conv_mkldnn_op.cc 40.4 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

   Licensed under the Apache License, Version 2.0 (the "License");
   you may not use this file except in compliance with the License.
   You may obtain a copy of the License at

   http://www.apache.org/licenses/LICENSE-2.0

   Unless required by applicable law or agreed to in writing, software
   distributed under the License is distributed on an "AS IS" BASIS,
   WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
   See the License for the specific language governing permissions and
   limitations under the License. */

15
#include <unordered_map>
Y
Yu Yang 已提交
16 17
#include "paddle/fluid/framework/data_layout_transform.h"
#include "paddle/fluid/memory/malloc.h"
18
#include "paddle/fluid/operators/conv_op.h"
J
Jacek Czaja 已提交
19
#include "paddle/fluid/platform/mkldnn_reuse.h"
20 21 22 23

namespace paddle {
namespace operators {

24 25 26 27 28 29 30 31
using framework::DataLayout;
using mkldnn::memory;
using mkldnn::primitive;
using mkldnn::reorder;
using mkldnn::stream;
using platform::to_void_cast;
using platform::GetMKLDNNFormat;

Y
Yihua Xu 已提交
32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71
inline void GetWeightsTz(std::vector<int>& weights_tz, int groups,  // NOLINT
                         bool is_conv3d) {
  if (groups > 1) {
    if (is_conv3d) {
      int output = weights_tz[0];
      int input = weights_tz[1];
      int dimension = weights_tz[2];
      int height = weights_tz[3];
      int width = weights_tz[4];
      weights_tz.resize(6);
      weights_tz[0] = groups;
      weights_tz[1] = output / groups;
      weights_tz[2] = input;
      weights_tz[3] = dimension;
      weights_tz[4] = height;
      weights_tz[5] = width;
    } else {
      int output = weights_tz[0];
      int input = weights_tz[1];
      int height = weights_tz[2];
      int width = weights_tz[3];
      weights_tz.resize(5);
      weights_tz[0] = groups;
      weights_tz[1] = output / groups;
      weights_tz[2] = input;
      weights_tz[3] = height;
      weights_tz[4] = width;
    }
  }
}

inline mkldnn::memory::format GetWeightsFormat(mkldnn::memory::format format,
                                               int groups, bool is_conv3d) {
  if (is_conv3d) {
    return (groups == 1) ? format : mkldnn::memory::format::goidhw;
  } else {
    return (groups == 1) ? format : mkldnn::memory::format::goihw;
  }
}

72
template <typename T, typename K>
73
class ConvMKLDNNOpKernel : public paddle::framework::OpKernel<T> {
74 75 76 77
 public:
  void Compute(const paddle::framework::ExecutionContext& ctx) const override {
    PADDLE_ENFORCE(paddle::platform::is_cpu_place(ctx.GetPlace()),
                   "It must use CPUPlace.");
78 79 80 81 82 83 84 85
    bool is_INT8 =
        std::is_same<T, int8_t>::value || std::is_same<T, uint8_t>::value;
    if (!is_INT8) {
      ComputeFP32(ctx);
    } else {
      ComputeINT8(ctx);
    }
  }
86

87
  void ComputeFP32(const paddle::framework::ExecutionContext& ctx) const {
K
Krzysztof Binias 已提交
88 89
    const bool is_test = ctx.Attr<bool>("is_test");

90 91
    auto& dev_ctx =
        ctx.template device_context<paddle::platform::MKLDNNDeviceContext>();
92 93 94 95
    const auto& mkldnn_engine = dev_ctx.GetEngine();

    auto* input = ctx.Input<Tensor>("Input");
    auto* filter = ctx.Input<Tensor>("Filter");
96
    auto* bias = ctx.HasInput("Bias") ? ctx.Input<Tensor>("Bias") : nullptr;
97 98
    auto* output = ctx.Output<Tensor>("Output");

99 100 101 102 103 104
    PADDLE_ENFORCE(input->layout() == DataLayout::kMKLDNN &&
                       input->format() != memory::format::format_undef,
                   "Wrong layout/format set for Input tensor");
    PADDLE_ENFORCE(filter->layout() == DataLayout::kMKLDNN &&
                       filter->format() != memory::format::format_undef,
                   "Wrong layout/format set for Filter tensor");
105
    PADDLE_ENFORCE(input->dims().size() == 4 || input->dims().size() == 5,
Y
Yihua Xu 已提交
106
                   "Input must be with 4 or 5 dimensions, i.e. NCHW or NCDHW");
107 108
    PADDLE_ENFORCE(filter->dims().size() == 4 || filter->dims().size() == 5,
                   "Filter must be with 4 or 5 dimensions, i.e. OIHW or OIDHW");
109 110 111 112 113 114 115
    if (bias) {
      PADDLE_ENFORCE(bias->layout() == DataLayout::kMKLDNN &&
                         bias->format() != memory::format::format_undef,
                     "Wrong layout/format set for Bias tensor");
      PADDLE_ENFORCE(bias->dims().size() == 1,
                     "Bias must only have 1 dimension, i.e. X");
    }
116 117 118 119

    std::vector<int> strides = ctx.Attr<std::vector<int>>("strides");
    std::vector<int> paddings = ctx.Attr<std::vector<int>>("paddings");
    std::vector<int> dilations = ctx.Attr<std::vector<int>>("dilations");
M
Michal Gallus 已提交
120
    bool fuse_relu = ctx.Attr<bool>("fuse_relu");
121
    bool fuse_residual_conn = ctx.Attr<bool>("fuse_residual_connection");
122 123
    bool fuse_brelu = false;
    float fuse_brelu_threshold = 6.0;
124
    int groups = ctx.Attr<int>("groups");
125
    bool is_conv3d = strides.size() == 3U;
126 127 128 129
    if (!is_conv3d) {
      fuse_brelu = ctx.Attr<bool>("fuse_brelu");
      fuse_brelu_threshold = ctx.Attr<float>("fuse_brelu_threshold");
    }
130
    // TODO(tpatejko): add support for dilation
131
    PADDLE_ENFORCE(
132 133 134 135
        is_conv3d
            ? dilations.size() == 3 && dilations[0] == 1 && dilations[1] == 1 &&
                  dilations[2] == 1
            : dilations.size() == 2 && dilations[0] == 1 && dilations[1] == 1,
136 137 138 139 140 141 142 143
        "dilation in convolution is not implemented yet");

    const T* input_data = input->data<T>();
    const T* filter_data = filter->data<T>();

    std::vector<int> src_tz = paddle::framework::vectorize2int(input->dims());
    std::vector<int> weights_tz =
        paddle::framework::vectorize2int(filter->dims());
144
    int g = std::max(groups, 1);
Y
Yihua Xu 已提交
145
    GetWeightsTz(weights_tz, g, is_conv3d);
146 147
    std::vector<int> dst_tz = paddle::framework::vectorize2int(output->dims());

148
    // Get unique name for storing MKLDNN primitives
J
Jacek Czaja 已提交
149
    const std::string key = platform::ConvMKLDNNHandler::GetHash(
150 151
        src_tz, weights_tz, fuse_relu, fuse_brelu, strides, paddings, dilations,
        groups, ctx.op().Input("Input") + ctx.op().Input("Filter"));
152 153 154

    std::vector<primitive> pipeline;

155 156 157 158 159 160 161 162
    auto src_format = input->format();
    mkldnn::memory::format weights_format =
        GetWeightsFormat(filter->format(), g, is_conv3d);

    auto user_src_md = platform::MKLDNNMemDesc(
        {src_tz}, platform::MKLDNNGetDataType<T>(), src_format);
    auto user_weights_md = platform::MKLDNNMemDesc(
        {weights_tz}, platform::MKLDNNGetDataType<T>(), weights_format);
163 164 165 166 167

    /* create memory descriptor for convolution without specified format
     * ('any') which lets a primitive (convolution in this case) choose
     * the memory format preferred for best performance
     */
168 169 170 171
    std::string data_format = ctx.Attr<std::string>("data_format");
    auto chosen_memory_format =
        platform::data_format_to_memory_format(data_format);

172
    weights_format = mkldnn::memory::format::any;
173 174 175 176 177 178
    // Check the format for user's special output
    if (chosen_memory_format != mkldnn::memory::format::any) {
      if (is_conv3d) {
        chosen_memory_format =
            platform::MKLDNNFormatForSize(src_tz.size(), chosen_memory_format);
      }
179 180
    }

181
    auto src_md = platform::MKLDNNMemDesc(
182
        src_tz, platform::MKLDNNGetDataType<T>(), chosen_memory_format);
183
    auto weights_md = platform::MKLDNNMemDesc(
184
        weights_tz, platform::MKLDNNGetDataType<T>(), weights_format);
185 186
    std::vector<int> bias_tz;  // TODO(mgallus): avoid empty vector creation.
                               // Currently used whenever bias is != nullptr.
187
    auto dst_md = platform::MKLDNNMemDesc(
188
        dst_tz, platform::MKLDNNGetDataType<T>(), chosen_memory_format);
189

190 191
    platform::ConvMKLDNNHandler handler(dev_ctx, mkldnn_engine, key);

192
    // create a conv primitive descriptor and save it for usage in backward
193
    std::shared_ptr<mkldnn::convolution_forward::primitive_desc> conv_pd;
194 195
    auto fwd_prop_kind = is_test ? mkldnn::prop_kind::forward_inference
                                 : mkldnn::prop_kind::forward_training;
196 197 198 199
    if (bias) {
      bias_tz = paddle::framework::vectorize2int(bias->dims());
      auto bias_md = platform::MKLDNNMemDesc(
          bias_tz, platform::MKLDNNGetDataType<T>(), memory::format::x);
200
      conv_pd = handler.AcquireConvolutionPrimitiveDescriptor(
201
          src_md, weights_md, bias_md, dst_md, strides, paddings, mkldnn_engine,
202 203
          fuse_relu, fuse_residual_conn, fuse_brelu, fuse_brelu_threshold,
          fwd_prop_kind);
204
    } else {
205 206
      conv_pd = handler.AcquireConvolutionPrimitiveDescriptor(
          src_md, weights_md, boost::none, dst_md, strides, paddings,
207 208
          mkldnn_engine, fuse_relu, fuse_residual_conn, fuse_brelu,
          fuse_brelu_threshold, fwd_prop_kind);
209
    }
210

211
    // create mkldnn memory from input tensors (data/weights)
212 213
    auto user_src_memory_p =
        handler.AcquireSrcMemory(user_src_md, to_void_cast<T>(input_data));
214
    auto user_weights_memory_p = handler.AcquireWeightsMemory(
215
        user_weights_md, to_void_cast<T>(filter_data));
216

217 218 219 220 221
    // create reorder primitive if the input format is not the preferred one
    auto src_memory_p =
        handler.AcquireSrcMemoryFromPrimitive(user_src_memory_p, pipeline);
    auto weights_memory_p = handler.AcquireWeightsMemoryFromPrimitive(
        user_weights_memory_p, pipeline, is_test);
222

223
    std::shared_ptr<mkldnn::memory> dst_memory_p, user_residual_memory_p;
224

225
    if (fuse_residual_conn) {
226 227
      auto residual_param = ctx.Input<Tensor>("ResidualData");
      auto residual_param_data = residual_param->data<T>();
228

229 230 231 232 233 234
      PADDLE_ENFORCE(
          residual_param_data != nullptr,
          "Provide data if you want MKLDNN conv+elementwise_add fusion");
      PADDLE_ENFORCE_EQ(output->dims(), residual_param->dims(),
                        "Output and elementwise parameter need to have the "
                        "same dimension sizes");
235

236
      if (residual_param->format() != handler.GetDstFormat()) {
237 238
        auto output_data =
            output->mutable_data<T>(ctx.GetPlace(), handler.GetDstMemorySize());
239 240 241 242 243 244 245
        auto residual_data_tz =
            paddle::framework::vectorize2int(residual_param->dims());
        auto residual_data_type =
            paddle::framework::ToMKLDNNDataType(residual_param->type());

        auto user_residual_md = platform::MKLDNNMemDesc(
            residual_data_tz, residual_data_type, residual_param->format());
246
        user_residual_memory_p = handler.AcquireResidualDataMemory(
247
            user_residual_md, to_void_cast<T>(residual_param_data));
248 249 250

        dst_memory_p = handler.AcquireDstMemoryFromResidualDataMemory(
            user_residual_memory_p, to_void_cast<T>(output_data), pipeline);
251 252
      } else {
        output->ShareDataWith(*residual_param);
253 254 255
        auto output_data = output->mutable_data<T>(ctx.GetPlace());
        dst_memory_p =
            handler.AcquireDstMemoryFromPrimitive(to_void_cast<T>(output_data));
256
      }
257
    } else {
258 259
      auto output_data =
          output->mutable_data<T>(ctx.GetPlace(), handler.GetDstMemorySize());
260 261
      dst_memory_p =
          handler.AcquireDstMemoryFromPrimitive(to_void_cast<T>(output_data));
262
    }
263 264

    // create convolution op primitive
265
    std::shared_ptr<mkldnn::convolution_forward> conv_p;
266
    std::shared_ptr<mkldnn::memory> user_bias_memory_p, bias_memory_p;
267 268 269 270
    if (bias) {
      const T* bias_data = bias->data<T>();
      auto user_bias_md = platform::MKLDNNMemDesc(
          {bias_tz}, platform::MKLDNNGetDataType<T>(), memory::format::x);
271
      user_bias_memory_p =
272 273
          handler.AcquireBiasMemory(user_bias_md, to_void_cast<T>(bias_data));

274
      bias_memory_p =
275 276 277 278 279 280 281
          handler.AcquireBiasMemoryFromPrimitive(user_bias_memory_p, pipeline);
      conv_p = handler.AcquireConvolution(src_memory_p, weights_memory_p,
                                          bias_memory_p, dst_memory_p);
    } else {
      conv_p = handler.AcquireConvolution(src_memory_p, weights_memory_p,
                                          dst_memory_p);
    }
282 283

    // push primitive to stream and wait until it's executed
284
    pipeline.push_back(*conv_p);
285 286
    stream(stream::kind::eager).submit(pipeline).wait();

287 288
    output->set_layout(DataLayout::kMKLDNN);
    output->set_format(GetMKLDNNFormat(*dst_memory_p));
289
  }
290

291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324
  void ComputeINT8(const paddle::framework::ExecutionContext& ctx) const {
    const bool is_test = ctx.Attr<bool>("is_test");

    auto& dev_ctx =
        ctx.template device_context<paddle::platform::MKLDNNDeviceContext>();
    const auto& mkldnn_engine = dev_ctx.GetEngine();

    auto* input = ctx.Input<Tensor>("Input");
    auto* filter = ctx.Input<Tensor>("Filter");
    auto* bias = ctx.HasInput("Bias") ? ctx.Input<Tensor>("Bias") : nullptr;
    auto* output = ctx.Output<Tensor>("Output");

    PADDLE_ENFORCE(input->layout() == DataLayout::kMKLDNN &&
                       input->format() != memory::format::format_undef,
                   "Wrong layout/format set for Input tensor");
    PADDLE_ENFORCE(filter->layout() == DataLayout::kMKLDNN &&
                       filter->format() != memory::format::format_undef,
                   "Wrong layout/format set for Filter tensor");
    PADDLE_ENFORCE(input->dims().size() == 4 || input->dims().size() == 5,
                   "Input must be with 4 or 5 dimensions, i.e. NCHW or NCDHW");
    PADDLE_ENFORCE(filter->dims().size() == 4 || filter->dims().size() == 5,
                   "Filter must be with 4 or 5 dimensions, i.e. OIHW or OIDHW");
    if (bias) {
      PADDLE_ENFORCE(bias->layout() == DataLayout::kMKLDNN &&
                         bias->format() != memory::format::format_undef,
                     "Wrong layout/format set for Bias tensor");
      PADDLE_ENFORCE(bias->dims().size() == 1,
                     "Bias must only have 1 dimension, i.e. X");
    }

    std::vector<int> strides = ctx.Attr<std::vector<int>>("strides");
    std::vector<int> paddings = ctx.Attr<std::vector<int>>("paddings");
    std::vector<int> dilations = ctx.Attr<std::vector<int>>("dilations");
    int groups = ctx.Attr<int>("groups");
X
xiaolil1 已提交
325
    bool fuse_relu = ctx.Attr<bool>("fuse_relu");
X
xiaolil1 已提交
326
    bool fuse_residual_conn = ctx.Attr<bool>("fuse_residual_connection");
327
    bool fuse_brelu = ctx.Attr<bool>("fuse_brelu");
328
    float fuse_brelu_threshold = ctx.Attr<float>("fuse_brelu_threshold");
329
    bool force_fp32_output = ctx.Attr<bool>("force_fp32_output");
330
    bool unsigned_output = fuse_relu || fuse_brelu;
X
xiaolil1 已提交
331 332 333 334
    if (fuse_residual_conn) {
      PADDLE_ENFORCE(force_fp32_output != true,
                     "residual fusion does not support force output with fp32");
    }
335 336 337 338 339 340 341 342
    bool is_conv3d = strides.size() == 3U;
    // TODO(tpatejko): add support for dilation
    PADDLE_ENFORCE(
        is_conv3d
            ? dilations.size() == 3 && dilations[0] == 1 && dilations[1] == 1 &&
                  dilations[2] == 1
            : dilations.size() == 2 && dilations[0] == 1 && dilations[1] == 1,
        "dilation in convolution is not implemented yet");
X
xiaolil1 已提交
343

344 345 346 347 348 349 350 351
    PADDLE_ENFORCE(is_conv3d != true, "int8 does not support conv3d currently");

    const T* input_data = input->data<T>();

    std::vector<int> src_tz = paddle::framework::vectorize2int(input->dims());
    std::vector<int> weights_tz =
        paddle::framework::vectorize2int(filter->dims());
    int g = std::max(groups, 1);
352

353 354 355
    GetWeightsTz(weights_tz, g, is_conv3d);
    std::vector<int> dst_tz = paddle::framework::vectorize2int(output->dims());

X
xiaolil1 已提交
356 357
    mkldnn::memory::data_type src_dt =
        paddle::framework::ToMKLDNNDataType(input->type());
358

359 360
    auto dst_dt = unsigned_output
                      ? paddle::framework::ToMKLDNNDataType(
361
                            framework::DataTypeTrait<uint8_t>::DataType())
362
                      : paddle::framework::ToMKLDNNDataType(
363
                            framework::DataTypeTrait<int8_t>::DataType());
X
xiaolil1 已提交
364 365 366

    if (force_fp32_output) {
      dst_dt = paddle::framework::ToMKLDNNDataType(
367
          framework::DataTypeTrait<float>::DataType());
X
xiaolil1 已提交
368 369
    }

X
xiaolil1 已提交
370 371 372 373 374 375
    if (fuse_residual_conn) {
      auto residual = ctx.Input<Tensor>("ResidualData");
      auto residual_dt = paddle::framework::ToMKLDNNDataType(residual->type());
      if (dst_dt != residual_dt) dst_dt = residual_dt;
    }

376 377 378 379 380
    // Get unique name for storing MKLDNN primitives
    std::string key;
    key.reserve(MaxKeyLength);
    platform::ConvMKLDNNHandler::AppendKey(
        &key, src_tz, weights_tz, strides, paddings, dilations, groups, src_dt,
381
        input->format(), fuse_relu, fuse_residual_conn, fuse_brelu,
382
        ctx.op().Input("Input") + ctx.op().Input("Filter"));
383

384 385
    const std::string key_conv_pd = key + "@conv_pd";

X
xiaolil1 已提交
386
    bool need_s8_to_u8 = false;
387 388 389 390
    std::shared_ptr<mkldnn::convolution_forward> conv_p;
    std::shared_ptr<mkldnn::memory> src_memory_p;
    std::shared_ptr<mkldnn::memory> user_src_memory_p;
    std::shared_ptr<mkldnn::memory> dst_memory_p;
391
    std::vector<primitive> pipeline;
392 393
    std::shared_ptr<mkldnn::convolution_forward::primitive_desc> conv_pd;
    std::shared_ptr<platform::ConvMKLDNNHandler> handler;
394 395 396 397 398 399

    auto prim_key = key + "@conv_p";
    auto dst_key = key + "@dst_mem_p";
    auto src_key = key + "@src_mem_p";
    auto user_src_key = key + "@user_src_mem_p";
    auto src_reorder_key = key + "@src_mem_preorder_p";
X
xiaolil1 已提交
400 401
    auto residual_reorder_key = key + "@residual_data_mem_preorder_p";

402 403
    conv_p = std::static_pointer_cast<mkldnn::convolution_forward>(
        dev_ctx.GetBlob(prim_key));
X
xiaolil1 已提交
404

405 406 407
    if (conv_p == nullptr || !is_test) {
      const K* filter_data = filter->data<K>();
      auto scale_in_data = ctx.Attr<float>("Scale_in");
X
xiaolil1 已提交
408
      auto scale_in_eltwise_data = ctx.Attr<float>("Scale_in_eltwise");
409 410 411
      auto scale_weights_data = ctx.Attr<std::vector<float>>("Scale_weights");
      auto scale_out_data =
          force_fp32_output ? 1.0f : ctx.Attr<float>("Scale_out");
X
xiaolil1 已提交
412 413
      float sum_scale =
          fuse_residual_conn ? scale_out_data / scale_in_eltwise_data : 1.0f;
414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429

      bool is_multi_channel = scale_weights_data.size() > 1;

      int count = is_multi_channel ? (g > 1 ? (weights_tz)[1] * (weights_tz)[0]
                                            : (weights_tz)[0])
                                   : 1;
      std::vector<float> output_shift_scale(count);
#pragma omp parallel for if (count > 1)
      for (int i = 0; i < count; i++) {
        if (scale_weights_data[i] == 0.0)
          output_shift_scale[i] =
              scale_out_data;  // weights data will contain 0
                               // in some models, then weights
                               // scale couldn't be calculated
        else
          output_shift_scale[i] =
430 431 432
              static_cast<float>(static_cast<double>(scale_out_data) /
                                 (static_cast<double>(scale_in_data) *
                                  static_cast<double>(scale_weights_data[i])));
433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457
      }

      auto user_src_md =
          platform::MKLDNNMemDesc({src_tz}, src_dt, input->format());
      auto user_weights_md = platform::MKLDNNMemDesc(
          {weights_tz}, platform::MKLDNNGetDataType<K>(),
          ((g) == 1) ? mkldnn::memory::format::oihw
                     : mkldnn::memory::format::goihw);

      /* create memory descriptor for convolution without specified format
      * ('any') which lets a primitive (convolution in this case) choose
      * the memory format preferred for best performance
      */
      std::string data_format = ctx.Attr<std::string>("data_format");
      auto chosen_memory_format =
          platform::data_format_to_memory_format(data_format);

      std::vector<int> bias_tz;

      auto src_md =
          platform::MKLDNNMemDesc(src_tz, src_dt, chosen_memory_format);
      auto weights_md = platform::MKLDNNMemDesc(
          weights_tz, memory::data_type::s8, chosen_memory_format);
      auto dst_md =
          platform::MKLDNNMemDesc(dst_tz, dst_dt, chosen_memory_format);
X
xiaolil1 已提交
458

459
      // create a conv primitive descriptor and save it for usage in backward
460 461 462
      // TODO(lidanqing): We use relu post-op instead of brelu post-op cause
      // mkldnn v0.18 does not support INT8 brelu post-op. Use code in /**/ when
      // v0.20 is enabled
463
      std::shared_ptr<memory::desc> bias_md_p;
464 465
      if (bias) {
        bias_tz = paddle::framework::vectorize2int(bias->dims());
466 467
        bias_md_p = std::make_shared<memory::desc>(platform::MKLDNNMemDesc(
            bias_tz, memory::data_type::s32, memory::format::x));
468
      }
469 470 471 472 473
      conv_pd = ConvFwdPrimitiveDesc(
          src_md, weights_md, bias_md_p, dst_md, strides, paddings,
          mkldnn_engine, fuse_relu || fuse_brelu /*fuse_relu*/,
          fuse_residual_conn, false /*fuse_brelu*/, fuse_brelu_threshold,
          output_shift_scale, sum_scale, is_test);
474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494
      // Save conv_pd/src_memory/weights_memory for backward pass
      dev_ctx.SetBlob(key_conv_pd, conv_pd);
      handler.reset(new platform::ConvMKLDNNHandler(conv_pd, dev_ctx,
                                                    mkldnn_engine, key));
      // create mkldnn memory from input tensors (data/weights)
      user_src_memory_p =
          handler->AcquireSrcMemory(user_src_md, to_void_cast<T>(input_data));
      auto user_weights_memory_p = handler->AcquireWeightsMemory(
          user_weights_md, to_void_cast<K>(filter_data));

      // create reorder primitive if the input format is not the preferred one
      src_memory_p =
          handler->AcquireSrcMemoryFromPrimitive(user_src_memory_p, pipeline);

      std::shared_ptr<mkldnn::memory> weights_memory_p;
      int mask_reorder =
          is_multi_channel ? ((g != 1) ? (1 << 1) + (1 << 0) : 1 << 0) : 0;
      weights_memory_p = handler->AcquireWeightsMemoryFromPrimitive(
          user_weights_memory_p, pipeline, is_test, true, scale_weights_data,
          mask_reorder);

X
xiaolil1 已提交
495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513
      if (fuse_residual_conn) {
        auto residual_param = ctx.Input<Tensor>("ResidualData");
        PADDLE_ENFORCE_EQ(output->dims(), residual_param->dims(),
                          "Output and elementwise parameter need to have the "
                          "same dimension sizes");
        auto residual_dt =
            paddle::framework::ToMKLDNNDataType(residual_param->type());
        if (residual_param->format() != handler->GetDstFormat()) {
          auto residual_data_tz =
              paddle::framework::vectorize2int(residual_param->dims());

          auto user_residual_md = platform::MKLDNNMemDesc(
              residual_data_tz, residual_dt, residual_param->format());

          if (residual_dt == mkldnn::memory::data_type::u8) {
            dst_memory_p = platform::SetDstMemory<uint8_t>(
                ctx, output, residual_param, user_residual_md, handler,
                &pipeline);
          } else {
514
            need_s8_to_u8 = unsigned_output;
X
xiaolil1 已提交
515 516 517 518 519 520 521 522 523 524
            dst_memory_p = platform::SetDstMemory<int8_t>(
                ctx, output, residual_param, user_residual_md, handler,
                &pipeline);
          }
        } else {
          output->ShareDataWith(*residual_param);
          if (residual_dt == mkldnn::memory::data_type::u8) {
            dst_memory_p =
                platform::SetDstMemory<uint8_t>(ctx, output, handler);
          } else {
525
            need_s8_to_u8 = unsigned_output;
X
xiaolil1 已提交
526 527 528 529
            dst_memory_p = platform::SetDstMemory<int8_t>(ctx, output, handler);
          }
        }
      } else if (!force_fp32_output) {
530
        if (unsigned_output) {
X
xiaolil1 已提交
531 532 533 534
          dst_memory_p = platform::SetDstMemory<uint8_t>(ctx, output, handler);
        } else {
          dst_memory_p = platform::SetDstMemory<int8_t>(ctx, output, handler);
        }
535 536 537 538 539 540 541
      } else {
        dst_memory_p = platform::SetDstMemory<float>(ctx, output, handler);
      }

      // create convolution op primitive
      auto scale_bias_key = key + "@scale_bias";
      if (bias) {
X
xiaolil1 已提交
542
        const K* bias_data = bias->data<K>();
543
        auto user_bias_md = platform::MKLDNNMemDesc(
X
xiaolil1 已提交
544
            {bias_tz}, platform::MKLDNNGetDataType<K>(), memory::format::x);
545
        auto user_bias_memory_p = handler->AcquireBiasMemory(
X
xiaolil1 已提交
546
            user_bias_md, to_void_cast<K>(bias_data));
547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591
        std::shared_ptr<mkldnn::memory> bias_memory_p;
        int mask_reorder = is_multi_channel ? 1 << 0 : 1;
        int count =
            is_multi_channel
                ? (g > 1 ? (weights_tz)[1] * (weights_tz)[0] : (weights_tz)[0])
                : 1;
        std::vector<float> scale_bias_data(count);
#pragma omp parallel for if (count > 1)
        for (int i = 0; i < count; i++) {
          scale_bias_data[i] = scale_in_data * scale_weights_data[i];
        }
        bias_memory_p = handler->AcquireBiasMemoryFromPrimitive(
            user_bias_memory_p, pipeline, is_test, true, scale_bias_data,
            mask_reorder);
        conv_p = handler->AcquireConvolution(src_memory_p, weights_memory_p,
                                             bias_memory_p, dst_memory_p);
      } else {
        conv_p = handler->AcquireConvolution(src_memory_p, weights_memory_p,
                                             dst_memory_p);
      }

      // push primitive to stream and wait until it's executed
      pipeline.push_back(*conv_p);
    } else {
      auto src_memory_reorder_p = std::static_pointer_cast<mkldnn::memory>(
          dev_ctx.GetBlob(src_reorder_key));
      src_memory_p =
          std::static_pointer_cast<mkldnn::memory>(dev_ctx.GetBlob(src_key));
      if (src_memory_reorder_p) {
        user_src_memory_p = std::static_pointer_cast<mkldnn::memory>(
            dev_ctx.GetBlob(user_src_key));
        user_src_memory_p->set_data_handle(to_void_cast<T>(input_data));
      } else if (src_memory_p) {
        src_memory_p->set_data_handle(to_void_cast<T>(input_data));
      }

      dst_memory_p =
          std::static_pointer_cast<mkldnn::memory>(dev_ctx.GetBlob(dst_key));
      conv_pd =
          std::static_pointer_cast<mkldnn::convolution_forward::primitive_desc>(
              dev_ctx.GetBlob(key_conv_pd));
      if (conv_pd) {
        handler.reset(new platform::ConvMKLDNNHandler(conv_pd, dev_ctx,
                                                      mkldnn_engine, key));
      }
X
xiaolil1 已提交
592 593 594 595 596 597 598 599 600 601

      if (fuse_residual_conn) {
        auto residual_param = ctx.Input<Tensor>("ResidualData");
        auto residual_dt =
            paddle::framework::ToMKLDNNDataType(residual_param->type());
        output->ShareDataWith(*residual_param);
        if (residual_dt == mkldnn::memory::data_type::u8) {
          platform::SetDstMemoryHandler<uint8_t>(ctx, output, handler,
                                                 &dst_memory_p);
        } else {
602
          need_s8_to_u8 = unsigned_output;
X
xiaolil1 已提交
603 604 605 606
          platform::SetDstMemoryHandler<int8_t>(ctx, output, handler,
                                                &dst_memory_p);
        }
      } else if (!force_fp32_output) {
607
        if (unsigned_output) {
X
xiaolil1 已提交
608 609
          platform::SetDstMemoryHandler<uint8_t>(ctx, output, handler,
                                                 &dst_memory_p);
X
xiaolil1 已提交
610
        } else {
X
xiaolil1 已提交
611 612
          platform::SetDstMemoryHandler<int8_t>(ctx, output, handler,
                                                &dst_memory_p);
X
xiaolil1 已提交
613
        }
614
      } else {
X
xiaolil1 已提交
615 616
        platform::SetDstMemoryHandler<float>(ctx, output, handler,
                                             &dst_memory_p);
617
      }
X
xiaolil1 已提交
618

619 620 621
      if (src_memory_reorder_p) {
        pipeline.push_back(*src_memory_reorder_p);
      }
X
xiaolil1 已提交
622 623 624 625 626 627 628

      auto residual_reorder_p = std::static_pointer_cast<mkldnn::memory>(
          dev_ctx.GetBlob(residual_reorder_key));
      if (residual_reorder_p) {
        pipeline.push_back(*residual_reorder_p);
      }

629 630 631 632 633
      pipeline.push_back(*conv_p);
    }
    // push primitive to stream and wait until it's executed
    stream(stream::kind::eager).submit(pipeline).wait();

X
xiaolil1 已提交
634 635 636 637
    if (need_s8_to_u8) {
      output->mutable_data<uint8_t>(ctx.GetPlace());
    }

638 639 640
    output->set_layout(DataLayout::kMKLDNN);
    output->set_format(GetMKLDNNFormat(*dst_memory_p));
  }
641

642
 private:
643
  mkldnn::primitive_attr CreatePostOps(
X
xiaolil1 已提交
644
      bool fuse_relu, bool fuse_residual_conn,
645
      const std::vector<float>& output_shift_scale, float sum_scale,
646
      bool fuse_brelu, float fuse_brelu_threshold) const {
647 648 649 650
    mkldnn::primitive_attr conv_attr;
    mkldnn::post_ops post_operations;
    int mask = output_shift_scale.size() > 1 ? 1 << 1 : 0;
    conv_attr.set_output_scales(mask, output_shift_scale);
651

X
xiaolil1 已提交
652 653 654
    if (fuse_residual_conn) {
      post_operations.append_sum(sum_scale);
    }
X
xiaolil1 已提交
655 656 657 658 659 660 661
    if (fuse_relu) {
      constexpr float scale = 1.0f;
      constexpr float negative_slope = 0.0f;
      constexpr float placeholder = 1.0f;  // beta
      post_operations.append_eltwise(scale, mkldnn::algorithm::eltwise_relu,
                                     negative_slope, placeholder);
    }
662 663 664 665 666 667 668
    if (fuse_brelu) {
      constexpr float scale = 1.0f;
      constexpr float placeholder = 0.0f;  // beta
      post_operations.append_eltwise(scale,
                                     mkldnn::algorithm::eltwise_bounded_relu,
                                     fuse_brelu_threshold, placeholder);
    }
669 670 671 672 673 674
    conv_attr.set_post_ops(post_operations);
    return conv_attr;
  }

  std::unique_ptr<mkldnn::convolution_forward::primitive_desc>
  ConvFwdPrimitiveDesc(const memory::desc& src, const memory::desc& weights,
675
                       const std::shared_ptr<memory::desc> bias_md_p,
676 677
                       const memory::desc& dst, const std::vector<int>& strides,
                       const std::vector<int>& paddings,
X
xiaolil1 已提交
678
                       const mkldnn::engine& engine, const bool fuse_relu,
679 680
                       const bool fuse_residual_conn, const bool fuse_brelu,
                       const float fuse_brelu_threshold,
681
                       const std::vector<float>& output_shift_scale,
X
xiaolil1 已提交
682
                       const float sum_scale, bool is_test) const {
683 684 685 686 687
    memory::dims stride_dims = {strides[0], strides[1]};
    memory::dims padding_dims = {paddings[0], paddings[1]};

    auto propagation = is_test ? mkldnn::prop_kind::forward_scoring
                               : mkldnn::prop_kind::forward_training;
688 689 690 691 692 693 694 695 696 697
    auto conv_desc =
        (bias_md_p != nullptr)
            ? mkldnn::convolution_forward::desc(
                  propagation, mkldnn::convolution_direct, src, weights,
                  (*bias_md_p), dst, stride_dims, padding_dims, padding_dims,
                  mkldnn::padding_kind::zero)
            : mkldnn::convolution_forward::desc(
                  propagation, mkldnn::convolution_direct, src, weights, dst,
                  stride_dims, padding_dims, padding_dims,
                  mkldnn::padding_kind::zero);
698

699 700 701
    mkldnn::primitive_attr conv_attr =
        CreatePostOps(fuse_relu, fuse_residual_conn, output_shift_scale,
                      sum_scale, fuse_brelu, fuse_brelu_threshold);
702 703 704 705 706 707 708

    auto p_conv_pd = new mkldnn::convolution_forward::primitive_desc(
        conv_desc, conv_attr, engine);

    return std::unique_ptr<mkldnn::convolution_forward::primitive_desc>(
        p_conv_pd);
  }
709 710 711
};

template <typename T>
712
class ConvMKLDNNGradOpKernel : public paddle::framework::OpKernel<T> {
713 714 715 716 717
 public:
  void Compute(const paddle::framework::ExecutionContext& ctx) const override {
    PADDLE_ENFORCE(paddle::platform::is_cpu_place(ctx.GetPlace()),
                   "It must use CPUPlace.");

718 719
    auto& dev_ctx =
        ctx.template device_context<platform::MKLDNNDeviceContext>();
720 721 722 723 724 725 726 727 728
    const auto& mkldnn_engine = dev_ctx.GetEngine();

    const Tensor* input = ctx.Input<Tensor>("Input");
    const Tensor* filter = ctx.Input<Tensor>("Filter");
    const Tensor* output_grad =
        ctx.Input<Tensor>(framework::GradVarName("Output"));
    Tensor* input_grad = ctx.Output<Tensor>(framework::GradVarName("Input"));
    Tensor* filter_grad = ctx.Output<Tensor>(framework::GradVarName("Filter"));

729 730 731 732 733 734 735 736 737 738
    PADDLE_ENFORCE(input->layout() == DataLayout::kMKLDNN &&
                       input->format() != memory::format::format_undef,
                   "Wrong layout/format set for Input tensor");
    PADDLE_ENFORCE(filter->layout() == DataLayout::kMKLDNN &&
                       filter->format() != memory::format::format_undef,
                   "Wrong layout/format set for Filter tensor");
    PADDLE_ENFORCE(output_grad->layout() == DataLayout::kMKLDNN &&
                       output_grad->format() != memory::format::format_undef,
                   "Wrong layout/format set for output_grad tensor");

739 740 741 742
    PADDLE_ENFORCE(
        !ctx.Attr<bool>("is_test"),
        "is_test attribute should be set to False in training phase.");

743 744 745 746
    if (!input_grad && !filter_grad) return;

    std::vector<int> strides = ctx.Attr<std::vector<int>>("strides");
    std::vector<int> paddings = ctx.Attr<std::vector<int>>("paddings");
747 748
    std::vector<int> dilations = ctx.Attr<std::vector<int>>("dilations");
    int groups = ctx.Attr<int>("groups");
749

750
    bool is_conv3d = strides.size() == 3U;
751 752 753 754 755 756 757 758 759
    const T* input_data = input->data<T>();
    const T* filter_data = filter->data<T>();
    const T* output_grad_data = output_grad->data<T>();
    T* input_grad_data = nullptr;
    T* filter_grad_data = nullptr;

    std::vector<int> src_tz = paddle::framework::vectorize2int(input->dims());
    std::vector<int> weights_tz =
        paddle::framework::vectorize2int(filter->dims());
760
    int g = std::max(groups, 1);
Y
Yihua Xu 已提交
761
    GetWeightsTz(weights_tz, g, is_conv3d);
762 763
    std::vector<int> dst_tz =
        paddle::framework::vectorize2int(output_grad->dims());
764 765 766 767 768
    bool fuse_relu = ctx.Attr<bool>("fuse_relu");
    bool fuse_brelu = false;
    if (!is_conv3d) {
      fuse_brelu = ctx.Attr<bool>("fuse_brelu");
    }
769 770
    auto src_format = input->format();
    mkldnn::memory::format weights_format =
Y
Yihua Xu 已提交
771
        GetWeightsFormat(filter->format(), g, is_conv3d);
772

773
    // Get an unique name from "argument" name of "input" and "Filter" variable
J
Jacek Czaja 已提交
774
    // as well as attributes of primitive to be created
775
    // This name will be used as key when saving info into device context
J
Jacek Czaja 已提交
776
    const std::string key = platform::ConvMKLDNNHandler::GetHash(
777 778
        src_tz, weights_tz, fuse_relu, fuse_brelu, strides, paddings, dilations,
        groups, ctx.op().Input("Input") + ctx.op().Input("Filter"));
779 780

    const std::string key_conv_pd = key + "@conv_pd";
781
    std::vector<primitive> pipeline;
782

783 784
    // Create user memory descriptors
    auto user_src_md = platform::MKLDNNMemDesc(
785
        {src_tz}, platform::MKLDNNGetDataType<T>(), src_format);
786
    auto user_weights_md = platform::MKLDNNMemDesc(
787
        {weights_tz}, platform::MKLDNNGetDataType<T>(), weights_format);
788 789
    auto user_diff_dst_md = platform::MKLDNNMemDesc(
        {dst_tz}, platform::MKLDNNGetDataType<T>(), output_grad->format());
790 791 792 793 794

    /* create memory descriptor for conv backward without specified format
     * ('any') which lets a primitive (conv backward in this case) choose
     * the memory format preferred for best performance
     */
795 796 797 798
    std::string data_format = ctx.Attr<std::string>("data_format");
    auto chosen_memory_format =
        platform::data_format_to_memory_format(data_format);

799 800 801 802 803 804 805
    weights_format = mkldnn::memory::format::any;
    // Check the format for user's special output
    if (chosen_memory_format != mkldnn::memory::format::any) {
      if (is_conv3d) {
        chosen_memory_format =
            platform::MKLDNNFormatForSize(src_tz.size(), chosen_memory_format);
      }
806 807
    }

808
    auto src_md = platform::MKLDNNMemDesc(
809
        src_tz, platform::MKLDNNGetDataType<T>(), chosen_memory_format);
810
    auto diff_src_md = platform::MKLDNNMemDesc(
811
        src_tz, platform::MKLDNNGetDataType<T>(), chosen_memory_format);
812
    auto weights_md = platform::MKLDNNMemDesc(
813
        weights_tz, platform::MKLDNNGetDataType<T>(), weights_format);
814
    auto diff_weights_md = platform::MKLDNNMemDesc(
815
        weights_tz, platform::MKLDNNGetDataType<T>(), weights_format);
816
    auto diff_dst_md = platform::MKLDNNMemDesc(
817
        dst_tz, platform::MKLDNNGetDataType<T>(), chosen_memory_format);
818

819
    // Retrieve conv_pd from device context
820 821 822
    auto conv_pd =
        std::static_pointer_cast<mkldnn::convolution_forward::primitive_desc>(
            dev_ctx.GetBlob(key_conv_pd));
823 824 825
    PADDLE_ENFORCE(conv_pd != nullptr,
                   "Fail to find conv_pd in device context");

826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841
    // create backward convolution weights primitive descriptor
    auto conv_bwd_weights_desc = mkldnn::convolution_backward_weights::desc(
        mkldnn::convolution_direct, src_md, diff_weights_md, diff_dst_md,
        strides, paddings, paddings, mkldnn::padding_kind::zero);
    auto conv_bwd_weights_pd =
        std::make_shared<mkldnn::convolution_backward_weights::primitive_desc>(
            conv_bwd_weights_desc, mkldnn_engine, *conv_pd);

    // create backward convolution data primitive descriptor
    auto conv_bwd_data_desc = mkldnn::convolution_backward_data::desc(
        mkldnn::convolution_direct, diff_src_md, weights_md, diff_dst_md,
        strides, paddings, paddings, mkldnn::padding_kind::zero);
    auto conv_bwd_data_pd =
        std::make_shared<mkldnn::convolution_backward_data::primitive_desc>(
            conv_bwd_data_desc, mkldnn_engine, *conv_pd);

J
Jacek Czaja 已提交
842 843 844
    platform::ConvMKLDNNHandler handler(conv_pd, conv_bwd_data_pd,
                                        conv_bwd_weights_pd, dev_ctx,
                                        mkldnn_engine, key);
845 846 847 848 849 850 851 852 853

    // create mkldnn memory from input tensors (data/weights)
    auto user_src_memory_p =
        handler.AcquireSrcMemory(user_src_md, to_void_cast<T>(input_data));
    auto user_weights_memory_p = handler.AcquireWeightsMemory(
        user_weights_md, to_void_cast<T>(filter_data));
    auto user_diff_dst_memory_p = handler.AcquireDiffDstMemory(
        user_diff_dst_md, to_void_cast<T>(output_grad_data));

854 855
    // create backward conv primitive for weights
    if (filter_grad) {
856 857
      auto src_memory_p = handler.AcquireSrcMemoryFromWeightsPrimitive(
          user_src_memory_p, pipeline);
858

859 860 861 862
      auto diff_dst_memory_4filter_p =
          handler.AcquireDiffDstMemoryFromWeightsPrimitive(
              user_diff_dst_memory_p, pipeline);

863
      const size_t size = handler.GetDiffWeightsMemorySize();
864
      filter_grad_data = filter_grad->mutable_data<T>(ctx.GetPlace(), size);
865

866 867 868 869 870 871 872 873 874
      auto diff_weights_memory_p =
          handler.AcquireDiffWeightsMemoryFromWeightsPrimitive(
              reinterpret_cast<void*>(filter_grad_data));

      auto conv_bwd_weights_p = handler.AcquireConvolutionBackwardWeights(
          src_memory_p, diff_dst_memory_4filter_p, diff_weights_memory_p);

      // push primitive to stream and wait until it's executed
      pipeline.push_back(*conv_bwd_weights_p);
875

876 877
      filter_grad->set_layout(DataLayout::kMKLDNN);
      filter_grad->set_format(GetMKLDNNFormat(*diff_weights_memory_p));
878 879 880
    }

    if (input_grad) {
881 882 883 884 885 886 887
      auto weights_memory_p = handler.AcquireWeightsMemoryFromDataPrimitive(
          user_weights_memory_p, pipeline);

      auto diff_dst_memory_4data_p =
          handler.AcquireDiffDstMemoryFromDataPrimitive(user_diff_dst_memory_p,
                                                        pipeline);

888
      const size_t size = handler.GetDiffSourceMemorySize();
889
      input_grad_data = input_grad->mutable_data<T>(ctx.GetPlace(), size);
890

891 892 893 894 895 896 897
      auto diff_src_memory_p = handler.AcquireDiffSrcMemoryFromDataPrimitive(
          reinterpret_cast<void*>(input_grad_data));

      auto conv_bwd_data_p = handler.AcquireConvolutionBackwardData(
          diff_dst_memory_4data_p, weights_memory_p, diff_src_memory_p);

      pipeline.push_back(*conv_bwd_data_p);
898

899 900
      input_grad->set_layout(DataLayout::kMKLDNN);
      input_grad->set_format(GetMKLDNNFormat(*diff_src_memory_p));
901
    }
902
    stream(stream::kind::eager).submit(pipeline).wait();
X
xiaolil1 已提交
903
  }
904 905 906 907 908 909 910
};

}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;

X
Xin Pan 已提交
911 912 913
REGISTER_OP_KERNEL_WITH_CUSTOM_TYPE(conv2d, MKLDNN,
                                    ::paddle::platform::CPUPlace, FP32,
                                    ops::kConvMKLDNNFP32,
914 915 916 917
                                    ops::ConvMKLDNNOpKernel<float, float>);

REGISTER_OP_KERNEL_WITH_CUSTOM_TYPE(conv2d, MKLDNN,
                                    ::paddle::platform::CPUPlace, U8,
918
                                    ops::kConvMKLDNNINT8,
919 920 921 922
                                    ops::ConvMKLDNNOpKernel<uint8_t, float>);

REGISTER_OP_KERNEL_WITH_CUSTOM_TYPE(conv2d, MKLDNN,
                                    ::paddle::platform::CPUPlace, S8,
923
                                    ops::kConvMKLDNNINT8,
924
                                    ops::ConvMKLDNNOpKernel<int8_t, float>);
X
Xin Pan 已提交
925 926 927 928 929

REGISTER_OP_KERNEL_WITH_CUSTOM_TYPE(conv2d_grad, MKLDNN,
                                    ::paddle::platform::CPUPlace, FP32,
                                    ops::kConvMKLDNNFP32,
                                    ops::ConvMKLDNNGradOpKernel<float>);
930 931 932 933

REGISTER_OP_KERNEL_WITH_CUSTOM_TYPE(conv3d, MKLDNN,
                                    ::paddle::platform::CPUPlace, FP32,
                                    ops::kConvMKLDNNFP32,
934
                                    ops::ConvMKLDNNOpKernel<float, float>);
935 936 937 938 939

REGISTER_OP_KERNEL_WITH_CUSTOM_TYPE(conv3d_grad, MKLDNN,
                                    ::paddle::platform::CPUPlace, FP32,
                                    ops::kConvMKLDNNFP32,
                                    ops::ConvMKLDNNGradOpKernel<float>);