conv_mkldnn_op.cc 49.6 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

   Licensed under the Apache License, Version 2.0 (the "License");
   you may not use this file except in compliance with the License.
   You may obtain a copy of the License at

   http://www.apache.org/licenses/LICENSE-2.0

   Unless required by applicable law or agreed to in writing, software
   distributed under the License is distributed on an "AS IS" BASIS,
   WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
   See the License for the specific language governing permissions and
   limitations under the License. */

Y
Yu Yang 已提交
15
#include "paddle/fluid/framework/data_layout_transform.h"
16
#include "paddle/fluid/operators/conv_op.h"
J
Jacek Czaja 已提交
17
#include "paddle/fluid/platform/mkldnn_reuse.h"
18

W
wanghuancoder 已提交
19 20 21 22 23 24
namespace paddle {
namespace platform {
class MKLDNNDeviceContext;
}  // namespace platform
}  // namespace paddle

25 26 27
namespace paddle {
namespace operators {

28 29 30 31 32 33
using framework::DataLayout;
using mkldnn::memory;
using mkldnn::primitive;
using mkldnn::reorder;
using mkldnn::stream;
using platform::GetMKLDNNFormat;
34
using platform::to_void_cast;
35

A
Adam 已提交
36
inline void GetWeightsTz(std::vector<int64_t>& weights_tz,  // NOLINT
37
                         const int groups) {
Y
Yihua Xu 已提交
38
  if (groups > 1) {
39 40 41 42 43 44
    // if (is_conv3d) [o, i, d, h, w]->[g, o/g, i, d, h, w]
    // else [o, i, h, w] -> [g, o/g, i, h, w]
    weights_tz.push_back(0);
    std::rotate(weights_tz.begin(), weights_tz.end() - 1, weights_tz.end());
    weights_tz[0] = groups;
    weights_tz[1] = weights_tz[1] / groups;
Y
Yihua Xu 已提交
45 46 47
  }
}

48 49 50
inline MKLDNNMemoryFormat GetWeightsFormat(const MKLDNNMemoryFormat format,
                                           const int groups,
                                           const bool is_conv3d) {
Y
Yihua Xu 已提交
51
  if (is_conv3d) {
52
    return (groups == 1) ? format : MKLDNNMemoryFormat::goidhw;
Y
Yihua Xu 已提交
53
  } else {
54
    return (groups == 1) ? format : MKLDNNMemoryFormat::goihw;
Y
Yihua Xu 已提交
55 56 57
  }
}

58
static mkldnn::memory::data_type GetDstType(bool is_int8, bool is_bfloat16,
59
                                            bool force_fp32_output,
60
                                            std::string fuse_activation,
61 62
                                            bool fuse_residual_conn,
                                            const Tensor* residual_param) {
63
  auto dst_dt = mkldnn::memory::data_type::f32;
64 65 66 67 68 69 70
  if (is_int8) {
    dst_dt = (fuse_activation == "relu" || fuse_activation == "relu6")
                 ? mkldnn::memory::data_type::u8
                 : mkldnn::memory::data_type::s8;
    if (force_fp32_output) {
      dst_dt = mkldnn::memory::data_type::f32;
    }
71 72
    if (fuse_residual_conn && residual_param) {
      auto residual_dt = framework::ToMKLDNNDataType(residual_param->type());
73
      if (dst_dt != residual_dt) dst_dt = residual_dt;
74
    }
75 76 77 78 79 80 81
  } else {
    if (!force_fp32_output && is_bfloat16) {
      dst_dt = mkldnn::memory::data_type::bf16;
      if (fuse_residual_conn && residual_param) {
        dst_dt = framework::ToMKLDNNDataType(residual_param->type());
      }
    }
82 83 84 85
  }
  return dst_dt;
}

86
template <typename T, typename K, typename T_out>
87 88
class ConvMKLDNNHandlerT
    : public platform::MKLDNNHandlerT<T, mkldnn::convolution_forward> {
89
 public:
90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108
  ConvMKLDNNHandlerT(const paddle::framework::ExecutionContext& ctx,
                     const platform::MKLDNNDeviceContext& dev_ctx,
                     const mkldnn::engine mkldnn_engine,
                     platform::Place cpu_place, const Tensor* input,
                     const Tensor* filter, const Tensor* bias, Tensor* output,
                     const std::string& unique_name)
      : platform::MKLDNNHandlerT<T, mkldnn::convolution_forward>(
            dev_ctx, mkldnn_engine, cpu_place,
            platform::CreateKey(framework::vectorize(input->dims()),
                                unique_name)) {
    if (!this->isCached()) {
      PADDLE_ENFORCE_EQ(
          input->layout(), DataLayout::kMKLDNN,
          platform::errors::InvalidArgument(
              "The input tensor's layout should be %d, but got %d.",
              DataLayout::kMKLDNN, input->layout()));
      PADDLE_ENFORCE_NE(input->format(), MKLDNNMemoryFormat::undef,
                        platform::errors::InvalidArgument(
                            "Wrong format set for Input tensor"));
109

110 111 112 113 114 115 116 117
      PADDLE_ENFORCE_EQ(
          filter->layout(), DataLayout::kMKLDNN,
          platform::errors::InvalidArgument(
              "The Filter tensor's layout should be %d, but got %d.",
              DataLayout::kMKLDNN, filter->layout()));
      PADDLE_ENFORCE_NE(filter->format(), MKLDNNMemoryFormat::undef,
                        platform::errors::InvalidArgument(
                            "Wrong format set for Filter tensor"));
K
Krzysztof Binias 已提交
118

119 120 121 122 123 124 125 126 127 128 129 130
      PADDLE_ENFORCE_GE(
          input->dims().size(), 4,
          platform::errors::InvalidArgument(
              "Input must be with 4 or 5 dimensions, i.e. NCHW or "
              "NCDHW, but got dimension = %d .",
              input->dims().size()));
      PADDLE_ENFORCE_LE(
          input->dims().size(), 5,
          platform::errors::InvalidArgument(
              "Input must be with 4 or 5 dimensions, i.e. NCHW or "
              "NCDHW, but got dimension = %d .",
              input->dims().size()));
131

132 133 134 135 136 137 138 139 140 141 142 143
      PADDLE_ENFORCE_GE(
          filter->dims().size(), 4,
          platform::errors::InvalidArgument(
              "Filter must be with 4 or 5 dimensions, i.e. OIHW or "
              "OIDHW, but got dimension = %d .",
              filter->dims().size()));
      PADDLE_ENFORCE_LE(
          filter->dims().size(), 5,
          platform::errors::InvalidArgument(
              "Filter must be with 4 or 5 dimensions, i.e. OIHW or "
              "OIDHW, but got dimension = %d .",
              filter->dims().size()));
144

145 146 147 148 149 150 151 152 153
      if (bias) {
        PADDLE_ENFORCE_EQ(
            bias->layout(), DataLayout::kMKLDNN,
            platform::errors::InvalidArgument(
                "The Bias tensor's layout should be %d, but got %d.",
                DataLayout::kMKLDNN, bias->layout()));
        PADDLE_ENFORCE_NE(bias->format(), MKLDNNMemoryFormat::undef,
                          platform::errors::InvalidArgument(
                              "Got wrong format for Bias tensor."));
154

155 156 157 158 159 160
        PADDLE_ENFORCE_EQ(bias->dims().size(), 1,
                          platform::errors::InvalidArgument(
                              "Bias must only have 1 dimension, "
                              "i.e. X, but got dimension = %d .",
                              bias->dims().size()));
      }
F
FDInSky 已提交
161

162 163 164 165 166 167 168 169 170
      const std::string fuse_activation =
          ctx.Attr<std::string>("fuse_activation");
      const float fuse_alpha = ctx.Attr<float>("fuse_alpha");
      const float fuse_beta = ctx.Attr<float>("fuse_beta");
      const bool fuse_residual_conn =
          ctx.Attr<bool>("fuse_residual_connection");
      const int groups = ctx.Attr<int>("groups");
      const std::string padding_algorithm =
          ctx.Attr<std::string>("padding_algorithm");
F
FDInSky 已提交
171

172 173 174 175 176 177
      const auto input_dims = input->dims();
      const auto data_dims =
          framework::slice_ddim(input_dims, 2, input_dims.size());
      const auto filter_dims = filter->dims();
      const auto filter_data_dims =
          framework::slice_ddim(filter_dims, 2, filter_dims.size());
178

179 180
      const auto ksize = framework::vectorize(filter_data_dims);
      const bool is_test = ctx.Attr<bool>("is_test");
181

182 183
      auto strides_temp = ctx.Attr<std::vector<int>>("strides");
      std::vector<int64_t> strides(begin(strides_temp), end(strides_temp));
184

185 186
      auto paddings_temp = ctx.Attr<std::vector<int>>("paddings");
      std::vector<int64_t> paddings(begin(paddings_temp), end(paddings_temp));
A
Adam 已提交
187

188 189 190
      auto dilations_temp = ctx.Attr<std::vector<int>>("dilations");
      std::vector<int64_t> dilations(begin(dilations_temp),
                                     end(dilations_temp));
A
Adam 已提交
191

192 193 194
      UpdatePaddingAndDilation(&paddings, &dilations, padding_algorithm,
                               data_dims, strides, ksize);
      const bool is_conv3d = strides.size() == 3U;
A
Adam 已提交
195

196 197
      std::transform(dilations.begin(), dilations.end(), dilations.begin(),
                     [](int64_t i) { return i - 1; });
198

199
      const auto src_tz = paddle::framework::vectorize(input->dims());
200

201 202
      auto weights_tz = paddle::framework::vectorize(filter->dims());
      GetWeightsTz(weights_tz, groups);
203

204
      const auto dst_tz = paddle::framework::vectorize(output->dims());
205

206 207
      const mkldnn::memory::dims stride_dims = strides;
      const auto mkldnn_paddings = platform::ToMkldnnPadding(paddings);
208
      const mkldnn::memory::dims dilations_dims = dilations;
A
Adam 已提交
209

210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229
      /* create memory descriptor for convolution without specified format
       * ('any') which lets a primitive (convolution in this case) choose
       * the memory format preferred for best performance
       */
      // TODO(jczaja): This is workaround to make grad op UT's numerical
      // gradient computation proper as this op is called directly without
      // fetch op following it , so numercial grad is computed (in python)
      // using block formats which will give wrong results
      const std::string data_format = ctx.Attr<std::string>("data_format");
      auto chosen_memory_format =
          is_test ? MKLDNNMemoryFormat::any
                  : platform::data_format_to_memory_format(data_format);

      // Check the format for user's special output
      if (chosen_memory_format != MKLDNNMemoryFormat::any) {
        if (is_conv3d) {
          chosen_memory_format = platform::MKLDNNFormatForSize(
              src_tz.size(), chosen_memory_format);
        }
      }
230 231 232 233 234 235 236 237 238
      auto data_type = mkldnn::memory::data_type::f32;
      if (ctx.Attr<std::string>("mkldnn_data_type") == "bfloat16" ||
          std::is_same<T_out, platform::bfloat16>::value)
        data_type = mkldnn::memory::data_type::bf16;

      const auto src_md =
          platform::MKLDNNMemDesc(src_tz, data_type, chosen_memory_format);
      const auto weights_md = platform::MKLDNNMemDesc(weights_tz, data_type,
                                                      MKLDNNMemoryFormat::any);
239
      const auto dst_md = platform::MKLDNNMemDesc(
240
          dst_tz, platform::MKLDNNGetDataType<T_out>(), chosen_memory_format);
241

242 243
      const auto fwd_prop_kind = is_test ? mkldnn::prop_kind::forward_inference
                                         : mkldnn::prop_kind::forward_training;
A
Adam 已提交
244

245 246
      const mkldnn::primitive_attr conv_attr = CreatePostOps(
          fuse_activation, fuse_alpha, fuse_beta, fuse_residual_conn);
A
Adam 已提交
247

248 249
      if (bias) {
        auto bias_tz = framework::vectorize(bias->dims());
250 251
        auto bias_md =
            platform::MKLDNNMemDesc(bias_tz, data_type, MKLDNNMemoryFormat::x);
252 253 254

        this->AcquireForwardPrimitiveDescriptor(
            conv_attr, fwd_prop_kind, dnnl::algorithm::convolution_direct,
255
            src_md, weights_md, bias_md, dst_md, stride_dims, dilations_dims,
256 257 258 259
            mkldnn_paddings[0], mkldnn_paddings[1]);
      } else {
        this->AcquireForwardPrimitiveDescriptor(
            conv_attr, fwd_prop_kind, dnnl::algorithm::convolution_direct,
260 261
            src_md, weights_md, dst_md, stride_dims, dilations_dims,
            mkldnn_paddings[0], mkldnn_paddings[1]);
262 263 264
      }
    }
  }
265

266 267 268 269 270 271 272 273 274 275
  mkldnn::primitive_attr CreatePostOps(
      std::string fuse_activation, float fuse_alpha, float fuse_beta,
      bool fuse_residual_conn, const std::vector<float> output_shift_scale = {},
      float sum_scale = 1.0f) {
    mkldnn::primitive_attr conv_attr;
    mkldnn::post_ops post_operations;
    if (output_shift_scale.size() > 0) {
      int mask = output_shift_scale.size() > 1 ? 1 << 1 : 0;
      conv_attr.set_output_scales(mask, output_shift_scale);
    }
276

277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303
    // Fusion with Elementwise layer relies on adding a sum post-operation with
    // the scale parameter. It is assumed that when fuse_residual_connection is
    // true, the output tensor contains the data coming from residual
    // connection. The result of this post_op is:
    // Output = scale * Output + Conv_Out.
    if (fuse_residual_conn) {
      post_operations.append_sum(sum_scale);
    }
    // Fusion with ReLU layer is executed through the PostOps feature. Create a
    // PostOps object and configure it to execute an eltwise relu operation.
    if (fuse_activation == "relu" || fuse_activation == "leaky_relu") {
      constexpr float scale = 1.0f;
      post_operations.append_eltwise(scale, mkldnn::algorithm::eltwise_relu,
                                     fuse_alpha, fuse_beta);
    } else if (fuse_activation == "relu6") {
      constexpr float scale = 1.0f;
      post_operations.append_eltwise(scale,
                                     mkldnn::algorithm::eltwise_bounded_relu,
                                     fuse_alpha, fuse_beta);
    } else if (fuse_activation == "swish") {
      constexpr float scale = 1.0f;
      post_operations.append_eltwise(scale, mkldnn::algorithm::eltwise_swish,
                                     fuse_alpha, fuse_beta);
    }
    conv_attr.set_post_ops(post_operations);
    return conv_attr;
  }
304

305 306 307
  std::shared_ptr<mkldnn::memory> AcquireSrcMemoryWithReorder(
      const framework::Tensor* input) {
    const T* input_data = input->data<T>();
308
    auto user_src_md = platform::MKLDNNMemDesc(
309 310
        framework::vectorize(input->dims()), platform::MKLDNNGetDataType<T>(),
        input->format());
311

312 313 314 315 316 317 318 319 320 321 322 323 324 325
    return this->AcquireMemoryWithReorder(
        user_src_md, this->fwd_pd_->src_desc(), to_void_cast<T>(input_data),
        "@src_mem_p");
  }

  std::shared_ptr<mkldnn::memory> AcquireWeightsMemoryWithReorder(
      const framework::Tensor* filter, const int groups, const bool is_conv3d,
      const bool is_test) {
    // This is workaround to make execution faster, delete
    // if statement after including md inside Tensor
    auto weights_mem_p = this->AcquireMemory("@weights_mem_p_target");
    if (is_test && weights_mem_p) {
      return weights_mem_p;
    } else {
326
      const K* filter_data = filter->data<K>();
327 328 329 330
      auto weights_tz = framework::vectorize(filter->dims());
      GetWeightsTz(weights_tz, groups);

      auto user_src_md = platform::MKLDNNMemDesc(
331
          weights_tz, platform::MKLDNNGetDataType<K>(),
332 333 334 335
          GetWeightsFormat(filter->format(), groups, is_conv3d));

      return this->AcquireMemoryWithReorder(
          user_src_md, this->fwd_pd_->weights_desc(),
336
          to_void_cast<K>(filter_data), "@weights_mem_p", is_test);
337
    }
338
  }
339

340 341
  std::shared_ptr<mkldnn::memory> AcquireBiasMemoryWithReorder(
      const framework::Tensor* bias, const bool is_test) {
342
    const K* bias_data = bias->data<K>();
343
    auto user_bias_md = platform::MKLDNNMemDesc(
344
        framework::vectorize(bias->dims()), platform::MKLDNNGetDataType<K>(),
345
        MKLDNNMemoryFormat::x);
346

347
    return this->AcquireMemoryWithReorder(
348
        user_bias_md, this->fwd_pd_->bias_desc(), to_void_cast<K>(bias_data),
349 350
        "@bias_mem_p", is_test);
  }
351

352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370
  std::shared_ptr<mkldnn::memory> AcquireResidualMemory(
      const framework::Tensor* residual_param) {
    const T* residual_data = residual_param->data<T>();
    auto user_residual_md = platform::MKLDNNMemDesc(
        framework::vectorize(residual_param->dims()),
        framework::ToMKLDNNDataType(residual_param->type()),
        residual_param->format());

    return this->AcquireMemoryFromPrimitive(user_residual_md,
                                            to_void_cast<T>(residual_data),
                                            "@user_residual_data_mem_p");
  }

  std::shared_ptr<mkldnn::memory> AcquireDstMemoryWithResidual(
      framework::Tensor* output, const framework::Tensor* residual_param) {
    std::shared_ptr<dnnl::memory> dst_memory_p;
    if (residual_param->format() !=
        platform::GetMKLDNNFormat(this->fwd_pd_->dst_desc())) {
      auto residual_memory_p = this->AcquireResidualMemory(residual_param);
371
      dst_memory_p = this->template AcquireDstMemory<T_out>(output);
372 373 374 375 376 377
      this->AcquireReorder(residual_memory_p, dst_memory_p, "@residual_dst");
    } else {
      // Changing ShareDataWith to TensorCopy results in performance drop
      // on ResNet architectures
      // (https://github.com/PaddlePaddle/Paddle/issues/22964)
      output->ShareDataWith(*residual_param);
378
      dst_memory_p = this->template AcquireDstMemory<T_out>(output);
379 380 381 382 383 384 385 386 387 388 389 390 391 392
    }
    return dst_memory_p;
  }
};

template <typename T, typename K>
class ConvMKLDNNOpKernel : public paddle::framework::OpKernel<T> {
 public:
  void Compute(const paddle::framework::ExecutionContext& ctx) const override {
    PADDLE_ENFORCE_EQ(platform::is_cpu_place(ctx.GetPlace()), true,
                      paddle::platform::errors::PreconditionNotMet(
                          "Operator DNNL Conv must use CPUPlace"));
    bool is_INT8 =
        std::is_same<T, int8_t>::value || std::is_same<T, uint8_t>::value;
393 394 395 396 397 398 399 400
    bool is_BFLOAT16 = ctx.Attr<std::string>("mkldnn_data_type") == "bfloat16";
    auto residual_param = ctx.Input<Tensor>("ResidualData");
    bool fuse_residual_conn = ctx.Attr<bool>("fuse_residual_connection");
    std::string fuse_activation = ctx.Attr<std::string>("fuse_activation");
    bool force_fp32_output = ctx.Attr<bool>("force_fp32_output");
    auto dst_dt =
        GetDstType(is_INT8, is_BFLOAT16, force_fp32_output, fuse_activation,
                   fuse_residual_conn, residual_param);
401
    if (!is_INT8) {
402 403 404 405 406
      if (dst_dt == mkldnn::memory::data_type::f32) {
        ComputeFP32<float>(ctx);
      } else if (dst_dt == mkldnn::memory::data_type::bf16) {
        ComputeFP32<platform::bfloat16>(ctx);
      }
407
    } else {
408 409 410 411 412 413 414
      if (dst_dt == mkldnn::memory::data_type::f32) {
        ComputeINT8<float>(ctx);
      } else if (dst_dt == mkldnn::memory::data_type::u8) {
        ComputeINT8<uint8_t>(ctx);
      } else if (dst_dt == mkldnn::memory::data_type::s8) {
        ComputeINT8<int8_t>(ctx);
      }
415
    }
416
  }
417

418
  template <typename T_out>
419 420 421 422
  void ComputeFP32(const paddle::framework::ExecutionContext& ctx) const {
    auto& dev_ctx =
        ctx.template device_context<paddle::platform::MKLDNNDeviceContext>();
    const auto& mkldnn_engine = dev_ctx.GetEngine();
423

424 425 426
    const bool is_test = ctx.Attr<bool>("is_test");
    const bool is_conv3d = ctx.Attr<std::vector<int>>("strides").size() == 3U;
    const bool fuse_residual_conn = ctx.Attr<bool>("fuse_residual_connection");
427

428 429 430 431 432
    const auto* input = ctx.Input<Tensor>("Input");
    const auto* filter = ctx.Input<Tensor>("Filter");
    const auto* bias =
        ctx.HasInput("Bias") ? ctx.Input<Tensor>("Bias") : nullptr;
    auto* output = ctx.Output<Tensor>("Output");
433

434
    ConvMKLDNNHandlerT<T, K, T_out> handler(
435 436
        ctx, dev_ctx, mkldnn_engine, ctx.GetPlace(), input, filter, bias,
        output, ctx.InputName("Input") + ctx.InputName("Filter"));
437

438
    auto src_memory_p = handler.AcquireSrcMemoryWithReorder(input);
439

440 441
    auto weights_memory_p = handler.AcquireWeightsMemoryWithReorder(
        filter, ctx.Attr<int>("groups"), is_conv3d, is_test);
442

443 444 445
    std::shared_ptr<dnnl::memory> dst_memory_p;
    if (fuse_residual_conn) {
      auto* residual_param = ctx.Input<Tensor>("ResidualData");
446
      dst_memory_p =
447 448
          handler.AcquireDstMemoryWithResidual(output, residual_param);
    } else {
449
      dst_memory_p = handler.template AcquireDstMemory<T_out>(output);
450
    }
451

452
    auto conv_p = handler.AcquireForwardPrimitive();
A
Adam 已提交
453

454 455 456 457
    std::unordered_map<int, dnnl::memory> args = {
        {MKLDNN_ARG_SRC, *src_memory_p},
        {MKLDNN_ARG_WEIGHTS, *weights_memory_p},
        {MKLDNN_ARG_DST, *dst_memory_p}};
A
Adam 已提交
458

459 460 461
    if (bias) {
      auto bias_memory_p = handler.AcquireBiasMemoryWithReorder(bias, is_test);
      args.insert({MKLDNN_ARG_BIAS, *bias_memory_p});
462
    }
463 464 465

    mkldnn::stream astream(mkldnn_engine);
    conv_p->execute(astream, args);
A
Adam 已提交
466
    astream.wait();
467

468 469
    output->set_layout(DataLayout::kMKLDNN);
    output->set_format(GetMKLDNNFormat(*dst_memory_p));
470
  }
471

472
  template <typename T_out>
473 474 475 476 477 478 479 480 481 482
  void ComputeINT8(const paddle::framework::ExecutionContext& ctx) const {
    const bool is_test = ctx.Attr<bool>("is_test");

    auto& dev_ctx =
        ctx.template device_context<paddle::platform::MKLDNNDeviceContext>();
    const auto& mkldnn_engine = dev_ctx.GetEngine();

    auto* input = ctx.Input<Tensor>("Input");
    auto* output = ctx.Output<Tensor>("Output");

483
    PADDLE_ENFORCE_EQ(input->layout(), DataLayout::kMKLDNN,
F
FDInSky 已提交
484 485 486
                      platform::errors::InvalidArgument(
                          "The input tensor's layout should be %d, but got %d.",
                          DataLayout::kMKLDNN, input->layout()));
A
Adam 已提交
487
    PADDLE_ENFORCE_NE(input->format(), MKLDNNMemoryFormat::undef,
F
FDInSky 已提交
488 489 490 491 492 493 494 495 496 497 498 499 500
                      platform::errors::InvalidArgument(
                          "Got wrong format for Input tensor."));

    PADDLE_ENFORCE_GE(input->dims().size(), 4,
                      platform::errors::InvalidArgument(
                          "Input must be with 4 or 5 dimensions, i.e. NCHW or "
                          "NCDHW, but got dimension = %d .",
                          input->dims().size()));
    PADDLE_ENFORCE_LE(input->dims().size(), 5,
                      platform::errors::InvalidArgument(
                          "Input must be with 4 or 5 dimensions, i.e. NCHW or "
                          "NCDHW, but got dimension = %d .",
                          input->dims().size()));
501

502
    std::string fuse_activation = ctx.Attr<std::string>("fuse_activation");
X
xiaolil1 已提交
503
    bool fuse_residual_conn = ctx.Attr<bool>("fuse_residual_connection");
504 505
    bool unsigned_output =
        (fuse_activation == "relu" || fuse_activation == "relu6");
506

507 508
    const T* input_data = input->data<T>();

A
Adam 已提交
509
    auto src_tz = paddle::framework::vectorize(input->dims());
510

X
xiaolil1 已提交
511 512
    mkldnn::memory::data_type src_dt =
        paddle::framework::ToMKLDNNDataType(input->type());
513

L
lidanqing 已提交
514
    std::string key = platform::CreateKey(
H
hong 已提交
515
        src_tz, src_dt, ctx.InputName("Input") + ctx.InputName("Filter"));
516

517 518
    const std::string key_conv_pd = key + "@conv_pd";
    bool need_s8_to_u8 = false;
519 520 521
    std::shared_ptr<mkldnn::convolution_forward> conv_p;
    std::shared_ptr<mkldnn::memory> src_memory_p;
    std::shared_ptr<mkldnn::memory> user_src_memory_p;
522
    std::shared_ptr<mkldnn::memory> dst_memory_p;
523
    std::vector<primitive> pipeline;
524
    std::shared_ptr<mkldnn::convolution_forward::primitive_desc> conv_pd;
525 526 527 528 529 530
    std::shared_ptr<platform::ConvMKLDNNHandler> handler;

    // This is workaround for hacky implementation
    // of conv int8 mkl-dnn. Once conv fp32 and conv int8
    // are merged/unified, this will disappear
    std::string key_tid = "";
531 532
    if (platform::MKLDNNDeviceContext::tls().get_cur_mkldnn_session_id() ==
        platform::MKLDNNDeviceContextThreadLocals::kMKLDNNSessionID_Default) {
533
      key_tid = "-t:" + platform::ThreadIDasStr();
L
lidanqing 已提交
534
    }
535

536 537 538
    auto prim_key = key + key_tid + "@conv_p";
    auto dst_key = key + key_tid + "@dst_mem_p";
    auto src_key = key + key_tid + "@src_mem_p";
A
Adam 已提交
539 540
    auto weights_key = key + key_tid + "@weights_mem_p";
    auto bias_key = key + key_tid + "@bias_mem_p";
541
    auto user_src_key = key + key_tid + "@user_src_mem_p";
A
Adam 已提交
542
    auto user_residual_key = key + key_tid + "@user_residual_data_mem_p";
543 544 545 546 547 548
    auto src_reorder_key = key + key_tid + "@src_mem_preorder_p";
    auto residual_reorder_key = key + key_tid + "@residual_data_mem_preorder_p";

    conv_p = std::static_pointer_cast<mkldnn::convolution_forward>(
        dev_ctx.GetBlob(prim_key));

A
Adam 已提交
549 550
    mkldnn::stream astream(mkldnn_engine);

551
    if (conv_p == nullptr || !is_test) {
552 553 554 555 556 557
      float fuse_alpha = ctx.Attr<float>("fuse_alpha");
      float fuse_beta = ctx.Attr<float>("fuse_beta");
      bool force_fp32_output = ctx.Attr<bool>("force_fp32_output");

      auto* filter = ctx.Input<Tensor>("Filter");

F
FDInSky 已提交
558 559 560 561 562
      PADDLE_ENFORCE_EQ(
          filter->layout(), DataLayout::kMKLDNN,
          platform::errors::InvalidArgument(
              "The filter tensor's layout should be %d, but got %d.",
              DataLayout::kMKLDNN, filter->layout()));
A
Adam 已提交
563
      PADDLE_ENFORCE_NE(filter->format(), MKLDNNMemoryFormat::undef,
F
FDInSky 已提交
564 565 566 567 568 569 570 571 572 573 574 575 576
                        platform::errors::InvalidArgument(
                            "Got wrong format for Filter tensor."));

      PADDLE_ENFORCE_GE(filter->dims().size(), 4,
                        platform::errors::InvalidArgument(
                            "Filter must be with 4 or 5 dimensions, i.e. OIHW "
                            "or OIDHW, but got dimensions = %d .",
                            filter->dims().size()));
      PADDLE_ENFORCE_LE(filter->dims().size(), 5,
                        platform::errors::InvalidArgument(
                            "Filter must be with 4 or 5 dimensions, i.e. OIHW "
                            "or OIDHW, but got dimensions = %d .",
                            filter->dims().size()));
577 578 579

      PADDLE_ENFORCE_EQ(
          !fuse_residual_conn || !force_fp32_output, true,
580 581
          platform::errors::Unimplemented(
              "residual fusion does not support force output with fp32"));
582 583 584 585

      auto* bias = ctx.HasInput("Bias") ? ctx.Input<Tensor>("Bias") : nullptr;

      if (bias) {
F
FDInSky 已提交
586 587 588 589 590
        PADDLE_ENFORCE_EQ(
            bias->layout(), DataLayout::kMKLDNN,
            platform::errors::InvalidArgument(
                "The bias tensor's layout should be %d, but got %d.",
                DataLayout::kMKLDNN, bias->layout()));
A
Adam 已提交
591
        PADDLE_ENFORCE_NE(bias->format(), MKLDNNMemoryFormat::undef,
F
FDInSky 已提交
592 593
                          platform::errors::InvalidArgument(
                              "Got wrong format for Bias tensor."));
594 595

        PADDLE_ENFORCE_EQ(bias->dims().size(), 1,
F
FDInSky 已提交
596 597 598 599
                          platform::errors::InvalidArgument(
                              "Bias must only have 1 dimension, i.e. X, but "
                              "got dimension = %d .",
                              bias->dims().size()));
600 601
      }

A
Adam 已提交
602 603 604 605 606 607 608 609 610 611
      std::vector<int> strides_temp = ctx.Attr<std::vector<int>>("strides");
      std::vector<int64_t> strides(begin(strides_temp), end(strides_temp));

      std::vector<int> paddings_temp = ctx.Attr<std::vector<int>>("paddings");
      std::vector<int64_t> paddings(begin(paddings_temp), end(paddings_temp));

      std::vector<int> dilations_temp = ctx.Attr<std::vector<int>>("dilations");
      std::vector<int64_t> dilations(begin(dilations_temp),
                                     end(dilations_temp));

612 613
      std::string padding_algorithm =
          ctx.Attr<std::string>("padding_algorithm");
614 615 616 617

      bool is_conv3d = strides.size() == 3U;

      PADDLE_ENFORCE_NE(is_conv3d, true,
618 619
                        platform::errors::Unimplemented(
                            "int8 does not support conv3d currently"));
620

621 622 623 624 625 626
      auto input_dims = input->dims();
      auto data_dims = framework::slice_ddim(input_dims, 2, input_dims.size());
      auto filter_dims = filter->dims();
      auto filter_data_dims =
          framework::slice_ddim(filter_dims, 2, filter_dims.size());

A
Adam 已提交
627
      auto ksize = framework::vectorize(filter_data_dims);
628 629 630 631

      UpdatePaddingAndDilation(&paddings, &dilations, padding_algorithm,
                               data_dims, strides, ksize);

632
      int groups = ctx.Attr<int>("groups");
A
Adam 已提交
633
      auto weights_tz = paddle::framework::vectorize(filter->dims());
634 635
      int g = std::max(groups, 1);

636
      GetWeightsTz(weights_tz, g);
A
Adam 已提交
637
      auto dst_tz = paddle::framework::vectorize(output->dims());
638

639 640
      std::transform(dilations.begin(), dilations.end(), dilations.begin(),
                     [](int64_t i) { return i - 1; });
641

642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669
      const K* filter_data = filter->data<K>();
      auto scale_in_data = ctx.Attr<float>("Scale_in");
      auto scale_in_eltwise_data = ctx.Attr<float>("Scale_in_eltwise");
      auto scale_weights_data = ctx.Attr<std::vector<float>>("Scale_weights");
      auto scale_out_data =
          force_fp32_output ? 1.0f : ctx.Attr<float>("Scale_out");
      float sum_scale =
          fuse_residual_conn ? scale_out_data / scale_in_eltwise_data : 1.0f;

      bool is_multi_channel = scale_weights_data.size() > 1;

      int count = is_multi_channel ? (g > 1 ? (weights_tz)[1] * (weights_tz)[0]
                                            : (weights_tz)[0])
                                   : 1;
      std::vector<float> output_shift_scale(count);
#pragma omp parallel for if (count > 1)
      for (int i = 0; i < count; i++) {
        if (scale_weights_data[i] == 0.0)
          output_shift_scale[i] =
              scale_out_data;  // weights data will contain 0
                               // in some models, then weights
                               // scale couldn't be calculated
        else
          output_shift_scale[i] =
              static_cast<float>(static_cast<double>(scale_out_data) /
                                 (static_cast<double>(scale_in_data) *
                                  static_cast<double>(scale_weights_data[i])));
      }
L
lidanqing 已提交
670

671 672 673 674 675 676 677
      auto user_src_md =
          platform::MKLDNNMemDesc({src_tz}, src_dt, input->format());
      auto user_weights_md = platform::MKLDNNMemDesc(
          {weights_tz}, platform::MKLDNNGetDataType<K>(),
          ((g) == 1) ? MKLDNNMemoryFormat::oihw : MKLDNNMemoryFormat::goihw);

      /* create memory descriptor for convolution without specified format
678 679 680
       * ('any') which lets a primitive (convolution in this case) choose
       * the memory format preferred for best performance
       */
681
      auto chosen_memory_format = MKLDNNMemoryFormat::any;
682

A
Adam 已提交
683
      std::vector<int64_t> bias_tz;
684 685 686 687 688 689 690 691 692 693 694 695 696

      auto src_md =
          platform::MKLDNNMemDesc(src_tz, src_dt, chosen_memory_format);
      auto weights_md = platform::MKLDNNMemDesc(
          weights_tz, memory::data_type::s8, chosen_memory_format);
      auto dst_md = platform::MKLDNNMemDesc(
          dst_tz, platform::MKLDNNGetDataType<T_out>(), chosen_memory_format);

      handler.reset(
          new platform::ConvMKLDNNHandler(dev_ctx, mkldnn_engine, key));
      // create a conv primitive descriptor and save it for usage in backward
      auto propagation = is_test ? mkldnn::prop_kind::forward_scoring
                                 : mkldnn::prop_kind::forward_training;
L
lidanqing 已提交
697

698
      if (bias) {
A
Adam 已提交
699
        bias_tz = paddle::framework::vectorize(bias->dims());
700 701 702
        auto bias_md = platform::MKLDNNMemDesc(bias_tz, memory::data_type::s32,
                                               MKLDNNMemoryFormat::x);
        conv_pd = handler->AcquireConvolutionPrimitiveDescriptor(
703
            src_md, weights_md, bias_md, dst_md, strides, dilations, paddings,
704 705 706 707
            mkldnn_engine, fuse_activation, fuse_alpha, fuse_beta,
            fuse_residual_conn, propagation, output_shift_scale, sum_scale);
      } else {
        conv_pd = handler->AcquireConvolutionPrimitiveDescriptor(
708 709
            src_md, weights_md, boost::none, dst_md, strides, dilations,
            paddings, mkldnn_engine, fuse_activation, fuse_alpha, fuse_beta,
710 711
            fuse_residual_conn, propagation, output_shift_scale, sum_scale);
      }
L
lidanqing 已提交
712

713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731
      // create mkldnn memory from input tensors (data/weights)
      user_src_memory_p =
          handler->AcquireSrcMemory(user_src_md, to_void_cast<T>(input_data));
      auto user_weights_memory_p = handler->AcquireWeightsMemory(
          user_weights_md, to_void_cast<K>(filter_data));

      // create reorder primitive if the input format is not the preferred one
      src_memory_p =
          handler->AcquireSrcMemoryFromPrimitive(user_src_memory_p, pipeline);

      std::shared_ptr<mkldnn::memory> weights_memory_p;
      int mask_reorder =
          is_multi_channel ? ((g != 1) ? (1 << 1) + (1 << 0) : 1 << 0) : 0;
      weights_memory_p = handler->AcquireWeightsMemoryFromPrimitive(
          user_weights_memory_p, pipeline, is_test, true, scale_weights_data,
          mask_reorder);

      if (fuse_residual_conn) {
        auto residual_param = ctx.Input<Tensor>("ResidualData");
F
FDInSky 已提交
732 733 734 735 736 737 738
        PADDLE_ENFORCE_EQ(
            output->dims(), residual_param->dims(),
            platform::errors::InvalidArgument(
                "Output and elementwise parameter need to have the "
                "same dimension sizes, but got output's dimension = %d"
                " and residual param's dimension =%d .",
                output->dims().size(), residual_param->dims().size()));
739 740 741 742
        auto residual_dt =
            paddle::framework::ToMKLDNNDataType(residual_param->type());
        if (residual_param->format() != handler->GetDstFormat()) {
          auto residual_data_tz =
A
Adam 已提交
743
              paddle::framework::vectorize(residual_param->dims());
744 745 746 747 748 749
          auto user_residual_md = platform::MKLDNNMemDesc(
              residual_data_tz, residual_dt, residual_param->format());
          dst_memory_p = platform::SetDstMemory<T_out>(
              ctx, output, residual_param, user_residual_md, handler,
              &pipeline);
        } else {
750
          output->ShareDataWith(*residual_param);
751 752 753 754 755 756 757 758
          dst_memory_p = platform::SetDstMemory<T_out>(ctx, output, handler);
        }
        need_s8_to_u8 =
            (platform::MKLDNNGetDataType<T_out>() == memory::data_type::s8) &&
            unsigned_output;
      } else {
        dst_memory_p = platform::SetDstMemory<T_out>(ctx, output, handler);
      }
L
lidanqing 已提交
759

760 761
      // create convolution op primitive
      auto scale_bias_key = key + "@scale_bias";
A
Adam 已提交
762
      conv_p = handler->AcquireConvolution();
763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782
      if (bias) {
        const K* bias_data = bias->data<K>();
        auto user_bias_md = platform::MKLDNNMemDesc(
            {bias_tz}, platform::MKLDNNGetDataType<K>(), MKLDNNMemoryFormat::x);
        auto user_bias_memory_p = handler->AcquireBiasMemory(
            user_bias_md, to_void_cast<K>(bias_data));
        std::shared_ptr<mkldnn::memory> bias_memory_p;
        int mask_reorder = is_multi_channel ? 1 << 0 : 1;
        int count =
            is_multi_channel
                ? (g > 1 ? (weights_tz)[1] * (weights_tz)[0] : (weights_tz)[0])
                : 1;
        std::vector<float> scale_bias_data(count);
#pragma omp parallel for if (count > 1)
        for (int i = 0; i < count; i++) {
          scale_bias_data[i] = scale_in_data * scale_weights_data[i];
        }
        bias_memory_p = handler->AcquireBiasMemoryFromPrimitive(
            user_bias_memory_p, pipeline, is_test, true, scale_bias_data,
            mask_reorder);
A
Adam 已提交
783 784 785 786
        conv_p->execute(astream, {{MKLDNN_ARG_SRC, *src_memory_p},
                                  {MKLDNN_ARG_WEIGHTS, *weights_memory_p},
                                  {MKLDNN_ARG_BIAS, *bias_memory_p},
                                  {MKLDNN_ARG_DST, *dst_memory_p}});
787
      } else {
A
Adam 已提交
788 789 790
        conv_p->execute(astream, {{MKLDNN_ARG_SRC, *src_memory_p},
                                  {MKLDNN_ARG_WEIGHTS, *weights_memory_p},
                                  {MKLDNN_ARG_DST, *dst_memory_p}});
791 792
      }
    } else {
A
Adam 已提交
793
      auto src_memory_reorder_p = std::static_pointer_cast<mkldnn::reorder>(
794 795 796 797 798 799 800
          dev_ctx.GetBlob(src_reorder_key));
      src_memory_p =
          std::static_pointer_cast<mkldnn::memory>(dev_ctx.GetBlob(src_key));
      if (src_memory_reorder_p) {
        user_src_memory_p = std::static_pointer_cast<mkldnn::memory>(
            dev_ctx.GetBlob(user_src_key));
        user_src_memory_p->set_data_handle(to_void_cast<T>(input_data));
A
Adam 已提交
801 802 803
        src_memory_reorder_p->execute(astream, *user_src_memory_p,
                                      *src_memory_p);
        astream.wait();
804 805 806
      } else if (src_memory_p) {
        src_memory_p->set_data_handle(to_void_cast<T>(input_data));
      }
A
Adam 已提交
807 808
      auto weights_memory_p = std::static_pointer_cast<mkldnn::memory>(
          dev_ctx.GetBlob(weights_key));
809 810 811 812 813 814 815 816 817
      dst_memory_p =
          std::static_pointer_cast<mkldnn::memory>(dev_ctx.GetBlob(dst_key));
      conv_pd =
          std::static_pointer_cast<mkldnn::convolution_forward::primitive_desc>(
              dev_ctx.GetBlob(key_conv_pd));
      if (conv_pd) {
        handler.reset(new platform::ConvMKLDNNHandler(conv_pd, dev_ctx,
                                                      mkldnn_engine, key));
      }
L
lidanqing 已提交
818

819 820
      if (fuse_residual_conn) {
        auto residual_param = ctx.Input<Tensor>("ResidualData");
821
        output->ShareDataWith(*residual_param);
822 823 824
        need_s8_to_u8 =
            (platform::MKLDNNGetDataType<T_out>() == memory::data_type::s8) &&
            unsigned_output;
X
xiaolil1 已提交
825
      }
826
      platform::SetDstMemoryHandler<T_out>(ctx, output, handler, dst_memory_p);
L
lidanqing 已提交
827

A
Adam 已提交
828
      auto residual_reorder_p = std::static_pointer_cast<mkldnn::reorder>(
829 830
          dev_ctx.GetBlob(residual_reorder_key));
      if (residual_reorder_p) {
A
Adam 已提交
831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849
        auto user_residual_data_p = std::static_pointer_cast<mkldnn::memory>(
            dev_ctx.GetBlob(user_residual_key));
        residual_reorder_p->execute(astream, *user_residual_data_p,
                                    *dst_memory_p);
        astream.wait();
      }

      auto bias_memory_p =
          std::static_pointer_cast<mkldnn::memory>(dev_ctx.GetBlob(bias_key));

      if (bias_memory_p) {
        conv_p->execute(astream, {{MKLDNN_ARG_SRC, *src_memory_p},
                                  {MKLDNN_ARG_WEIGHTS, *weights_memory_p},
                                  {MKLDNN_ARG_BIAS, *bias_memory_p},
                                  {MKLDNN_ARG_DST, *dst_memory_p}});
      } else {
        conv_p->execute(astream, {{MKLDNN_ARG_SRC, *src_memory_p},
                                  {MKLDNN_ARG_WEIGHTS, *weights_memory_p},
                                  {MKLDNN_ARG_DST, *dst_memory_p}});
850 851
      }
    }
A
Adam 已提交
852
    astream.wait();
853
    if (need_s8_to_u8) {
X
xiaolil1 已提交
854 855
      output->mutable_data<uint8_t>(ctx.GetPlace());
    }
856 857 858
    output->set_layout(DataLayout::kMKLDNN);
    output->set_format(GetMKLDNNFormat(*dst_memory_p));
  }
859 860 861
};

template <typename T>
862
class ConvMKLDNNGradOpKernel : public paddle::framework::OpKernel<T> {
863 864
 public:
  void Compute(const paddle::framework::ExecutionContext& ctx) const override {
865 866 867
    PADDLE_ENFORCE_EQ(platform::is_cpu_place(ctx.GetPlace()), true,
                      paddle::platform::errors::PreconditionNotMet(
                          "Operator DNNL ConvGrad must use CPUPlace"));
868 869
    auto& dev_ctx =
        ctx.template device_context<platform::MKLDNNDeviceContext>();
870 871 872 873 874 875 876 877 878
    const auto& mkldnn_engine = dev_ctx.GetEngine();

    const Tensor* input = ctx.Input<Tensor>("Input");
    const Tensor* filter = ctx.Input<Tensor>("Filter");
    const Tensor* output_grad =
        ctx.Input<Tensor>(framework::GradVarName("Output"));
    Tensor* input_grad = ctx.Output<Tensor>(framework::GradVarName("Input"));
    Tensor* filter_grad = ctx.Output<Tensor>(framework::GradVarName("Filter"));

879
    PADDLE_ENFORCE_EQ(input->layout(), DataLayout::kMKLDNN,
F
FDInSky 已提交
880 881 882
                      platform::errors::InvalidArgument(
                          "The input tensor's layout should be %d, but got %d.",
                          DataLayout::kMKLDNN, input->layout()));
A
Adam 已提交
883
    PADDLE_ENFORCE_NE(input->format(), MKLDNNMemoryFormat::undef,
F
FDInSky 已提交
884 885
                      platform::errors::InvalidArgument(
                          "Got wrong format for Input tensor."));
886

F
FDInSky 已提交
887 888 889 890 891
    PADDLE_ENFORCE_EQ(
        filter->layout(), DataLayout::kMKLDNN,
        platform::errors::InvalidArgument(
            "The filter tensor's layout should be %d, but got %d.",
            DataLayout::kMKLDNN, filter->layout()));
A
Adam 已提交
892
    PADDLE_ENFORCE_NE(filter->format(), MKLDNNMemoryFormat::undef,
F
FDInSky 已提交
893 894
                      platform::errors::InvalidArgument(
                          "Got wrong format for Filter tensor."));
895

F
FDInSky 已提交
896 897 898 899 900
    PADDLE_ENFORCE_EQ(
        output_grad->layout(), DataLayout::kMKLDNN,
        platform::errors::InvalidArgument(
            "The output_grad tensor's layout should be %d, but got %d.",
            DataLayout::kMKLDNN, output_grad->layout()));
A
Adam 已提交
901
    PADDLE_ENFORCE_NE(output_grad->format(), MKLDNNMemoryFormat::undef,
902 903
                      platform::errors::InvalidArgument(
                          "Wrong format set for output_grad tensor"));
904 905 906

    PADDLE_ENFORCE_EQ(
        ctx.Attr<bool>("is_test"), false,
F
FDInSky 已提交
907 908
        platform::errors::InvalidArgument(
            "is_test attribute should be set to False in training phase."));
909

910 911
    if (!input_grad && !filter_grad) return;

A
Adam 已提交
912 913 914 915 916 917 918 919 920
    std::vector<int> strides_temp = ctx.Attr<std::vector<int>>("strides");
    std::vector<int64_t> strides(begin(strides_temp), end(strides_temp));

    std::vector<int> paddings_temp = ctx.Attr<std::vector<int>>("paddings");
    std::vector<int64_t> paddings(begin(paddings_temp), end(paddings_temp));

    std::vector<int> dilations_temp = ctx.Attr<std::vector<int>>("dilations");
    std::vector<int64_t> dilations(begin(dilations_temp), end(dilations_temp));

921
    std::string padding_algorithm = ctx.Attr<std::string>("padding_algorithm");
A
Adam 已提交
922

923
    int groups = ctx.Attr<int>("groups");
924

925
    bool is_conv3d = strides.size() == 3U;
926 927 928 929 930 931
    const T* input_data = input->data<T>();
    const T* filter_data = filter->data<T>();
    const T* output_grad_data = output_grad->data<T>();
    T* input_grad_data = nullptr;
    T* filter_grad_data = nullptr;

932 933 934 935 936 937
    auto input_dims = input->dims();
    auto data_dims = framework::slice_ddim(input_dims, 2, input_dims.size());
    auto filter_dims = filter->dims();
    auto filter_data_dims =
        framework::slice_ddim(filter_dims, 2, filter_dims.size());

A
Adam 已提交
938
    auto ksize = framework::vectorize(filter_data_dims);
939 940 941 942

    UpdatePaddingAndDilation(&paddings, &dilations, padding_algorithm,
                             data_dims, strides, ksize);

A
Adam 已提交
943 944 945
    auto src_tz = paddle::framework::vectorize(input->dims());
    auto weights_tz = paddle::framework::vectorize(filter->dims());

946
    int g = std::max(groups, 1);
947
    GetWeightsTz(weights_tz, g);
A
Adam 已提交
948 949
    auto dst_tz = paddle::framework::vectorize(output_grad->dims());

950
    auto src_format = input->format();
951
    MKLDNNMemoryFormat weights_format =
Y
Yihua Xu 已提交
952
        GetWeightsFormat(filter->format(), g, is_conv3d);
953

954
    // Get an unique name from "argument" name of "input" and "Filter" variable
J
Jacek Czaja 已提交
955
    // as well as attributes of primitive to be created
956
    // This name will be used as key when saving info into device context
957
    const std::string key = platform::CreateKey(
H
hong 已提交
958
        src_tz, ctx.InputName("Input") + ctx.InputName("Filter"));
959

960
    const std::string key_conv_pd = key + "@fwd_pd";
961
    std::vector<primitive> pipeline;
962

963 964
    // Create user memory descriptors
    auto user_src_md = platform::MKLDNNMemDesc(
965
        {src_tz}, platform::MKLDNNGetDataType<T>(), src_format);
966
    auto user_weights_md = platform::MKLDNNMemDesc(
967
        {weights_tz}, platform::MKLDNNGetDataType<T>(), weights_format);
968 969
    auto user_diff_dst_md = platform::MKLDNNMemDesc(
        {dst_tz}, platform::MKLDNNGetDataType<T>(), output_grad->format());
970 971 972 973 974

    /* create memory descriptor for conv backward without specified format
     * ('any') which lets a primitive (conv backward in this case) choose
     * the memory format preferred for best performance
     */
975 976 977 978 979 980 981 982 983

    // TODO(jczaja): Once GRAD NHWC is working then format 'any'
    // should be used exclusively. But till forward pass enforce
    // NCHW for training we need to have NCHW here as well
    // to avoid performance degradation in relu_grad and pool2d_grad
    std::string data_format = ctx.Attr<std::string>("data_format");
    auto chosen_memory_format =
        platform::data_format_to_memory_format(data_format);

984
    weights_format = MKLDNNMemoryFormat::any;
985 986 987 988 989 990 991
    // Check the format for user's special output
    if (chosen_memory_format != MKLDNNMemoryFormat::any) {
      if (is_conv3d) {
        chosen_memory_format =
            platform::MKLDNNFormatForSize(src_tz.size(), chosen_memory_format);
      }
    }
992

993
    auto src_md = platform::MKLDNNMemDesc(
994
        src_tz, platform::MKLDNNGetDataType<T>(), chosen_memory_format);
995
    auto diff_src_md = platform::MKLDNNMemDesc(
996
        src_tz, platform::MKLDNNGetDataType<T>(), chosen_memory_format);
997
    auto weights_md = platform::MKLDNNMemDesc(
998
        weights_tz, platform::MKLDNNGetDataType<T>(), weights_format);
999
    auto diff_weights_md = platform::MKLDNNMemDesc(
1000
        weights_tz, platform::MKLDNNGetDataType<T>(), weights_format);
1001
    auto diff_dst_md = platform::MKLDNNMemDesc(
1002
        dst_tz, platform::MKLDNNGetDataType<T>(), chosen_memory_format);
1003
    // Retrieve conv_pd from device context
1004 1005 1006
    auto conv_pd =
        std::static_pointer_cast<mkldnn::convolution_forward::primitive_desc>(
            dev_ctx.GetBlob(key_conv_pd));
1007
    PADDLE_ENFORCE_NE(conv_pd, nullptr,
F
FDInSky 已提交
1008 1009
                      platform::errors::InvalidArgument(
                          "Fail to find conv_pd in device context"));
1010

1011
    auto mkldnn_paddings = platform::ToMkldnnPadding(paddings);
1012 1013 1014
    std::transform(dilations.begin(), dilations.end(), dilations.begin(),
                   [](int64_t i) { return i - 1; });
    const mkldnn::memory::dims dilations_dims = dilations;
1015 1016
    // create backward convolution weights primitive descriptor
    auto conv_bwd_weights_desc = mkldnn::convolution_backward_weights::desc(
A
Adam 已提交
1017
        mkldnn::algorithm::convolution_direct, src_md, diff_weights_md,
1018 1019
        diff_dst_md, strides, dilations_dims, mkldnn_paddings[0],
        mkldnn_paddings[1]);
A
Adam 已提交
1020

1021 1022 1023 1024 1025 1026
    auto conv_bwd_weights_pd =
        std::make_shared<mkldnn::convolution_backward_weights::primitive_desc>(
            conv_bwd_weights_desc, mkldnn_engine, *conv_pd);

    // create backward convolution data primitive descriptor
    auto conv_bwd_data_desc = mkldnn::convolution_backward_data::desc(
A
Adam 已提交
1027
        mkldnn::algorithm::convolution_direct, diff_src_md, weights_md,
1028 1029
        diff_dst_md, strides, dilations_dims, mkldnn_paddings[0],
        mkldnn_paddings[1]);
A
Adam 已提交
1030

1031 1032 1033 1034
    auto conv_bwd_data_pd =
        std::make_shared<mkldnn::convolution_backward_data::primitive_desc>(
            conv_bwd_data_desc, mkldnn_engine, *conv_pd);

J
Jacek Czaja 已提交
1035 1036 1037
    platform::ConvMKLDNNHandler handler(conv_pd, conv_bwd_data_pd,
                                        conv_bwd_weights_pd, dev_ctx,
                                        mkldnn_engine, key);
1038 1039 1040 1041 1042 1043 1044 1045

    // create mkldnn memory from input tensors (data/weights)
    auto user_src_memory_p =
        handler.AcquireSrcMemory(user_src_md, to_void_cast<T>(input_data));
    auto user_weights_memory_p = handler.AcquireWeightsMemory(
        user_weights_md, to_void_cast<T>(filter_data));
    auto user_diff_dst_memory_p = handler.AcquireDiffDstMemory(
        user_diff_dst_md, to_void_cast<T>(output_grad_data));
A
Adam 已提交
1046
    mkldnn::stream astream(mkldnn_engine);
1047
    if (filter_grad) {
1048 1049
      auto src_memory_p = handler.AcquireSrcMemoryFromWeightsPrimitive(
          user_src_memory_p, pipeline);
1050

1051 1052 1053 1054
      auto diff_dst_memory_4filter_p =
          handler.AcquireDiffDstMemoryFromWeightsPrimitive(
              user_diff_dst_memory_p, pipeline);

1055
      const size_t size = handler.GetDiffWeightsMemorySize();
1056
      filter_grad_data = filter_grad->mutable_data<T>(ctx.GetPlace(), size);
1057

1058 1059 1060 1061
      auto diff_weights_memory_p =
          handler.AcquireDiffWeightsMemoryFromWeightsPrimitive(
              reinterpret_cast<void*>(filter_grad_data));

A
Adam 已提交
1062
      auto conv_bwd_weights_p = handler.AcquireConvolutionBackwardWeights();
1063

A
Adam 已提交
1064 1065 1066 1067 1068 1069
      // TODO(grygielski) why no bias_diff?
      conv_bwd_weights_p->execute(
          astream, {{MKLDNN_ARG_SRC, *src_memory_p},
                    {MKLDNN_ARG_DIFF_DST, *diff_dst_memory_4filter_p},
                    {MKLDNN_ARG_DIFF_WEIGHTS, *diff_weights_memory_p}});
      astream.wait();
1070

1071
      filter_grad->set_layout(DataLayout::kMKLDNN);
1072 1073 1074 1075 1076
      // in OneDNN groups in convolution are treated as separate dimension
      // which is not the case in paddlepaddle
      auto filter_fmt = GetMKLDNNFormat(*diff_weights_memory_p);
      filter_grad->set_format(platform::MKLDNNFormatForSize(
          g > 1 ? weights_tz.size() - 1 : weights_tz.size(), filter_fmt));
1077 1078
    }
    if (input_grad) {
1079 1080 1081 1082 1083 1084 1085
      auto weights_memory_p = handler.AcquireWeightsMemoryFromDataPrimitive(
          user_weights_memory_p, pipeline);

      auto diff_dst_memory_4data_p =
          handler.AcquireDiffDstMemoryFromDataPrimitive(user_diff_dst_memory_p,
                                                        pipeline);

1086
      const size_t size = handler.GetDiffSourceMemorySize();
1087
      input_grad_data = input_grad->mutable_data<T>(ctx.GetPlace(), size);
1088

1089 1090 1091
      auto diff_src_memory_p = handler.AcquireDiffSrcMemoryFromDataPrimitive(
          reinterpret_cast<void*>(input_grad_data));

A
Adam 已提交
1092
      auto conv_bwd_data_p = handler.AcquireConvolutionBackwardData();
1093

A
Adam 已提交
1094 1095 1096 1097 1098
      conv_bwd_data_p->execute(astream,
                               {{MKLDNN_ARG_WEIGHTS, *weights_memory_p},
                                {MKLDNN_ARG_DIFF_DST, *diff_dst_memory_4data_p},
                                {MKLDNN_ARG_DIFF_SRC, *diff_src_memory_p}});
      astream.wait();
1099

1100 1101
      input_grad->set_layout(DataLayout::kMKLDNN);
      input_grad->set_format(GetMKLDNNFormat(*diff_src_memory_p));
1102
    }
X
xiaolil1 已提交
1103
  }
1104
};
1105

1106 1107 1108 1109 1110
}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;

X
Xin Pan 已提交
1111 1112 1113
REGISTER_OP_KERNEL_WITH_CUSTOM_TYPE(conv2d, MKLDNN,
                                    ::paddle::platform::CPUPlace, FP32,
                                    ops::kConvMKLDNNFP32,
1114
                                    ops::ConvMKLDNNOpKernel<float, float>);
1115

1116 1117 1118 1119
REGISTER_OP_KERNEL_WITH_CUSTOM_TYPE(
    conv2d, MKLDNN, ::paddle::platform::CPUPlace, BF16, ops::kConvMKLDNNFP32,
    ops::ConvMKLDNNOpKernel<paddle::platform::bfloat16, float>);

1120 1121
REGISTER_OP_KERNEL_WITH_CUSTOM_TYPE(conv2d, MKLDNN,
                                    ::paddle::platform::CPUPlace, U8,
1122
                                    ops::kConvMKLDNNINT8,
1123
                                    ops::ConvMKLDNNOpKernel<uint8_t, float>);
1124 1125 1126

REGISTER_OP_KERNEL_WITH_CUSTOM_TYPE(conv2d, MKLDNN,
                                    ::paddle::platform::CPUPlace, S8,
1127
                                    ops::kConvMKLDNNINT8,
1128
                                    ops::ConvMKLDNNOpKernel<int8_t, float>);
X
Xin Pan 已提交
1129 1130 1131 1132 1133

REGISTER_OP_KERNEL_WITH_CUSTOM_TYPE(conv2d_grad, MKLDNN,
                                    ::paddle::platform::CPUPlace, FP32,
                                    ops::kConvMKLDNNFP32,
                                    ops::ConvMKLDNNGradOpKernel<float>);
1134 1135 1136 1137

REGISTER_OP_KERNEL_WITH_CUSTOM_TYPE(conv3d, MKLDNN,
                                    ::paddle::platform::CPUPlace, FP32,
                                    ops::kConvMKLDNNFP32,
1138
                                    ops::ConvMKLDNNOpKernel<float, float>);
1139 1140 1141 1142 1143

REGISTER_OP_KERNEL_WITH_CUSTOM_TYPE(conv3d_grad, MKLDNN,
                                    ::paddle::platform::CPUPlace, FP32,
                                    ops::kConvMKLDNNFP32,
                                    ops::ConvMKLDNNGradOpKernel<float>);