conv_mkldnn_op.cc 43.0 KB
Newer Older
A
Adam Osewski 已提交
1
/* Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
2 3 4 5 6 7 8 9 10 11 12 13 14

   Licensed under the Apache License, Version 2.0 (the "License");
   you may not use this file except in compliance with the License.
   You may obtain a copy of the License at

   http://www.apache.org/licenses/LICENSE-2.0

   Unless required by applicable law or agreed to in writing, software
   distributed under the License is distributed on an "AS IS" BASIS,
   WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
   See the License for the specific language governing permissions and
   limitations under the License. */

A
Adam Osewski 已提交
15 16
#include <tuple>

17
#include "paddle/fluid/operators/conv_op.h"
J
Jacek Czaja 已提交
18
#include "paddle/fluid/platform/cpu_info.h"
A
Adam Osewski 已提交
19
#include "paddle/fluid/platform/mkldnn_helper.h"
J
Jacek Czaja 已提交
20
#include "paddle/fluid/platform/mkldnn_reuse.h"
21 22 23

namespace paddle {
namespace operators {
A
Adam Osewski 已提交
24
namespace {
25

26 27 28
inline MKLDNNMemoryFormat GetWeightsFormat(const MKLDNNMemoryFormat format,
                                           const int groups,
                                           const bool is_conv3d) {
Y
Yihua Xu 已提交
29
  if (is_conv3d) {
30
    return (groups == 1) ? format : MKLDNNMemoryFormat::goidhw;
Y
Yihua Xu 已提交
31
  } else {
32
    return (groups == 1) ? format : MKLDNNMemoryFormat::goihw;
Y
Yihua Xu 已提交
33 34 35
  }
}

36
static mkldnn::memory::data_type GetDstType(bool is_int8, bool is_bfloat16,
37
                                            bool force_fp32_output,
38
                                            std::string fuse_activation,
39 40
                                            bool fuse_residual_conn,
                                            const Tensor* residual_param) {
41
  auto dst_dt = mkldnn::memory::data_type::f32;
42 43 44 45 46 47 48
  if (is_int8) {
    dst_dt = (fuse_activation == "relu" || fuse_activation == "relu6")
                 ? mkldnn::memory::data_type::u8
                 : mkldnn::memory::data_type::s8;
    if (force_fp32_output) {
      dst_dt = mkldnn::memory::data_type::f32;
    }
49 50
    if (fuse_residual_conn && residual_param) {
      auto residual_dt = framework::ToMKLDNNDataType(residual_param->type());
51
      if (dst_dt != residual_dt) dst_dt = residual_dt;
52
    }
53 54 55 56 57 58 59
  } else {
    if (!force_fp32_output && is_bfloat16) {
      dst_dt = mkldnn::memory::data_type::bf16;
      if (fuse_residual_conn && residual_param) {
        dst_dt = framework::ToMKLDNNDataType(residual_param->type());
      }
    }
60 61 62 63
  }
  return dst_dt;
}

64
template <typename T, typename K, typename T_out>
65
class ConvMKLDNNHandlerT
66 67 68
    : public platform::MKLDNNHandlerT<T, mkldnn::convolution_forward,
                                      mkldnn::convolution_backward_data,
                                      mkldnn::convolution_backward_weights> {
69
 public:
A
Adam Osewski 已提交
70
  ConvMKLDNNHandlerT(const framework::ExecutionContext& ctx,
71 72 73 74 75
                     const platform::MKLDNNDeviceContext& dev_ctx,
                     const mkldnn::engine mkldnn_engine,
                     platform::Place cpu_place, const Tensor* input,
                     const Tensor* filter, const Tensor* bias, Tensor* output,
                     const std::string& unique_name)
76 77 78
      : platform::MKLDNNHandlerT<T, mkldnn::convolution_forward,
                                 mkldnn::convolution_backward_data,
                                 mkldnn::convolution_backward_weights>(
79
            dev_ctx, mkldnn_engine, cpu_place,
80
            platform::CreateKey(dev_ctx, framework::vectorize(input->dims()),
81
                                unique_name)) {
82
    if (!this->isCached()) {
83
      PADDLE_ENFORCE_EQ(
A
Adam Osewski 已提交
84
          input->layout(), framework::DataLayout::kMKLDNN,
85 86
          platform::errors::InvalidArgument(
              "The input tensor's layout should be %d, but got %d.",
A
Adam Osewski 已提交
87
              framework::DataLayout::kMKLDNN, input->layout()));
88 89 90
      PADDLE_ENFORCE_NE(input->format(), MKLDNNMemoryFormat::undef,
                        platform::errors::InvalidArgument(
                            "Wrong format set for Input tensor"));
91

92
      PADDLE_ENFORCE_EQ(
A
Adam Osewski 已提交
93
          filter->layout(), framework::DataLayout::kMKLDNN,
94 95
          platform::errors::InvalidArgument(
              "The Filter tensor's layout should be %d, but got %d.",
A
Adam Osewski 已提交
96
              framework::DataLayout::kMKLDNN, filter->layout()));
97 98 99
      PADDLE_ENFORCE_NE(filter->format(), MKLDNNMemoryFormat::undef,
                        platform::errors::InvalidArgument(
                            "Wrong format set for Filter tensor"));
K
Krzysztof Binias 已提交
100

101 102 103 104 105 106 107 108 109 110 111 112
      PADDLE_ENFORCE_GE(
          input->dims().size(), 4,
          platform::errors::InvalidArgument(
              "Input must be with 4 or 5 dimensions, i.e. NCHW or "
              "NCDHW, but got dimension = %d .",
              input->dims().size()));
      PADDLE_ENFORCE_LE(
          input->dims().size(), 5,
          platform::errors::InvalidArgument(
              "Input must be with 4 or 5 dimensions, i.e. NCHW or "
              "NCDHW, but got dimension = %d .",
              input->dims().size()));
113

114 115 116 117 118 119 120 121 122 123 124 125
      PADDLE_ENFORCE_GE(
          filter->dims().size(), 4,
          platform::errors::InvalidArgument(
              "Filter must be with 4 or 5 dimensions, i.e. OIHW or "
              "OIDHW, but got dimension = %d .",
              filter->dims().size()));
      PADDLE_ENFORCE_LE(
          filter->dims().size(), 5,
          platform::errors::InvalidArgument(
              "Filter must be with 4 or 5 dimensions, i.e. OIHW or "
              "OIDHW, but got dimension = %d .",
              filter->dims().size()));
126

127 128
      if (bias) {
        PADDLE_ENFORCE_EQ(
A
Adam Osewski 已提交
129
            bias->layout(), framework::DataLayout::kMKLDNN,
130 131
            platform::errors::InvalidArgument(
                "The Bias tensor's layout should be %d, but got %d.",
A
Adam Osewski 已提交
132
                framework::DataLayout::kMKLDNN, bias->layout()));
133 134 135
        PADDLE_ENFORCE_NE(bias->format(), MKLDNNMemoryFormat::undef,
                          platform::errors::InvalidArgument(
                              "Got wrong format for Bias tensor."));
136

137 138 139 140 141 142
        PADDLE_ENFORCE_EQ(bias->dims().size(), 1,
                          platform::errors::InvalidArgument(
                              "Bias must only have 1 dimension, "
                              "i.e. X, but got dimension = %d .",
                              bias->dims().size()));
      }
F
FDInSky 已提交
143

144 145 146 147 148 149 150 151 152
      const std::string fuse_activation =
          ctx.Attr<std::string>("fuse_activation");
      const float fuse_alpha = ctx.Attr<float>("fuse_alpha");
      const float fuse_beta = ctx.Attr<float>("fuse_beta");
      const bool fuse_residual_conn =
          ctx.Attr<bool>("fuse_residual_connection");
      const int groups = ctx.Attr<int>("groups");
      const std::string padding_algorithm =
          ctx.Attr<std::string>("padding_algorithm");
F
FDInSky 已提交
153

154 155 156 157 158 159
      const auto input_dims = input->dims();
      const auto data_dims =
          framework::slice_ddim(input_dims, 2, input_dims.size());
      const auto filter_dims = filter->dims();
      const auto filter_data_dims =
          framework::slice_ddim(filter_dims, 2, filter_dims.size());
160

161
      const auto ksize = framework::vectorize(filter_data_dims);
162
      const bool is_test = ctx.Attr<bool>("is_test");
163

164 165
      auto strides_temp = ctx.Attr<std::vector<int>>("strides");
      std::vector<int64_t> strides(begin(strides_temp), end(strides_temp));
166

167 168
      auto paddings_temp = ctx.Attr<std::vector<int>>("paddings");
      std::vector<int64_t> paddings(begin(paddings_temp), end(paddings_temp));
A
Adam 已提交
169

170 171 172
      auto dilations_temp = ctx.Attr<std::vector<int>>("dilations");
      std::vector<int64_t> dilations(begin(dilations_temp),
                                     end(dilations_temp));
A
Adam 已提交
173

174 175
      UpdatePaddingAndDilation(&paddings, &dilations, padding_algorithm,
                               data_dims, strides, ksize);
A
Adam 已提交
176

177 178
      std::transform(dilations.begin(), dilations.end(), dilations.begin(),
                     [](int64_t i) { return i - 1; });
179

A
Adam Osewski 已提交
180
      const auto src_tz = framework::vectorize(input->dims());
181

A
Adam Osewski 已提交
182
      auto weights_tz = framework::vectorize(filter->dims());
183
      platform::GetGroupConvWeightsTz(weights_tz, groups);
184

A
Adam Osewski 已提交
185
      const auto dst_tz = framework::vectorize(output->dims());
186

187 188
      const mkldnn::memory::dims stride_dims = strides;
      const auto mkldnn_paddings = platform::ToMkldnnPadding(paddings);
189
      const mkldnn::memory::dims dilations_dims = dilations;
A
Adam 已提交
190

191 192 193 194
      /* create memory descriptor for convolution without specified format
       * ('any') which lets a primitive (convolution in this case) choose
       * the memory format preferred for best performance
       */
195
      auto chosen_memory_format = MKLDNNMemoryFormat::any;
196 197 198 199 200
      auto data_type = mkldnn::memory::data_type::f32;
      if (ctx.Attr<std::string>("mkldnn_data_type") == "bfloat16" ||
          std::is_same<T_out, platform::bfloat16>::value)
        data_type = mkldnn::memory::data_type::bf16;

A
Adam Osewski 已提交
201 202 203 204 205 206 207 208 209 210 211 212 213 214
      mkldnn::memory::desc src_md, weights_md;
      if (platform::is_int8<T>()) {
        src_md = platform::MKLDNNMemDesc(
            src_tz, framework::ToMKLDNNDataType(input->type()),
            chosen_memory_format);
        weights_md = platform::MKLDNNMemDesc(
            weights_tz, mkldnn::memory::data_type::s8, chosen_memory_format);
      } else {
        src_md =
            platform::MKLDNNMemDesc(src_tz, data_type, chosen_memory_format);
        weights_md = platform::MKLDNNMemDesc(weights_tz, data_type,
                                             MKLDNNMemoryFormat::any);
      }

215
      const auto dst_md = platform::MKLDNNMemDesc(
216
          dst_tz, platform::MKLDNNGetDataType<T_out>(), chosen_memory_format);
217 218 219
      const auto fwd_prop_kind = is_test ? mkldnn::prop_kind::forward_inference
                                         : mkldnn::prop_kind::forward_training;

J
jakpiase 已提交
220
      float sum_scale = 1.0f;
A
Adam Osewski 已提交
221
      std::vector<float> output_shift_scale;
J
jakpiase 已提交
222 223
      if (platform::is_int8<T>())
        std::tie(sum_scale, output_shift_scale) = get_int8_scales(ctx);
A
Adam Osewski 已提交
224

225
      const mkldnn::primitive_attr conv_attr = CreatePostOps(
A
Adam Osewski 已提交
226 227
          fuse_activation, fuse_alpha, fuse_beta, fuse_residual_conn,
          output_shift_scale, sum_scale);  // for INT8 only!
A
Adam 已提交
228

229 230
      if (bias) {
        auto bias_tz = framework::vectorize(bias->dims());
A
Adam Osewski 已提交
231 232 233 234 235 236 237 238
        mkldnn::memory::desc bias_md;
        if (platform::is_int8<T>()) {
          bias_md = platform::MKLDNNMemDesc(
              bias_tz, mkldnn::memory::data_type::s32, MKLDNNMemoryFormat::x);
        } else {
          bias_md = platform::MKLDNNMemDesc(bias_tz, data_type,
                                            MKLDNNMemoryFormat::x);
        }
239

240
        this->AcquireForwardPrimitiveDescriptor(
241
            conv_attr, fwd_prop_kind, dnnl::algorithm::convolution_direct,
242
            src_md, weights_md, bias_md, dst_md, stride_dims, dilations_dims,
243 244
            mkldnn_paddings[0], mkldnn_paddings[1]);
      } else {
245
        this->AcquireForwardPrimitiveDescriptor(
246
            conv_attr, fwd_prop_kind, dnnl::algorithm::convolution_direct,
247 248
            src_md, weights_md, dst_md, stride_dims, dilations_dims,
            mkldnn_paddings[0], mkldnn_paddings[1]);
249 250 251
      }
    }
  }
252

253 254 255 256 257 258 259 260 261 262 263
  ConvMKLDNNHandlerT(const framework::ExecutionContext& ctx,
                     const platform::MKLDNNDeviceContext& dev_ctx,
                     platform::Place cpu_place, const Tensor* in,
                     const Tensor* filter, const Tensor* bias,
                     const Tensor* out_grad, Tensor* filter_grad,
                     Tensor* in_x_grad, const std::string& unique_name)
      : platform::MKLDNNHandlerT<T, mkldnn::convolution_forward,
                                 mkldnn::convolution_backward_data,
                                 mkldnn::convolution_backward_weights>(
            dev_ctx, dev_ctx.GetEngine(), cpu_place,
            platform::CreateKey(dev_ctx, framework::vectorize(in->dims()),
264
                                unique_name)) {
265 266
    if (!this->isBwdCached()) {
      PADDLE_ENFORCE_EQ(
A
Adam Osewski 已提交
267
          in->layout(), framework::DataLayout::kMKLDNN,
268 269
          platform::errors::InvalidArgument(
              "The input tensor's layout should be %d, but got %d.",
A
Adam Osewski 已提交
270
              framework::DataLayout::kMKLDNN, in->layout()));
271 272 273 274 275
      PADDLE_ENFORCE_NE(in->format(), MKLDNNMemoryFormat::undef,
                        platform::errors::InvalidArgument(
                            "Got wrong format for Input tensor."));

      PADDLE_ENFORCE_EQ(
A
Adam Osewski 已提交
276
          filter->layout(), framework::DataLayout::kMKLDNN,
277 278
          platform::errors::InvalidArgument(
              "The filter tensor's layout should be %d, but got %d.",
A
Adam Osewski 已提交
279
              framework::DataLayout::kMKLDNN, filter->layout()));
280 281 282 283 284
      PADDLE_ENFORCE_NE(filter->format(), MKLDNNMemoryFormat::undef,
                        platform::errors::InvalidArgument(
                            "Got wrong format for Filter tensor."));

      PADDLE_ENFORCE_EQ(
A
Adam Osewski 已提交
285
          out_grad->layout(), framework::DataLayout::kMKLDNN,
286 287
          platform::errors::InvalidArgument(
              "The output_grad tensor's layout should be %d, but got %d.",
A
Adam Osewski 已提交
288
              framework::DataLayout::kMKLDNN, out_grad->layout()));
289 290 291 292 293
      PADDLE_ENFORCE_NE(out_grad->format(), MKLDNNMemoryFormat::undef,
                        platform::errors::InvalidArgument(
                            "Wrong format set for output_grad tensor"));

      PADDLE_ENFORCE_EQ(
294
          ctx.Attr<bool>("is_test"), false,
295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314
          platform::errors::InvalidArgument(
              "is_test attribute should be set to False in training phase."));

      std::vector<int> strides_temp = ctx.Attr<std::vector<int>>("strides");
      std::vector<int64_t> strides(begin(strides_temp), end(strides_temp));

      std::vector<int> paddings_temp = ctx.Attr<std::vector<int>>("paddings");
      std::vector<int64_t> paddings(begin(paddings_temp), end(paddings_temp));

      std::vector<int> dilations_temp = ctx.Attr<std::vector<int>>("dilations");
      std::vector<int64_t> dilations(begin(dilations_temp),
                                     end(dilations_temp));

      auto input_dims = in->dims();
      auto data_dims = framework::slice_ddim(input_dims, 2, input_dims.size());
      auto filter_dims = filter->dims();
      auto filter_data_dims =
          framework::slice_ddim(filter_dims, 2, filter_dims.size());
      auto ksize = framework::vectorize(filter_data_dims);

A
Adam Osewski 已提交
315 316
      std::string padding_algorithm =
          ctx.Attr<std::string>("padding_algorithm");
317 318 319 320 321 322
      UpdatePaddingAndDilation(&paddings, &dilations, padding_algorithm,
                               data_dims, strides, ksize);

      auto src_tz = framework::vectorize(in->dims());
      auto weights_tz = framework::vectorize(filter->dims());

A
Adam Osewski 已提交
323
      int groups = ctx.Attr<int>("groups");
324 325
      int g = std::max(groups, 1);
      platform::GetGroupConvWeightsTz(weights_tz, g);
A
Adam Osewski 已提交
326
      auto dst_tz = framework::vectorize(out_grad->dims());
327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357

      /* create memory descriptor for conv backward without specified format
       * ('any') which lets a primitive (conv backward in this case) choose
       * the memory format preferred for best performance
       */
      const auto chosen_memory_format = MKLDNNMemoryFormat::any;
      const auto weights_format = MKLDNNMemoryFormat::any;

      auto src_md = platform::MKLDNNMemDesc(
          src_tz, platform::MKLDNNGetDataType<T>(), chosen_memory_format);
      const auto dst_md = platform::MKLDNNMemDesc(
          dst_tz, platform::MKLDNNGetDataType<T_out>(), chosen_memory_format);
      auto diff_src_md = platform::MKLDNNMemDesc(
          src_tz, platform::MKLDNNGetDataType<T>(), chosen_memory_format);
      auto weights_md = platform::MKLDNNMemDesc(
          weights_tz, platform::MKLDNNGetDataType<T>(), weights_format);
      auto diff_weights_md = platform::MKLDNNMemDesc(
          weights_tz, platform::MKLDNNGetDataType<T>(), weights_format);
      auto diff_dst_md = platform::MKLDNNMemDesc(
          dst_tz, platform::MKLDNNGetDataType<T>(), chosen_memory_format);

      auto mkldnn_paddings = platform::ToMkldnnPadding(paddings);
      std::transform(dilations.begin(), dilations.end(), dilations.begin(),
                     [](int64_t i) { return i - 1; });
      const mkldnn::memory::dims dilations_dims = dilations;

      const mkldnn::memory::dims stride_dims = strides;
      // Recreating FWD PD. For training there are no post ops in convolution
      mkldnn::primitive_attr conv_attr;
      if (bias) {
        auto bias_tz = framework::vectorize(bias->dims());
A
Adam Osewski 已提交
358 359 360 361 362 363 364 365
        mkldnn::memory::desc bias_md;
        if (platform::is_int8<T>()) {
          bias_md = platform::MKLDNNMemDesc(
              bias_tz, mkldnn::memory::data_type::s32, MKLDNNMemoryFormat::x);
        } else {
          bias_md = platform::MKLDNNMemDesc(
              bias_tz, mkldnn::memory::data_type::f32, MKLDNNMemoryFormat::x);
        }
366

367
        this->AcquireForwardPrimitiveDescriptor(
368 369 370 371 372
            conv_attr, mkldnn::prop_kind::forward_training,
            dnnl::algorithm::convolution_direct, src_md, weights_md, bias_md,
            dst_md, stride_dims, dilations_dims, mkldnn_paddings[0],
            mkldnn_paddings[1]);
      } else {
373
        this->AcquireForwardPrimitiveDescriptor(
374 375 376 377 378 379
            conv_attr, mkldnn::prop_kind::forward_training,
            dnnl::algorithm::convolution_direct, src_md, weights_md, dst_md,
            stride_dims, dilations_dims, mkldnn_paddings[0],
            mkldnn_paddings[1]);
      }

380
      this->AcquireBackwardPrimitiveDescriptor(
381 382 383 384
          mkldnn::algorithm::convolution_direct, diff_src_md, weights_md,
          diff_dst_md, strides, dilations_dims, mkldnn_paddings[0],
          mkldnn_paddings[1]);

385
      this->AcquireBackwardWeightsPrimitiveDescriptor(
386 387 388 389 390 391
          mkldnn::algorithm::convolution_direct, src_md, diff_weights_md,
          diff_dst_md, strides, dilations_dims, mkldnn_paddings[0],
          mkldnn_paddings[1]);
    }
  }

A
Adam Osewski 已提交
392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456
  std::tuple<float, std::vector<float>> get_int8_scales(
      const framework::ExecutionContext& ctx) const {
    const auto* filter = ctx.Input<Tensor>("Filter");
    const auto& weights_tz = framework::vectorize(filter->dims());

    const bool& force_fp32_output = ctx.Attr<bool>("force_fp32_output");
    const bool& fuse_residual_conn = ctx.Attr<bool>("fuse_residual_connection");
    const int groups = std::max(ctx.Attr<int>("groups"), 1);

    const auto& scale_in_data = ctx.Attr<float>("Scale_in");
    const auto& scale_in_eltwise_data = ctx.Attr<float>("Scale_in_eltwise");
    auto scale_weights_data = ctx.Attr<std::vector<float>>("Scale_weights");
    bool is_multi_channel = scale_weights_data.size() > 1;
    auto scale_out_data =
        force_fp32_output ? 1.0f : ctx.Attr<float>("Scale_out");
    float sum_scale =
        fuse_residual_conn ? scale_out_data / scale_in_eltwise_data : 1.0f;
    int count =
        is_multi_channel
            ? (groups > 1 ? (weights_tz)[1] * (weights_tz)[0] : (weights_tz)[0])
            : 1;
    std::vector<float> output_shift_scale(count);

#pragma omp parallel for if (count > 50)
    for (int i = 0; i < count; i++) {
      if (scale_weights_data[i] == 0.0)
        // weights data will contain 0 in some models, then weights
        // scale couldn't be calculated
        output_shift_scale[i] = scale_out_data;
      else
        output_shift_scale[i] =
            static_cast<float>(static_cast<double>(scale_out_data) /
                               (static_cast<double>(scale_in_data) *
                                static_cast<double>(scale_weights_data[i])));
    }

    return std::make_tuple(sum_scale, output_shift_scale);
  }

  std::tuple<float, std::vector<float>> get_int8_bias_scales(
      const framework::ExecutionContext& ctx) const {
    const auto* filter = ctx.Input<Tensor>("Filter");
    const auto& weights_tz = framework::vectorize(filter->dims());
    const int groups = std::max(ctx.Attr<int>("groups"), 1);

    const auto& scale_weights_data =
        ctx.Attr<std::vector<float>>("Scale_weights");
    const auto& scale_in_data = ctx.Attr<float>("Scale_in");

    bool is_multi_channel = scale_weights_data.size() > 1;
    int mask_reorder = is_multi_channel ? 1 << 0 : 1;
    int count =
        is_multi_channel
            ? (groups > 1 ? (weights_tz)[1] * (weights_tz)[0] : (weights_tz)[0])
            : 1;
    std::vector<float> scale_bias_data(count);

#pragma omp parallel for if (count > 50)
    for (int i = 0; i < count; i++) {
      scale_bias_data[i] = scale_in_data * scale_weights_data[i];
    }

    return std::make_tuple(mask_reorder, scale_bias_data);
  }

457 458 459 460 461 462 463 464 465 466
  mkldnn::primitive_attr CreatePostOps(
      std::string fuse_activation, float fuse_alpha, float fuse_beta,
      bool fuse_residual_conn, const std::vector<float> output_shift_scale = {},
      float sum_scale = 1.0f) {
    mkldnn::primitive_attr conv_attr;
    mkldnn::post_ops post_operations;
    if (output_shift_scale.size() > 0) {
      int mask = output_shift_scale.size() > 1 ? 1 << 1 : 0;
      conv_attr.set_output_scales(mask, output_shift_scale);
    }
467

468 469 470 471 472 473 474 475 476 477
    // Fusion with Elementwise layer relies on adding a sum post-operation with
    // the scale parameter. It is assumed that when fuse_residual_connection is
    // true, the output tensor contains the data coming from residual
    // connection. The result of this post_op is:
    // Output = scale * Output + Conv_Out.
    if (fuse_residual_conn) {
      post_operations.append_sum(sum_scale);
    }
    // Fusion with ReLU layer is executed through the PostOps feature. Create a
    // PostOps object and configure it to execute an eltwise relu operation.
478
    constexpr float scale = 1.0f;
479 480 481 482 483 484 485 486 487 488
    if (fuse_activation == "relu" || fuse_activation == "leaky_relu") {
      post_operations.append_eltwise(scale, mkldnn::algorithm::eltwise_relu,
                                     fuse_alpha, fuse_beta);
    } else if (fuse_activation == "relu6") {
      post_operations.append_eltwise(scale,
                                     mkldnn::algorithm::eltwise_bounded_relu,
                                     fuse_alpha, fuse_beta);
    } else if (fuse_activation == "swish") {
      post_operations.append_eltwise(scale, mkldnn::algorithm::eltwise_swish,
                                     fuse_alpha, fuse_beta);
J
jakpiase 已提交
489 490 491
    } else if (fuse_activation == "hard_swish") {
      post_operations.append_eltwise(
          scale, mkldnn::algorithm::eltwise_hardswish, fuse_alpha, fuse_beta);
492 493 494 495 496
    } else if (fuse_activation == "hard_sigmoid") {
      post_operations.append_eltwise(scale, mkldnn::algorithm::eltwise_linear,
                                     fuse_alpha, fuse_beta);
      post_operations.append_eltwise(scale, mkldnn::algorithm::eltwise_clip,
                                     0.0f, 1.0f);
497 498 499 500
    }
    conv_attr.set_post_ops(post_operations);
    return conv_attr;
  }
501

502 503 504 505 506 507 508 509 510 511 512 513 514
  std::shared_ptr<mkldnn::memory>
  AcquireWeightsMemoryWithReorderFromDataPrimitive(
      const framework::Tensor* filter, const int groups, const bool is_conv3d) {
    const K* filter_data = filter->data<K>();
    auto weights_tz = framework::vectorize(filter->dims());
    platform::GetGroupConvWeightsTz(weights_tz, groups);

    auto user_src_md = platform::MKLDNNMemDesc(
        weights_tz, platform::MKLDNNGetDataType<K>(),
        GetWeightsFormat(filter->format(), groups, is_conv3d));

    return this->AcquireMemoryWithReorder(
        user_src_md, this->bwd_pd_->weights_desc(),
A
Adam Osewski 已提交
515
        platform::to_void_cast<K>(filter_data), "@weights_mem_d_p", false);
516 517
  }

518 519
  std::shared_ptr<mkldnn::memory> AcquireSrcMemoryWithReorder(
      const framework::Tensor* input) {
520 521 522 523
    return this->AcquireMemoryWithReorderPrimitive(
        input, "@src_mem_p_user", "@src_mem_p_target", "@src_mem_p",
        this->fwd_pd_->src_desc());
  }
524

525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560
  std::shared_ptr<mkldnn::memory>
  AcquireSrcMemoryWithReorderFromWeightsPrimitive(
      const framework::Tensor* input) {
    return this->AcquireMemoryWithReorderPrimitive(
        input, "@src_mem_w_p_user", "@src_mem_w_p_target", "@src_mem_w_p",
        this->bwd_w_pd_->src_desc());
  }

  std::shared_ptr<mkldnn::memory>
  AcquireDiffDstMemoryWithReorderFromWeightsPrimitive(
      const framework::Tensor* out_grad) {
    return this->AcquireMemoryWithReorderPrimitive(
        out_grad, "@diff_dst_mem_w_p_user", "@diff_dst_mem_w_p_target",
        "@diff_dst_mem_w_p", this->bwd_w_pd_->diff_dst_desc());
  }

  std::shared_ptr<mkldnn::memory>
  AcquireDiffDstMemoryWithReorderMemoryFromDataPrimitive(
      const framework::Tensor* out_grad) {
    return this->AcquireMemoryWithReorderPrimitive(
        out_grad, "@diff_dst_mem_p_user", "@diff_dst_mem_p_target",
        "@diff_dst_mem_p", this->bwd_pd_->diff_dst_desc());
  }

  std::shared_ptr<mkldnn::memory> AcquireMemoryWithReorderPrimitive(
      const framework::Tensor* in_mem, const char* key_mem_user,
      const char* key_mem_target, const char* key_mem,
      const mkldnn::memory::desc& mem_md) {
    const T* in_mem_data = in_mem->data<T>();
    const std::string user_key_suffix{key_mem_user};
    auto user_mem_p = this->AcquireMemory(user_key_suffix);

    if (!user_mem_p) {
      auto user_mem_md = platform::MKLDNNMemDesc(
          framework::vectorize(in_mem->dims()),
          platform::MKLDNNGetDataType<T>(), in_mem->format());
561
      return this->AcquireMemoryWithReorder(
562
          user_mem_md, mem_md, platform::to_void_cast<T>(in_mem_data), key_mem);
563
    } else {
564 565
      const std::string target_key_suffix{key_mem_target};
      const auto target_mem_p = this->AcquireMemory(target_key_suffix);
A
Adam Osewski 已提交
566
      user_mem_p->set_data_handle(platform::to_void_cast<T>(in_mem_data));
567
      if (user_mem_p != target_mem_p) {
568
        this->AcquireReorder(user_mem_p, target_mem_p, key_mem);
569
      }
570
      return target_mem_p;
571
    }
572 573 574 575
  }

  std::shared_ptr<mkldnn::memory> AcquireWeightsMemoryWithReorder(
      const framework::Tensor* filter, const int groups, const bool is_conv3d,
576 577
      const bool is_test, const std::vector<float>& scale_data = {1.0f},
      int mask = 0) {
578 579 580
    // This is workaround to make execution faster, delete
    // if statement after including md inside Tensor
    auto weights_mem_p = this->AcquireMemory("@weights_mem_p_target");
581
    if (is_test && weights_mem_p) {
582 583
      return weights_mem_p;
    } else {
584
      const K* filter_data = filter->data<K>();
585
      auto weights_tz = framework::vectorize(filter->dims());
586
      platform::GetGroupConvWeightsTz(weights_tz, groups);
587 588

      auto user_src_md = platform::MKLDNNMemDesc(
589
          weights_tz, platform::MKLDNNGetDataType<K>(),
590 591 592 593
          GetWeightsFormat(filter->format(), groups, is_conv3d));

      return this->AcquireMemoryWithReorder(
          user_src_md, this->fwd_pd_->weights_desc(),
594 595
          platform::to_void_cast<K>(filter_data), "@weights_mem_p", is_test, {},
          scale_data, mask);
596
    }
597
  }
598

599
  std::shared_ptr<mkldnn::memory> AcquireBiasMemoryWithReorder(
600
      const framework::Tensor* bias, const bool is_test,
A
Adam Osewski 已提交
601
      const std::vector<float>& scale_data = {1.0f}, int mask = 0) {
602
    auto bias_mem_p = this->AcquireMemory("@bias_mem_p_target");
603
    if (is_test && bias_mem_p) {
604 605 606 607 608 609 610 611
      return bias_mem_p;
    } else {
      const K* bias_data = bias->data<K>();
      auto user_bias_md = platform::MKLDNNMemDesc(
          framework::vectorize(bias->dims()), platform::MKLDNNGetDataType<K>(),
          MKLDNNMemoryFormat::x);

      return this->AcquireMemoryWithReorder(
A
Adam Osewski 已提交
612
          user_bias_md, this->fwd_pd_->bias_desc(),
613
          platform::to_void_cast<K>(bias_data), "@bias_mem_p", is_test, {},
A
Adam Osewski 已提交
614
          scale_data, mask);
615
    }
616
  }
617

618 619
  std::shared_ptr<mkldnn::memory> AcquireResidualMemory(
      const framework::Tensor* residual_param) {
620 621
    void* residual_data =
        residual_param->type() == framework::DataTypeTrait<T_out>::DataType()
A
Adam Osewski 已提交
622 623
            ? platform::to_void_cast<T_out>(residual_param->data<T_out>())
            : platform::to_void_cast<T>(residual_param->data<T>());
624 625 626 627 628 629 630 631 632
    auto residual_mem_p = this->AcquireMemory("@user_residual_data_mem_p");
    if (residual_mem_p) {
      residual_mem_p->set_data_handle(residual_data);
      return residual_mem_p;
    } else {
      auto user_residual_md = platform::MKLDNNMemDesc(
          framework::vectorize(residual_param->dims()),
          framework::ToMKLDNNDataType(residual_param->type()),
          residual_param->format());
633

634 635 636
      return this->AcquireMemoryFromPrimitive(user_residual_md, residual_data,
                                              "@user_residual_data_mem_p");
    }
637 638 639 640 641 642 643 644
  }

  std::shared_ptr<mkldnn::memory> AcquireDstMemoryWithResidual(
      framework::Tensor* output, const framework::Tensor* residual_param) {
    std::shared_ptr<dnnl::memory> dst_memory_p;
    if (residual_param->format() !=
        platform::GetMKLDNNFormat(this->fwd_pd_->dst_desc())) {
      auto residual_memory_p = this->AcquireResidualMemory(residual_param);
645
      dst_memory_p = this->template AcquireDstMemory<T_out>(output);
646
      this->AcquireReorder(residual_memory_p, dst_memory_p, "@residual_dst");
647 648 649 650 651
    } else {
      // Changing ShareDataWith to TensorCopy results in performance drop
      // on ResNet architectures
      // (https://github.com/PaddlePaddle/Paddle/issues/22964)
      output->ShareDataWith(*residual_param);
652
      dst_memory_p = this->template AcquireDstMemory<T_out>(output);
653 654 655 656 657
    }
    return dst_memory_p;
  }
};

A
Adam Osewski 已提交
658 659
}  // anonymous namespace

660
template <typename T, typename K>
A
Adam Osewski 已提交
661
class ConvMKLDNNOpKernel : public framework::OpKernel<T> {
662
 public:
A
Adam Osewski 已提交
663
  void Compute(const framework::ExecutionContext& ctx) const override {
664
    PADDLE_ENFORCE_EQ(platform::is_cpu_place(ctx.GetPlace()), true,
A
Adam Osewski 已提交
665
                      platform::errors::PreconditionNotMet(
666 667 668
                          "Operator DNNL Conv must use CPUPlace"));
    bool is_INT8 =
        std::is_same<T, int8_t>::value || std::is_same<T, uint8_t>::value;
669 670 671 672 673 674 675 676
    bool is_BFLOAT16 = ctx.Attr<std::string>("mkldnn_data_type") == "bfloat16";
    auto residual_param = ctx.Input<Tensor>("ResidualData");
    bool fuse_residual_conn = ctx.Attr<bool>("fuse_residual_connection");
    std::string fuse_activation = ctx.Attr<std::string>("fuse_activation");
    bool force_fp32_output = ctx.Attr<bool>("force_fp32_output");
    auto dst_dt =
        GetDstType(is_INT8, is_BFLOAT16, force_fp32_output, fuse_activation,
                   fuse_residual_conn, residual_param);
677
    if (!is_INT8) {
678 679 680 681 682
      if (dst_dt == mkldnn::memory::data_type::f32) {
        ComputeFP32<float>(ctx);
      } else if (dst_dt == mkldnn::memory::data_type::bf16) {
        ComputeFP32<platform::bfloat16>(ctx);
      }
683
    } else {
684 685 686 687 688 689 690
      if (dst_dt == mkldnn::memory::data_type::f32) {
        ComputeINT8<float>(ctx);
      } else if (dst_dt == mkldnn::memory::data_type::u8) {
        ComputeINT8<uint8_t>(ctx);
      } else if (dst_dt == mkldnn::memory::data_type::s8) {
        ComputeINT8<int8_t>(ctx);
      }
691
    }
692
  }
693

694
  template <typename T_out>
A
Adam Osewski 已提交
695
  void ComputeFP32(const framework::ExecutionContext& ctx) const {
696
    auto& dev_ctx =
A
Adam Osewski 已提交
697
        ctx.template device_context<platform::MKLDNNDeviceContext>();
698
    const auto& mkldnn_engine = dev_ctx.GetEngine();
699

700
    const bool is_test = ctx.Attr<bool>("is_test");
701 702
    const bool is_conv3d = ctx.Attr<std::vector<int>>("strides").size() == 3U;
    const bool fuse_residual_conn = ctx.Attr<bool>("fuse_residual_connection");
703

704 705 706 707 708
    const auto* input = ctx.Input<Tensor>("Input");
    const auto* filter = ctx.Input<Tensor>("Filter");
    const auto* bias =
        ctx.HasInput("Bias") ? ctx.Input<Tensor>("Bias") : nullptr;
    auto* output = ctx.Output<Tensor>("Output");
709

710
    ConvMKLDNNHandlerT<T, K, T_out> handler(
711 712
        ctx, dev_ctx, mkldnn_engine, ctx.GetPlace(), input, filter, bias,
        output, ctx.InputName("Input") + ctx.InputName("Filter"));
713

714
    auto src_memory_p = handler.AcquireSrcMemoryWithReorder(input);
715

716
    auto weights_memory_p = handler.AcquireWeightsMemoryWithReorder(
717
        filter, ctx.Attr<int>("groups"), is_conv3d, is_test);
718

719 720 721
    std::shared_ptr<dnnl::memory> dst_memory_p;
    if (fuse_residual_conn) {
      auto* residual_param = ctx.Input<Tensor>("ResidualData");
722
      dst_memory_p =
723 724
          handler.AcquireDstMemoryWithResidual(output, residual_param);
    } else {
725
      dst_memory_p = handler.template AcquireDstMemory<T_out>(output);
726
    }
727

728
    auto conv_p = handler.AcquireForwardPrimitive();
A
Adam 已提交
729

730 731 732 733
    std::unordered_map<int, dnnl::memory> args = {
        {MKLDNN_ARG_SRC, *src_memory_p},
        {MKLDNN_ARG_WEIGHTS, *weights_memory_p},
        {MKLDNN_ARG_DST, *dst_memory_p}};
A
Adam 已提交
734

735
    if (bias) {
736
      auto bias_memory_p = handler.AcquireBiasMemoryWithReorder(bias, is_test);
737
      args.insert({MKLDNN_ARG_BIAS, *bias_memory_p});
738
    }
739

740
    auto& astream = platform::MKLDNNDeviceContext::tls().get_stream();
741
    conv_p->execute(astream, args);
A
Adam 已提交
742
    astream.wait();
743

A
Adam Osewski 已提交
744 745
    output->set_layout(framework::DataLayout::kMKLDNN);
    output->set_format(platform::GetMKLDNNFormat(*dst_memory_p));
746
  }
747

748
  template <typename T_out>
A
Adam Osewski 已提交
749
  void ComputeINT8(const framework::ExecutionContext& ctx) const {
750
    auto& dev_ctx =
A
Adam Osewski 已提交
751
        ctx.template device_context<platform::MKLDNNDeviceContext>();
752 753
    const auto& mkldnn_engine = dev_ctx.GetEngine();

A
Adam Osewski 已提交
754 755 756 757 758
    const std::string& fuse_activation =
        ctx.Attr<std::string>("fuse_activation");
    const bool& fuse_residual_conn = ctx.Attr<bool>("fuse_residual_connection");
    const bool& force_fp32_output = ctx.Attr<bool>("force_fp32_output");
    const bool is_conv3d = ctx.Attr<std::vector<int>>("strides").size() == 3U;
759

760 761
    bool unsigned_output =
        (fuse_activation == "relu" || fuse_activation == "relu6");
762 763
    bool need_s8_to_u8 = false;

A
Adam Osewski 已提交
764 765 766 767 768 769 770 771
    PADDLE_ENFORCE_NE(
        is_conv3d, true,
        platform::errors::Unimplemented(
            "OneDNN int8 convolution does not support 3D inputs currently"));
    PADDLE_ENFORCE_EQ(
        fuse_residual_conn && force_fp32_output, false,
        platform::errors::Unimplemented(
            "residual fusion does not support force output with fp32"));
A
Adam 已提交
772

A
Adam Osewski 已提交
773 774 775 776
    auto* input = ctx.Input<Tensor>("Input");
    auto* filter = ctx.Input<Tensor>("Filter");
    auto* bias = ctx.HasInput("Bias") ? ctx.Input<Tensor>("Bias") : nullptr;
    auto* output = ctx.Output<Tensor>("Output");
777

A
Adam Osewski 已提交
778 779 780
    ConvMKLDNNHandlerT<T, K, T_out> handler(
        ctx, dev_ctx, mkldnn_engine, ctx.GetPlace(), input, filter, bias,
        output, ctx.InputName("Input") + ctx.InputName("Filter"));
781

A
Adam Osewski 已提交
782
    auto src_memory_p = handler.AcquireSrcMemoryWithReorder(input);
F
FDInSky 已提交
783

A
Adam Osewski 已提交
784 785 786 787
    const auto& scale_weights_data =
        ctx.Attr<std::vector<float>>("Scale_weights");
    const bool is_multi_channel = scale_weights_data.size() > 1;
    const int& groups = ctx.Attr<int>("groups");
788
    const bool& is_test = ctx.Attr<bool>("is_test");
A
Adam Osewski 已提交
789 790 791
    int mask_reorder =
        is_multi_channel ? ((groups != 1) ? (1 << 1) + (1 << 0) : 1 << 0) : 0;
    auto weights_memory_p = handler.AcquireWeightsMemoryWithReorder(
792
        filter, groups, false, is_test, scale_weights_data, mask_reorder);
793

A
Adam Osewski 已提交
794 795 796
    std::shared_ptr<dnnl::memory> dst_memory_p;
    if (fuse_residual_conn) {
      auto* residual_param = ctx.Input<Tensor>("ResidualData");
797
      PADDLE_ENFORCE_EQ(
A
Adam Osewski 已提交
798 799 800 801 802 803
          output->dims(), residual_param->dims(),
          platform::errors::InvalidArgument(
              "Output and elementwise parameter need to have the "
              "same dimension sizes, but got output's dimension = %d"
              " and residual param's dimension =%d .",
              output->dims().size(), residual_param->dims().size()));
804
      dst_memory_p =
A
Adam Osewski 已提交
805 806 807 808 809 810 811
          handler.AcquireDstMemoryWithResidual(output, residual_param);
      need_s8_to_u8 = (platform::MKLDNNGetDataType<T_out>() ==
                       mkldnn::memory::data_type::s8) &&
                      unsigned_output;
    } else {
      dst_memory_p = handler.template AcquireDstMemory<T_out>(output);
    }
L
lidanqing 已提交
812

A
Adam Osewski 已提交
813 814 815 816 817 818
    auto conv_p = handler.AcquireForwardPrimitive();

    std::unordered_map<int, dnnl::memory> args = {
        {MKLDNN_ARG_SRC, *src_memory_p},
        {MKLDNN_ARG_WEIGHTS, *weights_memory_p},
        {MKLDNN_ARG_DST, *dst_memory_p}};
A
Adam 已提交
819

A
Adam Osewski 已提交
820 821 822 823 824
    if (bias) {
      float mask_reorder;
      std::vector<float> scale_bias_data;
      std::tie(mask_reorder, scale_bias_data) =
          handler.get_int8_bias_scales(ctx);
A
Adam 已提交
825

A
Adam Osewski 已提交
826
      auto bias_memory_p = handler.AcquireBiasMemoryWithReorder(
827
          bias, is_test, scale_bias_data, mask_reorder);
A
Adam Osewski 已提交
828
      args.insert({MKLDNN_ARG_BIAS, *bias_memory_p});
829
    }
A
Adam Osewski 已提交
830 831 832

    auto& astream = platform::MKLDNNDeviceContext::tls().get_stream();
    conv_p->execute(astream, args);
A
Adam 已提交
833
    astream.wait();
A
Adam Osewski 已提交
834

835
    if (need_s8_to_u8) {
X
xiaolil1 已提交
836 837
      output->mutable_data<uint8_t>(ctx.GetPlace());
    }
A
Adam Osewski 已提交
838 839 840

    output->set_layout(framework::DataLayout::kMKLDNN);
    output->set_format(platform::GetMKLDNNFormat(*dst_memory_p));
841
  }
842 843
};

844
template <typename T, typename K>
A
Adam Osewski 已提交
845
class ConvMKLDNNGradOpKernel : public framework::OpKernel<T> {
846
 public:
A
Adam Osewski 已提交
847
  void Compute(const framework::ExecutionContext& ctx) const override {
848
    PADDLE_ENFORCE_EQ(platform::is_cpu_place(ctx.GetPlace()), true,
A
Adam Osewski 已提交
849
                      platform::errors::PreconditionNotMet(
850
                          "Operator DNNL ConvGrad must use CPUPlace"));
851 852
    auto& dev_ctx =
        ctx.template device_context<platform::MKLDNNDeviceContext>();
853 854 855 856
    const auto& mkldnn_engine = dev_ctx.GetEngine();

    const Tensor* input = ctx.Input<Tensor>("Input");
    const Tensor* filter = ctx.Input<Tensor>("Filter");
857 858
    const Tensor* bias =
        ctx.HasInput("Bias") ? ctx.Input<Tensor>("Bias") : nullptr;
859 860 861 862 863 864 865
    const Tensor* output_grad =
        ctx.Input<Tensor>(framework::GradVarName("Output"));
    Tensor* input_grad = ctx.Output<Tensor>(framework::GradVarName("Input"));
    Tensor* filter_grad = ctx.Output<Tensor>(framework::GradVarName("Filter"));

    if (!input_grad && !filter_grad) return;

866 867 868 869 870
    // TODO(jczaja): Are all tensors really needed?
    ConvMKLDNNHandlerT<T, K, T> handler(
        ctx, dev_ctx, ctx.GetPlace(), input, filter, bias, output_grad,
        filter_grad, input_grad,
        ctx.InputName("Input") + ctx.InputName("Filter"));
871 872

    // create mkldnn memory from input tensors (data/weights)
873
    auto& astream = platform::MKLDNNDeviceContext::tls().get_stream();
874

875 876 877 878 879 880
    if (filter_grad) {
      auto src_memory_p =
          handler.AcquireSrcMemoryWithReorderFromWeightsPrimitive(input);
      auto diff_dst_memory_p =
          handler.AcquireDiffDstMemoryWithReorderFromWeightsPrimitive(
              output_grad);
881

882 883
      // For convoluition with groups write filter grad into
      // oneDNN buffer and then we reorder it into filter_grad tensor
884
      int g = std::max(ctx.Attr<int>("groups"), 1);
885
      auto diff_weights_memory_p =
886 887
          g > 1 ? handler.AcquireDiffWeightsMemory()
                : handler.AcquireDiffWeightsMemory(filter_grad);
888

889
      auto conv_bwd_weights_p = handler.AcquireBackwardWeightsPrimitive();
890

A
Adam 已提交
891 892 893
      // TODO(grygielski) why no bias_diff?
      conv_bwd_weights_p->execute(
          astream, {{MKLDNN_ARG_SRC, *src_memory_p},
894
                    {MKLDNN_ARG_DIFF_DST, *diff_dst_memory_p},
A
Adam 已提交
895 896
                    {MKLDNN_ARG_DIFF_WEIGHTS, *diff_weights_memory_p}});
      astream.wait();
897

A
Adam Osewski 已提交
898
      filter_grad->set_layout(framework::DataLayout::kMKLDNN);
899 900
      // in OneDNN groups in convolution are treated as separate dimension
      // which is not the case in paddlepaddle
A
Adam Osewski 已提交
901
      auto filter_fmt = platform::GetMKLDNNFormat(*diff_weights_memory_p);
902 903 904 905

      // For convolution with groups convert from blocked to NCHW
      // otherwise there will be problems in next operators working on this data
      if (g > 1) {
A
Adam Osewski 已提交
906 907
        mkldnn::memory::data_type in_type =
            framework::ToMKLDNNDataType(filter->type());
908 909
        // for 3d conv with groups (six dimensional data reorder to goidhw)
        // for 2d conv with groups (five dimensional data reorder to goihw)
A
Adam Osewski 已提交
910
        // auto weights_tz = framework::vectorize(filter->dims());
911 912

        auto weights_tz = diff_weights_memory_p->get_desc().dims();
913 914 915
        mkldnn::memory::format_tag out_format =
            weights_tz.size() == 6 ? mkldnn::memory::format_tag::goidhw
                                   : mkldnn::memory::format_tag::goihw;
916 917
        platform::ReorderMKLDNNHandler handler(weights_tz, filter->type(),
                                               in_type, mkldnn_engine);
918 919 920 921 922 923
        auto reorder_dst_memory_p =
            handler.AcquireDstMemory(filter_grad, out_format, ctx.GetPlace());

        auto reorder_p =
            handler.AcquireReorder(reorder_dst_memory_p, diff_weights_memory_p);

924 925 926 927 928 929 930
        {
          platform::RecordEvent record_reorder("int_reorder",
                                               platform::EventRole::kUniqueOp);
          reorder_p->execute(astream, *diff_weights_memory_p,
                             *reorder_dst_memory_p);
          astream.wait();
        }
931 932 933 934 935 936 937 938 939 940 941

        // So here we have a data in goihw , which can be interpreted as OIHW
        // (OIDHW for conv3d)
        // because filter_grad shape is set for OIHW (OIDHW for conv3d)
        mkldnn::memory::format_tag target_format =
            weights_tz.size() == 6 ? mkldnn::memory::format_tag::oidhw
                                   : mkldnn::memory::format_tag::oihw;
        filter_grad->set_format(target_format);
      } else {
        filter_grad->set_format(filter_fmt);
      }
942 943
    }
    if (input_grad) {
944 945 946 947
      auto weights_memory_p =
          handler.AcquireWeightsMemoryWithReorderFromDataPrimitive(
              filter, ctx.Attr<int>("groups"),
              ctx.Attr<std::vector<int>>("strides").size() == 3U);
948

949 950 951 952
      auto diff_dst_memory_p =
          handler.AcquireDiffDstMemoryWithReorderMemoryFromDataPrimitive(
              output_grad);
      auto diff_src_memory_p = handler.AcquireDiffSrcMemory(input_grad);
953

954
      auto conv_bwd_data_p = handler.AcquireBackwardPrimitive();
955

A
Adam 已提交
956 957
      conv_bwd_data_p->execute(astream,
                               {{MKLDNN_ARG_WEIGHTS, *weights_memory_p},
958
                                {MKLDNN_ARG_DIFF_DST, *diff_dst_memory_p},
A
Adam 已提交
959 960
                                {MKLDNN_ARG_DIFF_SRC, *diff_src_memory_p}});
      astream.wait();
961

A
Adam Osewski 已提交
962 963
      input_grad->set_layout(framework::DataLayout::kMKLDNN);
      input_grad->set_format(platform::GetMKLDNNFormat(*diff_src_memory_p));
964
    }
X
xiaolil1 已提交
965
  }
966
};
967

968 969 970 971 972
}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;

X
Xin Pan 已提交
973 974 975
REGISTER_OP_KERNEL_WITH_CUSTOM_TYPE(conv2d, MKLDNN,
                                    ::paddle::platform::CPUPlace, FP32,
                                    ops::kConvMKLDNNFP32,
976
                                    ops::ConvMKLDNNOpKernel<float, float>);
977

978 979 980 981
REGISTER_OP_KERNEL_WITH_CUSTOM_TYPE(
    conv2d, MKLDNN, ::paddle::platform::CPUPlace, BF16, ops::kConvMKLDNNFP32,
    ops::ConvMKLDNNOpKernel<paddle::platform::bfloat16, float>);

982 983
REGISTER_OP_KERNEL_WITH_CUSTOM_TYPE(conv2d, MKLDNN,
                                    ::paddle::platform::CPUPlace, U8,
984
                                    ops::kConvMKLDNNINT8,
985
                                    ops::ConvMKLDNNOpKernel<uint8_t, float>);
986 987 988

REGISTER_OP_KERNEL_WITH_CUSTOM_TYPE(conv2d, MKLDNN,
                                    ::paddle::platform::CPUPlace, S8,
989
                                    ops::kConvMKLDNNINT8,
990
                                    ops::ConvMKLDNNOpKernel<int8_t, float>);
X
Xin Pan 已提交
991 992 993 994

REGISTER_OP_KERNEL_WITH_CUSTOM_TYPE(conv2d_grad, MKLDNN,
                                    ::paddle::platform::CPUPlace, FP32,
                                    ops::kConvMKLDNNFP32,
995
                                    ops::ConvMKLDNNGradOpKernel<float, float>);
996 997 998 999

REGISTER_OP_KERNEL_WITH_CUSTOM_TYPE(conv3d, MKLDNN,
                                    ::paddle::platform::CPUPlace, FP32,
                                    ops::kConvMKLDNNFP32,
1000
                                    ops::ConvMKLDNNOpKernel<float, float>);
1001 1002 1003 1004

REGISTER_OP_KERNEL_WITH_CUSTOM_TYPE(conv3d_grad, MKLDNN,
                                    ::paddle::platform::CPUPlace, FP32,
                                    ops::kConvMKLDNNFP32,
1005
                                    ops::ConvMKLDNNGradOpKernel<float, float>);