conv_mkldnn_op.cc 42.8 KB
Newer Older
A
Adam Osewski 已提交
1
/* Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
2 3 4 5 6 7 8 9 10 11 12 13 14

   Licensed under the Apache License, Version 2.0 (the "License");
   you may not use this file except in compliance with the License.
   You may obtain a copy of the License at

   http://www.apache.org/licenses/LICENSE-2.0

   Unless required by applicable law or agreed to in writing, software
   distributed under the License is distributed on an "AS IS" BASIS,
   WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
   See the License for the specific language governing permissions and
   limitations under the License. */

A
Adam Osewski 已提交
15 16
#include <tuple>

17
#include "paddle/fluid/operators/conv_op.h"
J
Jacek Czaja 已提交
18
#include "paddle/fluid/platform/cpu_info.h"
A
Adam Osewski 已提交
19
#include "paddle/fluid/platform/mkldnn_helper.h"
J
Jacek Czaja 已提交
20
#include "paddle/fluid/platform/mkldnn_reuse.h"
21 22 23

namespace paddle {
namespace operators {
A
Adam Osewski 已提交
24
namespace {
25

26 27 28
inline MKLDNNMemoryFormat GetWeightsFormat(const MKLDNNMemoryFormat format,
                                           const int groups,
                                           const bool is_conv3d) {
Y
Yihua Xu 已提交
29
  if (is_conv3d) {
30
    return (groups == 1) ? format : MKLDNNMemoryFormat::goidhw;
Y
Yihua Xu 已提交
31
  } else {
32
    return (groups == 1) ? format : MKLDNNMemoryFormat::goihw;
Y
Yihua Xu 已提交
33 34 35
  }
}

36
static mkldnn::memory::data_type GetDstType(bool is_int8, bool is_bfloat16,
37
                                            bool force_fp32_output,
38
                                            std::string fuse_activation,
39 40
                                            bool fuse_residual_conn,
                                            const Tensor* residual_param) {
41
  auto dst_dt = mkldnn::memory::data_type::f32;
42 43 44 45 46 47 48
  if (is_int8) {
    dst_dt = (fuse_activation == "relu" || fuse_activation == "relu6")
                 ? mkldnn::memory::data_type::u8
                 : mkldnn::memory::data_type::s8;
    if (force_fp32_output) {
      dst_dt = mkldnn::memory::data_type::f32;
    }
49 50
    if (fuse_residual_conn && residual_param) {
      auto residual_dt = framework::ToMKLDNNDataType(residual_param->type());
51
      if (dst_dt != residual_dt) dst_dt = residual_dt;
52
    }
53 54 55 56 57 58 59
  } else {
    if (!force_fp32_output && is_bfloat16) {
      dst_dt = mkldnn::memory::data_type::bf16;
      if (fuse_residual_conn && residual_param) {
        dst_dt = framework::ToMKLDNNDataType(residual_param->type());
      }
    }
60 61 62 63
  }
  return dst_dt;
}

64
template <typename T, typename K, typename T_out>
65
class ConvMKLDNNHandlerT
66 67 68
    : public platform::MKLDNNHandlerT<T, mkldnn::convolution_forward,
                                      mkldnn::convolution_backward_data,
                                      mkldnn::convolution_backward_weights> {
69
 public:
A
Adam Osewski 已提交
70
  ConvMKLDNNHandlerT(const framework::ExecutionContext& ctx,
71 72 73 74 75
                     const platform::MKLDNNDeviceContext& dev_ctx,
                     const mkldnn::engine mkldnn_engine,
                     platform::Place cpu_place, const Tensor* input,
                     const Tensor* filter, const Tensor* bias, Tensor* output,
                     const std::string& unique_name)
76 77 78
      : platform::MKLDNNHandlerT<T, mkldnn::convolution_forward,
                                 mkldnn::convolution_backward_data,
                                 mkldnn::convolution_backward_weights>(
79
            dev_ctx, mkldnn_engine, cpu_place,
80
            platform::CreateKey(dev_ctx, framework::vectorize(input->dims()),
81
                                unique_name)) {
82
    if (!this->isCached()) {
83
      PADDLE_ENFORCE_EQ(
A
Adam Osewski 已提交
84
          input->layout(), framework::DataLayout::kMKLDNN,
85 86
          platform::errors::InvalidArgument(
              "The input tensor's layout should be %d, but got %d.",
A
Adam Osewski 已提交
87
              framework::DataLayout::kMKLDNN, input->layout()));
88 89 90
      PADDLE_ENFORCE_NE(input->format(), MKLDNNMemoryFormat::undef,
                        platform::errors::InvalidArgument(
                            "Wrong format set for Input tensor"));
91

92
      PADDLE_ENFORCE_EQ(
A
Adam Osewski 已提交
93
          filter->layout(), framework::DataLayout::kMKLDNN,
94 95
          platform::errors::InvalidArgument(
              "The Filter tensor's layout should be %d, but got %d.",
A
Adam Osewski 已提交
96
              framework::DataLayout::kMKLDNN, filter->layout()));
97 98 99
      PADDLE_ENFORCE_NE(filter->format(), MKLDNNMemoryFormat::undef,
                        platform::errors::InvalidArgument(
                            "Wrong format set for Filter tensor"));
K
Krzysztof Binias 已提交
100

101 102 103 104 105 106 107 108 109 110 111 112
      PADDLE_ENFORCE_GE(
          input->dims().size(), 4,
          platform::errors::InvalidArgument(
              "Input must be with 4 or 5 dimensions, i.e. NCHW or "
              "NCDHW, but got dimension = %d .",
              input->dims().size()));
      PADDLE_ENFORCE_LE(
          input->dims().size(), 5,
          platform::errors::InvalidArgument(
              "Input must be with 4 or 5 dimensions, i.e. NCHW or "
              "NCDHW, but got dimension = %d .",
              input->dims().size()));
113

114 115 116 117 118 119 120 121 122 123 124 125
      PADDLE_ENFORCE_GE(
          filter->dims().size(), 4,
          platform::errors::InvalidArgument(
              "Filter must be with 4 or 5 dimensions, i.e. OIHW or "
              "OIDHW, but got dimension = %d .",
              filter->dims().size()));
      PADDLE_ENFORCE_LE(
          filter->dims().size(), 5,
          platform::errors::InvalidArgument(
              "Filter must be with 4 or 5 dimensions, i.e. OIHW or "
              "OIDHW, but got dimension = %d .",
              filter->dims().size()));
126

127 128
      if (bias) {
        PADDLE_ENFORCE_EQ(
A
Adam Osewski 已提交
129
            bias->layout(), framework::DataLayout::kMKLDNN,
130 131
            platform::errors::InvalidArgument(
                "The Bias tensor's layout should be %d, but got %d.",
A
Adam Osewski 已提交
132
                framework::DataLayout::kMKLDNN, bias->layout()));
133 134 135
        PADDLE_ENFORCE_NE(bias->format(), MKLDNNMemoryFormat::undef,
                          platform::errors::InvalidArgument(
                              "Got wrong format for Bias tensor."));
136

137 138 139 140 141 142
        PADDLE_ENFORCE_EQ(bias->dims().size(), 1,
                          platform::errors::InvalidArgument(
                              "Bias must only have 1 dimension, "
                              "i.e. X, but got dimension = %d .",
                              bias->dims().size()));
      }
F
FDInSky 已提交
143

144 145 146 147 148 149 150 151 152
      const std::string fuse_activation =
          ctx.Attr<std::string>("fuse_activation");
      const float fuse_alpha = ctx.Attr<float>("fuse_alpha");
      const float fuse_beta = ctx.Attr<float>("fuse_beta");
      const bool fuse_residual_conn =
          ctx.Attr<bool>("fuse_residual_connection");
      const int groups = ctx.Attr<int>("groups");
      const std::string padding_algorithm =
          ctx.Attr<std::string>("padding_algorithm");
F
FDInSky 已提交
153

154 155 156 157 158 159
      const auto input_dims = input->dims();
      const auto data_dims =
          framework::slice_ddim(input_dims, 2, input_dims.size());
      const auto filter_dims = filter->dims();
      const auto filter_data_dims =
          framework::slice_ddim(filter_dims, 2, filter_dims.size());
160

161 162
      const auto ksize = framework::vectorize(filter_data_dims);
      const bool is_test = ctx.Attr<bool>("is_test");
163

164 165
      auto strides_temp = ctx.Attr<std::vector<int>>("strides");
      std::vector<int64_t> strides(begin(strides_temp), end(strides_temp));
166

167 168
      auto paddings_temp = ctx.Attr<std::vector<int>>("paddings");
      std::vector<int64_t> paddings(begin(paddings_temp), end(paddings_temp));
A
Adam 已提交
169

170 171 172
      auto dilations_temp = ctx.Attr<std::vector<int>>("dilations");
      std::vector<int64_t> dilations(begin(dilations_temp),
                                     end(dilations_temp));
A
Adam 已提交
173

174 175
      UpdatePaddingAndDilation(&paddings, &dilations, padding_algorithm,
                               data_dims, strides, ksize);
A
Adam 已提交
176

177 178
      std::transform(dilations.begin(), dilations.end(), dilations.begin(),
                     [](int64_t i) { return i - 1; });
179

A
Adam Osewski 已提交
180
      const auto src_tz = framework::vectorize(input->dims());
181

A
Adam Osewski 已提交
182
      auto weights_tz = framework::vectorize(filter->dims());
183
      platform::GetGroupConvWeightsTz(weights_tz, groups);
184

A
Adam Osewski 已提交
185
      const auto dst_tz = framework::vectorize(output->dims());
186

187 188
      const mkldnn::memory::dims stride_dims = strides;
      const auto mkldnn_paddings = platform::ToMkldnnPadding(paddings);
189
      const mkldnn::memory::dims dilations_dims = dilations;
A
Adam 已提交
190

191 192 193 194
      /* create memory descriptor for convolution without specified format
       * ('any') which lets a primitive (convolution in this case) choose
       * the memory format preferred for best performance
       */
195
      auto chosen_memory_format = MKLDNNMemoryFormat::any;
196 197 198 199 200
      auto data_type = mkldnn::memory::data_type::f32;
      if (ctx.Attr<std::string>("mkldnn_data_type") == "bfloat16" ||
          std::is_same<T_out, platform::bfloat16>::value)
        data_type = mkldnn::memory::data_type::bf16;

A
Adam Osewski 已提交
201 202 203 204 205 206 207 208 209 210 211 212 213 214
      mkldnn::memory::desc src_md, weights_md;
      if (platform::is_int8<T>()) {
        src_md = platform::MKLDNNMemDesc(
            src_tz, framework::ToMKLDNNDataType(input->type()),
            chosen_memory_format);
        weights_md = platform::MKLDNNMemDesc(
            weights_tz, mkldnn::memory::data_type::s8, chosen_memory_format);
      } else {
        src_md =
            platform::MKLDNNMemDesc(src_tz, data_type, chosen_memory_format);
        weights_md = platform::MKLDNNMemDesc(weights_tz, data_type,
                                             MKLDNNMemoryFormat::any);
      }

215
      const auto dst_md = platform::MKLDNNMemDesc(
216
          dst_tz, platform::MKLDNNGetDataType<T_out>(), chosen_memory_format);
217 218
      const auto fwd_prop_kind = is_test ? mkldnn::prop_kind::forward_inference
                                         : mkldnn::prop_kind::forward_training;
A
Adam 已提交
219

A
Adam Osewski 已提交
220 221 222 223
      float sum_scale;
      std::vector<float> output_shift_scale;
      std::tie(sum_scale, output_shift_scale) = get_int8_scales(ctx);

224
      const mkldnn::primitive_attr conv_attr = CreatePostOps(
A
Adam Osewski 已提交
225 226
          fuse_activation, fuse_alpha, fuse_beta, fuse_residual_conn,
          output_shift_scale, sum_scale);  // for INT8 only!
A
Adam 已提交
227

228 229
      if (bias) {
        auto bias_tz = framework::vectorize(bias->dims());
A
Adam Osewski 已提交
230 231 232 233 234 235 236 237
        mkldnn::memory::desc bias_md;
        if (platform::is_int8<T>()) {
          bias_md = platform::MKLDNNMemDesc(
              bias_tz, mkldnn::memory::data_type::s32, MKLDNNMemoryFormat::x);
        } else {
          bias_md = platform::MKLDNNMemDesc(bias_tz, data_type,
                                            MKLDNNMemoryFormat::x);
        }
238

239
        this->AcquireForwardPrimitiveDescriptor(
240
            conv_attr, fwd_prop_kind, dnnl::algorithm::convolution_direct,
241
            src_md, weights_md, bias_md, dst_md, stride_dims, dilations_dims,
242 243
            mkldnn_paddings[0], mkldnn_paddings[1]);
      } else {
244
        this->AcquireForwardPrimitiveDescriptor(
245
            conv_attr, fwd_prop_kind, dnnl::algorithm::convolution_direct,
246 247
            src_md, weights_md, dst_md, stride_dims, dilations_dims,
            mkldnn_paddings[0], mkldnn_paddings[1]);
248 249 250
      }
    }
  }
251

252 253 254 255 256 257 258 259 260 261 262 263 264 265
  ConvMKLDNNHandlerT(const framework::ExecutionContext& ctx,
                     const platform::MKLDNNDeviceContext& dev_ctx,
                     platform::Place cpu_place, const Tensor* in,
                     const Tensor* filter, const Tensor* bias,
                     const Tensor* out_grad, Tensor* filter_grad,
                     Tensor* in_x_grad, const std::string& unique_name)
      : platform::MKLDNNHandlerT<T, mkldnn::convolution_forward,
                                 mkldnn::convolution_backward_data,
                                 mkldnn::convolution_backward_weights>(
            dev_ctx, dev_ctx.GetEngine(), cpu_place,
            platform::CreateKey(dev_ctx, framework::vectorize(in->dims()),
                                unique_name)) {
    if (!this->isBwdCached()) {
      PADDLE_ENFORCE_EQ(
A
Adam Osewski 已提交
266
          in->layout(), framework::DataLayout::kMKLDNN,
267 268
          platform::errors::InvalidArgument(
              "The input tensor's layout should be %d, but got %d.",
A
Adam Osewski 已提交
269
              framework::DataLayout::kMKLDNN, in->layout()));
270 271 272 273 274
      PADDLE_ENFORCE_NE(in->format(), MKLDNNMemoryFormat::undef,
                        platform::errors::InvalidArgument(
                            "Got wrong format for Input tensor."));

      PADDLE_ENFORCE_EQ(
A
Adam Osewski 已提交
275
          filter->layout(), framework::DataLayout::kMKLDNN,
276 277
          platform::errors::InvalidArgument(
              "The filter tensor's layout should be %d, but got %d.",
A
Adam Osewski 已提交
278
              framework::DataLayout::kMKLDNN, filter->layout()));
279 280 281 282 283
      PADDLE_ENFORCE_NE(filter->format(), MKLDNNMemoryFormat::undef,
                        platform::errors::InvalidArgument(
                            "Got wrong format for Filter tensor."));

      PADDLE_ENFORCE_EQ(
A
Adam Osewski 已提交
284
          out_grad->layout(), framework::DataLayout::kMKLDNN,
285 286
          platform::errors::InvalidArgument(
              "The output_grad tensor's layout should be %d, but got %d.",
A
Adam Osewski 已提交
287
              framework::DataLayout::kMKLDNN, out_grad->layout()));
288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313
      PADDLE_ENFORCE_NE(out_grad->format(), MKLDNNMemoryFormat::undef,
                        platform::errors::InvalidArgument(
                            "Wrong format set for output_grad tensor"));

      PADDLE_ENFORCE_EQ(
          ctx.Attr<bool>("is_test"), false,
          platform::errors::InvalidArgument(
              "is_test attribute should be set to False in training phase."));

      std::vector<int> strides_temp = ctx.Attr<std::vector<int>>("strides");
      std::vector<int64_t> strides(begin(strides_temp), end(strides_temp));

      std::vector<int> paddings_temp = ctx.Attr<std::vector<int>>("paddings");
      std::vector<int64_t> paddings(begin(paddings_temp), end(paddings_temp));

      std::vector<int> dilations_temp = ctx.Attr<std::vector<int>>("dilations");
      std::vector<int64_t> dilations(begin(dilations_temp),
                                     end(dilations_temp));

      auto input_dims = in->dims();
      auto data_dims = framework::slice_ddim(input_dims, 2, input_dims.size());
      auto filter_dims = filter->dims();
      auto filter_data_dims =
          framework::slice_ddim(filter_dims, 2, filter_dims.size());
      auto ksize = framework::vectorize(filter_data_dims);

A
Adam Osewski 已提交
314 315
      std::string padding_algorithm =
          ctx.Attr<std::string>("padding_algorithm");
316 317 318 319 320 321
      UpdatePaddingAndDilation(&paddings, &dilations, padding_algorithm,
                               data_dims, strides, ksize);

      auto src_tz = framework::vectorize(in->dims());
      auto weights_tz = framework::vectorize(filter->dims());

A
Adam Osewski 已提交
322
      int groups = ctx.Attr<int>("groups");
323 324
      int g = std::max(groups, 1);
      platform::GetGroupConvWeightsTz(weights_tz, g);
A
Adam Osewski 已提交
325
      auto dst_tz = framework::vectorize(out_grad->dims());
326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356

      /* create memory descriptor for conv backward without specified format
       * ('any') which lets a primitive (conv backward in this case) choose
       * the memory format preferred for best performance
       */
      const auto chosen_memory_format = MKLDNNMemoryFormat::any;
      const auto weights_format = MKLDNNMemoryFormat::any;

      auto src_md = platform::MKLDNNMemDesc(
          src_tz, platform::MKLDNNGetDataType<T>(), chosen_memory_format);
      const auto dst_md = platform::MKLDNNMemDesc(
          dst_tz, platform::MKLDNNGetDataType<T_out>(), chosen_memory_format);
      auto diff_src_md = platform::MKLDNNMemDesc(
          src_tz, platform::MKLDNNGetDataType<T>(), chosen_memory_format);
      auto weights_md = platform::MKLDNNMemDesc(
          weights_tz, platform::MKLDNNGetDataType<T>(), weights_format);
      auto diff_weights_md = platform::MKLDNNMemDesc(
          weights_tz, platform::MKLDNNGetDataType<T>(), weights_format);
      auto diff_dst_md = platform::MKLDNNMemDesc(
          dst_tz, platform::MKLDNNGetDataType<T>(), chosen_memory_format);

      auto mkldnn_paddings = platform::ToMkldnnPadding(paddings);
      std::transform(dilations.begin(), dilations.end(), dilations.begin(),
                     [](int64_t i) { return i - 1; });
      const mkldnn::memory::dims dilations_dims = dilations;

      const mkldnn::memory::dims stride_dims = strides;
      // Recreating FWD PD. For training there are no post ops in convolution
      mkldnn::primitive_attr conv_attr;
      if (bias) {
        auto bias_tz = framework::vectorize(bias->dims());
A
Adam Osewski 已提交
357 358 359 360 361 362 363 364
        mkldnn::memory::desc bias_md;
        if (platform::is_int8<T>()) {
          bias_md = platform::MKLDNNMemDesc(
              bias_tz, mkldnn::memory::data_type::s32, MKLDNNMemoryFormat::x);
        } else {
          bias_md = platform::MKLDNNMemDesc(
              bias_tz, mkldnn::memory::data_type::f32, MKLDNNMemoryFormat::x);
        }
365

366
        this->AcquireForwardPrimitiveDescriptor(
367 368 369 370 371
            conv_attr, mkldnn::prop_kind::forward_training,
            dnnl::algorithm::convolution_direct, src_md, weights_md, bias_md,
            dst_md, stride_dims, dilations_dims, mkldnn_paddings[0],
            mkldnn_paddings[1]);
      } else {
372
        this->AcquireForwardPrimitiveDescriptor(
373 374 375 376 377 378
            conv_attr, mkldnn::prop_kind::forward_training,
            dnnl::algorithm::convolution_direct, src_md, weights_md, dst_md,
            stride_dims, dilations_dims, mkldnn_paddings[0],
            mkldnn_paddings[1]);
      }

379
      this->AcquireBackwardPrimitiveDescriptor(
380 381 382 383
          mkldnn::algorithm::convolution_direct, diff_src_md, weights_md,
          diff_dst_md, strides, dilations_dims, mkldnn_paddings[0],
          mkldnn_paddings[1]);

384
      this->AcquireBackwardWeightsPrimitiveDescriptor(
385 386 387 388 389 390
          mkldnn::algorithm::convolution_direct, src_md, diff_weights_md,
          diff_dst_md, strides, dilations_dims, mkldnn_paddings[0],
          mkldnn_paddings[1]);
    }
  }

A
Adam Osewski 已提交
391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455
  std::tuple<float, std::vector<float>> get_int8_scales(
      const framework::ExecutionContext& ctx) const {
    const auto* filter = ctx.Input<Tensor>("Filter");
    const auto& weights_tz = framework::vectorize(filter->dims());

    const bool& force_fp32_output = ctx.Attr<bool>("force_fp32_output");
    const bool& fuse_residual_conn = ctx.Attr<bool>("fuse_residual_connection");
    const int groups = std::max(ctx.Attr<int>("groups"), 1);

    const auto& scale_in_data = ctx.Attr<float>("Scale_in");
    const auto& scale_in_eltwise_data = ctx.Attr<float>("Scale_in_eltwise");
    auto scale_weights_data = ctx.Attr<std::vector<float>>("Scale_weights");
    bool is_multi_channel = scale_weights_data.size() > 1;
    auto scale_out_data =
        force_fp32_output ? 1.0f : ctx.Attr<float>("Scale_out");
    float sum_scale =
        fuse_residual_conn ? scale_out_data / scale_in_eltwise_data : 1.0f;
    int count =
        is_multi_channel
            ? (groups > 1 ? (weights_tz)[1] * (weights_tz)[0] : (weights_tz)[0])
            : 1;
    std::vector<float> output_shift_scale(count);

#pragma omp parallel for if (count > 50)
    for (int i = 0; i < count; i++) {
      if (scale_weights_data[i] == 0.0)
        // weights data will contain 0 in some models, then weights
        // scale couldn't be calculated
        output_shift_scale[i] = scale_out_data;
      else
        output_shift_scale[i] =
            static_cast<float>(static_cast<double>(scale_out_data) /
                               (static_cast<double>(scale_in_data) *
                                static_cast<double>(scale_weights_data[i])));
    }

    return std::make_tuple(sum_scale, output_shift_scale);
  }

  std::tuple<float, std::vector<float>> get_int8_bias_scales(
      const framework::ExecutionContext& ctx) const {
    const auto* filter = ctx.Input<Tensor>("Filter");
    const auto& weights_tz = framework::vectorize(filter->dims());
    const int groups = std::max(ctx.Attr<int>("groups"), 1);

    const auto& scale_weights_data =
        ctx.Attr<std::vector<float>>("Scale_weights");
    const auto& scale_in_data = ctx.Attr<float>("Scale_in");

    bool is_multi_channel = scale_weights_data.size() > 1;
    int mask_reorder = is_multi_channel ? 1 << 0 : 1;
    int count =
        is_multi_channel
            ? (groups > 1 ? (weights_tz)[1] * (weights_tz)[0] : (weights_tz)[0])
            : 1;
    std::vector<float> scale_bias_data(count);

#pragma omp parallel for if (count > 50)
    for (int i = 0; i < count; i++) {
      scale_bias_data[i] = scale_in_data * scale_weights_data[i];
    }

    return std::make_tuple(mask_reorder, scale_bias_data);
  }

456 457 458 459 460 461 462 463 464 465
  mkldnn::primitive_attr CreatePostOps(
      std::string fuse_activation, float fuse_alpha, float fuse_beta,
      bool fuse_residual_conn, const std::vector<float> output_shift_scale = {},
      float sum_scale = 1.0f) {
    mkldnn::primitive_attr conv_attr;
    mkldnn::post_ops post_operations;
    if (output_shift_scale.size() > 0) {
      int mask = output_shift_scale.size() > 1 ? 1 << 1 : 0;
      conv_attr.set_output_scales(mask, output_shift_scale);
    }
466

467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489
    // Fusion with Elementwise layer relies on adding a sum post-operation with
    // the scale parameter. It is assumed that when fuse_residual_connection is
    // true, the output tensor contains the data coming from residual
    // connection. The result of this post_op is:
    // Output = scale * Output + Conv_Out.
    if (fuse_residual_conn) {
      post_operations.append_sum(sum_scale);
    }
    // Fusion with ReLU layer is executed through the PostOps feature. Create a
    // PostOps object and configure it to execute an eltwise relu operation.
    if (fuse_activation == "relu" || fuse_activation == "leaky_relu") {
      constexpr float scale = 1.0f;
      post_operations.append_eltwise(scale, mkldnn::algorithm::eltwise_relu,
                                     fuse_alpha, fuse_beta);
    } else if (fuse_activation == "relu6") {
      constexpr float scale = 1.0f;
      post_operations.append_eltwise(scale,
                                     mkldnn::algorithm::eltwise_bounded_relu,
                                     fuse_alpha, fuse_beta);
    } else if (fuse_activation == "swish") {
      constexpr float scale = 1.0f;
      post_operations.append_eltwise(scale, mkldnn::algorithm::eltwise_swish,
                                     fuse_alpha, fuse_beta);
J
jakpiase 已提交
490 491 492 493
    } else if (fuse_activation == "hard_swish") {
      constexpr float scale = 1.0f;
      post_operations.append_eltwise(
          scale, mkldnn::algorithm::eltwise_hardswish, fuse_alpha, fuse_beta);
494 495 496 497
    }
    conv_attr.set_post_ops(post_operations);
    return conv_attr;
  }
498

499 500 501 502 503 504 505 506 507 508 509 510 511
  std::shared_ptr<mkldnn::memory>
  AcquireWeightsMemoryWithReorderFromDataPrimitive(
      const framework::Tensor* filter, const int groups, const bool is_conv3d) {
    const K* filter_data = filter->data<K>();
    auto weights_tz = framework::vectorize(filter->dims());
    platform::GetGroupConvWeightsTz(weights_tz, groups);

    auto user_src_md = platform::MKLDNNMemDesc(
        weights_tz, platform::MKLDNNGetDataType<K>(),
        GetWeightsFormat(filter->format(), groups, is_conv3d));

    return this->AcquireMemoryWithReorder(
        user_src_md, this->bwd_pd_->weights_desc(),
A
Adam Osewski 已提交
512
        platform::to_void_cast<K>(filter_data), "@weights_mem_d_p", false);
513 514
  }

515 516
  std::shared_ptr<mkldnn::memory> AcquireSrcMemoryWithReorder(
      const framework::Tensor* input) {
517 518 519 520
    return this->AcquireMemoryWithReorderPrimitive(
        input, "@src_mem_p_user", "@src_mem_p_target", "@src_mem_p",
        this->fwd_pd_->src_desc());
  }
521

522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557
  std::shared_ptr<mkldnn::memory>
  AcquireSrcMemoryWithReorderFromWeightsPrimitive(
      const framework::Tensor* input) {
    return this->AcquireMemoryWithReorderPrimitive(
        input, "@src_mem_w_p_user", "@src_mem_w_p_target", "@src_mem_w_p",
        this->bwd_w_pd_->src_desc());
  }

  std::shared_ptr<mkldnn::memory>
  AcquireDiffDstMemoryWithReorderFromWeightsPrimitive(
      const framework::Tensor* out_grad) {
    return this->AcquireMemoryWithReorderPrimitive(
        out_grad, "@diff_dst_mem_w_p_user", "@diff_dst_mem_w_p_target",
        "@diff_dst_mem_w_p", this->bwd_w_pd_->diff_dst_desc());
  }

  std::shared_ptr<mkldnn::memory>
  AcquireDiffDstMemoryWithReorderMemoryFromDataPrimitive(
      const framework::Tensor* out_grad) {
    return this->AcquireMemoryWithReorderPrimitive(
        out_grad, "@diff_dst_mem_p_user", "@diff_dst_mem_p_target",
        "@diff_dst_mem_p", this->bwd_pd_->diff_dst_desc());
  }

  std::shared_ptr<mkldnn::memory> AcquireMemoryWithReorderPrimitive(
      const framework::Tensor* in_mem, const char* key_mem_user,
      const char* key_mem_target, const char* key_mem,
      const mkldnn::memory::desc& mem_md) {
    const T* in_mem_data = in_mem->data<T>();
    const std::string user_key_suffix{key_mem_user};
    auto user_mem_p = this->AcquireMemory(user_key_suffix);

    if (!user_mem_p) {
      auto user_mem_md = platform::MKLDNNMemDesc(
          framework::vectorize(in_mem->dims()),
          platform::MKLDNNGetDataType<T>(), in_mem->format());
558
      return this->AcquireMemoryWithReorder(
A
Adam Osewski 已提交
559
          user_mem_md, mem_md, platform::to_void_cast<T>(in_mem_data), key_mem);
560
    } else {
561 562
      const std::string target_key_suffix{key_mem_target};
      const auto target_mem_p = this->AcquireMemory(target_key_suffix);
A
Adam Osewski 已提交
563
      user_mem_p->set_data_handle(platform::to_void_cast<T>(in_mem_data));
564 565
      if (user_mem_p != target_mem_p) {
        this->AcquireReorder(user_mem_p, target_mem_p, key_mem);
566
      }
567
      return target_mem_p;
568
    }
569 570 571 572
  }

  std::shared_ptr<mkldnn::memory> AcquireWeightsMemoryWithReorder(
      const framework::Tensor* filter, const int groups, const bool is_conv3d,
A
Adam Osewski 已提交
573 574
      const bool is_test, const std::vector<float>& scale_data = {1.0f},
      int mask = 0) {
575 576 577 578 579 580
    // This is workaround to make execution faster, delete
    // if statement after including md inside Tensor
    auto weights_mem_p = this->AcquireMemory("@weights_mem_p_target");
    if (is_test && weights_mem_p) {
      return weights_mem_p;
    } else {
581
      const K* filter_data = filter->data<K>();
582
      auto weights_tz = framework::vectorize(filter->dims());
583
      platform::GetGroupConvWeightsTz(weights_tz, groups);
584 585

      auto user_src_md = platform::MKLDNNMemDesc(
586
          weights_tz, platform::MKLDNNGetDataType<K>(),
587 588 589 590
          GetWeightsFormat(filter->format(), groups, is_conv3d));

      return this->AcquireMemoryWithReorder(
          user_src_md, this->fwd_pd_->weights_desc(),
A
Adam Osewski 已提交
591 592
          platform::to_void_cast<K>(filter_data), "@weights_mem_p", is_test, {},
          scale_data, mask);
593
    }
594
  }
595

596
  std::shared_ptr<mkldnn::memory> AcquireBiasMemoryWithReorder(
A
Adam Osewski 已提交
597 598
      const framework::Tensor* bias, const bool is_test,
      const std::vector<float>& scale_data = {1.0f}, int mask = 0) {
599 600 601 602 603 604 605 606 607 608
    auto bias_mem_p = this->AcquireMemory("@bias_mem_p_target");
    if (is_test && bias_mem_p) {
      return bias_mem_p;
    } else {
      const K* bias_data = bias->data<K>();
      auto user_bias_md = platform::MKLDNNMemDesc(
          framework::vectorize(bias->dims()), platform::MKLDNNGetDataType<K>(),
          MKLDNNMemoryFormat::x);

      return this->AcquireMemoryWithReorder(
A
Adam Osewski 已提交
609 610 611
          user_bias_md, this->fwd_pd_->bias_desc(),
          platform::to_void_cast<K>(bias_data), "@bias_mem_p", is_test, {},
          scale_data, mask);
612
    }
613
  }
614

615 616
  std::shared_ptr<mkldnn::memory> AcquireResidualMemory(
      const framework::Tensor* residual_param) {
617 618
    void* residual_data =
        residual_param->type() == framework::DataTypeTrait<T_out>::DataType()
A
Adam Osewski 已提交
619 620
            ? platform::to_void_cast<T_out>(residual_param->data<T_out>())
            : platform::to_void_cast<T>(residual_param->data<T>());
621 622 623 624 625 626 627 628 629
    auto residual_mem_p = this->AcquireMemory("@user_residual_data_mem_p");
    if (residual_mem_p) {
      residual_mem_p->set_data_handle(residual_data);
      return residual_mem_p;
    } else {
      auto user_residual_md = platform::MKLDNNMemDesc(
          framework::vectorize(residual_param->dims()),
          framework::ToMKLDNNDataType(residual_param->type()),
          residual_param->format());
630

631 632 633
      return this->AcquireMemoryFromPrimitive(user_residual_md, residual_data,
                                              "@user_residual_data_mem_p");
    }
634 635 636 637 638 639 640 641
  }

  std::shared_ptr<mkldnn::memory> AcquireDstMemoryWithResidual(
      framework::Tensor* output, const framework::Tensor* residual_param) {
    std::shared_ptr<dnnl::memory> dst_memory_p;
    if (residual_param->format() !=
        platform::GetMKLDNNFormat(this->fwd_pd_->dst_desc())) {
      auto residual_memory_p = this->AcquireResidualMemory(residual_param);
642
      dst_memory_p = this->template AcquireDstMemory<T_out>(output);
643 644 645 646 647 648
      this->AcquireReorder(residual_memory_p, dst_memory_p, "@residual_dst");
    } else {
      // Changing ShareDataWith to TensorCopy results in performance drop
      // on ResNet architectures
      // (https://github.com/PaddlePaddle/Paddle/issues/22964)
      output->ShareDataWith(*residual_param);
649
      dst_memory_p = this->template AcquireDstMemory<T_out>(output);
650 651 652 653 654
    }
    return dst_memory_p;
  }
};

A
Adam Osewski 已提交
655 656
}  // anonymous namespace

657
template <typename T, typename K>
A
Adam Osewski 已提交
658
class ConvMKLDNNOpKernel : public framework::OpKernel<T> {
659
 public:
A
Adam Osewski 已提交
660
  void Compute(const framework::ExecutionContext& ctx) const override {
661
    PADDLE_ENFORCE_EQ(platform::is_cpu_place(ctx.GetPlace()), true,
A
Adam Osewski 已提交
662
                      platform::errors::PreconditionNotMet(
663 664 665
                          "Operator DNNL Conv must use CPUPlace"));
    bool is_INT8 =
        std::is_same<T, int8_t>::value || std::is_same<T, uint8_t>::value;
666 667 668 669 670 671 672 673
    bool is_BFLOAT16 = ctx.Attr<std::string>("mkldnn_data_type") == "bfloat16";
    auto residual_param = ctx.Input<Tensor>("ResidualData");
    bool fuse_residual_conn = ctx.Attr<bool>("fuse_residual_connection");
    std::string fuse_activation = ctx.Attr<std::string>("fuse_activation");
    bool force_fp32_output = ctx.Attr<bool>("force_fp32_output");
    auto dst_dt =
        GetDstType(is_INT8, is_BFLOAT16, force_fp32_output, fuse_activation,
                   fuse_residual_conn, residual_param);
674
    if (!is_INT8) {
675 676 677 678 679
      if (dst_dt == mkldnn::memory::data_type::f32) {
        ComputeFP32<float>(ctx);
      } else if (dst_dt == mkldnn::memory::data_type::bf16) {
        ComputeFP32<platform::bfloat16>(ctx);
      }
680
    } else {
681 682 683 684 685 686 687
      if (dst_dt == mkldnn::memory::data_type::f32) {
        ComputeINT8<float>(ctx);
      } else if (dst_dt == mkldnn::memory::data_type::u8) {
        ComputeINT8<uint8_t>(ctx);
      } else if (dst_dt == mkldnn::memory::data_type::s8) {
        ComputeINT8<int8_t>(ctx);
      }
688
    }
689
  }
690

691
  template <typename T_out>
A
Adam Osewski 已提交
692
  void ComputeFP32(const framework::ExecutionContext& ctx) const {
693
    auto& dev_ctx =
A
Adam Osewski 已提交
694
        ctx.template device_context<platform::MKLDNNDeviceContext>();
695
    const auto& mkldnn_engine = dev_ctx.GetEngine();
696

697 698 699
    const bool is_test = ctx.Attr<bool>("is_test");
    const bool is_conv3d = ctx.Attr<std::vector<int>>("strides").size() == 3U;
    const bool fuse_residual_conn = ctx.Attr<bool>("fuse_residual_connection");
700

701 702 703 704 705
    const auto* input = ctx.Input<Tensor>("Input");
    const auto* filter = ctx.Input<Tensor>("Filter");
    const auto* bias =
        ctx.HasInput("Bias") ? ctx.Input<Tensor>("Bias") : nullptr;
    auto* output = ctx.Output<Tensor>("Output");
706

707
    ConvMKLDNNHandlerT<T, K, T_out> handler(
708 709
        ctx, dev_ctx, mkldnn_engine, ctx.GetPlace(), input, filter, bias,
        output, ctx.InputName("Input") + ctx.InputName("Filter"));
710

711
    auto src_memory_p = handler.AcquireSrcMemoryWithReorder(input);
712

713 714
    auto weights_memory_p = handler.AcquireWeightsMemoryWithReorder(
        filter, ctx.Attr<int>("groups"), is_conv3d, is_test);
715

716 717 718
    std::shared_ptr<dnnl::memory> dst_memory_p;
    if (fuse_residual_conn) {
      auto* residual_param = ctx.Input<Tensor>("ResidualData");
719
      dst_memory_p =
720 721
          handler.AcquireDstMemoryWithResidual(output, residual_param);
    } else {
722
      dst_memory_p = handler.template AcquireDstMemory<T_out>(output);
723
    }
724

725
    auto conv_p = handler.AcquireForwardPrimitive();
A
Adam 已提交
726

727 728 729 730
    std::unordered_map<int, dnnl::memory> args = {
        {MKLDNN_ARG_SRC, *src_memory_p},
        {MKLDNN_ARG_WEIGHTS, *weights_memory_p},
        {MKLDNN_ARG_DST, *dst_memory_p}};
A
Adam 已提交
731

732 733 734
    if (bias) {
      auto bias_memory_p = handler.AcquireBiasMemoryWithReorder(bias, is_test);
      args.insert({MKLDNN_ARG_BIAS, *bias_memory_p});
735
    }
736

737
    auto& astream = platform::MKLDNNDeviceContext::tls().get_stream();
738
    conv_p->execute(astream, args);
A
Adam 已提交
739
    astream.wait();
740

A
Adam Osewski 已提交
741 742
    output->set_layout(framework::DataLayout::kMKLDNN);
    output->set_format(platform::GetMKLDNNFormat(*dst_memory_p));
743
  }
744

745
  template <typename T_out>
A
Adam Osewski 已提交
746
  void ComputeINT8(const framework::ExecutionContext& ctx) const {
747
    auto& dev_ctx =
A
Adam Osewski 已提交
748
        ctx.template device_context<platform::MKLDNNDeviceContext>();
749 750
    const auto& mkldnn_engine = dev_ctx.GetEngine();

A
Adam Osewski 已提交
751 752 753 754 755
    const std::string& fuse_activation =
        ctx.Attr<std::string>("fuse_activation");
    const bool& fuse_residual_conn = ctx.Attr<bool>("fuse_residual_connection");
    const bool& force_fp32_output = ctx.Attr<bool>("force_fp32_output");
    const bool is_conv3d = ctx.Attr<std::vector<int>>("strides").size() == 3U;
756

757 758
    bool unsigned_output =
        (fuse_activation == "relu" || fuse_activation == "relu6");
759 760
    bool need_s8_to_u8 = false;

A
Adam Osewski 已提交
761 762 763 764 765 766 767 768
    PADDLE_ENFORCE_NE(
        is_conv3d, true,
        platform::errors::Unimplemented(
            "OneDNN int8 convolution does not support 3D inputs currently"));
    PADDLE_ENFORCE_EQ(
        fuse_residual_conn && force_fp32_output, false,
        platform::errors::Unimplemented(
            "residual fusion does not support force output with fp32"));
A
Adam 已提交
769

A
Adam Osewski 已提交
770 771 772 773
    auto* input = ctx.Input<Tensor>("Input");
    auto* filter = ctx.Input<Tensor>("Filter");
    auto* bias = ctx.HasInput("Bias") ? ctx.Input<Tensor>("Bias") : nullptr;
    auto* output = ctx.Output<Tensor>("Output");
774

A
Adam Osewski 已提交
775 776 777
    ConvMKLDNNHandlerT<T, K, T_out> handler(
        ctx, dev_ctx, mkldnn_engine, ctx.GetPlace(), input, filter, bias,
        output, ctx.InputName("Input") + ctx.InputName("Filter"));
778

A
Adam Osewski 已提交
779
    auto src_memory_p = handler.AcquireSrcMemoryWithReorder(input);
F
FDInSky 已提交
780

A
Adam Osewski 已提交
781 782 783 784 785 786 787 788 789
    const auto& scale_weights_data =
        ctx.Attr<std::vector<float>>("Scale_weights");
    const bool is_multi_channel = scale_weights_data.size() > 1;
    const int& groups = ctx.Attr<int>("groups");
    const bool& is_test = ctx.Attr<bool>("is_test");
    int mask_reorder =
        is_multi_channel ? ((groups != 1) ? (1 << 1) + (1 << 0) : 1 << 0) : 0;
    auto weights_memory_p = handler.AcquireWeightsMemoryWithReorder(
        filter, groups, false, is_test, scale_weights_data, mask_reorder);
790

A
Adam Osewski 已提交
791 792 793
    std::shared_ptr<dnnl::memory> dst_memory_p;
    if (fuse_residual_conn) {
      auto* residual_param = ctx.Input<Tensor>("ResidualData");
794
      PADDLE_ENFORCE_EQ(
A
Adam Osewski 已提交
795 796 797 798 799 800
          output->dims(), residual_param->dims(),
          platform::errors::InvalidArgument(
              "Output and elementwise parameter need to have the "
              "same dimension sizes, but got output's dimension = %d"
              " and residual param's dimension =%d .",
              output->dims().size(), residual_param->dims().size()));
801
      dst_memory_p =
A
Adam Osewski 已提交
802 803 804 805 806 807 808
          handler.AcquireDstMemoryWithResidual(output, residual_param);
      need_s8_to_u8 = (platform::MKLDNNGetDataType<T_out>() ==
                       mkldnn::memory::data_type::s8) &&
                      unsigned_output;
    } else {
      dst_memory_p = handler.template AcquireDstMemory<T_out>(output);
    }
L
lidanqing 已提交
809

A
Adam Osewski 已提交
810 811 812 813 814 815
    auto conv_p = handler.AcquireForwardPrimitive();

    std::unordered_map<int, dnnl::memory> args = {
        {MKLDNN_ARG_SRC, *src_memory_p},
        {MKLDNN_ARG_WEIGHTS, *weights_memory_p},
        {MKLDNN_ARG_DST, *dst_memory_p}};
A
Adam 已提交
816

A
Adam Osewski 已提交
817 818 819 820 821
    if (bias) {
      float mask_reorder;
      std::vector<float> scale_bias_data;
      std::tie(mask_reorder, scale_bias_data) =
          handler.get_int8_bias_scales(ctx);
A
Adam 已提交
822

A
Adam Osewski 已提交
823 824 825
      auto bias_memory_p = handler.AcquireBiasMemoryWithReorder(
          bias, is_test, scale_bias_data, mask_reorder);
      args.insert({MKLDNN_ARG_BIAS, *bias_memory_p});
826
    }
A
Adam Osewski 已提交
827 828 829

    auto& astream = platform::MKLDNNDeviceContext::tls().get_stream();
    conv_p->execute(astream, args);
A
Adam 已提交
830
    astream.wait();
A
Adam Osewski 已提交
831

832
    if (need_s8_to_u8) {
X
xiaolil1 已提交
833 834
      output->mutable_data<uint8_t>(ctx.GetPlace());
    }
A
Adam Osewski 已提交
835 836 837

    output->set_layout(framework::DataLayout::kMKLDNN);
    output->set_format(platform::GetMKLDNNFormat(*dst_memory_p));
838
  }
839 840
};

841
template <typename T, typename K>
A
Adam Osewski 已提交
842
class ConvMKLDNNGradOpKernel : public framework::OpKernel<T> {
843
 public:
A
Adam Osewski 已提交
844
  void Compute(const framework::ExecutionContext& ctx) const override {
845
    PADDLE_ENFORCE_EQ(platform::is_cpu_place(ctx.GetPlace()), true,
A
Adam Osewski 已提交
846
                      platform::errors::PreconditionNotMet(
847
                          "Operator DNNL ConvGrad must use CPUPlace"));
848 849
    auto& dev_ctx =
        ctx.template device_context<platform::MKLDNNDeviceContext>();
850 851 852 853
    const auto& mkldnn_engine = dev_ctx.GetEngine();

    const Tensor* input = ctx.Input<Tensor>("Input");
    const Tensor* filter = ctx.Input<Tensor>("Filter");
854 855
    const Tensor* bias =
        ctx.HasInput("Bias") ? ctx.Input<Tensor>("Bias") : nullptr;
856 857 858 859 860 861 862
    const Tensor* output_grad =
        ctx.Input<Tensor>(framework::GradVarName("Output"));
    Tensor* input_grad = ctx.Output<Tensor>(framework::GradVarName("Input"));
    Tensor* filter_grad = ctx.Output<Tensor>(framework::GradVarName("Filter"));

    if (!input_grad && !filter_grad) return;

863 864 865 866 867
    // TODO(jczaja): Are all tensors really needed?
    ConvMKLDNNHandlerT<T, K, T> handler(
        ctx, dev_ctx, ctx.GetPlace(), input, filter, bias, output_grad,
        filter_grad, input_grad,
        ctx.InputName("Input") + ctx.InputName("Filter"));
868 869

    // create mkldnn memory from input tensors (data/weights)
870
    auto& astream = platform::MKLDNNDeviceContext::tls().get_stream();
871

872 873 874 875 876 877
    if (filter_grad) {
      auto src_memory_p =
          handler.AcquireSrcMemoryWithReorderFromWeightsPrimitive(input);
      auto diff_dst_memory_p =
          handler.AcquireDiffDstMemoryWithReorderFromWeightsPrimitive(
              output_grad);
878

879 880
      // For convoluition with groups write filter grad into
      // oneDNN buffer and then we reorder it into filter_grad tensor
881
      int g = std::max(ctx.Attr<int>("groups"), 1);
882
      auto diff_weights_memory_p =
883 884
          g > 1 ? handler.AcquireDiffWeightsMemory()
                : handler.AcquireDiffWeightsMemory(filter_grad);
885

886
      auto conv_bwd_weights_p = handler.AcquireBackwardWeightsPrimitive();
887

A
Adam 已提交
888 889 890
      // TODO(grygielski) why no bias_diff?
      conv_bwd_weights_p->execute(
          astream, {{MKLDNN_ARG_SRC, *src_memory_p},
891
                    {MKLDNN_ARG_DIFF_DST, *diff_dst_memory_p},
A
Adam 已提交
892 893
                    {MKLDNN_ARG_DIFF_WEIGHTS, *diff_weights_memory_p}});
      astream.wait();
894

A
Adam Osewski 已提交
895
      filter_grad->set_layout(framework::DataLayout::kMKLDNN);
896 897
      // in OneDNN groups in convolution are treated as separate dimension
      // which is not the case in paddlepaddle
A
Adam Osewski 已提交
898
      auto filter_fmt = platform::GetMKLDNNFormat(*diff_weights_memory_p);
899 900 901 902

      // For convolution with groups convert from blocked to NCHW
      // otherwise there will be problems in next operators working on this data
      if (g > 1) {
A
Adam Osewski 已提交
903 904
        mkldnn::memory::data_type in_type =
            framework::ToMKLDNNDataType(filter->type());
905 906
        // for 3d conv with groups (six dimensional data reorder to goidhw)
        // for 2d conv with groups (five dimensional data reorder to goihw)
A
Adam Osewski 已提交
907
        // auto weights_tz = framework::vectorize(filter->dims());
908 909

        auto weights_tz = diff_weights_memory_p->get_desc().dims();
910 911 912
        mkldnn::memory::format_tag out_format =
            weights_tz.size() == 6 ? mkldnn::memory::format_tag::goidhw
                                   : mkldnn::memory::format_tag::goihw;
913 914
        platform::ReorderMKLDNNHandler handler(weights_tz, filter->type(),
                                               in_type, mkldnn_engine);
915 916 917 918 919 920
        auto reorder_dst_memory_p =
            handler.AcquireDstMemory(filter_grad, out_format, ctx.GetPlace());

        auto reorder_p =
            handler.AcquireReorder(reorder_dst_memory_p, diff_weights_memory_p);

921 922 923 924 925 926 927
        {
          platform::RecordEvent record_reorder("int_reorder",
                                               platform::EventRole::kUniqueOp);
          reorder_p->execute(astream, *diff_weights_memory_p,
                             *reorder_dst_memory_p);
          astream.wait();
        }
928 929 930 931 932 933 934 935 936 937 938

        // So here we have a data in goihw , which can be interpreted as OIHW
        // (OIDHW for conv3d)
        // because filter_grad shape is set for OIHW (OIDHW for conv3d)
        mkldnn::memory::format_tag target_format =
            weights_tz.size() == 6 ? mkldnn::memory::format_tag::oidhw
                                   : mkldnn::memory::format_tag::oihw;
        filter_grad->set_format(target_format);
      } else {
        filter_grad->set_format(filter_fmt);
      }
939 940
    }
    if (input_grad) {
941 942 943 944
      auto weights_memory_p =
          handler.AcquireWeightsMemoryWithReorderFromDataPrimitive(
              filter, ctx.Attr<int>("groups"),
              ctx.Attr<std::vector<int>>("strides").size() == 3U);
945

946 947 948 949
      auto diff_dst_memory_p =
          handler.AcquireDiffDstMemoryWithReorderMemoryFromDataPrimitive(
              output_grad);
      auto diff_src_memory_p = handler.AcquireDiffSrcMemory(input_grad);
950

951
      auto conv_bwd_data_p = handler.AcquireBackwardPrimitive();
952

A
Adam 已提交
953 954
      conv_bwd_data_p->execute(astream,
                               {{MKLDNN_ARG_WEIGHTS, *weights_memory_p},
955
                                {MKLDNN_ARG_DIFF_DST, *diff_dst_memory_p},
A
Adam 已提交
956 957
                                {MKLDNN_ARG_DIFF_SRC, *diff_src_memory_p}});
      astream.wait();
958

A
Adam Osewski 已提交
959 960
      input_grad->set_layout(framework::DataLayout::kMKLDNN);
      input_grad->set_format(platform::GetMKLDNNFormat(*diff_src_memory_p));
961
    }
X
xiaolil1 已提交
962
  }
963
};
964

965 966 967 968 969
}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;

X
Xin Pan 已提交
970 971 972
REGISTER_OP_KERNEL_WITH_CUSTOM_TYPE(conv2d, MKLDNN,
                                    ::paddle::platform::CPUPlace, FP32,
                                    ops::kConvMKLDNNFP32,
973
                                    ops::ConvMKLDNNOpKernel<float, float>);
974

975 976 977 978
REGISTER_OP_KERNEL_WITH_CUSTOM_TYPE(
    conv2d, MKLDNN, ::paddle::platform::CPUPlace, BF16, ops::kConvMKLDNNFP32,
    ops::ConvMKLDNNOpKernel<paddle::platform::bfloat16, float>);

979 980
REGISTER_OP_KERNEL_WITH_CUSTOM_TYPE(conv2d, MKLDNN,
                                    ::paddle::platform::CPUPlace, U8,
981
                                    ops::kConvMKLDNNINT8,
982
                                    ops::ConvMKLDNNOpKernel<uint8_t, float>);
983 984 985

REGISTER_OP_KERNEL_WITH_CUSTOM_TYPE(conv2d, MKLDNN,
                                    ::paddle::platform::CPUPlace, S8,
986
                                    ops::kConvMKLDNNINT8,
987
                                    ops::ConvMKLDNNOpKernel<int8_t, float>);
X
Xin Pan 已提交
988 989 990 991

REGISTER_OP_KERNEL_WITH_CUSTOM_TYPE(conv2d_grad, MKLDNN,
                                    ::paddle::platform::CPUPlace, FP32,
                                    ops::kConvMKLDNNFP32,
992
                                    ops::ConvMKLDNNGradOpKernel<float, float>);
993 994 995 996

REGISTER_OP_KERNEL_WITH_CUSTOM_TYPE(conv3d, MKLDNN,
                                    ::paddle::platform::CPUPlace, FP32,
                                    ops::kConvMKLDNNFP32,
997
                                    ops::ConvMKLDNNOpKernel<float, float>);
998 999 1000 1001

REGISTER_OP_KERNEL_WITH_CUSTOM_TYPE(conv3d_grad, MKLDNN,
                                    ::paddle::platform::CPUPlace, FP32,
                                    ops::kConvMKLDNNFP32,
1002
                                    ops::ConvMKLDNNGradOpKernel<float, float>);