detection.py 61.4 KB
Newer Older
1
#  Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserve.
2 3 4 5 6
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
7
#    http://www.apache.org/licenses/LICENSE-2.0
8 9 10 11 12 13 14 15 16 17
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
All layers just related to the detection neural network.
"""

18 19
from __future__ import print_function

20 21
from .layer_function_generator import generate_layer_fn
from .layer_function_generator import autodoc, templatedoc
22
from ..layer_helper import LayerHelper
23 24
from . import tensor
from . import nn
25
from . import ops
M
minqiyang 已提交
26
from ... import compat as cpt
C
chengduoZH 已提交
27
import math
M
minqiyang 已提交
28
import six
29
import numpy
30
from functools import reduce
31

C
chengduoZH 已提交
32
__all__ = [
33
    'prior_box',
C
chengduoZH 已提交
34
    'multi_box_head',
35 36 37 38
    'bipartite_match',
    'target_assign',
    'detection_output',
    'ssd_loss',
39
    'detection_map',
Y
Yuan Gao 已提交
40
    'rpn_target_assign',
41
    'anchor_generator',
W
whs 已提交
42
    'roi_perspective_transform',
43
    'generate_proposal_labels',
44
    'generate_proposals',
45 46
    'iou_similarity',
    'box_coder',
B
Bai Yifan 已提交
47
    'polygon_box_transform',
C
chengduoZH 已提交
48
]
49 50


51 52
def rpn_target_assign(bbox_pred,
                      cls_logits,
Y
Yuan Gao 已提交
53
                      anchor_box,
54
                      anchor_var,
55 56 57
                      gt_boxes,
                      is_crowd,
                      im_info,
Y
Yuan Gao 已提交
58
                      rpn_batch_size_per_im=256,
59 60
                      rpn_straddle_thresh=0.0,
                      rpn_fg_fraction=0.5,
Y
Yuan Gao 已提交
61
                      rpn_positive_overlap=0.7,
62 63
                      rpn_negative_overlap=0.3,
                      use_random=True):
Y
Yuan Gao 已提交
64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82
    """
    ** Target Assign Layer for region proposal network (RPN) in Faster-RCNN detection. **

    This layer can be, for given the  Intersection-over-Union (IoU) overlap
    between anchors and ground truth boxes, to assign classification and
    regression targets to each each anchor, these target labels are used for
    train RPN. The classification targets is a binary class label (of being
    an object or not). Following the paper of Faster-RCNN, the positive labels
    are two kinds of anchors: (i) the anchor/anchors with the highest IoU
    overlap with a ground-truth box, or (ii) an anchor that has an IoU overlap
    higher than rpn_positive_overlap(0.7) with any ground-truth box. Note
    that a single ground-truth box may assign positive labels to multiple
    anchors. A non-positive anchor is when its IoU ratio is lower than
    rpn_negative_overlap (0.3) for all ground-truth boxes. Anchors that are
    neither positive nor negative do not contribute to the training objective.
    The regression targets are the encoded ground-truth boxes associated with
    the positive anchors.

    Args:
83
        bbox_pred(Variable): A 3-D Tensor with shape [N, M, 4] represents the
Y
Yuan Gao 已提交
84 85 86
            predicted locations of M bounding bboxes. N is the batch size,
            and each bounding box has four coordinate values and the layout
            is [xmin, ymin, xmax, ymax].
87 88 89
        cls_logits(Variable): A 3-D Tensor with shape [N, M, 1] represents the
            predicted confidence predictions. N is the batch size, 1 is the
            frontground and background sigmoid, M is number of bounding boxes.
Y
Yuan Gao 已提交
90 91 92 93 94 95
        anchor_box(Variable): A 2-D Tensor with shape [M, 4] holds M boxes,
            each box is represented as [xmin, ymin, xmax, ymax],
            [xmin, ymin] is the left top coordinate of the anchor box,
            if the input is image feature map, they are close to the origin
            of the coordinate system. [xmax, ymax] is the right bottom
            coordinate of the anchor box.
96 97
        anchor_var(Variable): A 2-D Tensor with shape [M,4] holds expanded 
            variances of anchors.
98
        gt_boxes (Variable): The ground-truth boudding boxes (bboxes) are a 2D
Y
Yuan Gao 已提交
99 100
            LoDTensor with shape [Ng, 4], Ng is the total number of ground-truth
            bboxes of mini-batch input.
101 102 103
        is_crowd (Variable): A 1-D LoDTensor which indicates groud-truth is crowd.
        im_info (Variable): A 2-D LoDTensor with shape [N, 3]. N is the batch size,
        3 is the height, width and scale.
Y
Yuan Gao 已提交
104
        rpn_batch_size_per_im(int): Total number of RPN examples per image.
105 106 107
        rpn_straddle_thresh(float): Remove RPN anchors that go outside the image
            by straddle_thresh pixels.
        rpn_fg_fraction(float): Target fraction of RoI minibatch that is labeled
Y
Yuan Gao 已提交
108 109 110 111 112 113 114 115 116
            foreground (i.e. class > 0), 0-th class is background.
        rpn_positive_overlap(float): Minimum overlap required between an anchor
            and ground-truth box for the (anchor, gt box) pair to be a positive
            example.
        rpn_negative_overlap(float): Maximum overlap allowed between an anchor
            and ground-truth box for the (anchor, gt box) pair to be a negative
            examples.

    Returns:
M
minqiyang 已提交
117
        tuple:
Y
Yuan Gao 已提交
118
               A tuple(predicted_scores, predicted_location, target_label,
J
jerrywgz 已提交
119 120
               target_bbox, bbox_inside_weight) is returned. The predicted_scores 
               and predicted_location is the predicted result of the RPN.
Y
Yuan Gao 已提交
121 122 123 124 125 126 127
               The target_label and target_bbox is the ground truth,
               respectively. The predicted_location is a 2D Tensor with shape
               [F, 4], and the shape of target_bbox is same as the shape of
               the predicted_location, F is the number of the foreground
               anchors. The predicted_scores is a 2D Tensor with shape
               [F + B, 1], and the shape of target_label is same as the shape
               of the predicted_scores, B is the number of the background
M
minqiyang 已提交
128
               anchors, the F and B is depends on the input of this operator.
J
jerrywgz 已提交
129 130
               Bbox_inside_weight represents whether the predicted loc is fake_fg
               or not and the shape is [F, 4].
Y
Yuan Gao 已提交
131 132 133 134

    Examples:
        .. code-block:: python

135
        bbox_pred = layers.data(name='bbox_pred', shape=[100, 4],
Y
Yuan Gao 已提交
136
                          append_batch_size=False, dtype='float32')
137
        cls_logits = layers.data(name='cls_logits', shape=[100, 1],
Y
Yuan Gao 已提交
138 139 140
                          append_batch_size=False, dtype='float32')
        anchor_box = layers.data(name='anchor_box', shape=[20, 4],
                          append_batch_size=False, dtype='float32')
141
        gt_boxes = layers.data(name='gt_boxes', shape=[10, 4],
Y
Yuan Gao 已提交
142
                         append_batch_size=False, dtype='float32')
J
jerrywgz 已提交
143
        loc_pred, score_pred, loc_target, score_target, bbox_inside_weight =
144 145
            fluid.layers.rpn_target_assign(bbox_pred=bbox_pred,
                                          cls_logits=cls_logits,
Y
Yuan Gao 已提交
146
                                          anchor_box=anchor_box,
147
                                          gt_boxes=gt_boxes)
Y
Yuan Gao 已提交
148 149 150
    """

    helper = LayerHelper('rpn_target_assign', **locals())
151 152 153
    # Assign target label to anchors
    loc_index = helper.create_tmp_variable(dtype='int32')
    score_index = helper.create_tmp_variable(dtype='int32')
154
    target_label = helper.create_tmp_variable(dtype='int32')
155
    target_bbox = helper.create_tmp_variable(dtype=anchor_box.dtype)
J
jerrywgz 已提交
156
    bbox_inside_weight = helper.create_tmp_variable(dtype=anchor_box.dtype)
Y
Yuan Gao 已提交
157 158
    helper.append_op(
        type="rpn_target_assign",
159 160 161 162 163 164
        inputs={
            'Anchor': anchor_box,
            'GtBoxes': gt_boxes,
            'IsCrowd': is_crowd,
            'ImInfo': im_info
        },
Y
Yuan Gao 已提交
165 166 167
        outputs={
            'LocationIndex': loc_index,
            'ScoreIndex': score_index,
168
            'TargetLabel': target_label,
J
jerrywgz 已提交
169 170
            'TargetBBox': target_bbox,
            'BBox_inside_weight': bbox_inside_weight
Y
Yuan Gao 已提交
171 172 173
        },
        attrs={
            'rpn_batch_size_per_im': rpn_batch_size_per_im,
174
            'rpn_straddle_thresh': rpn_straddle_thresh,
Y
Yuan Gao 已提交
175 176
            'rpn_positive_overlap': rpn_positive_overlap,
            'rpn_negative_overlap': rpn_negative_overlap,
177 178
            'rpn_fg_fraction': rpn_fg_fraction,
            'use_random': use_random
Y
Yuan Gao 已提交
179 180
        })

181 182 183 184
    loc_index.stop_gradient = True
    score_index.stop_gradient = True
    target_label.stop_gradient = True
    target_bbox.stop_gradient = True
J
jerrywgz 已提交
185
    bbox_inside_weight.stop_gradient = True
Y
Yuan Gao 已提交
186

187 188 189 190
    cls_logits = nn.reshape(x=cls_logits, shape=(-1, 1))
    bbox_pred = nn.reshape(x=bbox_pred, shape=(-1, 4))
    predicted_cls_logits = nn.gather(cls_logits, score_index)
    predicted_bbox_pred = nn.gather(bbox_pred, loc_index)
191

J
jerrywgz 已提交
192
    return predicted_cls_logits, predicted_bbox_pred, target_label, target_bbox, bbox_inside_weight
Y
Yuan Gao 已提交
193 194


Y
Yuan Gao 已提交
195 196
def detection_output(loc,
                     scores,
197 198 199 200 201 202 203 204 205
                     prior_box,
                     prior_box_var,
                     background_label=0,
                     nms_threshold=0.3,
                     nms_top_k=400,
                     keep_top_k=200,
                     score_threshold=0.01,
                     nms_eta=1.0):
    """
206
    **Detection Output Layer for Single Shot Multibox Detector (SSD).**
207

208 209
    This operation is to get the detection results by performing following
    two steps:
C
caoying03 已提交
210

211 212 213 214 215 216
    1. Decode input bounding box predictions according to the prior boxes.
    2. Get the final detection results by applying multi-class non maximum
       suppression (NMS).

    Please note, this operation doesn't clip the final output bounding boxes
    to the image window.
217 218 219 220 221 222

    Args:
        loc(Variable): A 3-D Tensor with shape [N, M, 4] represents the
            predicted locations of M bounding bboxes. N is the batch size,
            and each bounding box has four coordinate values and the layout
            is [xmin, ymin, xmax, ymax].
Y
Yuan Gao 已提交
223 224 225 226
        scores(Variable): A 3-D Tensor with shape [N, M, C] represents the
            predicted confidence predictions. N is the batch size, C is the
            class number, M is number of bounding boxes. For each category
            there are total M scores which corresponding M bounding boxes.
227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248
        prior_box(Variable): A 2-D Tensor with shape [M, 4] holds M boxes,
            each box is represented as [xmin, ymin, xmax, ymax],
            [xmin, ymin] is the left top coordinate of the anchor box,
            if the input is image feature map, they are close to the origin
            of the coordinate system. [xmax, ymax] is the right bottom
            coordinate of the anchor box.
        prior_box_var(Variable): A 2-D Tensor with shape [M, 4] holds M group
            of variance.
        background_label(float): The index of background label,
            the background label will be ignored. If set to -1, then all
            categories will be considered.
        nms_threshold(float): The threshold to be used in NMS.
        nms_top_k(int): Maximum number of detections to be kept according
            to the confidences aftern the filtering detections based on
            score_threshold.
        keep_top_k(int): Number of total bboxes to be kept per image after
            NMS step. -1 means keeping all bboxes after NMS step.
        score_threshold(float): Threshold to filter out bounding boxes with
            low confidence score. If not provided, consider all boxes.
        nms_eta(float): The parameter for adaptive NMS.

    Returns:
M
minqiyang 已提交
249 250
        Variable:

251
            The detection outputs is a LoDTensor with shape [No, 6].
252 253 254 255 256 257 258 259
            Each row has six values: [label, confidence, xmin, ymin, xmax, ymax].
            `No` is the total number of detections in this mini-batch. For each
            instance, the offsets in first dimension are called LoD, the offset
            number is N + 1, N is the batch size. The i-th image has
            `LoD[i + 1] - LoD[i]` detected results, if it is 0, the i-th image
            has no detected results. If all images have not detected results,
            all the elements in LoD are 0, and output tensor only contains one
            value, which is -1.
260 261 262 263

    Examples:
        .. code-block:: python

264
            pb = layers.data(name='prior_box', shape=[10, 4],
265
                         append_batch_size=False, dtype='float32')
266
            pbv = layers.data(name='prior_box_var', shape=[10, 4],
267
                          append_batch_size=False, dtype='float32')
268
            loc = layers.data(name='target_box', shape=[2, 21, 4],
269
                          append_batch_size=False, dtype='float32')
270
            scores = layers.data(name='scores', shape=[2, 21, 10],
271
                          append_batch_size=False, dtype='float32')
272
            nmsed_outs = fluid.layers.detection_output(scores=scores,
273 274 275 276 277
                                       loc=loc,
                                       prior_box=pb,
                                       prior_box_var=pbv)
    """
    helper = LayerHelper("detection_output", **locals())
278 279 280 281 282
    decoded_box = box_coder(
        prior_box=prior_box,
        prior_box_var=prior_box_var,
        target_box=loc,
        code_type='decode_center_size')
283
    compile_shape = scores.shape
G
merge  
gongweibao 已提交
284
    run_shape = nn.shape(scores)
285
    scores = nn.flatten(x=scores, axis=2)
286
    scores = nn.softmax(input=scores)
287
    scores = nn.reshape(x=scores, shape=compile_shape, actual_shape=run_shape)
Y
Yuan Gao 已提交
288
    scores = nn.transpose(scores, perm=[0, 2, 1])
289
    scores.stop_gradient = True
X
Xin Pan 已提交
290 291
    nmsed_outs = helper.create_variable_for_type_inference(
        dtype=decoded_box.dtype)
292 293 294 295 296 297 298 299 300 301 302 303 304
    helper.append_op(
        type="multiclass_nms",
        inputs={'Scores': scores,
                'BBoxes': decoded_box},
        outputs={'Out': nmsed_outs},
        attrs={
            'background_label': 0,
            'nms_threshold': nms_threshold,
            'nms_top_k': nms_top_k,
            'keep_top_k': keep_top_k,
            'score_threshold': score_threshold,
            'nms_eta': 1.0
        })
305
    nmsed_outs.stop_gradient = True
306
    return nmsed_outs
C
chengduoZH 已提交
307 308


X
Xin Pan 已提交
309 310 311 312 313 314 315 316 317 318 319 320 321 322
@templatedoc()
def iou_similarity(x, y, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        y(${y_type}): ${y_comment}

    Returns:
        out(${out_type}): ${out_comment}
    """
    helper = LayerHelper("iou_similarity", **locals())
    if name is None:
X
Xin Pan 已提交
323
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
X
Xin Pan 已提交
324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
        type="iou_similarity",
        inputs={"X": x,
                "Y": y},
        attrs={},
        outputs={"Out": out})
    return out


@templatedoc()
def box_coder(prior_box,
              prior_box_var,
              target_box,
              code_type="encode_center_size",
              box_normalized=True,
              name=None):
    """
    ${comment}

    Args:
        prior_box(${prior_box_type}): ${prior_box_comment}
        prior_box_var(${prior_box_var_type}): ${prior_box_var_comment}
        target_box(${target_box_type}): ${target_box_comment}
        code_type(${code_type_type}): ${code_type_comment}
        box_normalized(${box_normalized_type}): ${box_normalized_comment}

    Returns:
        output_box(${output_box_type}): ${output_box_comment}
    """
    helper = LayerHelper("box_coder", **locals())

    if name is None:
X
Xin Pan 已提交
360 361
        output_box = helper.create_variable_for_type_inference(
            dtype=prior_box.dtype)
X
Xin Pan 已提交
362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391
    else:
        output_box = helper.create_variable(
            name=name, dtype=prior_box.dtype, persistable=False)

    helper.append_op(
        type="box_coder",
        inputs={
            "PriorBox": prior_box,
            "PriorBoxVar": prior_box_var,
            "TargetBox": target_box
        },
        attrs={"code_type": code_type,
               "box_normalized": box_normalized},
        outputs={"OutputBox": output_box})
    return output_box


@templatedoc()
def polygon_box_transform(input, name=None):
    """
    ${comment}

    Args:
        input(${input_type}): ${input_comment}

    Returns:
        output(${output_type}): ${output_comment}
    """
    helper = LayerHelper("polygon_box_transform", **locals())
    if name is None:
X
Xin Pan 已提交
392
        output = helper.create_variable_for_type_inference(dtype=input.dtype)
X
Xin Pan 已提交
393 394 395 396 397 398 399 400 401 402 403 404
    else:
        output = helper.create_variable(
            name=name, dtype=prior_box.input, persistable=False)

    helper.append_op(
        type="polygon_box_transform",
        inputs={"Input": input},
        attrs={},
        outputs={"Output": output})
    return output


X
Xin Pan 已提交
405
@templatedoc()
406 407
def detection_map(detect_res,
                  label,
408 409
                  class_num,
                  background_label=0,
410 411
                  overlap_threshold=0.3,
                  evaluate_difficult=True,
412 413 414 415
                  has_state=None,
                  input_states=None,
                  out_states=None,
                  ap_version='integral'):
X
Xin Pan 已提交
416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456
    """
    ${comment}

    Args:
        detect_res: ${detect_res_comment}
        label:  ${label_comment}
        class_num: ${class_num_comment}
        background_label: ${background_label_comment}
        overlap_threshold: ${overlap_threshold_comment}
        evaluate_difficult: ${evaluate_difficult_comment}
        has_state: ${has_state_comment}
        input_states: If not None, It contains 3 elements:
            1. pos_count ${pos_count_comment}.
            2. true_pos ${true_pos_comment}.
            3. false_pos ${false_pos_comment}.
        out_states: If not None, it contains 3 elements.
            1. accum_pos_count ${accum_pos_count_comment}.
            2. accum_true_pos ${accum_true_pos_comment}.
            3. accum_false_pos ${accum_false_pos_comment}.
        ap_version: ${ap_type_comment}

    Returns:
        ${map_comment}


    Examples:
          .. code-block:: python

            detect_res = fluid.layers.data(
                name='detect_res',
                shape=[10, 6],
                append_batch_size=False,
                dtype='float32')
            label = fluid.layers.data(
                name='label',
                shape=[10, 6],
                append_batch_size=False,
                dtype='float32')

            map_out = fluid.layers.detection_map(detect_res, label, 21)
    """
457 458
    helper = LayerHelper("detection_map", **locals())

459
    def __create_var(type):
X
Xin Pan 已提交
460
        return helper.create_variable_for_type_inference(dtype=type)
461 462 463 464 465 466 467 468 469 470 471 472

    map_out = __create_var('float32')
    accum_pos_count_out = out_states[0] if out_states else __create_var('int32')
    accum_true_pos_out = out_states[1] if out_states else __create_var(
        'float32')
    accum_false_pos_out = out_states[2] if out_states else __create_var(
        'float32')

    pos_count = input_states[0] if input_states else None
    true_pos = input_states[1] if input_states else None
    false_pos = input_states[2] if input_states else None

473 474 475 476 477
    helper.append_op(
        type="detection_map",
        inputs={
            'Label': label,
            'DetectRes': detect_res,
478
            'HasState': has_state,
479 480 481 482 483 484 485 486 487 488 489 490 491
            'PosCount': pos_count,
            'TruePos': true_pos,
            'FalsePos': false_pos
        },
        outputs={
            'MAP': map_out,
            'AccumPosCount': accum_pos_count_out,
            'AccumTruePos': accum_true_pos_out,
            'AccumFalsePos': accum_false_pos_out
        },
        attrs={
            'overlap_threshold': overlap_threshold,
            'evaluate_difficult': evaluate_difficult,
492 493
            'ap_type': ap_version,
            'class_num': class_num,
494
        })
495
    return map_out
496 497


498 499 500 501
def bipartite_match(dist_matrix,
                    match_type=None,
                    dist_threshold=None,
                    name=None):
502
    """
Y
yuyang18 已提交
503 504
    This operator implements a greedy bipartite matching algorithm, which is
    used to obtain the matching with the maximum distance based on the input
505
    distance matrix. For input 2D matrix, the bipartite matching algorithm can
Y
yuyang18 已提交
506 507 508 509 510 511 512 513
    find the matched column for each row (matched means the largest distance),
    also can find the matched row for each column. And this operator only
    calculate matched indices from column to row. For each instance,
    the number of matched indices is the column number of the input distance
    matrix.

    There are two outputs, matched indices and distance.
    A simple description, this algorithm matched the best (maximum distance)
514 515 516
    row entity to the column entity and the matched indices are not duplicated
    in each row of ColToRowMatchIndices. If the column entity is not matched
    any row entity, set -1 in ColToRowMatchIndices.
C
chengduoZH 已提交
517

Y
yuyang18 已提交
518
    NOTE: the input DistMat can be LoDTensor (with LoD) or Tensor.
519 520 521
    If LoDTensor with LoD, the height of ColToRowMatchIndices is batch size.
    If Tensor, the height of ColToRowMatchIndices is 1.

Y
yuyang18 已提交
522 523 524
    NOTE: This API is a very low level API. It is used by :code:`ssd_loss`
    layer. Please consider to use :code:`ssd_loss` instead.

525 526 527 528 529
    Args:
        dist_matrix(Variable): This input is a 2-D LoDTensor with shape
            [K, M]. It is pair-wise distance matrix between the entities
            represented by each row and each column. For example, assumed one
            entity is A with shape [K], another entity is B with shape [M]. The
Y
yuyang18 已提交
530 531 532 533 534 535
            dist_matrix[i][j] is the distance between A[i] and B[j]. The bigger
            the distance is, the better matching the pairs are.

            NOTE: This tensor can contain LoD information to represent a batch
            of inputs. One instance of this batch can contain different numbers
            of entities.
536
        match_type(string|None): The type of matching method, should be
Y
yuyang18 已提交
537
           'bipartite' or 'per_prediction'. [default 'bipartite'].
538 539
        dist_threshold(float|None): If `match_type` is 'per_prediction',
            this threshold is to determine the extra matching bboxes based
Y
yuyang18 已提交
540
            on the maximum distance, 0.5 by default.
541
    Returns:
Y
yuyang18 已提交
542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564
        tuple: a tuple with two elements is returned. The first is
        matched_indices, the second is matched_distance.

        The matched_indices is a 2-D Tensor with shape [N, M] in int type.
        N is the batch size. If match_indices[i][j] is -1, it
        means B[j] does not match any entity in i-th instance.
        Otherwise, it means B[j] is matched to row
        match_indices[i][j] in i-th instance. The row number of
        i-th instance is saved in match_indices[i][j].

        The matched_distance is a 2-D Tensor with shape [N, M] in float type
        . N is batch size. If match_indices[i][j] is -1,
        match_distance[i][j] is also -1.0. Otherwise, assumed
        match_distance[i][j] = d, and the row offsets of each instance
        are called LoD. Then match_distance[i][j] =
        dist_matrix[d+LoD[i]][j].

    Examples:

        >>> x = fluid.layers.data(name='x', shape=[4], dtype='float32')
        >>> y = fluid.layers.data(name='y', shape=[4], dtype='float32')
        >>> iou = fluid.layers.iou_similarity(x=x, y=y)
        >>> matched_indices, matched_dist = fluid.layers.bipartite_match(iou)
565 566
    """
    helper = LayerHelper('bipartite_match', **locals())
X
Xin Pan 已提交
567 568 569
    match_indices = helper.create_variable_for_type_inference(dtype='int32')
    match_distance = helper.create_variable_for_type_inference(
        dtype=dist_matrix.dtype)
570 571 572
    helper.append_op(
        type='bipartite_match',
        inputs={'DistMat': dist_matrix},
573 574 575 576
        attrs={
            'match_type': match_type,
            'dist_threshold': dist_threshold,
        },
577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593
        outputs={
            'ColToRowMatchIndices': match_indices,
            'ColToRowMatchDist': match_distance
        })
    return match_indices, match_distance


def target_assign(input,
                  matched_indices,
                  negative_indices=None,
                  mismatch_value=None,
                  name=None):
    """
    This operator can be, for given the target bounding boxes or labels,
    to assign classification and regression targets to each prediction as well as
    weights to prediction. The weights is used to specify which prediction would
    not contribute to training loss.
C
chengduoZH 已提交
594

595 596 597 598 599
    For each instance, the output `out` and`out_weight` are assigned based on
    `match_indices` and `negative_indices`.
    Assumed that the row offset for each instance in `input` is called lod,
    this operator assigns classification/regression targets by performing the
    following steps:
C
chengduoZH 已提交
600

601
    1. Assigning all outpts based on `match_indices`:
C
chengduoZH 已提交
602

603 604 605
    .. code-block:: text

        If id = match_indices[i][j] > 0,
C
chengduoZH 已提交
606

607 608
            out[i][j][0 : K] = X[lod[i] + id][j % P][0 : K]
            out_weight[i][j] = 1.
C
chengduoZH 已提交
609

610
        Otherwise,
C
chengduoZH 已提交
611

612 613
            out[j][j][0 : K] = {mismatch_value, mismatch_value, ...}
            out_weight[i][j] = 0.
C
chengduoZH 已提交
614

615
    2. Assigning out_weight based on `neg_indices` if `neg_indices` is provided:
C
chengduoZH 已提交
616

617 618
    Assumed that the row offset for each instance in `neg_indices` is called neg_lod,
    for i-th instance and each `id` of neg_indices in this instance:
M
minqiyang 已提交
619

620
    .. code-block:: text
C
chengduoZH 已提交
621

622 623 624 625 626 627 628 629 630 631 632 633 634 635 636
        out[i][id][0 : K] = {mismatch_value, mismatch_value, ...}
        out_weight[i][id] = 1.0

    Args:
       inputs (Variable): This input is a 3D LoDTensor with shape [M, P, K].
       matched_indices (Variable): Tensor<int>), The input matched indices
           is 2D Tenosr<int32> with shape [N, P], If MatchIndices[i][j] is -1,
           the j-th entity of column is not matched to any entity of row in
           i-th instance.
       negative_indices (Variable): The input negative example indices are
           an optional input with shape [Neg, 1] and int32 type, where Neg is
           the total number of negative example indices.
       mismatch_value (float32): Fill this value to the mismatched location.

    Returns:
M
minqiyang 已提交
637 638 639 640 641
        tuple:
               A tuple(out, out_weight) is returned. out is a 3D Tensor with
               shape [N, P, K], N and P is the same as they are in
               `neg_indices`, K is the same as it in input of X. If
               `match_indices[i][j]`. out_weight is the weight for output with
642 643 644 645 646 647 648 649 650 651 652
               the shape of [N, P, 1].

    Examples:

        .. code-block:: python

            matched_indices, matched_dist = fluid.layers.bipartite_match(iou)
            gt = layers.data(
                        name='gt', shape=[1, 1], dtype='int32', lod_level=1)
            trg, trg_weight = layers.target_assign(
                            gt, matched_indices, mismatch_value=0)
653 654
    """
    helper = LayerHelper('target_assign', **locals())
X
Xin Pan 已提交
655 656
    out = helper.create_variable_for_type_inference(dtype=input.dtype)
    out_weight = helper.create_variable_for_type_inference(dtype='float32')
657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683
    helper.append_op(
        type='target_assign',
        inputs={
            'X': input,
            'MatchIndices': matched_indices,
            'NegIndices': negative_indices
        },
        outputs={'Out': out,
                 'OutWeight': out_weight},
        attrs={'mismatch_value': mismatch_value})
    return out, out_weight


def ssd_loss(location,
             confidence,
             gt_box,
             gt_label,
             prior_box,
             prior_box_var=None,
             background_label=0,
             overlap_threshold=0.5,
             neg_pos_ratio=3.0,
             neg_overlap=0.5,
             loc_loss_weight=1.0,
             conf_loss_weight=1.0,
             match_type='per_prediction',
             mining_type='max_negative',
684
             normalize=True,
685 686
             sample_size=None):
    """
Y
yuyang18 已提交
687
    **Multi-box loss layer for object detection algorithm of SSD**
688 689 690 691 692 693 694

    This layer is to compute dection loss for SSD given the location offset
    predictions, confidence predictions, prior boxes and ground-truth boudding
    boxes and labels, and the type of hard example mining. The returned loss
    is a weighted sum of the localization loss (or regression loss) and
    confidence loss (or classification loss) by performing the following steps:

Y
yuyang18 已提交
695
    1. Find matched bounding box by bipartite matching algorithm.
Y
yuyang18 已提交
696

697
      1.1 Compute IOU similarity between ground-truth boxes and prior boxes.
Y
yuyang18 已提交
698

699
      1.2 Compute matched boundding box by bipartite matching algorithm.
Y
yuyang18 已提交
700

701
    2. Compute confidence for mining hard examples
Y
yuyang18 已提交
702

703
      2.1. Get the target label based on matched indices.
Y
yuyang18 已提交
704

705
      2.2. Compute confidence loss.
Y
yuyang18 已提交
706

707 708
    3. Apply hard example mining to get the negative example indices and update
       the matched indices.
Y
yuyang18 已提交
709

710
    4. Assign classification and regression targets
Y
yuyang18 已提交
711

712
      4.1. Encoded bbox according to the prior boxes.
Y
yuyang18 已提交
713

714
      4.2. Assign regression targets.
Y
yuyang18 已提交
715

716
      4.3. Assign classification targets.
Y
yuyang18 已提交
717

718
    5. Compute the overall objective loss.
Y
yuyang18 已提交
719

720
      5.1 Compute confidence loss.
Y
yuyang18 已提交
721

722
      5.1 Compute localization loss.
Y
yuyang18 已提交
723

724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746
      5.3 Compute the overall weighted loss.

    Args:
        location (Variable): The location predictions are a 3D Tensor with
            shape [N, Np, 4], N is the batch size, Np is total number of
            predictions for each instance. 4 is the number of coordinate values,
            the layout is [xmin, ymin, xmax, ymax].
        confidence (Variable): The confidence predictions are a 3D Tensor
            with shape [N, Np, C], N and Np are the same as they are in
            `location`, C is the class number.
        gt_box (Variable): The ground-truth boudding boxes (bboxes) are a 2D
            LoDTensor with shape [Ng, 4], Ng is the total number of ground-truth
            bboxes of mini-batch input.
        gt_label (Variable): The ground-truth labels are a 2D LoDTensor
            with shape [Ng, 1].
        prior_box (Variable): The prior boxes are a 2D Tensor with shape [Np, 4].
        prior_box_var (Variable): The variance of prior boxes are a 2D Tensor
            with shape [Np, 4].
        background_label (int): The index of background label, 0 by default.
        overlap_threshold (float): If match_type is 'per_prediction', use
            `overlap_threshold` to determine the extra matching bboxes when
             finding matched boxes. 0.5 by default.
        neg_pos_ratio (float): The ratio of the negative boxes to the positive
747
            boxes, used only when mining_type is 'max_negative', 3.0 by defalut.
748
        neg_overlap (float): The negative overlap upper bound for the unmatched
749
            predictions. Use only when mining_type is 'max_negative',
750 751 752 753
            0.5 by default.
        loc_loss_weight (float): Weight for localization loss, 1.0 by default.
        conf_loss_weight (float): Weight for confidence loss, 1.0 by default.
        match_type (str): The type of matching method during training, should
754
            be 'bipartite' or 'per_prediction', 'per_prediction' by defalut.
755 756
        mining_type (str): The hard example mining type, should be 'hard_example'
            or 'max_negative', now only support `max_negative`.
757
        normalize (bool): Whether to normalize the SSD loss by the total number
Y
yuyang18 已提交
758
            of output locations, True by default.
759 760
        sample_size (int): The max sample size of negative box, used only when
            mining_type is 'hard_example'.
761 762

    Returns:
Y
yuyang18 已提交
763 764
        The weighted sum of the localization loss and confidence loss, with \
        shape [N * Np, 1], N and Np are the same as they are in `location`.
765 766

    Raises:
Y
yuyang18 已提交
767 768
        ValueError: If mining_type is 'hard_example', now only support mining \
        type of `max_negative`.
Y
yuyang18 已提交
769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787

    Examples:
        >>> pb = fluid.layers.data(
        >>>                   name='prior_box',
        >>>                   shape=[10, 4],
        >>>                   append_batch_size=False,
        >>>                   dtype='float32')
        >>> pbv = fluid.layers.data(
        >>>                   name='prior_box_var',
        >>>                   shape=[10, 4],
        >>>                   append_batch_size=False,
        >>>                   dtype='float32')
        >>> loc = fluid.layers.data(name='target_box', shape=[10, 4], dtype='float32')
        >>> scores = fluid.layers.data(name='scores', shape=[10, 21], dtype='float32')
        >>> gt_box = fluid.layers.data(
        >>>         name='gt_box', shape=[4], lod_level=1, dtype='float32')
        >>> gt_label = fluid.layers.data(
        >>>         name='gt_label', shape=[1], lod_level=1, dtype='float32')
        >>> loss = fluid.layers.ssd_loss(loc, scores, gt_box, gt_label, pb, pbv)
788 789 790 791 792 793 794
    """

    helper = LayerHelper('ssd_loss', **locals())
    if mining_type != 'max_negative':
        raise ValueError("Only support mining_type == max_negative now.")

    num, num_prior, num_class = confidence.shape
G
merge  
gongweibao 已提交
795
    conf_shape = nn.shape(confidence)
796 797

    def __reshape_to_2d(var):
798
        return nn.flatten(x=var, axis=2)
799 800 801 802 803

    # 1. Find matched boundding box by prior box.
    #   1.1 Compute IOU similarity between ground-truth boxes and prior boxes.
    iou = iou_similarity(x=gt_box, y=prior_box)
    #   1.2 Compute matched boundding box by bipartite matching algorithm.
804 805
    matched_indices, matched_dist = bipartite_match(iou, match_type,
                                                    overlap_threshold)
806 807 808

    # 2. Compute confidence for mining hard examples
    # 2.1. Get the target label based on matched indices
809 810
    gt_label = nn.reshape(
        x=gt_label, shape=(len(gt_label.shape) - 1) * (0, ) + (-1, 1))
811
    gt_label.stop_gradient = True
812 813 814 815 816 817 818
    target_label, _ = target_assign(
        gt_label, matched_indices, mismatch_value=background_label)
    # 2.2. Compute confidence loss.
    # Reshape confidence to 2D tensor.
    confidence = __reshape_to_2d(confidence)
    target_label = tensor.cast(x=target_label, dtype='int64')
    target_label = __reshape_to_2d(target_label)
819
    target_label.stop_gradient = True
820 821
    conf_loss = nn.softmax_with_cross_entropy(confidence, target_label)
    # 3. Mining hard examples
G
merge  
gongweibao 已提交
822
    actual_shape = nn.slice(conf_shape, axes=[0], starts=[0], ends=[2])
823
    actual_shape.stop_gradient = True
824
    conf_loss = nn.reshape(
825
        x=conf_loss, shape=(num, num_prior), actual_shape=actual_shape)
826
    conf_loss.stop_gradient = True
X
Xin Pan 已提交
827
    neg_indices = helper.create_variable_for_type_inference(dtype='int32')
828
    dtype = matched_indices.dtype
X
Xin Pan 已提交
829 830
    updated_matched_indices = helper.create_variable_for_type_inference(
        dtype=dtype)
831 832 833 834 835 836 837 838 839 840 841 842 843 844
    helper.append_op(
        type='mine_hard_examples',
        inputs={
            'ClsLoss': conf_loss,
            'LocLoss': None,
            'MatchIndices': matched_indices,
            'MatchDist': matched_dist,
        },
        outputs={
            'NegIndices': neg_indices,
            'UpdatedMatchIndices': updated_matched_indices
        },
        attrs={
            'neg_pos_ratio': neg_pos_ratio,
B
Bai Yifan 已提交
845
            'neg_dist_threshold': neg_overlap,
846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870
            'mining_type': mining_type,
            'sample_size': sample_size,
        })

    # 4. Assign classification and regression targets
    # 4.1. Encoded bbox according to the prior boxes.
    encoded_bbox = box_coder(
        prior_box=prior_box,
        prior_box_var=prior_box_var,
        target_box=gt_box,
        code_type='encode_center_size')
    # 4.2. Assign regression targets
    target_bbox, target_loc_weight = target_assign(
        encoded_bbox, updated_matched_indices, mismatch_value=background_label)
    # 4.3. Assign classification targets
    target_label, target_conf_weight = target_assign(
        gt_label,
        updated_matched_indices,
        negative_indices=neg_indices,
        mismatch_value=background_label)

    # 5. Compute loss.
    # 5.1 Compute confidence loss.
    target_label = __reshape_to_2d(target_label)
    target_label = tensor.cast(x=target_label, dtype='int64')
871

872 873 874 875
    conf_loss = nn.softmax_with_cross_entropy(confidence, target_label)
    target_conf_weight = __reshape_to_2d(target_conf_weight)
    conf_loss = conf_loss * target_conf_weight

876 877 878 879
    # the target_label and target_conf_weight do not have gradient.
    target_label.stop_gradient = True
    target_conf_weight.stop_gradient = True

880 881 882 883 884 885 886 887
    # 5.2 Compute regression loss.
    location = __reshape_to_2d(location)
    target_bbox = __reshape_to_2d(target_bbox)

    loc_loss = nn.smooth_l1(location, target_bbox)
    target_loc_weight = __reshape_to_2d(target_loc_weight)
    loc_loss = loc_loss * target_loc_weight

888 889 890 891
    # the target_bbox and target_loc_weight do not have gradient.
    target_bbox.stop_gradient = True
    target_loc_weight.stop_gradient = True

892 893
    # 5.3 Compute overall weighted loss.
    loss = conf_loss_weight * conf_loss + loc_loss_weight * loc_loss
894
    # reshape to [N, Np], N is the batch size and Np is the prior box number.
895
    loss = nn.reshape(x=loss, shape=(num, num_prior), actual_shape=actual_shape)
896 897 898 899 900
    loss = nn.reduce_sum(loss, dim=1, keep_dim=True)
    if normalize:
        normalizer = nn.reduce_sum(target_loc_weight)
        loss = loss / normalizer

901
    return loss
C
chengduoZH 已提交
902 903


904 905 906 907
def prior_box(input,
              image,
              min_sizes,
              max_sizes=None,
908
              aspect_ratios=[1.],
909 910 911 912 913
              variance=[0.1, 0.1, 0.2, 0.2],
              flip=False,
              clip=False,
              steps=[0.0, 0.0],
              offset=0.5,
914 915
              name=None,
              min_max_aspect_ratios_order=False):
916
    """
Q
update  
qiaolongfei 已提交
917
    **Prior Box Operator**
918 919 920 921 922 923 924 925 926 927 928

    Generate prior boxes for SSD(Single Shot MultiBox Detector) algorithm.
    Each position of the input produce N prior boxes, N is determined by
    the count of min_sizes, max_sizes and aspect_ratios, The size of the
    box is in range(min_size, max_size) interval, which is generated in
    sequence according to the aspect_ratios.

    Args:
       input(Variable): The Input Variables, the format is NCHW.
       image(Variable): The input image data of PriorBoxOp,
            the layout is NCHW.
929
       min_sizes(list|tuple|float value): min sizes of generated prior boxes.
930 931
       max_sizes(list|tuple|None): max sizes of generated prior boxes.
            Default: None.
932 933
       aspect_ratios(list|tuple|float value): the aspect ratios of generated
            prior boxes. Default: [1.].
934 935 936 937
       variance(list|tuple): the variances to be encoded in prior boxes.
            Default:[0.1, 0.1, 0.2, 0.2].
       flip(bool): Whether to flip aspect ratios. Default:False.
       clip(bool): Whether to clip out-of-boundary boxes. Default: False.
938
       step(list|turple): Prior boxes step across width and height, If
939
            step[0] == 0.0/step[1] == 0.0, the prior boxes step across
940 941
            height/weight of the input will be automatically calculated.
            Default: [0., 0.]
942 943
       offset(float): Prior boxes center offset. Default: 0.5
       name(str): Name of the prior box op. Default: None.
944
       min_max_aspect_ratios_order(bool): If set True, the output prior box is
M
minqiyang 已提交
945
            in order of [min, max, aspect_ratios], which is consistent with
946 947 948
            Caffe. Please note, this order affects the weights order of
            convolution layer followed by and does not affect the final
            detection results. Default: False.
949 950

    Returns:
Q
update  
qiaolongfei 已提交
951 952 953 954 955 956 957 958 959 960 961 962 963
        tuple: A tuple with two Variable (boxes, variances)

        boxes: the output prior boxes of PriorBox.
        The layout is [H, W, num_priors, 4].
        H is the height of input, W is the width of input,
        num_priors is the total
        box count of each position of input.

        variances: the expanded variances of PriorBox.
        The layout is [H, W, num_priors, 4].
        H is the height of input, W is the width of input
        num_priors is the total
        box count of each position of input
964 965 966 967


    Examples:
        .. code-block:: python
Q
update  
qiaolongfei 已提交
968 969 970 971 972 973 974

            box, var = fluid.layers.prior_box(
                input=conv1,
                image=images,
                min_sizes=[100.],
                flip=True,
                clip=True)
975 976 977 978
    """
    helper = LayerHelper("prior_box", **locals())
    dtype = helper.input_dtype()

979 980 981 982 983 984 985 986 987 988 989 990 991 992 993
    def _is_list_or_tuple_(data):
        return (isinstance(data, list) or isinstance(data, tuple))

    if not _is_list_or_tuple_(min_sizes):
        min_sizes = [min_sizes]
    if not _is_list_or_tuple_(aspect_ratios):
        aspect_ratios = [aspect_ratios]
    if not (_is_list_or_tuple_(steps) and len(steps) == 2):
        raise ValueError('steps should be a list or tuple ',
                         'with length 2, (step_width, step_height).')

    min_sizes = list(map(float, min_sizes))
    aspect_ratios = list(map(float, aspect_ratios))
    steps = list(map(float, steps))

994 995 996 997 998 999 1000 1001
    attrs = {
        'min_sizes': min_sizes,
        'aspect_ratios': aspect_ratios,
        'variances': variance,
        'flip': flip,
        'clip': clip,
        'step_w': steps[0],
        'step_h': steps[1],
1002 1003
        'offset': offset,
        'min_max_aspect_ratios_order': min_max_aspect_ratios_order
1004 1005
    }
    if max_sizes is not None and len(max_sizes) > 0 and max_sizes[0] > 0:
1006 1007
        if not _is_list_or_tuple_(max_sizes):
            max_sizes = [max_sizes]
1008 1009
        attrs['max_sizes'] = max_sizes

X
Xin Pan 已提交
1010 1011
    box = helper.create_variable_for_type_inference(dtype)
    var = helper.create_variable_for_type_inference(dtype)
1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023
    helper.append_op(
        type="prior_box",
        inputs={"Input": input,
                "Image": image},
        outputs={"Boxes": box,
                 "Variances": var},
        attrs=attrs, )
    box.stop_gradient = True
    var.stop_gradient = True
    return box, var


C
chengduoZH 已提交
1024
def multi_box_head(inputs,
C
chengduoZH 已提交
1025 1026
                   image,
                   base_size,
C
chengduoZH 已提交
1027
                   num_classes,
C
chengduoZH 已提交
1028
                   aspect_ratios,
1029 1030
                   min_ratio=None,
                   max_ratio=None,
C
chengduoZH 已提交
1031 1032
                   min_sizes=None,
                   max_sizes=None,
C
chengduoZH 已提交
1033 1034 1035 1036
                   steps=None,
                   step_w=None,
                   step_h=None,
                   offset=0.5,
1037 1038
                   variance=[0.1, 0.1, 0.2, 0.2],
                   flip=True,
C
chengduoZH 已提交
1039
                   clip=False,
C
chengduoZH 已提交
1040
                   kernel_size=1,
C
chengduoZH 已提交
1041
                   pad=0,
C
chengduoZH 已提交
1042
                   stride=1,
1043 1044
                   name=None,
                   min_max_aspect_ratios_order=False):
C
chengduoZH 已提交
1045
    """
C
chengduoZH 已提交
1046 1047
    Generate prior boxes for SSD(Single Shot MultiBox Detector)
    algorithm. The details of this algorithm, please refer the
Q
update  
qiaolongfei 已提交
1048
    section 2.2 of SSD paper `SSD: Single Shot MultiBox Detector
C
chengduoZH 已提交
1049
    <https://arxiv.org/abs/1512.02325>`_ .
C
chengduoZH 已提交
1050 1051

    Args:
1052
       inputs(list|tuple): The list of input Variables, the format
C
chengduoZH 已提交
1053
            of all Variables is NCHW.
C
chengduoZH 已提交
1054 1055
       image(Variable): The input image data of PriorBoxOp,
            the layout is NCHW.
C
chengduoZH 已提交
1056 1057
       base_size(int): the base_size is used to get min_size
            and max_size according to min_ratio and max_ratio.
C
chengduoZH 已提交
1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079
       num_classes(int): The number of classes.
       aspect_ratios(list|tuple): the aspect ratios of generated prior
            boxes. The length of input and aspect_ratios must be equal.
       min_ratio(int): the min ratio of generated prior boxes.
       max_ratio(int): the max ratio of generated prior boxes.
       min_sizes(list|tuple|None): If `len(inputs) <=2`,
            min_sizes must be set up, and the length of min_sizes
            should equal to the length of inputs. Default: None.
       max_sizes(list|tuple|None): If `len(inputs) <=2`,
            max_sizes must be set up, and the length of min_sizes
            should equal to the length of inputs. Default: None.
       steps(list|tuple): If step_w and step_h are the same,
            step_w and step_h can be replaced by steps.
       step_w(list|tuple): Prior boxes step
            across width. If step_w[i] == 0.0, the prior boxes step
            across width of the inputs[i] will be automatically
            calculated. Default: None.
       step_h(list|tuple): Prior boxes step across height, If
            step_h[i] == 0.0, the prior boxes step across height of
            the inputs[i] will be automatically calculated. Default: None.
       offset(float): Prior boxes center offset. Default: 0.5
       variance(list|tuple): the variances to be encoded in prior boxes.
1080
            Default:[0.1, 0.1, 0.2, 0.2].
C
chengduoZH 已提交
1081 1082 1083 1084 1085 1086
       flip(bool): Whether to flip aspect ratios. Default:False.
       clip(bool): Whether to clip out-of-boundary boxes. Default: False.
       kernel_size(int): The kernel size of conv2d. Default: 1.
       pad(int|list|tuple): The padding of conv2d. Default:0.
       stride(int|list|tuple): The stride of conv2d. Default:1,
       name(str): Name of the prior box layer. Default: None.
1087
       min_max_aspect_ratios_order(bool): If set True, the output prior box is
M
minqiyang 已提交
1088
            in order of [min, max, aspect_ratios], which is consistent with
1089 1090 1091
            Caffe. Please note, this order affects the weights order of
            convolution layer followed by and does not affect the fininal
            detection results. Default: False.
C
chengduoZH 已提交
1092 1093

    Returns:
Q
update  
qiaolongfei 已提交
1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108
        tuple: A tuple with four Variables. (mbox_loc, mbox_conf, boxes, variances)

        mbox_loc: The predicted boxes' location of the inputs. The layout
        is [N, H*W*Priors, 4]. where Priors is the number of predicted
        boxes each position of each input.

        mbox_conf: The predicted boxes' confidence of the inputs. The layout
        is [N, H*W*Priors, C]. where Priors is the number of predicted boxes
        each position of each input and C is the number of Classes.

        boxes: the output prior boxes of PriorBox. The layout is [num_priors, 4].
        num_priors is the total box count of each position of inputs.

        variances: the expanded variances of PriorBox. The layout is
        [num_priors, 4]. num_priors is the total box count of each position of inputs
C
chengduoZH 已提交
1109

C
chengduoZH 已提交
1110 1111 1112

    Examples:
        .. code-block:: python
Q
update  
qiaolongfei 已提交
1113 1114

          mbox_locs, mbox_confs, box, var = fluid.layers.multi_box_head(
C
chengduoZH 已提交
1115 1116 1117 1118 1119 1120 1121 1122 1123 1124
            inputs=[conv1, conv2, conv3, conv4, conv5, conv5],
            image=images,
            num_classes=21,
            min_ratio=20,
            max_ratio=90,
            aspect_ratios=[[2.], [2., 3.], [2., 3.], [2., 3.], [2.], [2.]],
            base_size=300,
            offset=0.5,
            flip=True,
            clip=True)
C
chengduoZH 已提交
1125 1126
    """

C
chengduoZH 已提交
1127
    def _reshape_with_axis_(input, axis=1):
1128
        out = nn.flatten(x=input, axis=axis)
C
chengduoZH 已提交
1129
        return out
1130

1131 1132
    def _is_list_or_tuple_(data):
        return (isinstance(data, list) or isinstance(data, tuple))
1133

C
chengduoZH 已提交
1134 1135 1136 1137
    def _is_list_or_tuple_and_equal(data, length, err_info):
        if not (_is_list_or_tuple_(data) and len(data) == length):
            raise ValueError(err_info)

1138 1139
    if not _is_list_or_tuple_(inputs):
        raise ValueError('inputs should be a list or tuple.')
C
chengduoZH 已提交
1140

C
chengduoZH 已提交
1141 1142 1143 1144 1145
    num_layer = len(inputs)

    if num_layer <= 2:
        assert min_sizes is not None and max_sizes is not None
        assert len(min_sizes) == num_layer and len(max_sizes) == num_layer
1146
    elif min_sizes is None and max_sizes is None:
C
chengduoZH 已提交
1147 1148 1149
        min_sizes = []
        max_sizes = []
        step = int(math.floor(((max_ratio - min_ratio)) / (num_layer - 2)))
M
minqiyang 已提交
1150
        for ratio in six.moves.range(min_ratio, max_ratio + 1, step):
C
chengduoZH 已提交
1151 1152 1153 1154 1155
            min_sizes.append(base_size * ratio / 100.)
            max_sizes.append(base_size * (ratio + step) / 100.)
        min_sizes = [base_size * .10] + min_sizes
        max_sizes = [base_size * .20] + max_sizes

C
chengduoZH 已提交
1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178
    if aspect_ratios:
        _is_list_or_tuple_and_equal(
            aspect_ratios, num_layer,
            'aspect_ratios should be list or tuple, and the length of inputs '
            'and aspect_ratios should be the same.')
    if step_h:
        _is_list_or_tuple_and_equal(
            step_h, num_layer,
            'step_h should be list or tuple, and the length of inputs and '
            'step_h should be the same.')
    if step_w:
        _is_list_or_tuple_and_equal(
            step_w, num_layer,
            'step_w should be list or tuple, and the length of inputs and '
            'step_w should be the same.')
    if steps:
        _is_list_or_tuple_and_equal(
            steps, num_layer,
            'steps should be list or tuple, and the length of inputs and '
            'step_w should be the same.')
        step_w = steps
        step_h = steps

C
chengduoZH 已提交
1179 1180
    mbox_locs = []
    mbox_confs = []
C
chengduoZH 已提交
1181 1182
    box_results = []
    var_results = []
C
chengduoZH 已提交
1183 1184
    for i, input in enumerate(inputs):
        min_size = min_sizes[i]
C
chengduoZH 已提交
1185 1186
        max_size = max_sizes[i]

1187
        if not _is_list_or_tuple_(min_size):
C
chengduoZH 已提交
1188
            min_size = [min_size]
C
chengduoZH 已提交
1189 1190
        if not _is_list_or_tuple_(max_size):
            max_size = [max_size]
C
chengduoZH 已提交
1191 1192 1193 1194

        aspect_ratio = []
        if aspect_ratios is not None:
            aspect_ratio = aspect_ratios[i]
1195
            if not _is_list_or_tuple_(aspect_ratio):
C
chengduoZH 已提交
1196
                aspect_ratio = [aspect_ratio]
1197
        step = [step_w[i] if step_w else 0.0, step_h[i] if step_w else 0.0]
C
chengduoZH 已提交
1198

1199
        box, var = prior_box(input, image, min_size, max_size, aspect_ratio,
1200 1201
                             variance, flip, clip, step, offset, None,
                             min_max_aspect_ratios_order)
C
chengduoZH 已提交
1202 1203 1204 1205 1206

        box_results.append(box)
        var_results.append(var)

        num_boxes = box.shape[2]
C
chengduoZH 已提交
1207

1208
        # get loc
Y
Yuan Gao 已提交
1209
        num_loc_output = num_boxes * 4
1210
        mbox_loc = nn.conv2d(
C
chengduoZH 已提交
1211
            input=input,
1212 1213 1214 1215 1216
            num_filters=num_loc_output,
            filter_size=kernel_size,
            padding=pad,
            stride=stride)

1217
        mbox_loc = nn.transpose(mbox_loc, perm=[0, 2, 3, 1])
1218
        compile_shape = [
1219
            mbox_loc.shape[0], cpt.floor_division(
M
minqiyang 已提交
1220
                mbox_loc.shape[1] * mbox_loc.shape[2] * mbox_loc.shape[3], 4), 4
Y
Yuan Gao 已提交
1221
        ]
1222 1223 1224
        run_shape = tensor.assign(numpy.array([0, -1, 4]).astype("int32"))
        mbox_loc_flatten = nn.reshape(
            mbox_loc, shape=compile_shape, actual_shape=run_shape)
Y
Yuan Gao 已提交
1225
        mbox_locs.append(mbox_loc_flatten)
C
chengduoZH 已提交
1226

1227
        # get conf
C
chengduoZH 已提交
1228
        num_conf_output = num_boxes * num_classes
1229
        conf_loc = nn.conv2d(
C
chengduoZH 已提交
1230
            input=input,
1231 1232 1233 1234
            num_filters=num_conf_output,
            filter_size=kernel_size,
            padding=pad,
            stride=stride)
1235
        conf_loc = nn.transpose(conf_loc, perm=[0, 2, 3, 1])
1236 1237
        new_shape = [0, -1, num_classes]
        compile_shape = [
1238 1239 1240
            conf_loc.shape[0],
            cpt.floor_division(conf_loc.shape[1] * conf_loc.shape[2] *
                               conf_loc.shape[3], num_classes), num_classes
Y
Yuan Gao 已提交
1241
        ]
1242 1243 1244 1245
        run_shape = tensor.assign(
            numpy.array([0, -1, num_classes]).astype("int32"))
        conf_loc_flatten = nn.reshape(
            conf_loc, shape=compile_shape, actual_shape=run_shape)
Y
Yuan Gao 已提交
1246
        mbox_confs.append(conf_loc_flatten)
C
chengduoZH 已提交
1247

C
chengduoZH 已提交
1248 1249 1250
    if len(box_results) == 1:
        box = box_results[0]
        var = var_results[0]
Y
Yuan Gao 已提交
1251 1252
        mbox_locs_concat = mbox_locs[0]
        mbox_confs_concat = mbox_confs[0]
C
chengduoZH 已提交
1253 1254 1255 1256 1257 1258 1259 1260 1261
    else:
        reshaped_boxes = []
        reshaped_vars = []
        for i in range(len(box_results)):
            reshaped_boxes.append(_reshape_with_axis_(box_results[i], axis=3))
            reshaped_vars.append(_reshape_with_axis_(var_results[i], axis=3))

        box = tensor.concat(reshaped_boxes)
        var = tensor.concat(reshaped_vars)
Y
Yuan Gao 已提交
1262 1263
        mbox_locs_concat = tensor.concat(mbox_locs, axis=1)
        mbox_confs_concat = tensor.concat(mbox_confs, axis=1)
C
chengduoZH 已提交
1264

1265 1266
    box.stop_gradient = True
    var.stop_gradient = True
Y
Yuan Gao 已提交
1267
    return mbox_locs_concat, mbox_confs_concat, box, var
1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348


def anchor_generator(input,
                     anchor_sizes=None,
                     aspect_ratios=None,
                     variance=[0.1, 0.1, 0.2, 0.2],
                     stride=None,
                     offset=0.5,
                     name=None):
    """
    **Anchor generator operator**

    Generate anchors for Faster RCNN algorithm.
    Each position of the input produce N anchors, N =
    size(anchor_sizes) * size(aspect_ratios). The order of generated anchors
    is firstly aspect_ratios loop then anchor_sizes loop.

    Args:
       input(Variable): The input feature map, the format is NCHW.
       anchor_sizes(list|tuple|float): The anchor sizes of generated anchors,
       given in absolute pixels e.g. [64., 128., 256., 512.].
       For instance, the anchor size of 64 means the area of this anchor equals to 64**2.
       aspect_ratios(list|tuple|float): The height / width ratios of generated
            anchors, e.g. [0.5, 1.0, 2.0].
       variance(list|tuple): The variances to be used in box regression deltas.
            Default:[0.1, 0.1, 0.2, 0.2].
       stride(list|turple): The anchors stride across width and height,
            e.g. [16.0, 16.0]
       offset(float): Prior boxes center offset. Default: 0.5
       name(str): Name of the prior box op. Default: None.

    Returns:
        Anchors(Variable):  The output anchors with a layout of [H, W, num_anchors, 4].
              H is the height of input, W is the width of input,
              num_anchors is the box count of each position.
              Each anchor is in (xmin, ymin, xmax, ymax) format an unnormalized.
        Variances(Variable): The expanded variances of anchors
              with a layout of [H, W, num_priors, 4].
              H is the height of input, W is the width of input
              num_anchors is the box count of each position.
              Each variance is in (xcenter, ycenter, w, h) format.


    Examples:

        .. code-block:: python

            anchor, var = anchor_generator(
                input=conv1,
                anchor_sizes=[64, 128, 256, 512],
                aspect_ratios=[0.5, 1.0, 2.0],
                variance=[0.1, 0.1, 0.2, 0.2],
                stride=[16.0, 16.0],
                offset=0.5)
    """
    helper = LayerHelper("anchor_generator", **locals())
    dtype = helper.input_dtype()

    def _is_list_or_tuple_(data):
        return (isinstance(data, list) or isinstance(data, tuple))

    if not _is_list_or_tuple_(anchor_sizes):
        anchor_sizes = [anchor_sizes]
    if not _is_list_or_tuple_(aspect_ratios):
        aspect_ratios = [aspect_ratios]
    if not (_is_list_or_tuple_(stride) and len(stride) == 2):
        raise ValueError('stride should be a list or tuple ',
                         'with length 2, (stride_width, stride_height).')

    anchor_sizes = list(map(float, anchor_sizes))
    aspect_ratios = list(map(float, aspect_ratios))
    stride = list(map(float, stride))

    attrs = {
        'anchor_sizes': anchor_sizes,
        'aspect_ratios': aspect_ratios,
        'variances': variance,
        'stride': stride,
        'offset': offset
    }

X
Xin Pan 已提交
1349 1350
    anchor = helper.create_variable_for_type_inference(dtype)
    var = helper.create_variable_for_type_inference(dtype)
1351 1352 1353 1354 1355 1356 1357 1358 1359
    helper.append_op(
        type="anchor_generator",
        inputs={"Input": input},
        outputs={"Anchors": anchor,
                 "Variances": var},
        attrs=attrs, )
    anchor.stop_gradient = True
    var.stop_gradient = True
    return anchor, var
1360 1361


W
whs 已提交
1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395
def roi_perspective_transform(input,
                              rois,
                              transformed_height,
                              transformed_width,
                              spatial_scale=1.0):
    """
    ROI perspective transform op.

    Args:
        input (Variable): The input of ROIPerspectiveTransformOp. The format of 
                          input tensor is NCHW. Where N is batch size, C is the
                          number of input channels, H is the height of the feature,
                          and W is the width of the feature.
        rois (Variable):  ROIs (Regions of Interest) to be transformed. It should be
                          a 2-D LoDTensor of shape (num_rois, 8). Given as 
                          [[x1, y1, x2, y2, x3, y3, x4, y4], ...], (x1, y1) is the 
                          top left coordinates, and (x2, y2) is the top right 
                          coordinates, and (x3, y3) is the bottom right coordinates, 
                          and (x4, y4) is the bottom left coordinates.
        transformed_height (integer): The height of transformed output.
        transformed_height (integer): The width of transformed output.
        spatial_scale (float): Spatial scale factor to scale ROI coords. Default: 1.0

    Returns:
        Variable: The output of ROIPerspectiveTransformOp which is a 4-D tensor with shape 
                  (num_rois, channels, transformed_h, transformed_w).

    Examples:
        .. code-block:: python

            out = fluid.layers.roi_perspective_transform(input, rois, 7, 7, 1.0)
    """
    helper = LayerHelper('roi_perspective_transform', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
1396
    out = helper.create_variable_for_type_inference(dtype)
W
whs 已提交
1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409
    helper.append_op(
        type="roi_perspective_transform",
        inputs={"X": input,
                "ROIs": rois},
        outputs={"Out": out},
        attrs={
            "transformed_height": transformed_height,
            "transformed_width": transformed_width,
            "spatial_scale": spatial_scale
        })
    return out


1410 1411
def generate_proposal_labels(rpn_rois,
                             gt_classes,
1412
                             is_crowd,
1413
                             gt_boxes,
1414
                             im_info,
1415 1416 1417 1418 1419 1420
                             batch_size_per_im=256,
                             fg_fraction=0.25,
                             fg_thresh=0.25,
                             bg_thresh_hi=0.5,
                             bg_thresh_lo=0.0,
                             bbox_reg_weights=[0.1, 0.1, 0.2, 0.2],
1421 1422
                             class_nums=None,
                             use_random=True):
1423 1424 1425 1426 1427 1428 1429
    """
    ** Generate proposal labels Faster-RCNN **
    TODO(buxingyuan): Add Document
    """

    helper = LayerHelper('generate_proposal_labels', **locals())

X
Xin Pan 已提交
1430 1431 1432 1433 1434 1435 1436 1437 1438
    rois = helper.create_variable_for_type_inference(dtype=rpn_rois.dtype)
    labels_int32 = helper.create_variable_for_type_inference(
        dtype=gt_classes.dtype)
    bbox_targets = helper.create_variable_for_type_inference(
        dtype=rpn_rois.dtype)
    bbox_inside_weights = helper.create_variable_for_type_inference(
        dtype=rpn_rois.dtype)
    bbox_outside_weights = helper.create_variable_for_type_inference(
        dtype=rpn_rois.dtype)
1439 1440 1441 1442 1443 1444

    helper.append_op(
        type="generate_proposal_labels",
        inputs={
            'RpnRois': rpn_rois,
            'GtClasses': gt_classes,
1445
            'IsCrowd': is_crowd,
1446
            'GtBoxes': gt_boxes,
1447
            'ImInfo': im_info
1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462
        },
        outputs={
            'Rois': rois,
            'LabelsInt32': labels_int32,
            'BboxTargets': bbox_targets,
            'BboxInsideWeights': bbox_inside_weights,
            'BboxOutsideWeights': bbox_outside_weights
        },
        attrs={
            'batch_size_per_im': batch_size_per_im,
            'fg_fraction': fg_fraction,
            'fg_thresh': fg_thresh,
            'bg_thresh_hi': bg_thresh_hi,
            'bg_thresh_lo': bg_thresh_lo,
            'bbox_reg_weights': bbox_reg_weights,
1463 1464
            'class_nums': class_nums,
            'use_random': use_random
1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475
        })

    rois.stop_gradient = True
    labels_int32.stop_gradient = True
    bbox_targets.stop_gradient = True
    bbox_inside_weights.stop_gradient = True
    bbox_outside_weights.stop_gradient = True

    return rois, labels_int32, bbox_targets, bbox_inside_weights, bbox_outside_weights


1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519
def generate_proposals(scores,
                       bbox_deltas,
                       im_info,
                       anchors,
                       variances,
                       pre_nms_top_n=6000,
                       post_nms_top_n=1000,
                       nms_thresh=0.5,
                       min_size=0.1,
                       eta=1.0,
                       name=None):
    """
    ** Generate proposal labels Faster-RCNN **
	
	This operation proposes RoIs according to each box with their probability to be a foreground object and 
	the box can be calculated by anchors. Bbox_deltais and scores to be an object are the output of RPN. Final proposals
	could be used to train detection net.

	For generating proposals, this operation performs following steps:

	1. Transposes and resizes scores and bbox_deltas in size of (H*W*A, 1) and (H*W*A, 4)
 	2. Calculate box locations as proposals candidates. 
	3. Clip boxes to image
	4. Remove predicted boxes with small area. 
	5. Apply NMS to get final proposals as output.
	
      
	Args:
		scores(Variable): A 4-D Tensor with shape [N, A, H, W] represents the probability for each box to be an object.
			N is batch size, A is number of anchors, H and W are height and width of the feature map.
		bbox_deltas(Variable): A 4-D Tensor with shape [N, 4*A, H, W] represents the differece between predicted box locatoin and anchor location. 
		im_info(Variable): A 2-D Tensor with shape [N, 3] represents origin image information for N batch. Info contains height, width and scale
			between origin image size and the size of feature map.
		anchors(Variable):   A 4-D Tensor represents the anchors with a layout of [H, W, A, 4]. H and W are height and width of the feature map,
              		num_anchors is the box count of each position. Each anchor is in (xmin, ymin, xmax, ymax) format an unnormalized.
		variances(Variable): The expanded variances of anchors with a layout of [H, W, num_priors, 4]. Each variance is in (xcenter, ycenter, w, h) format.
		pre_nms_top_n(float): Number of total bboxes to be kept per image before NMS. 6000 by default.
		post_nms_top_n(float): Number of total bboxes to be kept per image after NMS. 1000 by default.
		nms_thresh(float): Threshold in NMS, 0.5 by default.
		min_size(float): Remove predicted boxes with either height or width < min_size. 0.1 by default.
		eta(float): Apply in adaptive NMS, if adaptive threshold > 0.5, adaptive_threshold = adaptive_threshold * eta in each iteration.
    """
    helper = LayerHelper('generate_proposals', **locals())

X
Xin Pan 已提交
1520 1521 1522 1523
    rpn_rois = helper.create_variable_for_type_inference(
        dtype=bbox_deltas.dtype)
    rpn_roi_probs = helper.create_variable_for_type_inference(
        dtype=scores.dtype)
1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545
    helper.append_op(
        type="generate_proposals",
        inputs={
            'Scores': scores,
            'BboxDeltas': bbox_deltas,
            'ImInfo': im_info,
            'Anchors': anchors,
            'Variances': variances
        },
        attrs={
            'pre_nms_topN': pre_nms_top_n,
            'post_nms_topN': post_nms_top_n,
            'nms_thresh': nms_thresh,
            'min_size': min_size,
            'eta': eta
        },
        outputs={'RpnRois': rpn_rois,
                 'RpnRoiProbs': rpn_roi_probs})
    rpn_rois.stop_gradient = True
    rpn_roi_probs.stop_gradient = True

    return rpn_rois, rpn_roi_probs