tensor.py 64.0 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
Y
yuyang18 已提交
9
# Unlessf required by applicable law or agreed to in writing, software
D
dzhwinter 已提交
10 11 12 13 14
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15
from __future__ import print_function
16 17

import numpy
18
import six
19
import warnings
20
from six.moves import reduce
21

Y
Yu Yang 已提交
22
from ..layer_helper import LayerHelper
23
from ..param_attr import ParamAttr
24
from ..initializer import Initializer
25
from ..framework import convert_np_dtype_to_dtype_, in_dygraph_mode, _varbase_creator, device_guard
X
xuwei06 已提交
26
from ..framework import Variable
27
from ..initializer import Constant
28
from ..core import VarDesc
29
from .. import core
30
from .layer_function_generator import templatedoc
L
Leo Chen 已提交
31
from . import utils
32
from ..data_feeder import check_variable_and_dtype, check_type, check_dtype, convert_dtype
33
from paddle.utils import deprecated
34

35
from .utils import check_shape
Y
Yu Yang 已提交
36 37

__all__ = [
L
li099 已提交
38 39 40
    'create_tensor', 'create_parameter', 'create_global_var', 'cast',
    'tensor_array_to_tensor', 'concat', 'sums', 'assign',
    'fill_constant_batch_size_like', 'fill_constant', 'argmin', 'argmax',
Z
zhoukunsheng 已提交
41
    'argsort', 'ones', 'zeros', 'reverse', 'has_inf', 'has_nan', 'isfinite',
Y
yaoxuefeng 已提交
42
    'range', 'linspace', 'zeros_like', 'ones_like', 'diag', 'eye', 'triu'
Y
Yu Yang 已提交
43 44 45
]


X
xuwei06 已提交
46
def create_tensor(dtype, name=None, persistable=False):
47
    """
W
wangchaochaohu 已提交
48
    Create a variable, which will hold a Tensor with data type dtype.
49 50

    Args:
W
wangchaochaohu 已提交
51 52 53 54
        dtype(string|numpy.dtype): the data type of Tensor to be created, the
            data type is bool, float16, float32, float64, int8, int16, int32 and int64.
        name(string, optional): The default value is None.  Normally there is no need for 
            user to set this property.  For more information, please refer to :ref:`api_guide_Name`
Q
update  
qiaolongfei 已提交
55
        persistable(bool): Set the persistable flag of the create tensor.
W
wangchaochaohu 已提交
56
            default value is False.
57 58

    Returns:
W
wangchaochaohu 已提交
59
        Variable: The tensor to be created according to dtype.
60 61 62 63

    Examples:
        .. code-block:: python

64
          import paddle.fluid as fluid
65 66
          tensor = fluid.layers.create_tensor(dtype='float32')
    """
67 68 69 70
    check_dtype(dtype, 'dtype', [
        'bool', 'float16', 'float32', 'float64', 'int8', 'int32', 'int32',
        'int64'
    ], 'create_tensor')
Y
Yu Yang 已提交
71
    helper = LayerHelper("create_tensor", **locals())
X
xuwei06 已提交
72 73
    return helper.create_variable(
        name=helper.name, dtype=dtype, persistable=persistable)
Y
Yu Yang 已提交
74 75


76 77
def create_parameter(shape,
                     dtype,
X
xuwei06 已提交
78
                     name=None,
79 80 81 82
                     attr=None,
                     is_bias=False,
                     default_initializer=None):
    """
83
	:api_attr: Static Graph
S
swtkiwi 已提交
84

85
    This function creates a parameter. The parameter is a learnable variable, which can have
Y
yuyang18 已提交
86 87 88 89 90
    gradient, and can be optimized.

    NOTE: this is a very low-level API. This API is useful when you create
    operator by your self. instead of using layers.

91 92 93 94 95 96 97
    Parameters:
        shape (list of int): Shape of the parameter
        dtype (str): Data type of the parameter
        name (str, optional): For detailed information, please refer to
           :ref:`api_guide_Name` . Usually name is no need to set and None by default.
        attr (ParamAttr, optional): Attributes of the parameter
        is_bias (bool, optional): This can affect which default initializer is chosen
98 99 100
                       when default_initializer is None. If is_bias,
                       initializer.Constant(0.0) will be used. Otherwise,
                       Xavier() will be used.
101
        default_initializer (Initializer, optional): Initializer for the parameter
102 103

    Returns:
104
        The created parameter.
Y
yuyang18 已提交
105 106

    Examples:
107 108
        .. code-block:: python

109 110 111
            import paddle
            paddle.enable_static()
            W = paddle.static.create_parameter(shape=[784, 200], dtype='float32')
112
    """
113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131
    check_type(shape, 'shape', (list, tuple, numpy.ndarray), 'create_parameter')
    for item in shape:
        if six.PY2:
            check_type(item, 'item of shape',
                       (int, long, numpy.uint8, numpy.int8, numpy.int16,
                        numpy.int32, numpy.int64), 'create_parameter')
        else:
            check_type(item, 'item of shape',
                       (int, numpy.uint8, numpy.int8, numpy.int16, numpy.int32,
                        numpy.int64), 'create_parameter')

    check_dtype(dtype, 'dtype', [
        'bool', 'float16', 'float32', 'float64', 'int8', 'int16', 'int32',
        'int64', 'uint8'
    ], 'create_parameter')
    check_type(attr, 'attr', (type(None), ParamAttr), 'create_parameter')
    check_type(default_initializer, 'default_initializer',
               (type(None), Initializer), 'create_parameter')

Q
Qiao Longfei 已提交
132
    helper = LayerHelper("create_parameter", **locals())
133
    if attr is None:
X
xuwei06 已提交
134
        attr = ParamAttr(name=name)
135 136
    return helper.create_parameter(attr, shape,
                                   convert_dtype(dtype), is_bias,
137 138 139
                                   default_initializer)


140 141 142 143 144 145 146
def create_global_var(shape,
                      value,
                      dtype,
                      persistable=False,
                      force_cpu=False,
                      name=None):
    """
147
    This function creates a new tensor variable with value in the global block(block 0).
F
fengjiayi 已提交
148

149 150 151
    Parameters:
        shape (list of int): Shape of the variable
        value (float): The value of the variable. The new created
F
fengjiayi 已提交
152
                      variable will be filled with it.
153 154
        dtype (str): Data type of the variable
        persistable (bool, optional): If this variable is persistable.
F
fengjiayi 已提交
155
                           Default: False
156
        force_cpu (bool, optional): Force this variable to be on CPU.
F
fengjiayi 已提交
157
                         Default: False
158 159
        name (str, optional): For detailed information, please refer to
           :ref:`api_guide_Name` . Usually name is no need to set and None by default.
160 161

    Returns:
162
        Variable: The created Variable
F
fengjiayi 已提交
163 164 165 166

    Examples:
        .. code-block:: python

167 168 169
            import paddle
            paddle.enable_static()
            var = paddle.static.create_global_var(shape=[2,3], value=1.0, dtype='float32',
170
                                           persistable=True, force_cpu=True, name='new_var')
171
    """
172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188
    check_type(shape, 'shape', (list, tuple, numpy.ndarray),
               'create_global_var')
    for item in shape:
        if six.PY2:
            check_type(item, 'item of shape',
                       (int, long, numpy.uint8, numpy.int8, numpy.int16,
                        numpy.int32, numpy.int64), 'create_global_var')
        else:
            check_type(item, 'item of shape',
                       (int, numpy.uint8, numpy.int8, numpy.int16, numpy.int32,
                        numpy.int64), 'create_global_var')

    check_dtype(dtype, 'dtype', [
        'bool', 'float16', 'float32', 'float64', 'int8', 'int16', 'int32',
        'int64', 'uint8'
    ], 'create_global_var')

Q
Qiao Longfei 已提交
189 190
    helper = LayerHelper("global_var", **locals())
    var = helper.create_global_variable(
M
minqiyang 已提交
191 192 193 194 195
        dtype=dtype,
        shape=shape,
        persistable=persistable,
        name=name,
        stop_gradient=True)
M
minqiyang 已提交
196 197 198
    helper.set_variable_initializer(
        var, initializer=Constant(
            value=float(value), force_cpu=force_cpu))
M
minqiyang 已提交
199

Q
Qiao Longfei 已提交
200 201 202
    return var


203
def cast(x, dtype):
Y
Yu Yang 已提交
204
    """
S
swtkiwi 已提交
205

206
    This OP takes in the Tensor :attr:`x` with :attr:`x.dtype` and casts it
207 208
    to the output with :attr:`dtype`. It's meaningless if the output dtype
    equals the input dtype, but it's fine if you do so.
Y
Yibing Liu 已提交
209 210

    Args:
211
        x(Tensor): An input N-D Tensor with data type bool, float16,
212 213
            float32, float64, int32, int64, uint8.
        dtype(np.dtype|core.VarDesc.VarType|str): Data type of the output:
214
            bool, float16, float32, float64, int8, int32, int64, uint8.
Y
Yibing Liu 已提交
215 216

    Returns:
217
        Tensor: A Tensor with the same shape as input's.
Y
Yibing Liu 已提交
218 219 220

    Examples:
        .. code-block:: python
F
fengjiayi 已提交
221

222
            import paddle
223

224 225
            x = paddle.to_tensor([2, 3, 4], 'float64')
            y = paddle.cast(x, 'uint8')
Y
Yu Yang 已提交
226
    """
227 228 229 230
    if in_dygraph_mode():
        if not isinstance(dtype, core.VarDesc.VarType):
            dtype = convert_np_dtype_to_dtype_(dtype)
        out = core.ops.cast(x, 'in_dtype', x.dtype, 'out_dtype', dtype)
Z
Zhang Ting 已提交
231
        return out
232

233 234
    check_variable_and_dtype(
        x, 'x',
235 236
        ['bool', 'float16', 'float32', 'float64', 'int32', 'int64', 'uint8'],
        'cast')
237 238 239 240 241 242
    check_dtype(dtype, 'dtype', [
        'bool', 'float16', 'float32', 'float64', 'int8', 'int32', 'int64',
        'uint8'
    ], 'cast')

    helper = LayerHelper('cast', **locals())
243 244
    out = helper.create_variable_for_type_inference(
        dtype=dtype, stop_gradient=x.stop_gradient)
Y
Yu Yang 已提交
245 246 247 248 249 250 251 252 253
    helper.append_op(
        type='cast',
        inputs={'X': [x]},
        outputs={'Out': [out]},
        attrs={'in_dtype': x.dtype,
               'out_dtype': out.dtype})
    return out


254
def concat(input, axis=0, name=None):
Y
Yu Yang 已提交
255
    """
256
    This OP concatenates the input along the axis.
257 258

    Args:
259 260
        input(list|tuple|Tensor): ``input`` can be Tensor, Tensor list or Tensor tuple which is with data type
            bool, float16, float32, float64, int32, int64. All the Tensors in ``input`` must have the same data type. 
261 262
        axis(int|Tensor, optional): Specify the axis to operate on the input Tensors.
            It's a scalar with data type int or a Tensor with shape [1] and data type int32 or int64.
263
            The effective range is [-R, R), where R is Rank(x). When ``axis < 0``, it works the same way
264
            as ``axis+R``. Default is 0.
265 266 267
        name (str, optional): The default value is None. Normally there is no
            need for user to set this property. For more information, please
            refer to :ref:`api_guide_Name`.
268 269

    Returns:
270
        Tensor: A Tensor with the same data type as ``input``.
271 272 273

    Examples:
        .. code-block:: python
F
fengjiayi 已提交
274

275
            import paddle.fluid as fluid
276 277
            import numpy as np

278 279 280 281 282 283
            in1 = np.array([[1, 2, 3],
                            [4, 5, 6]])
            in2 = np.array([[11, 12, 13],
                            [14, 15, 16]])
            in3 = np.array([[21, 22],
                            [23, 24]])
284 285 286 287
            with fluid.dygraph.guard():
                x1 = fluid.dygraph.to_variable(in1)
                x2 = fluid.dygraph.to_variable(in2)
                x3 = fluid.dygraph.to_variable(in3)
288 289
                # When the axis is negative, the real axis is (axis + Rank(x)).
                # As follows, axis is -1, Rank(x) is 2, the real axis is 1
290 291
                out1 = fluid.layers.concat(input=[x1, x2, x3], axis=-1)
                out2 = fluid.layers.concat(input=[x1, x2], axis=0)
292 293 294 295 296 297 298 299
                print(out1.numpy())
                # [[ 1  2  3 11 12 13 21 22]
                #  [ 4  5  6 14 15 16 23 24]]
                print(out2.numpy())
                # [[ 1  2  3]
                #  [ 4  5  6]
                #  [11 12 13]
                #  [14 15 16]]
Y
Yu Yang 已提交
300
    """
301 302

    if in_dygraph_mode():
S
songyouwei 已提交
303 304
        if isinstance(axis, Variable):
            axis = axis.numpy()
305
            axis = axis.item(0)
306
        return core.ops.concat(input, 'axis', axis)
307

308 309 310 311 312 313 314 315 316 317 318
    check_type(input, 'input', (list, tuple, Variable), 'concat')
    if not isinstance(input, Variable):
        for id, x in enumerate(input):
            check_variable_and_dtype(
                x, 'input[' + str(id) + ']',
                ['bool', 'float16', 'float32', 'float64', 'int32', 'int64'],
                'concat')
            if x.dtype != input[0].dtype:
                raise TypeError(
                    "All the Tensors in the input must have the same data type.")
    else:
319
        input = [input]
320
    check_type(axis, 'axis', (int, Variable), 'concat')
321

322 323 324 325 326
    if isinstance(axis, Variable):
        check_dtype(
            axis.dtype, 'axis', ['int32', 'int64'], 'concat',
            "The data type of axis must be int32 or int64 when axis is a Tensor")

327
    helper = LayerHelper('concat', **locals())
X
Xin Pan 已提交
328
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
329 330

    if input[0].desc.type() == core.VarDesc.VarType.LOD_TENSOR_ARRAY:
331 332 333 334
        # NOTE(liym27): Don't remove this if branch!
        # This feature is supported for Dynamic-to-Static, because after transformed, the type of inputs[0]
        # is LOD_TENSOR_ARRAY in some scenarios. And this feature can be used in static mode.

335
        assert len(input) == 1, "If the elements of 'input' in concat are Variable(LoDTensorArray), " \
336
                "number of the elements must be 1, but received %s." % len(input)
337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355
        out_index = helper.create_variable_for_type_inference(dtype="int32")
        helper.append_op(
            type='tensor_array_to_tensor',
            inputs={'X': input[0]},
            outputs={'Out': [out],
                     'OutIndex': [out_index]},
            attrs={'axis': axis,
                   'use_stack': False})
    else:
        inputs = {'X': input}
        attrs = {}
        if isinstance(axis, Variable):
            axis.stop_gradient = True
            inputs['AxisTensor'] = axis
        else:
            attrs['axis'] = axis

        helper.append_op(
            type='concat', inputs=inputs, outputs={'Out': [out]}, attrs=attrs)
Y
Yu Yang 已提交
356 357 358
    return out


G
Guo Sheng 已提交
359
def tensor_array_to_tensor(input, axis=1, name=None, use_stack=False):
360
    r"""
G
Guo Sheng 已提交
361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410
    This function concatenates or stacks all tensors in the input LoDTensorArray
    along the axis mentioned and returns that as the output.

    For Example:

    .. code-block:: text

        Case 1:

            Given:

                input.data = {[[0.6, 0.1, 0.3],
                               [0.5, 0.3, 0.2]],
                              [[1.3],
                               [1.8]],
                              [[2.3, 2.1],
                               [2.5, 2.4]]}

                axis = 1, use_stack = False

            Then:

                output.data = [[0.6, 0.1, 0.3, 1.3, 2.3, 2.1],
                               [0.5, 0.3, 0.2, 1.8, 2.5, 2.4]]

                output_index.data = [3, 1, 2]

        Case 2:

            Given:

                input.data = {[[0.6, 0.1],
                               [0.5, 0.3]],
                              [[0.3, 1.3],
                               [0.2, 1.8]],
                              [[2.3, 2.1],
                               [2.5, 2.4]]}

                axis = 1, use_stack = True

            Then:

                output.data = [[[0.6, 0.1]
                                [0.3, 1.3]
                                [2.3, 2.1],
                               [[0.5, 0.3]
                                [0.2, 1.8]
                                [2.5, 2.4]]]

                output_index.data = [2, 2, 2]
L
li099 已提交
411 412

    Args:
G
Guo Sheng 已提交
413 414 415 416 417 418 419
        input(Variable): A LodTensorArray variable.
        axis(int): The axis along which the tensors in attr::`input` will be
            concatenated or stacked.
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
        use_stack(bool): Act as concat_op or stack_op. For stack mode, all
            tensors in the tensor array must have the same shape.
L
li099 已提交
420 421

    Returns:
G
Guo Sheng 已提交
422 423 424
        Variable: The concatenated or stacked tensor variable.
        Variable: A 1-D tensor variable with int32 data type. The data in this \
            tensor contains all input including tensors' sizes along the axis.
L
li099 已提交
425 426 427 428

    Examples:
        .. code-block:: python

429
            import paddle.fluid as fluid
430
            import numpy as np
G
Guo Sheng 已提交
431 432 433 434 435 436 437
            x0 = fluid.layers.assign(np.random.rand(2, 2).astype("float32"))
            x1 = fluid.layers.assign(np.random.rand(2, 2).astype("float32"))
            i = fluid.layers.fill_constant(shape=[1], dtype="int64", value=0)
            array = fluid.layers.create_array(dtype='float32')
            fluid.layers.array_write(x0, i, array)
            fluid.layers.array_write(x1, i + 1, array)
            output, output_index = fluid.layers.tensor_array_to_tensor(input=array)
L
li099 已提交
438
    """
439 440 441 442 443 444 445 446 447 448 449
    if in_dygraph_mode():
        assert isinstance(
            input, list), "The 'input' in tensor_array_to_tensor must be list"
        from .nn import stack, concat
        from ..dygraph import to_variable
        op = stack if use_stack else concat
        res = op(input, axis=axis)
        sizes = to_variable(
            numpy.array(list(map(lambda x: int(x.shape[axis]), input))))
        return res, sizes

450 451 452 453 454
    check_type(input, 'input', (list, Variable), 'tensor_array_to_tensor')
    if isinstance(input, list):
        for i, input_x in enumerate(input):
            check_type(input_x, 'input[' + str(i) + ']', Variable,
                       'tensor_array_to_tensor')
L
li099 已提交
455
    helper = LayerHelper('tensor_array_to_tensor', **locals())
L
li099 已提交
456 457 458
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
    out_index = helper.create_variable_for_type_inference(dtype="int32")
    helper.append_op(
L
li099 已提交
459
        type='tensor_array_to_tensor',
L
li099 已提交
460 461 462
        inputs={'X': input},
        outputs={'Out': [out],
                 'OutIndex': [out_index]},
G
Guo Sheng 已提交
463 464
        attrs={'axis': axis,
               'use_stack': use_stack})
L
li099 已提交
465 466 467
    return out, out_index


468
def sums(input, out=None):
469
    r"""
470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490
    This function computes the sum of multiple input Tensors elementwisely.

    - Case 1, sum of 3 Tensors

    .. code-block:: text

        # Input Tensors
        x0.shape = [2, 3]
        x0.data = [[1., 2., 3.],
                   [4., 5., 6.]]
        x1.shape = [2, 3]
        x1.data = [[10., 20., 30.],
                   [40., 50., 60.]]
        x2.shape = [2, 3]
        x2.data = [[100., 200., 300.],
                   [400., 500., 600.]]

        # Output Tensor
        out.shape = [2, 3]
        out.data = [[111., 222., 333.],
                    [444., 555., 666.]]
K
kavyasrinet 已提交
491 492

    Args:
493 494 495 496
        input (list): A list of Variables which hold input Tensors with the same
            data type and shape. Optional data types are: float32, float64, int32, int64.
        out (Variable, optional): Output Tensor. It can be any existing Variable.
            The default value is None, then a new Variable will be created and returned.
K
kavyasrinet 已提交
497 498

    Returns:
499 500
        Variable: The sum of inputs. The shape and data type is the same with input. \
            If :code:`out` is not None, the returned value is :code:`out` .
K
kavyasrinet 已提交
501 502

    Examples:
F
fengjiayi 已提交
503
        .. code-block:: python
K
kavyasrinet 已提交
504

505 506 507 508 509 510 511 512 513
            import paddle.fluid as fluid

            x0 = fluid.layers.fill_constant(shape=[16, 32], dtype='int64', value=1)
            x1 = fluid.layers.fill_constant(shape=[16, 32], dtype='int64', value=2)
            x2 = fluid.layers.fill_constant(shape=[16, 32], dtype='int64', value=3)
            x3 = fluid.layers.fill_constant(shape=[16, 32], dtype='int64', value=0)

            # Sum of multiple Tensors, the result is stored to a new Variable sum0 (sum0=x0+x1+x2, the value is [[6, ..., 6], ..., [6, ..., 6]])
            sum0 = fluid.layers.sums(input=[x0, x1, x2])
514

515 516
            # Sum of multiple Tensors, sum1 and x3 represents the same Variable (x3=x0+x1+x2, the value is [[6, ..., 6], ..., [6, ..., 6]])
            sum1 = fluid.layers.sums(input=[x0, x1, x2], out=x3)
Y
Yu Yang 已提交
517
    """
518 519 520 521 522 523 524 525 526
    check_type(input, 'input', (Variable, tuple, list), 'sums')
    if isinstance(input, list) or isinstance(input, tuple):
        for input_section in input:
            check_variable_and_dtype(input_section, "input", \
                    ['float32', 'float64', 'int32', 'int64'], 'sums')
    else:
        check_variable_and_dtype(input, "input", \
                ['float32', 'float64', 'int32', 'int64'], 'sums')

Y
Yu Yang 已提交
527 528
    helper = LayerHelper('sum', **locals())
    if out is None:
X
Xin Pan 已提交
529 530
        out = helper.create_variable_for_type_inference(
            dtype=helper.input_dtype())
531 532 533 534
    else:
        check_variable_and_dtype(
            out, "out", ['float32', 'float64', 'int32', 'int64'], 'sums')

T
tensor-tang 已提交
535 536 537 538 539
    helper.append_op(
        type='sum',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={'use_mkldnn': False})
Y
Yu Yang 已提交
540 541 542
    return out


F
fengjiayi 已提交
543
def assign(input, output=None):
544
    """
S
swtkiwi 已提交
545

546
    The OP copies the :attr:`input` to the :attr:`output`.
547

548
    Parameters:
549
        input (Tensor|numpy.ndarray): A tensor or numpy ndarray, its data type supports
550
            float16, float32, float64, int32 and int64.
551
        output (Tensor, optional): A tensor. If :attr:`output` is None, a new tensor will
552
            be created as :attr:`output`. Default: None.
553 554

    Returns:
555
        Tensor: A tensor with the same shape, data type and value as :attr:`input`.
556 557 558

    Examples:
        .. code-block:: python
559

560
          import paddle
561
          import numpy as np
562
          data = paddle.full(shape=[3, 2], fill_value=2.5, dtype='float64') # [[2.5, 2.5], [2.5, 2.5], [2.5, 2.5]]
563 564 565 566
          array = np.array([[1, 1],
                            [3, 4],
                            [1, 3]]).astype(np.int64)
          result1 = paddle.zeros(shape=[3, 3], dtype='float32')
567 568 569
          paddle.assign(array, result1) # result1 = [[1, 1], [3 4], [1, 3]]
          result2 = paddle.assign(data)  # result2 = [[2.5, 2.5], [2.5, 2.5], [2.5, 2.5]]
          result3 = paddle.assign(np.array([[2.5, 2.5], [2.5, 2.5], [2.5, 2.5]], dtype='float32')) # result3 = [[2.5, 2.5], [2.5, 2.5], [2.5, 2.5]]
570
    """
Y
Yu Yang 已提交
571
    helper = LayerHelper('assign', **locals())
572
    check_type(input, 'input', (Variable, numpy.ndarray), 'assign')
573 574
    is_inplace = True if output is not None else False

X
xuwei06 已提交
575
    if isinstance(input, Variable):
576 577 578 579
        check_dtype(
            input.dtype, 'input',
            ['float16', 'float32', 'float64', 'int32', 'int64', 'bool'],
            'assign', '(When the type of input in assign is Variable.)')
580 581 582
        if output is None:
            output = helper.create_variable_for_type_inference(
                dtype=input.dtype)
X
xuwei06 已提交
583
        helper.append_op(
R
robot 已提交
584
            type='assign', inputs={'X': [input]}, outputs={'Out': [output]})
X
xuwei06 已提交
585 586
    elif isinstance(input, numpy.ndarray):
        dtype = convert_np_dtype_to_dtype_(input.dtype)
587 588 589 590
        if dtype == VarDesc.VarType.BOOL:
            value_name = "bool_values"
            values = [bool(v) for v in input.flat]
        elif dtype == VarDesc.VarType.FP32:
X
xuwei06 已提交
591
            value_name = "fp32_values"
592
            values = [float(v) for v in input.flat]
593
        elif dtype == VarDesc.VarType.INT32:
X
xuwei06 已提交
594
            value_name = "int32_values"
595
            values = [int(v) for v in input.flat]
596 597 598
        elif dtype == VarDesc.VarType.INT64:
            value_name = "int64_values"
            values = [int(v) for v in input.flat]
X
xuwei06 已提交
599
        else:
600 601
            raise TypeError(
                "When the type of 'input' in assign is numpy.ndarray, "
602
                "the data type of 'input' must be bool, float32, int32 or int64, but "
603
                "received %s." % convert_dtype(dtype))
604 605 606
        if input.size > 1024 * 1024:
            raise ValueError("The size of input is too big. Please consider "
                             "saving it to file and 'load_op' to load it")
607 608 609
        if output is None:
            output = helper.create_variable_for_type_inference(
                dtype=input.dtype)
X
xuwei06 已提交
610 611 612 613 614 615
        helper.append_op(
            type='assign_value',
            outputs={'Out': [output]},
            attrs={
                'dtype': dtype,
                'shape': list(input.shape),
616
                value_name: values
X
xuwei06 已提交
617 618
            })

619 620 621
    if is_inplace and in_dygraph_mode():
        output._bump_inplace_version()

Y
Yu Yang 已提交
622 623 624
    return output


625
def fill_constant(shape, dtype, value, force_cpu=False, out=None, name=None):
Y
Yu Yang 已提交
626
    """
S
swtkiwi 已提交
627

W
wangchaochaohu 已提交
628
    This OP creates a Tensor with specified `shape` and `dtype`, and
T
tianshuo78520a 已提交
629
    initializes it with a constant specified by `value`.
K
kavyasrinet 已提交
630

T
tianshuo78520a 已提交
631
    The attribute `stop_gradient` of the created Tensor is set to True.
632 633

    Args:
634 635 636
        shape(list|tuple|Tensor): Shape of the output Tensor, the data type of ``shape`` is int32 or int64.
            If ``shape`` is a list or tuple, the elements of it should be integers or Tensors with shape [1].
            If ``shape`` is an Tensor, it should be an 1-D Tensor with date type int32 or int64.
W
wangchaochaohu 已提交
637
        dtype(np.dtype|str): Data type of the output Tensor which can
W
wangchaochaohu 已提交
638
            be float16, float32, float64, int32, int64.
639 640 641 642 643 644
        value(bool|float|int|Tensor): The constant value used to initialize 
            the Tensor to be created. If ``value`` is an Tensor, it should be an 1-D Tensor.
        force_cpu(bool, optional): data should be on CPU if it's true, default value is False.
        out(Tensor, optional): Optional output which can be any created 
            Tensor that meets the requirements to store the result of operation.
            if ``out`` is None, a new Tensor will be create to store the result.
645 646
        name(str, optional): The default value is None.  Normally there is no need for user to set this
            property.  For more information, please refer to :ref:`api_guide_Name`.
647 648

    Returns:
649
        Tensor: Tensor which is created according to shape and dtype.
W
wangchaochaohu 已提交
650

651 652 653
    Examples:
        .. code-block:: python

654
          import paddle.fluid as fluid
655
          # attr shape is a list which doesn't contain  Tensor.
656 657
          data1 = fluid.layers.fill_constant(shape=[2,1], value=0, dtype='int64') # data1=[[0],[0]]
          data2 = fluid.layers.fill_constant(shape=[2,1], value=5, dtype='int64', out=data1)
658
          # data1=[[5], [5]] data2=[[5], [5]]
659

660
          # attr shape is a list which contains Tensor.
661
          positive_2 = fluid.layers.fill_constant([1], "int32", 2)
662
          data3 = fluid.layers.fill_constant(shape=[1, positive_2], dtype='float32', value=1.5) # data3=[[1.5, 1.5]]
663

664
          # attr shape is a Tensor.
665
          shape = fluid.layers.fill_constant([2], "int32", 2) # shape=[2,2]
666
          data4 = fluid.layers.fill_constant(shape=shape, dtype='bool', value=True) # data4=[[True,True],[True,True]]
W
wangchaochaohu 已提交
667
          
668
          # attr value is a Tensor.
W
wangchaochaohu 已提交
669 670
          val = fluid.layers.fill_constant([1], "float32", 2.0) # val=[2.0]
          data5 = fluid.layers.fill_constant(shape=[2,1], value=val, dtype='float32') #data5=[[2.0],[2.0]]
Y
Yu Yang 已提交
671
    """
672

W
wangchaochaohu 已提交
673
    attrs = {'force_cpu': force_cpu}
674
    dtype = convert_dtype(dtype)
675
    if not isinstance(value, Variable):
676
        if dtype in ['int64', 'int32']:
W
wangchaochaohu 已提交
677
            attrs['str_value'] = str(int(value))
678
            attrs['value'] = int(value)
W
wangchaochaohu 已提交
679 680
        else:
            attrs['str_value'] = str(float(value))
681
            attrs['value'] = float(value)
682 683

    if in_dygraph_mode():
684
        shape = utils.convert_shape_to_list(shape)
685 686
        if out is None:
            out = _varbase_creator(dtype=dtype)
W
wangchaochaohu 已提交
687 688

        if isinstance(value, Variable):
689
            if dtype in ['int64', 'int32']:
690
                attrs['str_value'] = str(int(value.numpy().item(0)))
W
wangchaochaohu 已提交
691
            else:
692
                attrs['str_value'] = str(float(value.numpy().item(0)))
W
wangchaochaohu 已提交
693

694 695
        core.ops.fill_constant(out, 'value',
                               float(value), 'force_cpu', force_cpu, 'dtype',
696 697
                               out.dtype, 'str_value', attrs['str_value'],
                               'shape', shape)
698 699 700
        out.stop_gradient = True
        return out

701 702 703
    helper = LayerHelper("fill_constant", **locals())
    inputs = {}
    if isinstance(value, Variable):
704 705
        if convert_dtype(value.dtype) != dtype:
            value = cast(value, dtype)
706 707
        inputs['ValueTensor'] = value

708
    check_shape(shape)
709
    check_dtype(dtype, 'dtype',
710 711 712
                ['bool', 'float16', 'float32', 'float64', 'int32', 'int64'],
                'fill_constant')
    check_type(shape, 'shape', (Variable, list, tuple), 'fill_constant')
713

714 715 716 717 718
    if out is not None:
        check_variable_and_dtype(out, 'out', [convert_dtype(dtype)],
                                 'fill_constant')

    helper = LayerHelper("fill_constant", **locals())
719
    utils.get_shape_tensor_inputs(
720
        inputs=inputs, attrs=attrs, shape=shape, op_type='fill_constant')
L
liym27 已提交
721

Y
Yu Yang 已提交
722
    if out is None:
X
Xin Pan 已提交
723
        out = helper.create_variable_for_type_inference(dtype=dtype)
L
liym27 已提交
724
    attrs['dtype'] = out.dtype
Y
Yu Yang 已提交
725 726
    helper.append_op(
        type='fill_constant',
L
liym27 已提交
727
        inputs=inputs,
Y
Yu Yang 已提交
728
        outputs={'Out': [out]},
L
liym27 已提交
729
        attrs=attrs,
M
minqiyang 已提交
730
        stop_gradient=True)
Y
Yu Yang 已提交
731 732 733 734
    out.stop_gradient = True
    return out


735
@deprecated(since='1.8.0', update_to="paddle.fluid.layers.fill_constant")
Y
yuyang18 已提交
736
@templatedoc()
Y
Yu Yang 已提交
737 738 739 740 741
def fill_constant_batch_size_like(input,
                                  shape,
                                  dtype,
                                  value,
                                  input_dim_idx=0,
G
Guo Sheng 已提交
742 743
                                  output_dim_idx=0,
                                  force_cpu=False):
744
    """
T
tianshuo78520a 已提交
745
    This OP creates a Tesnor according the shape and dtype, and initializes the
W
wangchaochaohu 已提交
746 747 748 749
    Tensor with the constants provided in ``value``. When the input is LoDTensor
    and the input_dim_idx is 0, the output_dim_idx dimension is set to the value
    of the batch_size input by the input, the Stop_gradient attribute of the created
    Tensor is False by default.
750 751

    Args:
W
wangchaochaohu 已提交
752 753 754 755 756 757 758 759 760 761 762
        input(Variable): Tensor which data type is float32, float64, int32 and int64.
        shape(list): The shape of Tensor to be created, Tensor's shape may be changed
            according the input.
        dtype(np.dtype|core.VarDesc.VarType|str): The data type of created Tensor which
            can be float32, float64, int32, int64.
        value(float|int): The constant value used to initialize the Tensor to be created. 
        input_dim_idx(int): When the value is 0 and the input is LoDTensor, the output_dim_idx
            dimension of the created Tensor is set to the batch_size value of input.
            The default value is 0.
        output_dim_idx(int): Used to specify which dimension of Tensor is created to be set
            the value of batch_size of input Tensor. The default value is 0.
T
tianshuo78520a 已提交
763
        force_cpu(bool): data should be on CPU if it's true, default value is False.
Y
yuyang18 已提交
764 765

    Returns:
W
wangchaochaohu 已提交
766
        Variable: Tensor which will be created according to dtype.
H
haowang101779990 已提交
767 768 769 770 771

    Examples:

        .. code-block:: python

772
             import paddle.fluid as fluid
W
wangchaochaohu 已提交
773
             like = fluid.layers.fill_constant(shape=[1,2], value=10, dtype='int64') #like=[[10, 10]]
W
wangchaochaohu 已提交
774
             data = fluid.layers.fill_constant_batch_size_like(
W
wangchaochaohu 已提交
775
                    input=like, shape=[1], value=0, dtype='int64') #like=[[10, 10]] data=[0]
H
haowang101779990 已提交
776

777
    """
Y
Yu Yang 已提交
778
    helper = LayerHelper("fill_constant_batch_size_like", **locals())
X
Xin Pan 已提交
779
    out = helper.create_variable_for_type_inference(dtype=dtype)
780 781 782 783 784 785
    attrs = {
        'shape': shape,
        'dtype': out.dtype,
        'value': float(value),
        'input_dim_idx': input_dim_idx,
        'output_dim_idx': output_dim_idx,
786
        'force_cpu': force_cpu
787 788 789 790 791
    }
    if convert_dtype(dtype) in ['int64', 'int32']:
        attrs['str_value'] = str(int(value))
    else:
        attrs['str_value'] = str(float(value))
Y
Yu Yang 已提交
792 793 794 795
    helper.append_op(
        type='fill_constant_batch_size_like',
        inputs={'Input': input},
        outputs={'Out': [out]},
796
        attrs=attrs)
Y
Yu Yang 已提交
797 798 799 800
    out.stop_gradient = True
    return out


S
sneaxiy 已提交
801 802
def argmin(x, axis=0):
    """
803 804 805
	:alias_main: paddle.argmin
	:alias: paddle.argmin,paddle.tensor.argmin,paddle.tensor.search.argmin
	:old_api: paddle.fluid.layers.argmin
S
swtkiwi 已提交
806

S
sneaxiy 已提交
807 808
    **argmin**

809 810
    This OP computes the indices of the min elements of the input tensor's
    element along the provided axis.
S
sneaxiy 已提交
811 812

    Args:
813 814 815 816 817
        x(Variable): An input N-D Tensor with type float32, float64, int16,
            int32, int64, uint8.
        axis(int, optional): Axis to compute indices along. The effective range
            is [-R, R), where R is Rank(x). when axis<0, it works the same way
            as axis+R. Default is 0.
F
fengjiayi 已提交
818

S
sneaxiy 已提交
819
    Returns:
820
        Variable: A Tensor with data type int64.
F
fengjiayi 已提交
821

S
sneaxiy 已提交
822 823
    Examples:
        .. code-block:: python
F
fengjiayi 已提交
824

825
            import paddle.fluid as fluid
826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852
            import numpy as np

            in1 = np.array([[[5,8,9,5],
                            [0,0,1,7],
                            [6,9,2,4]],
                            [[5,2,4,2],
                            [4,7,7,9],
                            [1,7,0,6]]])
            with fluid.dygraph.guard():
                x = fluid.dygraph.to_variable(in1)
                out1 = fluid.layers.argmin(x=x, axis=-1)
                out2 = fluid.layers.argmin(x=x, axis=0)
                out3 = fluid.layers.argmin(x=x, axis=1)
                out4 = fluid.layers.argmin(x=x, axis=2)
                print(out1.numpy())
                # [[0 0 2]
                #  [1 0 2]]
                print(out2.numpy())
                # [[0 1 1 1]
                #  [0 0 0 0]
                #  [1 1 1 0]]
                print(out3.numpy())
                # [[1 1 1 2]
                #  [2 0 2 0]]
                print(out4.numpy())
                # [[0 0 2]
                #  [1 0 2]]
S
sneaxiy 已提交
853
    """
854 855 856
    check_variable_and_dtype(
        x, 'x', ['float32', 'float64', 'uint8', 'int16', 'int32', 'int64'],
        'argmin')
S
sneaxiy 已提交
857
    helper = LayerHelper("arg_min", **locals())
X
Xin Pan 已提交
858
    out = helper.create_variable_for_type_inference(VarDesc.VarType.INT64)
S
sneaxiy 已提交
859 860 861 862 863
    helper.append_op(
        type='arg_min',
        inputs={'X': x},
        outputs={'Out': [out]},
        attrs={'axis': axis})
864
    out.stop_gradient = True
S
sneaxiy 已提交
865 866 867 868 869 870 871
    return out


def argmax(x, axis=0):
    """
    **argmax**

872 873
    This OP computes the indices of the max elements of the input tensor's
    element along the provided axis.
S
sneaxiy 已提交
874 875

    Args:
876 877 878 879 880
        x(Variable): An input N-D Tensor with type float32, float64, int16,
            int32, int64, uint8.
        axis(int, optional): Axis to compute indices along. The effective range
            is [-R, R), where R is Rank(x). when axis<0, it works the same way
            as axis+R. Default is 0.
F
fengjiayi 已提交
881

S
sneaxiy 已提交
882
    Returns:
883
        Variable: A Tensor with data type int64.
F
fengjiayi 已提交
884

S
sneaxiy 已提交
885 886
    Examples:
        .. code-block:: python
F
fengjiayi 已提交
887

888
            import paddle.fluid as fluid
889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915
            import numpy as np

            in1 = np.array([[[5,8,9,5],
                            [0,0,1,7],
                            [6,9,2,4]],
                            [[5,2,4,2],
                            [4,7,7,9],
                            [1,7,0,6]]])
            with fluid.dygraph.guard():
                x = fluid.dygraph.to_variable(in1)
                out1 = fluid.layers.argmax(x=x, axis=-1)
                out2 = fluid.layers.argmax(x=x, axis=0)
                out3 = fluid.layers.argmax(x=x, axis=1)
                out4 = fluid.layers.argmax(x=x, axis=2)
                print(out1.numpy())
                # [[2 3 1]
                #  [0 3 1]]
                print(out2.numpy())
                # [[0 0 0 0]
                #  [1 1 1 1]
                #  [0 0 0 1]]
                print(out3.numpy())
                # [[2 2 0 1]
                #  [0 1 1 1]]
                print(out4.numpy())
                # [[2 3 1]
                #  [0 3 1]]
S
sneaxiy 已提交
916
    """
917 918 919
    check_variable_and_dtype(
        x, 'x', ['float32', 'float64', 'uint8', 'int16', 'int32', 'int64'],
        'argmax')
S
sneaxiy 已提交
920
    helper = LayerHelper("arg_max", **locals())
X
Xin Pan 已提交
921
    out = helper.create_variable_for_type_inference(VarDesc.VarType.INT64)
S
sneaxiy 已提交
922 923 924 925 926
    helper.append_op(
        type='arg_max',
        inputs={'X': x},
        outputs={'Out': [out]},
        attrs={'axis': axis})
927
    out.stop_gradient = True
S
sneaxiy 已提交
928 929 930
    return out


931
def argsort(input, axis=-1, descending=False, name=None):
Y
Yibing Liu 已提交
932
    """
933 934 935
	:alias_main: paddle.argsort
	:alias: paddle.argsort,paddle.tensor.argsort,paddle.tensor.search.argsort
	:old_api: paddle.fluid.layers.argsort
S
swtkiwi 已提交
936

937 938 939
    This OP sorts the input along the given axis, and returns sorted output
    data Varibale and its corresponding index Variable with the same shape as
    :attr:`input`.
Y
Yibing Liu 已提交
940 941

    Args:
942 943 944 945 946
        input(Variable): An input N-D Tensor with type float32, float64, int16,
            int32, int64, uint8.
        axis(int, optional): Axis to compute indices along. The effective range
            is [-R, R), where R is Rank(x). when axis<0, it works the same way
            as axis+R. Default is 0.
947 948 949
        descending(bool, optional) : Descending is a flag, if set to true,
            algorithm will sort by descending order, else sort by
            ascending order. Default is false.
950 951 952
        name(str, optional): The default value is None. Normally there is no
            need for user to set this property. For more information, please
            refer to :ref:`api_guide_Name`.
Y
Yibing Liu 已提交
953 954

    Returns:
955 956 957
        tuple: A tuple of sorted data Variable(with the same shape and data
        type as input) and the sorted indices(with the same shape as input's
        and with data type int64).
Y
Yibing Liu 已提交
958 959 960 961

    Examples:
        .. code-block:: python

962
            import paddle.fluid as fluid
963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003
            import numpy as np

            in1 = np.array([[[5,8,9,5],
                            [0,0,1,7],
                            [6,9,2,4]],
                            [[5,2,4,2],
                            [4,7,7,9],
                            [1,7,0,6]]]).astype(np.float32)
            with fluid.dygraph.guard():
                x = fluid.dygraph.to_variable(in1)
                out1 = fluid.layers.argsort(input=x, axis=-1)
                out2 = fluid.layers.argsort(input=x, axis=0)
                out3 = fluid.layers.argsort(input=x, axis=1)
                print(out1[0].numpy())
                # [[[5. 5. 8. 9.]
                #   [0. 0. 1. 7.]
                #   [2. 4. 6. 9.]]
                #  [[2. 2. 4. 5.]
                #   [4. 7. 7. 9.]
                #   [0. 1. 6. 7.]]]
                print(out1[1].numpy())
                # [[[0 3 1 2]
                #   [0 1 2 3]
                #   [2 3 0 1]]
                #  [[1 3 2 0]
                #   [0 1 2 3]
                #   [2 0 3 1]]]
                print(out2[0].numpy())
                # [[[5. 2. 4. 2.]
                #   [0. 0. 1. 7.]
                #   [1. 7. 0. 4.]]
                #  [[5. 8. 9. 5.]
                #   [4. 7. 7. 9.]
                #   [6. 9. 2. 6.]]]
                print(out3[0].numpy())
                # [[[0. 0. 1. 4.]
                #   [5. 8. 2. 5.]
                #   [6. 9. 9. 7.]]
                #  [[1. 2. 0. 2.]
                #   [4. 7. 4. 6.]
                #   [5. 7. 7. 9.]]]
Y
Yibing Liu 已提交
1004
    """
1005 1006 1007
    check_variable_and_dtype(
        input, 'input',
        ['float32', 'float64', 'int16', 'int32', 'int64', 'uint8'], 'argsort')
Y
Yibing Liu 已提交
1008
    helper = LayerHelper("argsort", **locals())
X
Xin Pan 已提交
1009 1010 1011 1012
    out = helper.create_variable_for_type_inference(
        dtype=input.dtype, stop_gradient=True)
    ids = helper.create_variable_for_type_inference(
        VarDesc.VarType.INT64, stop_gradient=True)
Y
Yibing Liu 已提交
1013 1014 1015 1016
    helper.append_op(
        type='argsort',
        inputs={'X': input},
        outputs={'Out': out,
1017
                 'Indices': ids},
1018 1019
        attrs={'axis': axis,
               'descending': descending})
Y
Yibing Liu 已提交
1020 1021 1022
    return out, ids


Y
Yang Yu 已提交
1023
def ones(shape, dtype, force_cpu=False):
Y
Yu Yang 已提交
1024
    """
1025 1026
    The OP creates a tensor of specified :attr:`shape` and :attr:`dtype`, and fills it with 1.
    Its :attr:`stop_gradient` will be set to True to stop gradient computation.
1027

1028
    Parameters:
1029
        shape(tuple|list|Tensor): Shape of output Tensor, the data type of shape is int32 or int64.
W
wangchaochaohu 已提交
1030
        dtype (np.dtype|str): Data type of output Tensor, it supports
1031
            bool, float16, float32, float64, int32 and int64.
1032 1033
        force_cpu (bool, optional): Whether force to store the output Tensor in CPU memory.
            If :attr:`force_cpu` is False, the output Tensor will be stored in running device memory.
1034
            Default: False.
1035 1036

    Returns:
1037
        Tensor: A tensor of data type :attr:`dtype` with shape :attr:`shape` and all elements set to 1.
1038 1039 1040 1041

    Examples:
        .. code-block:: python

1042
          import paddle.fluid as fluid
1043 1044 1045 1046 1047
          data0 = fluid.layers.ones(shape=[2, 4], dtype='float32') # [[1., 1., 1., 1.], [1., 1., 1., 1.]]
          
          # shape is a Tensor
          shape = fluid.layers.fill_constant(shape=[2], dtype='int32', value=2)
          data1 = fluid.layers.ones(shape=shape, dtype='int32') #[[1, 1], [1, 1]]
Y
Yu Yang 已提交
1048 1049 1050 1051
    """
    return fill_constant(value=1.0, **locals())


1052
def zeros(shape, dtype, force_cpu=False, name=None):
Y
Yu Yang 已提交
1053
    """
1054 1055
    The OP creates a tensor of specified :attr:`shape` and :attr:`dtype`, and fills it with 0.
    Its :attr:`stop_gradient` will be set to True to stop gradient computation.
1056

1057
    Parameters:
1058
        shape(tuple|list|Tensor): Shape of output Tensor, the data type of ``shape`` is int32 or int64.
W
wangchaochaohu 已提交
1059
        dtype (np.dtype|str): Data type of output Tensor, it supports
1060
            bool, float16, float32, float64, int32 and int64.
1061 1062
        force_cpu (bool, optional): Whether force to store the output Tensor in CPU memory.
            If :attr:`force_cpu` is False, the output Tensor will be stored in running device memory.
1063
            Default: False.
1064 1065
        name(str, optional): The default value is None.  Normally there is no need for user to set this
            property.  For more information, please refer to :ref:`api_guide_Name`.
1066 1067

    Returns:
1068
        Tensor: A tensor of data type :attr:`dtype` with shape :attr:`shape` and all elements set to 0.
1069 1070 1071 1072

    Examples:
        .. code-block:: python

1073
          import paddle.fluid as fluid
1074
          data = fluid.layers.zeros(shape=[3, 2], dtype='float32') # [[0., 0.], [0., 0.], [0., 0.]]
1075 1076 1077 1078
          
          # shape is a Tensor
          shape = fluid.layers.fill_constant(shape=[2], dtype='int32', value=2)
          data1 = fluid.layers.zeros(shape=shape, dtype='int32') #[[0, 0], [0, 0]]
Y
Yu Yang 已提交
1079 1080
    """
    return fill_constant(value=0.0, **locals())
1081 1082


F
fengjiayi 已提交
1083 1084
def reverse(x, axis):
    """
1085 1086 1087
	:alias_main: paddle.reverse
	:alias: paddle.reverse,paddle.tensor.reverse,paddle.tensor.manipulation.reverse
	:old_api: paddle.fluid.layers.reverse
S
swtkiwi 已提交
1088

1089
    The OP reverses the tensor :attr:`x` along the given :attr:`axis`.
F
fengjiayi 已提交
1090

1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114
    .. code-block:: text

        Case 1:

            Given a LoDTensor:
                x = [[0, 1, 2], [3, 4, 5], [6, 7, 8]]
                axis = [0, 1]

            Then:
                output = [[8, 7, 6], [5, 4, 3], [2, 1, 0]]

        Case 2:

            Given a LoDTensorArray:
                x = {[[0, 1], [2, 3]],
                     [[4, 5, 6]],
                     [[7],[8], [9]]}
                axis = 0

            Then:
                output = {[[7],[8], [9]],
                          [[4, 5, 6]],
                          [[0, 1], [2, 3]]}

1115
    Parameters:
1116 1117
        x (Variable): A tensor or LoDTensorArray to be reversed, its data type supports bool, float32, float64, int32, int64 and uint8.
                      If input is a LoDTensorArray, returns a new reversed LoDTensorArray without changing the internal order of each inner tensor.
1118 1119
        axis (int|tuple|list): A dimension or a set of dimensions of :attr:`x` to reverse. Must be
            in the range [-rank( :attr:`x` ), rank( :attr:`x` )). If it is a tuple or a list, reversing
1120 1121
            will be apply on each axis in the tuple or list. If input is a LoDTensorArray, the value of axis shall be 0, or a
            list [0] or tuple (0, ) with shape [1].
F
fengjiayi 已提交
1122 1123

    Returns:
1124
        Variable: The reversed tensor with the same shape and data type as :attr:`x`.
F
fengjiayi 已提交
1125 1126 1127 1128

    Examples:
        .. code-block:: python

1129
          import paddle.fluid as fluid
1130 1131 1132 1133
          import numpy as np
          data = fluid.layers.assign(np.array([[0, 1, 2], [3, 4, 5], [6, 7, 8]], dtype='float32')) # [[0., 1., 2.], [3., 4., 5.], [6., 7., 8.]]
          result1 = fluid.layers.reverse(data, 0) # [[6., 7., 8.], [3., 4., 5.], [0., 1., 2.]]
          result2 = fluid.layers.reverse(data, [0, 1]) # [[8., 7., 6.], [5., 4., 3.], [2., 1., 0.]]
1134 1135 1136 1137 1138 1139 1140 1141 1142 1143

          # example of LoDTensorArray
          data1 = fluid.layers.assign(np.array([[0, 1, 2]], dtype='float32'))
          data2 = fluid.layers.assign(np.array([[3, 4, 5]], dtype='float32'))
          tensor_array = fluid.layers.create_array(dtype='float32')
          i = fluid.layers.fill_constant(shape=[1], dtype='int64', value=0)
          fluid.layers.array_write(data1, i, tensor_array)
          fluid.layers.array_write(data2, i+1, tensor_array)

          reversed_tensor_array = fluid.layers.reverse(tensor_array, 0) # {[[3, 4, 5]], [[0, 1, 2]]}
F
fengjiayi 已提交
1144
    """
1145 1146 1147
    check_variable_and_dtype(
        x, 'x', ('float32', 'float64', 'int32', 'int64', 'uint8'), 'reverse')
    check_type(axis, 'axis', (int, tuple, list), 'reverse')
F
fengjiayi 已提交
1148 1149 1150
    if isinstance(axis, int):
        axis = [axis]
    helper = LayerHelper("reverse", **locals())
X
Xin Pan 已提交
1151
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
F
fengjiayi 已提交
1152 1153
    helper.append_op(
        type='reverse',
W
Wu Yi 已提交
1154
        inputs={'X': x},
F
fengjiayi 已提交
1155 1156 1157 1158 1159
        outputs={'Out': [out]},
        attrs={'axis': axis})
    return out


1160 1161 1162 1163 1164 1165 1166
def save(x, file_path, overwrite=True):
    """
    Saves a variable as a file.

    Args:
        x(variable): The Tensor/LoDTensor to be saved.
        file_path(str): The file path where the variable will be saved.
1167 1168 1169
        overwrite(bool): Whether or not cover the given file when it has already
            existed. If it's set 'False' and the file is existed, a runtime
            error will be thrown.
1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184
    """
    helper = LayerHelper("save", **locals())
    helper.append_op(
        type="save",
        inputs={"input": x},
        outputs={},
        args={"file_path": file_path,
              "overwrite": overwrite})


def save_combine(x, file_path, overwrite=True):
    """
    Saves a list of variables into a single file.

    Args:
1185 1186
        x(list): A list of Tensor/LoDTensor variables to be saved together in
                 a single file.
1187
        file_path(str): The file path where variables will be saved.
1188
        overwrite(bool): Whether or not cover the given file when it has already
1189 1190
            existed. If it's set 'False' and the file is existed, a runtime
            error will be thrown.
1191 1192 1193 1194 1195 1196 1197 1198

    Returns:
        There is no return value.

    Examples:

        .. code-block:: python

1199
            import paddle.fluid as fluid
1200 1201 1202 1203 1204 1205 1206
            v1 = fluid.layers.data(name="data",
                                   shape=(4, 6),
                                   dtype="float32")
            v2 = fluid.layers.data(name="data",
                                   shape=(6, 8, 4),
                                   dtype="float32")
            normed = fluid.layers.save_combine([v1, v2], file_path="output")
1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218
    """
    helper = LayerHelper("save_combine", **locals())
    helper.append_op(
        type="save_combine",
        inputs={"input": x},
        outputs={},
        args={"file_path": file_path,
              "overwrite": overwrite})


def load_combine(out, file_path):
    """
T
tianshuo78520a 已提交
1219
    Loads a list of variable from a single file.
1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230

    Args:
        out(list): The list of variables to be read from the disk file.
        file_path(str): The path of the disk file.
    """
    helper = LayerHelper("load_combine", **locals())
    helper.append_op(
        type="load_combine",
        inputs={},
        output={"Out": out},
        args={"file_path": file_path})
1231 1232 1233 1234 1235 1236 1237


def has_inf(x):
    """
    Test if any of x contains an infinity number

    Args:
S
Steffy-zxf 已提交
1238
       x (Tensor): The Tensor to be checked.
1239 1240

    Returns:
S
Steffy-zxf 已提交
1241
       Tensor: The tensor storing the output, only a bool value, indicating that whether there is infinity number in x or not.
1242 1243 1244 1245
    
    Examples:
        .. code-block:: python
          
S
Steffy-zxf 已提交
1246 1247
          import paddle
          data = paddle.randn(shape=[4, 32, 32], dtype="float32")
1248
          res = paddle.fluid.layers.has_inf(data)
S
Steffy-zxf 已提交
1249
          # [False]
1250

1251
    """
S
Steffy-zxf 已提交
1252 1253 1254
    if in_dygraph_mode():
        return core.ops.isinf(x)

1255
    check_type(x, 'x', (Variable), 'has_inf')
1256
    helper = LayerHelper("isinf", **locals())
X
Xin Pan 已提交
1257
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
1258 1259 1260 1261 1262 1263 1264 1265 1266
    helper.append_op(type="isinf", inputs={"X": x}, outputs={"Out": out})
    return out


def has_nan(x):
    """
    Test if any of x contains a NAN

    Args:
S
Steffy-zxf 已提交
1267
       x (Tensor): The Tensor to be checked.
1268 1269

    Returns:
S
Steffy-zxf 已提交
1270
       Tensor: The tensor variable storing the output, only a bool value, indicating that whether there is NAN in x or not.
1271 1272 1273 1274
    
    Examples:
        .. code-block:: python
    
S
Steffy-zxf 已提交
1275 1276
          import paddle
          data = paddle.randn(shape=[2,3], dtype="float32")
1277
          res = paddle.fluid.layers.has_nan(data)
S
Steffy-zxf 已提交
1278
          # [False]
1279

1280
    """
S
Steffy-zxf 已提交
1281 1282 1283
    if in_dygraph_mode():
        return core.ops.isnan(x)

1284
    check_type(x, 'x', (Variable), 'has_nan')
1285
    helper = LayerHelper("isnan", **locals())
X
Xin Pan 已提交
1286
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
1287 1288 1289 1290 1291 1292
    helper.append_op(type="isnan", inputs={"X": x}, outputs={"Out": out})
    return out


def isfinite(x):
    """
S
swtkiwi 已提交
1293

1294 1295 1296 1297
    Test if any of x contains an infinity/NAN number. If all the elements are finite,
    returns true, else false.

    Args:
N
Noel 已提交
1298
        x(Tensor): The Tensor to be checked.
1299 1300

    Returns:
N
Noel 已提交
1301
        Tensor: The tensor storing the output, contains a bool value.
1302 1303 1304 1305 1306

    Examples:

        .. code-block:: python

N
Noel 已提交
1307 1308 1309 1310 1311 1312
            import paddle

            x = paddle.rand(shape=[4, 6], dtype='float32')
            y = paddle.fluid.layers.isfinite(x)
            print(y)

1313
    """
1314 1315
    check_variable_and_dtype(x, "x", ["float32", "float64", "int32", "int64"],
                             "isfinite")
1316
    helper = LayerHelper("isfinite", **locals())
1317

1318
    out = helper.create_variable_for_type_inference(dtype='bool')
1319 1320
    helper.append_op(type="isfinite", inputs={"X": x}, outputs={"Out": out})
    return out
W
whs 已提交
1321 1322


1323
def range(start, end, step, dtype, name=None):
W
whs 已提交
1324
    """
1325
    This OP returns a 1-D Tensor with spaced values within a given interval.
W
whs 已提交
1326

1327 1328
    Values are generated into the half-open interval [``start``, ``end``) with
    the ``step``. (the interval including ``start`` but excluding ``end``).
1329

1330 1331
    If ``dtype`` is float32 or float64, we advise adding a small epsilon to
    ``end`` to avoid floating point rounding errors when comparing against ``end``.
W
whs 已提交
1332

L
Liufang Sang 已提交
1333
    Parameters:
1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356
        start(float|int|Tensor): Start of interval. The interval includes this
            value. If ``start`` is a Tensor, it is a 1-D Tensor with shape [1],
            with data type int32, int64, float32, float64.
        end(float|int|Tensor): End of interval. The interval does not include
            this value. If ``end`` is a Tensor, it is a 1-D Tensor with shape
            [1], with data type int32, int64, float32, float64.
        step(float|int|Tensor): Spacing between values. For any out, it is
            the istance between two adjacent values, out[i+1] - out[i]. If
            ``step`` is a Tensor, it is a 1-D Tensor with shape [1], with data
            type int32, int64, float32, float64.
        dtype(str|np.dtype|core.VarDesc.VarType, optional): The data type of the
            output tensor. Supported data types: int32, int64, float32, float64.
        name(str, optional): The default value is None. Normally there is no
            need for user to set this property. For more information, please
            refer to :ref:`api_guide_Name`.

    Returns: 
        Tensor: A 1-D Tensor with values from the interval [``start``, ``end``)
            taken with common difference ``step`` beginning from ``start``. Its
            data type is set by ``dtype``.

    Raises:
        TypeError: If ``dtype`` is not int32, int64, float32, float64.
W
whs 已提交
1357 1358 1359 1360 1361

    examples:

        .. code-block:: python

1362
            import paddle.fluid as fluid
W
whs 已提交
1363

1364 1365
            out1 = fluid.layers.range(0, 10, 2, 'int32')
            # [0, 2, 4, 6, 8]
W
whs 已提交
1366

1367 1368 1369 1370 1371 1372 1373
            start_var = fluid.layers.fill_constant([1], 'int64', 3)
            out2 = fluid.layers.range(start_var, 7, 1, 'int64')
            # [3, 4, 5, 6]

    """
    if not isinstance(dtype, core.VarDesc.VarType):
        dtype = convert_np_dtype_to_dtype_(dtype)
1374

W
whs 已提交
1375
    if not isinstance(start, Variable):
1376
        with device_guard("cpu"):
1377
            start = fill_constant([1], dtype, start, force_cpu=True)
1378 1379
    elif start.dtype != dtype:
        start = cast(start, dtype)
1380

W
whs 已提交
1381
    if not isinstance(end, Variable):
1382
        with device_guard("cpu"):
1383
            end = fill_constant([1], dtype, end, force_cpu=True)
1384 1385
    elif end.dtype != dtype:
        end = cast(end, dtype)
1386

W
whs 已提交
1387
    if not isinstance(step, Variable):
1388
        with device_guard("cpu"):
1389
            step = fill_constant([1], dtype, step, force_cpu=True)
1390 1391
    elif step.dtype != dtype:
        step = cast(step, dtype)
W
whs 已提交
1392

1393 1394
    if in_dygraph_mode():
        return core.ops.range(start, end, step)
W
whs 已提交
1395

1396 1397 1398 1399
    check_dtype(dtype, 'dtype', ['float32', 'float64', 'int32', 'int64'],
                'range/arange')
    helper = LayerHelper('range', **locals())
    out = helper.create_variable_for_type_inference(dtype)
W
whs 已提交
1400 1401 1402 1403 1404
    helper.append_op(
        type='range',
        inputs={'Start': start,
                'End': end,
                'Step': step},
1405
        outputs={'Out': out})
1406
    out.stop_gradient = True
W
whs 已提交
1407
    return out
Z
zhoukunsheng 已提交
1408 1409


1410
def linspace(start, stop, num, dtype=None, name=None):
1411
    r"""
1412
    This OP return fixed number of evenly spaced values within a given interval.
Z
zhoukunsheng 已提交
1413 1414

    Args:
1415 1416 1417 1418
        start(int|float|Tensor): The input :attr:`start` is start variable of range. It is a scalar, \
            or a Tensor of shape [1] with input data type int32, int64, float32 or float64.
        stop(int|float|Tensor): The input :attr:`stop` is start variable of range. It is a scalar, \
            or a Tensor of shape [1] with input data type int32, int64, float32 or float64.
1419
        num(int|Tensor): The input :attr:`num` is given num of the sequence. It is an int scalar, \
1420
            or a Tensor of shape [1] with data type int32.
W
wangchaochaohu 已提交
1421
        dtype(np.dtype|str, optional): The data type of output tensor, it could be
1422
            int32, int64, float32 and float64. Default: if None, the data type is float32.
1423 1424
        name(str, optional): Normally there is no need for user to set this property. 
            For more information, please refer to :ref:`api_guide_Name`.Default: None.
Z
zhoukunsheng 已提交
1425 1426

    Returns:
1427
        Tensor: the output data type will be float32, float64. The 1-D tensor with fixed number of evenly spaced values, \
1428 1429
        the data shape of this tensor is :math:`[num]` . If the :attr:`num` is set 1, the output tensor just has \
        the value with input :attr:`start`. 
Z
zhoukunsheng 已提交
1430

Z
zhoukunsheng 已提交
1431
    Examples:
Z
zhoukunsheng 已提交
1432 1433
        .. code-block:: python

1434 1435 1436
             import paddle
             data = paddle.linspace(0, 10, 5, 'float32') # [0.0,  2.5,  5.0,  7.5, 10.0]
             data = paddle.linspace(0, 10, 1, 'float32') # [0.0]
Z
zhoukunsheng 已提交
1437 1438

    """
1439 1440
    if dtype is None:
        dtype = 'float32'
1441 1442 1443
    tensor_num = num
    tensor_start = start
    tensor_stop = stop
1444 1445
    if not isinstance(num, Variable):
        check_type(num, 'num', (int), 'linspace')
1446 1447
    if not isinstance(dtype, core.VarDesc.VarType):
        dtype = convert_np_dtype_to_dtype_(dtype)
Z
zhoukunsheng 已提交
1448
    if not isinstance(start, Variable):
1449 1450
        with device_guard("cpu"):
            tensor_start = fill_constant([1], dtype, start)
Z
zhoukunsheng 已提交
1451
    if not isinstance(stop, Variable):
1452 1453
        with device_guard("cpu"):
            tensor_stop = fill_constant([1], dtype, stop)
Z
zhoukunsheng 已提交
1454
    if not isinstance(num, Variable):
1455 1456
        with device_guard("cpu"):
            tensor_num = fill_constant([1], 'int32', num)
1457
    if in_dygraph_mode():
1458 1459
        return core.ops.linspace(tensor_start, tensor_stop, tensor_num, 'dtype',
                                 dtype)
1460 1461 1462

    helper = LayerHelper("linspace", **locals())

1463 1464 1465
    start_dtype = convert_dtype(tensor_start.dtype)
    stop_dtype = convert_dtype(tensor_stop.dtype)
    out_dtype = convert_dtype(dtype)
1466
    if isinstance(start, Variable):
1467 1468
        check_dtype(start.dtype, 'start',
                    ['float32', 'float64', 'int32', 'int64'], 'linspace')
1469 1470
    else:
        check_type(start, 'start', (int, float), 'linspace')
Z
zhoukunsheng 已提交
1471

1472
    if isinstance(stop, Variable):
1473 1474
        check_dtype(stop.dtype, 'stop',
                    ['float32', 'float64', 'int32', 'int64'], 'linspace')
1475 1476 1477 1478 1479 1480
    else:
        check_type(stop, 'stop', (int, float), 'linspace')
    if isinstance(num, Variable):
        check_dtype(num.dtype, 'num', ['int32'], 'linspace')
    check_dtype(dtype, 'dtype', ['int32', 'int64', 'float32', 'float64'],
                'linspace')
1481 1482 1483 1484 1485 1486 1487 1488
    if ((stop_dtype == "float64" or start_dtype == "float64") and
            out_dtype in ["float32", "int32"]) or ((stop_dtype == "int64" or
                                                    start_dtype == "int64") and
                                                   out_dtype == "int32"):
        raise ValueError(
            "The dtype of start/stop is {}/{} but the attr(dtype) of linspace is {}, "
            "which may cause data type overflows. Please reset attr(dtype) of linspace."
            .format(start_dtype, stop_dtype, dtype))
1489 1490

    out = helper.create_variable_for_type_inference(dtype=dtype)
Z
zhoukunsheng 已提交
1491 1492 1493

    helper.append_op(
        type='linspace',
1494 1495 1496 1497
        inputs={'Start': tensor_start,
                'Stop': tensor_stop,
                'Num': tensor_num},
        attrs={'dtype': dtype},
Z
zhoukunsheng 已提交
1498
        outputs={'Out': [out]})
1499 1500
    if isinstance(num, int):
        out.desc.set_shape((num, ))
Z
zhoukunsheng 已提交
1501
    return out
1502 1503


Z
zhoukunsheng 已提交
1504 1505
def zeros_like(x, out=None):
    """
1506
    This OP creates a zeros tensor which has identical shape and dtype 
Z
zhoukunsheng 已提交
1507 1508 1509
    with `x`.

    Args:
1510 1511 1512 1513 1514 1515
        x(Variable): The input tensor which specifies shape and dtype, the
            input data dtype could be bool, float32, float64, int32, int64.
        out(Variable, optional): If is :attr:`None` , the op will create the
            variable as output, the data type and shape of this variable will
            be same as input :attr:`x`. If is a tensor, the data type and shape
            need to be same as input :attr:`x`. The default value is :attr:`None` .
Z
zhoukunsheng 已提交
1516 1517

    Returns:
1518 1519 1520
        Variable: The N-D tensor, the element in tensor is related to input
            data type, if the input data type is bool, the output value is
            False, otherwise is zero. The output shape is the same as the input.
Z
zhoukunsheng 已提交
1521 1522 1523 1524

    Examples:
        .. code-block:: python

1525
          import paddle.fluid as fluid
1526
          x = fluid.data(name='x', dtype='float32', shape=[3])
Z
zhoukunsheng 已提交
1527 1528
          data = fluid.layers.zeros_like(x) # [0.0, 0.0, 0.0]

Z
zhoukunsheng 已提交
1529 1530
    """

1531 1532
    check_variable_and_dtype(
        x, "x", ['bool', 'float32', 'float64', 'int32', 'int64'], 'ones_like')
Z
zhoukunsheng 已提交
1533 1534 1535
    helper = LayerHelper("zeros_like", **locals())
    if out is None:
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
1536 1537 1538
    else:
        check_variable_and_dtype(
            out, "out", ['bool', 'float32', 'float64', 'int32', 'int64'],
1539
            'zeros_like')
1540

Z
zhoukunsheng 已提交
1541 1542 1543 1544
    helper.append_op(
        type='fill_zeros_like', inputs={'X': [x]}, outputs={'Out': [out]})
    out.stop_gradient = True
    return out
Z
zhoukunsheng 已提交
1545 1546


1547
@deprecated(since="2.0.0", update_to="paddle.diag")
Z
zhoukunsheng 已提交
1548
def diag(diagonal):
1549
    r"""
1550 1551 1552
	:alias_main: paddle.diag
	:alias: paddle.diag,paddle.tensor.diag,paddle.tensor.creation.diag
	:old_api: paddle.fluid.layers.diag
S
swtkiwi 已提交
1553

1554
    This OP creates a square matrix which has diagonal values specified by input :attr:`diagonal`.
Z
zhoukunsheng 已提交
1555 1556

    Args:
1557 1558
        diagonal(Variable|numpy.ndarray): The input tensor should be 1D tensor, the input shape is :math:`[ N]` , \
            specifying diagonal values by this input tensor. The input data type should be float32, float64, int32, int64.
Z
zhoukunsheng 已提交
1559 1560

    Returns:
1561 1562
        Variable, the output data type is the same as input data type.: The tensor variable storing the square matrix, \
            the diagonal values specified by input :attr:`diagonal`. the output shape is :math:`[N, N]` with two dims.
Z
zhoukunsheng 已提交
1563 1564 1565 1566 1567 1568 1569

    Examples:
        .. code-block:: python

          # [[3, 0, 0]
          #  [0, 4, 0]
          #  [0, 0, 5] 
1570 1571 1572

          import paddle.fluid as fluid
          import numpy as np
1573 1574 1575
          diagonal = np.arange(3, 6, dtype='int32')
          data = fluid.layers.diag(diagonal)
          # diagonal.shape=(3,) data.shape=(3, 3)
Z
zhoukunsheng 已提交
1576 1577

    """
1578 1579 1580
    check_type(diagonal, 'diagonal', (Variable, numpy.ndarray), 'diag')
    check_dtype(diagonal.dtype, 'diagonal',
                ['float32', 'float64', 'int32', 'int64'], 'diag')
Z
zhoukunsheng 已提交
1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592
    helper = LayerHelper("diag", **locals())

    if not isinstance(diagonal, Variable):
        diagonal = assign(diagonal)

    out = helper.create_variable_for_type_inference(dtype=diagonal.dtype)

    helper.append_op(
        type='diag', inputs={'Diagonal': [diagonal]}, outputs={'Out': [out]})

    out.stop_gradient = True
    return out
Z
zhoukunsheng 已提交
1593 1594


1595 1596 1597 1598 1599
def eye(num_rows,
        num_columns=None,
        batch_shape=None,
        dtype='float32',
        name=None):
1600
    """
1601
    This function constructs a or a batch of 2-D tensor with ones on the diagonal and zeros elsewhere. 
1602 1603 1604

    Args:
        num_rows(int): the number of rows in each batch tensor.
1605 1606
        num_columns(int, optional): the number of columns in each batch tensor.
            If None, default: num_rows.
1607 1608
        batch_shape(list, optional): If provided, the returned tensor will have a leading
            batch size of this shape, the data type of ``batch_shape`` is int. Default is None.
W
wangchaochaohu 已提交
1609
        dtype(np.dtype|str, optional): The data type of the returned tensor.
1610 1611 1612 1613
            It should be int32, int64, float16, float32, float64, default is 'float32'.
        name(str, optional): The default value is None. Normally there is no
            need for user to set this property. For more information, please
            refer to :ref:`api_guide_Name`.
1614 1615

    Returns:
1616
        Tensor: An identity Tensor or LoDTensor of shape batch_shape + [num_rows, num_columns].
1617 1618 1619 1620 1621

    Examples:
        .. code-block:: python

          import paddle.fluid as fluid
1622 1623
          data = fluid.layers.eye(3, dtype='int32')
          # [[1, 0, 0]
1624
          #  [0, 1, 0]
1625 1626
          #  [0, 0, 1]]

1627
          data = fluid.layers.eye(2, 3, dtype='int32')
1628
          # [[1, 0, 0]
1629
          #  [0, 1, 0]]
1630 1631

          data = fluid.layers.eye(2, batch_shape=[3])
1632 1633 1634 1635 1636
          # Construct a batch of 3 identity tensors, each 2 x 2.
          # data[i, :, :] is a 2 x 2 identity tensor, i = 0, 1, 2.

    """

1637 1638
    if not isinstance(dtype, core.VarDesc.VarType):
        dtype = convert_np_dtype_to_dtype_(dtype)
1639 1640 1641 1642 1643
    if num_columns is not None:
        if not isinstance(num_columns, int) or num_columns < 0:
            raise TypeError("num_columns should be a non-negative int")
    else:
        num_columns = num_rows
1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665

    if in_dygraph_mode():
        out = core.ops.eye('dtype', dtype, 'num_rows', num_rows, 'num_columns',
                           num_columns)

    else:
        helper = LayerHelper("eye", **locals())
        check_dtype(dtype, 'dtype',
                    ['float16', 'float32', 'float64', 'int32', 'int64'], 'eye')
        if not isinstance(num_rows, int) or num_rows < 0:
            raise TypeError("num_rows should be a non-negative int")
        out = helper.create_variable_for_type_inference(dtype=dtype)
        helper.append_op(
            type='eye',
            inputs={},
            outputs={'Out': [out]},
            attrs={
                'num_rows': num_rows,
                'num_columns': num_columns,
                'dtype': dtype
            },
            stop_gradient=True)
1666 1667

    if batch_shape is not None:
1668 1669 1670 1671 1672
        re_shape = [1] * len(batch_shape)
        re_shape = re_shape + [num_rows, num_columns]
        expand_times = batch_shape + [1, 1]
        if in_dygraph_mode():
            out = core.ops.reshape(out, 'shape', re_shape)
1673
            return core.ops.expand(out, None, 'expand_times', expand_times)
1674

1675 1676
        if not isinstance(batch_shape, list):
            raise TypeError("batch_shape should be a list")
1677
        for batch_val in (batch_shape):
1678 1679
            if batch_val <= 0:
                raise TypeError("batch_shape should be a positive int list")
1680 1681 1682 1683 1684 1685

        from .nn import reshape, expand
        out = reshape(x=out, shape=re_shape)
        out = expand(x=out, expand_times=expand_times)

    out.stop_gradient = True
1686 1687 1688
    return out


Z
zhoukunsheng 已提交
1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700
def ones_like(x, out=None):
    """
    **ones_like**

    This function creates a ones tensor which has identical shape and dtype 
    with `x`.

    Args:
        x(Variable): The input tensor which specifies shape and dtype.
        out(Variable): The output tensor.

    Returns:
1701
        out(Variable): The tensor variable storing the output.
Z
zhoukunsheng 已提交
1702 1703 1704 1705 1706 1707 1708 1709 1710 1711

    Examples:
        .. code-block:: python

          import paddle.fluid as fluid

          x = fluid.layers.data(name='x', dtype='float32', shape=[3], append_batch_size=False)
          data = fluid.layers.ones_like(x) # [1.0, 1.0, 1.0]

    """
1712 1713
    check_variable_and_dtype(
        x, "x", ['bool', 'float32', 'float64', 'int32', 'int64'], 'ones_like')
Z
zhoukunsheng 已提交
1714 1715 1716 1717

    helper = LayerHelper("ones_like", **locals())
    if out is None:
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
1718 1719 1720 1721
    else:
        check_variable_and_dtype(
            out, "out", ['bool', 'float32', 'float64', 'int32', 'int64'],
            'ones_like')
Z
zhoukunsheng 已提交
1722 1723 1724 1725 1726 1727
    helper.append_op(
        type='fill_any_like',
        inputs={'X': [x]},
        attrs={'value': 1.0},
        outputs={'Out': [out]})
    return out
Y
yaoxuefeng 已提交
1728 1729 1730 1731 1732 1733


@deprecated(since="2.0.0", update_to="paddle.triu")
def triu(input, diagonal=0, name=None):
    import paddle
    return paddle.tensor.triu(x=input, diagonal=diagonal, name=name)