conv_mkldnn_op.cc 43.5 KB
Newer Older
A
Adam Osewski 已提交
1
/* Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
2 3 4 5 6 7 8 9 10 11 12 13 14

   Licensed under the Apache License, Version 2.0 (the "License");
   you may not use this file except in compliance with the License.
   You may obtain a copy of the License at

   http://www.apache.org/licenses/LICENSE-2.0

   Unless required by applicable law or agreed to in writing, software
   distributed under the License is distributed on an "AS IS" BASIS,
   WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
   See the License for the specific language governing permissions and
   limitations under the License. */

A
Adam Osewski 已提交
15 16
#include <tuple>

17
#include "paddle/fluid/operators/conv_op.h"
J
Jacek Czaja 已提交
18
#include "paddle/fluid/platform/cpu_info.h"
A
Adam Osewski 已提交
19
#include "paddle/fluid/platform/mkldnn_helper.h"
J
Jacek Czaja 已提交
20
#include "paddle/fluid/platform/mkldnn_reuse.h"
21 22 23

namespace paddle {
namespace operators {
A
Adam Osewski 已提交
24
namespace {
25

26 27 28
inline MKLDNNMemoryFormat GetWeightsFormat(const MKLDNNMemoryFormat format,
                                           const int groups,
                                           const bool is_conv3d) {
Y
Yihua Xu 已提交
29
  if (is_conv3d) {
30
    return (groups == 1) ? format : MKLDNNMemoryFormat::goidhw;
Y
Yihua Xu 已提交
31
  } else {
32
    return (groups == 1) ? format : MKLDNNMemoryFormat::goihw;
Y
Yihua Xu 已提交
33 34 35
  }
}

36
static mkldnn::memory::data_type GetDstType(bool is_int8, bool is_bfloat16,
37
                                            bool force_fp32_output,
38
                                            std::string fuse_activation,
39 40
                                            bool fuse_residual_conn,
                                            const Tensor* residual_param) {
41
  auto dst_dt = mkldnn::memory::data_type::f32;
42 43 44 45 46 47 48
  if (is_int8) {
    dst_dt = (fuse_activation == "relu" || fuse_activation == "relu6")
                 ? mkldnn::memory::data_type::u8
                 : mkldnn::memory::data_type::s8;
    if (force_fp32_output) {
      dst_dt = mkldnn::memory::data_type::f32;
    }
49 50
    if (fuse_residual_conn && residual_param) {
      auto residual_dt = framework::ToMKLDNNDataType(residual_param->type());
51
      if (dst_dt != residual_dt) dst_dt = residual_dt;
52
    }
53 54 55 56 57 58 59
  } else {
    if (!force_fp32_output && is_bfloat16) {
      dst_dt = mkldnn::memory::data_type::bf16;
      if (fuse_residual_conn && residual_param) {
        dst_dt = framework::ToMKLDNNDataType(residual_param->type());
      }
    }
60 61 62 63
  }
  return dst_dt;
}

64
template <typename T, typename K, typename T_out>
65
class ConvMKLDNNHandlerT
66 67 68
    : public platform::MKLDNNHandlerT<T, mkldnn::convolution_forward,
                                      mkldnn::convolution_backward_data,
                                      mkldnn::convolution_backward_weights> {
69
 public:
A
Adam Osewski 已提交
70
  ConvMKLDNNHandlerT(const framework::ExecutionContext& ctx,
71 72 73 74 75
                     const platform::MKLDNNDeviceContext& dev_ctx,
                     const mkldnn::engine mkldnn_engine,
                     platform::Place cpu_place, const Tensor* input,
                     const Tensor* filter, const Tensor* bias, Tensor* output,
                     const std::string& unique_name)
76 77 78
      : platform::MKLDNNHandlerT<T, mkldnn::convolution_forward,
                                 mkldnn::convolution_backward_data,
                                 mkldnn::convolution_backward_weights>(
79
            dev_ctx, mkldnn_engine, cpu_place,
80
            platform::CreateKey(dev_ctx, framework::vectorize(input->dims()),
81
                                unique_name)) {
82
    if (!this->isCached()) {
83
      PADDLE_ENFORCE_EQ(
A
Adam Osewski 已提交
84
          input->layout(), framework::DataLayout::kMKLDNN,
85 86
          platform::errors::InvalidArgument(
              "The input tensor's layout should be %d, but got %d.",
A
Adam Osewski 已提交
87
              framework::DataLayout::kMKLDNN, input->layout()));
88 89 90
      PADDLE_ENFORCE_NE(input->format(), MKLDNNMemoryFormat::undef,
                        platform::errors::InvalidArgument(
                            "Wrong format set for Input tensor"));
91

92
      PADDLE_ENFORCE_EQ(
A
Adam Osewski 已提交
93
          filter->layout(), framework::DataLayout::kMKLDNN,
94 95
          platform::errors::InvalidArgument(
              "The Filter tensor's layout should be %d, but got %d.",
A
Adam Osewski 已提交
96
              framework::DataLayout::kMKLDNN, filter->layout()));
97 98 99
      PADDLE_ENFORCE_NE(filter->format(), MKLDNNMemoryFormat::undef,
                        platform::errors::InvalidArgument(
                            "Wrong format set for Filter tensor"));
K
Krzysztof Binias 已提交
100

101 102 103 104 105 106 107 108 109 110 111 112
      PADDLE_ENFORCE_GE(
          input->dims().size(), 4,
          platform::errors::InvalidArgument(
              "Input must be with 4 or 5 dimensions, i.e. NCHW or "
              "NCDHW, but got dimension = %d .",
              input->dims().size()));
      PADDLE_ENFORCE_LE(
          input->dims().size(), 5,
          platform::errors::InvalidArgument(
              "Input must be with 4 or 5 dimensions, i.e. NCHW or "
              "NCDHW, but got dimension = %d .",
              input->dims().size()));
113

114 115 116 117 118 119 120 121 122 123 124 125
      PADDLE_ENFORCE_GE(
          filter->dims().size(), 4,
          platform::errors::InvalidArgument(
              "Filter must be with 4 or 5 dimensions, i.e. OIHW or "
              "OIDHW, but got dimension = %d .",
              filter->dims().size()));
      PADDLE_ENFORCE_LE(
          filter->dims().size(), 5,
          platform::errors::InvalidArgument(
              "Filter must be with 4 or 5 dimensions, i.e. OIHW or "
              "OIDHW, but got dimension = %d .",
              filter->dims().size()));
126

127 128
      if (bias) {
        PADDLE_ENFORCE_EQ(
A
Adam Osewski 已提交
129
            bias->layout(), framework::DataLayout::kMKLDNN,
130 131
            platform::errors::InvalidArgument(
                "The Bias tensor's layout should be %d, but got %d.",
A
Adam Osewski 已提交
132
                framework::DataLayout::kMKLDNN, bias->layout()));
133 134 135
        PADDLE_ENFORCE_NE(bias->format(), MKLDNNMemoryFormat::undef,
                          platform::errors::InvalidArgument(
                              "Got wrong format for Bias tensor."));
136

137 138 139 140 141 142
        PADDLE_ENFORCE_EQ(bias->dims().size(), 1,
                          platform::errors::InvalidArgument(
                              "Bias must only have 1 dimension, "
                              "i.e. X, but got dimension = %d .",
                              bias->dims().size()));
      }
F
FDInSky 已提交
143

144 145 146 147 148 149 150 151 152
      const std::string fuse_activation =
          ctx.Attr<std::string>("fuse_activation");
      const float fuse_alpha = ctx.Attr<float>("fuse_alpha");
      const float fuse_beta = ctx.Attr<float>("fuse_beta");
      const bool fuse_residual_conn =
          ctx.Attr<bool>("fuse_residual_connection");
      const int groups = ctx.Attr<int>("groups");
      const std::string padding_algorithm =
          ctx.Attr<std::string>("padding_algorithm");
F
FDInSky 已提交
153

154 155 156 157 158 159
      const auto input_dims = input->dims();
      const auto data_dims =
          framework::slice_ddim(input_dims, 2, input_dims.size());
      const auto filter_dims = filter->dims();
      const auto filter_data_dims =
          framework::slice_ddim(filter_dims, 2, filter_dims.size());
160

161
      const auto ksize = framework::vectorize(filter_data_dims);
162
      const bool is_test = ctx.Attr<bool>("is_test");
163

164 165
      auto strides_temp = ctx.Attr<std::vector<int>>("strides");
      std::vector<int64_t> strides(begin(strides_temp), end(strides_temp));
166

167 168
      auto paddings_temp = ctx.Attr<std::vector<int>>("paddings");
      std::vector<int64_t> paddings(begin(paddings_temp), end(paddings_temp));
A
Adam 已提交
169

170 171 172
      auto dilations_temp = ctx.Attr<std::vector<int>>("dilations");
      std::vector<int64_t> dilations(begin(dilations_temp),
                                     end(dilations_temp));
A
Adam 已提交
173

174 175
      UpdatePaddingAndDilation(&paddings, &dilations, padding_algorithm,
                               data_dims, strides, ksize);
A
Adam 已提交
176

177 178
      std::transform(dilations.begin(), dilations.end(), dilations.begin(),
                     [](int64_t i) { return i - 1; });
179

A
Adam Osewski 已提交
180
      const auto src_tz = framework::vectorize(input->dims());
181

A
Adam Osewski 已提交
182
      auto weights_tz = framework::vectorize(filter->dims());
183
      platform::GetGroupConvWeightsTz(weights_tz, groups);
184

A
Adam Osewski 已提交
185
      const auto dst_tz = framework::vectorize(output->dims());
186

187 188
      const mkldnn::memory::dims stride_dims = strides;
      const auto mkldnn_paddings = platform::ToMkldnnPadding(paddings);
189
      const mkldnn::memory::dims dilations_dims = dilations;
A
Adam 已提交
190

191 192 193 194
      /* create memory descriptor for convolution without specified format
       * ('any') which lets a primitive (convolution in this case) choose
       * the memory format preferred for best performance
       */
195
      auto chosen_memory_format = MKLDNNMemoryFormat::any;
196 197 198 199 200
      auto data_type = mkldnn::memory::data_type::f32;
      if (ctx.Attr<std::string>("mkldnn_data_type") == "bfloat16" ||
          std::is_same<T_out, platform::bfloat16>::value)
        data_type = mkldnn::memory::data_type::bf16;

A
Adam Osewski 已提交
201 202 203 204 205 206 207 208 209 210 211 212 213 214
      mkldnn::memory::desc src_md, weights_md;
      if (platform::is_int8<T>()) {
        src_md = platform::MKLDNNMemDesc(
            src_tz, framework::ToMKLDNNDataType(input->type()),
            chosen_memory_format);
        weights_md = platform::MKLDNNMemDesc(
            weights_tz, mkldnn::memory::data_type::s8, chosen_memory_format);
      } else {
        src_md =
            platform::MKLDNNMemDesc(src_tz, data_type, chosen_memory_format);
        weights_md = platform::MKLDNNMemDesc(weights_tz, data_type,
                                             MKLDNNMemoryFormat::any);
      }

215
      const auto dst_md = platform::MKLDNNMemDesc(
216
          dst_tz, platform::MKLDNNGetDataType<T_out>(), chosen_memory_format);
217 218 219
      const auto fwd_prop_kind = is_test ? mkldnn::prop_kind::forward_inference
                                         : mkldnn::prop_kind::forward_training;

J
jakpiase 已提交
220
      float sum_scale = 1.0f;
A
Adam Osewski 已提交
221
      std::vector<float> output_shift_scale;
J
jakpiase 已提交
222 223
      if (platform::is_int8<T>())
        std::tie(sum_scale, output_shift_scale) = get_int8_scales(ctx);
A
Adam Osewski 已提交
224

225
      const mkldnn::primitive_attr conv_attr = CreatePostOps(
A
Adam Osewski 已提交
226 227
          fuse_activation, fuse_alpha, fuse_beta, fuse_residual_conn,
          output_shift_scale, sum_scale);  // for INT8 only!
A
Adam 已提交
228

229 230
      if (bias) {
        auto bias_tz = framework::vectorize(bias->dims());
A
Adam Osewski 已提交
231 232 233 234 235 236 237 238
        mkldnn::memory::desc bias_md;
        if (platform::is_int8<T>()) {
          bias_md = platform::MKLDNNMemDesc(
              bias_tz, mkldnn::memory::data_type::s32, MKLDNNMemoryFormat::x);
        } else {
          bias_md = platform::MKLDNNMemDesc(bias_tz, data_type,
                                            MKLDNNMemoryFormat::x);
        }
239

240
        this->AcquireForwardPrimitiveDescriptor(
241
            conv_attr, fwd_prop_kind, dnnl::algorithm::convolution_direct,
242
            src_md, weights_md, bias_md, dst_md, stride_dims, dilations_dims,
243 244
            mkldnn_paddings[0], mkldnn_paddings[1]);
      } else {
245
        this->AcquireForwardPrimitiveDescriptor(
246
            conv_attr, fwd_prop_kind, dnnl::algorithm::convolution_direct,
247 248
            src_md, weights_md, dst_md, stride_dims, dilations_dims,
            mkldnn_paddings[0], mkldnn_paddings[1]);
249 250 251
      }
    }
  }
252

253 254 255 256 257 258 259 260 261 262 263
  ConvMKLDNNHandlerT(const framework::ExecutionContext& ctx,
                     const platform::MKLDNNDeviceContext& dev_ctx,
                     platform::Place cpu_place, const Tensor* in,
                     const Tensor* filter, const Tensor* bias,
                     const Tensor* out_grad, Tensor* filter_grad,
                     Tensor* in_x_grad, const std::string& unique_name)
      : platform::MKLDNNHandlerT<T, mkldnn::convolution_forward,
                                 mkldnn::convolution_backward_data,
                                 mkldnn::convolution_backward_weights>(
            dev_ctx, dev_ctx.GetEngine(), cpu_place,
            platform::CreateKey(dev_ctx, framework::vectorize(in->dims()),
264
                                unique_name)) {
265 266
    if (!this->isBwdCached()) {
      PADDLE_ENFORCE_EQ(
A
Adam Osewski 已提交
267
          in->layout(), framework::DataLayout::kMKLDNN,
268 269
          platform::errors::InvalidArgument(
              "The input tensor's layout should be %d, but got %d.",
A
Adam Osewski 已提交
270
              framework::DataLayout::kMKLDNN, in->layout()));
271 272 273 274 275
      PADDLE_ENFORCE_NE(in->format(), MKLDNNMemoryFormat::undef,
                        platform::errors::InvalidArgument(
                            "Got wrong format for Input tensor."));

      PADDLE_ENFORCE_EQ(
A
Adam Osewski 已提交
276
          filter->layout(), framework::DataLayout::kMKLDNN,
277 278
          platform::errors::InvalidArgument(
              "The filter tensor's layout should be %d, but got %d.",
A
Adam Osewski 已提交
279
              framework::DataLayout::kMKLDNN, filter->layout()));
280 281 282 283 284
      PADDLE_ENFORCE_NE(filter->format(), MKLDNNMemoryFormat::undef,
                        platform::errors::InvalidArgument(
                            "Got wrong format for Filter tensor."));

      PADDLE_ENFORCE_EQ(
A
Adam Osewski 已提交
285
          out_grad->layout(), framework::DataLayout::kMKLDNN,
286 287
          platform::errors::InvalidArgument(
              "The output_grad tensor's layout should be %d, but got %d.",
A
Adam Osewski 已提交
288
              framework::DataLayout::kMKLDNN, out_grad->layout()));
289 290 291 292 293
      PADDLE_ENFORCE_NE(out_grad->format(), MKLDNNMemoryFormat::undef,
                        platform::errors::InvalidArgument(
                            "Wrong format set for output_grad tensor"));

      PADDLE_ENFORCE_EQ(
294
          ctx.Attr<bool>("is_test"), false,
295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314
          platform::errors::InvalidArgument(
              "is_test attribute should be set to False in training phase."));

      std::vector<int> strides_temp = ctx.Attr<std::vector<int>>("strides");
      std::vector<int64_t> strides(begin(strides_temp), end(strides_temp));

      std::vector<int> paddings_temp = ctx.Attr<std::vector<int>>("paddings");
      std::vector<int64_t> paddings(begin(paddings_temp), end(paddings_temp));

      std::vector<int> dilations_temp = ctx.Attr<std::vector<int>>("dilations");
      std::vector<int64_t> dilations(begin(dilations_temp),
                                     end(dilations_temp));

      auto input_dims = in->dims();
      auto data_dims = framework::slice_ddim(input_dims, 2, input_dims.size());
      auto filter_dims = filter->dims();
      auto filter_data_dims =
          framework::slice_ddim(filter_dims, 2, filter_dims.size());
      auto ksize = framework::vectorize(filter_data_dims);

A
Adam Osewski 已提交
315 316
      std::string padding_algorithm =
          ctx.Attr<std::string>("padding_algorithm");
317 318 319 320 321 322
      UpdatePaddingAndDilation(&paddings, &dilations, padding_algorithm,
                               data_dims, strides, ksize);

      auto src_tz = framework::vectorize(in->dims());
      auto weights_tz = framework::vectorize(filter->dims());

A
Adam Osewski 已提交
323
      int groups = ctx.Attr<int>("groups");
324 325
      int g = std::max(groups, 1);
      platform::GetGroupConvWeightsTz(weights_tz, g);
A
Adam Osewski 已提交
326
      auto dst_tz = framework::vectorize(out_grad->dims());
327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357

      /* create memory descriptor for conv backward without specified format
       * ('any') which lets a primitive (conv backward in this case) choose
       * the memory format preferred for best performance
       */
      const auto chosen_memory_format = MKLDNNMemoryFormat::any;
      const auto weights_format = MKLDNNMemoryFormat::any;

      auto src_md = platform::MKLDNNMemDesc(
          src_tz, platform::MKLDNNGetDataType<T>(), chosen_memory_format);
      const auto dst_md = platform::MKLDNNMemDesc(
          dst_tz, platform::MKLDNNGetDataType<T_out>(), chosen_memory_format);
      auto diff_src_md = platform::MKLDNNMemDesc(
          src_tz, platform::MKLDNNGetDataType<T>(), chosen_memory_format);
      auto weights_md = platform::MKLDNNMemDesc(
          weights_tz, platform::MKLDNNGetDataType<T>(), weights_format);
      auto diff_weights_md = platform::MKLDNNMemDesc(
          weights_tz, platform::MKLDNNGetDataType<T>(), weights_format);
      auto diff_dst_md = platform::MKLDNNMemDesc(
          dst_tz, platform::MKLDNNGetDataType<T>(), chosen_memory_format);

      auto mkldnn_paddings = platform::ToMkldnnPadding(paddings);
      std::transform(dilations.begin(), dilations.end(), dilations.begin(),
                     [](int64_t i) { return i - 1; });
      const mkldnn::memory::dims dilations_dims = dilations;

      const mkldnn::memory::dims stride_dims = strides;
      // Recreating FWD PD. For training there are no post ops in convolution
      mkldnn::primitive_attr conv_attr;
      if (bias) {
        auto bias_tz = framework::vectorize(bias->dims());
A
Adam Osewski 已提交
358 359 360 361 362 363 364 365
        mkldnn::memory::desc bias_md;
        if (platform::is_int8<T>()) {
          bias_md = platform::MKLDNNMemDesc(
              bias_tz, mkldnn::memory::data_type::s32, MKLDNNMemoryFormat::x);
        } else {
          bias_md = platform::MKLDNNMemDesc(
              bias_tz, mkldnn::memory::data_type::f32, MKLDNNMemoryFormat::x);
        }
366

367
        this->AcquireForwardPrimitiveDescriptor(
368 369 370 371 372
            conv_attr, mkldnn::prop_kind::forward_training,
            dnnl::algorithm::convolution_direct, src_md, weights_md, bias_md,
            dst_md, stride_dims, dilations_dims, mkldnn_paddings[0],
            mkldnn_paddings[1]);
      } else {
373
        this->AcquireForwardPrimitiveDescriptor(
374 375 376 377 378 379
            conv_attr, mkldnn::prop_kind::forward_training,
            dnnl::algorithm::convolution_direct, src_md, weights_md, dst_md,
            stride_dims, dilations_dims, mkldnn_paddings[0],
            mkldnn_paddings[1]);
      }

380
      this->AcquireBackwardPrimitiveDescriptor(
381 382 383 384
          mkldnn::algorithm::convolution_direct, diff_src_md, weights_md,
          diff_dst_md, strides, dilations_dims, mkldnn_paddings[0],
          mkldnn_paddings[1]);

385
      this->AcquireBackwardWeightsPrimitiveDescriptor(
386 387 388 389 390 391
          mkldnn::algorithm::convolution_direct, src_md, diff_weights_md,
          diff_dst_md, strides, dilations_dims, mkldnn_paddings[0],
          mkldnn_paddings[1]);
    }
  }

392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434
  std::shared_ptr<std::tuple<float, std::vector<float>>> get_int8_bias_scales(
      const framework::ExecutionContext& ctx) {
    // Get scales int8 bias key
    const std::string key_bs = this->key_ + "@bs";

    // Scales for int8 bias are to be cached to avoid
    // computing them each iteration
    auto bias_scale_tuple =
        std::static_pointer_cast<std::tuple<float, std::vector<float>>>(
            this->dev_ctx_.GetBlob(key_bs));
    if (bias_scale_tuple) return bias_scale_tuple;

    const auto* filter = ctx.Input<Tensor>("Filter");
    const auto& weights_tz = framework::vectorize(filter->dims());
    const int groups = std::max(ctx.Attr<int>("groups"), 1);

    const auto& scale_weights_data =
        ctx.Attr<std::vector<float>>("Scale_weights");
    const auto& scale_in_data = ctx.Attr<float>("Scale_in");

    bool is_multi_channel = scale_weights_data.size() > 1;
    int mask_reorder = is_multi_channel ? 1 << 0 : 1;

    int count = 1;
    if (is_multi_channel) {
      count *= weights_tz[0];
      if (groups > 1) {
        count *= weights_tz[1];
      }
    }

    bias_scale_tuple =
        std::make_shared<std::tuple<float, std::vector<float>>>(std::make_tuple(
            static_cast<float>(mask_reorder), std::vector<float>(count)));
    for (int i = 0; i < count; i++) {
      std::get<1>(*bias_scale_tuple)[i] = scale_in_data * scale_weights_data[i];
    }

    this->dev_ctx_.SetBlob(key_bs, bias_scale_tuple);

    return bias_scale_tuple;
  }

A
Adam Osewski 已提交
435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473
  std::tuple<float, std::vector<float>> get_int8_scales(
      const framework::ExecutionContext& ctx) const {
    const auto* filter = ctx.Input<Tensor>("Filter");
    const auto& weights_tz = framework::vectorize(filter->dims());

    const bool& force_fp32_output = ctx.Attr<bool>("force_fp32_output");
    const bool& fuse_residual_conn = ctx.Attr<bool>("fuse_residual_connection");
    const int groups = std::max(ctx.Attr<int>("groups"), 1);

    const auto& scale_in_data = ctx.Attr<float>("Scale_in");
    const auto& scale_in_eltwise_data = ctx.Attr<float>("Scale_in_eltwise");
    auto scale_weights_data = ctx.Attr<std::vector<float>>("Scale_weights");
    bool is_multi_channel = scale_weights_data.size() > 1;
    auto scale_out_data =
        force_fp32_output ? 1.0f : ctx.Attr<float>("Scale_out");
    float sum_scale =
        fuse_residual_conn ? scale_out_data / scale_in_eltwise_data : 1.0f;
    int count =
        is_multi_channel
            ? (groups > 1 ? (weights_tz)[1] * (weights_tz)[0] : (weights_tz)[0])
            : 1;
    std::vector<float> output_shift_scale(count);

#pragma omp parallel for if (count > 50)
    for (int i = 0; i < count; i++) {
      if (scale_weights_data[i] == 0.0)
        // weights data will contain 0 in some models, then weights
        // scale couldn't be calculated
        output_shift_scale[i] = scale_out_data;
      else
        output_shift_scale[i] =
            static_cast<float>(static_cast<double>(scale_out_data) /
                               (static_cast<double>(scale_in_data) *
                                static_cast<double>(scale_weights_data[i])));
    }

    return std::make_tuple(sum_scale, output_shift_scale);
  }

474 475 476 477 478 479 480 481 482 483
  mkldnn::primitive_attr CreatePostOps(
      std::string fuse_activation, float fuse_alpha, float fuse_beta,
      bool fuse_residual_conn, const std::vector<float> output_shift_scale = {},
      float sum_scale = 1.0f) {
    mkldnn::primitive_attr conv_attr;
    mkldnn::post_ops post_operations;
    if (output_shift_scale.size() > 0) {
      int mask = output_shift_scale.size() > 1 ? 1 << 1 : 0;
      conv_attr.set_output_scales(mask, output_shift_scale);
    }
484

485 486 487 488 489 490 491 492 493 494
    // Fusion with Elementwise layer relies on adding a sum post-operation with
    // the scale parameter. It is assumed that when fuse_residual_connection is
    // true, the output tensor contains the data coming from residual
    // connection. The result of this post_op is:
    // Output = scale * Output + Conv_Out.
    if (fuse_residual_conn) {
      post_operations.append_sum(sum_scale);
    }
    // Fusion with ReLU layer is executed through the PostOps feature. Create a
    // PostOps object and configure it to execute an eltwise relu operation.
495
    constexpr float scale = 1.0f;
496 497 498 499 500 501 502 503 504 505
    if (fuse_activation == "relu" || fuse_activation == "leaky_relu") {
      post_operations.append_eltwise(scale, mkldnn::algorithm::eltwise_relu,
                                     fuse_alpha, fuse_beta);
    } else if (fuse_activation == "relu6") {
      post_operations.append_eltwise(scale,
                                     mkldnn::algorithm::eltwise_bounded_relu,
                                     fuse_alpha, fuse_beta);
    } else if (fuse_activation == "swish") {
      post_operations.append_eltwise(scale, mkldnn::algorithm::eltwise_swish,
                                     fuse_alpha, fuse_beta);
J
jakpiase 已提交
506 507 508
    } else if (fuse_activation == "hard_swish") {
      post_operations.append_eltwise(
          scale, mkldnn::algorithm::eltwise_hardswish, fuse_alpha, fuse_beta);
509 510 511 512 513
    } else if (fuse_activation == "hard_sigmoid") {
      post_operations.append_eltwise(scale, mkldnn::algorithm::eltwise_linear,
                                     fuse_alpha, fuse_beta);
      post_operations.append_eltwise(scale, mkldnn::algorithm::eltwise_clip,
                                     0.0f, 1.0f);
514 515 516 517
    }
    conv_attr.set_post_ops(post_operations);
    return conv_attr;
  }
518

519 520 521 522 523 524 525 526 527 528 529 530 531
  std::shared_ptr<mkldnn::memory>
  AcquireWeightsMemoryWithReorderFromDataPrimitive(
      const framework::Tensor* filter, const int groups, const bool is_conv3d) {
    const K* filter_data = filter->data<K>();
    auto weights_tz = framework::vectorize(filter->dims());
    platform::GetGroupConvWeightsTz(weights_tz, groups);

    auto user_src_md = platform::MKLDNNMemDesc(
        weights_tz, platform::MKLDNNGetDataType<K>(),
        GetWeightsFormat(filter->format(), groups, is_conv3d));

    return this->AcquireMemoryWithReorder(
        user_src_md, this->bwd_pd_->weights_desc(),
A
Adam Osewski 已提交
532
        platform::to_void_cast<K>(filter_data), "@weights_mem_d_p", false);
533 534
  }

535 536
  std::shared_ptr<mkldnn::memory> AcquireSrcMemoryWithReorder(
      const framework::Tensor* input) {
537 538 539 540
    return this->AcquireMemoryWithReorderPrimitive(
        input, "@src_mem_p_user", "@src_mem_p_target", "@src_mem_p",
        this->fwd_pd_->src_desc());
  }
541

542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577
  std::shared_ptr<mkldnn::memory>
  AcquireSrcMemoryWithReorderFromWeightsPrimitive(
      const framework::Tensor* input) {
    return this->AcquireMemoryWithReorderPrimitive(
        input, "@src_mem_w_p_user", "@src_mem_w_p_target", "@src_mem_w_p",
        this->bwd_w_pd_->src_desc());
  }

  std::shared_ptr<mkldnn::memory>
  AcquireDiffDstMemoryWithReorderFromWeightsPrimitive(
      const framework::Tensor* out_grad) {
    return this->AcquireMemoryWithReorderPrimitive(
        out_grad, "@diff_dst_mem_w_p_user", "@diff_dst_mem_w_p_target",
        "@diff_dst_mem_w_p", this->bwd_w_pd_->diff_dst_desc());
  }

  std::shared_ptr<mkldnn::memory>
  AcquireDiffDstMemoryWithReorderMemoryFromDataPrimitive(
      const framework::Tensor* out_grad) {
    return this->AcquireMemoryWithReorderPrimitive(
        out_grad, "@diff_dst_mem_p_user", "@diff_dst_mem_p_target",
        "@diff_dst_mem_p", this->bwd_pd_->diff_dst_desc());
  }

  std::shared_ptr<mkldnn::memory> AcquireMemoryWithReorderPrimitive(
      const framework::Tensor* in_mem, const char* key_mem_user,
      const char* key_mem_target, const char* key_mem,
      const mkldnn::memory::desc& mem_md) {
    const T* in_mem_data = in_mem->data<T>();
    const std::string user_key_suffix{key_mem_user};
    auto user_mem_p = this->AcquireMemory(user_key_suffix);

    if (!user_mem_p) {
      auto user_mem_md = platform::MKLDNNMemDesc(
          framework::vectorize(in_mem->dims()),
          platform::MKLDNNGetDataType<T>(), in_mem->format());
578
      return this->AcquireMemoryWithReorder(
579
          user_mem_md, mem_md, platform::to_void_cast<T>(in_mem_data), key_mem);
580
    } else {
581 582
      const std::string target_key_suffix{key_mem_target};
      const auto target_mem_p = this->AcquireMemory(target_key_suffix);
A
Adam Osewski 已提交
583
      user_mem_p->set_data_handle(platform::to_void_cast<T>(in_mem_data));
584
      if (user_mem_p != target_mem_p) {
585
        this->AcquireReorder(user_mem_p, target_mem_p);
586
      }
587
      return target_mem_p;
588
    }
589 590 591 592
  }

  std::shared_ptr<mkldnn::memory> AcquireWeightsMemoryWithReorder(
      const framework::Tensor* filter, const int groups, const bool is_conv3d,
593 594
      const bool is_test, const std::vector<float>& scale_data = {1.0f},
      int mask = 0) {
595 596 597
    // This is workaround to make execution faster, delete
    // if statement after including md inside Tensor
    auto weights_mem_p = this->AcquireMemory("@weights_mem_p_target");
598
    if (is_test && weights_mem_p) {
599 600
      return weights_mem_p;
    } else {
601
      const K* filter_data = filter->data<K>();
602
      auto weights_tz = framework::vectorize(filter->dims());
603
      platform::GetGroupConvWeightsTz(weights_tz, groups);
604 605

      auto user_src_md = platform::MKLDNNMemDesc(
606
          weights_tz, platform::MKLDNNGetDataType<K>(),
607 608 609 610
          GetWeightsFormat(filter->format(), groups, is_conv3d));

      return this->AcquireMemoryWithReorder(
          user_src_md, this->fwd_pd_->weights_desc(),
611 612
          platform::to_void_cast<K>(filter_data), "@weights_mem_p", is_test, {},
          scale_data, mask);
613
    }
614
  }
615

616
  std::shared_ptr<mkldnn::memory> AcquireBiasMemoryWithReorder(
617
      const framework::Tensor* bias, const bool is_test,
A
Adam Osewski 已提交
618
      const std::vector<float>& scale_data = {1.0f}, int mask = 0) {
619
    auto bias_mem_p = this->AcquireMemory("@bias_mem_p_target");
620
    if (is_test && bias_mem_p) {
621 622 623 624 625 626 627 628
      return bias_mem_p;
    } else {
      const K* bias_data = bias->data<K>();
      auto user_bias_md = platform::MKLDNNMemDesc(
          framework::vectorize(bias->dims()), platform::MKLDNNGetDataType<K>(),
          MKLDNNMemoryFormat::x);

      return this->AcquireMemoryWithReorder(
A
Adam Osewski 已提交
629
          user_bias_md, this->fwd_pd_->bias_desc(),
630
          platform::to_void_cast<K>(bias_data), "@bias_mem_p", is_test, {},
A
Adam Osewski 已提交
631
          scale_data, mask);
632
    }
633
  }
634

635 636
  std::shared_ptr<mkldnn::memory> AcquireResidualMemory(
      const framework::Tensor* residual_param) {
637 638
    void* residual_data =
        residual_param->type() == framework::DataTypeTrait<T_out>::DataType()
A
Adam Osewski 已提交
639 640
            ? platform::to_void_cast<T_out>(residual_param->data<T_out>())
            : platform::to_void_cast<T>(residual_param->data<T>());
641 642 643 644 645 646 647 648 649
    auto residual_mem_p = this->AcquireMemory("@user_residual_data_mem_p");
    if (residual_mem_p) {
      residual_mem_p->set_data_handle(residual_data);
      return residual_mem_p;
    } else {
      auto user_residual_md = platform::MKLDNNMemDesc(
          framework::vectorize(residual_param->dims()),
          framework::ToMKLDNNDataType(residual_param->type()),
          residual_param->format());
650

651 652 653
      return this->AcquireMemoryFromPrimitive(user_residual_md, residual_data,
                                              "@user_residual_data_mem_p");
    }
654 655 656 657 658 659 660 661
  }

  std::shared_ptr<mkldnn::memory> AcquireDstMemoryWithResidual(
      framework::Tensor* output, const framework::Tensor* residual_param) {
    std::shared_ptr<dnnl::memory> dst_memory_p;
    if (residual_param->format() !=
        platform::GetMKLDNNFormat(this->fwd_pd_->dst_desc())) {
      auto residual_memory_p = this->AcquireResidualMemory(residual_param);
662
      dst_memory_p = this->template AcquireDstMemory<T_out>(output);
663
      this->AcquireReorder(residual_memory_p, dst_memory_p);
664 665 666 667 668
    } else {
      // Changing ShareDataWith to TensorCopy results in performance drop
      // on ResNet architectures
      // (https://github.com/PaddlePaddle/Paddle/issues/22964)
      output->ShareDataWith(*residual_param);
669
      dst_memory_p = this->template AcquireDstMemory<T_out>(output);
670 671 672 673 674
    }
    return dst_memory_p;
  }
};

A
Adam Osewski 已提交
675 676
}  // anonymous namespace

677
template <typename T, typename K>
A
Adam Osewski 已提交
678
class ConvMKLDNNOpKernel : public framework::OpKernel<T> {
679
 public:
A
Adam Osewski 已提交
680
  void Compute(const framework::ExecutionContext& ctx) const override {
681
    PADDLE_ENFORCE_EQ(platform::is_cpu_place(ctx.GetPlace()), true,
A
Adam Osewski 已提交
682
                      platform::errors::PreconditionNotMet(
683 684 685
                          "Operator DNNL Conv must use CPUPlace"));
    bool is_INT8 =
        std::is_same<T, int8_t>::value || std::is_same<T, uint8_t>::value;
686 687 688 689 690 691 692 693
    bool is_BFLOAT16 = ctx.Attr<std::string>("mkldnn_data_type") == "bfloat16";
    auto residual_param = ctx.Input<Tensor>("ResidualData");
    bool fuse_residual_conn = ctx.Attr<bool>("fuse_residual_connection");
    std::string fuse_activation = ctx.Attr<std::string>("fuse_activation");
    bool force_fp32_output = ctx.Attr<bool>("force_fp32_output");
    auto dst_dt =
        GetDstType(is_INT8, is_BFLOAT16, force_fp32_output, fuse_activation,
                   fuse_residual_conn, residual_param);
694
    if (!is_INT8) {
695 696 697 698 699
      if (dst_dt == mkldnn::memory::data_type::f32) {
        ComputeFP32<float>(ctx);
      } else if (dst_dt == mkldnn::memory::data_type::bf16) {
        ComputeFP32<platform::bfloat16>(ctx);
      }
700
    } else {
701 702 703 704 705 706 707
      if (dst_dt == mkldnn::memory::data_type::f32) {
        ComputeINT8<float>(ctx);
      } else if (dst_dt == mkldnn::memory::data_type::u8) {
        ComputeINT8<uint8_t>(ctx);
      } else if (dst_dt == mkldnn::memory::data_type::s8) {
        ComputeINT8<int8_t>(ctx);
      }
708
    }
709
  }
710

711
  template <typename T_out>
A
Adam Osewski 已提交
712
  void ComputeFP32(const framework::ExecutionContext& ctx) const {
713
    auto& dev_ctx =
A
Adam Osewski 已提交
714
        ctx.template device_context<platform::MKLDNNDeviceContext>();
715
    const auto& mkldnn_engine = dev_ctx.GetEngine();
716

717
    const bool is_test = ctx.Attr<bool>("is_test");
718 719
    const bool is_conv3d = ctx.Attr<std::vector<int>>("strides").size() == 3U;
    const bool fuse_residual_conn = ctx.Attr<bool>("fuse_residual_connection");
720

721 722 723 724 725
    const auto* input = ctx.Input<Tensor>("Input");
    const auto* filter = ctx.Input<Tensor>("Filter");
    const auto* bias =
        ctx.HasInput("Bias") ? ctx.Input<Tensor>("Bias") : nullptr;
    auto* output = ctx.Output<Tensor>("Output");
726

727
    ConvMKLDNNHandlerT<T, K, T_out> handler(
728 729
        ctx, dev_ctx, mkldnn_engine, ctx.GetPlace(), input, filter, bias,
        output, ctx.InputName("Input") + ctx.InputName("Filter"));
730

731
    auto src_memory_p = handler.AcquireSrcMemoryWithReorder(input);
732

733
    auto weights_memory_p = handler.AcquireWeightsMemoryWithReorder(
734
        filter, ctx.Attr<int>("groups"), is_conv3d, is_test);
735

736 737 738
    std::shared_ptr<dnnl::memory> dst_memory_p;
    if (fuse_residual_conn) {
      auto* residual_param = ctx.Input<Tensor>("ResidualData");
739
      dst_memory_p =
740 741
          handler.AcquireDstMemoryWithResidual(output, residual_param);
    } else {
742
      dst_memory_p = handler.template AcquireDstMemory<T_out>(output);
743
    }
744

745
    auto conv_p = handler.AcquireForwardPrimitive();
A
Adam 已提交
746

747 748 749 750
    std::unordered_map<int, dnnl::memory> args = {
        {MKLDNN_ARG_SRC, *src_memory_p},
        {MKLDNN_ARG_WEIGHTS, *weights_memory_p},
        {MKLDNN_ARG_DST, *dst_memory_p}};
A
Adam 已提交
751

752
    if (bias) {
753
      auto bias_memory_p = handler.AcquireBiasMemoryWithReorder(bias, is_test);
754
      args.insert({MKLDNN_ARG_BIAS, *bias_memory_p});
755
    }
756

757
    auto& astream = platform::MKLDNNDeviceContext::tls().get_stream();
758
    conv_p->execute(astream, args);
A
Adam 已提交
759
    astream.wait();
760

A
Adam Osewski 已提交
761 762
    output->set_layout(framework::DataLayout::kMKLDNN);
    output->set_format(platform::GetMKLDNNFormat(*dst_memory_p));
763
  }
764

765
  template <typename T_out>
A
Adam Osewski 已提交
766
  void ComputeINT8(const framework::ExecutionContext& ctx) const {
767
    auto& dev_ctx =
A
Adam Osewski 已提交
768
        ctx.template device_context<platform::MKLDNNDeviceContext>();
769 770
    const auto& mkldnn_engine = dev_ctx.GetEngine();

A
Adam Osewski 已提交
771 772 773 774 775
    const std::string& fuse_activation =
        ctx.Attr<std::string>("fuse_activation");
    const bool& fuse_residual_conn = ctx.Attr<bool>("fuse_residual_connection");
    const bool& force_fp32_output = ctx.Attr<bool>("force_fp32_output");
    const bool is_conv3d = ctx.Attr<std::vector<int>>("strides").size() == 3U;
776

777 778
    bool unsigned_output =
        (fuse_activation == "relu" || fuse_activation == "relu6");
779 780
    bool need_s8_to_u8 = false;

A
Adam Osewski 已提交
781 782 783 784 785 786 787 788
    PADDLE_ENFORCE_NE(
        is_conv3d, true,
        platform::errors::Unimplemented(
            "OneDNN int8 convolution does not support 3D inputs currently"));
    PADDLE_ENFORCE_EQ(
        fuse_residual_conn && force_fp32_output, false,
        platform::errors::Unimplemented(
            "residual fusion does not support force output with fp32"));
A
Adam 已提交
789

A
Adam Osewski 已提交
790 791 792 793
    auto* input = ctx.Input<Tensor>("Input");
    auto* filter = ctx.Input<Tensor>("Filter");
    auto* bias = ctx.HasInput("Bias") ? ctx.Input<Tensor>("Bias") : nullptr;
    auto* output = ctx.Output<Tensor>("Output");
794

A
Adam Osewski 已提交
795 796 797
    ConvMKLDNNHandlerT<T, K, T_out> handler(
        ctx, dev_ctx, mkldnn_engine, ctx.GetPlace(), input, filter, bias,
        output, ctx.InputName("Input") + ctx.InputName("Filter"));
798

A
Adam Osewski 已提交
799
    auto src_memory_p = handler.AcquireSrcMemoryWithReorder(input);
F
FDInSky 已提交
800

A
Adam Osewski 已提交
801 802 803 804
    const auto& scale_weights_data =
        ctx.Attr<std::vector<float>>("Scale_weights");
    const bool is_multi_channel = scale_weights_data.size() > 1;
    const int& groups = ctx.Attr<int>("groups");
805
    const bool& is_test = ctx.Attr<bool>("is_test");
A
Adam Osewski 已提交
806 807 808
    int mask_reorder =
        is_multi_channel ? ((groups != 1) ? (1 << 1) + (1 << 0) : 1 << 0) : 0;
    auto weights_memory_p = handler.AcquireWeightsMemoryWithReorder(
809
        filter, groups, false, is_test, scale_weights_data, mask_reorder);
810

A
Adam Osewski 已提交
811 812 813
    std::shared_ptr<dnnl::memory> dst_memory_p;
    if (fuse_residual_conn) {
      auto* residual_param = ctx.Input<Tensor>("ResidualData");
814
      PADDLE_ENFORCE_EQ(
A
Adam Osewski 已提交
815 816 817 818 819 820
          output->dims(), residual_param->dims(),
          platform::errors::InvalidArgument(
              "Output and elementwise parameter need to have the "
              "same dimension sizes, but got output's dimension = %d"
              " and residual param's dimension =%d .",
              output->dims().size(), residual_param->dims().size()));
821
      dst_memory_p =
A
Adam Osewski 已提交
822 823 824 825 826 827 828
          handler.AcquireDstMemoryWithResidual(output, residual_param);
      need_s8_to_u8 = (platform::MKLDNNGetDataType<T_out>() ==
                       mkldnn::memory::data_type::s8) &&
                      unsigned_output;
    } else {
      dst_memory_p = handler.template AcquireDstMemory<T_out>(output);
    }
L
lidanqing 已提交
829

A
Adam Osewski 已提交
830 831 832 833 834 835
    auto conv_p = handler.AcquireForwardPrimitive();

    std::unordered_map<int, dnnl::memory> args = {
        {MKLDNN_ARG_SRC, *src_memory_p},
        {MKLDNN_ARG_WEIGHTS, *weights_memory_p},
        {MKLDNN_ARG_DST, *dst_memory_p}};
A
Adam 已提交
836

A
Adam Osewski 已提交
837
    if (bias) {
838
      auto p_scales_tuple = handler.get_int8_bias_scales(ctx);
A
Adam 已提交
839

A
Adam Osewski 已提交
840
      auto bias_memory_p = handler.AcquireBiasMemoryWithReorder(
841 842
          bias, is_test, std::get<1>(*p_scales_tuple),
          std::get<0>(*p_scales_tuple));
A
Adam Osewski 已提交
843
      args.insert({MKLDNN_ARG_BIAS, *bias_memory_p});
844
    }
A
Adam Osewski 已提交
845 846 847

    auto& astream = platform::MKLDNNDeviceContext::tls().get_stream();
    conv_p->execute(astream, args);
A
Adam 已提交
848
    astream.wait();
A
Adam Osewski 已提交
849

850
    if (need_s8_to_u8) {
X
xiaolil1 已提交
851 852
      output->mutable_data<uint8_t>(ctx.GetPlace());
    }
A
Adam Osewski 已提交
853 854 855

    output->set_layout(framework::DataLayout::kMKLDNN);
    output->set_format(platform::GetMKLDNNFormat(*dst_memory_p));
856
  }
857 858
};

859
template <typename T, typename K>
A
Adam Osewski 已提交
860
class ConvMKLDNNGradOpKernel : public framework::OpKernel<T> {
861
 public:
A
Adam Osewski 已提交
862
  void Compute(const framework::ExecutionContext& ctx) const override {
863
    PADDLE_ENFORCE_EQ(platform::is_cpu_place(ctx.GetPlace()), true,
A
Adam Osewski 已提交
864
                      platform::errors::PreconditionNotMet(
865
                          "Operator DNNL ConvGrad must use CPUPlace"));
866 867
    auto& dev_ctx =
        ctx.template device_context<platform::MKLDNNDeviceContext>();
868 869 870 871
    const auto& mkldnn_engine = dev_ctx.GetEngine();

    const Tensor* input = ctx.Input<Tensor>("Input");
    const Tensor* filter = ctx.Input<Tensor>("Filter");
872 873
    const Tensor* bias =
        ctx.HasInput("Bias") ? ctx.Input<Tensor>("Bias") : nullptr;
874 875 876 877 878 879 880
    const Tensor* output_grad =
        ctx.Input<Tensor>(framework::GradVarName("Output"));
    Tensor* input_grad = ctx.Output<Tensor>(framework::GradVarName("Input"));
    Tensor* filter_grad = ctx.Output<Tensor>(framework::GradVarName("Filter"));

    if (!input_grad && !filter_grad) return;

881 882 883 884 885
    // TODO(jczaja): Are all tensors really needed?
    ConvMKLDNNHandlerT<T, K, T> handler(
        ctx, dev_ctx, ctx.GetPlace(), input, filter, bias, output_grad,
        filter_grad, input_grad,
        ctx.InputName("Input") + ctx.InputName("Filter"));
886 887

    // create mkldnn memory from input tensors (data/weights)
888
    auto& astream = platform::MKLDNNDeviceContext::tls().get_stream();
889

890 891 892 893 894 895
    if (filter_grad) {
      auto src_memory_p =
          handler.AcquireSrcMemoryWithReorderFromWeightsPrimitive(input);
      auto diff_dst_memory_p =
          handler.AcquireDiffDstMemoryWithReorderFromWeightsPrimitive(
              output_grad);
896

897 898
      // For convoluition with groups write filter grad into
      // oneDNN buffer and then we reorder it into filter_grad tensor
899
      int g = std::max(ctx.Attr<int>("groups"), 1);
900
      auto diff_weights_memory_p =
901 902
          g > 1 ? handler.AcquireDiffWeightsMemory()
                : handler.AcquireDiffWeightsMemory(filter_grad);
903

904
      auto conv_bwd_weights_p = handler.AcquireBackwardWeightsPrimitive();
905

A
Adam 已提交
906 907 908
      // TODO(grygielski) why no bias_diff?
      conv_bwd_weights_p->execute(
          astream, {{MKLDNN_ARG_SRC, *src_memory_p},
909
                    {MKLDNN_ARG_DIFF_DST, *diff_dst_memory_p},
A
Adam 已提交
910 911
                    {MKLDNN_ARG_DIFF_WEIGHTS, *diff_weights_memory_p}});
      astream.wait();
912

A
Adam Osewski 已提交
913
      filter_grad->set_layout(framework::DataLayout::kMKLDNN);
914 915
      // in OneDNN groups in convolution are treated as separate dimension
      // which is not the case in paddlepaddle
A
Adam Osewski 已提交
916
      auto filter_fmt = platform::GetMKLDNNFormat(*diff_weights_memory_p);
917 918 919 920

      // For convolution with groups convert from blocked to NCHW
      // otherwise there will be problems in next operators working on this data
      if (g > 1) {
A
Adam Osewski 已提交
921 922
        mkldnn::memory::data_type in_type =
            framework::ToMKLDNNDataType(filter->type());
923 924
        // for 3d conv with groups (six dimensional data reorder to goidhw)
        // for 2d conv with groups (five dimensional data reorder to goihw)
A
Adam Osewski 已提交
925
        // auto weights_tz = framework::vectorize(filter->dims());
926 927

        auto weights_tz = diff_weights_memory_p->get_desc().dims();
928 929 930
        mkldnn::memory::format_tag out_format =
            weights_tz.size() == 6 ? mkldnn::memory::format_tag::goidhw
                                   : mkldnn::memory::format_tag::goihw;
931 932
        platform::ReorderMKLDNNHandler handler(weights_tz, filter->type(),
                                               in_type, mkldnn_engine);
933 934 935 936 937 938
        auto reorder_dst_memory_p =
            handler.AcquireDstMemory(filter_grad, out_format, ctx.GetPlace());

        auto reorder_p =
            handler.AcquireReorder(reorder_dst_memory_p, diff_weights_memory_p);

939 940 941 942 943 944 945
        {
          platform::RecordEvent record_reorder("int_reorder",
                                               platform::EventRole::kUniqueOp);
          reorder_p->execute(astream, *diff_weights_memory_p,
                             *reorder_dst_memory_p);
          astream.wait();
        }
946 947 948 949 950 951 952 953 954 955 956

        // So here we have a data in goihw , which can be interpreted as OIHW
        // (OIDHW for conv3d)
        // because filter_grad shape is set for OIHW (OIDHW for conv3d)
        mkldnn::memory::format_tag target_format =
            weights_tz.size() == 6 ? mkldnn::memory::format_tag::oidhw
                                   : mkldnn::memory::format_tag::oihw;
        filter_grad->set_format(target_format);
      } else {
        filter_grad->set_format(filter_fmt);
      }
957 958
    }
    if (input_grad) {
959 960 961 962
      auto weights_memory_p =
          handler.AcquireWeightsMemoryWithReorderFromDataPrimitive(
              filter, ctx.Attr<int>("groups"),
              ctx.Attr<std::vector<int>>("strides").size() == 3U);
963

964 965 966 967
      auto diff_dst_memory_p =
          handler.AcquireDiffDstMemoryWithReorderMemoryFromDataPrimitive(
              output_grad);
      auto diff_src_memory_p = handler.AcquireDiffSrcMemory(input_grad);
968

969
      auto conv_bwd_data_p = handler.AcquireBackwardPrimitive();
970

A
Adam 已提交
971 972
      conv_bwd_data_p->execute(astream,
                               {{MKLDNN_ARG_WEIGHTS, *weights_memory_p},
973
                                {MKLDNN_ARG_DIFF_DST, *diff_dst_memory_p},
A
Adam 已提交
974 975
                                {MKLDNN_ARG_DIFF_SRC, *diff_src_memory_p}});
      astream.wait();
976

A
Adam Osewski 已提交
977 978
      input_grad->set_layout(framework::DataLayout::kMKLDNN);
      input_grad->set_format(platform::GetMKLDNNFormat(*diff_src_memory_p));
979
    }
X
xiaolil1 已提交
980
  }
981
};
982

983 984 985 986 987
}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;

X
Xin Pan 已提交
988 989 990
REGISTER_OP_KERNEL_WITH_CUSTOM_TYPE(conv2d, MKLDNN,
                                    ::paddle::platform::CPUPlace, FP32,
                                    ops::kConvMKLDNNFP32,
991
                                    ops::ConvMKLDNNOpKernel<float, float>);
992

993 994 995 996
REGISTER_OP_KERNEL_WITH_CUSTOM_TYPE(
    conv2d, MKLDNN, ::paddle::platform::CPUPlace, BF16, ops::kConvMKLDNNFP32,
    ops::ConvMKLDNNOpKernel<paddle::platform::bfloat16, float>);

997 998
REGISTER_OP_KERNEL_WITH_CUSTOM_TYPE(conv2d, MKLDNN,
                                    ::paddle::platform::CPUPlace, U8,
999
                                    ops::kConvMKLDNNINT8,
1000
                                    ops::ConvMKLDNNOpKernel<uint8_t, float>);
1001 1002 1003

REGISTER_OP_KERNEL_WITH_CUSTOM_TYPE(conv2d, MKLDNN,
                                    ::paddle::platform::CPUPlace, S8,
1004
                                    ops::kConvMKLDNNINT8,
1005
                                    ops::ConvMKLDNNOpKernel<int8_t, float>);
X
Xin Pan 已提交
1006 1007 1008 1009

REGISTER_OP_KERNEL_WITH_CUSTOM_TYPE(conv2d_grad, MKLDNN,
                                    ::paddle::platform::CPUPlace, FP32,
                                    ops::kConvMKLDNNFP32,
1010
                                    ops::ConvMKLDNNGradOpKernel<float, float>);
1011 1012 1013 1014

REGISTER_OP_KERNEL_WITH_CUSTOM_TYPE(conv3d, MKLDNN,
                                    ::paddle::platform::CPUPlace, FP32,
                                    ops::kConvMKLDNNFP32,
1015
                                    ops::ConvMKLDNNOpKernel<float, float>);
1016 1017 1018 1019

REGISTER_OP_KERNEL_WITH_CUSTOM_TYPE(conv3d_grad, MKLDNN,
                                    ::paddle::platform::CPUPlace, FP32,
                                    ops::kConvMKLDNNFP32,
1020
                                    ops::ConvMKLDNNGradOpKernel<float, float>);