conv_mkldnn_op.cc 51.3 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

   Licensed under the Apache License, Version 2.0 (the "License");
   you may not use this file except in compliance with the License.
   You may obtain a copy of the License at

   http://www.apache.org/licenses/LICENSE-2.0

   Unless required by applicable law or agreed to in writing, software
   distributed under the License is distributed on an "AS IS" BASIS,
   WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
   See the License for the specific language governing permissions and
   limitations under the License. */

Y
Yu Yang 已提交
15
#include "paddle/fluid/framework/data_layout_transform.h"
16
#include "paddle/fluid/operators/conv_op.h"
J
Jacek Czaja 已提交
17
#include "paddle/fluid/platform/mkldnn_reuse.h"
18

W
wanghuancoder 已提交
19 20 21 22 23 24
namespace paddle {
namespace platform {
class MKLDNNDeviceContext;
}  // namespace platform
}  // namespace paddle

25 26 27
namespace paddle {
namespace operators {

28 29 30 31 32 33
using framework::DataLayout;
using mkldnn::memory;
using mkldnn::primitive;
using mkldnn::reorder;
using mkldnn::stream;
using platform::GetMKLDNNFormat;
34
using platform::to_void_cast;
35

36 37 38
inline MKLDNNMemoryFormat GetWeightsFormat(const MKLDNNMemoryFormat format,
                                           const int groups,
                                           const bool is_conv3d) {
Y
Yihua Xu 已提交
39
  if (is_conv3d) {
40
    return (groups == 1) ? format : MKLDNNMemoryFormat::goidhw;
Y
Yihua Xu 已提交
41
  } else {
42
    return (groups == 1) ? format : MKLDNNMemoryFormat::goihw;
Y
Yihua Xu 已提交
43 44 45
  }
}

46
static mkldnn::memory::data_type GetDstType(bool is_int8, bool is_bfloat16,
47
                                            bool force_fp32_output,
48
                                            std::string fuse_activation,
49 50
                                            bool fuse_residual_conn,
                                            const Tensor* residual_param) {
51
  auto dst_dt = mkldnn::memory::data_type::f32;
52 53 54 55 56 57 58
  if (is_int8) {
    dst_dt = (fuse_activation == "relu" || fuse_activation == "relu6")
                 ? mkldnn::memory::data_type::u8
                 : mkldnn::memory::data_type::s8;
    if (force_fp32_output) {
      dst_dt = mkldnn::memory::data_type::f32;
    }
59 60
    if (fuse_residual_conn && residual_param) {
      auto residual_dt = framework::ToMKLDNNDataType(residual_param->type());
61
      if (dst_dt != residual_dt) dst_dt = residual_dt;
62
    }
63 64 65 66 67 68 69
  } else {
    if (!force_fp32_output && is_bfloat16) {
      dst_dt = mkldnn::memory::data_type::bf16;
      if (fuse_residual_conn && residual_param) {
        dst_dt = framework::ToMKLDNNDataType(residual_param->type());
      }
    }
70 71 72 73
  }
  return dst_dt;
}

74
template <typename T, typename K, typename T_out>
75 76
class ConvMKLDNNHandlerT
    : public platform::MKLDNNHandlerT<T, mkldnn::convolution_forward> {
77
 public:
78 79 80 81 82 83 84 85
  ConvMKLDNNHandlerT(const paddle::framework::ExecutionContext& ctx,
                     const platform::MKLDNNDeviceContext& dev_ctx,
                     const mkldnn::engine mkldnn_engine,
                     platform::Place cpu_place, const Tensor* input,
                     const Tensor* filter, const Tensor* bias, Tensor* output,
                     const std::string& unique_name)
      : platform::MKLDNNHandlerT<T, mkldnn::convolution_forward>(
            dev_ctx, mkldnn_engine, cpu_place,
86
            platform::CreateKey(dev_ctx, framework::vectorize(input->dims()),
87 88 89 90 91 92 93 94 95 96
                                unique_name)) {
    if (!this->isCached()) {
      PADDLE_ENFORCE_EQ(
          input->layout(), DataLayout::kMKLDNN,
          platform::errors::InvalidArgument(
              "The input tensor's layout should be %d, but got %d.",
              DataLayout::kMKLDNN, input->layout()));
      PADDLE_ENFORCE_NE(input->format(), MKLDNNMemoryFormat::undef,
                        platform::errors::InvalidArgument(
                            "Wrong format set for Input tensor"));
97

98 99 100 101 102 103 104 105
      PADDLE_ENFORCE_EQ(
          filter->layout(), DataLayout::kMKLDNN,
          platform::errors::InvalidArgument(
              "The Filter tensor's layout should be %d, but got %d.",
              DataLayout::kMKLDNN, filter->layout()));
      PADDLE_ENFORCE_NE(filter->format(), MKLDNNMemoryFormat::undef,
                        platform::errors::InvalidArgument(
                            "Wrong format set for Filter tensor"));
K
Krzysztof Binias 已提交
106

107 108 109 110 111 112 113 114 115 116 117 118
      PADDLE_ENFORCE_GE(
          input->dims().size(), 4,
          platform::errors::InvalidArgument(
              "Input must be with 4 or 5 dimensions, i.e. NCHW or "
              "NCDHW, but got dimension = %d .",
              input->dims().size()));
      PADDLE_ENFORCE_LE(
          input->dims().size(), 5,
          platform::errors::InvalidArgument(
              "Input must be with 4 or 5 dimensions, i.e. NCHW or "
              "NCDHW, but got dimension = %d .",
              input->dims().size()));
119

120 121 122 123 124 125 126 127 128 129 130 131
      PADDLE_ENFORCE_GE(
          filter->dims().size(), 4,
          platform::errors::InvalidArgument(
              "Filter must be with 4 or 5 dimensions, i.e. OIHW or "
              "OIDHW, but got dimension = %d .",
              filter->dims().size()));
      PADDLE_ENFORCE_LE(
          filter->dims().size(), 5,
          platform::errors::InvalidArgument(
              "Filter must be with 4 or 5 dimensions, i.e. OIHW or "
              "OIDHW, but got dimension = %d .",
              filter->dims().size()));
132

133 134 135 136 137 138 139 140 141
      if (bias) {
        PADDLE_ENFORCE_EQ(
            bias->layout(), DataLayout::kMKLDNN,
            platform::errors::InvalidArgument(
                "The Bias tensor's layout should be %d, but got %d.",
                DataLayout::kMKLDNN, bias->layout()));
        PADDLE_ENFORCE_NE(bias->format(), MKLDNNMemoryFormat::undef,
                          platform::errors::InvalidArgument(
                              "Got wrong format for Bias tensor."));
142

143 144 145 146 147 148
        PADDLE_ENFORCE_EQ(bias->dims().size(), 1,
                          platform::errors::InvalidArgument(
                              "Bias must only have 1 dimension, "
                              "i.e. X, but got dimension = %d .",
                              bias->dims().size()));
      }
F
FDInSky 已提交
149

150 151 152 153 154 155 156 157 158
      const std::string fuse_activation =
          ctx.Attr<std::string>("fuse_activation");
      const float fuse_alpha = ctx.Attr<float>("fuse_alpha");
      const float fuse_beta = ctx.Attr<float>("fuse_beta");
      const bool fuse_residual_conn =
          ctx.Attr<bool>("fuse_residual_connection");
      const int groups = ctx.Attr<int>("groups");
      const std::string padding_algorithm =
          ctx.Attr<std::string>("padding_algorithm");
F
FDInSky 已提交
159

160 161 162 163 164 165
      const auto input_dims = input->dims();
      const auto data_dims =
          framework::slice_ddim(input_dims, 2, input_dims.size());
      const auto filter_dims = filter->dims();
      const auto filter_data_dims =
          framework::slice_ddim(filter_dims, 2, filter_dims.size());
166

167 168
      const auto ksize = framework::vectorize(filter_data_dims);
      const bool is_test = ctx.Attr<bool>("is_test");
169

170 171
      auto strides_temp = ctx.Attr<std::vector<int>>("strides");
      std::vector<int64_t> strides(begin(strides_temp), end(strides_temp));
172

173 174
      auto paddings_temp = ctx.Attr<std::vector<int>>("paddings");
      std::vector<int64_t> paddings(begin(paddings_temp), end(paddings_temp));
A
Adam 已提交
175

176 177 178
      auto dilations_temp = ctx.Attr<std::vector<int>>("dilations");
      std::vector<int64_t> dilations(begin(dilations_temp),
                                     end(dilations_temp));
A
Adam 已提交
179

180 181
      UpdatePaddingAndDilation(&paddings, &dilations, padding_algorithm,
                               data_dims, strides, ksize);
A
Adam 已提交
182

183 184
      std::transform(dilations.begin(), dilations.end(), dilations.begin(),
                     [](int64_t i) { return i - 1; });
185

186
      const auto src_tz = paddle::framework::vectorize(input->dims());
187

188
      auto weights_tz = paddle::framework::vectorize(filter->dims());
189
      platform::GetGroupConvWeightsTz(weights_tz, groups);
190

191
      const auto dst_tz = paddle::framework::vectorize(output->dims());
192

193 194
      const mkldnn::memory::dims stride_dims = strides;
      const auto mkldnn_paddings = platform::ToMkldnnPadding(paddings);
195
      const mkldnn::memory::dims dilations_dims = dilations;
A
Adam 已提交
196

197 198 199 200
      /* create memory descriptor for convolution without specified format
       * ('any') which lets a primitive (convolution in this case) choose
       * the memory format preferred for best performance
       */
201 202
      auto chosen_memory_format = MKLDNNMemoryFormat::any;

203 204 205 206 207 208 209 210 211
      auto data_type = mkldnn::memory::data_type::f32;
      if (ctx.Attr<std::string>("mkldnn_data_type") == "bfloat16" ||
          std::is_same<T_out, platform::bfloat16>::value)
        data_type = mkldnn::memory::data_type::bf16;

      const auto src_md =
          platform::MKLDNNMemDesc(src_tz, data_type, chosen_memory_format);
      const auto weights_md = platform::MKLDNNMemDesc(weights_tz, data_type,
                                                      MKLDNNMemoryFormat::any);
212
      const auto dst_md = platform::MKLDNNMemDesc(
213
          dst_tz, platform::MKLDNNGetDataType<T_out>(), chosen_memory_format);
214

215 216
      const auto fwd_prop_kind = is_test ? mkldnn::prop_kind::forward_inference
                                         : mkldnn::prop_kind::forward_training;
A
Adam 已提交
217

218 219
      const mkldnn::primitive_attr conv_attr = CreatePostOps(
          fuse_activation, fuse_alpha, fuse_beta, fuse_residual_conn);
A
Adam 已提交
220

221 222
      if (bias) {
        auto bias_tz = framework::vectorize(bias->dims());
223 224
        auto bias_md =
            platform::MKLDNNMemDesc(bias_tz, data_type, MKLDNNMemoryFormat::x);
225 226 227

        this->AcquireForwardPrimitiveDescriptor(
            conv_attr, fwd_prop_kind, dnnl::algorithm::convolution_direct,
228
            src_md, weights_md, bias_md, dst_md, stride_dims, dilations_dims,
229 230 231 232
            mkldnn_paddings[0], mkldnn_paddings[1]);
      } else {
        this->AcquireForwardPrimitiveDescriptor(
            conv_attr, fwd_prop_kind, dnnl::algorithm::convolution_direct,
233 234
            src_md, weights_md, dst_md, stride_dims, dilations_dims,
            mkldnn_paddings[0], mkldnn_paddings[1]);
235 236 237
      }
    }
  }
238

239 240 241 242 243 244 245 246 247 248
  mkldnn::primitive_attr CreatePostOps(
      std::string fuse_activation, float fuse_alpha, float fuse_beta,
      bool fuse_residual_conn, const std::vector<float> output_shift_scale = {},
      float sum_scale = 1.0f) {
    mkldnn::primitive_attr conv_attr;
    mkldnn::post_ops post_operations;
    if (output_shift_scale.size() > 0) {
      int mask = output_shift_scale.size() > 1 ? 1 << 1 : 0;
      conv_attr.set_output_scales(mask, output_shift_scale);
    }
249

250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276
    // Fusion with Elementwise layer relies on adding a sum post-operation with
    // the scale parameter. It is assumed that when fuse_residual_connection is
    // true, the output tensor contains the data coming from residual
    // connection. The result of this post_op is:
    // Output = scale * Output + Conv_Out.
    if (fuse_residual_conn) {
      post_operations.append_sum(sum_scale);
    }
    // Fusion with ReLU layer is executed through the PostOps feature. Create a
    // PostOps object and configure it to execute an eltwise relu operation.
    if (fuse_activation == "relu" || fuse_activation == "leaky_relu") {
      constexpr float scale = 1.0f;
      post_operations.append_eltwise(scale, mkldnn::algorithm::eltwise_relu,
                                     fuse_alpha, fuse_beta);
    } else if (fuse_activation == "relu6") {
      constexpr float scale = 1.0f;
      post_operations.append_eltwise(scale,
                                     mkldnn::algorithm::eltwise_bounded_relu,
                                     fuse_alpha, fuse_beta);
    } else if (fuse_activation == "swish") {
      constexpr float scale = 1.0f;
      post_operations.append_eltwise(scale, mkldnn::algorithm::eltwise_swish,
                                     fuse_alpha, fuse_beta);
    }
    conv_attr.set_post_ops(post_operations);
    return conv_attr;
  }
277

278 279 280
  std::shared_ptr<mkldnn::memory> AcquireSrcMemoryWithReorder(
      const framework::Tensor* input) {
    const T* input_data = input->data<T>();
281 282
    const std::string user_key_suffix{"@src_mem_p_user"};
    auto user_src_mem_p = this->AcquireMemory(user_key_suffix);
283

284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299
    if (!user_src_mem_p) {
      auto user_src_md = platform::MKLDNNMemDesc(
          framework::vectorize(input->dims()), platform::MKLDNNGetDataType<T>(),
          input->format());
      return this->AcquireMemoryWithReorder(
          user_src_md, this->fwd_pd_->src_desc(), to_void_cast<T>(input_data),
          "@src_mem_p");
    } else {
      const std::string target_key_suffix{"@src_mem_p_target"};
      const auto target_src_mem_p = this->AcquireMemory(target_key_suffix);
      user_src_mem_p->set_data_handle(to_void_cast<T>(input_data));
      if (user_src_mem_p != target_src_mem_p) {
        this->AcquireReorder(user_src_mem_p, target_src_mem_p, "@src_mem_p");
      }
      return target_src_mem_p;
    }
300 301 302 303 304 305 306 307 308 309 310
  }

  std::shared_ptr<mkldnn::memory> AcquireWeightsMemoryWithReorder(
      const framework::Tensor* filter, const int groups, const bool is_conv3d,
      const bool is_test) {
    // This is workaround to make execution faster, delete
    // if statement after including md inside Tensor
    auto weights_mem_p = this->AcquireMemory("@weights_mem_p_target");
    if (is_test && weights_mem_p) {
      return weights_mem_p;
    } else {
311
      const K* filter_data = filter->data<K>();
312
      auto weights_tz = framework::vectorize(filter->dims());
313
      platform::GetGroupConvWeightsTz(weights_tz, groups);
314 315

      auto user_src_md = platform::MKLDNNMemDesc(
316
          weights_tz, platform::MKLDNNGetDataType<K>(),
317 318 319 320
          GetWeightsFormat(filter->format(), groups, is_conv3d));

      return this->AcquireMemoryWithReorder(
          user_src_md, this->fwd_pd_->weights_desc(),
321
          to_void_cast<K>(filter_data), "@weights_mem_p", is_test);
322
    }
323
  }
324

325 326
  std::shared_ptr<mkldnn::memory> AcquireBiasMemoryWithReorder(
      const framework::Tensor* bias, const bool is_test) {
327 328 329 330 331 332 333 334 335 336 337 338 339
    auto bias_mem_p = this->AcquireMemory("@bias_mem_p_target");
    if (is_test && bias_mem_p) {
      return bias_mem_p;
    } else {
      const K* bias_data = bias->data<K>();
      auto user_bias_md = platform::MKLDNNMemDesc(
          framework::vectorize(bias->dims()), platform::MKLDNNGetDataType<K>(),
          MKLDNNMemoryFormat::x);

      return this->AcquireMemoryWithReorder(
          user_bias_md, this->fwd_pd_->bias_desc(), to_void_cast<K>(bias_data),
          "@bias_mem_p", is_test);
    }
340
  }
341

342 343
  std::shared_ptr<mkldnn::memory> AcquireResidualMemory(
      const framework::Tensor* residual_param) {
344 345 346 347
    void* residual_data =
        residual_param->type() == framework::DataTypeTrait<T_out>::DataType()
            ? to_void_cast<T_out>(residual_param->data<T_out>())
            : to_void_cast<T>(residual_param->data<T>());
348 349 350 351 352 353 354 355 356
    auto residual_mem_p = this->AcquireMemory("@user_residual_data_mem_p");
    if (residual_mem_p) {
      residual_mem_p->set_data_handle(residual_data);
      return residual_mem_p;
    } else {
      auto user_residual_md = platform::MKLDNNMemDesc(
          framework::vectorize(residual_param->dims()),
          framework::ToMKLDNNDataType(residual_param->type()),
          residual_param->format());
357

358 359 360
      return this->AcquireMemoryFromPrimitive(user_residual_md, residual_data,
                                              "@user_residual_data_mem_p");
    }
361 362 363 364 365 366 367 368
  }

  std::shared_ptr<mkldnn::memory> AcquireDstMemoryWithResidual(
      framework::Tensor* output, const framework::Tensor* residual_param) {
    std::shared_ptr<dnnl::memory> dst_memory_p;
    if (residual_param->format() !=
        platform::GetMKLDNNFormat(this->fwd_pd_->dst_desc())) {
      auto residual_memory_p = this->AcquireResidualMemory(residual_param);
369
      dst_memory_p = this->template AcquireDstMemory<T_out>(output);
370 371 372 373 374 375
      this->AcquireReorder(residual_memory_p, dst_memory_p, "@residual_dst");
    } else {
      // Changing ShareDataWith to TensorCopy results in performance drop
      // on ResNet architectures
      // (https://github.com/PaddlePaddle/Paddle/issues/22964)
      output->ShareDataWith(*residual_param);
376
      dst_memory_p = this->template AcquireDstMemory<T_out>(output);
377 378 379 380 381 382 383 384 385 386 387 388 389 390
    }
    return dst_memory_p;
  }
};

template <typename T, typename K>
class ConvMKLDNNOpKernel : public paddle::framework::OpKernel<T> {
 public:
  void Compute(const paddle::framework::ExecutionContext& ctx) const override {
    PADDLE_ENFORCE_EQ(platform::is_cpu_place(ctx.GetPlace()), true,
                      paddle::platform::errors::PreconditionNotMet(
                          "Operator DNNL Conv must use CPUPlace"));
    bool is_INT8 =
        std::is_same<T, int8_t>::value || std::is_same<T, uint8_t>::value;
391 392 393 394 395 396 397 398
    bool is_BFLOAT16 = ctx.Attr<std::string>("mkldnn_data_type") == "bfloat16";
    auto residual_param = ctx.Input<Tensor>("ResidualData");
    bool fuse_residual_conn = ctx.Attr<bool>("fuse_residual_connection");
    std::string fuse_activation = ctx.Attr<std::string>("fuse_activation");
    bool force_fp32_output = ctx.Attr<bool>("force_fp32_output");
    auto dst_dt =
        GetDstType(is_INT8, is_BFLOAT16, force_fp32_output, fuse_activation,
                   fuse_residual_conn, residual_param);
399
    if (!is_INT8) {
400 401 402 403 404
      if (dst_dt == mkldnn::memory::data_type::f32) {
        ComputeFP32<float>(ctx);
      } else if (dst_dt == mkldnn::memory::data_type::bf16) {
        ComputeFP32<platform::bfloat16>(ctx);
      }
405
    } else {
406 407 408 409 410 411 412
      if (dst_dt == mkldnn::memory::data_type::f32) {
        ComputeINT8<float>(ctx);
      } else if (dst_dt == mkldnn::memory::data_type::u8) {
        ComputeINT8<uint8_t>(ctx);
      } else if (dst_dt == mkldnn::memory::data_type::s8) {
        ComputeINT8<int8_t>(ctx);
      }
413
    }
414
  }
415

416
  template <typename T_out>
417 418 419 420
  void ComputeFP32(const paddle::framework::ExecutionContext& ctx) const {
    auto& dev_ctx =
        ctx.template device_context<paddle::platform::MKLDNNDeviceContext>();
    const auto& mkldnn_engine = dev_ctx.GetEngine();
421

422 423 424
    const bool is_test = ctx.Attr<bool>("is_test");
    const bool is_conv3d = ctx.Attr<std::vector<int>>("strides").size() == 3U;
    const bool fuse_residual_conn = ctx.Attr<bool>("fuse_residual_connection");
425

426 427 428 429 430
    const auto* input = ctx.Input<Tensor>("Input");
    const auto* filter = ctx.Input<Tensor>("Filter");
    const auto* bias =
        ctx.HasInput("Bias") ? ctx.Input<Tensor>("Bias") : nullptr;
    auto* output = ctx.Output<Tensor>("Output");
431

432
    ConvMKLDNNHandlerT<T, K, T_out> handler(
433 434
        ctx, dev_ctx, mkldnn_engine, ctx.GetPlace(), input, filter, bias,
        output, ctx.InputName("Input") + ctx.InputName("Filter"));
435

436
    auto src_memory_p = handler.AcquireSrcMemoryWithReorder(input);
437

438 439
    auto weights_memory_p = handler.AcquireWeightsMemoryWithReorder(
        filter, ctx.Attr<int>("groups"), is_conv3d, is_test);
440

441 442 443
    std::shared_ptr<dnnl::memory> dst_memory_p;
    if (fuse_residual_conn) {
      auto* residual_param = ctx.Input<Tensor>("ResidualData");
444
      dst_memory_p =
445 446
          handler.AcquireDstMemoryWithResidual(output, residual_param);
    } else {
447
      dst_memory_p = handler.template AcquireDstMemory<T_out>(output);
448
    }
449

450
    auto conv_p = handler.AcquireForwardPrimitive();
A
Adam 已提交
451

452 453 454 455
    std::unordered_map<int, dnnl::memory> args = {
        {MKLDNN_ARG_SRC, *src_memory_p},
        {MKLDNN_ARG_WEIGHTS, *weights_memory_p},
        {MKLDNN_ARG_DST, *dst_memory_p}};
A
Adam 已提交
456

457 458 459
    if (bias) {
      auto bias_memory_p = handler.AcquireBiasMemoryWithReorder(bias, is_test);
      args.insert({MKLDNN_ARG_BIAS, *bias_memory_p});
460
    }
461

462
    auto& astream = platform::MKLDNNDeviceContext::tls().get_stream();
463
    conv_p->execute(astream, args);
A
Adam 已提交
464
    astream.wait();
465

466 467
    output->set_layout(DataLayout::kMKLDNN);
    output->set_format(GetMKLDNNFormat(*dst_memory_p));
468
  }
469

470
  template <typename T_out>
471 472 473 474 475 476 477 478 479 480
  void ComputeINT8(const paddle::framework::ExecutionContext& ctx) const {
    const bool is_test = ctx.Attr<bool>("is_test");

    auto& dev_ctx =
        ctx.template device_context<paddle::platform::MKLDNNDeviceContext>();
    const auto& mkldnn_engine = dev_ctx.GetEngine();

    auto* input = ctx.Input<Tensor>("Input");
    auto* output = ctx.Output<Tensor>("Output");

481
    PADDLE_ENFORCE_EQ(input->layout(), DataLayout::kMKLDNN,
F
FDInSky 已提交
482 483 484
                      platform::errors::InvalidArgument(
                          "The input tensor's layout should be %d, but got %d.",
                          DataLayout::kMKLDNN, input->layout()));
A
Adam 已提交
485
    PADDLE_ENFORCE_NE(input->format(), MKLDNNMemoryFormat::undef,
F
FDInSky 已提交
486 487 488 489 490 491 492 493 494 495 496 497 498
                      platform::errors::InvalidArgument(
                          "Got wrong format for Input tensor."));

    PADDLE_ENFORCE_GE(input->dims().size(), 4,
                      platform::errors::InvalidArgument(
                          "Input must be with 4 or 5 dimensions, i.e. NCHW or "
                          "NCDHW, but got dimension = %d .",
                          input->dims().size()));
    PADDLE_ENFORCE_LE(input->dims().size(), 5,
                      platform::errors::InvalidArgument(
                          "Input must be with 4 or 5 dimensions, i.e. NCHW or "
                          "NCDHW, but got dimension = %d .",
                          input->dims().size()));
499

500
    std::string fuse_activation = ctx.Attr<std::string>("fuse_activation");
X
xiaolil1 已提交
501
    bool fuse_residual_conn = ctx.Attr<bool>("fuse_residual_connection");
502 503
    bool unsigned_output =
        (fuse_activation == "relu" || fuse_activation == "relu6");
504

505 506
    const T* input_data = input->data<T>();

A
Adam 已提交
507
    auto src_tz = paddle::framework::vectorize(input->dims());
508

X
xiaolil1 已提交
509 510
    mkldnn::memory::data_type src_dt =
        paddle::framework::ToMKLDNNDataType(input->type());
511

512 513 514
    std::string key =
        platform::CreateKey(dev_ctx, src_tz, src_dt,
                            ctx.InputName("Input") + ctx.InputName("Filter"));
515

516 517
    const std::string key_conv_pd = key + "@conv_pd";
    bool need_s8_to_u8 = false;
518 519 520
    std::shared_ptr<mkldnn::convolution_forward> conv_p;
    std::shared_ptr<mkldnn::memory> src_memory_p;
    std::shared_ptr<mkldnn::memory> user_src_memory_p;
521
    std::shared_ptr<mkldnn::memory> dst_memory_p;
522
    std::vector<primitive> pipeline;
523
    std::shared_ptr<mkldnn::convolution_forward::primitive_desc> conv_pd;
524 525 526 527 528
    std::shared_ptr<platform::ConvMKLDNNHandler> handler;

    // This is workaround for hacky implementation
    // of conv int8 mkl-dnn. Once conv fp32 and conv int8
    // are merged/unified, this will disappear
529 530 531 532 533 534 535 536 537 538 539
    auto key_tid = platform::ExtendKeyWithThreadInfoIfNeeded(dev_ctx, key);

    auto prim_key = key_tid + "@conv_p";
    auto dst_key = key_tid + "@dst_mem_p";
    auto src_key = key_tid + "@src_mem_p";
    auto weights_key = key_tid + "@weights_mem_p";
    auto bias_key = key_tid + "@bias_mem_p";
    auto user_src_key = key_tid + "@user_src_mem_p";
    auto user_residual_key = key_tid + "@user_residual_data_mem_p";
    auto src_reorder_key = key_tid + "@src_mem_preorder_p";
    auto residual_reorder_key = key_tid + "@residual_data_mem_preorder_p";
540 541 542 543

    conv_p = std::static_pointer_cast<mkldnn::convolution_forward>(
        dev_ctx.GetBlob(prim_key));

544
    auto& astream = platform::MKLDNNDeviceContext::tls().get_stream();
A
Adam 已提交
545

546
    if (conv_p == nullptr || !is_test) {
547 548 549 550 551 552
      float fuse_alpha = ctx.Attr<float>("fuse_alpha");
      float fuse_beta = ctx.Attr<float>("fuse_beta");
      bool force_fp32_output = ctx.Attr<bool>("force_fp32_output");

      auto* filter = ctx.Input<Tensor>("Filter");

F
FDInSky 已提交
553 554 555 556 557
      PADDLE_ENFORCE_EQ(
          filter->layout(), DataLayout::kMKLDNN,
          platform::errors::InvalidArgument(
              "The filter tensor's layout should be %d, but got %d.",
              DataLayout::kMKLDNN, filter->layout()));
A
Adam 已提交
558
      PADDLE_ENFORCE_NE(filter->format(), MKLDNNMemoryFormat::undef,
F
FDInSky 已提交
559 560 561 562 563 564 565 566 567 568 569 570 571
                        platform::errors::InvalidArgument(
                            "Got wrong format for Filter tensor."));

      PADDLE_ENFORCE_GE(filter->dims().size(), 4,
                        platform::errors::InvalidArgument(
                            "Filter must be with 4 or 5 dimensions, i.e. OIHW "
                            "or OIDHW, but got dimensions = %d .",
                            filter->dims().size()));
      PADDLE_ENFORCE_LE(filter->dims().size(), 5,
                        platform::errors::InvalidArgument(
                            "Filter must be with 4 or 5 dimensions, i.e. OIHW "
                            "or OIDHW, but got dimensions = %d .",
                            filter->dims().size()));
572 573 574

      PADDLE_ENFORCE_EQ(
          !fuse_residual_conn || !force_fp32_output, true,
575 576
          platform::errors::Unimplemented(
              "residual fusion does not support force output with fp32"));
577 578 579 580

      auto* bias = ctx.HasInput("Bias") ? ctx.Input<Tensor>("Bias") : nullptr;

      if (bias) {
F
FDInSky 已提交
581 582 583 584 585
        PADDLE_ENFORCE_EQ(
            bias->layout(), DataLayout::kMKLDNN,
            platform::errors::InvalidArgument(
                "The bias tensor's layout should be %d, but got %d.",
                DataLayout::kMKLDNN, bias->layout()));
A
Adam 已提交
586
        PADDLE_ENFORCE_NE(bias->format(), MKLDNNMemoryFormat::undef,
F
FDInSky 已提交
587 588
                          platform::errors::InvalidArgument(
                              "Got wrong format for Bias tensor."));
589 590

        PADDLE_ENFORCE_EQ(bias->dims().size(), 1,
F
FDInSky 已提交
591 592 593 594
                          platform::errors::InvalidArgument(
                              "Bias must only have 1 dimension, i.e. X, but "
                              "got dimension = %d .",
                              bias->dims().size()));
595 596
      }

A
Adam 已提交
597 598 599 600 601 602 603 604 605 606
      std::vector<int> strides_temp = ctx.Attr<std::vector<int>>("strides");
      std::vector<int64_t> strides(begin(strides_temp), end(strides_temp));

      std::vector<int> paddings_temp = ctx.Attr<std::vector<int>>("paddings");
      std::vector<int64_t> paddings(begin(paddings_temp), end(paddings_temp));

      std::vector<int> dilations_temp = ctx.Attr<std::vector<int>>("dilations");
      std::vector<int64_t> dilations(begin(dilations_temp),
                                     end(dilations_temp));

607 608
      std::string padding_algorithm =
          ctx.Attr<std::string>("padding_algorithm");
609 610 611 612

      bool is_conv3d = strides.size() == 3U;

      PADDLE_ENFORCE_NE(is_conv3d, true,
613 614
                        platform::errors::Unimplemented(
                            "int8 does not support conv3d currently"));
615

616 617 618 619 620 621
      auto input_dims = input->dims();
      auto data_dims = framework::slice_ddim(input_dims, 2, input_dims.size());
      auto filter_dims = filter->dims();
      auto filter_data_dims =
          framework::slice_ddim(filter_dims, 2, filter_dims.size());

A
Adam 已提交
622
      auto ksize = framework::vectorize(filter_data_dims);
623 624 625 626

      UpdatePaddingAndDilation(&paddings, &dilations, padding_algorithm,
                               data_dims, strides, ksize);

627
      int groups = ctx.Attr<int>("groups");
A
Adam 已提交
628
      auto weights_tz = paddle::framework::vectorize(filter->dims());
629 630
      int g = std::max(groups, 1);

631
      platform::GetGroupConvWeightsTz(weights_tz, g);
A
Adam 已提交
632
      auto dst_tz = paddle::framework::vectorize(output->dims());
633

634 635
      std::transform(dilations.begin(), dilations.end(), dilations.begin(),
                     [](int64_t i) { return i - 1; });
636

637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664
      const K* filter_data = filter->data<K>();
      auto scale_in_data = ctx.Attr<float>("Scale_in");
      auto scale_in_eltwise_data = ctx.Attr<float>("Scale_in_eltwise");
      auto scale_weights_data = ctx.Attr<std::vector<float>>("Scale_weights");
      auto scale_out_data =
          force_fp32_output ? 1.0f : ctx.Attr<float>("Scale_out");
      float sum_scale =
          fuse_residual_conn ? scale_out_data / scale_in_eltwise_data : 1.0f;

      bool is_multi_channel = scale_weights_data.size() > 1;

      int count = is_multi_channel ? (g > 1 ? (weights_tz)[1] * (weights_tz)[0]
                                            : (weights_tz)[0])
                                   : 1;
      std::vector<float> output_shift_scale(count);
#pragma omp parallel for if (count > 1)
      for (int i = 0; i < count; i++) {
        if (scale_weights_data[i] == 0.0)
          output_shift_scale[i] =
              scale_out_data;  // weights data will contain 0
                               // in some models, then weights
                               // scale couldn't be calculated
        else
          output_shift_scale[i] =
              static_cast<float>(static_cast<double>(scale_out_data) /
                                 (static_cast<double>(scale_in_data) *
                                  static_cast<double>(scale_weights_data[i])));
      }
L
lidanqing 已提交
665

666 667 668 669 670 671 672
      auto user_src_md =
          platform::MKLDNNMemDesc({src_tz}, src_dt, input->format());
      auto user_weights_md = platform::MKLDNNMemDesc(
          {weights_tz}, platform::MKLDNNGetDataType<K>(),
          ((g) == 1) ? MKLDNNMemoryFormat::oihw : MKLDNNMemoryFormat::goihw);

      /* create memory descriptor for convolution without specified format
673 674 675
       * ('any') which lets a primitive (convolution in this case) choose
       * the memory format preferred for best performance
       */
676
      auto chosen_memory_format = MKLDNNMemoryFormat::any;
677

A
Adam 已提交
678
      std::vector<int64_t> bias_tz;
679 680 681 682 683 684 685 686 687 688 689 690 691

      auto src_md =
          platform::MKLDNNMemDesc(src_tz, src_dt, chosen_memory_format);
      auto weights_md = platform::MKLDNNMemDesc(
          weights_tz, memory::data_type::s8, chosen_memory_format);
      auto dst_md = platform::MKLDNNMemDesc(
          dst_tz, platform::MKLDNNGetDataType<T_out>(), chosen_memory_format);

      handler.reset(
          new platform::ConvMKLDNNHandler(dev_ctx, mkldnn_engine, key));
      // create a conv primitive descriptor and save it for usage in backward
      auto propagation = is_test ? mkldnn::prop_kind::forward_scoring
                                 : mkldnn::prop_kind::forward_training;
L
lidanqing 已提交
692

693
      if (bias) {
A
Adam 已提交
694
        bias_tz = paddle::framework::vectorize(bias->dims());
695 696 697
        auto bias_md = platform::MKLDNNMemDesc(bias_tz, memory::data_type::s32,
                                               MKLDNNMemoryFormat::x);
        conv_pd = handler->AcquireConvolutionPrimitiveDescriptor(
698
            src_md, weights_md, bias_md, dst_md, strides, dilations, paddings,
699 700 701 702
            mkldnn_engine, fuse_activation, fuse_alpha, fuse_beta,
            fuse_residual_conn, propagation, output_shift_scale, sum_scale);
      } else {
        conv_pd = handler->AcquireConvolutionPrimitiveDescriptor(
703 704
            src_md, weights_md, boost::none, dst_md, strides, dilations,
            paddings, mkldnn_engine, fuse_activation, fuse_alpha, fuse_beta,
705 706
            fuse_residual_conn, propagation, output_shift_scale, sum_scale);
      }
L
lidanqing 已提交
707

708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726
      // create mkldnn memory from input tensors (data/weights)
      user_src_memory_p =
          handler->AcquireSrcMemory(user_src_md, to_void_cast<T>(input_data));
      auto user_weights_memory_p = handler->AcquireWeightsMemory(
          user_weights_md, to_void_cast<K>(filter_data));

      // create reorder primitive if the input format is not the preferred one
      src_memory_p =
          handler->AcquireSrcMemoryFromPrimitive(user_src_memory_p, pipeline);

      std::shared_ptr<mkldnn::memory> weights_memory_p;
      int mask_reorder =
          is_multi_channel ? ((g != 1) ? (1 << 1) + (1 << 0) : 1 << 0) : 0;
      weights_memory_p = handler->AcquireWeightsMemoryFromPrimitive(
          user_weights_memory_p, pipeline, is_test, true, scale_weights_data,
          mask_reorder);

      if (fuse_residual_conn) {
        auto residual_param = ctx.Input<Tensor>("ResidualData");
F
FDInSky 已提交
727 728 729 730 731 732 733
        PADDLE_ENFORCE_EQ(
            output->dims(), residual_param->dims(),
            platform::errors::InvalidArgument(
                "Output and elementwise parameter need to have the "
                "same dimension sizes, but got output's dimension = %d"
                " and residual param's dimension =%d .",
                output->dims().size(), residual_param->dims().size()));
734 735 736 737
        auto residual_dt =
            paddle::framework::ToMKLDNNDataType(residual_param->type());
        if (residual_param->format() != handler->GetDstFormat()) {
          auto residual_data_tz =
A
Adam 已提交
738
              paddle::framework::vectorize(residual_param->dims());
739 740 741 742 743 744
          auto user_residual_md = platform::MKLDNNMemDesc(
              residual_data_tz, residual_dt, residual_param->format());
          dst_memory_p = platform::SetDstMemory<T_out>(
              ctx, output, residual_param, user_residual_md, handler,
              &pipeline);
        } else {
745
          output->ShareDataWith(*residual_param);
746 747 748 749 750 751 752 753
          dst_memory_p = platform::SetDstMemory<T_out>(ctx, output, handler);
        }
        need_s8_to_u8 =
            (platform::MKLDNNGetDataType<T_out>() == memory::data_type::s8) &&
            unsigned_output;
      } else {
        dst_memory_p = platform::SetDstMemory<T_out>(ctx, output, handler);
      }
L
lidanqing 已提交
754

755 756
      // create convolution op primitive
      auto scale_bias_key = key + "@scale_bias";
A
Adam 已提交
757
      conv_p = handler->AcquireConvolution();
758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777
      if (bias) {
        const K* bias_data = bias->data<K>();
        auto user_bias_md = platform::MKLDNNMemDesc(
            {bias_tz}, platform::MKLDNNGetDataType<K>(), MKLDNNMemoryFormat::x);
        auto user_bias_memory_p = handler->AcquireBiasMemory(
            user_bias_md, to_void_cast<K>(bias_data));
        std::shared_ptr<mkldnn::memory> bias_memory_p;
        int mask_reorder = is_multi_channel ? 1 << 0 : 1;
        int count =
            is_multi_channel
                ? (g > 1 ? (weights_tz)[1] * (weights_tz)[0] : (weights_tz)[0])
                : 1;
        std::vector<float> scale_bias_data(count);
#pragma omp parallel for if (count > 1)
        for (int i = 0; i < count; i++) {
          scale_bias_data[i] = scale_in_data * scale_weights_data[i];
        }
        bias_memory_p = handler->AcquireBiasMemoryFromPrimitive(
            user_bias_memory_p, pipeline, is_test, true, scale_bias_data,
            mask_reorder);
A
Adam 已提交
778 779 780 781
        conv_p->execute(astream, {{MKLDNN_ARG_SRC, *src_memory_p},
                                  {MKLDNN_ARG_WEIGHTS, *weights_memory_p},
                                  {MKLDNN_ARG_BIAS, *bias_memory_p},
                                  {MKLDNN_ARG_DST, *dst_memory_p}});
782
      } else {
A
Adam 已提交
783 784 785
        conv_p->execute(astream, {{MKLDNN_ARG_SRC, *src_memory_p},
                                  {MKLDNN_ARG_WEIGHTS, *weights_memory_p},
                                  {MKLDNN_ARG_DST, *dst_memory_p}});
786 787
      }
    } else {
A
Adam 已提交
788
      auto src_memory_reorder_p = std::static_pointer_cast<mkldnn::reorder>(
789 790 791 792 793 794 795
          dev_ctx.GetBlob(src_reorder_key));
      src_memory_p =
          std::static_pointer_cast<mkldnn::memory>(dev_ctx.GetBlob(src_key));
      if (src_memory_reorder_p) {
        user_src_memory_p = std::static_pointer_cast<mkldnn::memory>(
            dev_ctx.GetBlob(user_src_key));
        user_src_memory_p->set_data_handle(to_void_cast<T>(input_data));
796 797 798 799 800 801 802
        {
          platform::RecordEvent record_reorder("int_reorder",
                                               platform::EventRole::kUniqueOp);
          src_memory_reorder_p->execute(astream, *user_src_memory_p,
                                        *src_memory_p);
          astream.wait();
        }
803 804 805
      } else if (src_memory_p) {
        src_memory_p->set_data_handle(to_void_cast<T>(input_data));
      }
A
Adam 已提交
806 807
      auto weights_memory_p = std::static_pointer_cast<mkldnn::memory>(
          dev_ctx.GetBlob(weights_key));
808 809 810 811 812 813 814 815 816
      dst_memory_p =
          std::static_pointer_cast<mkldnn::memory>(dev_ctx.GetBlob(dst_key));
      conv_pd =
          std::static_pointer_cast<mkldnn::convolution_forward::primitive_desc>(
              dev_ctx.GetBlob(key_conv_pd));
      if (conv_pd) {
        handler.reset(new platform::ConvMKLDNNHandler(conv_pd, dev_ctx,
                                                      mkldnn_engine, key));
      }
L
lidanqing 已提交
817

818 819
      if (fuse_residual_conn) {
        auto residual_param = ctx.Input<Tensor>("ResidualData");
820
        output->ShareDataWith(*residual_param);
821 822 823
        need_s8_to_u8 =
            (platform::MKLDNNGetDataType<T_out>() == memory::data_type::s8) &&
            unsigned_output;
X
xiaolil1 已提交
824
      }
825
      platform::SetDstMemoryHandler<T_out>(ctx, output, handler, dst_memory_p);
L
lidanqing 已提交
826

A
Adam 已提交
827
      auto residual_reorder_p = std::static_pointer_cast<mkldnn::reorder>(
828 829
          dev_ctx.GetBlob(residual_reorder_key));
      if (residual_reorder_p) {
A
Adam 已提交
830 831
        auto user_residual_data_p = std::static_pointer_cast<mkldnn::memory>(
            dev_ctx.GetBlob(user_residual_key));
832 833 834 835 836 837 838
        {
          platform::RecordEvent record_reorder("int_reorder",
                                               platform::EventRole::kUniqueOp);
          residual_reorder_p->execute(astream, *user_residual_data_p,
                                      *dst_memory_p);
          astream.wait();
        }
A
Adam 已提交
839 840 841 842 843 844 845 846 847 848 849 850 851 852
      }

      auto bias_memory_p =
          std::static_pointer_cast<mkldnn::memory>(dev_ctx.GetBlob(bias_key));

      if (bias_memory_p) {
        conv_p->execute(astream, {{MKLDNN_ARG_SRC, *src_memory_p},
                                  {MKLDNN_ARG_WEIGHTS, *weights_memory_p},
                                  {MKLDNN_ARG_BIAS, *bias_memory_p},
                                  {MKLDNN_ARG_DST, *dst_memory_p}});
      } else {
        conv_p->execute(astream, {{MKLDNN_ARG_SRC, *src_memory_p},
                                  {MKLDNN_ARG_WEIGHTS, *weights_memory_p},
                                  {MKLDNN_ARG_DST, *dst_memory_p}});
853 854
      }
    }
A
Adam 已提交
855
    astream.wait();
856
    if (need_s8_to_u8) {
X
xiaolil1 已提交
857 858
      output->mutable_data<uint8_t>(ctx.GetPlace());
    }
859 860 861
    output->set_layout(DataLayout::kMKLDNN);
    output->set_format(GetMKLDNNFormat(*dst_memory_p));
  }
862 863 864
};

template <typename T>
865
class ConvMKLDNNGradOpKernel : public paddle::framework::OpKernel<T> {
866 867
 public:
  void Compute(const paddle::framework::ExecutionContext& ctx) const override {
868 869 870
    PADDLE_ENFORCE_EQ(platform::is_cpu_place(ctx.GetPlace()), true,
                      paddle::platform::errors::PreconditionNotMet(
                          "Operator DNNL ConvGrad must use CPUPlace"));
871 872
    auto& dev_ctx =
        ctx.template device_context<platform::MKLDNNDeviceContext>();
873 874 875 876 877 878 879 880 881
    const auto& mkldnn_engine = dev_ctx.GetEngine();

    const Tensor* input = ctx.Input<Tensor>("Input");
    const Tensor* filter = ctx.Input<Tensor>("Filter");
    const Tensor* output_grad =
        ctx.Input<Tensor>(framework::GradVarName("Output"));
    Tensor* input_grad = ctx.Output<Tensor>(framework::GradVarName("Input"));
    Tensor* filter_grad = ctx.Output<Tensor>(framework::GradVarName("Filter"));

882
    PADDLE_ENFORCE_EQ(input->layout(), DataLayout::kMKLDNN,
F
FDInSky 已提交
883 884 885
                      platform::errors::InvalidArgument(
                          "The input tensor's layout should be %d, but got %d.",
                          DataLayout::kMKLDNN, input->layout()));
A
Adam 已提交
886
    PADDLE_ENFORCE_NE(input->format(), MKLDNNMemoryFormat::undef,
F
FDInSky 已提交
887 888
                      platform::errors::InvalidArgument(
                          "Got wrong format for Input tensor."));
889

F
FDInSky 已提交
890 891 892 893 894
    PADDLE_ENFORCE_EQ(
        filter->layout(), DataLayout::kMKLDNN,
        platform::errors::InvalidArgument(
            "The filter tensor's layout should be %d, but got %d.",
            DataLayout::kMKLDNN, filter->layout()));
A
Adam 已提交
895
    PADDLE_ENFORCE_NE(filter->format(), MKLDNNMemoryFormat::undef,
F
FDInSky 已提交
896 897
                      platform::errors::InvalidArgument(
                          "Got wrong format for Filter tensor."));
898

F
FDInSky 已提交
899 900 901 902 903
    PADDLE_ENFORCE_EQ(
        output_grad->layout(), DataLayout::kMKLDNN,
        platform::errors::InvalidArgument(
            "The output_grad tensor's layout should be %d, but got %d.",
            DataLayout::kMKLDNN, output_grad->layout()));
A
Adam 已提交
904
    PADDLE_ENFORCE_NE(output_grad->format(), MKLDNNMemoryFormat::undef,
905 906
                      platform::errors::InvalidArgument(
                          "Wrong format set for output_grad tensor"));
907 908 909

    PADDLE_ENFORCE_EQ(
        ctx.Attr<bool>("is_test"), false,
F
FDInSky 已提交
910 911
        platform::errors::InvalidArgument(
            "is_test attribute should be set to False in training phase."));
912

913 914
    if (!input_grad && !filter_grad) return;

A
Adam 已提交
915 916 917 918 919 920 921 922 923
    std::vector<int> strides_temp = ctx.Attr<std::vector<int>>("strides");
    std::vector<int64_t> strides(begin(strides_temp), end(strides_temp));

    std::vector<int> paddings_temp = ctx.Attr<std::vector<int>>("paddings");
    std::vector<int64_t> paddings(begin(paddings_temp), end(paddings_temp));

    std::vector<int> dilations_temp = ctx.Attr<std::vector<int>>("dilations");
    std::vector<int64_t> dilations(begin(dilations_temp), end(dilations_temp));

924
    std::string padding_algorithm = ctx.Attr<std::string>("padding_algorithm");
A
Adam 已提交
925

926
    int groups = ctx.Attr<int>("groups");
927

928
    bool is_conv3d = strides.size() == 3U;
929 930 931 932 933 934
    const T* input_data = input->data<T>();
    const T* filter_data = filter->data<T>();
    const T* output_grad_data = output_grad->data<T>();
    T* input_grad_data = nullptr;
    T* filter_grad_data = nullptr;

935 936 937 938 939 940
    auto input_dims = input->dims();
    auto data_dims = framework::slice_ddim(input_dims, 2, input_dims.size());
    auto filter_dims = filter->dims();
    auto filter_data_dims =
        framework::slice_ddim(filter_dims, 2, filter_dims.size());

A
Adam 已提交
941
    auto ksize = framework::vectorize(filter_data_dims);
942 943 944 945

    UpdatePaddingAndDilation(&paddings, &dilations, padding_algorithm,
                             data_dims, strides, ksize);

A
Adam 已提交
946 947 948
    auto src_tz = paddle::framework::vectorize(input->dims());
    auto weights_tz = paddle::framework::vectorize(filter->dims());

949
    int g = std::max(groups, 1);
950
    platform::GetGroupConvWeightsTz(weights_tz, g);
A
Adam 已提交
951 952
    auto dst_tz = paddle::framework::vectorize(output_grad->dims());

953
    auto src_format = input->format();
954
    MKLDNNMemoryFormat weights_format =
Y
Yihua Xu 已提交
955
        GetWeightsFormat(filter->format(), g, is_conv3d);
956

957
    // Get an unique name from "argument" name of "input" and "Filter" variable
J
Jacek Czaja 已提交
958
    // as well as attributes of primitive to be created
959
    // This name will be used as key when saving info into device context
960 961
    std::string key = platform::CreateKey(
        dev_ctx, src_tz, ctx.InputName("Input") + ctx.InputName("Filter"));
962

963
    const std::string key_conv_pd = key + "@fwd_pd";
964
    key = platform::ExtendKeyWithThreadInfoIfNeeded(dev_ctx, key);
965
    std::vector<primitive> pipeline;
966

967 968
    // Create user memory descriptors
    auto user_src_md = platform::MKLDNNMemDesc(
969
        {src_tz}, platform::MKLDNNGetDataType<T>(), src_format);
970
    auto user_weights_md = platform::MKLDNNMemDesc(
971
        {weights_tz}, platform::MKLDNNGetDataType<T>(), weights_format);
972 973
    auto user_diff_dst_md = platform::MKLDNNMemDesc(
        {dst_tz}, platform::MKLDNNGetDataType<T>(), output_grad->format());
974 975 976 977 978

    /* create memory descriptor for conv backward without specified format
     * ('any') which lets a primitive (conv backward in this case) choose
     * the memory format preferred for best performance
     */
979

980
    auto chosen_memory_format = MKLDNNMemoryFormat::any;
981
    weights_format = MKLDNNMemoryFormat::any;
982

983
    auto src_md = platform::MKLDNNMemDesc(
984
        src_tz, platform::MKLDNNGetDataType<T>(), chosen_memory_format);
985
    auto diff_src_md = platform::MKLDNNMemDesc(
986
        src_tz, platform::MKLDNNGetDataType<T>(), chosen_memory_format);
987
    auto weights_md = platform::MKLDNNMemDesc(
988
        weights_tz, platform::MKLDNNGetDataType<T>(), weights_format);
989
    auto diff_weights_md = platform::MKLDNNMemDesc(
990
        weights_tz, platform::MKLDNNGetDataType<T>(), weights_format);
991
    auto diff_dst_md = platform::MKLDNNMemDesc(
992
        dst_tz, platform::MKLDNNGetDataType<T>(), chosen_memory_format);
993
    // Retrieve conv_pd from device context
994 995 996
    auto conv_pd =
        std::static_pointer_cast<mkldnn::convolution_forward::primitive_desc>(
            dev_ctx.GetBlob(key_conv_pd));
997
    PADDLE_ENFORCE_NE(conv_pd, nullptr,
F
FDInSky 已提交
998 999
                      platform::errors::InvalidArgument(
                          "Fail to find conv_pd in device context"));
1000

1001
    auto mkldnn_paddings = platform::ToMkldnnPadding(paddings);
1002 1003 1004
    std::transform(dilations.begin(), dilations.end(), dilations.begin(),
                   [](int64_t i) { return i - 1; });
    const mkldnn::memory::dims dilations_dims = dilations;
1005 1006
    // create backward convolution weights primitive descriptor
    auto conv_bwd_weights_desc = mkldnn::convolution_backward_weights::desc(
A
Adam 已提交
1007
        mkldnn::algorithm::convolution_direct, src_md, diff_weights_md,
1008 1009
        diff_dst_md, strides, dilations_dims, mkldnn_paddings[0],
        mkldnn_paddings[1]);
A
Adam 已提交
1010

1011 1012 1013 1014 1015 1016
    auto conv_bwd_weights_pd =
        std::make_shared<mkldnn::convolution_backward_weights::primitive_desc>(
            conv_bwd_weights_desc, mkldnn_engine, *conv_pd);

    // create backward convolution data primitive descriptor
    auto conv_bwd_data_desc = mkldnn::convolution_backward_data::desc(
A
Adam 已提交
1017
        mkldnn::algorithm::convolution_direct, diff_src_md, weights_md,
1018 1019
        diff_dst_md, strides, dilations_dims, mkldnn_paddings[0],
        mkldnn_paddings[1]);
A
Adam 已提交
1020

1021 1022 1023 1024
    auto conv_bwd_data_pd =
        std::make_shared<mkldnn::convolution_backward_data::primitive_desc>(
            conv_bwd_data_desc, mkldnn_engine, *conv_pd);

J
Jacek Czaja 已提交
1025 1026 1027
    platform::ConvMKLDNNHandler handler(conv_pd, conv_bwd_data_pd,
                                        conv_bwd_weights_pd, dev_ctx,
                                        mkldnn_engine, key);
1028 1029 1030 1031 1032 1033 1034 1035

    // create mkldnn memory from input tensors (data/weights)
    auto user_src_memory_p =
        handler.AcquireSrcMemory(user_src_md, to_void_cast<T>(input_data));
    auto user_weights_memory_p = handler.AcquireWeightsMemory(
        user_weights_md, to_void_cast<T>(filter_data));
    auto user_diff_dst_memory_p = handler.AcquireDiffDstMemory(
        user_diff_dst_md, to_void_cast<T>(output_grad_data));
1036
    auto& astream = platform::MKLDNNDeviceContext::tls().get_stream();
1037
    if (filter_grad) {
1038 1039
      auto src_memory_p = handler.AcquireSrcMemoryFromWeightsPrimitive(
          user_src_memory_p, pipeline);
1040

1041 1042 1043 1044
      auto diff_dst_memory_4filter_p =
          handler.AcquireDiffDstMemoryFromWeightsPrimitive(
              user_diff_dst_memory_p, pipeline);

1045
      const size_t size = handler.GetDiffWeightsMemorySize();
1046
      filter_grad_data = filter_grad->mutable_data<T>(ctx.GetPlace(), size);
1047

1048 1049
      // For convoluition with groups write filter grad into
      // oneDNN buffer and then we reorder it into filter_grad tensor
1050
      auto diff_weights_memory_p =
1051 1052 1053
          g > 1 ? handler.AcquireDiffWeightsMemoryFromWeightsPrimitive()
                : handler.AcquireDiffWeightsMemoryFromWeightsPrimitive(
                      reinterpret_cast<void*>(filter_grad_data));
1054

A
Adam 已提交
1055
      auto conv_bwd_weights_p = handler.AcquireConvolutionBackwardWeights();
1056

A
Adam 已提交
1057 1058 1059 1060 1061 1062
      // TODO(grygielski) why no bias_diff?
      conv_bwd_weights_p->execute(
          astream, {{MKLDNN_ARG_SRC, *src_memory_p},
                    {MKLDNN_ARG_DIFF_DST, *diff_dst_memory_4filter_p},
                    {MKLDNN_ARG_DIFF_WEIGHTS, *diff_weights_memory_p}});
      astream.wait();
1063

1064
      filter_grad->set_layout(DataLayout::kMKLDNN);
1065 1066 1067
      // in OneDNN groups in convolution are treated as separate dimension
      // which is not the case in paddlepaddle
      auto filter_fmt = GetMKLDNNFormat(*diff_weights_memory_p);
1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078

      // For convolution with groups convert from blocked to NCHW
      // otherwise there will be problems in next operators working on this data
      if (g > 1) {
        memory::data_type in_type =
            framework::ToMKLDNNDataType(filter_grad->type());
        // for 3d conv with groups (six dimensional data reorder to goidhw)
        // for 2d conv with groups (five dimensional data reorder to goihw)
        mkldnn::memory::format_tag out_format =
            weights_tz.size() == 6 ? mkldnn::memory::format_tag::goidhw
                                   : mkldnn::memory::format_tag::goihw;
1079 1080 1081
        std::string key = platform::CreateKey(dev_ctx, weights_tz, filter_fmt,
                                              out_format, in_type);
        key = platform::ExtendKeyWithThreadInfoIfNeeded(dev_ctx, key);
1082 1083 1084 1085 1086 1087 1088 1089 1090 1091

        platform::ReorderMKLDNNHandler handler(weights_tz, filter_grad->type(),
                                               in_type, dev_ctx, mkldnn_engine,
                                               key);
        auto reorder_dst_memory_p =
            handler.AcquireDstMemory(filter_grad, out_format, ctx.GetPlace());

        auto reorder_p =
            handler.AcquireReorder(reorder_dst_memory_p, diff_weights_memory_p);

1092 1093 1094 1095 1096 1097 1098
        {
          platform::RecordEvent record_reorder("int_reorder",
                                               platform::EventRole::kUniqueOp);
          reorder_p->execute(astream, *diff_weights_memory_p,
                             *reorder_dst_memory_p);
          astream.wait();
        }
1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109

        // So here we have a data in goihw , which can be interpreted as OIHW
        // (OIDHW for conv3d)
        // because filter_grad shape is set for OIHW (OIDHW for conv3d)
        mkldnn::memory::format_tag target_format =
            weights_tz.size() == 6 ? mkldnn::memory::format_tag::oidhw
                                   : mkldnn::memory::format_tag::oihw;
        filter_grad->set_format(target_format);
      } else {
        filter_grad->set_format(filter_fmt);
      }
1110 1111
    }
    if (input_grad) {
1112 1113 1114 1115 1116 1117 1118
      auto weights_memory_p = handler.AcquireWeightsMemoryFromDataPrimitive(
          user_weights_memory_p, pipeline);

      auto diff_dst_memory_4data_p =
          handler.AcquireDiffDstMemoryFromDataPrimitive(user_diff_dst_memory_p,
                                                        pipeline);

1119
      const size_t size = handler.GetDiffSourceMemorySize();
1120
      input_grad_data = input_grad->mutable_data<T>(ctx.GetPlace(), size);
1121

1122 1123 1124
      auto diff_src_memory_p = handler.AcquireDiffSrcMemoryFromDataPrimitive(
          reinterpret_cast<void*>(input_grad_data));

A
Adam 已提交
1125
      auto conv_bwd_data_p = handler.AcquireConvolutionBackwardData();
1126

A
Adam 已提交
1127 1128 1129 1130 1131
      conv_bwd_data_p->execute(astream,
                               {{MKLDNN_ARG_WEIGHTS, *weights_memory_p},
                                {MKLDNN_ARG_DIFF_DST, *diff_dst_memory_4data_p},
                                {MKLDNN_ARG_DIFF_SRC, *diff_src_memory_p}});
      astream.wait();
1132

1133 1134
      input_grad->set_layout(DataLayout::kMKLDNN);
      input_grad->set_format(GetMKLDNNFormat(*diff_src_memory_p));
1135
    }
X
xiaolil1 已提交
1136
  }
1137
};
1138

1139 1140 1141 1142 1143
}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;

X
Xin Pan 已提交
1144 1145 1146
REGISTER_OP_KERNEL_WITH_CUSTOM_TYPE(conv2d, MKLDNN,
                                    ::paddle::platform::CPUPlace, FP32,
                                    ops::kConvMKLDNNFP32,
1147
                                    ops::ConvMKLDNNOpKernel<float, float>);
1148

1149 1150 1151 1152
REGISTER_OP_KERNEL_WITH_CUSTOM_TYPE(
    conv2d, MKLDNN, ::paddle::platform::CPUPlace, BF16, ops::kConvMKLDNNFP32,
    ops::ConvMKLDNNOpKernel<paddle::platform::bfloat16, float>);

1153 1154
REGISTER_OP_KERNEL_WITH_CUSTOM_TYPE(conv2d, MKLDNN,
                                    ::paddle::platform::CPUPlace, U8,
1155
                                    ops::kConvMKLDNNINT8,
1156
                                    ops::ConvMKLDNNOpKernel<uint8_t, float>);
1157 1158 1159

REGISTER_OP_KERNEL_WITH_CUSTOM_TYPE(conv2d, MKLDNN,
                                    ::paddle::platform::CPUPlace, S8,
1160
                                    ops::kConvMKLDNNINT8,
1161
                                    ops::ConvMKLDNNOpKernel<int8_t, float>);
X
Xin Pan 已提交
1162 1163 1164 1165 1166

REGISTER_OP_KERNEL_WITH_CUSTOM_TYPE(conv2d_grad, MKLDNN,
                                    ::paddle::platform::CPUPlace, FP32,
                                    ops::kConvMKLDNNFP32,
                                    ops::ConvMKLDNNGradOpKernel<float>);
1167 1168 1169 1170

REGISTER_OP_KERNEL_WITH_CUSTOM_TYPE(conv3d, MKLDNN,
                                    ::paddle::platform::CPUPlace, FP32,
                                    ops::kConvMKLDNNFP32,
1171
                                    ops::ConvMKLDNNOpKernel<float, float>);
1172 1173 1174 1175 1176

REGISTER_OP_KERNEL_WITH_CUSTOM_TYPE(conv3d_grad, MKLDNN,
                                    ::paddle::platform::CPUPlace, FP32,
                                    ops::kConvMKLDNNFP32,
                                    ops::ConvMKLDNNGradOpKernel<float>);