iou (Variable): A Tensor representing the mean intersection-over-union with shape [1].
        out_wrong(Variable): A Tensor with shape [num_classes]. The wrong numbers of each class.
5959
        out_correct(Variable): A Tensor with shape [num_classes]. The correct numbers of each class.
W
whs 已提交
5960 5961 5962 5963

    Examples:

        .. code-block:: python
5964

W
whs 已提交
5965 5966 5967 5968
            iou, wrongs, corrects = fluid.layers.mean_iou(predict, label, num_classes)
    """
    helper = LayerHelper('mean_iou', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
5969 5970 5971
    out_mean_iou = helper.create_variable_for_type_inference(dtype='float32')
    out_wrong = helper.create_variable_for_type_inference(dtype='int32')
    out_correct = helper.create_variable_for_type_inference(dtype='int32')
W
whs 已提交
5972 5973
    helper.append_op(
        type="mean_iou",
W
whs 已提交
5974 5975
        inputs={"Predictions": input,
                "Labels": label},
W
whs 已提交
5976
        outputs={
W
whs 已提交
5977 5978 5979
            "OutMeanIou": out_mean_iou,
            "OutWrong": out_wrong,
            "OutCorrect": out_correct
W
whs 已提交
5980 5981 5982
        },
        attrs={"num_classes": num_classes})
    return out_mean_iou, out_wrong, out_correct
5983 5984 5985 5986 5987 5988 5989 5990 5991 5992 5993 5994 5995 5996 5997 5998 5999 6000 6001 6002 6003 6004 6005 6006 6007 6008 6009 6010 6011 6012 6013 6014 6015 6016 6017 6018 6019 6020 6021 6022 6023 6024 6025 6026 6027 6028 6029 6030 6031 6032 6033 6034 6035 6036 6037 6038 6039 6040 6041 6042 6043 6044 6045 6046 6047 6048 6049 6050 6051 6052 6053 6054 6055 6056


def crop(x, shape=None, offsets=None, name=None):
    """
    Crop input into output, as specified by offsets and shape.

    .. code-block:: text

        * Case 1:
            Given
                X = [[0, 1, 2, 0, 0]
                     [0, 3, 4, 0, 0]
                     [0, 0, 0, 0, 0]],
            and
                shape = [2, 2],
                offsets = [0, 1],
            output is:
                Out = [[1, 2],
                       [3, 4]].
        * Case 2:
            Given
                X = [[0, 1, 2, 5, 0]
                     [0, 3, 4, 6, 0]
                     [0, 0, 0, 0, 0]],
            and shape is tensor
                shape = [[0, 0, 0]
                         [0, 0, 0]]
            and
                offsets = [0, 1],

            output is:
                Out = [[1, 2, 5],
                       [3, 4, 6]].

    Args:
        x (Variable): The input tensor variable.
        shape (Variable|list/tuple of integer): The output shape is specified
            by `shape`, which can a Variable or a list/tupe of integer.
            If a tensor Variable, it's rank must be the same as `x`. This way
            is suitable for the case that the output shape may be changed each
            iteration. If a list/tupe of integer, it's length must be the same
            as the rank of `x`
        offsets (Variable|list/tuple of integer|None): Specifies the copping
            offsets at each dimension. It can be a Variable or or a list/tupe
            of integer. If a tensor Variable, it's rank must be the same as `x`.
            This way is suitable for the case that the offsets may be changed
            each iteration. If a list/tupe of integer, it's length must be the
            same as the rank of `x`. If None, the offsets are 0 at each
            dimension.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: The cropped tensor variable.

    Raises:
        ValueError: If shape is not a list, tuple or Variable.

    Examples:

        .. code-block:: python

            x = fluid.layers.data(name="x", shape=[3, 5], dtype="float32")
            y = fluid.layers.data(name="y", shape=[2, 3], dtype="float32")
            crop = fluid.layers.crop(x, shape=y)

            # or
            z = fluid.layers.data(name="z", shape=[3, 5], dtype="float32")
            crop = fluid.layers.crop(z, shape=[2, 3])

    """
    helper = LayerHelper('crop', **locals())

    if not (isinstance(shape, list) or isinstance(shape, tuple) or \
C
chengduo 已提交
6057
                    isinstance(shape, Variable)):
6058 6059 6060 6061 6062
        raise ValueError("The shape should be a list, tuple or Variable.")

    if offsets is None:
        offsets = [0] * len(x.shape)

X
Xin Pan 已提交
6063
    out = helper.create_variable_for_type_inference(x.dtype)
6064 6065 6066 6067 6068 6069 6070 6071 6072 6073 6074 6075 6076 6077 6078 6079 6080
    ipts = {'X': x}
    attrs = {}
    if isinstance(shape, Variable):
        ipts['Y'] = shape
    else:
        attrs['shape'] = shape
    if isinstance(offsets, Variable):
        ipts['Offsets'] = offsets
    else:
        attrs['offsets'] = offsets

    helper.append_op(
        type='crop',
        inputs=ipts,
        outputs={'Out': out},
        attrs=None if len(attrs) == 0 else attrs)
    return out
6081 6082 6083 6084 6085 6086 6087 6088 6089 6090


def rank_loss(label, left, right, name=None):
    """
    **Rank loss layer for RankNet**

    RankNet(http://icml.cc/2015/wp-content/uploads/2015/06/icml_ranking.pdf)
    is a pairwise ranking model with a training sample consisting of a pair
    of documents, A and B. Label P indicates whether A is ranked higher than B
    or not:
M
minqiyang 已提交
6091

6092 6093
    P = {0, 1} or {0, 0.5, 1}, where 0.5 means that there is no information
    about the rank of the input pair.
M
minqiyang 已提交
6094

6095 6096 6097 6098
    Rank loss layer takes three inputs: left (o_i), right (o_j) and
    label (P_{i,j}). The inputs respectively represent RankNet's output scores
    for documents A and B and the value of label P. The following equation
    computes rank loss C_{i,j} from the inputs:
M
minqiyang 已提交
6099

6100 6101 6102 6103 6104
    $$
      C_{i,j} = -\tilde{P_{ij}} * o_{i,j} + \log(1 + e^{o_{i,j}}) \\
      o_{i,j} =  o_i - o_j  \\
      \tilde{P_{i,j}} = \left \{0, 0.5, 1 \right \} \ or \ \left \{0, 1 \right \}
    $$
M
minqiyang 已提交
6105 6106 6107

    Rank loss layer takes batch inputs with size batch_size (batch_size >= 1).

6108 6109 6110 6111 6112 6113 6114 6115 6116 6117 6118 6119 6120 6121 6122 6123 6124 6125 6126 6127 6128 6129 6130 6131 6132 6133 6134 6135 6136 6137 6138 6139 6140 6141 6142
    Args:
        label (Variable): Indicats whether A ranked higher than B or not.
        left (Variable): RankNet's output score for doc A.
        right (Variable): RankNet's output score for doc B.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        list: The value of rank loss.

    Raises:
        ValueError: Any of label, left, and right is not a variable.

    Examples:

        .. code-block:: python

            label = fluid.layers.data(name="label", shape=[4, 1], dtype="float32")
            left = fluid.layers.data(name="left", shape=[4, 1], dtype="float32")
            right = fluid.layers.data(name="right", shape=[4, 1], dtype="float32")
            out = fluid.layers.rank_loss(label, left, right)


    """
    helper = LayerHelper('rank_loss', **locals())

    if not (isinstance(label, Variable)):
        raise ValueError("The label should be a Variable")

    if not (isinstance(left, Variable)):
        raise ValueError("The left should be a Variable")

    if not (isinstance(right, Variable)):
        raise ValueError("The right should be a Variable")

X
Xin Pan 已提交
6143
    out = helper.create_variable_for_type_inference("float32")
6144 6145 6146 6147 6148 6149 6150 6151

    helper.append_op(
        type='rank_loss',
        inputs={"Label": label,
                "Left": left,
                "Right": right},
        outputs={'Out': out})
    return out
6152 6153


M
minqiyang 已提交
6154 6155
def margin_rank_loss(label, left, right, margin=0.1, name=None):
    """
M
minqiyang 已提交
6156
    Margin Ranking Loss Layer for ranking problem,
M
minqiyang 已提交
6157
    which compares left score and right score passed in.
M
minqiyang 已提交
6158
    The ranking loss can be defined as following equation:
M
minqiyang 已提交
6159 6160 6161 6162 6163 6164

    .. math::

        rank\_loss &= max(0, -label * (left - right) + margin)

    Args:
M
minqiyang 已提交
6165
       label (Variable): Indicates whether the left is ranked higher than the right or not.
M
minqiyang 已提交
6166 6167
       left (Variable): Ranking score for left.
       right (Variable): Ranking score for right.
M
minqiyang 已提交
6168
       margin (float): Indicates the given margin.
M
minqiyang 已提交
6169 6170 6171
       name (str|None): A name for this layer (optional). If set None, the layer
                       will be named automatically.
    Returns:
M
minqiyang 已提交
6172
       Variable: The ranking loss.
M
minqiyang 已提交
6173
    Raises:
M
minqiyang 已提交
6174
       ValueError: Any of label, left, and right is not a Variable.
M
minqiyang 已提交
6175 6176 6177 6178 6179 6180 6181
    Examples:
        .. code-block:: python
           label = fluid.layers.data(name="label", shape=[4, 1], dtype="float32")
           left = fluid.layers.data(name="left", shape=[4, 1], dtype="float32")
           right = fluid.layers.data(name="right", shape=[4, 1], dtype="float32")
           out = fluid.layers.margin_rank_loss(label, left, right)
    """
M
minqiyang 已提交
6182
    helper = LayerHelper('margin_rank_loss', **locals())
M
minqiyang 已提交
6183 6184 6185 6186 6187 6188
    if not isinstance(label, Variable):
        raise ValueError("The label should be a Variable.")
    if not isinstance(left, Variable):
        raise ValueError("The left should be a Variable.")
    if not isinstance(right, Variable):
        raise ValueError("The right should be a Variable.")
X
Xin Pan 已提交
6189 6190
    out = helper.create_variable_for_type_inference(left.dtype)
    act = helper.create_variable_for_type_inference(left.dtype)
M
minqiyang 已提交
6191 6192 6193 6194 6195 6196 6197 6198 6199 6200 6201
    helper.append_op(
        type='margin_rank_loss',
        inputs={"Label": label,
                "X1": left,
                "X2": right},
        outputs={'Out': out,
                 'Activated': act},
        attrs={'margin': margin})
    return out


W
whs 已提交
6202 6203 6204 6205 6206 6207 6208 6209 6210 6211 6212 6213 6214 6215
def pad2d(input,
          paddings=[0, 0, 0, 0],
          mode='constant',
          pad_value=0.0,
          data_format="NCHW",
          name=None):
    """
    Pad 2-d images accordding to 'paddings' and 'mode'.
    If mode is 'reflect', paddings[0] and paddings[1] must be no greater
    than height-1. And the width dimension has the same condition.

    Example:

      Given that X is a channel of image from input:
M
minqiyang 已提交
6216

W
whs 已提交
6217 6218
      X = [[1, 2, 3],
           [4, 5, 6]]
M
minqiyang 已提交
6219

W
whs 已提交
6220
      Case 0:
M
minqiyang 已提交
6221

W
whs 已提交
6222 6223 6224
        paddings = [0, 1, 2, 3],
        mode = 'constant'
        pad_value = 0
M
minqiyang 已提交
6225

W
whs 已提交
6226 6227 6228
        Out = [[0, 0, 1, 2, 3, 0, 0, 0]
               [0, 0, 4, 5, 6, 0, 0, 0]
               [0, 0, 0, 0, 0, 0, 0, 0]]
M
minqiyang 已提交
6229

W
whs 已提交
6230
      Case 1:
M
minqiyang 已提交
6231

W
whs 已提交
6232 6233
        paddings = [0, 1, 2, 1],
        mode = 'reflect'
M
minqiyang 已提交
6234

W
whs 已提交
6235 6236 6237
        Out = [[3, 2, 1, 2, 3, 2]
               [6, 5, 4, 5, 6, 5]
               [3, 2, 1, 2, 3, 2]]
M
minqiyang 已提交
6238

W
whs 已提交
6239
      Case 2:
M
minqiyang 已提交
6240

W
whs 已提交
6241 6242
        paddings = [0, 1, 2, 1],
        mode = 'edge'
M
minqiyang 已提交
6243

W
whs 已提交
6244 6245 6246
        Out = [[1, 1, 1, 2, 3, 3]
               [4, 4, 4, 5, 6, 6]
               [4, 4, 4, 5, 6, 6]]
M
minqiyang 已提交
6247 6248


W
whs 已提交
6249 6250 6251 6252 6253 6254 6255 6256 6257 6258 6259 6260 6261 6262 6263 6264 6265 6266 6267 6268 6269 6270 6271 6272 6273 6274
    Args:
        input (Variable): The input image with [N, C, H, W] format or [N, H, W, C] format.
        paddings (tuple|list): The padding size. If padding is a tuple, it must
            contain four integers, (padding_top, padding_bottom, padding_left, padding_right).
            Default: padding = [0, 0, 0, 0].
        mode (str): Three modes: constant(default), reflect, edge. Default: constant
        pad_value (float32): The value to fill the padded areas in constant mode. Default: 0
        data_format (str): An optional string from: "NHWC", "NCHW". Specify the data format of
                           the input data.
                           Default: "NCHW"
        name (str|None): A name for this layer(optional). If set None, the layer
            will be named automatically.

    Returns:
        Variable: The tensor variable padded accordding to paddings and mode.


    Examples:
        .. code-block:: python

          data = fluid.layers.data(name='data', shape=[3, 32, 32], dtype='float32')
          result = fluid.layers.pad2d(input=data, padding=[1,2,3,4], mode='reflect')
    """

    helper = LayerHelper('pad2d', **locals())
    dtype = helper.input_dtype(input_param_name='input')
X
Xin Pan 已提交
6275
    out = helper.create_variable_for_type_inference(dtype)
W
whs 已提交
6276 6277 6278 6279 6280 6281 6282 6283 6284 6285 6286 6287 6288 6289
    helper.append_op(
        type='pad2d',
        inputs={'X': input},
        outputs={"Out": out},
        attrs={
            'paddings': paddings,
            'mode': mode,
            'pad_value': pad_value,
            'data_frmat': data_format
        })

    return out


6290 6291 6292 6293 6294 6295 6296 6297 6298 6299 6300 6301 6302 6303
@templatedoc()
def elu(x, alpha=1.0, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        alpha(${alpha_type}|1.0): ${alpha_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        output(${out_type}): ${out_comment}
    """
    helper = LayerHelper('elu', **locals())
X
Xin Pan 已提交
6304
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
6305 6306 6307 6308 6309 6310 6311 6312 6313 6314 6315 6316 6317 6318 6319 6320 6321 6322 6323 6324 6325 6326
    helper.append_op(
        type='elu',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'alpha': alpha})
    return out


@templatedoc()
def relu6(x, threshold=6.0, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        threshold(${threshold_type}|6.0): ${threshold_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        output(${out_type}): ${out_comment}
    """
    helper = LayerHelper('relu6', **locals())
X
Xin Pan 已提交
6327
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
6328 6329 6330 6331 6332 6333 6334 6335 6336 6337 6338 6339 6340 6341 6342 6343 6344 6345 6346 6347 6348 6349
    helper.append_op(
        type='relu6',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'threshold': threshold})
    return out


@templatedoc()
def pow(x, factor=1.0, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        factor(${factor_type}|1.0): ${factor_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        output(${out_type}): ${out_comment}
    """
    helper = LayerHelper('pow', **locals())
X
Xin Pan 已提交
6350
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
6351 6352 6353 6354 6355 6356 6357 6358 6359 6360 6361 6362 6363 6364 6365 6366 6367 6368 6369 6370 6371 6372 6373
    helper.append_op(
        type='pow',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'factor': factor})
    return out


@templatedoc()
def stanh(x, scale_a=2.0 / 3.0, scale_b=1.7159, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        scale_a(${scale_a_type}|2.0 / 3.0): ${scale_a_comment}
        scale_b(${scale_b_type}|1.7159): ${scale_b_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        output(${out_type}): ${out_comment}
    """
    helper = LayerHelper('stanh', **locals())
X
Xin Pan 已提交
6374
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
6375 6376 6377 6378 6379 6380 6381 6382 6383 6384 6385 6386 6387 6388 6389 6390 6391 6392 6393 6394 6395 6396 6397 6398
    helper.append_op(
        type='stanh',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'scale_a': scale_a,
               'scale_b': scale_b})
    return out


@templatedoc()
def hard_sigmoid(x, slope=0.2, offset=0.5, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        slope(${slope_type}|0.2): ${slope_comment}
        offset(${offset_type}|0.5): ${offset_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        output(${out_type}): ${out_comment}
    """
    helper = LayerHelper('hard_sigmoid', **locals())
X
Xin Pan 已提交
6399
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
6400 6401 6402 6403 6404 6405 6406 6407 6408 6409 6410 6411 6412 6413 6414 6415 6416 6417 6418 6419 6420 6421 6422
    helper.append_op(
        type='hard_sigmoid',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'slope': slope,
               'offset': offset})
    return out


@templatedoc()
def swish(x, beta=1.0, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        beta(${beta_type}|1.0): ${beta_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        output(${out_type}): ${out_comment}
    """
    helper = LayerHelper('swish', **locals())
X
Xin Pan 已提交
6423
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
6424 6425 6426 6427 6428 6429 6430 6431
    helper.append_op(
        type='swish',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'slope': beta})
    return out


J
jerrywgz 已提交
6432 6433 6434 6435 6436 6437 6438 6439 6440 6441 6442 6443 6444 6445
def prelu(x, mode, param_attr=None, name=None):
    """
    Equation:

        y = \max(0, x) + alpha \min(0, x)

    Args:
        x (Variable): The input tensor.
	  param_attr(ParamAttr|None): The parameter attribute for the learnable
                                    weight (alpha).
        mode (string): The mode for weight sharing
		       all: all elements share same weight
 		       channel:elements in a channel share same weight
 		       element:each element has a weight
W
whs 已提交
6446
	name(str|None): A name for this layer(optional). If set None, the layer
M
minqiyang 已提交
6447
                        will be named automatically.
J
jerrywgz 已提交
6448 6449 6450 6451 6452 6453 6454 6455 6456 6457 6458 6459 6460 6461 6462 6463 6464 6465 6466 6467 6468 6469 6470 6471 6472 6473 6474

    Returns:
        Variable: The output tensor with the same shape as input.

    Examples:

        .. code-block:: python

         x = fluid.layers.data(name="x", shape=[10,10], dtype="float32")
            mode = 'channel'
            output = fluid.layers.prelu(x,mode)
    """
    helper = LayerHelper('prelu', **locals())
    if mode not in ['all', 'channel', 'element']:
        raise ValueError('mode should be one of all, channel, element.')
    alpha_shape = [1]
    if mode == 'channel':
        alpha_shape = [1, x.shape[1], 1, 1]
    elif mode == 'element':
        alpha_shape = x.shape
    dtype = helper.input_dtype(input_param_name='x')
    alpha = helper.create_parameter(
        attr=param_attr,
        shape=alpha_shape,
        dtype='float32',
        is_bias=False,
        default_initializer=Constant(1.0))
X
Xin Pan 已提交
6475
    out = helper.create_variable_for_type_inference(dtype)
J
jerrywgz 已提交
6476 6477 6478 6479 6480 6481 6482 6483 6484
    helper.append_op(
        type="prelu",
        inputs={"X": x,
                'Alpha': alpha},
        attrs={"mode": mode},
        outputs={"Out": out})
    return out


6485 6486 6487 6488 6489 6490 6491 6492 6493 6494 6495 6496 6497 6498
@templatedoc()
def brelu(x, t_min=0.0, t_max=24.0, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        t_min(${t_min_type}|0.0): ${t_min_comment}
        t_max(${t_max_type}|24.0): ${t_max_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
     Returns:
        output(${out_type}): ${out_comment}
    """
    helper = LayerHelper('brelu', **locals())
X
Xin Pan 已提交
6499
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
6500 6501 6502 6503 6504 6505 6506 6507 6508 6509 6510 6511 6512 6513 6514 6515 6516 6517 6518 6519 6520 6521
    helper.append_op(
        type='brelu',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'t_min': t_min,
               't_max': t_max})
    return out


@templatedoc()
def leaky_relu(x, alpha=0.02, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        alpha(${alpha_type}|0.02): ${alpha_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
     Returns:
        output(${out_type}): ${out_comment}
    """
    helper = LayerHelper('leaky_relu', **locals())
X
Xin Pan 已提交
6522
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
6523 6524 6525 6526 6527 6528 6529 6530 6531 6532 6533 6534 6535 6536 6537 6538 6539 6540 6541 6542 6543
    helper.append_op(
        type='leaky_relu',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'alpha': alpha})
    return out


@templatedoc()
def soft_relu(x, threshold=40.0, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        threshold(${threshold_type}|40.0): ${threshold_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
     Returns:
        output(${out_type}): ${out_comment}
    """
    helper = LayerHelper('soft_relu', **locals())
X
Xin Pan 已提交
6544
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
6545 6546 6547 6548 6549 6550 6551 6552
    helper.append_op(
        type='soft_relu',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'threshold': threshold})
    return out


6553 6554 6555 6556 6557 6558 6559 6560 6561 6562 6563 6564 6565
def flatten(x, axis=1, name=None):
    """
    **Flatten layer**
    Flattens the input tensor into a 2D matrix.

    Examples:
    Case 1:
      Given
        X.shape = (3, 100, 100, 4)
      and
        axis = 2
      We get:
        Out.shape = (3 * 100, 4 * 100)
6566

6567 6568 6569 6570 6571 6572 6573 6574 6575 6576
    Case 2:
      Given
        X.shape = (3, 100, 100, 4)
      and
        axis = 0
      We get:
        Out.shape = (1, 3 * 100 * 100 * 4)

    Args:
        x (Variable): A tensor of rank >= axis.
6577 6578
        axis (int): Indicate up to which input dimensions (exclusive) should
                    be flattened to the outer dimension of the output.
6579 6580 6581 6582 6583 6584 6585 6586 6587 6588 6589 6590 6591 6592 6593
                    The value for axis must be in the range [0, R], where R
                    is the rank of the input tensor. When axis = 0, the shape
                    of the output tensor is (1, (d_0 X d_1 ... d_n), where the
                    shape of the input tensor is (d_0, d_1, ... d_n).
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: A 2D tensor with the contents of the input tensor, with input
                  dimensions up to axis flattened to the outer dimension of
                  the output and remaining input dimensions flattened into the
                  inner dimension of the output.

    Raises:
        ValueError: If x is not a variable.
6594
        ValueError: If axis is not in range [0, rank(x)].
6595 6596 6597 6598 6599 6600 6601 6602 6603 6604 6605 6606 6607 6608 6609 6610

    Examples:

        .. code-block:: python

            x = fluid.layers.data(name="x", shape=[4, 4, 3], dtype="float32")
            out = fluid.layers.flatten(x=x, axis=2)
    """
    helper = LayerHelper('flatten', **locals())

    if not (isinstance(x, Variable)):
        raise ValueError("The input x should be a Variable")

    if not (isinstance(axis, int)) or axis > len(x.shape) or axis < 0:
        raise ValueError("The axis should be a int, and in range [0, rank(x)]")

X
Xin Pan 已提交
6611 6612
    out = helper.create_variable_for_type_inference(x.dtype)
    x_shape = helper.create_variable_for_type_inference(x.dtype)
6613
    helper.append_op(
6614
        type='flatten2',
6615
        inputs={"X": x},
6616 6617
        outputs={'Out': out,
                 'XShape': x_shape},
6618 6619
        attrs={"axis": axis})
    return out
X
Xin Pan 已提交
6620 6621


C
chenweihang 已提交
6622
def sequence_enumerate(input, win_size, pad_value=0, name=None):
C
chenweihang 已提交
6623
    """
C
chenweihang 已提交
6624
    Generate a new sequence for the input index sequence, which enumerates all the
M
minqiyang 已提交
6625
    sub-sequences with length `win_size` of the input.
C
chenweihang 已提交
6626 6627
    The enumerated sequence has the same 1st dimension with variable `input`, and
    the 2nd dimension is `win_size`, padded by `pad_value` if necessary in generation.
M
minqiyang 已提交
6628

C
chenweihang 已提交
6629 6630 6631 6632
    Examples:
    Case 1:
      Input:
        X.lod = [[0, 3, 5]]
6633
        X.data = [[1], [2], [3], [4], [5]]
C
chenweihang 已提交
6634 6635 6636 6637 6638 6639
        X.dims = [5, 1]
      Attrs:
        win_size = 2
        pad_value = 0
      Output:
        Out.lod = [[0, 3, 5]]
6640
        Out.data = [[1, 2], [2, 3], [3, 0], [4, 5], [5, 0]]
C
chenweihang 已提交
6641 6642 6643
        Out.dims = [5, 2]

    Args:
C
chenweihang 已提交
6644 6645 6646
        input (Variable): The input variable which is a index sequence.
        win_size (int): The window size for enumerating all sub-sequences.
        pad_value (int): The padding value, default 0.
C
chenweihang 已提交
6647 6648 6649 6650 6651 6652 6653 6654 6655 6656 6657

    Returns:
        Variable: The enumerate sequence variable which is a LoDTensor.

    Examples:
        .. code-block:: python

            x = fluid.layers.data(shape[30, 1], dtype='int32', lod_level=1)
            out = fluid.layers.sequence_enumerate(input=x, win_size=3, pad_value=0)
    """
    helper = LayerHelper('sequence_enumerate', **locals())
X
Xin Pan 已提交
6658 6659
    out = helper.create_variable_for_type_inference(
        helper.input_dtype(), stop_gradient=True)
C
chenweihang 已提交
6660 6661 6662 6663 6664 6665
    helper.append_op(
        type='sequence_enumerate',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={'win_size': win_size,
               'pad_value': pad_value})
M
minqiyang 已提交
6666
    return out
6667

6668

S
sneaxiy 已提交
6669 6670 6671 6672 6673 6674 6675 6676 6677
def sequence_mask(x, maxlen=None, dtype='int64', name=None):
    """
    **SequenceMask Layer**

    This layer outputs a mask according to the input :code:`x` and
    :code:`maxlen` with data type of :code:`dtype`.

    Supposing :code:`x` is a Tensor with shape [d_1, d_2, ..., d_n], the
    :code:`y` is a mask with shape [d_1, d_2, ..., d_n, maxlen], where:
6678

S
sneaxiy 已提交
6679
    .. math::
6680

S
sneaxiy 已提交
6681 6682 6683
        y(i_1, i_2,..., i_n, j) = (j < x(i_1, i_2,..., i_n))

    Args:
6684
        x (Variable): Input tensor of sequence_mask layer,
S
sneaxiy 已提交
6685 6686 6687 6688
                      whose elements are integers less than :code:`maxlen`.
        maxlen (int|None): Maximum length of the sequence. If :code:`maxlen`
                           is None, it would be replace with :math:`max(x)`.
        dtype (np.dtype|core.VarDesc.VarType|str): Data type of the output.
6689 6690 6691
        name (str|None): A name for this layer(optional). If set None, the
                         layer will be named automatically.

S
sneaxiy 已提交
6692 6693
    Returns:
        Variable: The output sequence mask.
6694

S
sneaxiy 已提交
6695 6696
    """

Q
qingqing01 已提交
6697
    helper = LayerHelper('sequence_mask', **locals())
S
sneaxiy 已提交
6698
    if name is None:
X
Xin Pan 已提交
6699
        out = helper.create_variable_for_type_inference(dtype=dtype)
S
sneaxiy 已提交
6700
    else:
X
Xin Pan 已提交
6701
        out = helper.create_variable_for_type_inference(dtype=dtype, name=name)
S
sneaxiy 已提交
6702

Q
qingqing01 已提交
6703 6704 6705
    helper.append_op(
        type='sequence_mask',
        inputs={'X': [x]},
S
sneaxiy 已提交
6706 6707
        outputs={'Y': out},
        attrs={
6708
            'maxlen': maxlen if maxlen is not None else -1,
S
sneaxiy 已提交
6709 6710 6711
            'out_dtype': out.dtype
        })
    return out
S
sneaxiy 已提交
6712 6713


X
Xin Pan 已提交
6714
def stack(x, axis=0):
S
sneaxiy 已提交
6715 6716 6717 6718
    """
    **Stack Layer**

    This layer stacks all of the input :code:`x` along axis.
6719 6720 6721 6722 6723 6724 6725

    Input :code:`x` can be a single variable, a :code:`list` of variables,
    or a :code:`tuple` of variables. If :code:`x` is a :code:`list` or
    :code:`tuple`, the shapes of all these variables must be the same.
    Supposing the shape of each input is :math:`[d_0, d_1, ..., d_{n-1}]`,
    the shape of the output variable would be
    :math:`[d_0, d_1, ..., d_{axis}=len(x), ..., d_{n-1}]`.
S
sneaxiy 已提交
6726
    If :code:`axis` < 0, it would be replaced with :code:`axis+rank(x[0])+1`.
6727
    If :code:`axis` is None, it would be replaced with 0.
S
sneaxiy 已提交
6728 6729

    Args:
6730
        x (Variable|list(Variable)|tuple(Variable)): Input variables.
S
sneaxiy 已提交
6731
        axis (int|None): The axis along which all inputs are stacked.
6732

S
sneaxiy 已提交
6733 6734
    Returns:
        Variable: The stacked variable.
6735

S
sneaxiy 已提交
6736 6737
    """

X
Xin Pan 已提交
6738 6739 6740 6741 6742 6743
    helper = LayerHelper('stack', **locals())
    axis = 0 if axis is None else axis

    if not isinstance(x, list) and not isinstance(x, tuple):
        x = [x]

X
Xin Pan 已提交
6744
    out = helper.create_variable_for_type_inference(x[0].dtype)
X
Xin Pan 已提交
6745
    helper.append_op(
S
sneaxiy 已提交
6746 6747
        type='stack', inputs={'X': x}, outputs={'Y': out},
        attrs={'axis': axis})
6748

X
Xin Pan 已提交
6749
    return out
D
dzhwinter 已提交
6750 6751 6752 6753 6754 6755 6756


def unstack(x, axis=0, num=None):
    """
    **UnStack Layer**

    This layer unstacks input :code:`x` into several tensors along axis.
M
minqiyang 已提交
6757

D
dzhwinter 已提交
6758 6759 6760
    If :code:`axis` < 0, it would be replaced with :code:`axis+rank(x)`.
    If :code:`num` is None, it would be inferred from :code:`x.shape[axis]`,
    and if :code:`x.shape[axis]` <= 0 or is unknown, :code:`ValueError` is
M
minqiyang 已提交
6761
    raised.
D
dzhwinter 已提交
6762 6763

    Args:
M
minqiyang 已提交
6764
        x (Variable): Input variable.
D
dzhwinter 已提交
6765 6766
        axis (int): The axis along which the input is unstacked.
        num (int|None): The number of output variables.
M
minqiyang 已提交
6767

D
dzhwinter 已提交
6768 6769
    Returns:
        list(Variable): The unstacked variables.
M
minqiyang 已提交
6770

D
dzhwinter 已提交
6771 6772 6773 6774 6775 6776 6777 6778 6779 6780 6781
    """

    helper = LayerHelper('unstack', **locals())
    if num is None:
        if axis is None or x.shape[axis] <= 0:
            raise ValueError('unknown unstack number')
        else:
            num = x.shape[axis]

    outs = []
    for _ in num:
X
Xin Pan 已提交
6782
        outs.append(helper.create_variable_for_type_inference(x.dtype))
D
dzhwinter 已提交
6783 6784 6785 6786 6787 6788 6789 6790

    helper.append_op(
        type='unstack',
        inputs={'X': [x]},
        outputs={'Y': outs},
        attrs={'axis': axis,
               'num': num})
    return outs
W
whs 已提交
6791 6792 6793 6794 6795 6796 6797 6798 6799 6800 6801 6802


def expand(x, expand_times, name=None):
    """Expand operator tiles the input by given times number. You should set times
    number for each dimension by providing attribute 'expand_times'. The rank of X
    should be in [1, 6]. Please note that size of 'expand_times' must be the same
    with X's rank. Following is a using case:


    .. code-block:: text

        Input(X) is a 3-D tensor with shape [2, 3, 1]:
M
minqiyang 已提交
6803

W
whs 已提交
6804 6805 6806 6807
                [
                   [[1], [2], [3]],
                   [[4], [5], [6]]
                ]
M
minqiyang 已提交
6808

W
whs 已提交
6809
        Attr(expand_times):  [1, 2, 2]
M
minqiyang 已提交
6810

W
whs 已提交
6811
        Output(Out) is a 3-D tensor with shape [2, 6, 2]:
M
minqiyang 已提交
6812

W
whs 已提交
6813 6814 6815 6816
                [
                    [[1, 1], [2, 2], [3, 3], [1, 1], [2, 2], [3, 3]],
                    [[4, 4], [5, 5], [6, 6], [4, 4], [5, 5], [6, 6]]
                ]
M
minqiyang 已提交
6817

W
whs 已提交
6818 6819 6820 6821 6822 6823 6824 6825 6826 6827 6828 6829 6830 6831 6832 6833
    Args:
        x (Variable): A tensor with rank in [1, 6].
        expand_times (list|tuple): Expand times number for each dimension.

    Returns:
        Variable: The expanded variable which is a LoDTensor. After expanding, size of each dimension of Output(Out) is equal to ithe size of the corresponding dimension of Input(X) multiplying the corresponding value given by expand_times.


    Examples:
        .. code-block:: python

            x = fluid.layers.data(name='x', shape=[10], dtype='float32')
            out = fluid.layers.expand(x=x, expand_times=[1, 2, 2])
    """
    helper = LayerHelper('expand', input=x, **locals())
    dtype = helper.input_dtype(input_param_name='x')
X
Xin Pan 已提交
6834
    out = helper.create_variable_for_type_inference(dtype)
W
whs 已提交
6835 6836 6837 6838 6839 6840
    helper.append_op(
        type='expand',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'expand_times': expand_times})
    return out
S
sneaxiy 已提交
6841 6842


G
fix  
gongweibao 已提交
6843 6844 6845
from paddle.fluid.framework import convert_np_dtype_to_dtype_


G
gongweibao 已提交
6846
@templatedoc()
G
fix  
gongweibao 已提交
6847 6848 6849 6850 6851 6852 6853 6854 6855
def uniform_random_batch_size_like(input,
                                   shape,
                                   dtype='float32',
                                   input_dim_idx=0,
                                   output_dim_idx=0,
                                   min=-1.0,
                                   max=1.0,
                                   seed=0):
    """
G
gongweibao 已提交
6856
    ${comment}
G
fix  
gongweibao 已提交
6857 6858

    Args:
G
gongweibao 已提交
6859 6860 6861
        input (Variable): ${input_comment}
        shape (tuple|list): ${shape_comment}
        input_dim_idx (Int): ${input_dim_idx_comment}
G
gongweibao 已提交
6862
        output_dim_idx (Int): ${output_dim_idx_comment}
G
gongweibao 已提交
6863 6864 6865
        min (Float): ${min_comment}
        max (Float): ${max_comment}
        seed (Int): ${seed_comment}
G
fix  
gongweibao 已提交
6866 6867
        dtype(np.dtype|core.VarDesc.VarType|str): The type of data : float32, float_16, int etc
    Returns:
G
gongweibao 已提交
6868
        out (Variable): ${out_comment}
G
fix  
gongweibao 已提交
6869 6870 6871 6872

    """

    helper = LayerHelper('uniform_random_batch_size_like', **locals())
X
Xin Pan 已提交
6873
    out = helper.create_variable_for_type_inference(dtype)
G
fix  
gongweibao 已提交
6874 6875 6876 6877 6878 6879 6880 6881 6882 6883 6884 6885 6886 6887 6888 6889
    c_dtype = convert_np_dtype_to_dtype_(dtype)
    helper.append_op(
        type='uniform_random_batch_size_like',
        inputs={'Input': input},
        outputs={'Out': out},
        attrs={
            'shape': shape,
            'input_dim_idx': input_dim_idx,
            'output_dim_idx': output_dim_idx,
            'min': min,
            'max': max,
            'seed': seed,
            'dtype': c_dtype
        })

    return out
G
fix  
gongweibao 已提交
6890 6891


G
gongweibao 已提交
6892
@templatedoc()
X
Xin Pan 已提交
6893
def gaussian_random(shape, mean=0.0, std=1.0, seed=0, dtype='float32'):
G
fix  
gongweibao 已提交
6894
    """
G
gongweibao 已提交
6895
    ${comment}
G
fix  
gongweibao 已提交
6896 6897

    Args:
G
gongweibao 已提交
6898 6899 6900 6901
        shape (tuple|list): ${shape_comment}
        mean (Float): ${mean_comment}
        std (Float): ${std_comment}
        seed (Int): ${seed_comment}
G
fix  
gongweibao 已提交
6902 6903 6904
        dtype(np.dtype|core.VarDesc.VarType|str): Output data type.

    Returns:
G
gongweibao 已提交
6905
        out (Variable): ${out_comment}
G
fix  
gongweibao 已提交
6906 6907 6908 6909

    """

    helper = LayerHelper('gaussian_random', **locals())
X
Xin Pan 已提交
6910
    out = helper.create_variable_for_type_inference(dtype)
G
fix  
gongweibao 已提交
6911 6912 6913 6914 6915 6916 6917 6918 6919 6920
    c_dtype = convert_np_dtype_to_dtype_(dtype)
    helper.append_op(
        type='gaussian_random',
        outputs={'Out': out},
        attrs={
            'shape': shape,
            'mean': mean,
            'std': std,
            'seed': seed,
            'dtype': c_dtype,
X
Xin Pan 已提交
6921
            'use_mkldnn': False
G
fix  
gongweibao 已提交
6922 6923 6924 6925 6926
        })

    return out


G
gongweibao 已提交
6927
@templatedoc()
G
fix  
gongweibao 已提交
6928
def sampling_id(x, min=0.0, max=1.0, seed=0, dtype='float32'):
G
fix  
gongweibao 已提交
6929
    """
G
gongweibao 已提交
6930
    ${comment}
G
fix  
gongweibao 已提交
6931 6932

    Args:
G
gongweibao 已提交
6933 6934 6935 6936
        x (Variable): ${x_comment}
        min (Float): ${min_comment}
        max (Float): ${max_comment}
        seed (Float): ${seed_comment}
G
fix  
gongweibao 已提交
6937
        dtype(np.dtype|core.VarDesc.VarType|str): The type of output data : float32, float_16, int etc
G
fix  
gongweibao 已提交
6938 6939

    Returns:
G
gongweibao 已提交
6940
        out (Variable): ${out_comment}
G
fix  
gongweibao 已提交
6941 6942 6943 6944

    """

    helper = LayerHelper('sampling_id', **locals())
X
Xin Pan 已提交
6945
    out = helper.create_variable_for_type_inference(dtype)
G
fix  
gongweibao 已提交
6946 6947 6948 6949 6950 6951 6952 6953 6954 6955 6956
    helper.append_op(
        type='sampling_id',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'min': min,
               'max': max,
               'seed': seed})

    return out


G
gongweibao 已提交
6957
@templatedoc()
G
fix  
gongweibao 已提交
6958 6959 6960 6961 6962 6963 6964 6965 6966
def gaussian_random_batch_size_like(input,
                                    shape,
                                    input_dim_idx=0,
                                    output_dim_idx=0,
                                    mean=0.0,
                                    std=1.0,
                                    seed=0,
                                    dtype='float32'):
    """
G
gongweibao 已提交
6967
    ${comment}
G
fix  
gongweibao 已提交
6968 6969

    Args:
G
gongweibao 已提交
6970 6971
        input (Variable): ${input_comment}
        shape (tuple|list): ${shape_comment}
G
gongweibao 已提交
6972
        input_dim_idx (Int): ${input_dim_idx_comment}
G
gongweibao 已提交
6973 6974 6975 6976
        output_dim_idx (Int): ${output_dim_idx_comment}
        mean (Float): ${mean_comment}
        std (Float): ${std_comment}
        seed (Int): ${seed_comment}
G
fix  
gongweibao 已提交
6977
        dtype(np.dtype|core.VarDesc.VarType|str): The type of output data : float32, float_16, int etc
G
fix  
gongweibao 已提交
6978 6979

    Returns:
G
gongweibao 已提交
6980
        out (Variable): ${out_comment}
G
fix  
gongweibao 已提交
6981 6982 6983
    """

    helper = LayerHelper('gaussian_random_batch_size_like', **locals())
X
Xin Pan 已提交
6984
    out = helper.create_variable_for_type_inference(dtype)
G
fix  
gongweibao 已提交
6985 6986 6987 6988 6989 6990 6991 6992 6993 6994 6995 6996 6997 6998 6999 7000 7001 7002
    c_dtype = convert_np_dtype_to_dtype_(dtype)
    helper.append_op(
        type='gaussian_random_batch_size_like',
        inputs={'Input': input},
        outputs={'Out': out},
        attrs={
            'shape': shape,
            'input_dim_idx': input_dim_idx,
            'output_dim_idx': output_dim_idx,
            'mean': mean,
            'std': std,
            'seed': seed,
            'dtype': c_dtype
        })

    return out


G
gongweibao 已提交
7003
@templatedoc()
X
Xin Pan 已提交
7004
def sum(x):
G
fix  
gongweibao 已提交
7005
    """
G
gongweibao 已提交
7006
    ${comment}
G
fix  
gongweibao 已提交
7007 7008

    Args:
G
gongweibao 已提交
7009
        x (Variable): ${x_comment}
G
fix  
gongweibao 已提交
7010 7011

    Returns:
G
gongweibao 已提交
7012
        out (Variable): ${out_comment}
G
fix  
gongweibao 已提交
7013 7014 7015
    """

    helper = LayerHelper('sum', **locals())
X
Xin Pan 已提交
7016 7017
    out = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype('x'))
G
fix  
gongweibao 已提交
7018 7019 7020 7021
    helper.append_op(
        type='sum',
        inputs={'X': x},
        outputs={'Out': out},
X
Xin Pan 已提交
7022
        attrs={'use_mkldnn': False})
G
fix  
gongweibao 已提交
7023 7024 7025 7026

    return out


G
gongweibao 已提交
7027
@templatedoc()
G
fix  
gongweibao 已提交
7028 7029
def slice(input, axes, starts, ends):
    """
G
gongweibao 已提交
7030
    ${comment}
G
fix  
gongweibao 已提交
7031 7032

    Args:
G
gongweibao 已提交
7033 7034 7035 7036
        input (Variable): ${input_comment}.
        axes (List): ${axes_comment}
        starts (List): ${starts_comment}
        ends (List): ${ends_comment}
G
fix  
gongweibao 已提交
7037 7038

    Returns:
G
gongweibao 已提交
7039
        out (Variable): ${out_comment}
G
fix  
gongweibao 已提交
7040 7041 7042 7043

    """

    helper = LayerHelper('slice', **locals())
X
Xin Pan 已提交
7044 7045
    out = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype('input'))
G
fix  
gongweibao 已提交
7046 7047 7048 7049 7050 7051 7052 7053 7054 7055 7056
    helper.append_op(
        type='slice',
        inputs={'Input': input},
        outputs={'Out': out},
        attrs={'axes': axes,
               'starts': starts,
               'ends': ends})

    return out


G
gongweibao 已提交
7057
@templatedoc()
G
fix  
gongweibao 已提交
7058 7059
def shape(input):
    """
G
gongweibao 已提交
7060
    ${comment}
G
fix  
gongweibao 已提交
7061 7062

    Args:
G
gongweibao 已提交
7063
        input (Variable): ${input_comment}
G
fix  
gongweibao 已提交
7064 7065

    Returns:
G
gongweibao 已提交
7066
        out (Variable): ${out_comment}
G
fix  
gongweibao 已提交
7067 7068 7069 7070

    """

    helper = LayerHelper('shape', **locals())
X
Xin Pan 已提交
7071 7072
    out = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype('input'))
G
fix  
gongweibao 已提交
7073
    helper.append_op(
G
fix  
gongweibao 已提交
7074
        type='shape', inputs={'Input': input}, outputs={'Out': out})
G
fix  
gongweibao 已提交
7075 7076

    return out
G
merge  
gongweibao 已提交
7077 7078


S
sneaxiy 已提交
7079 7080 7081 7082 7083 7084 7085 7086
def _elementwise_op(helper):
    op_type = helper.layer_type
    x = helper.kwargs.get('x', None)
    y = helper.kwargs.get('y', None)
    assert x is not None, 'x cannot be None in {}'.format(op_type)
    assert y is not None, 'y cannot be None in {}'.format(op_type)
    axis = helper.kwargs.get('axis', -1)
    use_mkldnn = helper.kwargs.get('use_mkldnn', False)
S
sneaxiy 已提交
7087 7088
    name = helper.kwargs.get('name', None)
    if name is None:
X
Xin Pan 已提交
7089
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
S
sneaxiy 已提交
7090 7091 7092
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)
S
sneaxiy 已提交
7093

S
sneaxiy 已提交
7094 7095 7096 7097 7098 7099 7100 7101 7102 7103 7104
    helper.append_op(
        type=op_type,
        inputs={'X': x,
                'Y': y},
        outputs={'Out': out},
        attrs={'axis': axis,
               'use_mkldnn': use_mkldnn})
    return helper.append_activation(out)


@templatedoc()
S
sneaxiy 已提交
7105
def scale(x, scale=1.0, bias=0.0, bias_after_scale=True, act=None, name=None):
S
sneaxiy 已提交
7106 7107 7108 7109 7110 7111 7112 7113
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        scale(${scale_type}): ${scale_comment}
        bias(${bias_type}): ${bias_comment}
        bias_after_scale(${bias_after_scale_type}): ${bias_after_scale_comment}
S
sneaxiy 已提交
7114
        act(basestring|None): Activation applied to the output.
M
minqiyang 已提交
7115
        name(basestring|None): Name of the output.
S
sneaxiy 已提交
7116 7117 7118 7119 7120 7121

    Returns:
        out(${out_type}): ${out_comment}
    """

    helper = LayerHelper('scale', **locals())
S
sneaxiy 已提交
7122
    if name is None:
X
Xin Pan 已提交
7123
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
S
sneaxiy 已提交
7124 7125 7126
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)
S
sneaxiy 已提交
7127 7128 7129 7130 7131 7132 7133 7134 7135 7136

    helper.append_op(
        type='scale',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={
            'scale': float(scale),
            'bias': float(bias),
            'bias_after_scale': bias_after_scale
        })
S
sneaxiy 已提交
7137
    return helper.append_activation(out)
S
sneaxiy 已提交
7138 7139


X
Xin Pan 已提交
7140
def elementwise_add(x, y, axis=-1, act=None, name=None):
S
sneaxiy 已提交
7141 7142 7143
    return _elementwise_op(LayerHelper('elementwise_add', **locals()))


X
Xin Pan 已提交
7144
def elementwise_div(x, y, axis=-1, act=None, name=None):
S
sneaxiy 已提交
7145 7146 7147
    return _elementwise_op(LayerHelper('elementwise_div', **locals()))


X
Xin Pan 已提交
7148
def elementwise_sub(x, y, axis=-1, act=None, name=None):
S
sneaxiy 已提交
7149 7150 7151
    return _elementwise_op(LayerHelper('elementwise_sub', **locals()))


X
Xin Pan 已提交
7152
def elementwise_mul(x, y, axis=-1, act=None, name=None):
S
sneaxiy 已提交
7153 7154 7155
    return _elementwise_op(LayerHelper('elementwise_mul', **locals()))


X
Xin Pan 已提交
7156
def elementwise_max(x, y, axis=-1, act=None, name=None):
S
sneaxiy 已提交
7157 7158 7159
    return _elementwise_op(LayerHelper('elementwise_max', **locals()))


X
Xin Pan 已提交
7160
def elementwise_min(x, y, axis=-1, act=None, name=None):
S
sneaxiy 已提交
7161 7162 7163
    return _elementwise_op(LayerHelper('elementwise_min', **locals()))


X
Xin Pan 已提交
7164
def elementwise_pow(x, y, axis=-1, act=None, name=None):
S
sneaxiy 已提交
7165 7166 7167 7168 7169 7170 7171 7172 7173 7174 7175
    return _elementwise_op(LayerHelper('elementwise_pow', **locals()))


for func in [
        elementwise_add, elementwise_div, elementwise_sub, elementwise_mul,
        elementwise_max, elementwise_min, elementwise_pow
]:
    op_proto = OpProtoHolder.instance().get_op_proto(func.__name__)
    func.__doc__ = _generate_doc_string_(
        op_proto,
        additional_args_lines=[
S
sneaxiy 已提交
7176 7177
            "act (basestring|None): Activation applied to the output.",
            "name (basestring|None): Name of the output."
S
sneaxiy 已提交
7178
        ])
M
minqiyang 已提交
7179 7180


7181
def _logical_op(op_name, x, y, out=None, name=None, binary_op=True):
M
minqiyang 已提交
7182 7183
    helper = LayerHelper(op_name, **locals())

M
minqiyang 已提交
7184 7185
    if binary_op:
        assert x.dtype == y.dtype
M
minqiyang 已提交
7186 7187 7188

    if out is None:
        if name is None:
X
Xin Pan 已提交
7189
            out = helper.create_variable_for_type_inference(dtype=x.dtype)
M
minqiyang 已提交
7190 7191 7192 7193 7194 7195 7196 7197 7198 7199 7200 7201 7202 7203 7204
        else:
            out = helper.create_variable(
                name=name, dtype=x.dtype, persistable=False)

    if binary_op:
        helper.append_op(
            type=op_name, inputs={"X": x,
                                  "Y": y}, outputs={"Out": out})
    else:
        helper.append_op(type=op_name, inputs={"X": x}, outputs={"Out": out})

    return out


@templatedoc()
7205
def logical_and(x, y, out=None, name=None):
M
minqiyang 已提交
7206 7207 7208 7209 7210 7211 7212 7213 7214 7215 7216 7217 7218 7219 7220 7221 7222 7223
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        y(${y_type}): ${y_comment}
        out(Tensor): Output tensor of logical operation.
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
    """

    return _logical_op(
        op_name="logical_and", x=x, y=y, name=name, out=out, binary_op=True)


@templatedoc()
7224
def logical_or(x, y, out=None, name=None):
M
minqiyang 已提交
7225 7226 7227 7228 7229 7230 7231 7232 7233 7234 7235 7236 7237 7238 7239 7240 7241 7242
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        y(${y_type}): ${y_comment}
        out(Tensor): Output tensor of logical operation.
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
    """

    return _logical_op(
        op_name="logical_or", x=x, y=y, name=name, out=out, binary_op=True)


@templatedoc()
7243
def logical_xor(x, y, out=None, name=None):
M
minqiyang 已提交
7244 7245 7246 7247 7248 7249 7250 7251 7252 7253 7254 7255 7256 7257 7258 7259 7260 7261
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        y(${y_type}): ${y_comment}
        out(Tensor): Output tensor of logical operation.
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
    """

    return _logical_op(
        op_name="logical_xor", x=x, y=y, name=name, out=out, binary_op=True)


@templatedoc()
7262
def logical_not(x, out=None, name=None):
M
minqiyang 已提交
7263 7264 7265 7266 7267 7268 7269 7270 7271 7272 7273 7274 7275 7276
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        out(Tensor): Output tensor of logical operation.
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
    """

    return _logical_op(
        op_name="logical_not", x=x, y=None, name=name, out=out, binary_op=False)
7277 7278 7279 7280 7281 7282 7283 7284 7285 7286 7287 7288 7289 7290 7291 7292 7293 7294 7295 7296


@templatedoc()
def clip(x, min, max, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        min(${min_type}): ${min_comment}
        max(${max_type}): ${max_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
    """

    helper = LayerHelper("clip", **locals())

    if name is None:
X
Xin Pan 已提交
7297
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
7298 7299 7300 7301 7302 7303 7304 7305 7306 7307 7308 7309 7310 7311 7312 7313 7314 7315 7316 7317 7318 7319 7320 7321 7322 7323 7324 7325 7326 7327 7328
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
        type="clip",
        inputs={"X": x},
        attrs={"min": min,
               "max": max},
        outputs={"Out": out})

    return out


@templatedoc()
def clip_by_norm(x, max_norm, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        max_norm(${max_norm_type}): ${max_norm_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
    """

    helper = LayerHelper("clip_by_norm", **locals())

    if name is None:
X
Xin Pan 已提交
7329
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
7330 7331 7332 7333 7334 7335 7336 7337 7338 7339 7340
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
        type="clip_by_norm",
        inputs={"X": x},
        attrs={"max_norm": max_norm},
        outputs={"Out": out})

    return out
X
Xin Pan 已提交
7341 7342 7343 7344 7345 7346 7347 7348 7349 7350 7351 7352 7353 7354 7355 7356 7357 7358


@templatedoc()
def mean(x, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
    """

    helper = LayerHelper("mean", **locals())

    if name is None:
X
Xin Pan 已提交
7359
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
X
Xin Pan 已提交
7360 7361 7362 7363 7364 7365 7366 7367 7368 7369 7370 7371 7372 7373 7374 7375 7376 7377 7378 7379 7380 7381 7382 7383 7384 7385 7386 7387 7388
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
        type="mean", inputs={"X": x}, attrs={}, outputs={"Out": out})

    return out


@templatedoc()
def mul(x, y, x_num_col_dims=1, y_num_col_dims=1, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        y(${y_type}): ${y_comment}
        x_num_col_dims(${x_num_col_dims_type}): ${x_num_col_dims_comment}
        y_num_col_dims(${y_num_col_dims_type}): ${y_num_col_dims_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
    """

    helper = LayerHelper("mul", **locals())

    if name is None:
X
Xin Pan 已提交
7389
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
X
Xin Pan 已提交
7390 7391 7392 7393 7394 7395 7396 7397 7398
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
        type="mul",
        inputs={"X": x,
                "Y": y},
        attrs={
X
fix  
Xin Pan 已提交
7399 7400
            "x_num_col_dims": x_num_col_dims,
            "y_num_col_dims": y_num_col_dims
X
Xin Pan 已提交
7401 7402 7403 7404 7405 7406 7407 7408 7409 7410 7411 7412 7413 7414 7415 7416 7417 7418 7419 7420 7421 7422
        },
        outputs={"Out": out})
    return out


@templatedoc()
def sigmoid_cross_entropy_with_logits(x, label, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        label(${label_type}): ${label_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
    """

    helper = LayerHelper("sigmoid_cross_entropy_with_logits", **locals())

    if name is None:
X
Xin Pan 已提交
7423
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
X
Xin Pan 已提交
7424 7425 7426 7427 7428 7429 7430 7431 7432 7433 7434 7435 7436 7437 7438 7439 7440 7441 7442 7443 7444 7445 7446 7447 7448 7449 7450 7451 7452
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
        type="sigmoid_cross_entropy_with_logits",
        inputs={"X": x,
                "Label": label},
        attrs={},
        outputs={"Out": out})
    return out


@templatedoc()
def maxout(x, groups, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        groups(${groups_type}): ${groups_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
    """
    helper = LayerHelper("maxout", **locals())

    if name is None:
X
Xin Pan 已提交
7453
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
X
Xin Pan 已提交
7454 7455 7456 7457 7458 7459 7460 7461 7462 7463
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
        type="maxout",
        inputs={"X": x},
        attrs={"groups": groups},
        outputs={"Out": out})
    return out
7464 7465 7466 7467 7468 7469 7470 7471 7472 7473 7474 7475 7476 7477 7478 7479 7480 7481 7482 7483 7484 7485 7486 7487 7488 7489 7490 7491


def affine_channel(x, scale=None, bias=None, data_layout='NCHW', name=None):
    """
    Applies a separate affine transformation to each channel of the input.
    Useful for replacing spatial batch norm with its equivalent fixed
    transformation. The input also can be 2D tensor and applies a affine
    transformation in second dimension.
    
    Args:
        x (Variable): Feature map input can be a 4D tensor with order NCHW
            or NHWC. It also can be a 2D tensor and the affine transformation
            is applied in the second dimension.
        scale (Variable): 1D input of shape (C), the c-th element is the scale
            factor of the affine transformation for the c-th channel of
            the input.
        bias (Variable): 1D input of shape (C), the c-th element is the bias
            of the affine transformation for the c-th channel of the input.
        data_layout (string, default NCHW): NCHW or NHWC. If input is 2D
            tensor, you can ignore data_layout.
        name (str, default None): The name of this layer.

    Returns:
        out (Variable): A tensor of the same shape and data layout with x.
    """
    helper = LayerHelper("affine_channel", **locals())

    if name is None:
X
Xin Pan 已提交
7492
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
7493 7494 7495 7496 7497 7498 7499 7500 7501 7502 7503 7504
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
        type="affine_channel",
        inputs={"X": x,
                'Scale': scale,
                'Bias': bias},
        attrs={"data_layout": data_layout},
        outputs={"Out": out})
    return out