detection.py 164.9 KB
Newer Older
1
#  Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserve.
2 3 4 5 6
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
7
#    http://www.apache.org/licenses/LICENSE-2.0
8 9 10 11 12 13 14 15 16 17
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
All layers just related to the detection neural network.
"""

18 19
from __future__ import print_function

20 21
from .layer_function_generator import generate_layer_fn
from .layer_function_generator import autodoc, templatedoc
22
from ..layer_helper import LayerHelper
D
dengkaipeng 已提交
23
from ..framework import Variable
24
from .loss import softmax_with_cross_entropy
25 26
from . import tensor
from . import nn
27
from . import ops
M
minqiyang 已提交
28
from ... import compat as cpt
29
from ..data_feeder import check_variable_and_dtype, check_type, check_dtype
C
chengduoZH 已提交
30
import math
M
minqiyang 已提交
31
import six
32
import numpy as np
33
from functools import reduce
34
from ..data_feeder import convert_dtype, check_variable_and_dtype, check_type, check_dtype
35

C
chengduoZH 已提交
36
__all__ = [
37 38 39 40 41 42 43 44
    'prior_box',
    'density_prior_box',
    'multi_box_head',
    'bipartite_match',
    'target_assign',
    'detection_output',
    'ssd_loss',
    'rpn_target_assign',
45
    'retinanet_target_assign',
46
    'sigmoid_focal_loss',
47 48 49 50
    'anchor_generator',
    'roi_perspective_transform',
    'generate_proposal_labels',
    'generate_proposals',
51
    'generate_mask_labels',
52 53 54 55
    'iou_similarity',
    'box_coder',
    'polygon_box_transform',
    'yolov3_loss',
D
dengkaipeng 已提交
56
    'yolo_box',
57
    'box_clip',
J
jerrywgz 已提交
58
    'multiclass_nms',
59
    'locality_aware_nms',
60
    'retinanet_detection_output',
61
    'distribute_fpn_proposals',
62
    'box_decoder_and_assign',
63
    'collect_fpn_proposals',
C
chengduoZH 已提交
64
]
65 66


67 68 69 70 71 72 73 74 75 76 77 78
def retinanet_target_assign(bbox_pred,
                            cls_logits,
                            anchor_box,
                            anchor_var,
                            gt_boxes,
                            gt_labels,
                            is_crowd,
                            im_info,
                            num_classes=1,
                            positive_overlap=0.5,
                            negative_overlap=0.4):
    """
79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102
    **Target Assign Layer for the detector RetinaNet.**

    This OP finds out positive and negative samples from all anchors
    for training the detector `RetinaNet <https://arxiv.org/abs/1708.02002>`_ ,
    and assigns target labels for classification along with target locations for
    regression to each sample, then takes out the part belonging to positive and
    negative samples from category prediction( :attr:`cls_logits`) and location
    prediction( :attr:`bbox_pred`) which belong to all anchors.

    The searching principles for positive and negative samples are as followed:

    1. Anchors are assigned to ground-truth boxes when it has the highest IoU
    overlap with a ground-truth box.

    2. Anchors are assigned to ground-truth boxes when it has an IoU overlap
    higher than :attr:`positive_overlap` with any ground-truth box.

    3. Anchors are assigned to background when its IoU overlap is lower than
    :attr:`negative_overlap` for all ground-truth boxes.

    4. Anchors which do not meet the above conditions do not participate in
    the training process.

    Retinanet predicts a :math:`C`-vector for classification and a 4-vector for box
T
tianshuo78520a 已提交
103
    regression for each anchor, hence the target label for each positive(or negative)
104 105 106 107 108 109 110 111 112 113 114 115 116 117
    sample is a :math:`C`-vector and the target locations for each positive sample
    is a 4-vector. As for a positive sample, if the category of its assigned
    ground-truth box is class :math:`i`, the corresponding entry in its length
    :math:`C` label vector is set to 1 and all other entries is set to 0, its box
    regression targets are computed as the offset between itself and its assigned
    ground-truth box. As for a negative sample, all entries in its length :math:`C`
    label vector are set to 0 and box regression targets are omitted because
    negative samples do not participate in the training process of location
    regression.

    After the assignment, the part belonging to positive and negative samples is
    taken out from category prediction( :attr:`cls_logits` ), and the part
    belonging to positive samples is taken out from location
    prediction( :attr:`bbox_pred` ).
118 119

    Args:
120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160
        bbox_pred(Variable): A 3-D Tensor with shape :math:`[N, M, 4]` represents
            the predicted locations of all anchors. :math:`N` is the batch size( the
            number of images in a mini-batch), :math:`M` is the number of all anchors
            of one image, and each anchor has 4 coordinate values. The data type of
            :attr:`bbox_pred` is float32 or float64.
        cls_logits(Variable): A 3-D Tensor with shape :math:`[N, M, C]` represents
            the predicted categories of all anchors. :math:`N` is the batch size,
            :math:`M` is the number of all anchors of one image, and :math:`C` is
            the number of categories (**Notice: excluding background**). The data type
            of :attr:`cls_logits` is float32 or float64.
        anchor_box(Variable): A 2-D Tensor with shape :math:`[M, 4]` represents
            the locations of all anchors. :math:`M` is the number of all anchors of
            one image, each anchor is represented as :math:`[xmin, ymin, xmax, ymax]`,
            :math:`[xmin, ymin]` is the left top coordinate of the anchor box,
            :math:`[xmax, ymax]` is the right bottom coordinate of the anchor box.
            The data type of :attr:`anchor_box` is float32 or float64. Please refer
            to the OP :ref:`api_fluid_layers_anchor_generator` 
            for the generation of :attr:`anchor_box`.
        anchor_var(Variable): A 2-D Tensor with shape :math:`[M,4]` represents the expanded 
            factors of anchor locations used in loss function. :math:`M` is number of
            all anchors of one image, each anchor possesses a 4-vector expanded factor.
            The data type of :attr:`anchor_var` is float32 or float64. Please refer
            to the OP :ref:`api_fluid_layers_anchor_generator`
            for the generation of :attr:`anchor_var`.
        gt_boxes(Variable): A 1-level 2-D LoDTensor with shape :math:`[G, 4]` represents
            locations of all ground-truth boxes. :math:`G` is the total number of
            all ground-truth boxes in a mini-batch, and each ground-truth box has 4
            coordinate values. The data type of :attr:`gt_boxes` is float32 or
            float64.
        gt_labels(variable): A 1-level 2-D LoDTensor with shape :math:`[G, 1]` represents
            categories of all ground-truth boxes, and the values are in the range of
            :math:`[1, C]`. :math:`G` is the total number of all ground-truth boxes
            in a mini-batch, and each ground-truth box has one category. The data type
            of :attr:`gt_labels` is int32.
        is_crowd(Variable): A 1-level 1-D LoDTensor with shape :math:`[G]` which
            indicates whether a ground-truth box is a crowd. If the value is 1, the
            corresponding box is a crowd, it is ignored during training. :math:`G` is
            the total number of all ground-truth boxes in a mini-batch. The data type
            of :attr:`is_crowd` is int32.
        im_info(Variable): A 2-D Tensor with shape [N, 3] represents the size
            information of input images. :math:`N` is the batch size, the size
T
tianshuo78520a 已提交
161
            information of each image is a 3-vector which are the height and width
162 163 164 165 166 167 168 169 170 171 172 173
            of the network input along with the factor scaling the origin image to
            the network input. The data type of :attr:`im_info` is float32.
        num_classes(int32): The number of categories for classification, the default
            value is 1.
        positive_overlap(float32): Minimum overlap required between an anchor
            and ground-truth box for the anchor to be a positive sample, the default
            value is 0.5.
        negative_overlap(float32): Maximum overlap allowed between an anchor
            and ground-truth box for the anchor to be a negative sample, the default
            value is 0.4. :attr:`negative_overlap` should be less than or equal to
            :attr:`positive_overlap`, if not, the actual value of
            :attr:`positive_overlap` is :attr:`negative_overlap`.
174 175

    Returns:
176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216
        A tuple with 6 Variables:
        
        **predict_scores** (Variable): A 2-D Tensor with shape :math:`[F+B, C]` represents
        category prediction belonging to positive and negative samples. :math:`F`
        is the number of positive samples in a mini-batch, :math:`B` is the number
        of negative samples, and :math:`C` is the number of categories
        (**Notice: excluding background**). The data type of :attr:`predict_scores`
        is float32 or float64.

        **predict_location** (Variable): A 2-D Tensor with shape :math:`[F, 4]` represents
        location prediction belonging to positive samples. :math:`F` is the number
        of positive samples. :math:`F` is the number of positive samples, and each
        sample has 4 coordinate values. The data type of :attr:`predict_location`
        is float32 or float64.

        **target_label** (Variable): A 2-D Tensor with shape :math:`[F+B, 1]` represents
        target labels for classification belonging to positive and negative
        samples. :math:`F` is the number of positive samples, :math:`B` is the
        number of negative, and each sample has one target category. The data type
        of :attr:`target_label` is int32.

        **target_bbox** (Variable): A 2-D Tensor with shape :math:`[F, 4]` represents
        target locations for box regression belonging to positive samples.
        :math:`F` is the number of positive samples, and each sample has 4
        coordinate values. The data type of :attr:`target_bbox` is float32 or
        float64.

        **bbox_inside_weight** (Variable): A 2-D Tensor with shape :math:`[F, 4]`
        represents whether a positive sample is fake positive, if a positive
        sample is false positive, the corresponding entries in
        :attr:`bbox_inside_weight` are set 0, otherwise 1. :math:`F` is the number
        of total positive samples in a mini-batch, and each sample has 4
        coordinate values. The data type of :attr:`bbox_inside_weight` is float32
        or float64.

        **fg_num** (Variable): A 2-D Tensor with shape :math:`[N, 1]` represents the number
        of positive samples. :math:`N` is the batch size. **Notice: The number
        of positive samples is used as the denominator of later loss function,
        to avoid the condition that the denominator is zero, this OP has added 1
        to the actual number of positive samples of each image.** The data type of
        :attr:`fg_num` is int32.
217 218 219 220 221

    Examples:
        .. code-block:: python

          import paddle.fluid as fluid
222 223 224 225 226 227 228 229 230 231 232
          bbox_pred = fluid.data(name='bbox_pred', shape=[1, 100, 4],
                            dtype='float32')
          cls_logits = fluid.data(name='cls_logits', shape=[1, 100, 10],
                            dtype='float32')
          anchor_box = fluid.data(name='anchor_box', shape=[100, 4],
                            dtype='float32')
          anchor_var = fluid.data(name='anchor_var', shape=[100, 4],
                            dtype='float32')
          gt_boxes = fluid.data(name='gt_boxes', shape=[10, 4],
                            dtype='float32')
          gt_labels = fluid.data(name='gt_labels', shape=[10, 1],
233
                            dtype='int32')
234
          is_crowd = fluid.data(name='is_crowd', shape=[1],
235
                            dtype='int32')
236
          im_info = fluid.data(name='im_info', shape=[1, 3],
237
                            dtype='float32')
238
          score_pred, loc_pred, score_target, loc_target, bbox_inside_weight, fg_num = \\
239 240 241 242 243
                fluid.layers.retinanet_target_assign(bbox_pred, cls_logits, anchor_box,
                anchor_var, gt_boxes, gt_labels, is_crowd, im_info, 10)

    """

244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260
    check_variable_and_dtype(bbox_pred, 'bbox_pred', ['float32', 'float64'],
                             'retinanet_target_assign')
    check_variable_and_dtype(cls_logits, 'cls_logits', ['float32', 'float64'],
                             'retinanet_target_assign')
    check_variable_and_dtype(anchor_box, 'anchor_box', ['float32', 'float64'],
                             'retinanet_target_assign')
    check_variable_and_dtype(anchor_var, 'anchor_var', ['float32', 'float64'],
                             'retinanet_target_assign')
    check_variable_and_dtype(gt_boxes, 'gt_boxes', ['float32', 'float64'],
                             'retinanet_target_assign')
    check_variable_and_dtype(gt_labels, 'gt_labels', ['int32'],
                             'retinanet_target_assign')
    check_variable_and_dtype(is_crowd, 'is_crowd', ['int32'],
                             'retinanet_target_assign')
    check_variable_and_dtype(im_info, 'im_info', ['float32', 'float64'],
                             'retinanet_target_assign')

261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307
    helper = LayerHelper('retinanet_target_assign', **locals())
    # Assign target label to anchors
    loc_index = helper.create_variable_for_type_inference(dtype='int32')
    score_index = helper.create_variable_for_type_inference(dtype='int32')
    target_label = helper.create_variable_for_type_inference(dtype='int32')
    target_bbox = helper.create_variable_for_type_inference(
        dtype=anchor_box.dtype)
    bbox_inside_weight = helper.create_variable_for_type_inference(
        dtype=anchor_box.dtype)
    fg_num = helper.create_variable_for_type_inference(dtype='int32')
    helper.append_op(
        type="retinanet_target_assign",
        inputs={
            'Anchor': anchor_box,
            'GtBoxes': gt_boxes,
            'GtLabels': gt_labels,
            'IsCrowd': is_crowd,
            'ImInfo': im_info
        },
        outputs={
            'LocationIndex': loc_index,
            'ScoreIndex': score_index,
            'TargetLabel': target_label,
            'TargetBBox': target_bbox,
            'BBoxInsideWeight': bbox_inside_weight,
            'ForegroundNumber': fg_num
        },
        attrs={
            'positive_overlap': positive_overlap,
            'negative_overlap': negative_overlap
        })

    loc_index.stop_gradient = True
    score_index.stop_gradient = True
    target_label.stop_gradient = True
    target_bbox.stop_gradient = True
    bbox_inside_weight.stop_gradient = True
    fg_num.stop_gradient = True

    cls_logits = nn.reshape(x=cls_logits, shape=(-1, num_classes))
    bbox_pred = nn.reshape(x=bbox_pred, shape=(-1, 4))
    predicted_cls_logits = nn.gather(cls_logits, score_index)
    predicted_bbox_pred = nn.gather(bbox_pred, loc_index)

    return predicted_cls_logits, predicted_bbox_pred, target_label, target_bbox, bbox_inside_weight, fg_num


308 309
def rpn_target_assign(bbox_pred,
                      cls_logits,
Y
Yuan Gao 已提交
310
                      anchor_box,
311
                      anchor_var,
312 313 314
                      gt_boxes,
                      is_crowd,
                      im_info,
Y
Yuan Gao 已提交
315
                      rpn_batch_size_per_im=256,
316 317
                      rpn_straddle_thresh=0.0,
                      rpn_fg_fraction=0.5,
Y
Yuan Gao 已提交
318
                      rpn_positive_overlap=0.7,
319 320
                      rpn_negative_overlap=0.3,
                      use_random=True):
Y
Yuan Gao 已提交
321
    """
H
haowang101779990 已提交
322
    **Target Assign Layer for region proposal network (RPN) in Faster-RCNN detection.**
Y
Yuan Gao 已提交
323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339

    This layer can be, for given the  Intersection-over-Union (IoU) overlap
    between anchors and ground truth boxes, to assign classification and
    regression targets to each each anchor, these target labels are used for
    train RPN. The classification targets is a binary class label (of being
    an object or not). Following the paper of Faster-RCNN, the positive labels
    are two kinds of anchors: (i) the anchor/anchors with the highest IoU
    overlap with a ground-truth box, or (ii) an anchor that has an IoU overlap
    higher than rpn_positive_overlap(0.7) with any ground-truth box. Note
    that a single ground-truth box may assign positive labels to multiple
    anchors. A non-positive anchor is when its IoU ratio is lower than
    rpn_negative_overlap (0.3) for all ground-truth boxes. Anchors that are
    neither positive nor negative do not contribute to the training objective.
    The regression targets are the encoded ground-truth boxes associated with
    the positive anchors.

    Args:
340
        bbox_pred(Variable): A 3-D Tensor with shape [N, M, 4] represents the
Y
Yuan Gao 已提交
341 342
            predicted locations of M bounding bboxes. N is the batch size,
            and each bounding box has four coordinate values and the layout
343
            is [xmin, ymin, xmax, ymax]. The data type can be float32 or float64.
344 345 346
        cls_logits(Variable): A 3-D Tensor with shape [N, M, 1] represents the
            predicted confidence predictions. N is the batch size, 1 is the
            frontground and background sigmoid, M is number of bounding boxes.
347
            The data type can be float32 or float64.
Y
Yuan Gao 已提交
348 349 350 351 352
        anchor_box(Variable): A 2-D Tensor with shape [M, 4] holds M boxes,
            each box is represented as [xmin, ymin, xmax, ymax],
            [xmin, ymin] is the left top coordinate of the anchor box,
            if the input is image feature map, they are close to the origin
            of the coordinate system. [xmax, ymax] is the right bottom
353
            coordinate of the anchor box. The data type can be float32 or float64.
354
        anchor_var(Variable): A 2-D Tensor with shape [M,4] holds expanded 
355
            variances of anchors. The data type can be float32 or float64.
翟飞跃 已提交
356
        gt_boxes (Variable): The ground-truth bounding boxes (bboxes) are a 2D
Y
Yuan Gao 已提交
357
            LoDTensor with shape [Ng, 4], Ng is the total number of ground-truth
358
            bboxes of mini-batch input. The data type can be float32 or float64.
359
        is_crowd (Variable): A 1-D LoDTensor which indicates groud-truth is crowd.
360
                             The data type must be int32.
361 362
        im_info (Variable): A 2-D LoDTensor with shape [N, 3]. N is the batch size,
        3 is the height, width and scale.
Y
Yuan Gao 已提交
363
        rpn_batch_size_per_im(int): Total number of RPN examples per image.
364
                                    The data type must be int32.
365
        rpn_straddle_thresh(float): Remove RPN anchors that go outside the image
366
            by straddle_thresh pixels. The data type must be float32.
367
        rpn_fg_fraction(float): Target fraction of RoI minibatch that is labeled
368
            foreground (i.e. class > 0), 0-th class is background. The data type must be float32.
Y
Yuan Gao 已提交
369 370
        rpn_positive_overlap(float): Minimum overlap required between an anchor
            and ground-truth box for the (anchor, gt box) pair to be a positive
371
            example. The data type must be float32.
Y
Yuan Gao 已提交
372 373
        rpn_negative_overlap(float): Maximum overlap allowed between an anchor
            and ground-truth box for the (anchor, gt box) pair to be a negative
374
            examples. The data type must be float32.
Y
Yuan Gao 已提交
375 376

    Returns:
M
minqiyang 已提交
377
        tuple:
378 379 380 381 382 383 384 385 386 387 388 389 390
        A tuple(predicted_scores, predicted_location, target_label,
        target_bbox, bbox_inside_weight) is returned. The predicted_scores 
        and predicted_location is the predicted result of the RPN.
        The target_label and target_bbox is the ground truth,
        respectively. The predicted_location is a 2D Tensor with shape
        [F, 4], and the shape of target_bbox is same as the shape of
        the predicted_location, F is the number of the foreground
        anchors. The predicted_scores is a 2D Tensor with shape
        [F + B, 1], and the shape of target_label is same as the shape
        of the predicted_scores, B is the number of the background
        anchors, the F and B is depends on the input of this operator.
        Bbox_inside_weight represents whether the predicted loc is fake_fg
        or not and the shape is [F, 4].
Y
Yuan Gao 已提交
391 392 393 394

    Examples:
        .. code-block:: python

B
Bai Yifan 已提交
395
            import paddle.fluid as fluid
396 397 398 399 400 401 402
            bbox_pred = fluid.data(name='bbox_pred', shape=[None, 4], dtype='float32')
            cls_logits = fluid.data(name='cls_logits', shape=[None, 1], dtype='float32')
            anchor_box = fluid.data(name='anchor_box', shape=[None, 4], dtype='float32')
            anchor_var = fluid.data(name='anchor_var', shape=[None, 4], dtype='float32')
            gt_boxes = fluid.data(name='gt_boxes', shape=[None, 4], dtype='float32')
            is_crowd = fluid.data(name='is_crowd', shape=[None], dtype='float32')
            im_info = fluid.data(name='im_infoss', shape=[None, 3], dtype='float32')
403 404
            loc, score, loc_target, score_target, inside_weight = fluid.layers.rpn_target_assign(
                bbox_pred, cls_logits, anchor_box, anchor_var, gt_boxes, is_crowd, im_info)
H
haowang101779990 已提交
405

Y
Yuan Gao 已提交
406 407 408
    """

    helper = LayerHelper('rpn_target_assign', **locals())
409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424

    check_variable_and_dtype(bbox_pred, 'bbox_pred', ['float32', 'float64'],
                             'rpn_target_assign')
    check_variable_and_dtype(cls_logits, 'cls_logits', ['float32', 'float64'],
                             'rpn_target_assign')
    check_variable_and_dtype(anchor_box, 'anchor_box', ['float32', 'float64'],
                             'rpn_target_assign')
    check_variable_and_dtype(anchor_var, 'anchor_var', ['float32', 'float64'],
                             'rpn_target_assign')
    check_variable_and_dtype(gt_boxes, 'gt_boxes', ['float32', 'float64'],
                             'rpn_target_assign')
    check_variable_and_dtype(is_crowd, 'is_crowd', ['int32'],
                             'rpn_target_assign')
    check_variable_and_dtype(im_info, 'im_info', ['float32', 'float64'],
                             'rpn_target_assign')

425
    # Assign target label to anchors
J
jerrywgz 已提交
426 427 428 429 430 431 432
    loc_index = helper.create_variable_for_type_inference(dtype='int32')
    score_index = helper.create_variable_for_type_inference(dtype='int32')
    target_label = helper.create_variable_for_type_inference(dtype='int32')
    target_bbox = helper.create_variable_for_type_inference(
        dtype=anchor_box.dtype)
    bbox_inside_weight = helper.create_variable_for_type_inference(
        dtype=anchor_box.dtype)
Y
Yuan Gao 已提交
433 434
    helper.append_op(
        type="rpn_target_assign",
435 436 437 438 439 440
        inputs={
            'Anchor': anchor_box,
            'GtBoxes': gt_boxes,
            'IsCrowd': is_crowd,
            'ImInfo': im_info
        },
Y
Yuan Gao 已提交
441 442 443
        outputs={
            'LocationIndex': loc_index,
            'ScoreIndex': score_index,
444
            'TargetLabel': target_label,
J
jerrywgz 已提交
445
            'TargetBBox': target_bbox,
J
jerrywgz 已提交
446
            'BBoxInsideWeight': bbox_inside_weight
Y
Yuan Gao 已提交
447 448 449
        },
        attrs={
            'rpn_batch_size_per_im': rpn_batch_size_per_im,
450
            'rpn_straddle_thresh': rpn_straddle_thresh,
Y
Yuan Gao 已提交
451 452
            'rpn_positive_overlap': rpn_positive_overlap,
            'rpn_negative_overlap': rpn_negative_overlap,
453 454
            'rpn_fg_fraction': rpn_fg_fraction,
            'use_random': use_random
Y
Yuan Gao 已提交
455 456
        })

457 458 459 460
    loc_index.stop_gradient = True
    score_index.stop_gradient = True
    target_label.stop_gradient = True
    target_bbox.stop_gradient = True
J
jerrywgz 已提交
461
    bbox_inside_weight.stop_gradient = True
Y
Yuan Gao 已提交
462

463 464 465 466
    cls_logits = nn.reshape(x=cls_logits, shape=(-1, 1))
    bbox_pred = nn.reshape(x=bbox_pred, shape=(-1, 4))
    predicted_cls_logits = nn.gather(cls_logits, score_index)
    predicted_bbox_pred = nn.gather(bbox_pred, loc_index)
467

J
jerrywgz 已提交
468
    return predicted_cls_logits, predicted_bbox_pred, target_label, target_bbox, bbox_inside_weight
Y
Yuan Gao 已提交
469 470


471
def sigmoid_focal_loss(x, label, fg_num, gamma=2.0, alpha=0.25):
472
    """
S
swtkiwi 已提交
473 474 475 476
	:alias_main: paddle.nn.functional.sigmoid_focal_loss
	:alias: paddle.nn.functional.sigmoid_focal_loss,paddle.nn.functional.loss.sigmoid_focal_loss
	:old_api: paddle.fluid.layers.sigmoid_focal_loss

477 478
    **Sigmoid Focal Loss Operator.**

479 480 481 482 483
    `Focal Loss <https://arxiv.org/abs/1708.02002>`_ is used to address the foreground-background
    class imbalance existed on the training phase of many computer vision tasks. This OP computes
    the sigmoid value for each element in the input tensor :attr:`x`, after which focal loss is
    measured between the sigmoid value and target label. 

484 485 486
    The focal loss is given as followed:

    .. math::
487 488 489 490 491 492 493
  
        \\mathop{loss_{i,\\,j}}\\limits_{i\\in\\mathbb{[0,\\,N-1]},\\,j\\in\\mathbb{[0,\\,C-1]}}=\\left\\{
        \\begin{array}{rcl}
        - \\frac{1}{fg\_num} * \\alpha * {(1 - \\sigma(x_{i,\\,j}))}^{\\gamma} * \\log(\\sigma(x_{i,\\,j})) & & {(j +1) = label_{i,\\,0}} \\\\
        - \\frac{1}{fg\_num} * (1 - \\alpha) * {\sigma(x_{i,\\,j})}^{ \\gamma} * \\log(1 - \\sigma(x_{i,\\,j})) & & {(j +1)!= label_{i,\\,0}}
        \\end{array} \\right.

494 495 496 497 498 499 500

    We know that
    
    .. math::
        \\sigma(x_j) = \\frac{1}{1 + \\exp(-x_j)}


501 502 503 504 505 506 507 508 509 510 511 512 513 514 515
    Args:
        x(Variable): A 2-D tensor with shape :math:`[N, C]` represents the predicted categories of
            all samples. :math:`N` is the number of all samples responsible for optimization in
            a mini-batch, for example, samples are anchor boxes for object detection and :math:`N`
            is the total number of positive and negative samples in a mini-batch; Samples are images
            for image classification and :math:`N` is the number of images in a mini-batch. :math:`C`
            is the number of classes (**Notice: excluding background**). The data type of :attr:`x` is
            float32 or float64.
        label(Variable): A 2-D tensor with shape :math:`[N, 1]` represents the target labels for
            classification. :math:`N` is the number of all samples responsible for optimization in a
            mini-batch, each sample has one target category. The values for positive samples are in the
            range of :math:`[1, C]`, and the values for negative samples are 0. The data type of :attr:`label`
            is int32.
        fg_num(Variable): A 1-D tensor with shape [1] represents the number of positive samples in a
            mini-batch, which should be obtained before this OP. The data type of :attr:`fg_num` is int32.
516
        gamma(int|float): Hyper-parameter to balance the easy and hard examples. Default value is
517
            set to 2.0.
518
        alpha(int|float): Hyper-parameter to balance the positive and negative example. Default value
519 520 521
            is set to 0.25.

    Returns:
522 523 524
        Variable(the data type is float32 or float64): 
            A 2-D tensor with shape :math:`[N, C]`, which is the focal loss of each element in the input
            tensor :attr:`x`.
525 526 527 528

    Examples:
        .. code-block:: python

529
            import numpy as np
530
            import paddle.fluid as fluid
531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595
            
            num_classes = 10  # exclude background
            image_width = 16
            image_height = 16
            batch_size = 32
            max_iter = 20
            
            
            def gen_train_data():
                x_data = np.random.uniform(0, 255, (batch_size, 3, image_height,
                                                    image_width)).astype('float64')
                label_data = np.random.randint(0, num_classes,
                                               (batch_size, 1)).astype('int32')
                return {"x": x_data, "label": label_data}
            
            
            def get_focal_loss(pred, label, fg_num, num_classes):
                pred = fluid.layers.reshape(pred, [-1, num_classes])
                label = fluid.layers.reshape(label, [-1, 1])
                label.stop_gradient = True
                loss = fluid.layers.sigmoid_focal_loss(
                    pred, label, fg_num, gamma=2.0, alpha=0.25)
                loss = fluid.layers.reduce_sum(loss)
                return loss
            
            
            def build_model(mode='train'):
                x = fluid.data(name="x", shape=[-1, 3, -1, -1], dtype='float64')
                output = fluid.layers.pool2d(input=x, pool_type='avg', global_pooling=True)
                output = fluid.layers.fc(
                    input=output,
                    size=num_classes,
                    # Notice: size is set to be the number of target classes (excluding backgorund)
                    # because sigmoid activation will be done in the sigmoid_focal_loss op.
                    act=None)
                if mode == 'train':
                    label = fluid.data(name="label", shape=[-1, 1], dtype='int32')
                    # Obtain the fg_num needed by the sigmoid_focal_loss op:
                    # 0 in label represents background, >=1 in label represents foreground,
                    # find the elements in label which are greater or equal than 1, then
                    # computed the numbers of these elements.
                    data = fluid.layers.fill_constant(shape=[1], value=1, dtype='int32')
                    fg_label = fluid.layers.greater_equal(label, data)
                    fg_label = fluid.layers.cast(fg_label, dtype='int32')
                    fg_num = fluid.layers.reduce_sum(fg_label)
                    fg_num.stop_gradient = True
                    avg_loss = get_focal_loss(output, label, fg_num, num_classes)
                    return avg_loss
                else:
                    # During evaluating or testing phase,
                    # output of the final fc layer should be connected to a sigmoid layer.
                    pred = fluid.layers.sigmoid(output)
                    return pred
            
            
            loss = build_model('train')
            moment_optimizer = fluid.optimizer.MomentumOptimizer(
                learning_rate=0.001, momentum=0.9)
            moment_optimizer.minimize(loss)
            place = fluid.CPUPlace()
            exe = fluid.Executor(place)
            exe.run(fluid.default_startup_program())
            for i in range(max_iter):
                outs = exe.run(feed=gen_train_data(), fetch_list=[loss.name])
                print(outs)
596 597
    """

598 599 600 601 602
    check_variable_and_dtype(x, 'x', ['float32', 'float64'],
                             'sigmoid_focal_loss')
    check_variable_and_dtype(label, 'label', ['int32'], 'sigmoid_focal_loss')
    check_variable_and_dtype(fg_num, 'fg_num', ['int32'], 'sigmoid_focal_loss')

603 604 605 606 607 608 609 610 611 612 613 614 615 616 617
    helper = LayerHelper("sigmoid_focal_loss", **locals())

    out = helper.create_variable_for_type_inference(dtype=x.dtype)

    helper.append_op(
        type="sigmoid_focal_loss",
        inputs={"X": x,
                "Label": label,
                "FgNum": fg_num},
        attrs={"gamma": gamma,
               'alpha': alpha},
        outputs={"Out": out})
    return out


Y
Yuan Gao 已提交
618 619
def detection_output(loc,
                     scores,
620 621 622 623 624 625 626
                     prior_box,
                     prior_box_var,
                     background_label=0,
                     nms_threshold=0.3,
                     nms_top_k=400,
                     keep_top_k=200,
                     score_threshold=0.01,
627 628
                     nms_eta=1.0,
                     return_index=False):
629
    """
S
swtkiwi 已提交
630 631 632 633
	:alias_main: paddle.nn.functional.detection_output
	:alias: paddle.nn.functional.detection_output,paddle.nn.functional.vision.detection_output
	:old_api: paddle.fluid.layers.detection_output

Q
qingqing01 已提交
634 635
    Given the regression locations, classification confidences and prior boxes,
    calculate the detection outputs by performing following steps:
636

Q
qingqing01 已提交
637 638
    1. Decode input bounding box predictions according to the prior boxes and
       regression locations.
639 640 641 642 643
    2. Get the final detection results by applying multi-class non maximum
       suppression (NMS).

    Please note, this operation doesn't clip the final output bounding boxes
    to the image window.
644 645 646

    Args:
        loc(Variable): A 3-D Tensor with shape [N, M, 4] represents the
Q
qingqing01 已提交
647 648
            predicted locations of M bounding bboxes. Data type should be
            float32 or float64. N is the batch size,
649 650
            and each bounding box has four coordinate values and the layout
            is [xmin, ymin, xmax, ymax].
Y
Yuan Gao 已提交
651
        scores(Variable): A 3-D Tensor with shape [N, M, C] represents the
Q
qingqing01 已提交
652 653 654
            predicted confidence predictions. Data type should be float32
            or float64. N is the batch size, C is the
            class number, M is number of bounding boxes.
655
        prior_box(Variable): A 2-D Tensor with shape [M, 4] holds M boxes,
Q
qingqing01 已提交
656 657
            each box is represented as [xmin, ymin, xmax, ymax]. Data type
            should be float32 or float64.
658
        prior_box_var(Variable): A 2-D Tensor with shape [M, 4] holds M group
Q
qingqing01 已提交
659 660
            of variance. Data type should be float32 or float64.
        background_label(int): The index of background label,
661
            the background label will be ignored. If set to -1, then all
Q
qingqing01 已提交
662 663
            categories will be considered. Default: 0.
        nms_threshold(float): The threshold to be used in NMS. Default: 0.3.
664
        nms_top_k(int): Maximum number of detections to be kept according
T
tianshuo78520a 已提交
665
            to the confidences after filtering detections based on
Q
qingqing01 已提交
666
            score_threshold and before NMS. Default: 400.
667
        keep_top_k(int): Number of total bboxes to be kept per image after
Q
qingqing01 已提交
668
            NMS step. -1 means keeping all bboxes after NMS step. Default: 200.
669 670
        score_threshold(float): Threshold to filter out bounding boxes with
            low confidence score. If not provided, consider all boxes.
Q
qingqing01 已提交
671 672 673
            Default: 0.01.
        nms_eta(float): The parameter for adaptive NMS. It works only when the
            value is less than 1.0. Default: 1.0.
674
        return_index(bool): Whether return selected index. Default: False
675 676

    Returns:
M
minqiyang 已提交
677

678 679 680
        A tuple with two Variables: (Out, Index) if return_index is True,
        otherwise, a tuple with one Variable(Out) is returned. 

Q
qingqing01 已提交
681 682 683 684 685 686 687 688 689 690 691 692
        Out (Variable): The detection outputs is a LoDTensor with shape [No, 6].
        Data type is the same as input (loc). Each row has six values:
        [label, confidence, xmin, ymin, xmax, ymax]. `No` is
        the total number of detections in this mini-batch. For each instance,
        the offsets in first dimension are called LoD, the offset number is
        N + 1, N is the batch size. The i-th image has `LoD[i + 1] - LoD[i]`
        detected results, if it is 0, the i-th image has no detected results.

        Index (Variable): Only return when return_index is True. A 2-D LoDTensor
        with shape [No, 1] represents the selected index which type is Integer.
        The index is the absolute value cross batches. No is the same number
        as Out. If the index is used to gather other attribute such as age,
693 694 695
        one needs to reshape the input(N, M, 1) to (N * M, 1) as first, where
        N is the batch size and M is the number of boxes.

696 697 698 699

    Examples:
        .. code-block:: python

700 701
            import paddle.fluid as fluid

Q
qingqing01 已提交
702 703 704 705
            pb = fluid.data(name='prior_box', shape=[10, 4], dtype='float32')
            pbv = fluid.data(name='prior_box_var', shape=[10, 4], dtype='float32')
            loc = fluid.data(name='target_box', shape=[2, 21, 4], dtype='float32')
            scores = fluid.data(name='scores', shape=[2, 21, 10], dtype='float32')
706
            nmsed_outs, index = fluid.layers.detection_output(scores=scores,
707 708
                                       loc=loc,
                                       prior_box=pb,
709 710
                                       prior_box_var=pbv,
                                       return_index=True)
711 712
    """
    helper = LayerHelper("detection_output", **locals())
713 714 715 716 717
    decoded_box = box_coder(
        prior_box=prior_box,
        prior_box_var=prior_box_var,
        target_box=loc,
        code_type='decode_center_size')
718
    scores = nn.softmax(input=scores)
Y
Yuan Gao 已提交
719
    scores = nn.transpose(scores, perm=[0, 2, 1])
720
    scores.stop_gradient = True
X
Xin Pan 已提交
721 722
    nmsed_outs = helper.create_variable_for_type_inference(
        dtype=decoded_box.dtype)
723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753
    if return_index:
        index = helper.create_variable_for_type_inference(dtype='int')
        helper.append_op(
            type="multiclass_nms2",
            inputs={'Scores': scores,
                    'BBoxes': decoded_box},
            outputs={'Out': nmsed_outs,
                     'Index': index},
            attrs={
                'background_label': 0,
                'nms_threshold': nms_threshold,
                'nms_top_k': nms_top_k,
                'keep_top_k': keep_top_k,
                'score_threshold': score_threshold,
                'nms_eta': 1.0,
            })
        index.stop_gradient = True
    else:
        helper.append_op(
            type="multiclass_nms",
            inputs={'Scores': scores,
                    'BBoxes': decoded_box},
            outputs={'Out': nmsed_outs},
            attrs={
                'background_label': 0,
                'nms_threshold': nms_threshold,
                'nms_top_k': nms_top_k,
                'keep_top_k': keep_top_k,
                'score_threshold': score_threshold,
                'nms_eta': 1.0,
            })
754
    nmsed_outs.stop_gradient = True
755 756
    if return_index:
        return nmsed_outs, index
757
    return nmsed_outs
C
chengduoZH 已提交
758 759


X
Xin Pan 已提交
760
@templatedoc()
761
def iou_similarity(x, y, box_normalized=True, name=None):
X
Xin Pan 已提交
762
    """
S
swtkiwi 已提交
763 764 765 766
	:alias_main: paddle.nn.functional.iou_similarity
	:alias: paddle.nn.functional.iou_similarity,paddle.nn.functional.loss.iou_similarity
	:old_api: paddle.fluid.layers.iou_similarity

X
Xin Pan 已提交
767 768 769
    ${comment}

    Args:
L
LielinJiang 已提交
770 771
        x (Variable): ${x_comment}.The data type is float32 or float64.
        y (Variable): ${y_comment}.The data type is float32 or float64.
T
tianshuo78520a 已提交
772
        box_normalized(bool): Whether treat the priorbox as a normalized box.
773
            Set true by default.
X
Xin Pan 已提交
774
    Returns:
L
LielinJiang 已提交
775
        Variable: ${out_comment}.The data type is same with x.
776 777 778 779

    Examples:
        .. code-block:: python

L
LielinJiang 已提交
780
            import numpy as np
781 782
            import paddle.fluid as fluid

L
LielinJiang 已提交
783 784 785 786 787 788
            use_gpu = False
            place = fluid.CUDAPlace(0) if use_gpu else fluid.CPUPlace()
            exe = fluid.Executor(place)

            x = fluid.data(name='x', shape=[None, 4], dtype='float32')
            y = fluid.data(name='y', shape=[None, 4], dtype='float32')
789
            iou = fluid.layers.iou_similarity(x=x, y=y)
L
LielinJiang 已提交
790 791 792 793 794 795 796 797 798 799 800

            exe.run(fluid.default_startup_program())
            test_program = fluid.default_main_program().clone(for_test=True)

            [out_iou] = exe.run(test_program,
                    fetch_list=iou,
                    feed={'x': np.array([[0.5, 0.5, 2.0, 2.0],
                                         [0., 0., 1.0, 1.0]]).astype('float32'),
                          'y': np.array([[1.0, 1.0, 2.5, 2.5]]).astype('float32')})
            # out_iou is [[0.2857143],
            #             [0.       ]] with shape: [2, 1]
X
Xin Pan 已提交
801 802
    """
    helper = LayerHelper("iou_similarity", **locals())
803
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
X
Xin Pan 已提交
804 805 806 807 808

    helper.append_op(
        type="iou_similarity",
        inputs={"X": x,
                "Y": y},
809
        attrs={"box_normalized": box_normalized},
X
Xin Pan 已提交
810 811 812 813 814 815 816 817 818 819
        outputs={"Out": out})
    return out


@templatedoc()
def box_coder(prior_box,
              prior_box_var,
              target_box,
              code_type="encode_center_size",
              box_normalized=True,
820 821
              name=None,
              axis=0):
X
Xin Pan 已提交
822
    """
S
swtkiwi 已提交
823 824 825 826
	:alias_main: paddle.nn.functional.box_coder
	:alias: paddle.nn.functional.box_coder,paddle.nn.functional.vision.box_coder
	:old_api: paddle.fluid.layers.box_coder

827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864
    **Box Coder Layer**

    Encode/Decode the target bounding box with the priorbox information.
    
    The Encoding schema described below:

    .. math::

        ox = (tx - px) / pw / pxv

        oy = (ty - py) / ph / pyv

        ow = \log(\abs(tw / pw)) / pwv 

        oh = \log(\abs(th / ph)) / phv 

    The Decoding schema described below:
    
    .. math::
  
        ox = (pw * pxv * tx * + px) - tw / 2

        oy = (ph * pyv * ty * + py) - th / 2

        ow = \exp(pwv * tw) * pw + tw / 2

        oh = \exp(phv * th) * ph + th / 2   

    where `tx`, `ty`, `tw`, `th` denote the target box's center coordinates, 
    width and height respectively. Similarly, `px`, `py`, `pw`, `ph` denote 
    the priorbox's (anchor) center coordinates, width and height. `pxv`, 
    `pyv`, `pwv`, `phv` denote the variance of the priorbox and `ox`, `oy`, 
    `ow`, `oh` denote the encoded/decoded coordinates, width and height. 

    During Box Decoding, two modes for broadcast are supported. Say target 
    box has shape [N, M, 4], and the shape of prior box can be [N, 4] or 
    [M, 4]. Then prior box will broadcast to target box along the 
    assigned axis. 
X
Xin Pan 已提交
865 866

    Args:
867
        prior_box(Variable): Box list prior_box is a 2-D Tensor with shape 
W
wangguanzhong 已提交
868 869 870 871 872 873 874 875 876 877
            [M, 4] holds M boxes and data type is float32 or float64. Each box
            is represented as [xmin, ymin, xmax, ymax], [xmin, ymin] is the 
            left top coordinate of the anchor box, if the input is image feature
            map, they are close to the origin of the coordinate system. 
            [xmax, ymax] is the right bottom coordinate of the anchor box.       
        prior_box_var(List|Variable|None): prior_box_var supports three types 
            of input. One is variable with shape [M, 4] which holds M group and 
            data type is float32 or float64. The second is list consist of 
            4 elements shared by all boxes and data type is float32 or float64. 
            Other is None and not involved in calculation. 
878
        target_box(Variable): This input can be a 2-D LoDTensor with shape 
W
wangguanzhong 已提交
879 880 881 882 883 884 885 886
            [N, 4] when code_type is 'encode_center_size'. This input also can 
            be a 3-D Tensor with shape [N, M, 4] when code_type is 
            'decode_center_size'. Each box is represented as 
            [xmin, ymin, xmax, ymax]. The data type is float32 or float64. 
            This tensor can contain LoD information to represent a batch of inputs. 
        code_type(str): The code type used with the target box. It can be
            `encode_center_size` or `decode_center_size`. `encode_center_size` 
            by default.
T
tianshuo78520a 已提交
887
        box_normalized(bool): Whether treat the priorbox as a normalized box.
W
wangguanzhong 已提交
888 889 890 891
            Set true by default.
        name(str, optional): For detailed information, please refer 
            to :ref:`api_guide_Name`. Usually name is no need to set and 
            None by default. 
892
        axis(int): Which axis in PriorBox to broadcast for box decode, 
W
wangguanzhong 已提交
893 894 895 896
            for example, if axis is 0 and TargetBox has shape [N, M, 4] and 
            PriorBox has shape [M, 4], then PriorBox will broadcast to [N, M, 4]
            for decoding. It is only valid when code type is 
            `decode_center_size`. Set 0 by default. 
X
Xin Pan 已提交
897 898

    Returns:
W
wangguanzhong 已提交
899 900
        Variable:

901
        output_box(Variable): When code_type is 'encode_center_size', the 
W
wangguanzhong 已提交
902 903 904
        output tensor of box_coder_op with shape [N, M, 4] representing the 
        result of N target boxes encoded with M Prior boxes and variances. 
        When code_type is 'decode_center_size', N represents the batch size 
T
tianshuo78520a 已提交
905
        and M represents the number of decoded boxes.
906 907 908 909 910

    Examples:
 
        .. code-block:: python
 
911
            import paddle.fluid as fluid
W
wangguanzhong 已提交
912
            # For encode
913
            prior_box_encode = fluid.data(name='prior_box_encode',
W
wangguanzhong 已提交
914
                                  shape=[512, 4],
915 916 917 918
                                  dtype='float32')
            target_box_encode = fluid.data(name='target_box_encode',
                                   shape=[81, 4],
                                   dtype='float32')
W
wangguanzhong 已提交
919 920 921 922 923
            output_encode = fluid.layers.box_coder(prior_box=prior_box_encode,
                                    prior_box_var=[0.1,0.1,0.2,0.2],
                                    target_box=target_box_encode,
                                    code_type="encode_center_size")
            # For decode
924
            prior_box_decode = fluid.data(name='prior_box_decode',
W
wangguanzhong 已提交
925
                                  shape=[512, 4],
926 927 928 929
                                  dtype='float32')
            target_box_decode = fluid.data(name='target_box_decode',
                                   shape=[512, 81, 4],
                                   dtype='float32')
W
wangguanzhong 已提交
930 931 932 933 934 935
            output_decode = fluid.layers.box_coder(prior_box=prior_box_decode,
                                    prior_box_var=[0.1,0.1,0.2,0.2],
                                    target_box=target_box_decode,
                                    code_type="decode_center_size",
                                    box_normalized=False,
                                    axis=1)
X
Xin Pan 已提交
936
    """
937 938 939 940
    check_variable_and_dtype(prior_box, 'prior_box', ['float32', 'float64'],
                             'box_coder')
    check_variable_and_dtype(target_box, 'target_box', ['float32', 'float64'],
                             'box_coder')
X
Xin Pan 已提交
941 942
    helper = LayerHelper("box_coder", **locals())

943 944
    output_box = helper.create_variable_for_type_inference(
        dtype=prior_box.dtype)
X
Xin Pan 已提交
945

946 947 948 949 950 951 952 953 954 955 956 957
    inputs = {"PriorBox": prior_box, "TargetBox": target_box}
    attrs = {
        "code_type": code_type,
        "box_normalized": box_normalized,
        "axis": axis
    }
    if isinstance(prior_box_var, Variable):
        inputs['PriorBoxVar'] = prior_box_var
    elif isinstance(prior_box_var, list):
        attrs['variance'] = prior_box_var
    else:
        raise TypeError("Input variance of box_coder must be Variable or lisz")
X
Xin Pan 已提交
958 959
    helper.append_op(
        type="box_coder",
960 961
        inputs=inputs,
        attrs=attrs,
X
Xin Pan 已提交
962 963 964 965 966 967 968 969 970 971
        outputs={"OutputBox": output_box})
    return output_box


@templatedoc()
def polygon_box_transform(input, name=None):
    """
    ${comment}

    Args:
972 973 974 975
        input(Variable): The input with shape [batch_size, geometry_channels, height, width].
                         A Tensor with type float32, float64.
        name(str, Optional): For details, please refer to :ref:`api_guide_Name`.
                        Generally, no setting is required. Default: None.
X
Xin Pan 已提交
976 977

    Returns:
978
        Variable: The output with the same shape as input. A Tensor with type float32, float64.
B
Bai Yifan 已提交
979 980 981 982 983

    Examples:
        .. code-block:: python
            
            import paddle.fluid as fluid
B
Bai Yifan 已提交
984
            input = fluid.data(name='input', shape=[4, 10, 5, 5], dtype='float32')
B
Bai Yifan 已提交
985
            out = fluid.layers.polygon_box_transform(input)
X
Xin Pan 已提交
986
    """
987 988
    check_variable_and_dtype(input, "input", ['float32', 'float64'],
                             'polygon_box_transform')
X
Xin Pan 已提交
989
    helper = LayerHelper("polygon_box_transform", **locals())
990
    output = helper.create_variable_for_type_inference(dtype=input.dtype)
X
Xin Pan 已提交
991 992 993 994 995 996 997 998 999

    helper.append_op(
        type="polygon_box_transform",
        inputs={"Input": input},
        attrs={},
        outputs={"Output": output})
    return output


D
dengkaipeng 已提交
1000 1001
@templatedoc(op_type="yolov3_loss")
def yolov3_loss(x,
1002 1003
                gt_box,
                gt_label,
D
dengkaipeng 已提交
1004
                anchors,
1005
                anchor_mask,
D
dengkaipeng 已提交
1006 1007
                class_num,
                ignore_thresh,
1008
                downsample_ratio,
1009
                gt_score=None,
D
dengkaipeng 已提交
1010
                use_label_smooth=True,
1011 1012
                name=None,
                scale_x_y=1.):
D
dengkaipeng 已提交
1013
    """
S
swtkiwi 已提交
1014 1015 1016 1017
	:alias_main: paddle.nn.functional.yolov3_loss
	:alias: paddle.nn.functional.yolov3_loss,paddle.nn.functional.vision.yolov3_loss
	:old_api: paddle.fluid.layers.yolov3_loss

D
dengkaipeng 已提交
1018 1019 1020
    ${comment}

    Args:
X
xiaoting 已提交
1021
        x (Variable): ${x_comment}The data type is float32 or float64. 
1022
        gt_box (Variable): groud truth boxes, should be in shape of [N, B, 4],
T
tianshuo78520a 已提交
1023 1024
                          in the third dimension, x, y, w, h should be stored. 
                          x,y is the center coordinate of boxes, w, h are the
1025 1026
                          width and height, x, y, w, h should be divided by 
                          input image height to scale to [0, 1].
D
dengkaipeng 已提交
1027
                          N is the batch number and B is the max box number in 
X
xiaoting 已提交
1028
                          an image.The data type is float32 or float64. 
T
tianshuo78520a 已提交
1029
        gt_label (Variable): class id of ground truth boxes, should be in shape
X
xiaoting 已提交
1030
                            of [N, B].The data type is int32. 
D
dengkaipeng 已提交
1031
        anchors (list|tuple): ${anchors_comment}
1032
        anchor_mask (list|tuple): ${anchor_mask_comment}
D
dengkaipeng 已提交
1033 1034
        class_num (int): ${class_num_comment}
        ignore_thresh (float): ${ignore_thresh_comment}
1035
        downsample_ratio (int): ${downsample_ratio_comment}
X
xiaoting 已提交
1036 1037 1038
        name (string): The default value is None.  Normally there is no need 
                       for user to set this property.  For more information, 
                       please refer to :ref:`api_guide_Name`
T
tianshuo78520a 已提交
1039
        gt_score (Variable): mixup score of ground truth boxes, should be in shape
1040
                            of [N, B]. Default None.
1041
        use_label_smooth (bool): ${use_label_smooth_comment}
1042
        scale_x_y (float): ${scale_x_y_comment}
D
dengkaipeng 已提交
1043 1044

    Returns:
1045
        Variable: A 1-D tensor with shape [N], the value of yolov3 loss
D
dengkaipeng 已提交
1046 1047 1048

    Raises:
        TypeError: Input x of yolov3_loss must be Variable
D
dengkaipeng 已提交
1049 1050
        TypeError: Input gtbox of yolov3_loss must be Variable
        TypeError: Input gtlabel of yolov3_loss must be Variable
D
dengkaipeng 已提交
1051
        TypeError: Input gtscore of yolov3_loss must be None or Variable
D
dengkaipeng 已提交
1052 1053 1054
        TypeError: Attr anchors of yolov3_loss must be list or tuple
        TypeError: Attr class_num of yolov3_loss must be an integer
        TypeError: Attr ignore_thresh of yolov3_loss must be a float number
1055
        TypeError: Attr use_label_smooth of yolov3_loss must be a bool value
D
dengkaipeng 已提交
1056 1057

    Examples:
1058 1059
      .. code-block:: python

1060
          import paddle.fluid as fluid
X
xiaoting 已提交
1061 1062 1063 1064
          x = fluid.data(name='x', shape=[None, 255, 13, 13], dtype='float32')
          gt_box = fluid.data(name='gt_box', shape=[None, 6, 4], dtype='float32')
          gt_label = fluid.data(name='gt_label', shape=[None, 6], dtype='int32')
          gt_score = fluid.data(name='gt_score', shape=[None, 6], dtype='float32')
1065 1066
          anchors = [10, 13, 16, 30, 33, 23, 30, 61, 62, 45, 59, 119, 116, 90, 156, 198, 373, 326]
          anchor_mask = [0, 1, 2]
1067 1068
          loss = fluid.layers.yolov3_loss(x=x, gt_box=gt_box, gt_label=gt_label,
                                          gt_score=gt_score, anchors=anchors, 
1069 1070
                                          anchor_mask=anchor_mask, class_num=80,
                                          ignore_thresh=0.7, downsample_ratio=32)
D
dengkaipeng 已提交
1071 1072 1073 1074 1075
    """
    helper = LayerHelper('yolov3_loss', **locals())

    if not isinstance(x, Variable):
        raise TypeError("Input x of yolov3_loss must be Variable")
1076
    if not isinstance(gt_box, Variable):
D
dengkaipeng 已提交
1077
        raise TypeError("Input gtbox of yolov3_loss must be Variable")
1078
    if not isinstance(gt_label, Variable):
D
dengkaipeng 已提交
1079
        raise TypeError("Input gtlabel of yolov3_loss must be Variable")
1080
    if gt_score is not None and not isinstance(gt_score, Variable):
1081
        raise TypeError("Input gtscore of yolov3_loss must be Variable")
D
dengkaipeng 已提交
1082 1083
    if not isinstance(anchors, list) and not isinstance(anchors, tuple):
        raise TypeError("Attr anchors of yolov3_loss must be list or tuple")
1084 1085
    if not isinstance(anchor_mask, list) and not isinstance(anchor_mask, tuple):
        raise TypeError("Attr anchor_mask of yolov3_loss must be list or tuple")
D
dengkaipeng 已提交
1086 1087 1088 1089 1090
    if not isinstance(class_num, int):
        raise TypeError("Attr class_num of yolov3_loss must be an integer")
    if not isinstance(ignore_thresh, float):
        raise TypeError(
            "Attr ignore_thresh of yolov3_loss must be a float number")
1091 1092 1093
    if not isinstance(use_label_smooth, bool):
        raise TypeError(
            "Attr use_label_smooth of yolov3_loss must be a bool value")
D
dengkaipeng 已提交
1094

1095
    loss = helper.create_variable_for_type_inference(dtype=x.dtype)
D
dengkaipeng 已提交
1096

1097 1098 1099
    objectness_mask = helper.create_variable_for_type_inference(dtype='int32')
    gt_match_mask = helper.create_variable_for_type_inference(dtype='int32')

1100 1101
    inputs = {
        "X": x,
1102 1103
        "GTBox": gt_box,
        "GTLabel": gt_label,
1104
    }
1105
    if gt_score is not None:
1106
        inputs["GTScore"] = gt_score
1107

D
dengkaipeng 已提交
1108 1109
    attrs = {
        "anchors": anchors,
1110
        "anchor_mask": anchor_mask,
D
dengkaipeng 已提交
1111 1112
        "class_num": class_num,
        "ignore_thresh": ignore_thresh,
1113
        "downsample_ratio": downsample_ratio,
1114
        "use_label_smooth": use_label_smooth,
1115
        "scale_x_y": scale_x_y,
D
dengkaipeng 已提交
1116 1117 1118 1119
    }

    helper.append_op(
        type='yolov3_loss',
1120
        inputs=inputs,
1121 1122 1123 1124 1125
        outputs={
            'Loss': loss,
            'ObjectnessMask': objectness_mask,
            'GTMatchMask': gt_match_mask
        },
D
dengkaipeng 已提交
1126 1127 1128 1129
        attrs=attrs)
    return loss


D
dengkaipeng 已提交
1130
@templatedoc(op_type="yolo_box")
1131 1132 1133 1134 1135 1136
def yolo_box(x,
             img_size,
             anchors,
             class_num,
             conf_thresh,
             downsample_ratio,
1137
             clip_bbox=True,
1138 1139
             name=None,
             scale_x_y=1.):
D
dengkaipeng 已提交
1140
    """
S
swtkiwi 已提交
1141 1142 1143 1144
	:alias_main: paddle.nn.functional.yolo_box
	:alias: paddle.nn.functional.yolo_box,paddle.nn.functional.vision.yolo_box
	:old_api: paddle.fluid.layers.yolo_box

D
dengkaipeng 已提交
1145 1146 1147
    ${comment}

    Args:
X
xiaoting 已提交
1148 1149
        x (Variable): ${x_comment} The data type is float32 or float64. 
        img_size (Variable): ${img_size_comment} The data type is int32. 
D
dengkaipeng 已提交
1150 1151 1152 1153
        anchors (list|tuple): ${anchors_comment}
        class_num (int): ${class_num_comment}
        conf_thresh (float): ${conf_thresh_comment}
        downsample_ratio (int): ${downsample_ratio_comment}
1154
        clip_bbox (bool): ${clip_bbox_comment}
1155
        scale_x_y (float): ${scale_x_y_comment}
X
xiaoting 已提交
1156 1157 1158
        name (string): The default value is None.  Normally there is no need 
                       for user to set this property.  For more information, 
                       please refer to :ref:`api_guide_Name`
D
dengkaipeng 已提交
1159 1160

    Returns:
D
dengkaipeng 已提交
1161
        Variable: A 3-D tensor with shape [N, M, 4], the coordinates of boxes,
D
dengkaipeng 已提交
1162 1163
        and a 3-D tensor with shape [N, M, :attr:`class_num`], the classification 
        scores of boxes.
D
dengkaipeng 已提交
1164 1165 1166 1167 1168 1169 1170 1171

    Raises:
        TypeError: Input x of yolov_box must be Variable
        TypeError: Attr anchors of yolo box must be list or tuple
        TypeError: Attr class_num of yolo box must be an integer
        TypeError: Attr conf_thresh of yolo box must be a float number

    Examples:
D
dengkaipeng 已提交
1172

D
dengkaipeng 已提交
1173 1174
    .. code-block:: python

X
xiaoting 已提交
1175
        import paddle.fluid as fluid
X
xiaoting 已提交
1176 1177
        x = fluid.data(name='x', shape=[None, 255, 13, 13], dtype='float32')
        img_size = fluid.data(name='img_size',shape=[None, 2],dtype='int64')
D
dengkaipeng 已提交
1178
        anchors = [10, 13, 16, 30, 33, 23]
X
xiaoting 已提交
1179
        boxes,scores = fluid.layers.yolo_box(x=x, img_size=img_size, class_num=80, anchors=anchors, 
D
dengkaipeng 已提交
1180 1181 1182 1183 1184
                                        conf_thresh=0.01, downsample_ratio=32)
    """
    helper = LayerHelper('yolo_box', **locals())

    if not isinstance(x, Variable):
1185 1186 1187
        raise TypeError("Input x of yolo_box must be Variable")
    if not isinstance(img_size, Variable):
        raise TypeError("Input img_size of yolo_box must be Variable")
D
dengkaipeng 已提交
1188
    if not isinstance(anchors, list) and not isinstance(anchors, tuple):
1189
        raise TypeError("Attr anchors of yolo_box must be list or tuple")
D
dengkaipeng 已提交
1190
    if not isinstance(class_num, int):
1191
        raise TypeError("Attr class_num of yolo_box must be an integer")
D
dengkaipeng 已提交
1192
    if not isinstance(conf_thresh, float):
1193
        raise TypeError("Attr ignore_thresh of yolo_box must be a float number")
D
dengkaipeng 已提交
1194 1195 1196 1197 1198 1199 1200

    boxes = helper.create_variable_for_type_inference(dtype=x.dtype)
    scores = helper.create_variable_for_type_inference(dtype=x.dtype)

    attrs = {
        "anchors": anchors,
        "class_num": class_num,
D
dengkaipeng 已提交
1201
        "conf_thresh": conf_thresh,
D
dengkaipeng 已提交
1202
        "downsample_ratio": downsample_ratio,
1203
        "clip_bbox": clip_bbox,
1204
        "scale_x_y": scale_x_y,
D
dengkaipeng 已提交
1205 1206 1207 1208
    }

    helper.append_op(
        type='yolo_box',
1209 1210 1211 1212
        inputs={
            "X": x,
            "ImgSize": img_size,
        },
D
dengkaipeng 已提交
1213 1214 1215 1216 1217 1218 1219 1220
        outputs={
            'Boxes': boxes,
            'Scores': scores,
        },
        attrs=attrs)
    return boxes, scores


X
Xin Pan 已提交
1221
@templatedoc()
1222 1223
def detection_map(detect_res,
                  label,
1224 1225
                  class_num,
                  background_label=0,
1226 1227
                  overlap_threshold=0.3,
                  evaluate_difficult=True,
1228 1229 1230 1231
                  has_state=None,
                  input_states=None,
                  out_states=None,
                  ap_version='integral'):
X
Xin Pan 已提交
1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242
    """
    ${comment}

    Args:
        detect_res: ${detect_res_comment}
        label:  ${label_comment}
        class_num: ${class_num_comment}
        background_label: ${background_label_comment}
        overlap_threshold: ${overlap_threshold_comment}
        evaluate_difficult: ${evaluate_difficult_comment}
        has_state: ${has_state_comment}
1243 1244 1245 1246 1247 1248 1249 1250
        input_states: (tuple|None) If not None, It contains 3 elements:
            (1) pos_count ${pos_count_comment}.
            (2) true_pos ${true_pos_comment}.
            (3) false_pos ${false_pos_comment}.
        out_states: (tuple|None) If not None, it contains 3 elements.
            (1) accum_pos_count ${accum_pos_count_comment}.
            (2) accum_true_pos ${accum_true_pos_comment}.
            (3) accum_false_pos ${accum_false_pos_comment}.
X
Xin Pan 已提交
1251 1252 1253 1254 1255 1256 1257 1258 1259
        ap_version: ${ap_type_comment}

    Returns:
        ${map_comment}


    Examples:
          .. code-block:: python

1260
            import paddle.fluid as fluid
1261
            from fluid.layers import detection
1262
            detect_res = fluid.data(
X
Xin Pan 已提交
1263 1264 1265
                name='detect_res',
                shape=[10, 6],
                dtype='float32')
1266
            label = fluid.data(
X
Xin Pan 已提交
1267 1268 1269 1270
                name='label',
                shape=[10, 6],
                dtype='float32')

1271
            map_out = detection.detection_map(detect_res, label, 21)
X
Xin Pan 已提交
1272
    """
1273 1274
    helper = LayerHelper("detection_map", **locals())

1275
    def __create_var(type):
X
Xin Pan 已提交
1276
        return helper.create_variable_for_type_inference(dtype=type)
1277 1278

    map_out = __create_var('float32')
Z
zhongpu 已提交
1279 1280 1281 1282 1283 1284
    accum_pos_count_out = out_states[
        0] if out_states is not None else __create_var('int32')
    accum_true_pos_out = out_states[
        1] if out_states is not None else __create_var('float32')
    accum_false_pos_out = out_states[
        2] if out_states is not None else __create_var('float32')
1285

Z
zhongpu 已提交
1286 1287 1288
    pos_count = input_states[0] if input_states is not None else None
    true_pos = input_states[1] if input_states is not None else None
    false_pos = input_states[2] if input_states is not None else None
1289

1290 1291 1292 1293 1294
    helper.append_op(
        type="detection_map",
        inputs={
            'Label': label,
            'DetectRes': detect_res,
1295
            'HasState': has_state,
1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308
            'PosCount': pos_count,
            'TruePos': true_pos,
            'FalsePos': false_pos
        },
        outputs={
            'MAP': map_out,
            'AccumPosCount': accum_pos_count_out,
            'AccumTruePos': accum_true_pos_out,
            'AccumFalsePos': accum_false_pos_out
        },
        attrs={
            'overlap_threshold': overlap_threshold,
            'evaluate_difficult': evaluate_difficult,
1309 1310
            'ap_type': ap_version,
            'class_num': class_num,
1311
        })
1312
    return map_out
1313 1314


1315 1316 1317 1318
def bipartite_match(dist_matrix,
                    match_type=None,
                    dist_threshold=None,
                    name=None):
1319
    """
S
swtkiwi 已提交
1320 1321 1322 1323
	:alias_main: paddle.nn.functional.bipartite_match
	:alias: paddle.nn.functional.bipartite_match,paddle.nn.functional.vision.bipartite_match
	:old_api: paddle.fluid.layers.bipartite_match

Y
yuyang18 已提交
1324 1325
    This operator implements a greedy bipartite matching algorithm, which is
    used to obtain the matching with the maximum distance based on the input
1326
    distance matrix. For input 2D matrix, the bipartite matching algorithm can
Y
yuyang18 已提交
1327 1328 1329 1330
    find the matched column for each row (matched means the largest distance),
    also can find the matched row for each column. And this operator only
    calculate matched indices from column to row. For each instance,
    the number of matched indices is the column number of the input distance
W
wangguanzhong 已提交
1331
    matrix. **The OP only supports CPU**.
Y
yuyang18 已提交
1332 1333 1334

    There are two outputs, matched indices and distance.
    A simple description, this algorithm matched the best (maximum distance)
1335 1336 1337
    row entity to the column entity and the matched indices are not duplicated
    in each row of ColToRowMatchIndices. If the column entity is not matched
    any row entity, set -1 in ColToRowMatchIndices.
C
chengduoZH 已提交
1338

Y
yuyang18 已提交
1339
    NOTE: the input DistMat can be LoDTensor (with LoD) or Tensor.
1340 1341 1342
    If LoDTensor with LoD, the height of ColToRowMatchIndices is batch size.
    If Tensor, the height of ColToRowMatchIndices is 1.

Y
yuyang18 已提交
1343 1344 1345
    NOTE: This API is a very low level API. It is used by :code:`ssd_loss`
    layer. Please consider to use :code:`ssd_loss` instead.

1346 1347
    Args:
        dist_matrix(Variable): This input is a 2-D LoDTensor with shape
W
wangguanzhong 已提交
1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358
            [K, M]. The data type is float32 or float64. It is pair-wise 
            distance matrix between the entities represented by each row and 
            each column. For example, assumed one entity is A with shape [K], 
            another entity is B with shape [M]. The dist_matrix[i][j] is the 
            distance between A[i] and B[j]. The bigger the distance is, the 
            better matching the pairs are. NOTE: This tensor can contain LoD 
            information to represent a batch of inputs. One instance of this 
            batch can contain different numbers of entities.
        match_type(str, optional): The type of matching method, should be
           'bipartite' or 'per_prediction'. None ('bipartite') by default.
        dist_threshold(float32, optional): If `match_type` is 'per_prediction',
1359
            this threshold is to determine the extra matching bboxes based
Y
yuyang18 已提交
1360
            on the maximum distance, 0.5 by default.
W
wangguanzhong 已提交
1361 1362 1363 1364
        name(str, optional): For detailed information, please refer 
            to :ref:`api_guide_Name`. Usually name is no need to set and 
            None by default.
 
1365
    Returns:
W
wangguanzhong 已提交
1366
        Tuple:
Y
yuyang18 已提交
1367

W
wangguanzhong 已提交
1368 1369
        matched_indices(Variable): A 2-D Tensor with shape [N, M]. The data
        type is int32. N is the batch size. If match_indices[i][j] is -1, it
Y
yuyang18 已提交
1370 1371 1372 1373 1374
        means B[j] does not match any entity in i-th instance.
        Otherwise, it means B[j] is matched to row
        match_indices[i][j] in i-th instance. The row number of
        i-th instance is saved in match_indices[i][j].

W
wangguanzhong 已提交
1375 1376
        matched_distance(Variable): A 2-D Tensor with shape [N, M]. The data
        type is float32. N is batch size. If match_indices[i][j] is -1,
Y
yuyang18 已提交
1377 1378 1379 1380 1381 1382 1383
        match_distance[i][j] is also -1.0. Otherwise, assumed
        match_distance[i][j] = d, and the row offsets of each instance
        are called LoD. Then match_distance[i][j] =
        dist_matrix[d+LoD[i]][j].

    Examples:

1384
        >>> import paddle.fluid as fluid
1385 1386
        >>> x = fluid.data(name='x', shape=[None, 4], dtype='float32')
        >>> y = fluid.data(name='y', shape=[None, 4], dtype='float32')
Y
yuyang18 已提交
1387 1388
        >>> iou = fluid.layers.iou_similarity(x=x, y=y)
        >>> matched_indices, matched_dist = fluid.layers.bipartite_match(iou)
1389 1390
    """
    helper = LayerHelper('bipartite_match', **locals())
X
Xin Pan 已提交
1391 1392 1393
    match_indices = helper.create_variable_for_type_inference(dtype='int32')
    match_distance = helper.create_variable_for_type_inference(
        dtype=dist_matrix.dtype)
1394 1395 1396
    helper.append_op(
        type='bipartite_match',
        inputs={'DistMat': dist_matrix},
1397 1398 1399 1400
        attrs={
            'match_type': match_type,
            'dist_threshold': dist_threshold,
        },
1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413
        outputs={
            'ColToRowMatchIndices': match_indices,
            'ColToRowMatchDist': match_distance
        })
    return match_indices, match_distance


def target_assign(input,
                  matched_indices,
                  negative_indices=None,
                  mismatch_value=None,
                  name=None):
    """
S
swtkiwi 已提交
1414 1415 1416 1417
	:alias_main: paddle.nn.functional.target_assign
	:alias: paddle.nn.functional.target_assign,paddle.nn.functional.extension.target_assign
	:old_api: paddle.fluid.layers.target_assign

1418 1419 1420 1421
    This operator can be, for given the target bounding boxes or labels,
    to assign classification and regression targets to each prediction as well as
    weights to prediction. The weights is used to specify which prediction would
    not contribute to training loss.
C
chengduoZH 已提交
1422

1423 1424 1425 1426 1427
    For each instance, the output `out` and`out_weight` are assigned based on
    `match_indices` and `negative_indices`.
    Assumed that the row offset for each instance in `input` is called lod,
    this operator assigns classification/regression targets by performing the
    following steps:
C
chengduoZH 已提交
1428

1429
    1. Assigning all outputs based on `match_indices`:
C
chengduoZH 已提交
1430

1431 1432 1433
    .. code-block:: text

        If id = match_indices[i][j] > 0,
C
chengduoZH 已提交
1434

1435 1436
            out[i][j][0 : K] = X[lod[i] + id][j % P][0 : K]
            out_weight[i][j] = 1.
C
chengduoZH 已提交
1437

1438
        Otherwise,
C
chengduoZH 已提交
1439

1440 1441
            out[j][j][0 : K] = {mismatch_value, mismatch_value, ...}
            out_weight[i][j] = 0.
C
chengduoZH 已提交
1442

Q
qingqing01 已提交
1443
    2. Assigning outputs based on `neg_indices` if `neg_indices` is provided:
C
chengduoZH 已提交
1444

Q
qingqing01 已提交
1445 1446
    Assumed that i-th instance in `neg_indices` is called `neg_indice`,
    for i-th instance:
M
minqiyang 已提交
1447

1448
    .. code-block:: text
C
chengduoZH 已提交
1449

Q
qingqing01 已提交
1450 1451 1452
        for id in neg_indice:
            out[i][id][0 : K] = {mismatch_value, mismatch_value, ...}
            out_weight[i][id] = 1.0
1453 1454

    Args:
Q
qingqing01 已提交
1455 1456 1457
       input (Variable): This input is a 3D LoDTensor with shape [M, P, K].
           Data type should be int32 or float32.
       matched_indices (Variable): The input matched indices
1458 1459 1460
           is 2D Tenosr<int32> with shape [N, P], If MatchIndices[i][j] is -1,
           the j-th entity of column is not matched to any entity of row in
           i-th instance.
Q
qingqing01 已提交
1461 1462
       negative_indices (Variable, optional): The input negative example indices
           are an optional input with shape [Neg, 1] and int32 type, where Neg is
1463
           the total number of negative example indices.
Q
qingqing01 已提交
1464 1465 1466 1467 1468
       mismatch_value (float32, optional): Fill this value to the mismatched
           location.
       name (string): The default value is None.  Normally there is no need for
           user to set this property.  For more information, please refer
           to :ref:`api_guide_Name`.
1469 1470

    Returns:
Q
qingqing01 已提交
1471 1472 1473 1474 1475 1476 1477 1478
        tuple: A tuple(out, out_weight) is returned.

        out (Variable): a 3D Tensor with shape [N, P, K] and same data type
        with `input`, N and P is the same as they are in `matched_indices`,
        K is the same as it in input of X.

        out_weight (Variable): the weight for output with the shape of [N, P, 1].
        Data type is float32.
1479 1480 1481 1482 1483

    Examples:

        .. code-block:: python

1484
            import paddle.fluid as fluid
Q
qingqing01 已提交
1485
            x = fluid.data(
1486 1487 1488
                name='x',
                shape=[4, 20, 4],
                dtype='float',
Q
qingqing01 已提交
1489 1490
                lod_level=1)
            matched_id = fluid.data(
1491 1492
                name='indices',
                shape=[8, 20],
Q
qingqing01 已提交
1493
                dtype='int32')
1494 1495 1496 1497
            trg, trg_weight = fluid.layers.target_assign(
                x,
                matched_id,
                mismatch_value=0)
1498 1499
    """
    helper = LayerHelper('target_assign', **locals())
X
Xin Pan 已提交
1500 1501
    out = helper.create_variable_for_type_inference(dtype=input.dtype)
    out_weight = helper.create_variable_for_type_inference(dtype='float32')
1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528
    helper.append_op(
        type='target_assign',
        inputs={
            'X': input,
            'MatchIndices': matched_indices,
            'NegIndices': negative_indices
        },
        outputs={'Out': out,
                 'OutWeight': out_weight},
        attrs={'mismatch_value': mismatch_value})
    return out, out_weight


def ssd_loss(location,
             confidence,
             gt_box,
             gt_label,
             prior_box,
             prior_box_var=None,
             background_label=0,
             overlap_threshold=0.5,
             neg_pos_ratio=3.0,
             neg_overlap=0.5,
             loc_loss_weight=1.0,
             conf_loss_weight=1.0,
             match_type='per_prediction',
             mining_type='max_negative',
1529
             normalize=True,
1530 1531
             sample_size=None):
    """
S
swtkiwi 已提交
1532 1533 1534 1535
	:alias_main: paddle.nn.functional.ssd_loss
	:alias: paddle.nn.functional.ssd_loss,paddle.nn.functional.loss.ssd_loss
	:old_api: paddle.fluid.layers.ssd_loss

Y
yuyang18 已提交
1536
    **Multi-box loss layer for object detection algorithm of SSD**
1537

翟飞跃 已提交
1538 1539
    This layer is to compute detection loss for SSD given the location offset
    predictions, confidence predictions, prior boxes and ground-truth bounding
1540 1541 1542 1543
    boxes and labels, and the type of hard example mining. The returned loss
    is a weighted sum of the localization loss (or regression loss) and
    confidence loss (or classification loss) by performing the following steps:

Y
yuyang18 已提交
1544
    1. Find matched bounding box by bipartite matching algorithm.
Y
yuyang18 已提交
1545

1546
      1.1 Compute IOU similarity between ground-truth boxes and prior boxes.
Y
yuyang18 已提交
1547

T
tianshuo78520a 已提交
1548
      1.2 Compute matched bounding box by bipartite matching algorithm.
Y
yuyang18 已提交
1549

1550
    2. Compute confidence for mining hard examples
Y
yuyang18 已提交
1551

1552
      2.1. Get the target label based on matched indices.
Y
yuyang18 已提交
1553

1554
      2.2. Compute confidence loss.
Y
yuyang18 已提交
1555

1556 1557
    3. Apply hard example mining to get the negative example indices and update
       the matched indices.
Y
yuyang18 已提交
1558

1559
    4. Assign classification and regression targets
Y
yuyang18 已提交
1560

1561
      4.1. Encoded bbox according to the prior boxes.
Y
yuyang18 已提交
1562

1563
      4.2. Assign regression targets.
Y
yuyang18 已提交
1564

1565
      4.3. Assign classification targets.
Y
yuyang18 已提交
1566

1567
    5. Compute the overall objective loss.
Y
yuyang18 已提交
1568

1569
      5.1 Compute confidence loss.
Y
yuyang18 已提交
1570

1571
      5.2 Compute localization loss.
Y
yuyang18 已提交
1572

1573 1574 1575 1576 1577 1578
      5.3 Compute the overall weighted loss.

    Args:
        location (Variable): The location predictions are a 3D Tensor with
            shape [N, Np, 4], N is the batch size, Np is total number of
            predictions for each instance. 4 is the number of coordinate values,
1579 1580
            the layout is [xmin, ymin, xmax, ymax].The data type is float32 or
            float64.
1581 1582
        confidence (Variable): The confidence predictions are a 3D Tensor
            with shape [N, Np, C], N and Np are the same as they are in
1583 1584
            `location`, C is the class number.The data type is float32 or
            float64.
翟飞跃 已提交
1585
        gt_box (Variable): The ground-truth bounding boxes (bboxes) are a 2D
1586
            LoDTensor with shape [Ng, 4], Ng is the total number of ground-truth
1587
            bboxes of mini-batch input.The data type is float32 or float64.
1588
        gt_label (Variable): The ground-truth labels are a 2D LoDTensor
1589 1590 1591
            with shape [Ng, 1].Ng is the total number of ground-truth bboxes of
            mini-batch input, 1 is the number of class. The data type is float32
            or float64.
1592
        prior_box (Variable): The prior boxes are a 2D Tensor with shape [Np, 4].
1593 1594
            Np and 4 are the same as they are in `location`. The data type is
            float32 or float64.
1595
        prior_box_var (Variable): The variance of prior boxes are a 2D Tensor
1596
            with shape [Np, 4]. Np and 4 are the same as they are in `prior_box`
1597 1598
        background_label (int): The index of background label, 0 by default.
        overlap_threshold (float): If match_type is 'per_prediction', use
1599 1600
            'overlap_threshold' to determine the extra matching bboxes when finding \
            matched boxes. 0.5 by default.
1601
        neg_pos_ratio (float): The ratio of the negative boxes to the positive
翟飞跃 已提交
1602
            boxes, used only when mining_type is 'max_negative', 3.0 by default.
1603
        neg_overlap (float): The negative overlap upper bound for the unmatched
1604
            predictions. Use only when mining_type is 'max_negative',
1605 1606 1607 1608
            0.5 by default.
        loc_loss_weight (float): Weight for localization loss, 1.0 by default.
        conf_loss_weight (float): Weight for confidence loss, 1.0 by default.
        match_type (str): The type of matching method during training, should
翟飞跃 已提交
1609
            be 'bipartite' or 'per_prediction', 'per_prediction' by default.
1610 1611
        mining_type (str): The hard example mining type, should be 'hard_example'
            or 'max_negative', now only support `max_negative`.
1612
        normalize (bool): Whether to normalize the SSD loss by the total number
Y
yuyang18 已提交
1613
            of output locations, True by default.
1614 1615
        sample_size (int): The max sample size of negative box, used only when
            mining_type is 'hard_example'.
1616 1617

    Returns:
1618 1619 1620
        Variable(Tensor):  The weighted sum of the localization loss and confidence loss, \
        with shape [N * Np, 1], N and Np are the same as they are in
        `location`.The data type is float32 or float64.
1621 1622

    Raises:
Y
yuyang18 已提交
1623 1624
        ValueError: If mining_type is 'hard_example', now only support mining \
        type of `max_negative`.
Y
yuyang18 已提交
1625 1626

    Examples:
1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645

        .. code-block:: python

            import paddle.fluid as fluid
            pb = fluid.data(
                           name='prior_box',
                           shape=[10, 4],
                           dtype='float32')
            pbv = fluid.data(
                           name='prior_box_var',
                           shape=[10, 4],
                           dtype='float32')
            loc = fluid.data(name='target_box', shape=[10, 4], dtype='float32')
            scores = fluid.data(name='scores', shape=[10, 21], dtype='float32')
            gt_box = fluid.data(
                 name='gt_box', shape=[4], lod_level=1, dtype='float32')
            gt_label = fluid.data(
                 name='gt_label', shape=[1], lod_level=1, dtype='float32')
            loss = fluid.layers.ssd_loss(loc, scores, gt_box, gt_label, pb, pbv)
1646 1647 1648 1649 1650 1651 1652
    """

    helper = LayerHelper('ssd_loss', **locals())
    if mining_type != 'max_negative':
        raise ValueError("Only support mining_type == max_negative now.")

    num, num_prior, num_class = confidence.shape
G
merge  
gongweibao 已提交
1653
    conf_shape = nn.shape(confidence)
1654 1655

    def __reshape_to_2d(var):
1656
        return nn.flatten(x=var, axis=2)
1657

T
tianshuo78520a 已提交
1658
    # 1. Find matched bounding box by prior box.
1659 1660
    #   1.1 Compute IOU similarity between ground-truth boxes and prior boxes.
    iou = iou_similarity(x=gt_box, y=prior_box)
T
tianshuo78520a 已提交
1661
    #   1.2 Compute matched bounding box by bipartite matching algorithm.
1662 1663
    matched_indices, matched_dist = bipartite_match(iou, match_type,
                                                    overlap_threshold)
1664 1665 1666

    # 2. Compute confidence for mining hard examples
    # 2.1. Get the target label based on matched indices
1667 1668
    gt_label = nn.reshape(
        x=gt_label, shape=(len(gt_label.shape) - 1) * (0, ) + (-1, 1))
1669
    gt_label.stop_gradient = True
1670 1671 1672 1673 1674 1675 1676
    target_label, _ = target_assign(
        gt_label, matched_indices, mismatch_value=background_label)
    # 2.2. Compute confidence loss.
    # Reshape confidence to 2D tensor.
    confidence = __reshape_to_2d(confidence)
    target_label = tensor.cast(x=target_label, dtype='int64')
    target_label = __reshape_to_2d(target_label)
1677
    target_label.stop_gradient = True
1678
    conf_loss = softmax_with_cross_entropy(confidence, target_label)
1679
    # 3. Mining hard examples
G
merge  
gongweibao 已提交
1680
    actual_shape = nn.slice(conf_shape, axes=[0], starts=[0], ends=[2])
1681
    actual_shape.stop_gradient = True
1682 1683
    # shape=(-1, 0) is set for compile-time, the correct shape is set by
    # actual_shape in runtime.
1684
    conf_loss = nn.reshape(
1685
        x=conf_loss, shape=(-1, 0), actual_shape=actual_shape)
1686
    conf_loss.stop_gradient = True
X
Xin Pan 已提交
1687
    neg_indices = helper.create_variable_for_type_inference(dtype='int32')
1688
    dtype = matched_indices.dtype
X
Xin Pan 已提交
1689 1690
    updated_matched_indices = helper.create_variable_for_type_inference(
        dtype=dtype)
1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704
    helper.append_op(
        type='mine_hard_examples',
        inputs={
            'ClsLoss': conf_loss,
            'LocLoss': None,
            'MatchIndices': matched_indices,
            'MatchDist': matched_dist,
        },
        outputs={
            'NegIndices': neg_indices,
            'UpdatedMatchIndices': updated_matched_indices
        },
        attrs={
            'neg_pos_ratio': neg_pos_ratio,
B
Bai Yifan 已提交
1705
            'neg_dist_threshold': neg_overlap,
1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730
            'mining_type': mining_type,
            'sample_size': sample_size,
        })

    # 4. Assign classification and regression targets
    # 4.1. Encoded bbox according to the prior boxes.
    encoded_bbox = box_coder(
        prior_box=prior_box,
        prior_box_var=prior_box_var,
        target_box=gt_box,
        code_type='encode_center_size')
    # 4.2. Assign regression targets
    target_bbox, target_loc_weight = target_assign(
        encoded_bbox, updated_matched_indices, mismatch_value=background_label)
    # 4.3. Assign classification targets
    target_label, target_conf_weight = target_assign(
        gt_label,
        updated_matched_indices,
        negative_indices=neg_indices,
        mismatch_value=background_label)

    # 5. Compute loss.
    # 5.1 Compute confidence loss.
    target_label = __reshape_to_2d(target_label)
    target_label = tensor.cast(x=target_label, dtype='int64')
1731

1732
    conf_loss = softmax_with_cross_entropy(confidence, target_label)
1733 1734 1735
    target_conf_weight = __reshape_to_2d(target_conf_weight)
    conf_loss = conf_loss * target_conf_weight

1736 1737 1738 1739
    # the target_label and target_conf_weight do not have gradient.
    target_label.stop_gradient = True
    target_conf_weight.stop_gradient = True

1740 1741 1742 1743 1744 1745 1746 1747
    # 5.2 Compute regression loss.
    location = __reshape_to_2d(location)
    target_bbox = __reshape_to_2d(target_bbox)

    loc_loss = nn.smooth_l1(location, target_bbox)
    target_loc_weight = __reshape_to_2d(target_loc_weight)
    loc_loss = loc_loss * target_loc_weight

1748 1749 1750 1751
    # the target_bbox and target_loc_weight do not have gradient.
    target_bbox.stop_gradient = True
    target_loc_weight.stop_gradient = True

1752 1753
    # 5.3 Compute overall weighted loss.
    loss = conf_loss_weight * conf_loss + loc_loss_weight * loc_loss
1754
    # reshape to [N, Np], N is the batch size and Np is the prior box number.
1755 1756 1757
    # shape=(-1, 0) is set for compile-time, the correct shape is set by
    # actual_shape in runtime.
    loss = nn.reshape(x=loss, shape=(-1, 0), actual_shape=actual_shape)
1758 1759 1760 1761 1762
    loss = nn.reduce_sum(loss, dim=1, keep_dim=True)
    if normalize:
        normalizer = nn.reduce_sum(target_loc_weight)
        loss = loss / normalizer

1763
    return loss
C
chengduoZH 已提交
1764 1765


1766 1767 1768 1769
def prior_box(input,
              image,
              min_sizes,
              max_sizes=None,
1770
              aspect_ratios=[1.],
1771 1772 1773 1774 1775
              variance=[0.1, 0.1, 0.2, 0.2],
              flip=False,
              clip=False,
              steps=[0.0, 0.0],
              offset=0.5,
1776 1777
              name=None,
              min_max_aspect_ratios_order=False):
1778
    """
S
swtkiwi 已提交
1779 1780 1781 1782
	:alias_main: paddle.nn.functional.prior_box
	:alias: paddle.nn.functional.prior_box,paddle.nn.functional.vision.prior_box
	:old_api: paddle.fluid.layers.prior_box

R
ruri 已提交
1783
    This op generates prior boxes for SSD(Single Shot MultiBox Detector) algorithm.
1784 1785 1786 1787 1788
    Each position of the input produce N prior boxes, N is determined by
    the count of min_sizes, max_sizes and aspect_ratios, The size of the
    box is in range(min_size, max_size) interval, which is generated in
    sequence according to the aspect_ratios.

R
ruri 已提交
1789
    Parameters:
T
tianshuo78520a 已提交
1790
       input(Variable): 4-D tensor(NCHW), the data type should be float32 or float64.
R
ruri 已提交
1791 1792 1793 1794
       image(Variable): 4-D tensor(NCHW), the input image data of PriorBoxOp,
            the data type should be float32 or float64.
       min_sizes(list|tuple|float): the min sizes of generated prior boxes.
       max_sizes(list|tuple|None): the max sizes of generated prior boxes.
1795
            Default: None.
R
ruri 已提交
1796
       aspect_ratios(list|tuple|float): the aspect ratios of generated
1797
            prior boxes. Default: [1.].
1798 1799 1800 1801
       variance(list|tuple): the variances to be encoded in prior boxes.
            Default:[0.1, 0.1, 0.2, 0.2].
       flip(bool): Whether to flip aspect ratios. Default:False.
       clip(bool): Whether to clip out-of-boundary boxes. Default: False.
翟飞跃 已提交
1802
       step(list|tuple): Prior boxes step across width and height, If
R
ruri 已提交
1803 1804
            step[0] equals to 0.0 or step[1] equals to 0.0, the prior boxes step across
            height or weight of the input will be automatically calculated.
1805
            Default: [0., 0.]
1806
       offset(float): Prior boxes center offset. Default: 0.5
1807
       min_max_aspect_ratios_order(bool): If set True, the output prior box is
M
minqiyang 已提交
1808
            in order of [min, max, aspect_ratios], which is consistent with
1809 1810 1811
            Caffe. Please note, this order affects the weights order of
            convolution layer followed by and does not affect the final
            detection results. Default: False.
R
ruri 已提交
1812
       name(str, optional): The default value is None.  Normally there is no need for user to set this property.  For more information, please refer to :ref:`api_guide_Name`
1813 1814

    Returns:
R
ruri 已提交
1815
        Tuple: A tuple with two Variable (boxes, variances)
Q
update  
qiaolongfei 已提交
1816

R
ruri 已提交
1817 1818
        boxes(Variable): the output prior boxes of PriorBox.
	4-D tensor, the layout is [H, W, num_priors, 4].
Q
update  
qiaolongfei 已提交
1819
        H is the height of input, W is the width of input,
R
ruri 已提交
1820
        num_priors is the total box count of each position of input.
Q
update  
qiaolongfei 已提交
1821

R
ruri 已提交
1822 1823
        variances(Variable): the expanded variances of PriorBox.
    	4-D tensor, the layput is [H, W, num_priors, 4].
Q
update  
qiaolongfei 已提交
1824
        H is the height of input, W is the width of input
R
ruri 已提交
1825
        num_priors is the total box count of each position of input
1826 1827 1828

    Examples:
        .. code-block:: python
Q
update  
qiaolongfei 已提交
1829

R
ruri 已提交
1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876
	    #declarative mode
	    import paddle.fluid as fluid
	    import numpy as np
	    input = fluid.data(name="input", shape=[None,3,6,9])
	    image = fluid.data(name="image", shape=[None,3,9,12])
	    box, var = fluid.layers.prior_box(
                 input=input,
                 image=image,
		 min_sizes=[100.],
                 clip=True,
                 flip=True)

	    place = fluid.CPUPlace()
	    exe = fluid.Executor(place)
	    exe.run(fluid.default_startup_program())
 
	    # prepare a batch of data
	    input_data = np.random.rand(1,3,6,9).astype("float32")
	    image_data = np.random.rand(1,3,9,12).astype("float32")
 
	    box_out, var_out = exe.run(fluid.default_main_program(),
                feed={"input":input_data,"image":image_data},
                fetch_list=[box,var],
                return_numpy=True)
 
	    # print(box_out.shape)
	    # (6, 9, 1, 4)
	    # print(var_out.shape)
	    # (6, 9, 1, 4)

	    # imperative mode
	    import paddle.fluid.dygraph as dg

	    with dg.guard(place) as g:
    		input = dg.to_variable(input_data)
    		image = dg.to_variable(image_data)
    		box, var = fluid.layers.prior_box(
		    input=input,
		    image=image,
		    min_sizes=[100.],
		    clip=True,
		    flip=True)
		# print(box.shape)
		# [6L, 9L, 1L, 4L]
                # print(var.shape)
		# [6L, 9L, 1L, 4L]

1877 1878 1879
    """
    helper = LayerHelper("prior_box", **locals())
    dtype = helper.input_dtype()
1880 1881
    check_variable_and_dtype(
        input, 'input', ['uint8', 'int8', 'float32', 'float64'], 'prior_box')
1882

1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897
    def _is_list_or_tuple_(data):
        return (isinstance(data, list) or isinstance(data, tuple))

    if not _is_list_or_tuple_(min_sizes):
        min_sizes = [min_sizes]
    if not _is_list_or_tuple_(aspect_ratios):
        aspect_ratios = [aspect_ratios]
    if not (_is_list_or_tuple_(steps) and len(steps) == 2):
        raise ValueError('steps should be a list or tuple ',
                         'with length 2, (step_width, step_height).')

    min_sizes = list(map(float, min_sizes))
    aspect_ratios = list(map(float, aspect_ratios))
    steps = list(map(float, steps))

1898 1899 1900 1901 1902 1903 1904 1905
    attrs = {
        'min_sizes': min_sizes,
        'aspect_ratios': aspect_ratios,
        'variances': variance,
        'flip': flip,
        'clip': clip,
        'step_w': steps[0],
        'step_h': steps[1],
1906 1907
        'offset': offset,
        'min_max_aspect_ratios_order': min_max_aspect_ratios_order
1908 1909
    }
    if max_sizes is not None and len(max_sizes) > 0 and max_sizes[0] > 0:
1910 1911
        if not _is_list_or_tuple_(max_sizes):
            max_sizes = [max_sizes]
1912 1913
        attrs['max_sizes'] = max_sizes

X
Xin Pan 已提交
1914 1915
    box = helper.create_variable_for_type_inference(dtype)
    var = helper.create_variable_for_type_inference(dtype)
1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927
    helper.append_op(
        type="prior_box",
        inputs={"Input": input,
                "Image": image},
        outputs={"Boxes": box,
                 "Variances": var},
        attrs=attrs, )
    box.stop_gradient = True
    var.stop_gradient = True
    return box, var


R
ruri 已提交
1928 1929 1930 1931 1932 1933 1934 1935 1936
def density_prior_box(input,
                      image,
                      densities=None,
                      fixed_sizes=None,
                      fixed_ratios=None,
                      variance=[0.1, 0.1, 0.2, 0.2],
                      clip=False,
                      steps=[0.0, 0.0],
                      offset=0.5,
1937
                      flatten_to_2d=False,
R
ruri 已提交
1938 1939
                      name=None):
    """
S
swtkiwi 已提交
1940 1941 1942 1943
	:alias_main: paddle.nn.functional.density_prior_box
	:alias: paddle.nn.functional.density_prior_box,paddle.nn.functional.vision.density_prior_box
	:old_api: paddle.fluid.layers.density_prior_box

R
ruri 已提交
1944

R
ruri 已提交
1945
    This op generates density prior boxes for SSD(Single Shot MultiBox Detector) 
R
ruri 已提交
1946 1947 1948 1949 1950 1951
    algorithm. Each position of the input produce N prior boxes, N is 
    determined by the count of densities, fixed_sizes and fixed_ratios. 
    Boxes center at grid points around each input position is generated by 
    this operator, and the grid points is determined by densities and 
    the count of density prior box is determined by fixed_sizes and fixed_ratios. 
    Obviously, the number of fixed_sizes is equal to the number of densities.
R
ruri 已提交
1952
    
R
ruri 已提交
1953
    For densities_i in densities:
R
ruri 已提交
1954 1955
    
    .. math::
R
ruri 已提交
1956

R
ruri 已提交
1957 1958 1959 1960 1961 1962 1963
        N\_density_prior\_box = SUM(N\_fixed\_ratios * densities\_i^2)

    N_density_prior_box is the number of density_prior_box and N_fixed_ratios is the number of fixed_ratios.

    Parameters:
       input(Variable): 4-D tensor(NCHW), the data type should be float32 of float64.
       image(Variable): 4-D tensor(NCHW), the input image data of PriorBoxOp, the data type should be float32 or float64.
R
ruri 已提交
1964
            the layout is NCHW.
R
ruri 已提交
1965
       densities(list|tuple|None): The densities of generated density prior 
R
ruri 已提交
1966 1967
            boxes, this attribute should be a list or tuple of integers. 
            Default: None.
R
ruri 已提交
1968
       fixed_sizes(list|tuple|None): The fixed sizes of generated density
R
ruri 已提交
1969 1970
            prior boxes, this attribute should a list or tuple of same 
            length with :attr:`densities`. Default: None.
R
ruri 已提交
1971
       fixed_ratios(list|tuple|None): The fixed ratios of generated density
R
ruri 已提交
1972 1973 1974
            prior boxes, if this attribute is not set and :attr:`densities`
            and :attr:`fix_sizes` is set, :attr:`aspect_ratios` will be used
            to generate density prior boxes.
R
ruri 已提交
1975
       variance(list|tuple): The variances to be encoded in density prior boxes.
R
ruri 已提交
1976
            Default:[0.1, 0.1, 0.2, 0.2].
R
ruri 已提交
1977
       clip(bool): Whether to clip out of boundary boxes. Default: False.
翟飞跃 已提交
1978
       step(list|tuple): Prior boxes step across width and height, If
R
ruri 已提交
1979 1980
            step[0] equals 0.0 or step[1] equals 0.0, the density prior boxes step across
            height or weight of the input will be automatically calculated.
R
ruri 已提交
1981 1982
            Default: [0., 0.]
       offset(float): Prior boxes center offset. Default: 0.5
1983 1984
       flatten_to_2d(bool): Whether to flatten output prior boxes and variance
           to 2D shape, the second dim is 4. Default: False.
R
ruri 已提交
1985 1986
       name(str, optional): The default value is None.  Normally there is no need for user to set this property.  For more information, please refer to :ref:`api_guide_Name`
    
R
ruri 已提交
1987
    Returns:
R
ruri 已提交
1988
        Tuple: A tuple with two Variable (boxes, variances)
R
ruri 已提交
1989 1990

        boxes: the output density prior boxes of PriorBox.
R
ruri 已提交
1991 1992 1993
        4-D tensor, the layout is [H, W, num_priors, 4] when flatten_to_2d is False.
        2-D tensor, the layout is [H * W * num_priors, 4] when flatten_to_2d is True.
        H is the height of input, W is the width of input, and num_priors is the total box count of each position of input.
R
ruri 已提交
1994 1995

        variances: the expanded variances of PriorBox.
R
ruri 已提交
1996 1997 1998
        4-D tensor, the layout is [H, W, num_priors, 4] when flatten_to_2d is False.
        2-D tensor, the layout is [H * W * num_priors, 4] when flatten_to_2d is True.
        H is the height of input, W is the width of input, and num_priors is the total box count of each position of input.
R
ruri 已提交
1999 2000 2001


    Examples:
R
ruri 已提交
2002

R
ruri 已提交
2003 2004
        .. code-block:: python

R
ruri 已提交
2005
            #declarative mode
R
ruri 已提交
2006

R
ruri 已提交
2007 2008
            import paddle.fluid as fluid
            import numpy as np
R
ruri 已提交
2009

R
ruri 已提交
2010 2011 2012
            input = fluid.data(name="input", shape=[None,3,6,9])
            image = fluid.data(name="image", shape=[None,3,9,12])
            box, var = fluid.layers.density_prior_box(
R
ruri 已提交
2013 2014 2015 2016 2017 2018 2019 2020
                 input=input,
                 image=image,
                 densities=[4, 2, 1],
                 fixed_sizes=[32.0, 64.0, 128.0],
                 fixed_ratios=[1.],
                 clip=True,
                 flatten_to_2d=True)

R
ruri 已提交
2021 2022 2023
            place = fluid.CPUPlace()
            exe = fluid.Executor(place)
            exe.run(fluid.default_startup_program())
R
ruri 已提交
2024
 
R
ruri 已提交
2025 2026 2027 2028 2029 2030
            # prepare a batch of data
            input_data = np.random.rand(1,3,6,9).astype("float32")
            image_data = np.random.rand(1,3,9,12).astype("float32")

            box_out, var_out = exe.run(
                fluid.default_main_program(),
R
ruri 已提交
2031
                feed={"input":input_data,
R
ruri 已提交
2032
                      "image":image_data},
R
ruri 已提交
2033 2034 2035
                fetch_list=[box,var],
                return_numpy=True)

R
ruri 已提交
2036 2037 2038 2039
            # print(box_out.shape)
            # (1134, 4)
            # print(var_out.shape)
            # (1134, 4)
R
ruri 已提交
2040 2041


R
ruri 已提交
2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059
            #imperative mode
            import paddle.fluid.dygraph as dg

            with dg.guard(place) as g:
                input = dg.to_variable(input_data)
                image = dg.to_variable(image_data)
                box, var = fluid.layers.density_prior_box(
                    input=input,
                    image=image,
                    densities=[4, 2, 1],
                    fixed_sizes=[32.0, 64.0, 128.0],
                    fixed_ratios=[1.],
                    clip=True)

                # print(box.shape)
                # [6L, 9L, 21L, 4L]
                # print(var.shape)
                # [6L, 9L, 21L, 4L]
R
ruri 已提交
2060

R
ruri 已提交
2061 2062 2063
    """
    helper = LayerHelper("density_prior_box", **locals())
    dtype = helper.input_dtype()
2064 2065
    check_variable_and_dtype(input, 'input', ['float32', 'float64'],
                             'density_prior_box')
R
ruri 已提交
2066 2067 2068 2069

    def _is_list_or_tuple_(data):
        return (isinstance(data, list) or isinstance(data, tuple))

2070 2071 2072
    check_type(densities, 'densities', (list, tuple), 'density_prior_box')
    check_type(fixed_sizes, 'fixed_sizes', (list, tuple), 'density_prior_box')
    check_type(fixed_ratios, 'fixed_ratios', (list, tuple), 'density_prior_box')
R
ruri 已提交
2073 2074
    if len(densities) != len(fixed_sizes):
        raise ValueError('densities and fixed_sizes length should be euqal.')
2075

R
ruri 已提交
2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090
    if not (_is_list_or_tuple_(steps) and len(steps) == 2):
        raise ValueError('steps should be a list or tuple ',
                         'with length 2, (step_width, step_height).')

    densities = list(map(int, densities))
    fixed_sizes = list(map(float, fixed_sizes))
    fixed_ratios = list(map(float, fixed_ratios))
    steps = list(map(float, steps))

    attrs = {
        'variances': variance,
        'clip': clip,
        'step_w': steps[0],
        'step_h': steps[1],
        'offset': offset,
2091 2092 2093 2094
        'densities': densities,
        'fixed_sizes': fixed_sizes,
        'fixed_ratios': fixed_ratios,
        'flatten_to_2d': flatten_to_2d,
R
ruri 已提交
2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109
    }
    box = helper.create_variable_for_type_inference(dtype)
    var = helper.create_variable_for_type_inference(dtype)
    helper.append_op(
        type="density_prior_box",
        inputs={"Input": input,
                "Image": image},
        outputs={"Boxes": box,
                 "Variances": var},
        attrs=attrs, )
    box.stop_gradient = True
    var.stop_gradient = True
    return box, var


C
chengduoZH 已提交
2110
def multi_box_head(inputs,
C
chengduoZH 已提交
2111 2112
                   image,
                   base_size,
C
chengduoZH 已提交
2113
                   num_classes,
C
chengduoZH 已提交
2114
                   aspect_ratios,
2115 2116
                   min_ratio=None,
                   max_ratio=None,
C
chengduoZH 已提交
2117 2118
                   min_sizes=None,
                   max_sizes=None,
C
chengduoZH 已提交
2119 2120 2121 2122
                   steps=None,
                   step_w=None,
                   step_h=None,
                   offset=0.5,
2123 2124
                   variance=[0.1, 0.1, 0.2, 0.2],
                   flip=True,
C
chengduoZH 已提交
2125
                   clip=False,
C
chengduoZH 已提交
2126
                   kernel_size=1,
C
chengduoZH 已提交
2127
                   pad=0,
C
chengduoZH 已提交
2128
                   stride=1,
2129 2130
                   name=None,
                   min_max_aspect_ratios_order=False):
C
chengduoZH 已提交
2131
    """
S
swtkiwi 已提交
2132 2133
	:api_attr: Static Graph

Q
qingqing01 已提交
2134 2135 2136 2137
    Base on SSD ((Single Shot MultiBox Detector) algorithm, generate prior boxes,
    regression location and classification confidence on multiple input feature
    maps, then output the concatenate results. The details of this algorithm,
    please refer the section 2.2 of SSD paper `SSD: Single Shot MultiBox Detector
C
chengduoZH 已提交
2138
    <https://arxiv.org/abs/1512.02325>`_ .
C
chengduoZH 已提交
2139 2140

    Args:
Q
qingqing01 已提交
2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161
       inputs (list(Variable)|tuple(Variable)): The list of input variables,
           the format of all Variables are 4-D Tensor, layout is NCHW.
           Data type should be float32 or float64.
       image (Variable): The input image, layout is NCHW. Data type should be
           the same as inputs.
       base_size(int): the base_size is input image size. When len(inputs) > 2
           and `min_size` and `max_size` are None, the `min_size` and `max_size`
           are calculated by `baze_size`, 'min_ratio' and `max_ratio`. The
           formula is as follows:

              ..  code-block:: text

                  min_sizes = []
                  max_sizes = []
                  step = int(math.floor(((max_ratio - min_ratio)) / (num_layer - 2)))
                  for ratio in six.moves.range(min_ratio, max_ratio + 1, step):
                      min_sizes.append(base_size * ratio / 100.)
                      max_sizes.append(base_size * (ratio + step) / 100.)
                      min_sizes = [base_size * .10] + min_sizes
                      max_sizes = [base_size * .20] + max_sizes

C
chengduoZH 已提交
2162
       num_classes(int): The number of classes.
Q
qingqing01 已提交
2163 2164
       aspect_ratios(list(float) | tuple(float)): the aspect ratios of generated
           prior boxes. The length of input and aspect_ratios must be equal.
C
chengduoZH 已提交
2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183
       min_ratio(int): the min ratio of generated prior boxes.
       max_ratio(int): the max ratio of generated prior boxes.
       min_sizes(list|tuple|None): If `len(inputs) <=2`,
            min_sizes must be set up, and the length of min_sizes
            should equal to the length of inputs. Default: None.
       max_sizes(list|tuple|None): If `len(inputs) <=2`,
            max_sizes must be set up, and the length of min_sizes
            should equal to the length of inputs. Default: None.
       steps(list|tuple): If step_w and step_h are the same,
            step_w and step_h can be replaced by steps.
       step_w(list|tuple): Prior boxes step
            across width. If step_w[i] == 0.0, the prior boxes step
            across width of the inputs[i] will be automatically
            calculated. Default: None.
       step_h(list|tuple): Prior boxes step across height, If
            step_h[i] == 0.0, the prior boxes step across height of
            the inputs[i] will be automatically calculated. Default: None.
       offset(float): Prior boxes center offset. Default: 0.5
       variance(list|tuple): the variances to be encoded in prior boxes.
2184
            Default:[0.1, 0.1, 0.2, 0.2].
C
chengduoZH 已提交
2185 2186 2187 2188 2189
       flip(bool): Whether to flip aspect ratios. Default:False.
       clip(bool): Whether to clip out-of-boundary boxes. Default: False.
       kernel_size(int): The kernel size of conv2d. Default: 1.
       pad(int|list|tuple): The padding of conv2d. Default:0.
       stride(int|list|tuple): The stride of conv2d. Default:1,
Q
qingqing01 已提交
2190 2191 2192
       name(str): The default value is None.  Normally there is no need
           for user to set this property.  For more information, please
           refer to :ref:`api_guide_Name`.
2193
       min_max_aspect_ratios_order(bool): If set True, the output prior box is
M
minqiyang 已提交
2194
            in order of [min, max, aspect_ratios], which is consistent with
2195
            Caffe. Please note, this order affects the weights order of
T
tianshuo78520a 已提交
2196
            convolution layer followed by and does not affect the final
2197
            detection results. Default: False.
C
chengduoZH 已提交
2198 2199

    Returns:
Q
update  
qiaolongfei 已提交
2200 2201
        tuple: A tuple with four Variables. (mbox_loc, mbox_conf, boxes, variances)

Q
qingqing01 已提交
2202 2203 2204
        mbox_loc (Variable): The predicted boxes' location of the inputs. The
        layout is [N, num_priors, 4], where N is batch size, ``num_priors``
        is the number of prior boxes. Data type is the same as input.
Q
update  
qiaolongfei 已提交
2205

Q
qingqing01 已提交
2206 2207 2208 2209
        mbox_conf (Variable): The predicted boxes' confidence of the inputs.
        The layout is [N, num_priors, C], where ``N`` and ``num_priors`` 
        has the same meaning as above. C is the number of Classes.
        Data type is the same as input.
Q
update  
qiaolongfei 已提交
2210

Q
qingqing01 已提交
2211 2212 2213
        boxes (Variable): the output prior boxes. The layout is [num_priors, 4].
        The meaning of num_priors is the same as above.
        Data type is the same as input.
C
chengduoZH 已提交
2214

Q
qingqing01 已提交
2215 2216
        variances (Variable): the expanded variances for prior boxes.
        The layout is [num_priors, 4]. Data type is the same as input.
C
chengduoZH 已提交
2217

Q
qingqing01 已提交
2218
    Examples 1: set min_ratio and max_ratio:
C
chengduoZH 已提交
2219
        .. code-block:: python
Q
update  
qiaolongfei 已提交
2220

2221 2222
          import paddle.fluid as fluid

Q
qingqing01 已提交
2223 2224 2225 2226 2227 2228 2229
          images = fluid.data(name='data', shape=[None, 3, 300, 300], dtype='float32')
          conv1 = fluid.data(name='conv1', shape=[None, 512, 19, 19], dtype='float32')
          conv2 = fluid.data(name='conv2', shape=[None, 1024, 10, 10], dtype='float32')
          conv3 = fluid.data(name='conv3', shape=[None, 512, 5, 5], dtype='float32')
          conv4 = fluid.data(name='conv4', shape=[None, 256, 3, 3], dtype='float32')
          conv5 = fluid.data(name='conv5', shape=[None, 256, 2, 2], dtype='float32')
          conv6 = fluid.data(name='conv6', shape=[None, 128, 1, 1], dtype='float32')
2230

Q
update  
qiaolongfei 已提交
2231
          mbox_locs, mbox_confs, box, var = fluid.layers.multi_box_head(
2232
            inputs=[conv1, conv2, conv3, conv4, conv5, conv6],
C
chengduoZH 已提交
2233 2234 2235 2236 2237 2238 2239 2240 2241
            image=images,
            num_classes=21,
            min_ratio=20,
            max_ratio=90,
            aspect_ratios=[[2.], [2., 3.], [2., 3.], [2., 3.], [2.], [2.]],
            base_size=300,
            offset=0.5,
            flip=True,
            clip=True)
Q
qingqing01 已提交
2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267

    Examples 2: set min_sizes and max_sizes:
        .. code-block:: python

          import paddle.fluid as fluid

          images = fluid.data(name='data', shape=[None, 3, 300, 300], dtype='float32')
          conv1 = fluid.data(name='conv1', shape=[None, 512, 19, 19], dtype='float32')
          conv2 = fluid.data(name='conv2', shape=[None, 1024, 10, 10], dtype='float32')
          conv3 = fluid.data(name='conv3', shape=[None, 512, 5, 5], dtype='float32')
          conv4 = fluid.data(name='conv4', shape=[None, 256, 3, 3], dtype='float32')
          conv5 = fluid.data(name='conv5', shape=[None, 256, 2, 2], dtype='float32')
          conv6 = fluid.data(name='conv6', shape=[None, 128, 1, 1], dtype='float32')

          mbox_locs, mbox_confs, box, var = fluid.layers.multi_box_head(
            inputs=[conv1, conv2, conv3, conv4, conv5, conv6],
            image=images,
            num_classes=21,
            min_sizes=[60.0, 105.0, 150.0, 195.0, 240.0, 285.0],
            max_sizes=[[], 150.0, 195.0, 240.0, 285.0, 300.0],
            aspect_ratios=[[2.], [2., 3.], [2., 3.], [2., 3.], [2.], [2.]],
            base_size=300,
            offset=0.5,
            flip=True,
            clip=True)

C
chengduoZH 已提交
2268 2269
    """

C
chengduoZH 已提交
2270
    def _reshape_with_axis_(input, axis=1):
2271
        out = nn.flatten(x=input, axis=axis)
C
chengduoZH 已提交
2272
        return out
2273

2274 2275
    def _is_list_or_tuple_(data):
        return (isinstance(data, list) or isinstance(data, tuple))
2276

C
chengduoZH 已提交
2277 2278 2279 2280
    def _is_list_or_tuple_and_equal(data, length, err_info):
        if not (_is_list_or_tuple_(data) and len(data) == length):
            raise ValueError(err_info)

2281 2282
    if not _is_list_or_tuple_(inputs):
        raise ValueError('inputs should be a list or tuple.')
C
chengduoZH 已提交
2283

C
chengduoZH 已提交
2284 2285 2286 2287 2288
    num_layer = len(inputs)

    if num_layer <= 2:
        assert min_sizes is not None and max_sizes is not None
        assert len(min_sizes) == num_layer and len(max_sizes) == num_layer
2289
    elif min_sizes is None and max_sizes is None:
C
chengduoZH 已提交
2290 2291 2292
        min_sizes = []
        max_sizes = []
        step = int(math.floor(((max_ratio - min_ratio)) / (num_layer - 2)))
M
minqiyang 已提交
2293
        for ratio in six.moves.range(min_ratio, max_ratio + 1, step):
C
chengduoZH 已提交
2294 2295 2296 2297 2298
            min_sizes.append(base_size * ratio / 100.)
            max_sizes.append(base_size * (ratio + step) / 100.)
        min_sizes = [base_size * .10] + min_sizes
        max_sizes = [base_size * .20] + max_sizes

C
chengduoZH 已提交
2299 2300 2301 2302 2303
    if aspect_ratios:
        _is_list_or_tuple_and_equal(
            aspect_ratios, num_layer,
            'aspect_ratios should be list or tuple, and the length of inputs '
            'and aspect_ratios should be the same.')
Z
zhongpu 已提交
2304
    if step_h is not None:
C
chengduoZH 已提交
2305 2306 2307 2308
        _is_list_or_tuple_and_equal(
            step_h, num_layer,
            'step_h should be list or tuple, and the length of inputs and '
            'step_h should be the same.')
Z
zhongpu 已提交
2309
    if step_w is not None:
C
chengduoZH 已提交
2310 2311 2312 2313
        _is_list_or_tuple_and_equal(
            step_w, num_layer,
            'step_w should be list or tuple, and the length of inputs and '
            'step_w should be the same.')
Z
zhongpu 已提交
2314
    if steps is not None:
C
chengduoZH 已提交
2315 2316 2317 2318 2319 2320 2321
        _is_list_or_tuple_and_equal(
            steps, num_layer,
            'steps should be list or tuple, and the length of inputs and '
            'step_w should be the same.')
        step_w = steps
        step_h = steps

C
chengduoZH 已提交
2322 2323
    mbox_locs = []
    mbox_confs = []
C
chengduoZH 已提交
2324 2325
    box_results = []
    var_results = []
C
chengduoZH 已提交
2326 2327
    for i, input in enumerate(inputs):
        min_size = min_sizes[i]
C
chengduoZH 已提交
2328 2329
        max_size = max_sizes[i]

2330
        if not _is_list_or_tuple_(min_size):
C
chengduoZH 已提交
2331
            min_size = [min_size]
C
chengduoZH 已提交
2332 2333
        if not _is_list_or_tuple_(max_size):
            max_size = [max_size]
C
chengduoZH 已提交
2334 2335 2336 2337

        aspect_ratio = []
        if aspect_ratios is not None:
            aspect_ratio = aspect_ratios[i]
2338
            if not _is_list_or_tuple_(aspect_ratio):
C
chengduoZH 已提交
2339
                aspect_ratio = [aspect_ratio]
2340
        step = [step_w[i] if step_w else 0.0, step_h[i] if step_w else 0.0]
C
chengduoZH 已提交
2341

2342
        box, var = prior_box(input, image, min_size, max_size, aspect_ratio,
2343 2344
                             variance, flip, clip, step, offset, None,
                             min_max_aspect_ratios_order)
C
chengduoZH 已提交
2345 2346 2347 2348 2349

        box_results.append(box)
        var_results.append(var)

        num_boxes = box.shape[2]
C
chengduoZH 已提交
2350

2351
        # get loc
Y
Yuan Gao 已提交
2352
        num_loc_output = num_boxes * 4
2353
        mbox_loc = nn.conv2d(
C
chengduoZH 已提交
2354
            input=input,
2355 2356 2357 2358 2359
            num_filters=num_loc_output,
            filter_size=kernel_size,
            padding=pad,
            stride=stride)

2360
        mbox_loc = nn.transpose(mbox_loc, perm=[0, 2, 3, 1])
2361
        mbox_loc_flatten = nn.flatten(mbox_loc, axis=1)
Y
Yuan Gao 已提交
2362
        mbox_locs.append(mbox_loc_flatten)
C
chengduoZH 已提交
2363

2364
        # get conf
C
chengduoZH 已提交
2365
        num_conf_output = num_boxes * num_classes
2366
        conf_loc = nn.conv2d(
C
chengduoZH 已提交
2367
            input=input,
2368 2369 2370 2371
            num_filters=num_conf_output,
            filter_size=kernel_size,
            padding=pad,
            stride=stride)
2372
        conf_loc = nn.transpose(conf_loc, perm=[0, 2, 3, 1])
2373
        conf_loc_flatten = nn.flatten(conf_loc, axis=1)
Y
Yuan Gao 已提交
2374
        mbox_confs.append(conf_loc_flatten)
C
chengduoZH 已提交
2375

C
chengduoZH 已提交
2376 2377 2378
    if len(box_results) == 1:
        box = box_results[0]
        var = var_results[0]
Y
Yuan Gao 已提交
2379 2380
        mbox_locs_concat = mbox_locs[0]
        mbox_confs_concat = mbox_confs[0]
C
chengduoZH 已提交
2381 2382 2383 2384 2385 2386 2387 2388 2389
    else:
        reshaped_boxes = []
        reshaped_vars = []
        for i in range(len(box_results)):
            reshaped_boxes.append(_reshape_with_axis_(box_results[i], axis=3))
            reshaped_vars.append(_reshape_with_axis_(var_results[i], axis=3))

        box = tensor.concat(reshaped_boxes)
        var = tensor.concat(reshaped_vars)
Y
Yuan Gao 已提交
2390
        mbox_locs_concat = tensor.concat(mbox_locs, axis=1)
2391
        mbox_locs_concat = nn.reshape(mbox_locs_concat, shape=[0, -1, 4])
Y
Yuan Gao 已提交
2392
        mbox_confs_concat = tensor.concat(mbox_confs, axis=1)
2393 2394
        mbox_confs_concat = nn.reshape(
            mbox_confs_concat, shape=[0, -1, num_classes])
C
chengduoZH 已提交
2395

2396 2397
    box.stop_gradient = True
    var.stop_gradient = True
Y
Yuan Gao 已提交
2398
    return mbox_locs_concat, mbox_confs_concat, box, var
2399 2400 2401 2402 2403 2404 2405 2406 2407 2408


def anchor_generator(input,
                     anchor_sizes=None,
                     aspect_ratios=None,
                     variance=[0.1, 0.1, 0.2, 0.2],
                     stride=None,
                     offset=0.5,
                     name=None):
    """
S
swtkiwi 已提交
2409 2410 2411 2412
	:alias_main: paddle.nn.functional.anchor_generator
	:alias: paddle.nn.functional.anchor_generator,paddle.nn.functional.vision.anchor_generator
	:old_api: paddle.fluid.layers.anchor_generator

2413 2414 2415 2416 2417 2418 2419 2420
    **Anchor generator operator**

    Generate anchors for Faster RCNN algorithm.
    Each position of the input produce N anchors, N =
    size(anchor_sizes) * size(aspect_ratios). The order of generated anchors
    is firstly aspect_ratios loop then anchor_sizes loop.

    Args:
W
wangguanzhong 已提交
2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436
       input(Variable): 4-D Tensor with shape [N,C,H,W]. The input feature map.
       anchor_sizes(float32|list|tuple, optional): The anchor sizes of generated
          anchors, given in absolute pixels e.g. [64., 128., 256., 512.].
          For instance, the anchor size of 64 means the area of this anchor 
          equals to 64**2. None by default.
       aspect_ratios(float32|list|tuple, optional): The height / width ratios 
           of generated anchors, e.g. [0.5, 1.0, 2.0]. None by default.
       variance(list|tuple, optional): The variances to be used in box 
           regression deltas. The data type is float32, [0.1, 0.1, 0.2, 0.2] by 
           default.
       stride(list|tuple, optional): The anchors stride across width and height.
           The data type is float32. e.g. [16.0, 16.0]. None by default.
       offset(float32, optional): Prior boxes center offset. 0.5 by default.
       name(str, optional): For detailed information, please refer 
           to :ref:`api_guide_Name`. Usually name is no need to set and None 
           by default. 
2437 2438

    Returns:
W
wangguanzhong 已提交
2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450
        Tuple:

        Anchors(Variable): The output anchors with a layout of [H, W, num_anchors, 4].
        H is the height of input, W is the width of input,
        num_anchors is the box count of each position. 
        Each anchor is in (xmin, ymin, xmax, ymax) format an unnormalized.
 
        Variances(Variable): The expanded variances of anchors
        with a layout of [H, W, num_priors, 4].
        H is the height of input, W is the width of input
        num_anchors is the box count of each position.
        Each variance is in (xcenter, ycenter, w, h) format.
2451 2452 2453 2454 2455 2456


    Examples:

        .. code-block:: python

2457
            import paddle.fluid as fluid
2458
            conv1 = fluid.data(name='conv1', shape=[None, 48, 16, 16], dtype='float32')
J
jerrywgz 已提交
2459
            anchor, var = fluid.layers.anchor_generator(
2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492
                input=conv1,
                anchor_sizes=[64, 128, 256, 512],
                aspect_ratios=[0.5, 1.0, 2.0],
                variance=[0.1, 0.1, 0.2, 0.2],
                stride=[16.0, 16.0],
                offset=0.5)
    """
    helper = LayerHelper("anchor_generator", **locals())
    dtype = helper.input_dtype()

    def _is_list_or_tuple_(data):
        return (isinstance(data, list) or isinstance(data, tuple))

    if not _is_list_or_tuple_(anchor_sizes):
        anchor_sizes = [anchor_sizes]
    if not _is_list_or_tuple_(aspect_ratios):
        aspect_ratios = [aspect_ratios]
    if not (_is_list_or_tuple_(stride) and len(stride) == 2):
        raise ValueError('stride should be a list or tuple ',
                         'with length 2, (stride_width, stride_height).')

    anchor_sizes = list(map(float, anchor_sizes))
    aspect_ratios = list(map(float, aspect_ratios))
    stride = list(map(float, stride))

    attrs = {
        'anchor_sizes': anchor_sizes,
        'aspect_ratios': aspect_ratios,
        'variances': variance,
        'stride': stride,
        'offset': offset
    }

X
Xin Pan 已提交
2493 2494
    anchor = helper.create_variable_for_type_inference(dtype)
    var = helper.create_variable_for_type_inference(dtype)
2495 2496 2497 2498 2499 2500 2501 2502 2503
    helper.append_op(
        type="anchor_generator",
        inputs={"Input": input},
        outputs={"Anchors": anchor,
                 "Variances": var},
        attrs=attrs, )
    anchor.stop_gradient = True
    var.stop_gradient = True
    return anchor, var
2504 2505


W
whs 已提交
2506 2507 2508 2509
def roi_perspective_transform(input,
                              rois,
                              transformed_height,
                              transformed_width,
S
SunGaofeng 已提交
2510 2511
                              spatial_scale=1.0,
                              name=None):
W
whs 已提交
2512
    """
S
SunGaofeng 已提交
2513
    **The** `rois` **of this op should be a LoDTensor.**
W
whs 已提交
2514

S
SunGaofeng 已提交
2515 2516 2517 2518 2519
    ROI perspective transform op applies perspective transform to map each roi into an 
    rectangular region. Perspective transform is a type of transformation in linear algebra.

    Parameters:
        input (Variable): 4-D Tensor, input of ROIPerspectiveTransformOp. The format of 
W
whs 已提交
2520 2521
                          input tensor is NCHW. Where N is batch size, C is the
                          number of input channels, H is the height of the feature,
S
SunGaofeng 已提交
2522 2523 2524
                          and W is the width of the feature. The data type is float32.
        rois (Variable):  2-D LoDTensor, ROIs (Regions of Interest) to be transformed. 
                          It should be a 2-D LoDTensor of shape (num_rois, 8). Given as 
W
whs 已提交
2525 2526 2527
                          [[x1, y1, x2, y2, x3, y3, x4, y4], ...], (x1, y1) is the 
                          top left coordinates, and (x2, y2) is the top right 
                          coordinates, and (x3, y3) is the bottom right coordinates, 
S
SunGaofeng 已提交
2528 2529 2530 2531
                          and (x4, y4) is the bottom left coordinates. The data type is the
                          same as `input` 
        transformed_height (int): The height of transformed output.
        transformed_width (int): The width of transformed output.
W
whs 已提交
2532
        spatial_scale (float): Spatial scale factor to scale ROI coords. Default: 1.0
S
SunGaofeng 已提交
2533 2534 2535
        name(str, optional): The default value is None.  
                             Normally there is no need for user to set this property.  
                             For more information, please refer to :ref:`api_guide_Name`
W
whs 已提交
2536 2537

    Returns:
S
SunGaofeng 已提交
2538
            A tuple with three Variables. (out, mask, transform_matrix)
2539 2540

            out: The output of ROIPerspectiveTransformOp which is a 4-D tensor with shape
S
SunGaofeng 已提交
2541
            (num_rois, channels, transformed_h, transformed_w). The data type is the same as `input`
2542 2543

            mask: The mask of ROIPerspectiveTransformOp which is a 4-D tensor with shape
S
SunGaofeng 已提交
2544
            (num_rois, 1, transformed_h, transformed_w). The data type is int32
2545 2546

            transform_matrix: The transform matrix of ROIPerspectiveTransformOp which is
S
SunGaofeng 已提交
2547 2548 2549 2550
            a 2-D tensor with shape (num_rois, 9). The data type is the same as `input`

    Return Type:
        tuple
W
whs 已提交
2551 2552 2553 2554

    Examples:
        .. code-block:: python

S
SunGaofeng 已提交
2555
            import paddle.fluid as fluid
2556

S
SunGaofeng 已提交
2557 2558
            x = fluid.data(name='x', shape=[100, 256, 28, 28], dtype='float32')
            rois = fluid.data(name='rois', shape=[None, 8], lod_level=1, dtype='float32')
2559
            out, mask, transform_matrix = fluid.layers.roi_perspective_transform(x, rois, 7, 7, 1.0)
W
whs 已提交
2560
    """
2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571
    check_variable_and_dtype(input, 'input', ['float32'],
                             'roi_perspective_transform')
    check_variable_and_dtype(rois, 'rois', ['float32'],
                             'roi_perspective_transform')
    check_type(transformed_height, 'transformed_height', int,
               'roi_perspective_transform')
    check_type(transformed_width, 'transformed_width', int,
               'roi_perspective_transform')
    check_type(spatial_scale, 'spatial_scale', float,
               'roi_perspective_transform')

W
whs 已提交
2572 2573
    helper = LayerHelper('roi_perspective_transform', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
2574
    out = helper.create_variable_for_type_inference(dtype)
2575 2576
    mask = helper.create_variable_for_type_inference(dtype="int32")
    transform_matrix = helper.create_variable_for_type_inference(dtype)
2577 2578
    out2in_idx = helper.create_variable_for_type_inference(dtype="int32")
    out2in_w = helper.create_variable_for_type_inference(dtype)
W
whs 已提交
2579 2580 2581 2582
    helper.append_op(
        type="roi_perspective_transform",
        inputs={"X": input,
                "ROIs": rois},
2583 2584 2585
        outputs={
            "Out": out,
            "Out2InIdx": out2in_idx,
2586 2587 2588
            "Out2InWeights": out2in_w,
            "Mask": mask,
            "TransformMatrix": transform_matrix
2589
        },
W
whs 已提交
2590 2591 2592 2593 2594
        attrs={
            "transformed_height": transformed_height,
            "transformed_width": transformed_width,
            "spatial_scale": spatial_scale
        })
2595
    return out, mask, transform_matrix
W
whs 已提交
2596 2597


2598 2599
def generate_proposal_labels(rpn_rois,
                             gt_classes,
2600
                             is_crowd,
2601
                             gt_boxes,
2602
                             im_info,
2603 2604 2605 2606 2607 2608
                             batch_size_per_im=256,
                             fg_fraction=0.25,
                             fg_thresh=0.25,
                             bg_thresh_hi=0.5,
                             bg_thresh_lo=0.0,
                             bbox_reg_weights=[0.1, 0.1, 0.2, 0.2],
2609
                             class_nums=None,
2610 2611 2612
                             use_random=True,
                             is_cls_agnostic=False,
                             is_cascade_rcnn=False):
2613
    """
S
swtkiwi 已提交
2614 2615 2616 2617
	:alias_main: paddle.nn.functional.generate_proposal_labels
	:alias: paddle.nn.functional.generate_proposal_labels,paddle.nn.functional.vision.generate_proposal_labels
	:old_api: paddle.fluid.layers.generate_proposal_labels

2618
    **Generate Proposal Labels of Faster-RCNN**
2619

B
buxingyuan 已提交
2620
    This operator can be, for given the GenerateProposalOp output bounding boxes and groundtruth,
B
buxingyuan 已提交
2621
    to sample foreground boxes and background boxes, and compute loss target.
B
buxingyuan 已提交
2622 2623 2624

    RpnRois is the output boxes of RPN and was processed by generate_proposal_op, these boxes
    were combined with groundtruth boxes and sampled according to batch_size_per_im and fg_fraction,
B
buxingyuan 已提交
2625
    If an instance with a groundtruth overlap greater than fg_thresh, then it was considered as a foreground sample.
B
buxingyuan 已提交
2626 2627
    If an instance with a groundtruth overlap greater than bg_thresh_lo and lower than bg_thresh_hi,
    then it was considered as a background sample.
B
buxingyuan 已提交
2628
    After all foreground and background boxes are chosen (so called Rois),
B
buxingyuan 已提交
2629
    then we apply random sampling to make sure
B
buxingyuan 已提交
2630
    the number of foreground boxes is no more than batch_size_per_im * fg_fraction.
B
buxingyuan 已提交
2631 2632 2633 2634 2635

    For each box in Rois, we assign the classification (class label) and regression targets (box label) to it.
    Finally BboxInsideWeights and BboxOutsideWeights are used to specify whether it would contribute to training loss.

    Args:
2636 2637 2638
        rpn_rois(Variable): A 2-D LoDTensor with shape [N, 4]. N is the number of the GenerateProposalOp's output, each element is a bounding box with [xmin, ymin, xmax, ymax] format. The data type can be float32 or float64.
        gt_classes(Variable): A 2-D LoDTensor with shape [M, 1]. M is the number of groundtruth, each element is a class label of groundtruth. The data type must be int32.
        is_crowd(Variable): A 2-D LoDTensor with shape [M, 1]. M is the number of groundtruth, each element is a flag indicates whether a groundtruth is crowd. The data type must be int32.
B
buxingyuan 已提交
2639 2640 2641
        gt_boxes(Variable): A 2-D LoDTensor with shape [M, 4]. M is the number of groundtruth, each element is a bounding box with [xmin, ymin, xmax, ymax] format.
        im_info(Variable): A 2-D LoDTensor with shape [B, 3]. B is the number of input images, each element consists of im_height, im_width, im_scale.

2642 2643 2644 2645 2646 2647 2648
        batch_size_per_im(int): Batch size of rois per images. The data type must be int32.
        fg_fraction(float): Foreground fraction in total batch_size_per_im. The data type must be float32.
        fg_thresh(float): Overlap threshold which is used to chose foreground sample. The data type must be float32.
        bg_thresh_hi(float): Overlap threshold upper bound which is used to chose background sample. The data type must be float32.
        bg_thresh_lo(float): Overlap threshold lower bound which is used to chose background sample. The data type must be float32.
        bbox_reg_weights(list|tuple): Box regression weights. The data type must be float32.
        class_nums(int): Class number. The data type must be int32.
B
buxingyuan 已提交
2649
        use_random(bool): Use random sampling to choose foreground and background boxes.
2650 2651
        is_cls_agnostic(bool): bbox regression use class agnostic simply which only represent fg and bg boxes.
        is_cascade_rcnn(bool): it will filter some bbox crossing the image's boundary when setting True.
B
Bai Yifan 已提交
2652

2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663
    Returns:
        tuple:
        A tuple with format``(rois, labels_int32, bbox_targets, bbox_inside_weights, bbox_outside_weights)``.

        - **rois**: 2-D LoDTensor with shape ``[batch_size_per_im * batch_size, 4]``. The data type is the same as ``rpn_rois``.
        - **labels_int32**: 2-D LoDTensor with shape ``[batch_size_per_im * batch_size, 1]``. The data type must be int32.
        - **bbox_targets**: 2-D LoDTensor with shape ``[batch_size_per_im * batch_size, 4 * class_num]``. The regression targets of all RoIs. The data type is the same as ``rpn_rois``.
        - **bbox_inside_weights**: 2-D LoDTensor with shape ``[batch_size_per_im * batch_size, 4 * class_num]``. The weights of foreground boxes' regression loss. The data type is the same as ``rpn_rois``.
        - **bbox_outside_weights**: 2-D LoDTensor with shape ``[batch_size_per_im * batch_size, 4 * class_num]``. The weights of regression loss. The data type is the same as ``rpn_rois``.


B
Bai Yifan 已提交
2664 2665 2666 2667
    Examples:
        .. code-block:: python

            import paddle.fluid as fluid
2668 2669 2670 2671 2672
            rpn_rois = fluid.data(name='rpn_rois', shape=[None, 4], dtype='float32')
            gt_classes = fluid.data(name='gt_classes', shape=[None, 1], dtype='float32')
            is_crowd = fluid.data(name='is_crowd', shape=[None, 1], dtype='float32')
            gt_boxes = fluid.data(name='gt_boxes', shape=[None, 4], dtype='float32')
            im_info = fluid.data(name='im_info', shape=[None, 3], dtype='float32')
2673
            rois, labels, bbox, inside_weights, outside_weights = fluid.layers.generate_proposal_labels(
B
Bai Yifan 已提交
2674 2675 2676
                           rpn_rois, gt_classes, is_crowd, gt_boxes, im_info,
                           class_nums=10)

2677 2678 2679 2680
    """

    helper = LayerHelper('generate_proposal_labels', **locals())

2681 2682 2683 2684 2685 2686 2687
    check_variable_and_dtype(rpn_rois, 'rpn_rois', ['float32', 'float64'],
                             'generate_proposal_labels')
    check_variable_and_dtype(gt_classes, 'gt_classes', ['int32'],
                             'generate_proposal_labels')
    check_variable_and_dtype(is_crowd, 'is_crowd', ['int32'],
                             'generate_proposal_labels')

X
Xin Pan 已提交
2688 2689 2690 2691 2692 2693 2694 2695 2696
    rois = helper.create_variable_for_type_inference(dtype=rpn_rois.dtype)
    labels_int32 = helper.create_variable_for_type_inference(
        dtype=gt_classes.dtype)
    bbox_targets = helper.create_variable_for_type_inference(
        dtype=rpn_rois.dtype)
    bbox_inside_weights = helper.create_variable_for_type_inference(
        dtype=rpn_rois.dtype)
    bbox_outside_weights = helper.create_variable_for_type_inference(
        dtype=rpn_rois.dtype)
2697 2698 2699 2700 2701 2702

    helper.append_op(
        type="generate_proposal_labels",
        inputs={
            'RpnRois': rpn_rois,
            'GtClasses': gt_classes,
2703
            'IsCrowd': is_crowd,
2704
            'GtBoxes': gt_boxes,
2705
            'ImInfo': im_info
2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720
        },
        outputs={
            'Rois': rois,
            'LabelsInt32': labels_int32,
            'BboxTargets': bbox_targets,
            'BboxInsideWeights': bbox_inside_weights,
            'BboxOutsideWeights': bbox_outside_weights
        },
        attrs={
            'batch_size_per_im': batch_size_per_im,
            'fg_fraction': fg_fraction,
            'fg_thresh': fg_thresh,
            'bg_thresh_hi': bg_thresh_hi,
            'bg_thresh_lo': bg_thresh_lo,
            'bbox_reg_weights': bbox_reg_weights,
2721
            'class_nums': class_nums,
2722 2723 2724
            'use_random': use_random,
            'is_cls_agnostic': is_cls_agnostic,
            'is_cascade_rcnn': is_cascade_rcnn
2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735
        })

    rois.stop_gradient = True
    labels_int32.stop_gradient = True
    bbox_targets.stop_gradient = True
    bbox_inside_weights.stop_gradient = True
    bbox_outside_weights.stop_gradient = True

    return rois, labels_int32, bbox_targets, bbox_inside_weights, bbox_outside_weights


2736 2737 2738
def generate_mask_labels(im_info, gt_classes, is_crowd, gt_segms, rois,
                         labels_int32, num_classes, resolution):
    """
S
swtkiwi 已提交
2739 2740 2741 2742
	:alias_main: paddle.nn.functional.generate_mask_labels
	:alias: paddle.nn.functional.generate_mask_labels,paddle.nn.functional.vision.generate_mask_labels
	:old_api: paddle.fluid.layers.generate_mask_labels

Q
qingqing01 已提交
2743
    **Generate Mask Labels for Mask-RCNN**
2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778

    This operator can be, for given the RoIs and corresponding labels,
    to sample foreground RoIs. This mask branch also has
    a :math: `K \\times M^{2}` dimensional output targets for each foreground
    RoI, which encodes K binary masks of resolution M x M, one for each of the
    K classes. This mask targets are used to compute loss of mask branch.

    Please note, the data format of groud-truth segmentation, assumed the
    segmentations are as follows. The first instance has two gt objects.
    The second instance has one gt object, this object has two gt segmentations.

        .. code-block:: python

            #[
            #  [[[229.14, 370.9, 229.14, 370.9, ...]],
            #   [[343.7, 139.85, 349.01, 138.46, ...]]], # 0-th instance
            #  [[[500.0, 390.62, ...],[115.48, 187.86, ...]]] # 1-th instance
            #]

            batch_masks = []
            for semgs in batch_semgs:
                gt_masks = []
                for semg in semgs:
                    gt_segm = []
                    for polys in semg:
                        gt_segm.append(np.array(polys).reshape(-1, 2))
                    gt_masks.append(gt_segm)
                batch_masks.append(gt_masks)
            
            
            place = fluid.CPUPlace()
            feeder = fluid.DataFeeder(place=place, feed_list=feeds)
            feeder.feed(batch_masks)

    Args:
Q
qingqing01 已提交
2779 2780 2781 2782 2783 2784
        im_info (Variable): A 2-D Tensor with shape [N, 3] and float32
            data type. N is the batch size, each element is
            [height, width, scale] of image. Image scale is
            target_size / original_size, target_size is the size after resize,
            original_size is the original image size.
        gt_classes (Variable): A 2-D LoDTensor with shape [M, 1]. Data type
T
tianshuo78520a 已提交
2785
            should be int. M is the total number of ground-truth, each
Q
qingqing01 已提交
2786 2787 2788 2789 2790 2791 2792
            element is a class label.
        is_crowd (Variable): A 2-D LoDTensor with same shape and same data type
            as gt_classes, each element is a flag indicating whether a
            groundtruth is crowd.
        gt_segms (Variable): This input is a 2D LoDTensor with shape [S, 2] and
            float32 data type, it's LoD level is 3.
            Usually users do not needs to understand LoD,
2793
            The users should return correct data format in reader.
Q
qingqing01 已提交
2794
            The LoD[0] represents the ground-truth objects number of
2795 2796 2797 2798
            each instance. LoD[1] represents the segmentation counts of each
            objects. LoD[2] represents the polygons number of each segmentation.
            S the total number of polygons coordinate points. Each element is
            (x, y) coordinate points.
Q
qingqing01 已提交
2799 2800 2801 2802
        rois (Variable): A 2-D LoDTensor with shape [R, 4] and float32 data type
            float32. R is the total number of RoIs, each element is a bounding
            box with (xmin, ymin, xmax, ymax) format in the range of original image.
        labels_int32 (Variable): A 2-D LoDTensor in shape of [R, 1] with type
T
tianshuo78520a 已提交
2803
            of int32. R is the same as it in `rois`. Each element represents
2804
            a class label of a RoI.
Q
qingqing01 已提交
2805 2806
        num_classes (int): Class number.
        resolution (int): Resolution of mask predictions.
2807 2808

    Returns:
Q
qingqing01 已提交
2809 2810 2811
        mask_rois (Variable):  A 2D LoDTensor with shape [P, 4] and same data
        type as `rois`. P is the total number of sampled RoIs. Each element
        is a bounding box with [xmin, ymin, xmax, ymax] format in range of
T
tianshuo78520a 已提交
2812
        original image size.
Q
qingqing01 已提交
2813 2814

        mask_rois_has_mask_int32 (Variable): A 2D LoDTensor with shape [P, 1]
T
tianshuo78520a 已提交
2815
        and int data type, each element represents the output mask RoI
Q
qingqing01 已提交
2816 2817 2818 2819
        index with regard to input RoIs.

        mask_int32 (Variable): A 2D LoDTensor with shape [P, K * M * M] and int
        data type, K is the classes number and M is the resolution of mask
T
tianshuo78520a 已提交
2820
        predictions. Each element represents the binary mask targets.
2821 2822 2823 2824

    Examples:
        .. code-block:: python

2825 2826
          import paddle.fluid as fluid

Q
qingqing01 已提交
2827
          im_info = fluid.data(name="im_info", shape=[None, 3],
2828
              dtype="float32")
Q
qingqing01 已提交
2829
          gt_classes = fluid.data(name="gt_classes", shape=[None, 1],
2830
              dtype="float32", lod_level=1)
Q
qingqing01 已提交
2831
          is_crowd = fluid.data(name="is_crowd", shape=[None, 1],
2832
              dtype="float32", lod_level=1)
Q
qingqing01 已提交
2833
          gt_masks = fluid.data(name="gt_masks", shape=[None, 2],
2834
              dtype="float32", lod_level=3)
2835
          # rois, roi_labels can be the output of
2836
          # fluid.layers.generate_proposal_labels.
Q
qingqing01 已提交
2837
          rois = fluid.data(name="rois", shape=[None, 4],
2838
              dtype="float32", lod_level=1)
Q
qingqing01 已提交
2839
          roi_labels = fluid.data(name="roi_labels", shape=[None, 1],
2840
              dtype="int32", lod_level=1)
2841 2842 2843 2844 2845 2846
          mask_rois, mask_index, mask_int32 = fluid.layers.generate_mask_labels(
              im_info=im_info,
              gt_classes=gt_classes,
              is_crowd=is_crowd,
              gt_segms=gt_masks,
              rois=rois,
2847
              labels_int32=roi_labels,
2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884
              num_classes=81,
              resolution=14)
    """

    helper = LayerHelper('generate_mask_labels', **locals())

    mask_rois = helper.create_variable_for_type_inference(dtype=rois.dtype)
    roi_has_mask_int32 = helper.create_variable_for_type_inference(
        dtype=gt_classes.dtype)
    mask_int32 = helper.create_variable_for_type_inference(
        dtype=gt_classes.dtype)

    helper.append_op(
        type="generate_mask_labels",
        inputs={
            'ImInfo': im_info,
            'GtClasses': gt_classes,
            'IsCrowd': is_crowd,
            'GtSegms': gt_segms,
            'Rois': rois,
            'LabelsInt32': labels_int32
        },
        outputs={
            'MaskRois': mask_rois,
            'RoiHasMaskInt32': roi_has_mask_int32,
            'MaskInt32': mask_int32
        },
        attrs={'num_classes': num_classes,
               'resolution': resolution})

    mask_rois.stop_gradient = True
    roi_has_mask_int32.stop_gradient = True
    mask_int32.stop_gradient = True

    return mask_rois, roi_has_mask_int32, mask_int32


2885 2886 2887 2888 2889 2890 2891 2892 2893 2894
def generate_proposals(scores,
                       bbox_deltas,
                       im_info,
                       anchors,
                       variances,
                       pre_nms_top_n=6000,
                       post_nms_top_n=1000,
                       nms_thresh=0.5,
                       min_size=0.1,
                       eta=1.0,
F
FDInSky 已提交
2895 2896
                       name=None,
                       return_rois_num=False):
2897
    """
S
swtkiwi 已提交
2898 2899 2900 2901
	:alias_main: paddle.nn.functional.generate_proposals
	:alias: paddle.nn.functional.generate_proposals,paddle.nn.functional.vision.generate_proposals
	:old_api: paddle.fluid.layers.generate_proposals

H
haowang101779990 已提交
2902 2903
    **Generate proposal Faster-RCNN**

2904 2905 2906 2907
    This operation proposes RoIs according to each box with their
    probability to be a foreground object and 
    the box can be calculated by anchors. Bbox_deltais and scores
    to be an object are the output of RPN. Final proposals
H
haowang101779990 已提交
2908 2909 2910 2911
    could be used to train detection net.

    For generating proposals, this operation performs following steps:

2912 2913
    1. Transposes and resizes scores and bbox_deltas in size of
       (H*W*A, 1) and (H*W*A, 4)
H
haowang101779990 已提交
2914 2915 2916 2917 2918 2919
    2. Calculate box locations as proposals candidates. 
    3. Clip boxes to image
    4. Remove predicted boxes with small area. 
    5. Apply NMS to get final proposals as output.

    Args:
2920 2921 2922
        scores(Variable): A 4-D Tensor with shape [N, A, H, W] represents
            the probability for each box to be an object.
            N is batch size, A is number of anchors, H and W are height and
2923
            width of the feature map. The data type must be float32.
2924
        bbox_deltas(Variable): A 4-D Tensor with shape [N, 4*A, H, W]
T
tianshuo78520a 已提交
2925
            represents the difference between predicted box location and
2926
            anchor location. The data type must be float32.
2927
        im_info(Variable): A 2-D Tensor with shape [N, 3] represents origin
2928 2929
            image information for N batch. Height and width are the input sizes 
            and scale is the ratio of network input size and original size. 
2930
            The data type can be float32 or float64.
2931 2932 2933
        anchors(Variable):   A 4-D Tensor represents the anchors with a layout
            of [H, W, A, 4]. H and W are height and width of the feature map,
            num_anchors is the box count of each position. Each anchor is
2934 2935
            in (xmin, ymin, xmax, ymax) format an unnormalized. The data type must be float32.
        variances(Variable): A 4-D Tensor. The expanded variances of anchors with a layout of
2936
            [H, W, num_priors, 4]. Each variance is in
2937
            (xcenter, ycenter, w, h) format. The data type must be float32.
2938
        pre_nms_top_n(float): Number of total bboxes to be kept per
2939
            image before NMS. The data type must be float32. `6000` by default.
2940
        post_nms_top_n(float): Number of total bboxes to be kept per
2941 2942
            image after NMS. The data type must be float32. `1000` by default.
        nms_thresh(float): Threshold in NMS. The data type must be float32. `0.5` by default.
2943
        min_size(float): Remove predicted boxes with either height or
2944 2945 2946
            width < min_size. The data type must be float32. `0.1` by default.
        eta(float): Apply in adaptive NMS, if adaptive `threshold > 0.5`,
            `adaptive_threshold = adaptive_threshold * eta` in each iteration.
F
FDInSky 已提交
2947 2948 2949 2950
        return_rois_num(bool): When setting True, it will return a 1D Tensor with shape [N, ] that includes Rois's 
            num of each image in one batch. The N is the image's num. For example, the tensor has values [4,5] that represents
            the first image has 4 Rois, the second image has 5 Rois. It only used in rcnn model. 
            'False' by default. 
2951 2952 2953 2954 2955 2956
    Returns:
        tuple:
        A tuple with format ``(rpn_rois, rpn_roi_probs)``.

        - **rpn_rois**: The generated RoIs. 2-D Tensor with shape ``[N, 4]`` while ``N`` is the number of RoIs. The data type is the same as ``scores``.
        - **rpn_roi_probs**: The scores of generated RoIs. 2-D Tensor with shape ``[N, 1]`` while ``N`` is the number of RoIs. The data type is the same as ``scores``.
B
Bai Yifan 已提交
2957 2958 2959 2960 2961

    Examples:
        .. code-block:: python
        
            import paddle.fluid as fluid
2962 2963 2964 2965 2966
            scores = fluid.data(name='scores', shape=[None, 4, 5, 5], dtype='float32')
            bbox_deltas = fluid.data(name='bbox_deltas', shape=[None, 16, 5, 5], dtype='float32')
            im_info = fluid.data(name='im_info', shape=[None, 3], dtype='float32')
            anchors = fluid.data(name='anchors', shape=[None, 5, 4, 4], dtype='float32')
            variances = fluid.data(name='variances', shape=[None, 5, 10, 4], dtype='float32')
B
Bai Yifan 已提交
2967 2968 2969
            rois, roi_probs = fluid.layers.generate_proposals(scores, bbox_deltas,
                         im_info, anchors, variances)

2970 2971 2972
    """
    helper = LayerHelper('generate_proposals', **locals())

2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983
    check_variable_and_dtype(scores, 'scores', ['float32'],
                             'generate_proposals')
    check_variable_and_dtype(bbox_deltas, 'bbox_deltas', ['float32'],
                             'generate_proposals')
    check_variable_and_dtype(im_info, 'im_info', ['float32', 'float64'],
                             'generate_proposals')
    check_variable_and_dtype(anchors, 'anchors', ['float32'],
                             'generate_proposals')
    check_variable_and_dtype(variances, 'variances', ['float32'],
                             'generate_proposals')

X
Xin Pan 已提交
2984 2985 2986 2987
    rpn_rois = helper.create_variable_for_type_inference(
        dtype=bbox_deltas.dtype)
    rpn_roi_probs = helper.create_variable_for_type_inference(
        dtype=scores.dtype)
F
FDInSky 已提交
2988 2989
    rpn_rois_lod = helper.create_variable_for_type_inference(dtype='int32')

2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005
    helper.append_op(
        type="generate_proposals",
        inputs={
            'Scores': scores,
            'BboxDeltas': bbox_deltas,
            'ImInfo': im_info,
            'Anchors': anchors,
            'Variances': variances
        },
        attrs={
            'pre_nms_topN': pre_nms_top_n,
            'post_nms_topN': post_nms_top_n,
            'nms_thresh': nms_thresh,
            'min_size': min_size,
            'eta': eta
        },
F
FDInSky 已提交
3006 3007 3008 3009 3010
        outputs={
            'RpnRois': rpn_rois,
            'RpnRoiProbs': rpn_roi_probs,
            'RpnRoisLod': rpn_rois_lod
        })
3011 3012
    rpn_rois.stop_gradient = True
    rpn_roi_probs.stop_gradient = True
F
FDInSky 已提交
3013
    rpn_rois_lod.stop_gradient = True
3014

F
FDInSky 已提交
3015 3016 3017 3018
    if return_rois_num:
        return rpn_rois, rpn_roi_probs, rpn_rois_lod
    else:
        return rpn_rois, rpn_roi_probs
J
jerrywgz 已提交
3019 3020


J
jerrywgz 已提交
3021
def box_clip(input, im_info, name=None):
J
jerrywgz 已提交
3022
    """
S
swtkiwi 已提交
3023 3024 3025 3026
	:alias_main: paddle.nn.functional.box_clip
	:alias: paddle.nn.functional.box_clip,paddle.nn.functional.vision.box_clip
	:old_api: paddle.fluid.layers.box_clip
	
J
jerrywgz 已提交
3027
    Clip the box into the size given by im_info
J
jerrywgz 已提交
3028
    For each input box, The formula is given as follows:
3029 3030 3031
        
    .. code-block:: text

J
jerrywgz 已提交
3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042
        xmin = max(min(xmin, im_w - 1), 0)
        ymin = max(min(ymin, im_h - 1), 0) 
        xmax = max(min(xmax, im_w - 1), 0)
        ymax = max(min(ymax, im_h - 1), 0)
    
    where im_w and im_h are computed from im_info:
 
    .. code-block:: text

        im_h = round(height / scale)
        im_w = round(weight / scale)
J
jerrywgz 已提交
3043 3044

    Args:
W
wangguanzhong 已提交
3045 3046 3047
        input(Variable): The input Tensor with shape :math:`[N_1, N_2, ..., N_k, 4]`,
            the last dimension is 4 and data type is float32 or float64.
        im_info(Variable): The 2-D Tensor with shape [N, 3] with layout 
T
tianshuo78520a 已提交
3048
            (height, width, scale) representing the information of image. 
3049
            Height and width are the input sizes and scale is the ratio of network input
W
wangguanzhong 已提交
3050 3051 3052 3053
            size and original size. The data type is float32 or float64.
        name(str, optional): For detailed information, please refer 
            to :ref:`api_guide_Name`. Usually name is no need to set and 
            None by default. 
J
jerrywgz 已提交
3054 3055
    
    Returns:
W
wangguanzhong 已提交
3056 3057
        Variable:

T
tianshuo78520a 已提交
3058
        output(Variable): The clipped tensor with data type float32 or float64. 
W
wangguanzhong 已提交
3059 3060
        The shape is same as input.

3061
        
J
jerrywgz 已提交
3062 3063
    Examples:
        .. code-block:: python
3064
        
3065
            import paddle.fluid as fluid
3066 3067 3068
            boxes = fluid.data(
                name='boxes', shape=[None, 8, 4], dtype='float32', lod_level=1)
            im_info = fluid.data(name='im_info', shape=[-1 ,3])
J
jerrywgz 已提交
3069
            out = fluid.layers.box_clip(
J
jerrywgz 已提交
3070
                input=boxes, im_info=im_info)
J
jerrywgz 已提交
3071 3072
    """

3073 3074 3075 3076
    check_variable_and_dtype(input, 'input', ['float32', 'float64'], 'box_clip')
    check_variable_and_dtype(im_info, 'im_info', ['float32', 'float64'],
                             'box_clip')

J
jerrywgz 已提交
3077
    helper = LayerHelper("box_clip", **locals())
J
jerrywgz 已提交
3078
    output = helper.create_variable_for_type_inference(dtype=input.dtype)
3079
    inputs = {"Input": input, "ImInfo": im_info}
J
jerrywgz 已提交
3080
    helper.append_op(type="box_clip", inputs=inputs, outputs={"Output": output})
J
jerrywgz 已提交
3081

3082 3083
    return output

J
jerrywgz 已提交
3084

3085 3086 3087 3088 3089 3090 3091 3092
def retinanet_detection_output(bboxes,
                               scores,
                               anchors,
                               im_info,
                               score_threshold=0.05,
                               nms_top_k=1000,
                               keep_top_k=100,
                               nms_threshold=0.3,
3093
                               nms_eta=1.0):
3094
    """
3095
    **Detection Output Layer for the detector RetinaNet.**
3096

3097 3098 3099 3100
    In the detector `RetinaNet <https://arxiv.org/abs/1708.02002>`_ , many 
    `FPN <https://arxiv.org/abs/1612.03144>`_ levels output the category
    and location predictions, this OP is to get the detection results by
    performing following steps:
3101

3102 3103 3104
    1. For each FPN level, decode box predictions according to the anchor
       boxes from at most :attr:`nms_top_k` top-scoring predictions after
       thresholding detector confidence at :attr:`score_threshold`.
3105 3106 3107 3108
    2. Merge top predictions from all levels and apply multi-class non 
       maximum suppression (NMS) on them to get the final detections.

    Args:
3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125
        bboxes(List): A list of Tensors from multiple FPN levels represents
            the location prediction for all anchor boxes. Each element is
            a 3-D Tensor with shape :math:`[N, Mi, 4]`, :math:`N` is the
            batch size, :math:`Mi` is the number of bounding boxes from
            :math:`i`-th FPN level and each bounding box has four coordinate
            values and the layout is [xmin, ymin, xmax, ymax]. The data type
            of each element is float32 or float64.
        scores(List): A list of Tensors from multiple FPN levels represents
            the category prediction for all anchor boxes. Each element is a
            3-D Tensor with shape :math:`[N, Mi, C]`,  :math:`N` is the batch
            size, :math:`C` is the class number (**excluding background**),
            :math:`Mi` is the number of bounding boxes from :math:`i`-th FPN
            level. The data type of each element is float32 or float64.
        anchors(List): A list of Tensors from multiple FPN levels represents
            the locations of all anchor boxes. Each element is a 2-D Tensor
            with shape :math:`[Mi, 4]`, :math:`Mi` is the number of bounding
            boxes from :math:`i`-th FPN level, and each bounding box has four
3126
            coordinate values and the layout is [xmin, ymin, xmax, ymax].
3127 3128 3129
            The data type of each element is float32 or float64.
        im_info(Variable): A 2-D Tensor with shape :math:`[N, 3]` represents the size
            information of input images. :math:`N` is the batch size, the size
T
tianshuo78520a 已提交
3130
            information of each image is a 3-vector which are the height and width
3131 3132
            of the network input along with the factor scaling the origin image to
            the network input. The data type of :attr:`im_info` is float32.
3133
        score_threshold(float): Threshold to filter out bounding boxes
3134
            with a confidence score before NMS, default value is set to 0.05.
3135
        nms_top_k(int): Maximum number of detections per FPN layer to be
3136 3137
            kept according to the confidences before NMS, default value is set to
            1000.
3138
        keep_top_k(int): Number of total bounding boxes to be kept per image after
3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156
            NMS step. Default value is set to 100, -1 means keeping all bounding
            boxes after NMS step.
        nms_threshold(float): The Intersection-over-Union(IoU) threshold used to 
            filter out boxes in NMS.
        nms_eta(float): The parameter for adjusting :attr:`nms_threshold` in NMS.
            Default value is set to 1., which represents the value of
            :attr:`nms_threshold` keep the same in NMS. If :attr:`nms_eta` is set
            to be lower than 1. and the value of :attr:`nms_threshold` is set to
            be higher than 0.5, everytime a bounding box is filtered out,
            the adjustment for :attr:`nms_threshold` like :attr:`nms_threshold`
            = :attr:`nms_threshold` * :attr:`nms_eta`  will not be stopped until
            the actual value of :attr:`nms_threshold` is lower than or equal to
            0.5.

    **Notice**: In some cases where the image sizes are very small, it's possible
    that there is no detection if :attr:`score_threshold` are used at all
    levels. Hence, this OP do not filter out anchors from the highest FPN level
    before NMS. And the last element in :attr:`bboxes`:, :attr:`scores` and
T
tianshuo78520a 已提交
3157
    :attr:`anchors` is required to be from the highest FPN level.
3158 3159

    Returns:
3160 3161
        Variable(The data type is float32 or float64):
            The detection output is a 1-level LoDTensor with shape :math:`[No, 6]`.
3162
            Each row has six values: [label, confidence, xmin, ymin, xmax, ymax].
3163 3164 3165
            :math:`No` is the total number of detections in this mini-batch.
            The :math:`i`-th image has `LoD[i + 1] - LoD[i]` detected
            results, if `LoD[i + 1] - LoD[i]` is 0, the :math:`i`-th image
3166 3167 3168 3169 3170 3171
            has no detected results. If all images have no detected results,
            LoD will be set to 0, and the output tensor is empty (None).

    Examples:
        .. code-block:: python

3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188
           import paddle.fluid as fluid

           bboxes_low = fluid.data(
               name='bboxes_low', shape=[1, 44, 4], dtype='float32')
           bboxes_high = fluid.data(
               name='bboxes_high', shape=[1, 11, 4], dtype='float32')
           scores_low = fluid.data(
               name='scores_low', shape=[1, 44, 10], dtype='float32')
           scores_high = fluid.data(
               name='scores_high', shape=[1, 11, 10], dtype='float32')
           anchors_low = fluid.data(
               name='anchors_low', shape=[44, 4], dtype='float32')
           anchors_high = fluid.data(
               name='anchors_high', shape=[11, 4], dtype='float32')
           im_info = fluid.data(
               name="im_info", shape=[1, 3], dtype='float32')
           nmsed_outs = fluid.layers.retinanet_detection_output(
3189 3190 3191 3192 3193 3194 3195 3196 3197
               bboxes=[bboxes_low, bboxes_high],
               scores=[scores_low, scores_high],
               anchors=[anchors_low, anchors_high],
               im_info=im_info,
               score_threshold=0.05,
               nms_top_k=1000,
               keep_top_k=100,
               nms_threshold=0.45,
               nms_eta=1.0)
3198 3199
    """

3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217
    check_type(bboxes, 'bboxes', (list), 'retinanet_detection_output')
    for i, bbox in enumerate(bboxes):
        check_variable_and_dtype(bbox, 'bbox{}'.format(i),
                                 ['float32', 'float64'],
                                 'retinanet_detection_output')
    check_type(scores, 'scores', (list), 'retinanet_detection_output')
    for i, score in enumerate(scores):
        check_variable_and_dtype(score, 'score{}'.format(i),
                                 ['float32', 'float64'],
                                 'retinanet_detection_output')
    check_type(anchors, 'anchors', (list), 'retinanet_detection_output')
    for i, anchor in enumerate(anchors):
        check_variable_and_dtype(anchor, 'anchor{}'.format(i),
                                 ['float32', 'float64'],
                                 'retinanet_detection_output')
    check_variable_and_dtype(im_info, 'im_info', ['float32', 'float64'],
                             'retinanet_detection_output')

3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240
    helper = LayerHelper('retinanet_detection_output', **locals())
    output = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype('scores'))
    helper.append_op(
        type="retinanet_detection_output",
        inputs={
            'BBoxes': bboxes,
            'Scores': scores,
            'Anchors': anchors,
            'ImInfo': im_info
        },
        attrs={
            'score_threshold': score_threshold,
            'nms_top_k': nms_top_k,
            'nms_threshold': nms_threshold,
            'keep_top_k': keep_top_k,
            'nms_eta': 1.,
        },
        outputs={'Out': output})
    output.stop_gradient = True
    return output


J
jerrywgz 已提交
3241 3242 3243 3244 3245
def multiclass_nms(bboxes,
                   scores,
                   score_threshold,
                   nms_top_k,
                   keep_top_k,
J
jerrywgz 已提交
3246
                   nms_threshold=0.3,
J
jerrywgz 已提交
3247 3248
                   normalized=True,
                   nms_eta=1.,
3249 3250
                   background_label=0,
                   name=None):
J
jerrywgz 已提交
3251
    """
S
swtkiwi 已提交
3252 3253 3254 3255
	:alias_main: paddle.nn.functional.multiclass_nms
	:alias: paddle.nn.functional.multiclass_nms,paddle.nn.functional.extension.multiclass_nms
	:old_api: paddle.fluid.layers.multiclass_nms

3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269
    **Multiclass NMS**
    
    This operator is to do multi-class non maximum suppression (NMS) on
    boxes and scores.

    In the NMS step, this operator greedily selects a subset of detection bounding
    boxes that have high scores larger than score_threshold, if providing this
    threshold, then selects the largest nms_top_k confidences scores if nms_top_k
    is larger than -1. Then this operator pruns away boxes that have high IOU
    (intersection over union) overlap with already selected boxes by adaptive
    threshold NMS based on parameters of nms_threshold and nms_eta.
    Aftern NMS step, at most keep_top_k number of total bboxes are to be kept
    per image if keep_top_k is larger than -1.

3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283
    See below for an example:

    .. code-block:: text

        if:
            box1.data = (2.0, 3.0, 7.0, 5.0) format is (xmin, ymin, xmax, ymax)
            box1.scores = (0.7, 0.2, 0.4)  which is (label0.score=0.7, label1.score=0.2, label2.cores=0.4)

            box2.data = (3.0, 4.0, 8.0, 5.0)
            box2.score = (0.3, 0.3, 0.1)

            nms_threshold = 0.3
            background_label = 0
            score_threshold = 0
3284

3285 3286 3287 3288 3289 3290 3291

        Then:
            iou = 4/11 > 0.3
            out.data = [[1, 0.3, 3.0, 4.0, 8.0, 5.0],    
                         [2, 0.4, 2.0, 3.0, 7.0, 5.0]]
                         
            Out format is (label, confidence, xmin, ymin, xmax, ymax)
3292 3293 3294 3295 3296 3297 3298 3299
    Args:
        bboxes (Variable): Two types of bboxes are supported:
                           1. (Tensor) A 3-D Tensor with shape
                           [N, M, 4 or 8 16 24 32] represents the
                           predicted locations of M bounding bboxes,
                           N is the batch size. Each bounding box has four
                           coordinate values and the layout is 
                           [xmin, ymin, xmax, ymax], when box size equals to 4.
X
xiaoting 已提交
3300
                           The data type is float32 or float64.
3301 3302
                           2. (LoDTensor) A 3-D Tensor with shape [M, C, 4]
                           M is the number of bounding boxes, C is the 
X
xiaoting 已提交
3303
                           class number. The data type is float32 or float64.   
3304 3305 3306 3307 3308 3309 3310
        scores (Variable): Two types of scores are supported:
                           1. (Tensor) A 3-D Tensor with shape [N, C, M]
                           represents the predicted confidence predictions.
                           N is the batch size, C is the class number, M is 
                           number of bounding boxes. For each category there 
                           are total M scores which corresponding M bounding
                           boxes. Please note, M is equal to the 2nd dimension
X
xiaoting 已提交
3311
                           of BBoxes.The data type is float32 or float64. 
3312 3313 3314
                           2. (LoDTensor) A 2-D LoDTensor with shape [M, C].
                           M is the number of bbox, C is the class number.
                           In this case, input BBoxes should be the second
X
xiaoting 已提交
3315
                           case with shape [M, C, 4].The data type is float32 or float64. 
3316 3317 3318 3319 3320 3321 3322
        background_label (int): The index of background label, the background 
                                label will be ignored. If set to -1, then all
                                categories will be considered. Default: 0
        score_threshold (float): Threshold to filter out bounding boxes with
                                 low confidence score. If not provided, 
                                 consider all boxes.
        nms_top_k (int): Maximum number of detections to be kept according to
T
tianshuo78520a 已提交
3323
                         the confidences after the filtering detections based
3324 3325 3326 3327 3328 3329 3330 3331 3332
                         on score_threshold.
        nms_threshold (float): The threshold to be used in NMS. Default: 0.3
        nms_eta (float): The threshold to be used in NMS. Default: 1.0
        keep_top_k (int): Number of total bboxes to be kept per image after NMS
                          step. -1 means keeping all bboxes after NMS step.
        normalized (bool): Whether detections are normalized. Default: True
        name(str): Name of the multiclass nms op. Default: None.

    Returns:
X
xiaoting 已提交
3333
        Variable: A 2-D LoDTensor with shape [No, 6] represents the detections.
3334 3335 3336 3337 3338
             Each row has 6 values: [label, confidence, xmin, ymin, xmax, ymax]
             or A 2-D LoDTensor with shape [No, 10] represents the detections.
             Each row has 10 values: 
             [label, confidence, x1, y1, x2, y2, x3, y3, x4, y4]. No is the 
             total number of detections. If there is no detected boxes for all
J
jerrywgz 已提交
3339 3340 3341 3342
             images, lod will be set to {1} and Out only contains one value
             which is -1.
             (After version 1.3, when no boxes detected, the lod is changed 
             from {0} to {1}) 
3343

3344

3345 3346 3347
    Examples:
        .. code-block:: python

3348

3349
            import paddle.fluid as fluid
X
xiaoting 已提交
3350
            boxes = fluid.data(name='bboxes', shape=[None,81, 4],
3351
                                      dtype='float32', lod_level=1)
X
xiaoting 已提交
3352
            scores = fluid.data(name='scores', shape=[None,81],
3353 3354 3355 3356 3357 3358 3359 3360 3361
                                      dtype='float32', lod_level=1)
            out = fluid.layers.multiclass_nms(bboxes=boxes,
                                              scores=scores,
                                              background_label=0,
                                              score_threshold=0.5,
                                              nms_top_k=400,
                                              nms_threshold=0.3,
                                              keep_top_k=200,
                                              normalized=False)
J
jerrywgz 已提交
3362
    """
X
xiaoting 已提交
3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374
    check_variable_and_dtype(bboxes, 'BBoxes', ['float32', 'float64'],
                             'multiclass_nms')
    check_variable_and_dtype(scores, 'Scores', ['float32', 'float64'],
                             'multiclass_nms')
    check_type(score_threshold, 'score_threshold', float, 'multicalss_nms')
    check_type(nms_top_k, 'nums_top_k', int, 'multiclass_nms')
    check_type(keep_top_k, 'keep_top_k', int, 'mutliclass_nms')
    check_type(nms_threshold, 'nms_threshold', float, 'multiclass_nms')
    check_type(normalized, 'normalized', bool, 'multiclass_nms')
    check_type(nms_eta, 'nms_eta', float, 'multiclass_nms')
    check_type(background_label, 'background_label', int, 'multiclass_nms')

J
jerrywgz 已提交
3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391
    helper = LayerHelper('multiclass_nms', **locals())
    output = helper.create_variable_for_type_inference(dtype=bboxes.dtype)
    helper.append_op(
        type="multiclass_nms",
        inputs={'BBoxes': bboxes,
                'Scores': scores},
        attrs={
            'background_label': background_label,
            'score_threshold': score_threshold,
            'nms_top_k': nms_top_k,
            'nms_threshold': nms_threshold,
            'nms_eta': nms_eta,
            'keep_top_k': keep_top_k,
            'normalized': normalized
        },
        outputs={'Out': output})
    output.stop_gradient = True
J
jerrywgz 已提交
3392 3393

    return output
3394 3395


3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443
def locality_aware_nms(bboxes,
                       scores,
                       score_threshold,
                       nms_top_k,
                       keep_top_k,
                       nms_threshold=0.3,
                       normalized=True,
                       nms_eta=1.,
                       background_label=-1,
                       name=None):
    """
    **Local Aware NMS**
    
    `Local Aware NMS <https://arxiv.org/abs/1704.03155>`_ is to do locality-aware non maximum
    suppression (LANMS) on boxes and scores.

    Firstly, this operator merge box and score according their IOU
    (intersection over union). In the NMS step, this operator greedily selects a
    subset of detection bounding boxes that have high scores larger than score_threshold,
    if providing this threshold, then selects the largest nms_top_k confidences scores
    if nms_top_k is larger than -1. Then this operator pruns away boxes that have high
    IOU overlap with already selected boxes by adaptive threshold NMS based on parameters
    of nms_threshold and nms_eta.

    Aftern NMS step, at most keep_top_k number of total bboxes are to be kept
    per image if keep_top_k is larger than -1.

    Args:
        bboxes (Variable): A 3-D Tensor with shape [N, M, 4 or 8 16 24 32]
                           represents the predicted locations of M bounding
                           bboxes, N is the batch size. Each bounding box
                           has four coordinate values and the layout is
                           [xmin, ymin, xmax, ymax], when box size equals to 4.
                           The data type is float32 or float64.
        scores (Variable): A 3-D Tensor with shape [N, C, M] represents the
                           predicted confidence predictions. N is the batch
                           size, C is the class number, M is number of bounding
                           boxes. Now only support 1 class. For each category
                           there are total M scores which corresponding M bounding
                           boxes. Please note, M is equal to the 2nd dimension of
                           BBoxes. The data type is float32 or float64.
        background_label (int): The index of background label, the background
                                label will be ignored. If set to -1, then all
                                categories will be considered. Default: -1
        score_threshold (float): Threshold to filter out bounding boxes with
                                 low confidence score. If not provided,
                                 consider all boxes.
        nms_top_k (int): Maximum number of detections to be kept according to
T
tianshuo78520a 已提交
3444
                         the confidences after the filtering detections based
3445 3446 3447
                         on score_threshold.
        keep_top_k (int): Number of total bboxes to be kept per image after NMS
                          step. -1 means keeping all bboxes after NMS step.
3448 3449
        nms_threshold (float): The threshold to be used in NMS. Default: 0.3
        nms_eta (float): The threshold to be used in NMS. Default: 1.0
3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483
        normalized (bool): Whether detections are normalized. Default: True
        name(str): Name of the locality aware nms op, please refer to :ref:`api_guide_Name` .
                          Default: None.

    Returns:
        Variable: A 2-D LoDTensor with shape [No, 6] represents the detections.
             Each row has 6 values: [label, confidence, xmin, ymin, xmax, ymax]
             or A 2-D LoDTensor with shape [No, 10] represents the detections.
             Each row has 10 values:
             [label, confidence, x1, y1, x2, y2, x3, y3, x4, y4]. No is the
             total number of detections. If there is no detected boxes for all
             images, lod will be set to {1} and Out only contains one value
             which is -1.
             (After version 1.3, when no boxes detected, the lod is changed
             from {0} to {1}). The data type is float32 or float64.


    Examples:
        .. code-block:: python


            import paddle.fluid as fluid
            boxes = fluid.data(name='bboxes', shape=[None, 81, 8],
                                      dtype='float32')
            scores = fluid.data(name='scores', shape=[None, 1, 81],
                                      dtype='float32')
            out = fluid.layers.locality_aware_nms(bboxes=boxes,
                                              scores=scores,
                                              score_threshold=0.5,
                                              nms_top_k=400,
                                              nms_threshold=0.3,
                                              keep_top_k=200,
                                              normalized=False)
    """
3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495
    check_variable_and_dtype(bboxes, 'bboxes', ['float32', 'float64'],
                             'locality_aware_nms')
    check_variable_and_dtype(scores, 'scores', ['float32', 'float64'],
                             'locality_aware_nms')
    check_type(background_label, 'background_label', int, 'locality_aware_nms')
    check_type(score_threshold, 'score_threshold', float, 'locality_aware_nms')
    check_type(nms_top_k, 'nms_top_k', int, 'locality_aware_nms')
    check_type(nms_eta, 'nms_eta', float, 'locality_aware_nms')
    check_type(nms_threshold, 'nms_threshold', float, 'locality_aware_nms')
    check_type(keep_top_k, 'keep_top_k', int, 'locality_aware_nms')
    check_type(normalized, 'normalized', bool, 'locality_aware_nms')

3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525
    shape = scores.shape
    assert len(shape) == 3, "dim size of scores must be 3"
    assert shape[
        1] == 1, "locality_aware_nms only support one class, Tensor score shape must be [N, 1, M]"

    helper = LayerHelper('locality_aware_nms', **locals())

    output = helper.create_variable_for_type_inference(dtype=bboxes.dtype)
    out = {'Out': output}

    helper.append_op(
        type="locality_aware_nms",
        inputs={'BBoxes': bboxes,
                'Scores': scores},
        attrs={
            'background_label': background_label,
            'score_threshold': score_threshold,
            'nms_top_k': nms_top_k,
            'nms_threshold': nms_threshold,
            'nms_eta': nms_eta,
            'keep_top_k': keep_top_k,
            'nms_eta': nms_eta,
            'normalized': normalized
        },
        outputs={'Out': output})
    output.stop_gradient = True

    return output


3526 3527 3528 3529 3530 3531 3532
def distribute_fpn_proposals(fpn_rois,
                             min_level,
                             max_level,
                             refer_level,
                             refer_scale,
                             name=None):
    """
S
swtkiwi 已提交
3533 3534 3535 3536
	:alias_main: paddle.nn.functional.distribute_fpn_proposals
	:alias: paddle.nn.functional.distribute_fpn_proposals,paddle.nn.functional.vision.distribute_fpn_proposals
	:old_api: paddle.fluid.layers.distribute_fpn_proposals
	
W
wangguanzhong 已提交
3537 3538 3539 3540 3541 3542
    **This op only takes LoDTensor as input.** In Feature Pyramid Networks 
    (FPN) models, it is needed to distribute all proposals into different FPN 
    level, with respect to scale of the proposals, the referring scale and the 
    referring level. Besides, to restore the order of proposals, we return an 
    array which indicates the original index of rois in current proposals. 
    To compute FPN level for each roi, the formula is given as follows:
3543
    
J
jerrywgz 已提交
3544
    .. math::
3545

J
jerrywgz 已提交
3546
        roi\_scale &= \sqrt{BBoxArea(fpn\_roi)}
3547

J
jerrywgz 已提交
3548 3549 3550
        level = floor(&\log(\\frac{roi\_scale}{refer\_scale}) + refer\_level)

    where BBoxArea is a function to compute the area of each roi.
3551 3552

    Args:
W
wangguanzhong 已提交
3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564

        fpn_rois(Variable): 2-D Tensor with shape [N, 4] and data type is 
            float32 or float64. The input fpn_rois.
        min_level(int32): The lowest level of FPN layer where the proposals come 
            from.
        max_level(int32): The highest level of FPN layer where the proposals
            come from.
        refer_level(int32): The referring level of FPN layer with specified scale.
        refer_scale(int32): The referring scale of FPN layer with specified level.
        name(str, optional): For detailed information, please refer 
            to :ref:`api_guide_Name`. Usually name is no need to set and 
            None by default. 
J
jerrywgz 已提交
3565

3566
    Returns:
W
wangguanzhong 已提交
3567 3568 3569 3570 3571 3572 3573 3574 3575 3576
        Tuple:

        multi_rois(List) : A list of 2-D LoDTensor with shape [M, 4] 
        and data type of float32 and float64. The length is 
        max_level-min_level+1. The proposals in each FPN level.

        restore_ind(Variable): A 2-D Tensor with shape [N, 1], N is 
        the number of total rois. The data type is int32. It is
        used to restore the order of fpn_rois.

3577 3578 3579 3580

    Examples:
        .. code-block:: python

3581
            import paddle.fluid as fluid
3582 3583
            fpn_rois = fluid.data(
                name='data', shape=[None, 4], dtype='float32', lod_level=1)
3584
            multi_rois, restore_ind = fluid.layers.distribute_fpn_proposals(
3585 3586 3587
                fpn_rois=fpn_rois,
                min_level=2,
                max_level=5,
3588 3589 3590
                refer_level=4,
                refer_scale=224)
    """
3591 3592
    check_variable_and_dtype(fpn_rois, 'fpn_rois', ['float32', 'float64'],
                             'distribute_fpn_proposals')
3593
    helper = LayerHelper('distribute_fpn_proposals', **locals())
3594
    dtype = helper.input_dtype('fpn_rois')
3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611
    num_lvl = max_level - min_level + 1
    multi_rois = [
        helper.create_variable_for_type_inference(dtype) for i in range(num_lvl)
    ]
    restore_ind = helper.create_variable_for_type_inference(dtype='int32')
    helper.append_op(
        type='distribute_fpn_proposals',
        inputs={'FpnRois': fpn_rois},
        outputs={'MultiFpnRois': multi_rois,
                 'RestoreIndex': restore_ind},
        attrs={
            'min_level': min_level,
            'max_level': max_level,
            'refer_level': refer_level,
            'refer_scale': refer_scale
        })
    return multi_rois, restore_ind
3612 3613


3614
@templatedoc()
J
jerrywgz 已提交
3615 3616 3617 3618 3619 3620
def box_decoder_and_assign(prior_box,
                           prior_box_var,
                           target_box,
                           box_score,
                           box_clip,
                           name=None):
3621
    """
S
swtkiwi 已提交
3622 3623 3624 3625
	:alias_main: paddle.nn.functional.box_decoder_and_assign
	:alias: paddle.nn.functional.box_decoder_and_assign,paddle.nn.functional.vision.box_decoder_and_assign
	:old_api: paddle.fluid.layers.box_decoder_and_assign
	
3626 3627 3628 3629 3630 3631
    ${comment}
    Args:
        prior_box(${prior_box_type}): ${prior_box_comment}
        prior_box_var(${prior_box_var_type}): ${prior_box_var_comment}
        target_box(${target_box_type}): ${target_box_comment}
        box_score(${box_score_type}): ${box_score_comment}
J
jerrywgz 已提交
3632
        box_clip(${box_clip_type}): ${box_clip_comment}
W
wangguanzhong 已提交
3633 3634 3635 3636
        name(str, optional): For detailed information, please refer 
            to :ref:`api_guide_Name`. Usually name is no need to set and 
            None by default. 

3637
    Returns:
W
wangguanzhong 已提交
3638
        Tuple:
J
jerrywgz 已提交
3639

W
wangguanzhong 已提交
3640 3641 3642
        decode_box(${decode_box_type}): ${decode_box_comment}

        output_assign_box(${output_assign_box_type}): ${output_assign_box_comment}
J
jerrywgz 已提交
3643 3644


3645 3646 3647
    Examples:
        .. code-block:: python

3648
            import paddle.fluid as fluid
3649 3650 3651 3652 3653 3654 3655 3656
            pb = fluid.data(
                name='prior_box', shape=[None, 4], dtype='float32')
            pbv = fluid.data(
                name='prior_box_var', shape=[4], dtype='float32')
            loc = fluid.data(
                name='target_box', shape=[None, 4*81], dtype='float32')
            scores = fluid.data(
                name='scores', shape=[None, 81], dtype='float32')
J
jerrywgz 已提交
3657
            decoded_box, output_assign_box = fluid.layers.box_decoder_and_assign(
J
jerrywgz 已提交
3658
                pb, pbv, loc, scores, 4.135)
3659 3660

    """
3661 3662 3663 3664 3665 3666
    check_variable_and_dtype(prior_box, 'prior_box', ['float32', 'float64'],
                             'box_decoder_and_assign')
    check_variable_and_dtype(target_box, 'target_box', ['float32', 'float64'],
                             'box_decoder_and_assign')
    check_variable_and_dtype(box_score, 'box_score', ['float32', 'float64'],
                             'box_decoder_and_assign')
3667 3668
    helper = LayerHelper("box_decoder_and_assign", **locals())

J
jerrywgz 已提交
3669
    decoded_box = helper.create_variable_for_type_inference(
3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683
        dtype=prior_box.dtype)
    output_assign_box = helper.create_variable_for_type_inference(
        dtype=prior_box.dtype)

    helper.append_op(
        type="box_decoder_and_assign",
        inputs={
            "PriorBox": prior_box,
            "PriorBoxVar": prior_box_var,
            "TargetBox": target_box,
            "BoxScore": box_score
        },
        attrs={"box_clip": box_clip},
        outputs={
J
jerrywgz 已提交
3684
            "DecodeBox": decoded_box,
3685 3686
            "OutputAssignBox": output_assign_box
        })
J
jerrywgz 已提交
3687
    return decoded_box, output_assign_box
3688 3689 3690 3691 3692 3693 3694 3695 3696


def collect_fpn_proposals(multi_rois,
                          multi_scores,
                          min_level,
                          max_level,
                          post_nms_top_n,
                          name=None):
    """
S
swtkiwi 已提交
3697 3698 3699 3700
	:alias_main: paddle.nn.functional.collect_fpn_proposals
	:alias: paddle.nn.functional.collect_fpn_proposals,paddle.nn.functional.vision.collect_fpn_proposals
	:old_api: paddle.fluid.layers.collect_fpn_proposals
	
W
wangguanzhong 已提交
3701 3702 3703
    **This OP only supports LoDTensor as input**. Concat multi-level RoIs 
    (Region of Interest) and select N RoIs with respect to multi_scores. 
    This operation performs the following steps:
3704 3705 3706 3707 3708 3709 3710 3711

    1. Choose num_level RoIs and scores as input: num_level = max_level - min_level
    2. Concat multi-level RoIs and scores
    3. Sort scores and select post_nms_top_n scores
    4. Gather RoIs by selected indices from scores
    5. Re-sort RoIs by corresponding batch_id

    Args:
W
wangguanzhong 已提交
3712 3713 3714 3715 3716 3717
        multi_rois(list): List of RoIs to collect. Element in list is 2-D 
            LoDTensor with shape [N, 4] and data type is float32 or float64, 
            N is the number of RoIs.
        multi_scores(list): List of scores of RoIs to collect. Element in list 
            is 2-D LoDTensor with shape [N, 1] and data type is float32 or
            float64, N is the number of RoIs.
3718 3719 3720
        min_level(int): The lowest level of FPN layer to collect
        max_level(int): The highest level of FPN layer to collect
        post_nms_top_n(int): The number of selected RoIs
W
wangguanzhong 已提交
3721 3722 3723 3724
        name(str, optional): For detailed information, please refer 
            to :ref:`api_guide_Name`. Usually name is no need to set and 
            None by default.        

3725
    Returns:
W
wangguanzhong 已提交
3726 3727 3728 3729 3730
        Variable:

        fpn_rois(Variable): 2-D LoDTensor with shape [N, 4] and data type is 
        float32 or float64. Selected RoIs. 

3731 3732 3733 3734

    Examples:
        .. code-block:: python
           
3735
            import paddle.fluid as fluid
3736 3737 3738
            multi_rois = []
            multi_scores = []
            for i in range(4):
3739 3740
                multi_rois.append(fluid.data(
                    name='roi_'+str(i), shape=[None, 4], dtype='float32', lod_level=1))
3741
            for i in range(4):
3742 3743
                multi_scores.append(fluid.data(
                    name='score_'+str(i), shape=[None, 1], dtype='float32', lod_level=1))
3744 3745 3746 3747 3748 3749 3750 3751

            fpn_rois = fluid.layers.collect_fpn_proposals(
                multi_rois=multi_rois, 
                multi_scores=multi_scores,
                min_level=2, 
                max_level=5, 
                post_nms_top_n=2000)
    """
3752 3753
    check_type(multi_rois, 'multi_rois', list, 'collect_fpn_proposals')
    check_type(multi_scores, 'multi_scores', list, 'collect_fpn_proposals')
3754 3755
    helper = LayerHelper('collect_fpn_proposals', **locals())
    dtype = helper.input_dtype('multi_rois')
3756 3757
    check_dtype(dtype, 'multi_rois', ['float32', 'float64'],
                'collect_fpn_proposals')
3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771
    num_lvl = max_level - min_level + 1
    input_rois = multi_rois[:num_lvl]
    input_scores = multi_scores[:num_lvl]
    output_rois = helper.create_variable_for_type_inference(dtype)
    output_rois.stop_gradient = True
    helper.append_op(
        type='collect_fpn_proposals',
        inputs={
            'MultiLevelRois': input_rois,
            'MultiLevelScores': input_scores
        },
        outputs={'FpnRois': output_rois},
        attrs={'post_nms_topN': post_nms_top_n})
    return output_rois