conv_mkldnn_op.cc 51.6 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

   Licensed under the Apache License, Version 2.0 (the "License");
   you may not use this file except in compliance with the License.
   You may obtain a copy of the License at

   http://www.apache.org/licenses/LICENSE-2.0

   Unless required by applicable law or agreed to in writing, software
   distributed under the License is distributed on an "AS IS" BASIS,
   WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
   See the License for the specific language governing permissions and
   limitations under the License. */

Y
Yu Yang 已提交
15
#include "paddle/fluid/framework/data_layout_transform.h"
16
#include "paddle/fluid/operators/conv_op.h"
J
Jacek Czaja 已提交
17
#include "paddle/fluid/platform/cpu_info.h"
J
Jacek Czaja 已提交
18
#include "paddle/fluid/platform/mkldnn_reuse.h"
19

W
wanghuancoder 已提交
20 21 22 23 24 25
namespace paddle {
namespace platform {
class MKLDNNDeviceContext;
}  // namespace platform
}  // namespace paddle

26 27 28
namespace paddle {
namespace operators {

29 30 31 32 33 34
using framework::DataLayout;
using mkldnn::memory;
using mkldnn::primitive;
using mkldnn::reorder;
using mkldnn::stream;
using platform::GetMKLDNNFormat;
35
using platform::to_void_cast;
36

37 38 39
inline MKLDNNMemoryFormat GetWeightsFormat(const MKLDNNMemoryFormat format,
                                           const int groups,
                                           const bool is_conv3d) {
Y
Yihua Xu 已提交
40
  if (is_conv3d) {
41
    return (groups == 1) ? format : MKLDNNMemoryFormat::goidhw;
Y
Yihua Xu 已提交
42
  } else {
43
    return (groups == 1) ? format : MKLDNNMemoryFormat::goihw;
Y
Yihua Xu 已提交
44 45 46
  }
}

47
static mkldnn::memory::data_type GetDstType(bool is_int8, bool is_bfloat16,
48
                                            bool force_fp32_output,
49
                                            std::string fuse_activation,
50 51
                                            bool fuse_residual_conn,
                                            const Tensor* residual_param) {
52
  auto dst_dt = mkldnn::memory::data_type::f32;
53 54 55 56 57 58 59
  if (is_int8) {
    dst_dt = (fuse_activation == "relu" || fuse_activation == "relu6")
                 ? mkldnn::memory::data_type::u8
                 : mkldnn::memory::data_type::s8;
    if (force_fp32_output) {
      dst_dt = mkldnn::memory::data_type::f32;
    }
60 61
    if (fuse_residual_conn && residual_param) {
      auto residual_dt = framework::ToMKLDNNDataType(residual_param->type());
62
      if (dst_dt != residual_dt) dst_dt = residual_dt;
63
    }
64 65 66 67 68 69 70
  } else {
    if (!force_fp32_output && is_bfloat16) {
      dst_dt = mkldnn::memory::data_type::bf16;
      if (fuse_residual_conn && residual_param) {
        dst_dt = framework::ToMKLDNNDataType(residual_param->type());
      }
    }
71 72 73 74
  }
  return dst_dt;
}

75
template <typename T, typename K, typename T_out>
76 77
class ConvMKLDNNHandlerT
    : public platform::MKLDNNHandlerT<T, mkldnn::convolution_forward> {
78
 public:
79 80 81 82 83 84 85 86
  ConvMKLDNNHandlerT(const paddle::framework::ExecutionContext& ctx,
                     const platform::MKLDNNDeviceContext& dev_ctx,
                     const mkldnn::engine mkldnn_engine,
                     platform::Place cpu_place, const Tensor* input,
                     const Tensor* filter, const Tensor* bias, Tensor* output,
                     const std::string& unique_name)
      : platform::MKLDNNHandlerT<T, mkldnn::convolution_forward>(
            dev_ctx, mkldnn_engine, cpu_place,
87
            platform::CreateKey(dev_ctx, framework::vectorize(input->dims()),
88 89 90 91 92 93 94 95 96 97
                                unique_name)) {
    if (!this->isCached()) {
      PADDLE_ENFORCE_EQ(
          input->layout(), DataLayout::kMKLDNN,
          platform::errors::InvalidArgument(
              "The input tensor's layout should be %d, but got %d.",
              DataLayout::kMKLDNN, input->layout()));
      PADDLE_ENFORCE_NE(input->format(), MKLDNNMemoryFormat::undef,
                        platform::errors::InvalidArgument(
                            "Wrong format set for Input tensor"));
98

99 100 101 102 103 104 105 106
      PADDLE_ENFORCE_EQ(
          filter->layout(), DataLayout::kMKLDNN,
          platform::errors::InvalidArgument(
              "The Filter tensor's layout should be %d, but got %d.",
              DataLayout::kMKLDNN, filter->layout()));
      PADDLE_ENFORCE_NE(filter->format(), MKLDNNMemoryFormat::undef,
                        platform::errors::InvalidArgument(
                            "Wrong format set for Filter tensor"));
K
Krzysztof Binias 已提交
107

108 109 110 111 112 113 114 115 116 117 118 119
      PADDLE_ENFORCE_GE(
          input->dims().size(), 4,
          platform::errors::InvalidArgument(
              "Input must be with 4 or 5 dimensions, i.e. NCHW or "
              "NCDHW, but got dimension = %d .",
              input->dims().size()));
      PADDLE_ENFORCE_LE(
          input->dims().size(), 5,
          platform::errors::InvalidArgument(
              "Input must be with 4 or 5 dimensions, i.e. NCHW or "
              "NCDHW, but got dimension = %d .",
              input->dims().size()));
120

121 122 123 124 125 126 127 128 129 130 131 132
      PADDLE_ENFORCE_GE(
          filter->dims().size(), 4,
          platform::errors::InvalidArgument(
              "Filter must be with 4 or 5 dimensions, i.e. OIHW or "
              "OIDHW, but got dimension = %d .",
              filter->dims().size()));
      PADDLE_ENFORCE_LE(
          filter->dims().size(), 5,
          platform::errors::InvalidArgument(
              "Filter must be with 4 or 5 dimensions, i.e. OIHW or "
              "OIDHW, but got dimension = %d .",
              filter->dims().size()));
133

134 135 136 137 138 139 140 141 142
      if (bias) {
        PADDLE_ENFORCE_EQ(
            bias->layout(), DataLayout::kMKLDNN,
            platform::errors::InvalidArgument(
                "The Bias tensor's layout should be %d, but got %d.",
                DataLayout::kMKLDNN, bias->layout()));
        PADDLE_ENFORCE_NE(bias->format(), MKLDNNMemoryFormat::undef,
                          platform::errors::InvalidArgument(
                              "Got wrong format for Bias tensor."));
143

144 145 146 147 148 149
        PADDLE_ENFORCE_EQ(bias->dims().size(), 1,
                          platform::errors::InvalidArgument(
                              "Bias must only have 1 dimension, "
                              "i.e. X, but got dimension = %d .",
                              bias->dims().size()));
      }
F
FDInSky 已提交
150

151 152 153 154 155 156 157 158 159
      const std::string fuse_activation =
          ctx.Attr<std::string>("fuse_activation");
      const float fuse_alpha = ctx.Attr<float>("fuse_alpha");
      const float fuse_beta = ctx.Attr<float>("fuse_beta");
      const bool fuse_residual_conn =
          ctx.Attr<bool>("fuse_residual_connection");
      const int groups = ctx.Attr<int>("groups");
      const std::string padding_algorithm =
          ctx.Attr<std::string>("padding_algorithm");
F
FDInSky 已提交
160

161 162 163 164 165 166
      const auto input_dims = input->dims();
      const auto data_dims =
          framework::slice_ddim(input_dims, 2, input_dims.size());
      const auto filter_dims = filter->dims();
      const auto filter_data_dims =
          framework::slice_ddim(filter_dims, 2, filter_dims.size());
167

168 169
      const auto ksize = framework::vectorize(filter_data_dims);
      const bool is_test = ctx.Attr<bool>("is_test");
170

171 172
      auto strides_temp = ctx.Attr<std::vector<int>>("strides");
      std::vector<int64_t> strides(begin(strides_temp), end(strides_temp));
173

174 175
      auto paddings_temp = ctx.Attr<std::vector<int>>("paddings");
      std::vector<int64_t> paddings(begin(paddings_temp), end(paddings_temp));
A
Adam 已提交
176

177 178 179
      auto dilations_temp = ctx.Attr<std::vector<int>>("dilations");
      std::vector<int64_t> dilations(begin(dilations_temp),
                                     end(dilations_temp));
A
Adam 已提交
180

181 182
      UpdatePaddingAndDilation(&paddings, &dilations, padding_algorithm,
                               data_dims, strides, ksize);
A
Adam 已提交
183

184 185
      std::transform(dilations.begin(), dilations.end(), dilations.begin(),
                     [](int64_t i) { return i - 1; });
186

187
      const auto src_tz = paddle::framework::vectorize(input->dims());
188

189
      auto weights_tz = paddle::framework::vectorize(filter->dims());
190
      platform::GetGroupConvWeightsTz(weights_tz, groups);
191

192
      const auto dst_tz = paddle::framework::vectorize(output->dims());
193

194 195
      const mkldnn::memory::dims stride_dims = strides;
      const auto mkldnn_paddings = platform::ToMkldnnPadding(paddings);
196
      const mkldnn::memory::dims dilations_dims = dilations;
A
Adam 已提交
197

198 199 200 201
      /* create memory descriptor for convolution without specified format
       * ('any') which lets a primitive (convolution in this case) choose
       * the memory format preferred for best performance
       */
202 203
      auto chosen_memory_format = MKLDNNMemoryFormat::any;

204 205 206 207 208 209 210 211 212
      auto data_type = mkldnn::memory::data_type::f32;
      if (ctx.Attr<std::string>("mkldnn_data_type") == "bfloat16" ||
          std::is_same<T_out, platform::bfloat16>::value)
        data_type = mkldnn::memory::data_type::bf16;

      const auto src_md =
          platform::MKLDNNMemDesc(src_tz, data_type, chosen_memory_format);
      const auto weights_md = platform::MKLDNNMemDesc(weights_tz, data_type,
                                                      MKLDNNMemoryFormat::any);
213
      const auto dst_md = platform::MKLDNNMemDesc(
214
          dst_tz, platform::MKLDNNGetDataType<T_out>(), chosen_memory_format);
215

216 217
      const auto fwd_prop_kind = is_test ? mkldnn::prop_kind::forward_inference
                                         : mkldnn::prop_kind::forward_training;
A
Adam 已提交
218

219 220
      const mkldnn::primitive_attr conv_attr = CreatePostOps(
          fuse_activation, fuse_alpha, fuse_beta, fuse_residual_conn);
A
Adam 已提交
221

222 223
      if (bias) {
        auto bias_tz = framework::vectorize(bias->dims());
224 225
        auto bias_md =
            platform::MKLDNNMemDesc(bias_tz, data_type, MKLDNNMemoryFormat::x);
226 227 228

        this->AcquireForwardPrimitiveDescriptor(
            conv_attr, fwd_prop_kind, dnnl::algorithm::convolution_direct,
229
            src_md, weights_md, bias_md, dst_md, stride_dims, dilations_dims,
230 231 232 233
            mkldnn_paddings[0], mkldnn_paddings[1]);
      } else {
        this->AcquireForwardPrimitiveDescriptor(
            conv_attr, fwd_prop_kind, dnnl::algorithm::convolution_direct,
234 235
            src_md, weights_md, dst_md, stride_dims, dilations_dims,
            mkldnn_paddings[0], mkldnn_paddings[1]);
236 237 238
      }
    }
  }
239

240 241 242 243 244 245 246 247 248 249
  mkldnn::primitive_attr CreatePostOps(
      std::string fuse_activation, float fuse_alpha, float fuse_beta,
      bool fuse_residual_conn, const std::vector<float> output_shift_scale = {},
      float sum_scale = 1.0f) {
    mkldnn::primitive_attr conv_attr;
    mkldnn::post_ops post_operations;
    if (output_shift_scale.size() > 0) {
      int mask = output_shift_scale.size() > 1 ? 1 << 1 : 0;
      conv_attr.set_output_scales(mask, output_shift_scale);
    }
250

251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277
    // Fusion with Elementwise layer relies on adding a sum post-operation with
    // the scale parameter. It is assumed that when fuse_residual_connection is
    // true, the output tensor contains the data coming from residual
    // connection. The result of this post_op is:
    // Output = scale * Output + Conv_Out.
    if (fuse_residual_conn) {
      post_operations.append_sum(sum_scale);
    }
    // Fusion with ReLU layer is executed through the PostOps feature. Create a
    // PostOps object and configure it to execute an eltwise relu operation.
    if (fuse_activation == "relu" || fuse_activation == "leaky_relu") {
      constexpr float scale = 1.0f;
      post_operations.append_eltwise(scale, mkldnn::algorithm::eltwise_relu,
                                     fuse_alpha, fuse_beta);
    } else if (fuse_activation == "relu6") {
      constexpr float scale = 1.0f;
      post_operations.append_eltwise(scale,
                                     mkldnn::algorithm::eltwise_bounded_relu,
                                     fuse_alpha, fuse_beta);
    } else if (fuse_activation == "swish") {
      constexpr float scale = 1.0f;
      post_operations.append_eltwise(scale, mkldnn::algorithm::eltwise_swish,
                                     fuse_alpha, fuse_beta);
    }
    conv_attr.set_post_ops(post_operations);
    return conv_attr;
  }
278

279 280 281
  std::shared_ptr<mkldnn::memory> AcquireSrcMemoryWithReorder(
      const framework::Tensor* input) {
    const T* input_data = input->data<T>();
282 283
    const std::string user_key_suffix{"@src_mem_p_user"};
    auto user_src_mem_p = this->AcquireMemory(user_key_suffix);
284

285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300
    if (!user_src_mem_p) {
      auto user_src_md = platform::MKLDNNMemDesc(
          framework::vectorize(input->dims()), platform::MKLDNNGetDataType<T>(),
          input->format());
      return this->AcquireMemoryWithReorder(
          user_src_md, this->fwd_pd_->src_desc(), to_void_cast<T>(input_data),
          "@src_mem_p");
    } else {
      const std::string target_key_suffix{"@src_mem_p_target"};
      const auto target_src_mem_p = this->AcquireMemory(target_key_suffix);
      user_src_mem_p->set_data_handle(to_void_cast<T>(input_data));
      if (user_src_mem_p != target_src_mem_p) {
        this->AcquireReorder(user_src_mem_p, target_src_mem_p, "@src_mem_p");
      }
      return target_src_mem_p;
    }
301 302 303 304 305 306 307 308 309 310 311
  }

  std::shared_ptr<mkldnn::memory> AcquireWeightsMemoryWithReorder(
      const framework::Tensor* filter, const int groups, const bool is_conv3d,
      const bool is_test) {
    // This is workaround to make execution faster, delete
    // if statement after including md inside Tensor
    auto weights_mem_p = this->AcquireMemory("@weights_mem_p_target");
    if (is_test && weights_mem_p) {
      return weights_mem_p;
    } else {
312
      const K* filter_data = filter->data<K>();
313
      auto weights_tz = framework::vectorize(filter->dims());
314
      platform::GetGroupConvWeightsTz(weights_tz, groups);
315 316

      auto user_src_md = platform::MKLDNNMemDesc(
317
          weights_tz, platform::MKLDNNGetDataType<K>(),
318 319 320 321
          GetWeightsFormat(filter->format(), groups, is_conv3d));

      return this->AcquireMemoryWithReorder(
          user_src_md, this->fwd_pd_->weights_desc(),
322
          to_void_cast<K>(filter_data), "@weights_mem_p", is_test);
323
    }
324
  }
325

326 327
  std::shared_ptr<mkldnn::memory> AcquireBiasMemoryWithReorder(
      const framework::Tensor* bias, const bool is_test) {
328 329 330 331 332 333 334 335 336 337 338 339 340
    auto bias_mem_p = this->AcquireMemory("@bias_mem_p_target");
    if (is_test && bias_mem_p) {
      return bias_mem_p;
    } else {
      const K* bias_data = bias->data<K>();
      auto user_bias_md = platform::MKLDNNMemDesc(
          framework::vectorize(bias->dims()), platform::MKLDNNGetDataType<K>(),
          MKLDNNMemoryFormat::x);

      return this->AcquireMemoryWithReorder(
          user_bias_md, this->fwd_pd_->bias_desc(), to_void_cast<K>(bias_data),
          "@bias_mem_p", is_test);
    }
341
  }
342

343 344
  std::shared_ptr<mkldnn::memory> AcquireResidualMemory(
      const framework::Tensor* residual_param) {
345 346 347 348
    void* residual_data =
        residual_param->type() == framework::DataTypeTrait<T_out>::DataType()
            ? to_void_cast<T_out>(residual_param->data<T_out>())
            : to_void_cast<T>(residual_param->data<T>());
349 350 351 352 353 354 355 356 357
    auto residual_mem_p = this->AcquireMemory("@user_residual_data_mem_p");
    if (residual_mem_p) {
      residual_mem_p->set_data_handle(residual_data);
      return residual_mem_p;
    } else {
      auto user_residual_md = platform::MKLDNNMemDesc(
          framework::vectorize(residual_param->dims()),
          framework::ToMKLDNNDataType(residual_param->type()),
          residual_param->format());
358

359 360 361
      return this->AcquireMemoryFromPrimitive(user_residual_md, residual_data,
                                              "@user_residual_data_mem_p");
    }
362 363 364 365 366 367 368 369
  }

  std::shared_ptr<mkldnn::memory> AcquireDstMemoryWithResidual(
      framework::Tensor* output, const framework::Tensor* residual_param) {
    std::shared_ptr<dnnl::memory> dst_memory_p;
    if (residual_param->format() !=
        platform::GetMKLDNNFormat(this->fwd_pd_->dst_desc())) {
      auto residual_memory_p = this->AcquireResidualMemory(residual_param);
370
      dst_memory_p = this->template AcquireDstMemory<T_out>(output);
371 372 373 374 375 376
      this->AcquireReorder(residual_memory_p, dst_memory_p, "@residual_dst");
    } else {
      // Changing ShareDataWith to TensorCopy results in performance drop
      // on ResNet architectures
      // (https://github.com/PaddlePaddle/Paddle/issues/22964)
      output->ShareDataWith(*residual_param);
377
      dst_memory_p = this->template AcquireDstMemory<T_out>(output);
378 379 380 381 382 383 384 385 386 387 388 389 390 391
    }
    return dst_memory_p;
  }
};

template <typename T, typename K>
class ConvMKLDNNOpKernel : public paddle::framework::OpKernel<T> {
 public:
  void Compute(const paddle::framework::ExecutionContext& ctx) const override {
    PADDLE_ENFORCE_EQ(platform::is_cpu_place(ctx.GetPlace()), true,
                      paddle::platform::errors::PreconditionNotMet(
                          "Operator DNNL Conv must use CPUPlace"));
    bool is_INT8 =
        std::is_same<T, int8_t>::value || std::is_same<T, uint8_t>::value;
392 393 394 395 396 397 398 399
    bool is_BFLOAT16 = ctx.Attr<std::string>("mkldnn_data_type") == "bfloat16";
    auto residual_param = ctx.Input<Tensor>("ResidualData");
    bool fuse_residual_conn = ctx.Attr<bool>("fuse_residual_connection");
    std::string fuse_activation = ctx.Attr<std::string>("fuse_activation");
    bool force_fp32_output = ctx.Attr<bool>("force_fp32_output");
    auto dst_dt =
        GetDstType(is_INT8, is_BFLOAT16, force_fp32_output, fuse_activation,
                   fuse_residual_conn, residual_param);
400
    if (!is_INT8) {
401 402 403 404 405
      if (dst_dt == mkldnn::memory::data_type::f32) {
        ComputeFP32<float>(ctx);
      } else if (dst_dt == mkldnn::memory::data_type::bf16) {
        ComputeFP32<platform::bfloat16>(ctx);
      }
406
    } else {
407 408 409 410 411 412 413
      if (dst_dt == mkldnn::memory::data_type::f32) {
        ComputeINT8<float>(ctx);
      } else if (dst_dt == mkldnn::memory::data_type::u8) {
        ComputeINT8<uint8_t>(ctx);
      } else if (dst_dt == mkldnn::memory::data_type::s8) {
        ComputeINT8<int8_t>(ctx);
      }
414
    }
415
  }
416

417
  template <typename T_out>
418 419 420 421
  void ComputeFP32(const paddle::framework::ExecutionContext& ctx) const {
    auto& dev_ctx =
        ctx.template device_context<paddle::platform::MKLDNNDeviceContext>();
    const auto& mkldnn_engine = dev_ctx.GetEngine();
422

423 424 425
    const bool is_test = ctx.Attr<bool>("is_test");
    const bool is_conv3d = ctx.Attr<std::vector<int>>("strides").size() == 3U;
    const bool fuse_residual_conn = ctx.Attr<bool>("fuse_residual_connection");
426

427 428 429 430 431
    const auto* input = ctx.Input<Tensor>("Input");
    const auto* filter = ctx.Input<Tensor>("Filter");
    const auto* bias =
        ctx.HasInput("Bias") ? ctx.Input<Tensor>("Bias") : nullptr;
    auto* output = ctx.Output<Tensor>("Output");
432

433
    ConvMKLDNNHandlerT<T, K, T_out> handler(
434 435
        ctx, dev_ctx, mkldnn_engine, ctx.GetPlace(), input, filter, bias,
        output, ctx.InputName("Input") + ctx.InputName("Filter"));
436

437
    auto src_memory_p = handler.AcquireSrcMemoryWithReorder(input);
438

439 440
    auto weights_memory_p = handler.AcquireWeightsMemoryWithReorder(
        filter, ctx.Attr<int>("groups"), is_conv3d, is_test);
441

442 443 444
    std::shared_ptr<dnnl::memory> dst_memory_p;
    if (fuse_residual_conn) {
      auto* residual_param = ctx.Input<Tensor>("ResidualData");
445
      dst_memory_p =
446 447
          handler.AcquireDstMemoryWithResidual(output, residual_param);
    } else {
448
      dst_memory_p = handler.template AcquireDstMemory<T_out>(output);
449
    }
450

451
    auto conv_p = handler.AcquireForwardPrimitive();
A
Adam 已提交
452

453 454 455 456
    std::unordered_map<int, dnnl::memory> args = {
        {MKLDNN_ARG_SRC, *src_memory_p},
        {MKLDNN_ARG_WEIGHTS, *weights_memory_p},
        {MKLDNN_ARG_DST, *dst_memory_p}};
A
Adam 已提交
457

458 459 460
    if (bias) {
      auto bias_memory_p = handler.AcquireBiasMemoryWithReorder(bias, is_test);
      args.insert({MKLDNN_ARG_BIAS, *bias_memory_p});
461
    }
462

463
    auto& astream = platform::MKLDNNDeviceContext::tls().get_stream();
464
    conv_p->execute(astream, args);
A
Adam 已提交
465
    astream.wait();
466

467 468
    output->set_layout(DataLayout::kMKLDNN);
    output->set_format(GetMKLDNNFormat(*dst_memory_p));
469
  }
470

471
  template <typename T_out>
472 473 474 475 476 477 478 479 480 481
  void ComputeINT8(const paddle::framework::ExecutionContext& ctx) const {
    const bool is_test = ctx.Attr<bool>("is_test");

    auto& dev_ctx =
        ctx.template device_context<paddle::platform::MKLDNNDeviceContext>();
    const auto& mkldnn_engine = dev_ctx.GetEngine();

    auto* input = ctx.Input<Tensor>("Input");
    auto* output = ctx.Output<Tensor>("Output");

482
    PADDLE_ENFORCE_EQ(input->layout(), DataLayout::kMKLDNN,
F
FDInSky 已提交
483 484 485
                      platform::errors::InvalidArgument(
                          "The input tensor's layout should be %d, but got %d.",
                          DataLayout::kMKLDNN, input->layout()));
A
Adam 已提交
486
    PADDLE_ENFORCE_NE(input->format(), MKLDNNMemoryFormat::undef,
F
FDInSky 已提交
487 488 489 490 491 492 493 494 495 496 497 498 499
                      platform::errors::InvalidArgument(
                          "Got wrong format for Input tensor."));

    PADDLE_ENFORCE_GE(input->dims().size(), 4,
                      platform::errors::InvalidArgument(
                          "Input must be with 4 or 5 dimensions, i.e. NCHW or "
                          "NCDHW, but got dimension = %d .",
                          input->dims().size()));
    PADDLE_ENFORCE_LE(input->dims().size(), 5,
                      platform::errors::InvalidArgument(
                          "Input must be with 4 or 5 dimensions, i.e. NCHW or "
                          "NCDHW, but got dimension = %d .",
                          input->dims().size()));
500

501
    std::string fuse_activation = ctx.Attr<std::string>("fuse_activation");
X
xiaolil1 已提交
502
    bool fuse_residual_conn = ctx.Attr<bool>("fuse_residual_connection");
503 504
    bool unsigned_output =
        (fuse_activation == "relu" || fuse_activation == "relu6");
505

506 507
    const T* input_data = input->data<T>();

A
Adam 已提交
508
    auto src_tz = paddle::framework::vectorize(input->dims());
509

X
xiaolil1 已提交
510 511
    mkldnn::memory::data_type src_dt =
        paddle::framework::ToMKLDNNDataType(input->type());
512

513 514 515
    std::string key =
        platform::CreateKey(dev_ctx, src_tz, src_dt,
                            ctx.InputName("Input") + ctx.InputName("Filter"));
516

517 518
    const std::string key_conv_pd = key + "@conv_pd";
    bool need_s8_to_u8 = false;
519 520 521
    std::shared_ptr<mkldnn::convolution_forward> conv_p;
    std::shared_ptr<mkldnn::memory> src_memory_p;
    std::shared_ptr<mkldnn::memory> user_src_memory_p;
522
    std::shared_ptr<mkldnn::memory> dst_memory_p;
523
    std::vector<primitive> pipeline;
524
    std::shared_ptr<mkldnn::convolution_forward::primitive_desc> conv_pd;
525 526 527 528 529
    std::shared_ptr<platform::ConvMKLDNNHandler> handler;

    // This is workaround for hacky implementation
    // of conv int8 mkl-dnn. Once conv fp32 and conv int8
    // are merged/unified, this will disappear
530 531 532 533 534 535 536 537 538 539 540
    auto key_tid = platform::ExtendKeyWithThreadInfoIfNeeded(dev_ctx, key);

    auto prim_key = key_tid + "@conv_p";
    auto dst_key = key_tid + "@dst_mem_p";
    auto src_key = key_tid + "@src_mem_p";
    auto weights_key = key_tid + "@weights_mem_p";
    auto bias_key = key_tid + "@bias_mem_p";
    auto user_src_key = key_tid + "@user_src_mem_p";
    auto user_residual_key = key_tid + "@user_residual_data_mem_p";
    auto src_reorder_key = key_tid + "@src_mem_preorder_p";
    auto residual_reorder_key = key_tid + "@residual_data_mem_preorder_p";
541 542 543 544

    conv_p = std::static_pointer_cast<mkldnn::convolution_forward>(
        dev_ctx.GetBlob(prim_key));

545
    auto& astream = platform::MKLDNNDeviceContext::tls().get_stream();
A
Adam 已提交
546

547
    if (conv_p == nullptr || !is_test) {
548 549 550 551 552 553
      float fuse_alpha = ctx.Attr<float>("fuse_alpha");
      float fuse_beta = ctx.Attr<float>("fuse_beta");
      bool force_fp32_output = ctx.Attr<bool>("force_fp32_output");

      auto* filter = ctx.Input<Tensor>("Filter");

F
FDInSky 已提交
554 555 556 557 558
      PADDLE_ENFORCE_EQ(
          filter->layout(), DataLayout::kMKLDNN,
          platform::errors::InvalidArgument(
              "The filter tensor's layout should be %d, but got %d.",
              DataLayout::kMKLDNN, filter->layout()));
A
Adam 已提交
559
      PADDLE_ENFORCE_NE(filter->format(), MKLDNNMemoryFormat::undef,
F
FDInSky 已提交
560 561 562 563 564 565 566 567 568 569 570 571 572
                        platform::errors::InvalidArgument(
                            "Got wrong format for Filter tensor."));

      PADDLE_ENFORCE_GE(filter->dims().size(), 4,
                        platform::errors::InvalidArgument(
                            "Filter must be with 4 or 5 dimensions, i.e. OIHW "
                            "or OIDHW, but got dimensions = %d .",
                            filter->dims().size()));
      PADDLE_ENFORCE_LE(filter->dims().size(), 5,
                        platform::errors::InvalidArgument(
                            "Filter must be with 4 or 5 dimensions, i.e. OIHW "
                            "or OIDHW, but got dimensions = %d .",
                            filter->dims().size()));
573 574 575

      PADDLE_ENFORCE_EQ(
          !fuse_residual_conn || !force_fp32_output, true,
576 577
          platform::errors::Unimplemented(
              "residual fusion does not support force output with fp32"));
578 579 580 581

      auto* bias = ctx.HasInput("Bias") ? ctx.Input<Tensor>("Bias") : nullptr;

      if (bias) {
F
FDInSky 已提交
582 583 584 585 586
        PADDLE_ENFORCE_EQ(
            bias->layout(), DataLayout::kMKLDNN,
            platform::errors::InvalidArgument(
                "The bias tensor's layout should be %d, but got %d.",
                DataLayout::kMKLDNN, bias->layout()));
A
Adam 已提交
587
        PADDLE_ENFORCE_NE(bias->format(), MKLDNNMemoryFormat::undef,
F
FDInSky 已提交
588 589
                          platform::errors::InvalidArgument(
                              "Got wrong format for Bias tensor."));
590 591

        PADDLE_ENFORCE_EQ(bias->dims().size(), 1,
F
FDInSky 已提交
592 593 594 595
                          platform::errors::InvalidArgument(
                              "Bias must only have 1 dimension, i.e. X, but "
                              "got dimension = %d .",
                              bias->dims().size()));
596 597
      }

A
Adam 已提交
598 599 600 601 602 603 604 605 606 607
      std::vector<int> strides_temp = ctx.Attr<std::vector<int>>("strides");
      std::vector<int64_t> strides(begin(strides_temp), end(strides_temp));

      std::vector<int> paddings_temp = ctx.Attr<std::vector<int>>("paddings");
      std::vector<int64_t> paddings(begin(paddings_temp), end(paddings_temp));

      std::vector<int> dilations_temp = ctx.Attr<std::vector<int>>("dilations");
      std::vector<int64_t> dilations(begin(dilations_temp),
                                     end(dilations_temp));

608 609
      std::string padding_algorithm =
          ctx.Attr<std::string>("padding_algorithm");
610 611 612 613

      bool is_conv3d = strides.size() == 3U;

      PADDLE_ENFORCE_NE(is_conv3d, true,
614 615
                        platform::errors::Unimplemented(
                            "int8 does not support conv3d currently"));
616

617 618 619 620 621 622
      auto input_dims = input->dims();
      auto data_dims = framework::slice_ddim(input_dims, 2, input_dims.size());
      auto filter_dims = filter->dims();
      auto filter_data_dims =
          framework::slice_ddim(filter_dims, 2, filter_dims.size());

A
Adam 已提交
623
      auto ksize = framework::vectorize(filter_data_dims);
624 625 626 627

      UpdatePaddingAndDilation(&paddings, &dilations, padding_algorithm,
                               data_dims, strides, ksize);

628
      int groups = ctx.Attr<int>("groups");
A
Adam 已提交
629
      auto weights_tz = paddle::framework::vectorize(filter->dims());
630 631
      int g = std::max(groups, 1);

632
      platform::GetGroupConvWeightsTz(weights_tz, g);
A
Adam 已提交
633
      auto dst_tz = paddle::framework::vectorize(output->dims());
634

635 636
      std::transform(dilations.begin(), dilations.end(), dilations.begin(),
                     [](int64_t i) { return i - 1; });
637

638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665
      const K* filter_data = filter->data<K>();
      auto scale_in_data = ctx.Attr<float>("Scale_in");
      auto scale_in_eltwise_data = ctx.Attr<float>("Scale_in_eltwise");
      auto scale_weights_data = ctx.Attr<std::vector<float>>("Scale_weights");
      auto scale_out_data =
          force_fp32_output ? 1.0f : ctx.Attr<float>("Scale_out");
      float sum_scale =
          fuse_residual_conn ? scale_out_data / scale_in_eltwise_data : 1.0f;

      bool is_multi_channel = scale_weights_data.size() > 1;

      int count = is_multi_channel ? (g > 1 ? (weights_tz)[1] * (weights_tz)[0]
                                            : (weights_tz)[0])
                                   : 1;
      std::vector<float> output_shift_scale(count);
#pragma omp parallel for if (count > 1)
      for (int i = 0; i < count; i++) {
        if (scale_weights_data[i] == 0.0)
          output_shift_scale[i] =
              scale_out_data;  // weights data will contain 0
                               // in some models, then weights
                               // scale couldn't be calculated
        else
          output_shift_scale[i] =
              static_cast<float>(static_cast<double>(scale_out_data) /
                                 (static_cast<double>(scale_in_data) *
                                  static_cast<double>(scale_weights_data[i])));
      }
L
lidanqing 已提交
666

667 668 669 670 671 672 673
      auto user_src_md =
          platform::MKLDNNMemDesc({src_tz}, src_dt, input->format());
      auto user_weights_md = platform::MKLDNNMemDesc(
          {weights_tz}, platform::MKLDNNGetDataType<K>(),
          ((g) == 1) ? MKLDNNMemoryFormat::oihw : MKLDNNMemoryFormat::goihw);

      /* create memory descriptor for convolution without specified format
674 675 676
       * ('any') which lets a primitive (convolution in this case) choose
       * the memory format preferred for best performance
       */
677
      auto chosen_memory_format = MKLDNNMemoryFormat::any;
678

A
Adam 已提交
679
      std::vector<int64_t> bias_tz;
680 681 682 683 684 685 686 687 688 689 690 691 692

      auto src_md =
          platform::MKLDNNMemDesc(src_tz, src_dt, chosen_memory_format);
      auto weights_md = platform::MKLDNNMemDesc(
          weights_tz, memory::data_type::s8, chosen_memory_format);
      auto dst_md = platform::MKLDNNMemDesc(
          dst_tz, platform::MKLDNNGetDataType<T_out>(), chosen_memory_format);

      handler.reset(
          new platform::ConvMKLDNNHandler(dev_ctx, mkldnn_engine, key));
      // create a conv primitive descriptor and save it for usage in backward
      auto propagation = is_test ? mkldnn::prop_kind::forward_scoring
                                 : mkldnn::prop_kind::forward_training;
L
lidanqing 已提交
693

694
      if (bias) {
A
Adam 已提交
695
        bias_tz = paddle::framework::vectorize(bias->dims());
696 697 698
        auto bias_md = platform::MKLDNNMemDesc(bias_tz, memory::data_type::s32,
                                               MKLDNNMemoryFormat::x);
        conv_pd = handler->AcquireConvolutionPrimitiveDescriptor(
699
            src_md, weights_md, bias_md, dst_md, strides, dilations, paddings,
700 701 702 703
            mkldnn_engine, fuse_activation, fuse_alpha, fuse_beta,
            fuse_residual_conn, propagation, output_shift_scale, sum_scale);
      } else {
        conv_pd = handler->AcquireConvolutionPrimitiveDescriptor(
704 705
            src_md, weights_md, boost::none, dst_md, strides, dilations,
            paddings, mkldnn_engine, fuse_activation, fuse_alpha, fuse_beta,
706 707
            fuse_residual_conn, propagation, output_shift_scale, sum_scale);
      }
L
lidanqing 已提交
708

709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727
      // create mkldnn memory from input tensors (data/weights)
      user_src_memory_p =
          handler->AcquireSrcMemory(user_src_md, to_void_cast<T>(input_data));
      auto user_weights_memory_p = handler->AcquireWeightsMemory(
          user_weights_md, to_void_cast<K>(filter_data));

      // create reorder primitive if the input format is not the preferred one
      src_memory_p =
          handler->AcquireSrcMemoryFromPrimitive(user_src_memory_p, pipeline);

      std::shared_ptr<mkldnn::memory> weights_memory_p;
      int mask_reorder =
          is_multi_channel ? ((g != 1) ? (1 << 1) + (1 << 0) : 1 << 0) : 0;
      weights_memory_p = handler->AcquireWeightsMemoryFromPrimitive(
          user_weights_memory_p, pipeline, is_test, true, scale_weights_data,
          mask_reorder);

      if (fuse_residual_conn) {
        auto residual_param = ctx.Input<Tensor>("ResidualData");
F
FDInSky 已提交
728 729 730 731 732 733 734
        PADDLE_ENFORCE_EQ(
            output->dims(), residual_param->dims(),
            platform::errors::InvalidArgument(
                "Output and elementwise parameter need to have the "
                "same dimension sizes, but got output's dimension = %d"
                " and residual param's dimension =%d .",
                output->dims().size(), residual_param->dims().size()));
735 736 737 738
        auto residual_dt =
            paddle::framework::ToMKLDNNDataType(residual_param->type());
        if (residual_param->format() != handler->GetDstFormat()) {
          auto residual_data_tz =
A
Adam 已提交
739
              paddle::framework::vectorize(residual_param->dims());
740 741 742 743 744 745
          auto user_residual_md = platform::MKLDNNMemDesc(
              residual_data_tz, residual_dt, residual_param->format());
          dst_memory_p = platform::SetDstMemory<T_out>(
              ctx, output, residual_param, user_residual_md, handler,
              &pipeline);
        } else {
746
          output->ShareDataWith(*residual_param);
747 748 749 750 751 752 753 754
          dst_memory_p = platform::SetDstMemory<T_out>(ctx, output, handler);
        }
        need_s8_to_u8 =
            (platform::MKLDNNGetDataType<T_out>() == memory::data_type::s8) &&
            unsigned_output;
      } else {
        dst_memory_p = platform::SetDstMemory<T_out>(ctx, output, handler);
      }
L
lidanqing 已提交
755

756 757
      // create convolution op primitive
      auto scale_bias_key = key + "@scale_bias";
A
Adam 已提交
758
      conv_p = handler->AcquireConvolution();
759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778
      if (bias) {
        const K* bias_data = bias->data<K>();
        auto user_bias_md = platform::MKLDNNMemDesc(
            {bias_tz}, platform::MKLDNNGetDataType<K>(), MKLDNNMemoryFormat::x);
        auto user_bias_memory_p = handler->AcquireBiasMemory(
            user_bias_md, to_void_cast<K>(bias_data));
        std::shared_ptr<mkldnn::memory> bias_memory_p;
        int mask_reorder = is_multi_channel ? 1 << 0 : 1;
        int count =
            is_multi_channel
                ? (g > 1 ? (weights_tz)[1] * (weights_tz)[0] : (weights_tz)[0])
                : 1;
        std::vector<float> scale_bias_data(count);
#pragma omp parallel for if (count > 1)
        for (int i = 0; i < count; i++) {
          scale_bias_data[i] = scale_in_data * scale_weights_data[i];
        }
        bias_memory_p = handler->AcquireBiasMemoryFromPrimitive(
            user_bias_memory_p, pipeline, is_test, true, scale_bias_data,
            mask_reorder);
A
Adam 已提交
779 780 781 782
        conv_p->execute(astream, {{MKLDNN_ARG_SRC, *src_memory_p},
                                  {MKLDNN_ARG_WEIGHTS, *weights_memory_p},
                                  {MKLDNN_ARG_BIAS, *bias_memory_p},
                                  {MKLDNN_ARG_DST, *dst_memory_p}});
783
      } else {
A
Adam 已提交
784 785 786
        conv_p->execute(astream, {{MKLDNN_ARG_SRC, *src_memory_p},
                                  {MKLDNN_ARG_WEIGHTS, *weights_memory_p},
                                  {MKLDNN_ARG_DST, *dst_memory_p}});
787 788
      }
    } else {
A
Adam 已提交
789
      auto src_memory_reorder_p = std::static_pointer_cast<mkldnn::reorder>(
790 791 792 793 794 795 796
          dev_ctx.GetBlob(src_reorder_key));
      src_memory_p =
          std::static_pointer_cast<mkldnn::memory>(dev_ctx.GetBlob(src_key));
      if (src_memory_reorder_p) {
        user_src_memory_p = std::static_pointer_cast<mkldnn::memory>(
            dev_ctx.GetBlob(user_src_key));
        user_src_memory_p->set_data_handle(to_void_cast<T>(input_data));
797 798 799 800 801 802 803
        {
          platform::RecordEvent record_reorder("int_reorder",
                                               platform::EventRole::kUniqueOp);
          src_memory_reorder_p->execute(astream, *user_src_memory_p,
                                        *src_memory_p);
          astream.wait();
        }
804 805 806
      } else if (src_memory_p) {
        src_memory_p->set_data_handle(to_void_cast<T>(input_data));
      }
A
Adam 已提交
807 808
      auto weights_memory_p = std::static_pointer_cast<mkldnn::memory>(
          dev_ctx.GetBlob(weights_key));
809 810 811 812 813 814 815 816 817
      dst_memory_p =
          std::static_pointer_cast<mkldnn::memory>(dev_ctx.GetBlob(dst_key));
      conv_pd =
          std::static_pointer_cast<mkldnn::convolution_forward::primitive_desc>(
              dev_ctx.GetBlob(key_conv_pd));
      if (conv_pd) {
        handler.reset(new platform::ConvMKLDNNHandler(conv_pd, dev_ctx,
                                                      mkldnn_engine, key));
      }
L
lidanqing 已提交
818

819 820
      if (fuse_residual_conn) {
        auto residual_param = ctx.Input<Tensor>("ResidualData");
821
        output->ShareDataWith(*residual_param);
822 823 824
        need_s8_to_u8 =
            (platform::MKLDNNGetDataType<T_out>() == memory::data_type::s8) &&
            unsigned_output;
X
xiaolil1 已提交
825
      }
826
      platform::SetDstMemoryHandler<T_out>(ctx, output, handler, dst_memory_p);
L
lidanqing 已提交
827

A
Adam 已提交
828
      auto residual_reorder_p = std::static_pointer_cast<mkldnn::reorder>(
829 830
          dev_ctx.GetBlob(residual_reorder_key));
      if (residual_reorder_p) {
A
Adam 已提交
831 832
        auto user_residual_data_p = std::static_pointer_cast<mkldnn::memory>(
            dev_ctx.GetBlob(user_residual_key));
833 834 835 836 837 838 839
        {
          platform::RecordEvent record_reorder("int_reorder",
                                               platform::EventRole::kUniqueOp);
          residual_reorder_p->execute(astream, *user_residual_data_p,
                                      *dst_memory_p);
          astream.wait();
        }
A
Adam 已提交
840 841 842 843 844 845 846 847 848 849 850 851 852 853
      }

      auto bias_memory_p =
          std::static_pointer_cast<mkldnn::memory>(dev_ctx.GetBlob(bias_key));

      if (bias_memory_p) {
        conv_p->execute(astream, {{MKLDNN_ARG_SRC, *src_memory_p},
                                  {MKLDNN_ARG_WEIGHTS, *weights_memory_p},
                                  {MKLDNN_ARG_BIAS, *bias_memory_p},
                                  {MKLDNN_ARG_DST, *dst_memory_p}});
      } else {
        conv_p->execute(astream, {{MKLDNN_ARG_SRC, *src_memory_p},
                                  {MKLDNN_ARG_WEIGHTS, *weights_memory_p},
                                  {MKLDNN_ARG_DST, *dst_memory_p}});
854 855
      }
    }
A
Adam 已提交
856
    astream.wait();
857
    if (need_s8_to_u8) {
X
xiaolil1 已提交
858 859
      output->mutable_data<uint8_t>(ctx.GetPlace());
    }
860 861 862
    output->set_layout(DataLayout::kMKLDNN);
    output->set_format(GetMKLDNNFormat(*dst_memory_p));
  }
863 864 865
};

template <typename T>
866
class ConvMKLDNNGradOpKernel : public paddle::framework::OpKernel<T> {
867 868
 public:
  void Compute(const paddle::framework::ExecutionContext& ctx) const override {
869 870 871
    PADDLE_ENFORCE_EQ(platform::is_cpu_place(ctx.GetPlace()), true,
                      paddle::platform::errors::PreconditionNotMet(
                          "Operator DNNL ConvGrad must use CPUPlace"));
872 873
    auto& dev_ctx =
        ctx.template device_context<platform::MKLDNNDeviceContext>();
874 875 876 877 878 879 880 881 882
    const auto& mkldnn_engine = dev_ctx.GetEngine();

    const Tensor* input = ctx.Input<Tensor>("Input");
    const Tensor* filter = ctx.Input<Tensor>("Filter");
    const Tensor* output_grad =
        ctx.Input<Tensor>(framework::GradVarName("Output"));
    Tensor* input_grad = ctx.Output<Tensor>(framework::GradVarName("Input"));
    Tensor* filter_grad = ctx.Output<Tensor>(framework::GradVarName("Filter"));

883
    PADDLE_ENFORCE_EQ(input->layout(), DataLayout::kMKLDNN,
F
FDInSky 已提交
884 885 886
                      platform::errors::InvalidArgument(
                          "The input tensor's layout should be %d, but got %d.",
                          DataLayout::kMKLDNN, input->layout()));
A
Adam 已提交
887
    PADDLE_ENFORCE_NE(input->format(), MKLDNNMemoryFormat::undef,
F
FDInSky 已提交
888 889
                      platform::errors::InvalidArgument(
                          "Got wrong format for Input tensor."));
890

F
FDInSky 已提交
891 892 893 894 895
    PADDLE_ENFORCE_EQ(
        filter->layout(), DataLayout::kMKLDNN,
        platform::errors::InvalidArgument(
            "The filter tensor's layout should be %d, but got %d.",
            DataLayout::kMKLDNN, filter->layout()));
A
Adam 已提交
896
    PADDLE_ENFORCE_NE(filter->format(), MKLDNNMemoryFormat::undef,
F
FDInSky 已提交
897 898
                      platform::errors::InvalidArgument(
                          "Got wrong format for Filter tensor."));
899

F
FDInSky 已提交
900 901 902 903 904
    PADDLE_ENFORCE_EQ(
        output_grad->layout(), DataLayout::kMKLDNN,
        platform::errors::InvalidArgument(
            "The output_grad tensor's layout should be %d, but got %d.",
            DataLayout::kMKLDNN, output_grad->layout()));
A
Adam 已提交
905
    PADDLE_ENFORCE_NE(output_grad->format(), MKLDNNMemoryFormat::undef,
906 907
                      platform::errors::InvalidArgument(
                          "Wrong format set for output_grad tensor"));
908 909 910

    PADDLE_ENFORCE_EQ(
        ctx.Attr<bool>("is_test"), false,
F
FDInSky 已提交
911 912
        platform::errors::InvalidArgument(
            "is_test attribute should be set to False in training phase."));
913

914 915
    if (!input_grad && !filter_grad) return;

A
Adam 已提交
916 917 918 919 920 921 922 923 924
    std::vector<int> strides_temp = ctx.Attr<std::vector<int>>("strides");
    std::vector<int64_t> strides(begin(strides_temp), end(strides_temp));

    std::vector<int> paddings_temp = ctx.Attr<std::vector<int>>("paddings");
    std::vector<int64_t> paddings(begin(paddings_temp), end(paddings_temp));

    std::vector<int> dilations_temp = ctx.Attr<std::vector<int>>("dilations");
    std::vector<int64_t> dilations(begin(dilations_temp), end(dilations_temp));

925
    std::string padding_algorithm = ctx.Attr<std::string>("padding_algorithm");
A
Adam 已提交
926

927
    int groups = ctx.Attr<int>("groups");
928

929
    bool is_conv3d = strides.size() == 3U;
930 931 932 933 934 935
    const T* input_data = input->data<T>();
    const T* filter_data = filter->data<T>();
    const T* output_grad_data = output_grad->data<T>();
    T* input_grad_data = nullptr;
    T* filter_grad_data = nullptr;

936 937 938 939 940 941
    auto input_dims = input->dims();
    auto data_dims = framework::slice_ddim(input_dims, 2, input_dims.size());
    auto filter_dims = filter->dims();
    auto filter_data_dims =
        framework::slice_ddim(filter_dims, 2, filter_dims.size());

A
Adam 已提交
942
    auto ksize = framework::vectorize(filter_data_dims);
943 944 945 946

    UpdatePaddingAndDilation(&paddings, &dilations, padding_algorithm,
                             data_dims, strides, ksize);

A
Adam 已提交
947 948 949
    auto src_tz = paddle::framework::vectorize(input->dims());
    auto weights_tz = paddle::framework::vectorize(filter->dims());

950
    int g = std::max(groups, 1);
951
    platform::GetGroupConvWeightsTz(weights_tz, g);
A
Adam 已提交
952 953
    auto dst_tz = paddle::framework::vectorize(output_grad->dims());

954
    auto src_format = input->format();
955
    MKLDNNMemoryFormat weights_format =
Y
Yihua Xu 已提交
956
        GetWeightsFormat(filter->format(), g, is_conv3d);
957

958
    // Get an unique name from "argument" name of "input" and "Filter" variable
J
Jacek Czaja 已提交
959
    // as well as attributes of primitive to be created
960
    // This name will be used as key when saving info into device context
961 962
    std::string key = platform::CreateKey(
        dev_ctx, src_tz, ctx.InputName("Input") + ctx.InputName("Filter"));
963

964
    const std::string key_conv_pd = key + "@fwd_pd";
965
    key = platform::ExtendKeyWithThreadInfoIfNeeded(dev_ctx, key);
966
    std::vector<primitive> pipeline;
967

968 969
    // Create user memory descriptors
    auto user_src_md = platform::MKLDNNMemDesc(
970
        {src_tz}, platform::MKLDNNGetDataType<T>(), src_format);
971
    auto user_weights_md = platform::MKLDNNMemDesc(
972
        {weights_tz}, platform::MKLDNNGetDataType<T>(), weights_format);
973 974
    auto user_diff_dst_md = platform::MKLDNNMemDesc(
        {dst_tz}, platform::MKLDNNGetDataType<T>(), output_grad->format());
975 976 977 978 979

    /* create memory descriptor for conv backward without specified format
     * ('any') which lets a primitive (conv backward in this case) choose
     * the memory format preferred for best performance
     */
J
Jacek Czaja 已提交
980 981 982 983 984 985
    // TODO: NHWC is preferred starting from oneDNN 2.1 . Any may crash
    auto chosen_memory_format =
        platform::MayIUse(platform::cpu_isa_t::avx512_core) &&
                is_conv3d == false
            ? MKLDNNMemoryFormat::nhwc
            : MKLDNNMemoryFormat::any;
986
    weights_format = MKLDNNMemoryFormat::any;
987

988
    auto src_md = platform::MKLDNNMemDesc(
989
        src_tz, platform::MKLDNNGetDataType<T>(), chosen_memory_format);
990
    auto diff_src_md = platform::MKLDNNMemDesc(
991
        src_tz, platform::MKLDNNGetDataType<T>(), chosen_memory_format);
992
    auto weights_md = platform::MKLDNNMemDesc(
993
        weights_tz, platform::MKLDNNGetDataType<T>(), weights_format);
994
    auto diff_weights_md = platform::MKLDNNMemDesc(
995
        weights_tz, platform::MKLDNNGetDataType<T>(), weights_format);
996
    auto diff_dst_md = platform::MKLDNNMemDesc(
997
        dst_tz, platform::MKLDNNGetDataType<T>(), chosen_memory_format);
998
    // Retrieve conv_pd from device context
999 1000 1001
    auto conv_pd =
        std::static_pointer_cast<mkldnn::convolution_forward::primitive_desc>(
            dev_ctx.GetBlob(key_conv_pd));
1002
    PADDLE_ENFORCE_NE(conv_pd, nullptr,
F
FDInSky 已提交
1003 1004
                      platform::errors::InvalidArgument(
                          "Fail to find conv_pd in device context"));
1005

1006
    auto mkldnn_paddings = platform::ToMkldnnPadding(paddings);
1007 1008 1009
    std::transform(dilations.begin(), dilations.end(), dilations.begin(),
                   [](int64_t i) { return i - 1; });
    const mkldnn::memory::dims dilations_dims = dilations;
1010 1011
    // create backward convolution weights primitive descriptor
    auto conv_bwd_weights_desc = mkldnn::convolution_backward_weights::desc(
A
Adam 已提交
1012
        mkldnn::algorithm::convolution_direct, src_md, diff_weights_md,
1013 1014
        diff_dst_md, strides, dilations_dims, mkldnn_paddings[0],
        mkldnn_paddings[1]);
A
Adam 已提交
1015

1016 1017 1018 1019 1020 1021
    auto conv_bwd_weights_pd =
        std::make_shared<mkldnn::convolution_backward_weights::primitive_desc>(
            conv_bwd_weights_desc, mkldnn_engine, *conv_pd);

    // create backward convolution data primitive descriptor
    auto conv_bwd_data_desc = mkldnn::convolution_backward_data::desc(
A
Adam 已提交
1022
        mkldnn::algorithm::convolution_direct, diff_src_md, weights_md,
1023 1024
        diff_dst_md, strides, dilations_dims, mkldnn_paddings[0],
        mkldnn_paddings[1]);
A
Adam 已提交
1025

1026 1027 1028 1029
    auto conv_bwd_data_pd =
        std::make_shared<mkldnn::convolution_backward_data::primitive_desc>(
            conv_bwd_data_desc, mkldnn_engine, *conv_pd);

J
Jacek Czaja 已提交
1030 1031 1032
    platform::ConvMKLDNNHandler handler(conv_pd, conv_bwd_data_pd,
                                        conv_bwd_weights_pd, dev_ctx,
                                        mkldnn_engine, key);
1033 1034 1035 1036 1037 1038 1039 1040

    // create mkldnn memory from input tensors (data/weights)
    auto user_src_memory_p =
        handler.AcquireSrcMemory(user_src_md, to_void_cast<T>(input_data));
    auto user_weights_memory_p = handler.AcquireWeightsMemory(
        user_weights_md, to_void_cast<T>(filter_data));
    auto user_diff_dst_memory_p = handler.AcquireDiffDstMemory(
        user_diff_dst_md, to_void_cast<T>(output_grad_data));
1041
    auto& astream = platform::MKLDNNDeviceContext::tls().get_stream();
1042
    if (filter_grad) {
1043 1044
      auto src_memory_p = handler.AcquireSrcMemoryFromWeightsPrimitive(
          user_src_memory_p, pipeline);
1045

1046 1047 1048 1049
      auto diff_dst_memory_4filter_p =
          handler.AcquireDiffDstMemoryFromWeightsPrimitive(
              user_diff_dst_memory_p, pipeline);

1050
      const size_t size = handler.GetDiffWeightsMemorySize();
1051
      filter_grad_data = filter_grad->mutable_data<T>(ctx.GetPlace(), size);
1052

1053 1054
      // For convoluition with groups write filter grad into
      // oneDNN buffer and then we reorder it into filter_grad tensor
1055
      auto diff_weights_memory_p =
1056 1057 1058
          g > 1 ? handler.AcquireDiffWeightsMemoryFromWeightsPrimitive()
                : handler.AcquireDiffWeightsMemoryFromWeightsPrimitive(
                      reinterpret_cast<void*>(filter_grad_data));
1059

A
Adam 已提交
1060
      auto conv_bwd_weights_p = handler.AcquireConvolutionBackwardWeights();
1061

A
Adam 已提交
1062 1063 1064 1065 1066 1067
      // TODO(grygielski) why no bias_diff?
      conv_bwd_weights_p->execute(
          astream, {{MKLDNN_ARG_SRC, *src_memory_p},
                    {MKLDNN_ARG_DIFF_DST, *diff_dst_memory_4filter_p},
                    {MKLDNN_ARG_DIFF_WEIGHTS, *diff_weights_memory_p}});
      astream.wait();
1068

1069
      filter_grad->set_layout(DataLayout::kMKLDNN);
1070 1071 1072
      // in OneDNN groups in convolution are treated as separate dimension
      // which is not the case in paddlepaddle
      auto filter_fmt = GetMKLDNNFormat(*diff_weights_memory_p);
1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083

      // For convolution with groups convert from blocked to NCHW
      // otherwise there will be problems in next operators working on this data
      if (g > 1) {
        memory::data_type in_type =
            framework::ToMKLDNNDataType(filter_grad->type());
        // for 3d conv with groups (six dimensional data reorder to goidhw)
        // for 2d conv with groups (five dimensional data reorder to goihw)
        mkldnn::memory::format_tag out_format =
            weights_tz.size() == 6 ? mkldnn::memory::format_tag::goidhw
                                   : mkldnn::memory::format_tag::goihw;
1084 1085 1086
        std::string key = platform::CreateKey(dev_ctx, weights_tz, filter_fmt,
                                              out_format, in_type);
        key = platform::ExtendKeyWithThreadInfoIfNeeded(dev_ctx, key);
1087 1088 1089 1090 1091 1092 1093 1094 1095 1096

        platform::ReorderMKLDNNHandler handler(weights_tz, filter_grad->type(),
                                               in_type, dev_ctx, mkldnn_engine,
                                               key);
        auto reorder_dst_memory_p =
            handler.AcquireDstMemory(filter_grad, out_format, ctx.GetPlace());

        auto reorder_p =
            handler.AcquireReorder(reorder_dst_memory_p, diff_weights_memory_p);

1097 1098 1099 1100 1101 1102 1103
        {
          platform::RecordEvent record_reorder("int_reorder",
                                               platform::EventRole::kUniqueOp);
          reorder_p->execute(astream, *diff_weights_memory_p,
                             *reorder_dst_memory_p);
          astream.wait();
        }
1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114

        // So here we have a data in goihw , which can be interpreted as OIHW
        // (OIDHW for conv3d)
        // because filter_grad shape is set for OIHW (OIDHW for conv3d)
        mkldnn::memory::format_tag target_format =
            weights_tz.size() == 6 ? mkldnn::memory::format_tag::oidhw
                                   : mkldnn::memory::format_tag::oihw;
        filter_grad->set_format(target_format);
      } else {
        filter_grad->set_format(filter_fmt);
      }
1115 1116
    }
    if (input_grad) {
1117 1118 1119 1120 1121 1122 1123
      auto weights_memory_p = handler.AcquireWeightsMemoryFromDataPrimitive(
          user_weights_memory_p, pipeline);

      auto diff_dst_memory_4data_p =
          handler.AcquireDiffDstMemoryFromDataPrimitive(user_diff_dst_memory_p,
                                                        pipeline);

1124
      const size_t size = handler.GetDiffSourceMemorySize();
1125
      input_grad_data = input_grad->mutable_data<T>(ctx.GetPlace(), size);
1126

1127 1128 1129
      auto diff_src_memory_p = handler.AcquireDiffSrcMemoryFromDataPrimitive(
          reinterpret_cast<void*>(input_grad_data));

A
Adam 已提交
1130
      auto conv_bwd_data_p = handler.AcquireConvolutionBackwardData();
1131

A
Adam 已提交
1132 1133 1134 1135 1136
      conv_bwd_data_p->execute(astream,
                               {{MKLDNN_ARG_WEIGHTS, *weights_memory_p},
                                {MKLDNN_ARG_DIFF_DST, *diff_dst_memory_4data_p},
                                {MKLDNN_ARG_DIFF_SRC, *diff_src_memory_p}});
      astream.wait();
1137

1138 1139
      input_grad->set_layout(DataLayout::kMKLDNN);
      input_grad->set_format(GetMKLDNNFormat(*diff_src_memory_p));
1140
    }
X
xiaolil1 已提交
1141
  }
1142
};
1143

1144 1145 1146 1147 1148
}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;

X
Xin Pan 已提交
1149 1150 1151
REGISTER_OP_KERNEL_WITH_CUSTOM_TYPE(conv2d, MKLDNN,
                                    ::paddle::platform::CPUPlace, FP32,
                                    ops::kConvMKLDNNFP32,
1152
                                    ops::ConvMKLDNNOpKernel<float, float>);
1153

1154 1155 1156 1157
REGISTER_OP_KERNEL_WITH_CUSTOM_TYPE(
    conv2d, MKLDNN, ::paddle::platform::CPUPlace, BF16, ops::kConvMKLDNNFP32,
    ops::ConvMKLDNNOpKernel<paddle::platform::bfloat16, float>);

1158 1159
REGISTER_OP_KERNEL_WITH_CUSTOM_TYPE(conv2d, MKLDNN,
                                    ::paddle::platform::CPUPlace, U8,
1160
                                    ops::kConvMKLDNNINT8,
1161
                                    ops::ConvMKLDNNOpKernel<uint8_t, float>);
1162 1163 1164

REGISTER_OP_KERNEL_WITH_CUSTOM_TYPE(conv2d, MKLDNN,
                                    ::paddle::platform::CPUPlace, S8,
1165
                                    ops::kConvMKLDNNINT8,
1166
                                    ops::ConvMKLDNNOpKernel<int8_t, float>);
X
Xin Pan 已提交
1167 1168 1169 1170 1171

REGISTER_OP_KERNEL_WITH_CUSTOM_TYPE(conv2d_grad, MKLDNN,
                                    ::paddle::platform::CPUPlace, FP32,
                                    ops::kConvMKLDNNFP32,
                                    ops::ConvMKLDNNGradOpKernel<float>);
1172 1173 1174 1175

REGISTER_OP_KERNEL_WITH_CUSTOM_TYPE(conv3d, MKLDNN,
                                    ::paddle::platform::CPUPlace, FP32,
                                    ops::kConvMKLDNNFP32,
1176
                                    ops::ConvMKLDNNOpKernel<float, float>);
1177 1178 1179 1180 1181

REGISTER_OP_KERNEL_WITH_CUSTOM_TYPE(conv3d_grad, MKLDNN,
                                    ::paddle::platform::CPUPlace, FP32,
                                    ops::kConvMKLDNNFP32,
                                    ops::ConvMKLDNNGradOpKernel<float>);