conv_mkldnn_op.cc 35.1 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

   Licensed under the Apache License, Version 2.0 (the "License");
   you may not use this file except in compliance with the License.
   You may obtain a copy of the License at

   http://www.apache.org/licenses/LICENSE-2.0

   Unless required by applicable law or agreed to in writing, software
   distributed under the License is distributed on an "AS IS" BASIS,
   WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
   See the License for the specific language governing permissions and
   limitations under the License. */

15
#include <unordered_map>
Y
Yu Yang 已提交
16 17
#include "paddle/fluid/framework/data_layout_transform.h"
#include "paddle/fluid/memory/malloc.h"
18
#include "paddle/fluid/operators/conv_op.h"
J
Jacek Czaja 已提交
19
#include "paddle/fluid/platform/mkldnn_reuse.h"
20 21 22 23

namespace paddle {
namespace operators {

24 25 26 27 28 29 30 31
using framework::DataLayout;
using mkldnn::memory;
using mkldnn::primitive;
using mkldnn::reorder;
using mkldnn::stream;
using platform::to_void_cast;
using platform::GetMKLDNNFormat;

L
lidanqing 已提交
32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50
constexpr int same_scale_mask = 0;
constexpr int o_slice_mask = 1 << 0;                         // 1
constexpr int g_slice_mask = 1 << 1;                         // 2
constexpr int g_o_slice_mask = g_slice_mask | o_slice_mask;  // 3

static int ComputeMask(bool is_multi_channel, int multi_channel_mask) {
  return is_multi_channel ? multi_channel_mask : same_scale_mask;
}

static int ComputeWeightsMask(int is_multi_channel, int g) {
  int multi_channel_mask = g > 1 ? g_o_slice_mask : o_slice_mask;
  return ComputeMask(is_multi_channel, multi_channel_mask);
}

static int ComputeBiasMask(int is_multi_channel) {
  return ComputeMask(is_multi_channel, o_slice_mask);
}

inline void GetWeightsTz(std::vector<int>& weights_tz, int groups) {  // NOLINT
Y
Yihua Xu 已提交
51
  if (groups > 1) {
L
lidanqing 已提交
52 53 54 55 56 57
    // if (is_conv3d) [o, i, dimension, h, w]->[g, o/g, i, dimension, h, w]
    // else [o, i, h, w] -> [g, o/g, i, h, w]
    weights_tz.push_back(0);
    std::rotate(weights_tz.begin(), weights_tz.end() - 1, weights_tz.end());
    weights_tz[0] = groups;
    weights_tz[1] = weights_tz[1] / groups;
Y
Yihua Xu 已提交
58 59 60
  }
}

61 62
inline MKLDNNMemoryFormat GetWeightsFormat(MKLDNNMemoryFormat format,
                                           int groups, bool is_conv3d) {
Y
Yihua Xu 已提交
63
  if (is_conv3d) {
64
    return (groups == 1) ? format : MKLDNNMemoryFormat::goidhw;
Y
Yihua Xu 已提交
65
  } else {
66
    return (groups == 1) ? format : MKLDNNMemoryFormat::goihw;
Y
Yihua Xu 已提交
67 68 69
  }
}

L
lidanqing 已提交
70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99
static std::vector<float> ComputeOutputShiftScale(
    const float scale_out_data, const float scale_in_data,
    const std::vector<float>& scale_weights_data) {
  int count = scale_weights_data.size();
  std::vector<float> output_shift_scale(count);
#pragma omp parallel for
  for (int i = 0; i < count; i++) {
    if (scale_weights_data[i] == 0.0) {
      output_shift_scale[i] = scale_out_data;
    } else {
      output_shift_scale[i] =
          static_cast<float>(static_cast<double>(scale_out_data) /
                             (static_cast<double>(scale_in_data) *
                              static_cast<double>(scale_weights_data[i])));
    }
  }
  return output_shift_scale;
}

static std::vector<float> ComputeBiasScale(
    const float scale_in_data, const std::vector<float>& scale_weights_data) {
  int count = scale_weights_data.size();
  std::vector<float> scale_bias_data(count);
#pragma omp parallel for if (count > 1)
  for (int i = 0; i < count; i++) {
    scale_bias_data[i] = scale_in_data * scale_weights_data[i];
  }
  return scale_bias_data;
}

100 101
static mkldnn::memory::data_type GetDstType(bool is_int8,
                                            bool force_fp32_output,
102
                                            std::string fuse_activation,
103 104 105
                                            bool fuse_residual_conn,
                                            const Tensor* residual_param) {
  auto dst_dt = mkldnn::memory::data_type::f32;  // uint8_t, int8_t, float
L
lidanqing 已提交
106
  if (is_int8 && !force_fp32_output) {
107
    if (fuse_residual_conn && residual_param) {
L
lidanqing 已提交
108 109
      // when residual exists, dst_dt will follow the residual_param type,
      // but output will to be set to u8 if relu exists
110
      auto residual_dt = framework::ToMKLDNNDataType(residual_param->type());
L
lidanqing 已提交
111 112 113 114 115 116
      dst_dt = residual_dt;
    } else {
      // when residual does not exist, if (b)relu exist s8 else s8
      dst_dt = (fuse_activation == "relu" || fuse_activation == "relu6")
                   ? mkldnn::memory::data_type::u8
                   : mkldnn::memory::data_type::s8;
117 118 119 120 121
    }
  }
  return dst_dt;
}

L
lidanqing 已提交
122
template <typename T>
123
class ConvMKLDNNOpKernel : public paddle::framework::OpKernel<T> {
124 125 126 127
 public:
  void Compute(const paddle::framework::ExecutionContext& ctx) const override {
    PADDLE_ENFORCE(paddle::platform::is_cpu_place(ctx.GetPlace()),
                   "It must use CPUPlace.");
128 129 130 131 132
    bool is_INT8 =
        std::is_same<T, int8_t>::value || std::is_same<T, uint8_t>::value;
    if (!is_INT8) {
      ComputeFP32(ctx);
    } else {
133
      std::string fuse_activation = ctx.Attr<std::string>("fuse_activation");
134 135 136
      bool fuse_residual_conn = ctx.Attr<bool>("fuse_residual_connection");
      bool force_fp32_output = ctx.Attr<bool>("force_fp32_output");
      auto residual_param = ctx.Input<Tensor>("ResidualData");
137
      auto dst_dt = GetDstType(true, force_fp32_output, fuse_activation,
138 139 140 141 142 143 144 145
                               fuse_residual_conn, residual_param);
      if (dst_dt == mkldnn::memory::data_type::f32) {
        ComputeINT8<float>(ctx);
      } else if (dst_dt == mkldnn::memory::data_type::u8) {
        ComputeINT8<uint8_t>(ctx);
      } else if (dst_dt == mkldnn::memory::data_type::s8) {
        ComputeINT8<int8_t>(ctx);
      }
146 147
    }
  }
148

149
  void ComputeFP32(const paddle::framework::ExecutionContext& ctx) const {
K
Krzysztof Binias 已提交
150 151
    const bool is_test = ctx.Attr<bool>("is_test");

152 153
    auto& dev_ctx =
        ctx.template device_context<paddle::platform::MKLDNNDeviceContext>();
154 155 156 157
    const auto& mkldnn_engine = dev_ctx.GetEngine();

    auto* input = ctx.Input<Tensor>("Input");
    auto* filter = ctx.Input<Tensor>("Filter");
158
    auto* bias = ctx.HasInput("Bias") ? ctx.Input<Tensor>("Bias") : nullptr;
159 160
    auto* output = ctx.Output<Tensor>("Output");

161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184
    PADDLE_ENFORCE_EQ(input->layout(), DataLayout::kMKLDNN,
                      "Wrong layout set for Input tensor");
    PADDLE_ENFORCE_NE(input->format(), MKLDNNMemoryFormat::format_undef,
                      "Wrong format set for Input tensor");

    PADDLE_ENFORCE_EQ(filter->layout(), DataLayout::kMKLDNN,
                      "Wrong layout set for Filter tensor");
    PADDLE_ENFORCE_NE(filter->format(), MKLDNNMemoryFormat::format_undef,
                      "Wrong format set for Filter tensor");

    PADDLE_ENFORCE_GE(
        input->dims().size(), 4,
        "Input must be with 4 or 5 dimensions, i.e. NCHW or NCDHW");
    PADDLE_ENFORCE_LE(
        input->dims().size(), 5,
        "Input must be with 4 or 5 dimensions, i.e. NCHW or NCDHW");

    PADDLE_ENFORCE_GE(
        filter->dims().size(), 4,
        "Filter must be with 4 or 5 dimensions, i.e. OIHW or OIDHW");
    PADDLE_ENFORCE_LE(
        filter->dims().size(), 5,
        "Filter must be with 4 or 5 dimensions, i.e. OIHW or OIDHW");

185
    if (bias) {
186 187 188 189 190 191 192
      PADDLE_ENFORCE_EQ(bias->layout(), DataLayout::kMKLDNN,
                        "Wrong layout set for Bias tensor");
      PADDLE_ENFORCE_NE(bias->format(), MKLDNNMemoryFormat::format_undef,
                        "Wrong format set for Bias tensor");

      PADDLE_ENFORCE_EQ(bias->dims().size(), 1,
                        "Bias must only have 1 dimension, i.e. X");
193
    }
194 195 196 197

    std::vector<int> strides = ctx.Attr<std::vector<int>>("strides");
    std::vector<int> paddings = ctx.Attr<std::vector<int>>("paddings");
    std::vector<int> dilations = ctx.Attr<std::vector<int>>("dilations");
198 199 200
    std::string fuse_activation = ctx.Attr<std::string>("fuse_activation");
    float fuse_alpha = ctx.Attr<float>("fuse_alpha");
    float fuse_beta = ctx.Attr<float>("fuse_beta");
201
    bool fuse_residual_conn = ctx.Attr<bool>("fuse_residual_connection");
202
    int groups = ctx.Attr<int>("groups");
203
    bool is_conv3d = strides.size() == 3U;
204

205
    PADDLE_ENFORCE(
206 207 208 209
        is_conv3d
            ? dilations.size() == 3 && dilations[0] == 1 && dilations[1] == 1 &&
                  dilations[2] == 1
            : dilations.size() == 2 && dilations[0] == 1 && dilations[1] == 1,
210 211 212 213 214
        "dilation in convolution is not implemented yet");

    const T* input_data = input->data<T>();
    const T* filter_data = filter->data<T>();

215 216
    auto src_tz = paddle::framework::vectorize<int>(input->dims());
    auto weights_tz = paddle::framework::vectorize<int>(filter->dims());
217
    int g = std::max(groups, 1);
L
lidanqing 已提交
218
    GetWeightsTz(weights_tz, g);
219
    auto dst_tz = paddle::framework::vectorize<int>(output->dims());
220

221
    // Get unique name for storing MKLDNN primitives
222
    const std::string key = platform::CreateKey(
223
        src_tz, ctx.op().Input("Input") + ctx.op().Input("Filter"));
224 225 226

    std::vector<primitive> pipeline;

227
    auto src_format = input->format();
228
    MKLDNNMemoryFormat weights_format =
229 230 231 232 233 234
        GetWeightsFormat(filter->format(), g, is_conv3d);

    auto user_src_md = platform::MKLDNNMemDesc(
        {src_tz}, platform::MKLDNNGetDataType<T>(), src_format);
    auto user_weights_md = platform::MKLDNNMemDesc(
        {weights_tz}, platform::MKLDNNGetDataType<T>(), weights_format);
235 236 237 238 239

    /* create memory descriptor for convolution without specified format
     * ('any') which lets a primitive (convolution in this case) choose
     * the memory format preferred for best performance
     */
240 241 242 243
    std::string data_format = ctx.Attr<std::string>("data_format");
    auto chosen_memory_format =
        platform::data_format_to_memory_format(data_format);

244
    weights_format = MKLDNNMemoryFormat::any;
245
    // Check the format for user's special output
246
    if (chosen_memory_format != MKLDNNMemoryFormat::any) {
247 248 249 250
      if (is_conv3d) {
        chosen_memory_format =
            platform::MKLDNNFormatForSize(src_tz.size(), chosen_memory_format);
      }
251 252
    }

253
    auto src_md = platform::MKLDNNMemDesc(
254
        src_tz, platform::MKLDNNGetDataType<T>(), chosen_memory_format);
255
    auto weights_md = platform::MKLDNNMemDesc(
256
        weights_tz, platform::MKLDNNGetDataType<T>(), weights_format);
257
    std::vector<int> bias_tz;
258
    auto dst_md = platform::MKLDNNMemDesc(
259
        dst_tz, platform::MKLDNNGetDataType<T>(), chosen_memory_format);
260

261 262
    platform::ConvMKLDNNHandler handler(dev_ctx, mkldnn_engine, key);

263
    // create a conv primitive descriptor and save it for usage in backward
264
    std::shared_ptr<mkldnn::convolution_forward::primitive_desc> conv_pd;
265 266
    auto fwd_prop_kind = is_test ? mkldnn::prop_kind::forward_inference
                                 : mkldnn::prop_kind::forward_training;
267
    if (bias) {
268
      bias_tz = paddle::framework::vectorize<int>(bias->dims());
269
      auto bias_md = platform::MKLDNNMemDesc(
270
          bias_tz, platform::MKLDNNGetDataType<T>(), MKLDNNMemoryFormat::x);
271
      conv_pd = handler.AcquireConvolutionPrimitiveDescriptor(
272
          src_md, weights_md, bias_md, dst_md, strides, paddings, mkldnn_engine,
273
          fuse_activation, fuse_alpha, fuse_beta, fuse_residual_conn,
274
          fwd_prop_kind);
275
    } else {
276 277
      conv_pd = handler.AcquireConvolutionPrimitiveDescriptor(
          src_md, weights_md, boost::none, dst_md, strides, paddings,
278 279
          mkldnn_engine, fuse_activation, fuse_alpha, fuse_beta,
          fuse_residual_conn, fwd_prop_kind);
280
    }
281

282
    // create mkldnn memory from input tensors (data/weights)
283 284
    auto user_src_memory_p =
        handler.AcquireSrcMemory(user_src_md, to_void_cast<T>(input_data));
285
    auto user_weights_memory_p = handler.AcquireWeightsMemory(
286
        user_weights_md, to_void_cast<T>(filter_data));
287

288 289 290 291 292
    // create reorder primitive if the input format is not the preferred one
    auto src_memory_p =
        handler.AcquireSrcMemoryFromPrimitive(user_src_memory_p, pipeline);
    auto weights_memory_p = handler.AcquireWeightsMemoryFromPrimitive(
        user_weights_memory_p, pipeline, is_test);
293

294
    std::shared_ptr<mkldnn::memory> dst_memory_p, user_residual_memory_p;
295

296
    if (fuse_residual_conn) {
297 298
      auto residual_param = ctx.Input<Tensor>("ResidualData");
      auto residual_param_data = residual_param->data<T>();
299

300 301 302 303 304 305
      PADDLE_ENFORCE(
          residual_param_data != nullptr,
          "Provide data if you want MKLDNN conv+elementwise_add fusion");
      PADDLE_ENFORCE_EQ(output->dims(), residual_param->dims(),
                        "Output and elementwise parameter need to have the "
                        "same dimension sizes");
306

307
      if (residual_param->format() != handler.GetDstFormat()) {
308 309
        auto output_data =
            output->mutable_data<T>(ctx.GetPlace(), handler.GetDstMemorySize());
310
        auto residual_data_tz =
311
            paddle::framework::vectorize<int>(residual_param->dims());
312 313 314 315 316
        auto residual_data_type =
            paddle::framework::ToMKLDNNDataType(residual_param->type());

        auto user_residual_md = platform::MKLDNNMemDesc(
            residual_data_tz, residual_data_type, residual_param->format());
317
        user_residual_memory_p = handler.AcquireResidualDataMemory(
318
            user_residual_md, to_void_cast<T>(residual_param_data));
319 320 321

        dst_memory_p = handler.AcquireDstMemoryFromResidualDataMemory(
            user_residual_memory_p, to_void_cast<T>(output_data), pipeline);
322 323
      } else {
        output->ShareDataWith(*residual_param);
324 325 326
        auto output_data = output->mutable_data<T>(ctx.GetPlace());
        dst_memory_p =
            handler.AcquireDstMemoryFromPrimitive(to_void_cast<T>(output_data));
327
      }
328
    } else {
329 330
      auto output_data =
          output->mutable_data<T>(ctx.GetPlace(), handler.GetDstMemorySize());
331 332
      dst_memory_p =
          handler.AcquireDstMemoryFromPrimitive(to_void_cast<T>(output_data));
333
    }
334 335

    // create convolution op primitive
336
    std::shared_ptr<mkldnn::convolution_forward> conv_p;
337
    std::shared_ptr<mkldnn::memory> user_bias_memory_p, bias_memory_p;
338 339 340
    if (bias) {
      const T* bias_data = bias->data<T>();
      auto user_bias_md = platform::MKLDNNMemDesc(
341
          {bias_tz}, platform::MKLDNNGetDataType<T>(), MKLDNNMemoryFormat::x);
342
      user_bias_memory_p =
343 344
          handler.AcquireBiasMemory(user_bias_md, to_void_cast<T>(bias_data));

345
      bias_memory_p =
346 347 348 349 350 351 352
          handler.AcquireBiasMemoryFromPrimitive(user_bias_memory_p, pipeline);
      conv_p = handler.AcquireConvolution(src_memory_p, weights_memory_p,
                                          bias_memory_p, dst_memory_p);
    } else {
      conv_p = handler.AcquireConvolution(src_memory_p, weights_memory_p,
                                          dst_memory_p);
    }
353 354

    // push primitive to stream and wait until it's executed
355
    pipeline.push_back(*conv_p);
356 357
    stream(stream::kind::eager).submit(pipeline).wait();

358 359
    output->set_layout(DataLayout::kMKLDNN);
    output->set_format(GetMKLDNNFormat(*dst_memory_p));
360
  }
L
lidanqing 已提交
361

362
  template <typename T_out>
363 364 365 366 367 368 369 370 371 372 373 374
  void ComputeINT8(const paddle::framework::ExecutionContext& ctx) const {
    const bool is_test = ctx.Attr<bool>("is_test");

    auto& dev_ctx =
        ctx.template device_context<paddle::platform::MKLDNNDeviceContext>();
    const auto& mkldnn_engine = dev_ctx.GetEngine();

    auto* input = ctx.Input<Tensor>("Input");
    auto* filter = ctx.Input<Tensor>("Filter");
    auto* bias = ctx.HasInput("Bias") ? ctx.Input<Tensor>("Bias") : nullptr;
    auto* output = ctx.Output<Tensor>("Output");

375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398
    PADDLE_ENFORCE_EQ(input->layout(), DataLayout::kMKLDNN,
                      "Wrong layout set for Input tensor");
    PADDLE_ENFORCE_NE(input->format(), MKLDNNMemoryFormat::format_undef,
                      "Wrong format set for Input tensor");

    PADDLE_ENFORCE_EQ(filter->layout(), DataLayout::kMKLDNN,
                      "Wrong layout set for Filter tensor");
    PADDLE_ENFORCE_NE(filter->format(), MKLDNNMemoryFormat::format_undef,
                      "Wrong format set for Filter tensor");

    PADDLE_ENFORCE_GE(
        input->dims().size(), 4,
        "Input must be with 4 or 5 dimensions, i.e. NCHW or NCDHW");
    PADDLE_ENFORCE_LE(
        input->dims().size(), 5,
        "Input must be with 4 or 5 dimensions, i.e. NCHW or NCDHW");

    PADDLE_ENFORCE_GE(
        filter->dims().size(), 4,
        "Filter must be with 4 or 5 dimensions, i.e. OIHW or OIDHW");
    PADDLE_ENFORCE_LE(
        filter->dims().size(), 5,
        "Filter must be with 4 or 5 dimensions, i.e. OIHW or OIDHW");

399
    if (bias) {
400 401 402 403 404 405 406
      PADDLE_ENFORCE_EQ(bias->layout(), DataLayout::kMKLDNN,
                        "Wrong layout set for Bias tensor");
      PADDLE_ENFORCE_NE(bias->format(), MKLDNNMemoryFormat::format_undef,
                        "Wrong format set for Bias tensor");

      PADDLE_ENFORCE_EQ(bias->dims().size(), 1,
                        "Bias must only have 1 dimension, i.e. X");
407 408 409 410 411 412
    }

    std::vector<int> strides = ctx.Attr<std::vector<int>>("strides");
    std::vector<int> paddings = ctx.Attr<std::vector<int>>("paddings");
    std::vector<int> dilations = ctx.Attr<std::vector<int>>("dilations");
    int groups = ctx.Attr<int>("groups");
413 414 415
    std::string fuse_activation = ctx.Attr<std::string>("fuse_activation");
    float fuse_alpha = ctx.Attr<float>("fuse_alpha");
    float fuse_beta = ctx.Attr<float>("fuse_beta");
X
xiaolil1 已提交
416
    bool fuse_residual_conn = ctx.Attr<bool>("fuse_residual_connection");
417
    bool force_fp32_output = ctx.Attr<bool>("force_fp32_output");
418 419
    bool unsigned_output =
        (fuse_activation == "relu" || fuse_activation == "relu6");
L
lidanqing 已提交
420 421 422 423 424
    auto scale_in_data = ctx.Attr<float>("Scale_in");
    auto scale_in_eltwise_data = ctx.Attr<float>("Scale_in_eltwise");
    auto scale_weights_data = ctx.Attr<std::vector<float>>("Scale_weights");
    auto scale_out_data =
        force_fp32_output ? 1.0f : ctx.Attr<float>("Scale_out");
425 426 427 428

    PADDLE_ENFORCE(!fuse_residual_conn || !force_fp32_output,
                   "residual fusion does not support force output with fp32");

429 430 431 432 433 434 435
    bool is_conv3d = strides.size() == 3U;
    PADDLE_ENFORCE(
        is_conv3d
            ? dilations.size() == 3 && dilations[0] == 1 && dilations[1] == 1 &&
                  dilations[2] == 1
            : dilations.size() == 2 && dilations[0] == 1 && dilations[1] == 1,
        "dilation in convolution is not implemented yet");
X
xiaolil1 已提交
436

L
lidanqing 已提交
437 438
    PADDLE_ENFORCE_NE(is_conv3d, true,
                      "int8 does not support conv3d currently");
439 440 441

    const T* input_data = input->data<T>();

442 443
    auto src_tz = paddle::framework::vectorize<int>(input->dims());
    auto weights_tz = paddle::framework::vectorize<int>(filter->dims());
444
    int g = std::max(groups, 1);
L
lidanqing 已提交
445
    GetWeightsTz(weights_tz, g);
446
    auto dst_tz = paddle::framework::vectorize<int>(output->dims());
447

X
xiaolil1 已提交
448 449
    mkldnn::memory::data_type src_dt =
        paddle::framework::ToMKLDNNDataType(input->type());
450

L
lidanqing 已提交
451
    std::string key = platform::CreateKey(
452
        src_tz, src_dt, ctx.op().Input("Input") + ctx.op().Input("Filter"));
453

454 455 456
    std::shared_ptr<mkldnn::convolution_forward> conv_p;
    std::shared_ptr<mkldnn::memory> src_memory_p;
    std::shared_ptr<mkldnn::memory> user_src_memory_p;
457
    std::vector<primitive> pipeline;
458
    std::shared_ptr<mkldnn::convolution_forward::primitive_desc> conv_pd;
L
lidanqing 已提交
459
    std::shared_ptr<mkldnn::memory> dst_memory_p, user_residual_memory_p;
460

L
lidanqing 已提交
461 462
    const float* filter_data = filter->data<float>();
    bool is_multi_channel = scale_weights_data.size() > 1;
463

L
lidanqing 已提交
464 465
    auto output_shift_scale = ComputeOutputShiftScale(
        scale_out_data, scale_in_data, scale_weights_data);
466

L
lidanqing 已提交
467 468 469 470 471 472 473 474
    float scale_residual =
        fuse_residual_conn ? scale_out_data / scale_in_eltwise_data : 1.0f;
    auto user_src_md =
        platform::MKLDNNMemDesc({src_tz}, src_dt, input->format());
    auto user_weights_md = platform::MKLDNNMemDesc(
        {weights_tz}, platform::MKLDNNGetDataType<float>(),
        ((g) == 1) ? mkldnn::memory::format::oihw
                   : mkldnn::memory::format::goihw);
475

L
lidanqing 已提交
476 477 478 479 480 481 482
    /* create memory descriptor for convolution without specified format
    * ('any') which lets a primitive (convolution in this case) choose
    * the memory format preferred for best performance
    */
    std::string data_format = ctx.Attr<std::string>("data_format");
    auto chosen_memory_format =
        platform::data_format_to_memory_format(data_format);
483

L
lidanqing 已提交
484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503
    auto src_md = platform::MKLDNNMemDesc(src_tz, src_dt, chosen_memory_format);
    auto weights_md = platform::MKLDNNMemDesc(weights_tz, memory::data_type::s8,
                                              chosen_memory_format);
    auto dst_md = platform::MKLDNNMemDesc(
        dst_tz, platform::MKLDNNGetDataType<T_out>(), chosen_memory_format);

    platform::ConvMKLDNNHandler handler(dev_ctx, mkldnn_engine, key);
    auto propagation = is_test ? mkldnn::prop_kind::forward_scoring
                               : mkldnn::prop_kind::forward_training;

    std::vector<int> bias_tz;

    if (bias) {
      bias_tz = paddle::framework::vectorize<int>(bias->dims());
      auto bias_md = platform::MKLDNNMemDesc(bias_tz, memory::data_type::s32,
                                             mkldnn::memory::format::x);
      conv_pd = handler.AcquireConvolutionPrimitiveDescriptor(
          src_md, weights_md, bias_md, dst_md, strides, paddings, mkldnn_engine,
          fuse_activation, fuse_alpha, fuse_beta, fuse_residual_conn,
          propagation, output_shift_scale, scale_residual);
504
    } else {
L
lidanqing 已提交
505 506 507 508 509
      conv_pd = handler.AcquireConvolutionPrimitiveDescriptor(
          src_md, weights_md, boost::none, dst_md, strides, paddings,
          mkldnn_engine, fuse_activation, fuse_alpha, fuse_beta,
          fuse_residual_conn, propagation, output_shift_scale, scale_residual);
    }
510

L
lidanqing 已提交
511 512 513 514 515
    // create mkldnn memory from input tensors (data/weights)
    user_src_memory_p =
        handler.AcquireSrcMemory(user_src_md, to_void_cast<T>(input_data));
    auto user_weights_memory_p = handler.AcquireWeightsMemory(
        user_weights_md, to_void_cast<float>(filter_data));
X
xiaolil1 已提交
516

L
lidanqing 已提交
517 518 519
    // create reorder primitive if the input format is not the preferred one
    src_memory_p =
        handler.AcquireSrcMemoryFromPrimitive(user_src_memory_p, pipeline);
X
xiaolil1 已提交
520

L
lidanqing 已提交
521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544
    std::shared_ptr<mkldnn::memory> weights_memory_p;

    int mask_reorder = ComputeWeightsMask(is_multi_channel, g);

    weights_memory_p = handler.AcquireWeightsMemoryFromPrimitive(
        user_weights_memory_p, pipeline, is_test, true, scale_weights_data,
        mask_reorder);

    if (fuse_residual_conn) {
      auto residual_param = ctx.Input<Tensor>("ResidualData");
      auto residual_param_data = residual_param->data<T_out>();
      PADDLE_ENFORCE_EQ(output->dims(), residual_param->dims(),
                        "Output and elementwise parameter need to have the "
                        "same dimension sizes");
      auto residual_dt =
          paddle::framework::ToMKLDNNDataType(residual_param->type());
      if (residual_param->format() != handler.GetDstFormat()) {
        auto residual_data_tz =
            paddle::framework::vectorize<int>(residual_param->dims());
        auto user_residual_md = platform::MKLDNNMemDesc(
            residual_data_tz, residual_dt, residual_param->format());

        user_residual_memory_p = handler.AcquireResidualDataMemory(
            user_residual_md, to_void_cast<T_out>(residual_param_data));
X
xiaolil1 已提交
545

L
lidanqing 已提交
546 547 548 549 550 551 552 553 554
        T_out* output_data = output->mutable_data<T_out>(ctx.GetPlace());
        dst_memory_p = handler.AcquireDstMemoryFromResidualDataMemory(
            user_residual_memory_p, to_void_cast<T_out>(output_data), pipeline);

      } else {
        output->ShareDataWith(*residual_param);
        auto output_data = output->mutable_data<T_out>(ctx.GetPlace());
        dst_memory_p = handler.AcquireDstMemoryFromPrimitive(
            to_void_cast<T_out>(output_data));
X
xiaolil1 已提交
555
      }
L
lidanqing 已提交
556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582
    } else {
      T_out* output_data = output->mutable_data<T_out>(
          ctx.GetPlace(), handler.GetDstMemorySize());
      dst_memory_p = handler.AcquireDstMemoryFromPrimitive(
          to_void_cast<T_out>(output_data));
    }

    // create convolution op primitive
    if (bias) {
      const float* bias_data = bias->data<float>();
      auto user_bias_md = platform::MKLDNNMemDesc(
          {bias_tz}, platform::MKLDNNGetDataType<float>(), memory::format::x);
      auto user_bias_memory_p = handler.AcquireBiasMemory(
          user_bias_md, to_void_cast<float>(bias_data));
      std::shared_ptr<mkldnn::memory> bias_memory_p;

      auto scale_bias_data =
          ComputeBiasScale(scale_in_data, scale_weights_data);
      int mask_bias_reorder = ComputeBiasMask(is_multi_channel);
      bias_memory_p = handler.AcquireBiasMemoryFromPrimitive(
          user_bias_memory_p, pipeline, is_test, true, scale_bias_data,
          mask_bias_reorder);
      conv_p = handler.AcquireConvolution(src_memory_p, weights_memory_p,
                                          bias_memory_p, dst_memory_p);
    } else {
      conv_p = handler.AcquireConvolution(src_memory_p, weights_memory_p,
                                          dst_memory_p);
583
    }
L
lidanqing 已提交
584 585 586
    // push primitive to stream and wait until it's executed
    pipeline.push_back(*conv_p);

587 588
    // push primitive to stream and wait until it's executed
    stream(stream::kind::eager).submit(pipeline).wait();
L
lidanqing 已提交
589 590
    if (platform::MKLDNNGetDataType<T_out>() == memory::data_type::s8 &&
        unsigned_output) {
X
xiaolil1 已提交
591 592
      output->mutable_data<uint8_t>(ctx.GetPlace());
    }
593 594 595
    output->set_layout(DataLayout::kMKLDNN);
    output->set_format(GetMKLDNNFormat(*dst_memory_p));
  }
596 597 598
};

template <typename T>
599
class ConvMKLDNNGradOpKernel : public paddle::framework::OpKernel<T> {
600 601 602 603 604
 public:
  void Compute(const paddle::framework::ExecutionContext& ctx) const override {
    PADDLE_ENFORCE(paddle::platform::is_cpu_place(ctx.GetPlace()),
                   "It must use CPUPlace.");

605 606
    auto& dev_ctx =
        ctx.template device_context<platform::MKLDNNDeviceContext>();
607 608 609 610 611 612 613 614 615
    const auto& mkldnn_engine = dev_ctx.GetEngine();

    const Tensor* input = ctx.Input<Tensor>("Input");
    const Tensor* filter = ctx.Input<Tensor>("Filter");
    const Tensor* output_grad =
        ctx.Input<Tensor>(framework::GradVarName("Output"));
    Tensor* input_grad = ctx.Output<Tensor>(framework::GradVarName("Input"));
    Tensor* filter_grad = ctx.Output<Tensor>(framework::GradVarName("Filter"));

616 617 618 619
    PADDLE_ENFORCE_EQ(input->layout(), DataLayout::kMKLDNN,
                      "Wrong layout set for Input tensor");
    PADDLE_ENFORCE_NE(input->format(), MKLDNNMemoryFormat::format_undef,
                      "Wrong format set for Input tensor");
620

621 622 623 624 625 626 627 628 629 630 631 632
    PADDLE_ENFORCE_EQ(filter->layout(), DataLayout::kMKLDNN,
                      "Wrong layout set for Filter tensor");
    PADDLE_ENFORCE_NE(filter->format(), MKLDNNMemoryFormat::format_undef,
                      "Wrong format set for Filter tensor");

    PADDLE_ENFORCE_EQ(output_grad->layout(), DataLayout::kMKLDNN,
                      "Wrong layout set for output_grad tensor");
    PADDLE_ENFORCE_NE(output_grad->format(), MKLDNNMemoryFormat::format_undef,
                      "Wrong format set for output_grad tensor");

    PADDLE_ENFORCE_EQ(
        ctx.Attr<bool>("is_test"), false,
633 634
        "is_test attribute should be set to False in training phase.");

635 636 637 638
    if (!input_grad && !filter_grad) return;

    std::vector<int> strides = ctx.Attr<std::vector<int>>("strides");
    std::vector<int> paddings = ctx.Attr<std::vector<int>>("paddings");
639 640
    std::vector<int> dilations = ctx.Attr<std::vector<int>>("dilations");
    int groups = ctx.Attr<int>("groups");
641

642
    bool is_conv3d = strides.size() == 3U;
643 644 645 646 647 648
    const T* input_data = input->data<T>();
    const T* filter_data = filter->data<T>();
    const T* output_grad_data = output_grad->data<T>();
    T* input_grad_data = nullptr;
    T* filter_grad_data = nullptr;

649 650
    auto src_tz = paddle::framework::vectorize<int>(input->dims());
    auto weights_tz = paddle::framework::vectorize<int>(filter->dims());
651
    int g = std::max(groups, 1);
L
lidanqing 已提交
652
    GetWeightsTz(weights_tz, g);
653
    auto dst_tz = paddle::framework::vectorize<int>(output_grad->dims());
654
    auto src_format = input->format();
655
    MKLDNNMemoryFormat weights_format =
Y
Yihua Xu 已提交
656
        GetWeightsFormat(filter->format(), g, is_conv3d);
657

658
    // Get an unique name from "argument" name of "input" and "Filter" variable
J
Jacek Czaja 已提交
659
    // as well as attributes of primitive to be created
660
    // This name will be used as key when saving info into device context
661
    const std::string key = platform::CreateKey(
662
        src_tz, ctx.op().Input("Input") + ctx.op().Input("Filter"));
663 664

    const std::string key_conv_pd = key + "@conv_pd";
665
    std::vector<primitive> pipeline;
666

667 668
    // Create user memory descriptors
    auto user_src_md = platform::MKLDNNMemDesc(
669
        {src_tz}, platform::MKLDNNGetDataType<T>(), src_format);
670
    auto user_weights_md = platform::MKLDNNMemDesc(
671
        {weights_tz}, platform::MKLDNNGetDataType<T>(), weights_format);
672 673
    auto user_diff_dst_md = platform::MKLDNNMemDesc(
        {dst_tz}, platform::MKLDNNGetDataType<T>(), output_grad->format());
674 675 676 677 678

    /* create memory descriptor for conv backward without specified format
     * ('any') which lets a primitive (conv backward in this case) choose
     * the memory format preferred for best performance
     */
679 680 681 682
    std::string data_format = ctx.Attr<std::string>("data_format");
    auto chosen_memory_format =
        platform::data_format_to_memory_format(data_format);

683
    weights_format = MKLDNNMemoryFormat::any;
684
    // Check the format for user's special output
685
    if (chosen_memory_format != MKLDNNMemoryFormat::any) {
686 687 688 689
      if (is_conv3d) {
        chosen_memory_format =
            platform::MKLDNNFormatForSize(src_tz.size(), chosen_memory_format);
      }
690 691
    }

692
    auto src_md = platform::MKLDNNMemDesc(
693
        src_tz, platform::MKLDNNGetDataType<T>(), chosen_memory_format);
694
    auto diff_src_md = platform::MKLDNNMemDesc(
695
        src_tz, platform::MKLDNNGetDataType<T>(), chosen_memory_format);
696
    auto weights_md = platform::MKLDNNMemDesc(
697
        weights_tz, platform::MKLDNNGetDataType<T>(), weights_format);
698
    auto diff_weights_md = platform::MKLDNNMemDesc(
699
        weights_tz, platform::MKLDNNGetDataType<T>(), weights_format);
700
    auto diff_dst_md = platform::MKLDNNMemDesc(
701
        dst_tz, platform::MKLDNNGetDataType<T>(), chosen_memory_format);
702

703
    // Retrieve conv_pd from device context
704 705 706
    auto conv_pd =
        std::static_pointer_cast<mkldnn::convolution_forward::primitive_desc>(
            dev_ctx.GetBlob(key_conv_pd));
707 708 709
    PADDLE_ENFORCE(conv_pd != nullptr,
                   "Fail to find conv_pd in device context");

710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725
    // create backward convolution weights primitive descriptor
    auto conv_bwd_weights_desc = mkldnn::convolution_backward_weights::desc(
        mkldnn::convolution_direct, src_md, diff_weights_md, diff_dst_md,
        strides, paddings, paddings, mkldnn::padding_kind::zero);
    auto conv_bwd_weights_pd =
        std::make_shared<mkldnn::convolution_backward_weights::primitive_desc>(
            conv_bwd_weights_desc, mkldnn_engine, *conv_pd);

    // create backward convolution data primitive descriptor
    auto conv_bwd_data_desc = mkldnn::convolution_backward_data::desc(
        mkldnn::convolution_direct, diff_src_md, weights_md, diff_dst_md,
        strides, paddings, paddings, mkldnn::padding_kind::zero);
    auto conv_bwd_data_pd =
        std::make_shared<mkldnn::convolution_backward_data::primitive_desc>(
            conv_bwd_data_desc, mkldnn_engine, *conv_pd);

J
Jacek Czaja 已提交
726 727 728
    platform::ConvMKLDNNHandler handler(conv_pd, conv_bwd_data_pd,
                                        conv_bwd_weights_pd, dev_ctx,
                                        mkldnn_engine, key);
729 730 731 732 733 734 735 736 737

    // create mkldnn memory from input tensors (data/weights)
    auto user_src_memory_p =
        handler.AcquireSrcMemory(user_src_md, to_void_cast<T>(input_data));
    auto user_weights_memory_p = handler.AcquireWeightsMemory(
        user_weights_md, to_void_cast<T>(filter_data));
    auto user_diff_dst_memory_p = handler.AcquireDiffDstMemory(
        user_diff_dst_md, to_void_cast<T>(output_grad_data));

738 739
    // create backward conv primitive for weights
    if (filter_grad) {
740 741
      auto src_memory_p = handler.AcquireSrcMemoryFromWeightsPrimitive(
          user_src_memory_p, pipeline);
742

743 744 745 746
      auto diff_dst_memory_4filter_p =
          handler.AcquireDiffDstMemoryFromWeightsPrimitive(
              user_diff_dst_memory_p, pipeline);

747
      const size_t size = handler.GetDiffWeightsMemorySize();
748
      filter_grad_data = filter_grad->mutable_data<T>(ctx.GetPlace(), size);
749

750 751 752 753 754 755 756 757 758
      auto diff_weights_memory_p =
          handler.AcquireDiffWeightsMemoryFromWeightsPrimitive(
              reinterpret_cast<void*>(filter_grad_data));

      auto conv_bwd_weights_p = handler.AcquireConvolutionBackwardWeights(
          src_memory_p, diff_dst_memory_4filter_p, diff_weights_memory_p);

      // push primitive to stream and wait until it's executed
      pipeline.push_back(*conv_bwd_weights_p);
759

760 761
      filter_grad->set_layout(DataLayout::kMKLDNN);
      filter_grad->set_format(GetMKLDNNFormat(*diff_weights_memory_p));
762 763 764
    }

    if (input_grad) {
765 766 767 768 769 770 771
      auto weights_memory_p = handler.AcquireWeightsMemoryFromDataPrimitive(
          user_weights_memory_p, pipeline);

      auto diff_dst_memory_4data_p =
          handler.AcquireDiffDstMemoryFromDataPrimitive(user_diff_dst_memory_p,
                                                        pipeline);

772
      const size_t size = handler.GetDiffSourceMemorySize();
773
      input_grad_data = input_grad->mutable_data<T>(ctx.GetPlace(), size);
774

775 776 777 778 779 780 781
      auto diff_src_memory_p = handler.AcquireDiffSrcMemoryFromDataPrimitive(
          reinterpret_cast<void*>(input_grad_data));

      auto conv_bwd_data_p = handler.AcquireConvolutionBackwardData(
          diff_dst_memory_4data_p, weights_memory_p, diff_src_memory_p);

      pipeline.push_back(*conv_bwd_data_p);
782

783 784
      input_grad->set_layout(DataLayout::kMKLDNN);
      input_grad->set_format(GetMKLDNNFormat(*diff_src_memory_p));
785
    }
786
    stream(stream::kind::eager).submit(pipeline).wait();
X
xiaolil1 已提交
787
  }
788 789 790 791 792 793
};
}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;

X
Xin Pan 已提交
794 795 796
REGISTER_OP_KERNEL_WITH_CUSTOM_TYPE(conv2d, MKLDNN,
                                    ::paddle::platform::CPUPlace, FP32,
                                    ops::kConvMKLDNNFP32,
L
lidanqing 已提交
797
                                    ops::ConvMKLDNNOpKernel<float>);
798 799 800

REGISTER_OP_KERNEL_WITH_CUSTOM_TYPE(conv2d, MKLDNN,
                                    ::paddle::platform::CPUPlace, U8,
801
                                    ops::kConvMKLDNNINT8,
L
lidanqing 已提交
802
                                    ops::ConvMKLDNNOpKernel<uint8_t>);
803 804 805

REGISTER_OP_KERNEL_WITH_CUSTOM_TYPE(conv2d, MKLDNN,
                                    ::paddle::platform::CPUPlace, S8,
806
                                    ops::kConvMKLDNNINT8,
L
lidanqing 已提交
807
                                    ops::ConvMKLDNNOpKernel<int8_t>);
X
Xin Pan 已提交
808 809 810 811 812

REGISTER_OP_KERNEL_WITH_CUSTOM_TYPE(conv2d_grad, MKLDNN,
                                    ::paddle::platform::CPUPlace, FP32,
                                    ops::kConvMKLDNNFP32,
                                    ops::ConvMKLDNNGradOpKernel<float>);
813 814 815 816

REGISTER_OP_KERNEL_WITH_CUSTOM_TYPE(conv3d, MKLDNN,
                                    ::paddle::platform::CPUPlace, FP32,
                                    ops::kConvMKLDNNFP32,
L
lidanqing 已提交
817
                                    ops::ConvMKLDNNOpKernel<float>);
818 819 820 821 822

REGISTER_OP_KERNEL_WITH_CUSTOM_TYPE(conv3d_grad, MKLDNN,
                                    ::paddle::platform::CPUPlace, FP32,
                                    ops::kConvMKLDNNFP32,
                                    ops::ConvMKLDNNGradOpKernel<float>);