conv_mkldnn_op.cc 51.6 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

   Licensed under the Apache License, Version 2.0 (the "License");
   you may not use this file except in compliance with the License.
   You may obtain a copy of the License at

   http://www.apache.org/licenses/LICENSE-2.0

   Unless required by applicable law or agreed to in writing, software
   distributed under the License is distributed on an "AS IS" BASIS,
   WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
   See the License for the specific language governing permissions and
   limitations under the License. */

Y
Yu Yang 已提交
15
#include "paddle/fluid/framework/data_layout_transform.h"
16
#include "paddle/fluid/operators/conv_op.h"
J
Jacek Czaja 已提交
17
#include "paddle/fluid/platform/mkldnn_reuse.h"
18

W
wanghuancoder 已提交
19 20 21 22 23 24
namespace paddle {
namespace platform {
class MKLDNNDeviceContext;
}  // namespace platform
}  // namespace paddle

25 26 27
namespace paddle {
namespace operators {

28 29 30 31 32 33
using framework::DataLayout;
using mkldnn::memory;
using mkldnn::primitive;
using mkldnn::reorder;
using mkldnn::stream;
using platform::GetMKLDNNFormat;
34
using platform::to_void_cast;
35

A
Adam 已提交
36
inline void GetWeightsTz(std::vector<int64_t>& weights_tz,  // NOLINT
37
                         const int groups) {
Y
Yihua Xu 已提交
38
  if (groups > 1) {
39 40 41 42 43 44
    // if (is_conv3d) [o, i, d, h, w]->[g, o/g, i, d, h, w]
    // else [o, i, h, w] -> [g, o/g, i, h, w]
    weights_tz.push_back(0);
    std::rotate(weights_tz.begin(), weights_tz.end() - 1, weights_tz.end());
    weights_tz[0] = groups;
    weights_tz[1] = weights_tz[1] / groups;
Y
Yihua Xu 已提交
45 46 47
  }
}

48 49 50
inline MKLDNNMemoryFormat GetWeightsFormat(const MKLDNNMemoryFormat format,
                                           const int groups,
                                           const bool is_conv3d) {
Y
Yihua Xu 已提交
51
  if (is_conv3d) {
52
    return (groups == 1) ? format : MKLDNNMemoryFormat::goidhw;
Y
Yihua Xu 已提交
53
  } else {
54
    return (groups == 1) ? format : MKLDNNMemoryFormat::goihw;
Y
Yihua Xu 已提交
55 56 57
  }
}

58
static mkldnn::memory::data_type GetDstType(bool is_int8, bool is_bfloat16,
59
                                            bool force_fp32_output,
60
                                            std::string fuse_activation,
61 62
                                            bool fuse_residual_conn,
                                            const Tensor* residual_param) {
63
  auto dst_dt = mkldnn::memory::data_type::f32;
64 65 66 67 68 69 70
  if (is_int8) {
    dst_dt = (fuse_activation == "relu" || fuse_activation == "relu6")
                 ? mkldnn::memory::data_type::u8
                 : mkldnn::memory::data_type::s8;
    if (force_fp32_output) {
      dst_dt = mkldnn::memory::data_type::f32;
    }
71 72
    if (fuse_residual_conn && residual_param) {
      auto residual_dt = framework::ToMKLDNNDataType(residual_param->type());
73
      if (dst_dt != residual_dt) dst_dt = residual_dt;
74
    }
75 76 77 78 79 80 81
  } else {
    if (!force_fp32_output && is_bfloat16) {
      dst_dt = mkldnn::memory::data_type::bf16;
      if (fuse_residual_conn && residual_param) {
        dst_dt = framework::ToMKLDNNDataType(residual_param->type());
      }
    }
82 83 84 85
  }
  return dst_dt;
}

86
template <typename T, typename K, typename T_out>
87 88
class ConvMKLDNNHandlerT
    : public platform::MKLDNNHandlerT<T, mkldnn::convolution_forward> {
89
 public:
90 91 92 93 94 95 96 97
  ConvMKLDNNHandlerT(const paddle::framework::ExecutionContext& ctx,
                     const platform::MKLDNNDeviceContext& dev_ctx,
                     const mkldnn::engine mkldnn_engine,
                     platform::Place cpu_place, const Tensor* input,
                     const Tensor* filter, const Tensor* bias, Tensor* output,
                     const std::string& unique_name)
      : platform::MKLDNNHandlerT<T, mkldnn::convolution_forward>(
            dev_ctx, mkldnn_engine, cpu_place,
98
            platform::CreateKey(dev_ctx, framework::vectorize(input->dims()),
99 100 101 102 103 104 105 106 107 108
                                unique_name)) {
    if (!this->isCached()) {
      PADDLE_ENFORCE_EQ(
          input->layout(), DataLayout::kMKLDNN,
          platform::errors::InvalidArgument(
              "The input tensor's layout should be %d, but got %d.",
              DataLayout::kMKLDNN, input->layout()));
      PADDLE_ENFORCE_NE(input->format(), MKLDNNMemoryFormat::undef,
                        platform::errors::InvalidArgument(
                            "Wrong format set for Input tensor"));
109

110 111 112 113 114 115 116 117
      PADDLE_ENFORCE_EQ(
          filter->layout(), DataLayout::kMKLDNN,
          platform::errors::InvalidArgument(
              "The Filter tensor's layout should be %d, but got %d.",
              DataLayout::kMKLDNN, filter->layout()));
      PADDLE_ENFORCE_NE(filter->format(), MKLDNNMemoryFormat::undef,
                        platform::errors::InvalidArgument(
                            "Wrong format set for Filter tensor"));
K
Krzysztof Binias 已提交
118

119 120 121 122 123 124 125 126 127 128 129 130
      PADDLE_ENFORCE_GE(
          input->dims().size(), 4,
          platform::errors::InvalidArgument(
              "Input must be with 4 or 5 dimensions, i.e. NCHW or "
              "NCDHW, but got dimension = %d .",
              input->dims().size()));
      PADDLE_ENFORCE_LE(
          input->dims().size(), 5,
          platform::errors::InvalidArgument(
              "Input must be with 4 or 5 dimensions, i.e. NCHW or "
              "NCDHW, but got dimension = %d .",
              input->dims().size()));
131

132 133 134 135 136 137 138 139 140 141 142 143
      PADDLE_ENFORCE_GE(
          filter->dims().size(), 4,
          platform::errors::InvalidArgument(
              "Filter must be with 4 or 5 dimensions, i.e. OIHW or "
              "OIDHW, but got dimension = %d .",
              filter->dims().size()));
      PADDLE_ENFORCE_LE(
          filter->dims().size(), 5,
          platform::errors::InvalidArgument(
              "Filter must be with 4 or 5 dimensions, i.e. OIHW or "
              "OIDHW, but got dimension = %d .",
              filter->dims().size()));
144

145 146 147 148 149 150 151 152 153
      if (bias) {
        PADDLE_ENFORCE_EQ(
            bias->layout(), DataLayout::kMKLDNN,
            platform::errors::InvalidArgument(
                "The Bias tensor's layout should be %d, but got %d.",
                DataLayout::kMKLDNN, bias->layout()));
        PADDLE_ENFORCE_NE(bias->format(), MKLDNNMemoryFormat::undef,
                          platform::errors::InvalidArgument(
                              "Got wrong format for Bias tensor."));
154

155 156 157 158 159 160
        PADDLE_ENFORCE_EQ(bias->dims().size(), 1,
                          platform::errors::InvalidArgument(
                              "Bias must only have 1 dimension, "
                              "i.e. X, but got dimension = %d .",
                              bias->dims().size()));
      }
F
FDInSky 已提交
161

162 163 164 165 166 167 168 169 170
      const std::string fuse_activation =
          ctx.Attr<std::string>("fuse_activation");
      const float fuse_alpha = ctx.Attr<float>("fuse_alpha");
      const float fuse_beta = ctx.Attr<float>("fuse_beta");
      const bool fuse_residual_conn =
          ctx.Attr<bool>("fuse_residual_connection");
      const int groups = ctx.Attr<int>("groups");
      const std::string padding_algorithm =
          ctx.Attr<std::string>("padding_algorithm");
F
FDInSky 已提交
171

172 173 174 175 176 177
      const auto input_dims = input->dims();
      const auto data_dims =
          framework::slice_ddim(input_dims, 2, input_dims.size());
      const auto filter_dims = filter->dims();
      const auto filter_data_dims =
          framework::slice_ddim(filter_dims, 2, filter_dims.size());
178

179 180
      const auto ksize = framework::vectorize(filter_data_dims);
      const bool is_test = ctx.Attr<bool>("is_test");
181

182 183
      auto strides_temp = ctx.Attr<std::vector<int>>("strides");
      std::vector<int64_t> strides(begin(strides_temp), end(strides_temp));
184

185 186
      auto paddings_temp = ctx.Attr<std::vector<int>>("paddings");
      std::vector<int64_t> paddings(begin(paddings_temp), end(paddings_temp));
A
Adam 已提交
187

188 189 190
      auto dilations_temp = ctx.Attr<std::vector<int>>("dilations");
      std::vector<int64_t> dilations(begin(dilations_temp),
                                     end(dilations_temp));
A
Adam 已提交
191

192 193
      UpdatePaddingAndDilation(&paddings, &dilations, padding_algorithm,
                               data_dims, strides, ksize);
A
Adam 已提交
194

195 196
      std::transform(dilations.begin(), dilations.end(), dilations.begin(),
                     [](int64_t i) { return i - 1; });
197

198
      const auto src_tz = paddle::framework::vectorize(input->dims());
199

200 201
      auto weights_tz = paddle::framework::vectorize(filter->dims());
      GetWeightsTz(weights_tz, groups);
202

203
      const auto dst_tz = paddle::framework::vectorize(output->dims());
204

205 206
      const mkldnn::memory::dims stride_dims = strides;
      const auto mkldnn_paddings = platform::ToMkldnnPadding(paddings);
207
      const mkldnn::memory::dims dilations_dims = dilations;
A
Adam 已提交
208

209 210 211 212
      /* create memory descriptor for convolution without specified format
       * ('any') which lets a primitive (convolution in this case) choose
       * the memory format preferred for best performance
       */
213 214
      auto chosen_memory_format = MKLDNNMemoryFormat::any;

215 216 217 218 219 220 221 222 223
      auto data_type = mkldnn::memory::data_type::f32;
      if (ctx.Attr<std::string>("mkldnn_data_type") == "bfloat16" ||
          std::is_same<T_out, platform::bfloat16>::value)
        data_type = mkldnn::memory::data_type::bf16;

      const auto src_md =
          platform::MKLDNNMemDesc(src_tz, data_type, chosen_memory_format);
      const auto weights_md = platform::MKLDNNMemDesc(weights_tz, data_type,
                                                      MKLDNNMemoryFormat::any);
224
      const auto dst_md = platform::MKLDNNMemDesc(
225
          dst_tz, platform::MKLDNNGetDataType<T_out>(), chosen_memory_format);
226

227 228
      const auto fwd_prop_kind = is_test ? mkldnn::prop_kind::forward_inference
                                         : mkldnn::prop_kind::forward_training;
A
Adam 已提交
229

230 231
      const mkldnn::primitive_attr conv_attr = CreatePostOps(
          fuse_activation, fuse_alpha, fuse_beta, fuse_residual_conn);
A
Adam 已提交
232

233 234
      if (bias) {
        auto bias_tz = framework::vectorize(bias->dims());
235 236
        auto bias_md =
            platform::MKLDNNMemDesc(bias_tz, data_type, MKLDNNMemoryFormat::x);
237 238 239

        this->AcquireForwardPrimitiveDescriptor(
            conv_attr, fwd_prop_kind, dnnl::algorithm::convolution_direct,
240
            src_md, weights_md, bias_md, dst_md, stride_dims, dilations_dims,
241 242 243 244
            mkldnn_paddings[0], mkldnn_paddings[1]);
      } else {
        this->AcquireForwardPrimitiveDescriptor(
            conv_attr, fwd_prop_kind, dnnl::algorithm::convolution_direct,
245 246
            src_md, weights_md, dst_md, stride_dims, dilations_dims,
            mkldnn_paddings[0], mkldnn_paddings[1]);
247 248 249
      }
    }
  }
250

251 252 253 254 255 256 257 258 259 260
  mkldnn::primitive_attr CreatePostOps(
      std::string fuse_activation, float fuse_alpha, float fuse_beta,
      bool fuse_residual_conn, const std::vector<float> output_shift_scale = {},
      float sum_scale = 1.0f) {
    mkldnn::primitive_attr conv_attr;
    mkldnn::post_ops post_operations;
    if (output_shift_scale.size() > 0) {
      int mask = output_shift_scale.size() > 1 ? 1 << 1 : 0;
      conv_attr.set_output_scales(mask, output_shift_scale);
    }
261

262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288
    // Fusion with Elementwise layer relies on adding a sum post-operation with
    // the scale parameter. It is assumed that when fuse_residual_connection is
    // true, the output tensor contains the data coming from residual
    // connection. The result of this post_op is:
    // Output = scale * Output + Conv_Out.
    if (fuse_residual_conn) {
      post_operations.append_sum(sum_scale);
    }
    // Fusion with ReLU layer is executed through the PostOps feature. Create a
    // PostOps object and configure it to execute an eltwise relu operation.
    if (fuse_activation == "relu" || fuse_activation == "leaky_relu") {
      constexpr float scale = 1.0f;
      post_operations.append_eltwise(scale, mkldnn::algorithm::eltwise_relu,
                                     fuse_alpha, fuse_beta);
    } else if (fuse_activation == "relu6") {
      constexpr float scale = 1.0f;
      post_operations.append_eltwise(scale,
                                     mkldnn::algorithm::eltwise_bounded_relu,
                                     fuse_alpha, fuse_beta);
    } else if (fuse_activation == "swish") {
      constexpr float scale = 1.0f;
      post_operations.append_eltwise(scale, mkldnn::algorithm::eltwise_swish,
                                     fuse_alpha, fuse_beta);
    }
    conv_attr.set_post_ops(post_operations);
    return conv_attr;
  }
289

290 291 292
  std::shared_ptr<mkldnn::memory> AcquireSrcMemoryWithReorder(
      const framework::Tensor* input) {
    const T* input_data = input->data<T>();
293 294
    const std::string user_key_suffix{"@src_mem_p_user"};
    auto user_src_mem_p = this->AcquireMemory(user_key_suffix);
295

296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311
    if (!user_src_mem_p) {
      auto user_src_md = platform::MKLDNNMemDesc(
          framework::vectorize(input->dims()), platform::MKLDNNGetDataType<T>(),
          input->format());
      return this->AcquireMemoryWithReorder(
          user_src_md, this->fwd_pd_->src_desc(), to_void_cast<T>(input_data),
          "@src_mem_p");
    } else {
      const std::string target_key_suffix{"@src_mem_p_target"};
      const auto target_src_mem_p = this->AcquireMemory(target_key_suffix);
      user_src_mem_p->set_data_handle(to_void_cast<T>(input_data));
      if (user_src_mem_p != target_src_mem_p) {
        this->AcquireReorder(user_src_mem_p, target_src_mem_p, "@src_mem_p");
      }
      return target_src_mem_p;
    }
312 313 314 315 316 317 318 319 320 321 322
  }

  std::shared_ptr<mkldnn::memory> AcquireWeightsMemoryWithReorder(
      const framework::Tensor* filter, const int groups, const bool is_conv3d,
      const bool is_test) {
    // This is workaround to make execution faster, delete
    // if statement after including md inside Tensor
    auto weights_mem_p = this->AcquireMemory("@weights_mem_p_target");
    if (is_test && weights_mem_p) {
      return weights_mem_p;
    } else {
323
      const K* filter_data = filter->data<K>();
324 325 326 327
      auto weights_tz = framework::vectorize(filter->dims());
      GetWeightsTz(weights_tz, groups);

      auto user_src_md = platform::MKLDNNMemDesc(
328
          weights_tz, platform::MKLDNNGetDataType<K>(),
329 330 331 332
          GetWeightsFormat(filter->format(), groups, is_conv3d));

      return this->AcquireMemoryWithReorder(
          user_src_md, this->fwd_pd_->weights_desc(),
333
          to_void_cast<K>(filter_data), "@weights_mem_p", is_test);
334
    }
335
  }
336

337 338
  std::shared_ptr<mkldnn::memory> AcquireBiasMemoryWithReorder(
      const framework::Tensor* bias, const bool is_test) {
339 340 341 342 343 344 345 346 347 348 349 350 351
    auto bias_mem_p = this->AcquireMemory("@bias_mem_p_target");
    if (is_test && bias_mem_p) {
      return bias_mem_p;
    } else {
      const K* bias_data = bias->data<K>();
      auto user_bias_md = platform::MKLDNNMemDesc(
          framework::vectorize(bias->dims()), platform::MKLDNNGetDataType<K>(),
          MKLDNNMemoryFormat::x);

      return this->AcquireMemoryWithReorder(
          user_bias_md, this->fwd_pd_->bias_desc(), to_void_cast<K>(bias_data),
          "@bias_mem_p", is_test);
    }
352
  }
353

354 355
  std::shared_ptr<mkldnn::memory> AcquireResidualMemory(
      const framework::Tensor* residual_param) {
356 357 358 359
    void* residual_data =
        residual_param->type() == framework::DataTypeTrait<T_out>::DataType()
            ? to_void_cast<T_out>(residual_param->data<T_out>())
            : to_void_cast<T>(residual_param->data<T>());
360 361 362 363 364 365 366 367 368
    auto residual_mem_p = this->AcquireMemory("@user_residual_data_mem_p");
    if (residual_mem_p) {
      residual_mem_p->set_data_handle(residual_data);
      return residual_mem_p;
    } else {
      auto user_residual_md = platform::MKLDNNMemDesc(
          framework::vectorize(residual_param->dims()),
          framework::ToMKLDNNDataType(residual_param->type()),
          residual_param->format());
369

370 371 372
      return this->AcquireMemoryFromPrimitive(user_residual_md, residual_data,
                                              "@user_residual_data_mem_p");
    }
373 374 375 376 377 378 379 380
  }

  std::shared_ptr<mkldnn::memory> AcquireDstMemoryWithResidual(
      framework::Tensor* output, const framework::Tensor* residual_param) {
    std::shared_ptr<dnnl::memory> dst_memory_p;
    if (residual_param->format() !=
        platform::GetMKLDNNFormat(this->fwd_pd_->dst_desc())) {
      auto residual_memory_p = this->AcquireResidualMemory(residual_param);
381
      dst_memory_p = this->template AcquireDstMemory<T_out>(output);
382 383 384 385 386 387
      this->AcquireReorder(residual_memory_p, dst_memory_p, "@residual_dst");
    } else {
      // Changing ShareDataWith to TensorCopy results in performance drop
      // on ResNet architectures
      // (https://github.com/PaddlePaddle/Paddle/issues/22964)
      output->ShareDataWith(*residual_param);
388
      dst_memory_p = this->template AcquireDstMemory<T_out>(output);
389 390 391 392 393 394 395 396 397 398 399 400 401 402
    }
    return dst_memory_p;
  }
};

template <typename T, typename K>
class ConvMKLDNNOpKernel : public paddle::framework::OpKernel<T> {
 public:
  void Compute(const paddle::framework::ExecutionContext& ctx) const override {
    PADDLE_ENFORCE_EQ(platform::is_cpu_place(ctx.GetPlace()), true,
                      paddle::platform::errors::PreconditionNotMet(
                          "Operator DNNL Conv must use CPUPlace"));
    bool is_INT8 =
        std::is_same<T, int8_t>::value || std::is_same<T, uint8_t>::value;
403 404 405 406 407 408 409 410
    bool is_BFLOAT16 = ctx.Attr<std::string>("mkldnn_data_type") == "bfloat16";
    auto residual_param = ctx.Input<Tensor>("ResidualData");
    bool fuse_residual_conn = ctx.Attr<bool>("fuse_residual_connection");
    std::string fuse_activation = ctx.Attr<std::string>("fuse_activation");
    bool force_fp32_output = ctx.Attr<bool>("force_fp32_output");
    auto dst_dt =
        GetDstType(is_INT8, is_BFLOAT16, force_fp32_output, fuse_activation,
                   fuse_residual_conn, residual_param);
411
    if (!is_INT8) {
412 413 414 415 416
      if (dst_dt == mkldnn::memory::data_type::f32) {
        ComputeFP32<float>(ctx);
      } else if (dst_dt == mkldnn::memory::data_type::bf16) {
        ComputeFP32<platform::bfloat16>(ctx);
      }
417
    } else {
418 419 420 421 422 423 424
      if (dst_dt == mkldnn::memory::data_type::f32) {
        ComputeINT8<float>(ctx);
      } else if (dst_dt == mkldnn::memory::data_type::u8) {
        ComputeINT8<uint8_t>(ctx);
      } else if (dst_dt == mkldnn::memory::data_type::s8) {
        ComputeINT8<int8_t>(ctx);
      }
425
    }
426
  }
427

428
  template <typename T_out>
429 430 431 432
  void ComputeFP32(const paddle::framework::ExecutionContext& ctx) const {
    auto& dev_ctx =
        ctx.template device_context<paddle::platform::MKLDNNDeviceContext>();
    const auto& mkldnn_engine = dev_ctx.GetEngine();
433

434 435 436
    const bool is_test = ctx.Attr<bool>("is_test");
    const bool is_conv3d = ctx.Attr<std::vector<int>>("strides").size() == 3U;
    const bool fuse_residual_conn = ctx.Attr<bool>("fuse_residual_connection");
437

438 439 440 441 442
    const auto* input = ctx.Input<Tensor>("Input");
    const auto* filter = ctx.Input<Tensor>("Filter");
    const auto* bias =
        ctx.HasInput("Bias") ? ctx.Input<Tensor>("Bias") : nullptr;
    auto* output = ctx.Output<Tensor>("Output");
443

444
    ConvMKLDNNHandlerT<T, K, T_out> handler(
445 446
        ctx, dev_ctx, mkldnn_engine, ctx.GetPlace(), input, filter, bias,
        output, ctx.InputName("Input") + ctx.InputName("Filter"));
447

448
    auto src_memory_p = handler.AcquireSrcMemoryWithReorder(input);
449

450 451
    auto weights_memory_p = handler.AcquireWeightsMemoryWithReorder(
        filter, ctx.Attr<int>("groups"), is_conv3d, is_test);
452

453 454 455
    std::shared_ptr<dnnl::memory> dst_memory_p;
    if (fuse_residual_conn) {
      auto* residual_param = ctx.Input<Tensor>("ResidualData");
456
      dst_memory_p =
457 458
          handler.AcquireDstMemoryWithResidual(output, residual_param);
    } else {
459
      dst_memory_p = handler.template AcquireDstMemory<T_out>(output);
460
    }
461

462
    auto conv_p = handler.AcquireForwardPrimitive();
A
Adam 已提交
463

464 465 466 467
    std::unordered_map<int, dnnl::memory> args = {
        {MKLDNN_ARG_SRC, *src_memory_p},
        {MKLDNN_ARG_WEIGHTS, *weights_memory_p},
        {MKLDNN_ARG_DST, *dst_memory_p}};
A
Adam 已提交
468

469 470 471
    if (bias) {
      auto bias_memory_p = handler.AcquireBiasMemoryWithReorder(bias, is_test);
      args.insert({MKLDNN_ARG_BIAS, *bias_memory_p});
472
    }
473

474
    auto& astream = platform::MKLDNNDeviceContext::tls().get_stream();
475
    conv_p->execute(astream, args);
A
Adam 已提交
476
    astream.wait();
477

478 479
    output->set_layout(DataLayout::kMKLDNN);
    output->set_format(GetMKLDNNFormat(*dst_memory_p));
480
  }
481

482
  template <typename T_out>
483 484 485 486 487 488 489 490 491 492
  void ComputeINT8(const paddle::framework::ExecutionContext& ctx) const {
    const bool is_test = ctx.Attr<bool>("is_test");

    auto& dev_ctx =
        ctx.template device_context<paddle::platform::MKLDNNDeviceContext>();
    const auto& mkldnn_engine = dev_ctx.GetEngine();

    auto* input = ctx.Input<Tensor>("Input");
    auto* output = ctx.Output<Tensor>("Output");

493
    PADDLE_ENFORCE_EQ(input->layout(), DataLayout::kMKLDNN,
F
FDInSky 已提交
494 495 496
                      platform::errors::InvalidArgument(
                          "The input tensor's layout should be %d, but got %d.",
                          DataLayout::kMKLDNN, input->layout()));
A
Adam 已提交
497
    PADDLE_ENFORCE_NE(input->format(), MKLDNNMemoryFormat::undef,
F
FDInSky 已提交
498 499 500 501 502 503 504 505 506 507 508 509 510
                      platform::errors::InvalidArgument(
                          "Got wrong format for Input tensor."));

    PADDLE_ENFORCE_GE(input->dims().size(), 4,
                      platform::errors::InvalidArgument(
                          "Input must be with 4 or 5 dimensions, i.e. NCHW or "
                          "NCDHW, but got dimension = %d .",
                          input->dims().size()));
    PADDLE_ENFORCE_LE(input->dims().size(), 5,
                      platform::errors::InvalidArgument(
                          "Input must be with 4 or 5 dimensions, i.e. NCHW or "
                          "NCDHW, but got dimension = %d .",
                          input->dims().size()));
511

512
    std::string fuse_activation = ctx.Attr<std::string>("fuse_activation");
X
xiaolil1 已提交
513
    bool fuse_residual_conn = ctx.Attr<bool>("fuse_residual_connection");
514 515
    bool unsigned_output =
        (fuse_activation == "relu" || fuse_activation == "relu6");
516

517 518
    const T* input_data = input->data<T>();

A
Adam 已提交
519
    auto src_tz = paddle::framework::vectorize(input->dims());
520

X
xiaolil1 已提交
521 522
    mkldnn::memory::data_type src_dt =
        paddle::framework::ToMKLDNNDataType(input->type());
523

524 525 526
    std::string key =
        platform::CreateKey(dev_ctx, src_tz, src_dt,
                            ctx.InputName("Input") + ctx.InputName("Filter"));
527

528 529
    const std::string key_conv_pd = key + "@conv_pd";
    bool need_s8_to_u8 = false;
530 531 532
    std::shared_ptr<mkldnn::convolution_forward> conv_p;
    std::shared_ptr<mkldnn::memory> src_memory_p;
    std::shared_ptr<mkldnn::memory> user_src_memory_p;
533
    std::shared_ptr<mkldnn::memory> dst_memory_p;
534
    std::vector<primitive> pipeline;
535
    std::shared_ptr<mkldnn::convolution_forward::primitive_desc> conv_pd;
536 537 538 539 540
    std::shared_ptr<platform::ConvMKLDNNHandler> handler;

    // This is workaround for hacky implementation
    // of conv int8 mkl-dnn. Once conv fp32 and conv int8
    // are merged/unified, this will disappear
541 542 543 544 545 546 547 548 549 550 551
    auto key_tid = platform::ExtendKeyWithThreadInfoIfNeeded(dev_ctx, key);

    auto prim_key = key_tid + "@conv_p";
    auto dst_key = key_tid + "@dst_mem_p";
    auto src_key = key_tid + "@src_mem_p";
    auto weights_key = key_tid + "@weights_mem_p";
    auto bias_key = key_tid + "@bias_mem_p";
    auto user_src_key = key_tid + "@user_src_mem_p";
    auto user_residual_key = key_tid + "@user_residual_data_mem_p";
    auto src_reorder_key = key_tid + "@src_mem_preorder_p";
    auto residual_reorder_key = key_tid + "@residual_data_mem_preorder_p";
552 553 554 555

    conv_p = std::static_pointer_cast<mkldnn::convolution_forward>(
        dev_ctx.GetBlob(prim_key));

556
    auto& astream = platform::MKLDNNDeviceContext::tls().get_stream();
A
Adam 已提交
557

558
    if (conv_p == nullptr || !is_test) {
559 560 561 562 563 564
      float fuse_alpha = ctx.Attr<float>("fuse_alpha");
      float fuse_beta = ctx.Attr<float>("fuse_beta");
      bool force_fp32_output = ctx.Attr<bool>("force_fp32_output");

      auto* filter = ctx.Input<Tensor>("Filter");

F
FDInSky 已提交
565 566 567 568 569
      PADDLE_ENFORCE_EQ(
          filter->layout(), DataLayout::kMKLDNN,
          platform::errors::InvalidArgument(
              "The filter tensor's layout should be %d, but got %d.",
              DataLayout::kMKLDNN, filter->layout()));
A
Adam 已提交
570
      PADDLE_ENFORCE_NE(filter->format(), MKLDNNMemoryFormat::undef,
F
FDInSky 已提交
571 572 573 574 575 576 577 578 579 580 581 582 583
                        platform::errors::InvalidArgument(
                            "Got wrong format for Filter tensor."));

      PADDLE_ENFORCE_GE(filter->dims().size(), 4,
                        platform::errors::InvalidArgument(
                            "Filter must be with 4 or 5 dimensions, i.e. OIHW "
                            "or OIDHW, but got dimensions = %d .",
                            filter->dims().size()));
      PADDLE_ENFORCE_LE(filter->dims().size(), 5,
                        platform::errors::InvalidArgument(
                            "Filter must be with 4 or 5 dimensions, i.e. OIHW "
                            "or OIDHW, but got dimensions = %d .",
                            filter->dims().size()));
584 585 586

      PADDLE_ENFORCE_EQ(
          !fuse_residual_conn || !force_fp32_output, true,
587 588
          platform::errors::Unimplemented(
              "residual fusion does not support force output with fp32"));
589 590 591 592

      auto* bias = ctx.HasInput("Bias") ? ctx.Input<Tensor>("Bias") : nullptr;

      if (bias) {
F
FDInSky 已提交
593 594 595 596 597
        PADDLE_ENFORCE_EQ(
            bias->layout(), DataLayout::kMKLDNN,
            platform::errors::InvalidArgument(
                "The bias tensor's layout should be %d, but got %d.",
                DataLayout::kMKLDNN, bias->layout()));
A
Adam 已提交
598
        PADDLE_ENFORCE_NE(bias->format(), MKLDNNMemoryFormat::undef,
F
FDInSky 已提交
599 600
                          platform::errors::InvalidArgument(
                              "Got wrong format for Bias tensor."));
601 602

        PADDLE_ENFORCE_EQ(bias->dims().size(), 1,
F
FDInSky 已提交
603 604 605 606
                          platform::errors::InvalidArgument(
                              "Bias must only have 1 dimension, i.e. X, but "
                              "got dimension = %d .",
                              bias->dims().size()));
607 608
      }

A
Adam 已提交
609 610 611 612 613 614 615 616 617 618
      std::vector<int> strides_temp = ctx.Attr<std::vector<int>>("strides");
      std::vector<int64_t> strides(begin(strides_temp), end(strides_temp));

      std::vector<int> paddings_temp = ctx.Attr<std::vector<int>>("paddings");
      std::vector<int64_t> paddings(begin(paddings_temp), end(paddings_temp));

      std::vector<int> dilations_temp = ctx.Attr<std::vector<int>>("dilations");
      std::vector<int64_t> dilations(begin(dilations_temp),
                                     end(dilations_temp));

619 620
      std::string padding_algorithm =
          ctx.Attr<std::string>("padding_algorithm");
621 622 623 624

      bool is_conv3d = strides.size() == 3U;

      PADDLE_ENFORCE_NE(is_conv3d, true,
625 626
                        platform::errors::Unimplemented(
                            "int8 does not support conv3d currently"));
627

628 629 630 631 632 633
      auto input_dims = input->dims();
      auto data_dims = framework::slice_ddim(input_dims, 2, input_dims.size());
      auto filter_dims = filter->dims();
      auto filter_data_dims =
          framework::slice_ddim(filter_dims, 2, filter_dims.size());

A
Adam 已提交
634
      auto ksize = framework::vectorize(filter_data_dims);
635 636 637 638

      UpdatePaddingAndDilation(&paddings, &dilations, padding_algorithm,
                               data_dims, strides, ksize);

639
      int groups = ctx.Attr<int>("groups");
A
Adam 已提交
640
      auto weights_tz = paddle::framework::vectorize(filter->dims());
641 642
      int g = std::max(groups, 1);

643
      GetWeightsTz(weights_tz, g);
A
Adam 已提交
644
      auto dst_tz = paddle::framework::vectorize(output->dims());
645

646 647
      std::transform(dilations.begin(), dilations.end(), dilations.begin(),
                     [](int64_t i) { return i - 1; });
648

649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676
      const K* filter_data = filter->data<K>();
      auto scale_in_data = ctx.Attr<float>("Scale_in");
      auto scale_in_eltwise_data = ctx.Attr<float>("Scale_in_eltwise");
      auto scale_weights_data = ctx.Attr<std::vector<float>>("Scale_weights");
      auto scale_out_data =
          force_fp32_output ? 1.0f : ctx.Attr<float>("Scale_out");
      float sum_scale =
          fuse_residual_conn ? scale_out_data / scale_in_eltwise_data : 1.0f;

      bool is_multi_channel = scale_weights_data.size() > 1;

      int count = is_multi_channel ? (g > 1 ? (weights_tz)[1] * (weights_tz)[0]
                                            : (weights_tz)[0])
                                   : 1;
      std::vector<float> output_shift_scale(count);
#pragma omp parallel for if (count > 1)
      for (int i = 0; i < count; i++) {
        if (scale_weights_data[i] == 0.0)
          output_shift_scale[i] =
              scale_out_data;  // weights data will contain 0
                               // in some models, then weights
                               // scale couldn't be calculated
        else
          output_shift_scale[i] =
              static_cast<float>(static_cast<double>(scale_out_data) /
                                 (static_cast<double>(scale_in_data) *
                                  static_cast<double>(scale_weights_data[i])));
      }
L
lidanqing 已提交
677

678 679 680 681 682 683 684
      auto user_src_md =
          platform::MKLDNNMemDesc({src_tz}, src_dt, input->format());
      auto user_weights_md = platform::MKLDNNMemDesc(
          {weights_tz}, platform::MKLDNNGetDataType<K>(),
          ((g) == 1) ? MKLDNNMemoryFormat::oihw : MKLDNNMemoryFormat::goihw);

      /* create memory descriptor for convolution without specified format
685 686 687
       * ('any') which lets a primitive (convolution in this case) choose
       * the memory format preferred for best performance
       */
688
      auto chosen_memory_format = MKLDNNMemoryFormat::any;
689

A
Adam 已提交
690
      std::vector<int64_t> bias_tz;
691 692 693 694 695 696 697 698 699 700 701 702 703

      auto src_md =
          platform::MKLDNNMemDesc(src_tz, src_dt, chosen_memory_format);
      auto weights_md = platform::MKLDNNMemDesc(
          weights_tz, memory::data_type::s8, chosen_memory_format);
      auto dst_md = platform::MKLDNNMemDesc(
          dst_tz, platform::MKLDNNGetDataType<T_out>(), chosen_memory_format);

      handler.reset(
          new platform::ConvMKLDNNHandler(dev_ctx, mkldnn_engine, key));
      // create a conv primitive descriptor and save it for usage in backward
      auto propagation = is_test ? mkldnn::prop_kind::forward_scoring
                                 : mkldnn::prop_kind::forward_training;
L
lidanqing 已提交
704

705
      if (bias) {
A
Adam 已提交
706
        bias_tz = paddle::framework::vectorize(bias->dims());
707 708 709
        auto bias_md = platform::MKLDNNMemDesc(bias_tz, memory::data_type::s32,
                                               MKLDNNMemoryFormat::x);
        conv_pd = handler->AcquireConvolutionPrimitiveDescriptor(
710
            src_md, weights_md, bias_md, dst_md, strides, dilations, paddings,
711 712 713 714
            mkldnn_engine, fuse_activation, fuse_alpha, fuse_beta,
            fuse_residual_conn, propagation, output_shift_scale, sum_scale);
      } else {
        conv_pd = handler->AcquireConvolutionPrimitiveDescriptor(
715 716
            src_md, weights_md, boost::none, dst_md, strides, dilations,
            paddings, mkldnn_engine, fuse_activation, fuse_alpha, fuse_beta,
717 718
            fuse_residual_conn, propagation, output_shift_scale, sum_scale);
      }
L
lidanqing 已提交
719

720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738
      // create mkldnn memory from input tensors (data/weights)
      user_src_memory_p =
          handler->AcquireSrcMemory(user_src_md, to_void_cast<T>(input_data));
      auto user_weights_memory_p = handler->AcquireWeightsMemory(
          user_weights_md, to_void_cast<K>(filter_data));

      // create reorder primitive if the input format is not the preferred one
      src_memory_p =
          handler->AcquireSrcMemoryFromPrimitive(user_src_memory_p, pipeline);

      std::shared_ptr<mkldnn::memory> weights_memory_p;
      int mask_reorder =
          is_multi_channel ? ((g != 1) ? (1 << 1) + (1 << 0) : 1 << 0) : 0;
      weights_memory_p = handler->AcquireWeightsMemoryFromPrimitive(
          user_weights_memory_p, pipeline, is_test, true, scale_weights_data,
          mask_reorder);

      if (fuse_residual_conn) {
        auto residual_param = ctx.Input<Tensor>("ResidualData");
F
FDInSky 已提交
739 740 741 742 743 744 745
        PADDLE_ENFORCE_EQ(
            output->dims(), residual_param->dims(),
            platform::errors::InvalidArgument(
                "Output and elementwise parameter need to have the "
                "same dimension sizes, but got output's dimension = %d"
                " and residual param's dimension =%d .",
                output->dims().size(), residual_param->dims().size()));
746 747 748 749
        auto residual_dt =
            paddle::framework::ToMKLDNNDataType(residual_param->type());
        if (residual_param->format() != handler->GetDstFormat()) {
          auto residual_data_tz =
A
Adam 已提交
750
              paddle::framework::vectorize(residual_param->dims());
751 752 753 754 755 756
          auto user_residual_md = platform::MKLDNNMemDesc(
              residual_data_tz, residual_dt, residual_param->format());
          dst_memory_p = platform::SetDstMemory<T_out>(
              ctx, output, residual_param, user_residual_md, handler,
              &pipeline);
        } else {
757
          output->ShareDataWith(*residual_param);
758 759 760 761 762 763 764 765
          dst_memory_p = platform::SetDstMemory<T_out>(ctx, output, handler);
        }
        need_s8_to_u8 =
            (platform::MKLDNNGetDataType<T_out>() == memory::data_type::s8) &&
            unsigned_output;
      } else {
        dst_memory_p = platform::SetDstMemory<T_out>(ctx, output, handler);
      }
L
lidanqing 已提交
766

767 768
      // create convolution op primitive
      auto scale_bias_key = key + "@scale_bias";
A
Adam 已提交
769
      conv_p = handler->AcquireConvolution();
770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789
      if (bias) {
        const K* bias_data = bias->data<K>();
        auto user_bias_md = platform::MKLDNNMemDesc(
            {bias_tz}, platform::MKLDNNGetDataType<K>(), MKLDNNMemoryFormat::x);
        auto user_bias_memory_p = handler->AcquireBiasMemory(
            user_bias_md, to_void_cast<K>(bias_data));
        std::shared_ptr<mkldnn::memory> bias_memory_p;
        int mask_reorder = is_multi_channel ? 1 << 0 : 1;
        int count =
            is_multi_channel
                ? (g > 1 ? (weights_tz)[1] * (weights_tz)[0] : (weights_tz)[0])
                : 1;
        std::vector<float> scale_bias_data(count);
#pragma omp parallel for if (count > 1)
        for (int i = 0; i < count; i++) {
          scale_bias_data[i] = scale_in_data * scale_weights_data[i];
        }
        bias_memory_p = handler->AcquireBiasMemoryFromPrimitive(
            user_bias_memory_p, pipeline, is_test, true, scale_bias_data,
            mask_reorder);
A
Adam 已提交
790 791 792 793
        conv_p->execute(astream, {{MKLDNN_ARG_SRC, *src_memory_p},
                                  {MKLDNN_ARG_WEIGHTS, *weights_memory_p},
                                  {MKLDNN_ARG_BIAS, *bias_memory_p},
                                  {MKLDNN_ARG_DST, *dst_memory_p}});
794
      } else {
A
Adam 已提交
795 796 797
        conv_p->execute(astream, {{MKLDNN_ARG_SRC, *src_memory_p},
                                  {MKLDNN_ARG_WEIGHTS, *weights_memory_p},
                                  {MKLDNN_ARG_DST, *dst_memory_p}});
798 799
      }
    } else {
A
Adam 已提交
800
      auto src_memory_reorder_p = std::static_pointer_cast<mkldnn::reorder>(
801 802 803 804 805 806 807
          dev_ctx.GetBlob(src_reorder_key));
      src_memory_p =
          std::static_pointer_cast<mkldnn::memory>(dev_ctx.GetBlob(src_key));
      if (src_memory_reorder_p) {
        user_src_memory_p = std::static_pointer_cast<mkldnn::memory>(
            dev_ctx.GetBlob(user_src_key));
        user_src_memory_p->set_data_handle(to_void_cast<T>(input_data));
808 809 810 811 812 813 814
        {
          platform::RecordEvent record_reorder("int_reorder",
                                               platform::EventRole::kUniqueOp);
          src_memory_reorder_p->execute(astream, *user_src_memory_p,
                                        *src_memory_p);
          astream.wait();
        }
815 816 817
      } else if (src_memory_p) {
        src_memory_p->set_data_handle(to_void_cast<T>(input_data));
      }
A
Adam 已提交
818 819
      auto weights_memory_p = std::static_pointer_cast<mkldnn::memory>(
          dev_ctx.GetBlob(weights_key));
820 821 822 823 824 825 826 827 828
      dst_memory_p =
          std::static_pointer_cast<mkldnn::memory>(dev_ctx.GetBlob(dst_key));
      conv_pd =
          std::static_pointer_cast<mkldnn::convolution_forward::primitive_desc>(
              dev_ctx.GetBlob(key_conv_pd));
      if (conv_pd) {
        handler.reset(new platform::ConvMKLDNNHandler(conv_pd, dev_ctx,
                                                      mkldnn_engine, key));
      }
L
lidanqing 已提交
829

830 831
      if (fuse_residual_conn) {
        auto residual_param = ctx.Input<Tensor>("ResidualData");
832
        output->ShareDataWith(*residual_param);
833 834 835
        need_s8_to_u8 =
            (platform::MKLDNNGetDataType<T_out>() == memory::data_type::s8) &&
            unsigned_output;
X
xiaolil1 已提交
836
      }
837
      platform::SetDstMemoryHandler<T_out>(ctx, output, handler, dst_memory_p);
L
lidanqing 已提交
838

A
Adam 已提交
839
      auto residual_reorder_p = std::static_pointer_cast<mkldnn::reorder>(
840 841
          dev_ctx.GetBlob(residual_reorder_key));
      if (residual_reorder_p) {
A
Adam 已提交
842 843
        auto user_residual_data_p = std::static_pointer_cast<mkldnn::memory>(
            dev_ctx.GetBlob(user_residual_key));
844 845 846 847 848 849 850
        {
          platform::RecordEvent record_reorder("int_reorder",
                                               platform::EventRole::kUniqueOp);
          residual_reorder_p->execute(astream, *user_residual_data_p,
                                      *dst_memory_p);
          astream.wait();
        }
A
Adam 已提交
851 852 853 854 855 856 857 858 859 860 861 862 863 864
      }

      auto bias_memory_p =
          std::static_pointer_cast<mkldnn::memory>(dev_ctx.GetBlob(bias_key));

      if (bias_memory_p) {
        conv_p->execute(astream, {{MKLDNN_ARG_SRC, *src_memory_p},
                                  {MKLDNN_ARG_WEIGHTS, *weights_memory_p},
                                  {MKLDNN_ARG_BIAS, *bias_memory_p},
                                  {MKLDNN_ARG_DST, *dst_memory_p}});
      } else {
        conv_p->execute(astream, {{MKLDNN_ARG_SRC, *src_memory_p},
                                  {MKLDNN_ARG_WEIGHTS, *weights_memory_p},
                                  {MKLDNN_ARG_DST, *dst_memory_p}});
865 866
      }
    }
A
Adam 已提交
867
    astream.wait();
868
    if (need_s8_to_u8) {
X
xiaolil1 已提交
869 870
      output->mutable_data<uint8_t>(ctx.GetPlace());
    }
871 872 873
    output->set_layout(DataLayout::kMKLDNN);
    output->set_format(GetMKLDNNFormat(*dst_memory_p));
  }
874 875 876
};

template <typename T>
877
class ConvMKLDNNGradOpKernel : public paddle::framework::OpKernel<T> {
878 879
 public:
  void Compute(const paddle::framework::ExecutionContext& ctx) const override {
880 881 882
    PADDLE_ENFORCE_EQ(platform::is_cpu_place(ctx.GetPlace()), true,
                      paddle::platform::errors::PreconditionNotMet(
                          "Operator DNNL ConvGrad must use CPUPlace"));
883 884
    auto& dev_ctx =
        ctx.template device_context<platform::MKLDNNDeviceContext>();
885 886 887 888 889 890 891 892 893
    const auto& mkldnn_engine = dev_ctx.GetEngine();

    const Tensor* input = ctx.Input<Tensor>("Input");
    const Tensor* filter = ctx.Input<Tensor>("Filter");
    const Tensor* output_grad =
        ctx.Input<Tensor>(framework::GradVarName("Output"));
    Tensor* input_grad = ctx.Output<Tensor>(framework::GradVarName("Input"));
    Tensor* filter_grad = ctx.Output<Tensor>(framework::GradVarName("Filter"));

894
    PADDLE_ENFORCE_EQ(input->layout(), DataLayout::kMKLDNN,
F
FDInSky 已提交
895 896 897
                      platform::errors::InvalidArgument(
                          "The input tensor's layout should be %d, but got %d.",
                          DataLayout::kMKLDNN, input->layout()));
A
Adam 已提交
898
    PADDLE_ENFORCE_NE(input->format(), MKLDNNMemoryFormat::undef,
F
FDInSky 已提交
899 900
                      platform::errors::InvalidArgument(
                          "Got wrong format for Input tensor."));
901

F
FDInSky 已提交
902 903 904 905 906
    PADDLE_ENFORCE_EQ(
        filter->layout(), DataLayout::kMKLDNN,
        platform::errors::InvalidArgument(
            "The filter tensor's layout should be %d, but got %d.",
            DataLayout::kMKLDNN, filter->layout()));
A
Adam 已提交
907
    PADDLE_ENFORCE_NE(filter->format(), MKLDNNMemoryFormat::undef,
F
FDInSky 已提交
908 909
                      platform::errors::InvalidArgument(
                          "Got wrong format for Filter tensor."));
910

F
FDInSky 已提交
911 912 913 914 915
    PADDLE_ENFORCE_EQ(
        output_grad->layout(), DataLayout::kMKLDNN,
        platform::errors::InvalidArgument(
            "The output_grad tensor's layout should be %d, but got %d.",
            DataLayout::kMKLDNN, output_grad->layout()));
A
Adam 已提交
916
    PADDLE_ENFORCE_NE(output_grad->format(), MKLDNNMemoryFormat::undef,
917 918
                      platform::errors::InvalidArgument(
                          "Wrong format set for output_grad tensor"));
919 920 921

    PADDLE_ENFORCE_EQ(
        ctx.Attr<bool>("is_test"), false,
F
FDInSky 已提交
922 923
        platform::errors::InvalidArgument(
            "is_test attribute should be set to False in training phase."));
924

925 926
    if (!input_grad && !filter_grad) return;

A
Adam 已提交
927 928 929 930 931 932 933 934 935
    std::vector<int> strides_temp = ctx.Attr<std::vector<int>>("strides");
    std::vector<int64_t> strides(begin(strides_temp), end(strides_temp));

    std::vector<int> paddings_temp = ctx.Attr<std::vector<int>>("paddings");
    std::vector<int64_t> paddings(begin(paddings_temp), end(paddings_temp));

    std::vector<int> dilations_temp = ctx.Attr<std::vector<int>>("dilations");
    std::vector<int64_t> dilations(begin(dilations_temp), end(dilations_temp));

936
    std::string padding_algorithm = ctx.Attr<std::string>("padding_algorithm");
A
Adam 已提交
937

938
    int groups = ctx.Attr<int>("groups");
939

940
    bool is_conv3d = strides.size() == 3U;
941 942 943 944 945 946
    const T* input_data = input->data<T>();
    const T* filter_data = filter->data<T>();
    const T* output_grad_data = output_grad->data<T>();
    T* input_grad_data = nullptr;
    T* filter_grad_data = nullptr;

947 948 949 950 951 952
    auto input_dims = input->dims();
    auto data_dims = framework::slice_ddim(input_dims, 2, input_dims.size());
    auto filter_dims = filter->dims();
    auto filter_data_dims =
        framework::slice_ddim(filter_dims, 2, filter_dims.size());

A
Adam 已提交
953
    auto ksize = framework::vectorize(filter_data_dims);
954 955 956 957

    UpdatePaddingAndDilation(&paddings, &dilations, padding_algorithm,
                             data_dims, strides, ksize);

A
Adam 已提交
958 959 960
    auto src_tz = paddle::framework::vectorize(input->dims());
    auto weights_tz = paddle::framework::vectorize(filter->dims());

961
    int g = std::max(groups, 1);
962
    GetWeightsTz(weights_tz, g);
A
Adam 已提交
963 964
    auto dst_tz = paddle::framework::vectorize(output_grad->dims());

965
    auto src_format = input->format();
966
    MKLDNNMemoryFormat weights_format =
Y
Yihua Xu 已提交
967
        GetWeightsFormat(filter->format(), g, is_conv3d);
968

969
    // Get an unique name from "argument" name of "input" and "Filter" variable
J
Jacek Czaja 已提交
970
    // as well as attributes of primitive to be created
971
    // This name will be used as key when saving info into device context
972 973
    std::string key = platform::CreateKey(
        dev_ctx, src_tz, ctx.InputName("Input") + ctx.InputName("Filter"));
974

975
    const std::string key_conv_pd = key + "@fwd_pd";
976
    key = platform::ExtendKeyWithThreadInfoIfNeeded(dev_ctx, key);
977
    std::vector<primitive> pipeline;
978

979 980
    // Create user memory descriptors
    auto user_src_md = platform::MKLDNNMemDesc(
981
        {src_tz}, platform::MKLDNNGetDataType<T>(), src_format);
982
    auto user_weights_md = platform::MKLDNNMemDesc(
983
        {weights_tz}, platform::MKLDNNGetDataType<T>(), weights_format);
984 985
    auto user_diff_dst_md = platform::MKLDNNMemDesc(
        {dst_tz}, platform::MKLDNNGetDataType<T>(), output_grad->format());
986 987 988 989 990

    /* create memory descriptor for conv backward without specified format
     * ('any') which lets a primitive (conv backward in this case) choose
     * the memory format preferred for best performance
     */
991

992
    auto chosen_memory_format = MKLDNNMemoryFormat::any;
993
    weights_format = MKLDNNMemoryFormat::any;
994

995
    auto src_md = platform::MKLDNNMemDesc(
996
        src_tz, platform::MKLDNNGetDataType<T>(), chosen_memory_format);
997
    auto diff_src_md = platform::MKLDNNMemDesc(
998
        src_tz, platform::MKLDNNGetDataType<T>(), chosen_memory_format);
999
    auto weights_md = platform::MKLDNNMemDesc(
1000
        weights_tz, platform::MKLDNNGetDataType<T>(), weights_format);
1001
    auto diff_weights_md = platform::MKLDNNMemDesc(
1002
        weights_tz, platform::MKLDNNGetDataType<T>(), weights_format);
1003
    auto diff_dst_md = platform::MKLDNNMemDesc(
1004
        dst_tz, platform::MKLDNNGetDataType<T>(), chosen_memory_format);
1005
    // Retrieve conv_pd from device context
1006 1007 1008
    auto conv_pd =
        std::static_pointer_cast<mkldnn::convolution_forward::primitive_desc>(
            dev_ctx.GetBlob(key_conv_pd));
1009
    PADDLE_ENFORCE_NE(conv_pd, nullptr,
F
FDInSky 已提交
1010 1011
                      platform::errors::InvalidArgument(
                          "Fail to find conv_pd in device context"));
1012

1013
    auto mkldnn_paddings = platform::ToMkldnnPadding(paddings);
1014 1015 1016
    std::transform(dilations.begin(), dilations.end(), dilations.begin(),
                   [](int64_t i) { return i - 1; });
    const mkldnn::memory::dims dilations_dims = dilations;
1017 1018
    // create backward convolution weights primitive descriptor
    auto conv_bwd_weights_desc = mkldnn::convolution_backward_weights::desc(
A
Adam 已提交
1019
        mkldnn::algorithm::convolution_direct, src_md, diff_weights_md,
1020 1021
        diff_dst_md, strides, dilations_dims, mkldnn_paddings[0],
        mkldnn_paddings[1]);
A
Adam 已提交
1022

1023 1024 1025 1026 1027 1028
    auto conv_bwd_weights_pd =
        std::make_shared<mkldnn::convolution_backward_weights::primitive_desc>(
            conv_bwd_weights_desc, mkldnn_engine, *conv_pd);

    // create backward convolution data primitive descriptor
    auto conv_bwd_data_desc = mkldnn::convolution_backward_data::desc(
A
Adam 已提交
1029
        mkldnn::algorithm::convolution_direct, diff_src_md, weights_md,
1030 1031
        diff_dst_md, strides, dilations_dims, mkldnn_paddings[0],
        mkldnn_paddings[1]);
A
Adam 已提交
1032

1033 1034 1035 1036
    auto conv_bwd_data_pd =
        std::make_shared<mkldnn::convolution_backward_data::primitive_desc>(
            conv_bwd_data_desc, mkldnn_engine, *conv_pd);

J
Jacek Czaja 已提交
1037 1038 1039
    platform::ConvMKLDNNHandler handler(conv_pd, conv_bwd_data_pd,
                                        conv_bwd_weights_pd, dev_ctx,
                                        mkldnn_engine, key);
1040 1041 1042 1043 1044 1045 1046 1047

    // create mkldnn memory from input tensors (data/weights)
    auto user_src_memory_p =
        handler.AcquireSrcMemory(user_src_md, to_void_cast<T>(input_data));
    auto user_weights_memory_p = handler.AcquireWeightsMemory(
        user_weights_md, to_void_cast<T>(filter_data));
    auto user_diff_dst_memory_p = handler.AcquireDiffDstMemory(
        user_diff_dst_md, to_void_cast<T>(output_grad_data));
1048
    auto& astream = platform::MKLDNNDeviceContext::tls().get_stream();
1049
    if (filter_grad) {
1050 1051
      auto src_memory_p = handler.AcquireSrcMemoryFromWeightsPrimitive(
          user_src_memory_p, pipeline);
1052

1053 1054 1055 1056
      auto diff_dst_memory_4filter_p =
          handler.AcquireDiffDstMemoryFromWeightsPrimitive(
              user_diff_dst_memory_p, pipeline);

1057
      const size_t size = handler.GetDiffWeightsMemorySize();
1058
      filter_grad_data = filter_grad->mutable_data<T>(ctx.GetPlace(), size);
1059

1060 1061
      // For convoluition with groups write filter grad into
      // oneDNN buffer and then we reorder it into filter_grad tensor
1062
      auto diff_weights_memory_p =
1063 1064 1065
          g > 1 ? handler.AcquireDiffWeightsMemoryFromWeightsPrimitive()
                : handler.AcquireDiffWeightsMemoryFromWeightsPrimitive(
                      reinterpret_cast<void*>(filter_grad_data));
1066

A
Adam 已提交
1067
      auto conv_bwd_weights_p = handler.AcquireConvolutionBackwardWeights();
1068

A
Adam 已提交
1069 1070 1071 1072 1073 1074
      // TODO(grygielski) why no bias_diff?
      conv_bwd_weights_p->execute(
          astream, {{MKLDNN_ARG_SRC, *src_memory_p},
                    {MKLDNN_ARG_DIFF_DST, *diff_dst_memory_4filter_p},
                    {MKLDNN_ARG_DIFF_WEIGHTS, *diff_weights_memory_p}});
      astream.wait();
1075

1076
      filter_grad->set_layout(DataLayout::kMKLDNN);
1077 1078 1079
      // in OneDNN groups in convolution are treated as separate dimension
      // which is not the case in paddlepaddle
      auto filter_fmt = GetMKLDNNFormat(*diff_weights_memory_p);
1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090

      // For convolution with groups convert from blocked to NCHW
      // otherwise there will be problems in next operators working on this data
      if (g > 1) {
        memory::data_type in_type =
            framework::ToMKLDNNDataType(filter_grad->type());
        // for 3d conv with groups (six dimensional data reorder to goidhw)
        // for 2d conv with groups (five dimensional data reorder to goihw)
        mkldnn::memory::format_tag out_format =
            weights_tz.size() == 6 ? mkldnn::memory::format_tag::goidhw
                                   : mkldnn::memory::format_tag::goihw;
1091 1092 1093
        std::string key = platform::CreateKey(dev_ctx, weights_tz, filter_fmt,
                                              out_format, in_type);
        key = platform::ExtendKeyWithThreadInfoIfNeeded(dev_ctx, key);
1094 1095 1096 1097 1098 1099 1100 1101 1102 1103

        platform::ReorderMKLDNNHandler handler(weights_tz, filter_grad->type(),
                                               in_type, dev_ctx, mkldnn_engine,
                                               key);
        auto reorder_dst_memory_p =
            handler.AcquireDstMemory(filter_grad, out_format, ctx.GetPlace());

        auto reorder_p =
            handler.AcquireReorder(reorder_dst_memory_p, diff_weights_memory_p);

1104 1105 1106 1107 1108 1109 1110
        {
          platform::RecordEvent record_reorder("int_reorder",
                                               platform::EventRole::kUniqueOp);
          reorder_p->execute(astream, *diff_weights_memory_p,
                             *reorder_dst_memory_p);
          astream.wait();
        }
1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121

        // So here we have a data in goihw , which can be interpreted as OIHW
        // (OIDHW for conv3d)
        // because filter_grad shape is set for OIHW (OIDHW for conv3d)
        mkldnn::memory::format_tag target_format =
            weights_tz.size() == 6 ? mkldnn::memory::format_tag::oidhw
                                   : mkldnn::memory::format_tag::oihw;
        filter_grad->set_format(target_format);
      } else {
        filter_grad->set_format(filter_fmt);
      }
1122 1123
    }
    if (input_grad) {
1124 1125 1126 1127 1128 1129 1130
      auto weights_memory_p = handler.AcquireWeightsMemoryFromDataPrimitive(
          user_weights_memory_p, pipeline);

      auto diff_dst_memory_4data_p =
          handler.AcquireDiffDstMemoryFromDataPrimitive(user_diff_dst_memory_p,
                                                        pipeline);

1131
      const size_t size = handler.GetDiffSourceMemorySize();
1132
      input_grad_data = input_grad->mutable_data<T>(ctx.GetPlace(), size);
1133

1134 1135 1136
      auto diff_src_memory_p = handler.AcquireDiffSrcMemoryFromDataPrimitive(
          reinterpret_cast<void*>(input_grad_data));

A
Adam 已提交
1137
      auto conv_bwd_data_p = handler.AcquireConvolutionBackwardData();
1138

A
Adam 已提交
1139 1140 1141 1142 1143
      conv_bwd_data_p->execute(astream,
                               {{MKLDNN_ARG_WEIGHTS, *weights_memory_p},
                                {MKLDNN_ARG_DIFF_DST, *diff_dst_memory_4data_p},
                                {MKLDNN_ARG_DIFF_SRC, *diff_src_memory_p}});
      astream.wait();
1144

1145 1146
      input_grad->set_layout(DataLayout::kMKLDNN);
      input_grad->set_format(GetMKLDNNFormat(*diff_src_memory_p));
1147
    }
X
xiaolil1 已提交
1148
  }
1149
};
1150

1151 1152 1153 1154 1155
}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;

X
Xin Pan 已提交
1156 1157 1158
REGISTER_OP_KERNEL_WITH_CUSTOM_TYPE(conv2d, MKLDNN,
                                    ::paddle::platform::CPUPlace, FP32,
                                    ops::kConvMKLDNNFP32,
1159
                                    ops::ConvMKLDNNOpKernel<float, float>);
1160

1161 1162 1163 1164
REGISTER_OP_KERNEL_WITH_CUSTOM_TYPE(
    conv2d, MKLDNN, ::paddle::platform::CPUPlace, BF16, ops::kConvMKLDNNFP32,
    ops::ConvMKLDNNOpKernel<paddle::platform::bfloat16, float>);

1165 1166
REGISTER_OP_KERNEL_WITH_CUSTOM_TYPE(conv2d, MKLDNN,
                                    ::paddle::platform::CPUPlace, U8,
1167
                                    ops::kConvMKLDNNINT8,
1168
                                    ops::ConvMKLDNNOpKernel<uint8_t, float>);
1169 1170 1171

REGISTER_OP_KERNEL_WITH_CUSTOM_TYPE(conv2d, MKLDNN,
                                    ::paddle::platform::CPUPlace, S8,
1172
                                    ops::kConvMKLDNNINT8,
1173
                                    ops::ConvMKLDNNOpKernel<int8_t, float>);
X
Xin Pan 已提交
1174 1175 1176 1177 1178

REGISTER_OP_KERNEL_WITH_CUSTOM_TYPE(conv2d_grad, MKLDNN,
                                    ::paddle::platform::CPUPlace, FP32,
                                    ops::kConvMKLDNNFP32,
                                    ops::ConvMKLDNNGradOpKernel<float>);
1179 1180 1181 1182

REGISTER_OP_KERNEL_WITH_CUSTOM_TYPE(conv3d, MKLDNN,
                                    ::paddle::platform::CPUPlace, FP32,
                                    ops::kConvMKLDNNFP32,
1183
                                    ops::ConvMKLDNNOpKernel<float, float>);
1184 1185 1186 1187 1188

REGISTER_OP_KERNEL_WITH_CUSTOM_TYPE(conv3d_grad, MKLDNN,
                                    ::paddle::platform::CPUPlace, FP32,
                                    ops::kConvMKLDNNFP32,
                                    ops::ConvMKLDNNGradOpKernel<float>);