math.py 190.2 KB
Newer Older
W
WuHaobo 已提交
1
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
2 3 4 5 6 7 8 9 10 11 12 13
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
14 15 16
"""
math functions
"""
Y
Yang Zhang 已提交
17
import numpy as np
18

19 20 21 22 23
from paddle.common_ops_import import VarDesc
from paddle.common_ops_import import dygraph_only
from paddle.common_ops_import import templatedoc
from paddle.common_ops_import import dygraph_utils

24 25
from .manipulation import cast
from .creation import _complex_to_real_dtype
26
from .layer_function_generator import generate_layer_fn
27

28
import paddle
29
from ..static import Variable
30
from ..framework import core, in_dygraph_mode, _non_static_mode, LayerHelper, _in_legacy_dygraph
31
from ..fluid.framework import _in_legacy_dygraph
Z
zhiboniu 已提交
32
from ..framework import _varbase_creator, convert_np_dtype_to_dtype_
L
Li Fuchen 已提交
33
from ..fluid.data_feeder import check_variable_and_dtype, check_type, check_dtype, convert_dtype
34
from ..fluid.dygraph.inplace_utils import inplace_apis_in_dygraph_only
35
from ..fluid.layers import utils
36 37

# TODO: define math functions
38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66
from .ops import abs  # noqa: F401
from .ops import acos  # noqa: F401
from .ops import asin  # noqa: F401
from .ops import ceil  # noqa: F401
from .ops import ceil_  # noqa: F401
from .ops import cos  # noqa: F401
from .ops import tan  # noqa: F401
from .ops import sinh  # noqa: F401
from .ops import cosh  # noqa: F401
from .ops import exp  # noqa: F401
from .ops import exp_  # noqa: F401
from .ops import expm1  # noqa: F401
from .ops import floor  # noqa: F401
from .ops import floor_  # noqa: F401
from .ops import reciprocal  # noqa: F401
from .ops import reciprocal_  # noqa: F401
from .ops import round  # noqa: F401
from .ops import round_  # noqa: F401
from .ops import rsqrt  # noqa: F401
from .ops import rsqrt_  # noqa: F401
from .ops import square  # noqa: F401
from .ops import atan  # noqa: F401
from .ops import erf  # noqa: F401
from .ops import sqrt  # noqa: F401
from .ops import sqrt_  # noqa: F401
from .ops import sin  # noqa: F401
from .ops import asinh  # noqa: F401
from .ops import acosh  # noqa: F401
from .ops import atanh  # noqa: F401
67

Z
zhiboniu 已提交
68
from ..fluid.layers import elementwise_sub
69
from paddle import _C_ops, _legacy_C_ops
70

71 72
__all__ = []

73 74 75 76 77 78 79 80 81 82 83 84 85
_supported_int_dtype_ = [
    VarDesc.VarType.UINT8,
    VarDesc.VarType.INT8,
    VarDesc.VarType.INT16,
    VarDesc.VarType.INT32,
    VarDesc.VarType.INT64,
]

_supported_float_dtype_ = [
    VarDesc.VarType.FP32,
    VarDesc.VarType.FP64,
]

86

87 88
def log(x, name=None):
    r"""
C
Chen Long 已提交
89
    Calculates the natural log of the given input Tensor, element-wise.
90 91 92

    .. math::

93
        Out = \ln(x)
94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115

    Args:
        x (Tensor): Input Tensor. Must be one of the following types: float32, float64.
        name (str|None): The default value is None. Normally there is no need for user to set this property. For more information, please refer to :ref:`api_guide_Name`


    Returns:
        Tensor: The natural log of the input Tensor computed element-wise.

    Examples:

        .. code-block:: python

            import paddle

            x = [[2,3,4], [7,8,9]]
            x = paddle.to_tensor(x, dtype='float32')
            res = paddle.log(x)
            # [[0.693147, 1.09861, 1.38629], [1.94591, 2.07944, 2.19722]]
    """
    if in_dygraph_mode():
        return _C_ops.log(x)
116 117
    if _in_legacy_dygraph():
        return _legacy_C_ops.log(x)
118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144

    check_variable_and_dtype(x, 'x', ['float32', 'float64'], "log")
    inputs = {'X': [x]}
    helper = LayerHelper('log', **locals())
    dtype = helper.input_dtype(input_param_name='x')
    out = helper.create_variable_for_type_inference(dtype)
    helper.append_op(type="log", inputs={"X": x}, outputs={"Out": out})
    return out


def scale(x, scale=1.0, bias=0.0, bias_after_scale=True, act=None, name=None):
    """
    Scale operator.

    Putting scale and bias to the input Tensor as following:

    ``bias_after_scale`` is True:

    .. math::
                            Out=scale*X+bias

    ``bias_after_scale`` is False:

    .. math::
                            Out=scale*(X+bias)

    Args:
145 146 147 148 149 150
        x (Tensor): Input N-D Tensor of scale operator. Data type can be float32, float64, int8, int16, int32, int64, uint8.
        scale (float|Tensor): The scale factor of the input, it should be a float number or a Tensor with shape [1] and data type as float32.
        bias (float): The bias to be put on the input.
        bias_after_scale (bool): Apply bias addition after or before scaling. It is useful for numeric stability in some circumstances.
        act (str, optional): Activation applied to the output such as tanh, softmax, sigmoid, relu.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
151 152

    Returns:
C
Chen Long 已提交
153
        Tensor: Output Tensor of scale operator, with shape and data type same as input.
154 155 156

    Examples:
        .. code-block:: python
157

158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175
            # scale as a float32 number
            import paddle

            data = paddle.randn(shape=[2,3], dtype='float32')
            res = paddle.scale(data, scale=2.0, bias=1.0)

        .. code-block:: python

            # scale with parameter scale as a Tensor
            import paddle

            data = paddle.randn(shape=[2, 3], dtype='float32')
            factor = paddle.to_tensor([2], dtype='float32')
            res = paddle.scale(data, scale=factor, bias=1.0)

    """

    if in_dygraph_mode():
W
wanghuancoder 已提交
176 177 178
        out = _C_ops.scale(x, scale, float(bias), bias_after_scale)
        return dygraph_utils._append_activation_in_dygraph(out, act)
    elif _in_legacy_dygraph():
179
        _scale = scale.numpy().item(0) if isinstance(scale, Variable) else scale
180 181 182
        out = _legacy_C_ops.scale(x, 'scale', float(_scale), 'bias',
                                  float(bias), 'bias_after_scale',
                                  bias_after_scale)
W
wanghuancoder 已提交
183
        return dygraph_utils._append_activation_in_dygraph(out, act)
184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200

    check_variable_and_dtype(x, "x", [
        'float16', 'uint16', 'float32', 'float64', 'int8', 'int16', 'int32',
        'int64', 'uint8'
    ], "scale")
    inputs = {'X': [x]}
    attrs = {
        'bias': float(bias),
        'bias_after_scale': bias_after_scale,
    }
    if isinstance(scale, Variable):
        inputs['ScaleTensor'] = [scale]
    else:
        attrs['scale'] = float(scale)
    helper = LayerHelper('scale', **locals())
    out = helper.create_variable_for_type_inference(dtype=x.dtype)

201 202 203 204
    helper.append_op(type='scale',
                     inputs=inputs,
                     outputs={'Out': out},
                     attrs=attrs)
205 206 207 208 209 210 211 212 213
    return helper.append_activation(out)


def stanh(x, scale_a=0.67, scale_b=1.7159, name=None):
    """
    stanh activation.

    .. math::

214
        out = b * \frac{e^{a * x} - e^{-a * x}}{e^{a * x} + e^{-a * x}}
215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236

    Parameters:
        x (Tensor): The input Tensor with data type float32, float64.
        scale_a (float, optional): The scale factor a of the input. Default is 0.67.
        scale_b (float, optional): The scale factor b of the output. Default is 1.7159.
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        A Tensor with the same data type and shape as ``x`` .

    Examples:
        .. code-block:: python

            import paddle

            x = paddle.to_tensor([1.0, 2.0, 3.0, 4.0])
            out = paddle.stanh(x, scale_a=0.67, scale_b=1.72) # [1.00616539, 1.49927628, 1.65933108, 1.70390463]

    """

    if _non_static_mode():
237
        return _legacy_C_ops.stanh(x, 'scale_a', scale_a, 'scale_b', scale_b)
238 239 240 241 242

    check_variable_and_dtype(x, 'x', ['float16', 'float32', 'float64'], 'stanh')

    helper = LayerHelper('stanh', **locals())
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
243 244 245 246 247 248 249
    helper.append_op(type='stanh',
                     inputs={'X': x},
                     outputs={'Out': out},
                     attrs={
                         'scale_a': scale_a,
                         'scale_b': scale_b
                     })
250 251
    return out

252

253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283
def multiplex(inputs, index, name=None):
    """

    Based on the given index parameter, the OP selects a specific row from each input Tensor to construct the output Tensor.

    If the input of this OP contains :math:`m` Tensors, where :math:`I_{i}` means the i-th input Tensor, :math:`i` between :math:`[0,m)` .

    And :math:`O` means the output, where :math:`O[i]` means the i-th row of the output, then the output satisfies that :math:`O[i] = I_{index[i]}[i]` .

    For Example:

            .. code-block:: text

                Given:

                inputs = [[[0,0,3,4], [0,1,3,4], [0,2,4,4], [0,3,3,4]],
                          [[1,0,3,4], [1,1,7,8], [1,2,4,2], [1,3,3,4]],
                          [[2,0,3,4], [2,1,7,8], [2,2,4,2], [2,3,3,4]],
                          [[3,0,3,4], [3,1,7,8], [3,2,4,2], [3,3,3,4]]]

                index = [[3],[0],[1],[2]]

                out = [[3,0,3,4],    # out[0] = inputs[index[0]][0] = inputs[3][0] = [3,0,3,4]
                       [0,1,3,4],    # out[1] = inputs[index[1]][1] = inputs[0][1] = [0,1,3,4]
                       [1,2,4,2],    # out[2] = inputs[index[2]][2] = inputs[1][2] = [1,2,4,2]
                       [2,3,3,4]]    # out[3] = inputs[index[3]][3] = inputs[2][3] = [2,3,3,4]


    Args:
        inputs (list): The input Tensor list. The list elements are N-D Tensors of data types float32, float64, int32, int64. All input Tensor shapes should be the same and rank must be at least 2.
        index (Tensor): Used to select some rows in the input Tensor to construct an index of the output Tensor. It is a 2-D Tensor with data type int32 or int64 and shape [M, 1], where M is the number of input Tensors.
284
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
285

286 287 288 289 290 291 292 293
    Returns:
        Tensor: Output of multiplex OP, with data type being float32, float64, int32, int64.

    Examples:

        .. code-block:: python

            import paddle
294

295 296 297 298
            img1 = paddle.to_tensor([[1, 2], [3, 4]], dtype=paddle.float32)
            img2 = paddle.to_tensor([[5, 6], [7, 8]], dtype=paddle.float32)
            inputs = [img1, img2]
            index = paddle.to_tensor([[1], [0]], dtype=paddle.int32)
299
            res = paddle.multiplex(inputs, index)
300
            print(res) # Tensor([[5., 6.], [3., 4.]], dtype=float32)
301 302

    """
303 304 305
    if in_dygraph_mode():
        return _C_ops.multiplex(inputs, index)
    elif _in_legacy_dygraph():
306
        return _legacy_C_ops.multiplex(index, inputs)
307

308 309 310 311 312 313 314 315 316 317 318 319 320
    helper = LayerHelper('multiplex', **locals())

    check_type(inputs, 'inputs', (list), 'multiplex')
    if len(inputs) < 2:
        raise ValueError(
            "inputs should be a list object with at least 2 elements.")
    for id, x in enumerate(inputs):
        check_variable_and_dtype(x, 'input[' + str(id) + ']',
                                 ['float32', 'float64', 'int32', 'int64'],
                                 'multiplex')
    check_variable_and_dtype(index, "index", ['int32', 'int64'], 'multiplex')

    out = helper.create_variable_for_type_inference(inputs[0].dtype)
321 322 323 324 325 326
    helper.append_op(type='multiplex',
                     inputs={
                         'X': inputs,
                         'Ids': index
                     },
                     outputs={'Out': [out]})
327 328
    return out

329

330 331 332 333 334 335
@inplace_apis_in_dygraph_only
def scale_(x, scale=1.0, bias=0.0, bias_after_scale=True, act=None, name=None):
    """
    Inplace version of ``scale`` API, the output Tensor will be inplaced with input ``x``.
    Please refer to :ref:`api_tensor_scale`.
    """
336
    if in_dygraph_mode():
337
        return _C_ops.scale_(x, scale, float(bias), bias_after_scale)
338 339
    if _in_legacy_dygraph():
        _scale = scale.numpy().item(0) if isinstance(scale, Variable) else scale
340 341 342
        return _legacy_C_ops.scale_(x, 'scale', float(_scale), 'bias',
                                    float(bias), 'bias_after_scale',
                                    bias_after_scale)
343 344


345
def pow(x, y, name=None):
346
    """
C
Chen Long 已提交
347
    Compute the power of Tensor elements. The equation is:
S
swtkiwi 已提交
348

349
    .. math::
350
        out = x^{y}
351

352 353
    Note:
        ``paddle.pow`` supports broadcasting. If you want know more about broadcasting, please refer to :ref:`user_guide_broadcasting` .
354 355


356
    Args:
357
        x (Tensor): An N-D Tensor, the data type is float16, float32, float64, int32 or int64.
358
        y (float|int|Tensor): If it is an N-D Tensor, its data type should be the same as `x`.
359
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
360

361
    Returns:
362
        N-D Tensor. A location into which the result is stored. Its dimension and data type are the same as `x`.
363 364 365

    Examples:

366
        ..  code-block:: python
367 368 369

            import paddle

370 371 372 373 374 375 376 377 378 379 380 381
            x = paddle.to_tensor([1, 2, 3], dtype='float32')

            # example 1: y is a float or int
            res = paddle.pow(x, 2)
            print(res)
            # Tensor(shape=[3], dtype=float32, place=CUDAPlace(0), stop_gradient=True,
            #        [1., 4., 9.])
            res = paddle.pow(x, 2.5)
            print(res)
            # Tensor(shape=[3], dtype=float32, place=CUDAPlace(0), stop_gradient=True,
            #        [1.         , 5.65685415 , 15.58845711])

382
            # example 2: y is a Tensor
383
            y = paddle.to_tensor([2], dtype='float32')
384
            res = paddle.pow(x, y)
385 386 387
            print(res)
            # Tensor(shape=[3], dtype=float32, place=CUDAPlace(0), stop_gradient=True,
            #        [1., 4., 9.])
388 389

    """
390
    # in dynamic graph mode
391
    if in_dygraph_mode():
392
        if isinstance(y, (int, float)):
393
            return _C_ops.pow(x, y)
394
        elif isinstance(y, (paddle.Tensor, Variable)):
395
            return _C_ops.elementwise_pow(x, y)
396
        else:
397 398 399
            raise TypeError(
                'y must be scalar or tensor type, but received: %s ' %
                (y.dtype))
400
    if _in_legacy_dygraph():
401
        if isinstance(y, (int, float)):
402
            return _legacy_C_ops.pow(x, 'factor', y)
403
        elif isinstance(y, (paddle.Tensor, Variable)):
404 405 406 407 408
            return _elementwise_op_in_dygraph(x,
                                              y,
                                              axis=-1,
                                              act=None,
                                              op_name='elementwise_pow')
409
        else:
410 411 412
            raise TypeError(
                'y must be scalar or tensor type, but received: %s ' %
                (y.dtype))
413 414 415 416 417 418
    # in static graph mode
    if isinstance(y, (int, float)):
        helper = LayerHelper('pow', **locals())
        inputs = {'X': x}
        attrs = {'factor': y}
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
419 420 421 422
        helper.append_op(type='pow',
                         inputs=inputs,
                         outputs={'Out': out},
                         attrs=attrs)
423 424 425 426 427 428 429
        return out
    elif isinstance(y, (paddle.Tensor, Variable)):
        # TODO A potential speed improvement is supporting different types in C++ and removing the cast ops here
        helper = LayerHelper('elementwise_pow', **locals())
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
        return _elementwise_op(LayerHelper('elementwise_pow', **locals()))
    else:
430 431
        raise TypeError('y must be scalar or tensor type, but received: %s ' %
                        (type(y)))
432 433


434
OP_NAMEMAPPING = {
435 436 437 438 439 440 441 442
    'elementwise_max': 'maximum',
    'elementwise_min': 'minimum',
    'elementwise_pow': 'elementwise_pow',
    'elementwise_floordiv': 'floor_divide',
    'elementwise_add': 'add',
    'elementwise_sub': 'subtract',
    'elementwise_mul': 'multiply',
    'elementwise_div': 'divide',
C
Chen Weihang 已提交
443
    'elementwise_mod': 'remainder',
444
}
445

446

447 448 449 450 451 452 453
@dygraph_only
def _elementwise_op_in_dygraph(x,
                               y,
                               axis=-1,
                               act=None,
                               use_mkldnn=False,
                               op_name=None):
454

455
    def is_inplace(op_name):
456
        return op_name[-1] == "_"
457

458
    if op_name not in OP_NAMEMAPPING.keys() or axis != -1:
459
        op = getattr(_legacy_C_ops, op_name)
460
        out = op(x, y, 'axis', axis, 'use_mkldnn', use_mkldnn)
W
wanghuancoder 已提交
461 462
    else:
        if in_dygraph_mode():
463 464 465
            op = getattr(
                _C_ops,
                OP_NAMEMAPPING[op_name] if not is_inplace(op_name) else op_name)
W
wanghuancoder 已提交
466 467 468
            out = op(x, y)

        if _in_legacy_dygraph():
469
            op = getattr(_legacy_C_ops, op_name)
W
wanghuancoder 已提交
470
            out = op(x, y, 'axis', axis, 'use_mkldnn', use_mkldnn)
471

472 473 474 475
    return dygraph_utils._append_activation_in_dygraph(out,
                                                       act,
                                                       use_mkldnn=use_mkldnn)

476 477 478 479 480 481 482

def _elementwise_op(helper):
    op_type = helper.layer_type
    original_op_type = helper.kwargs.get('original_op_type', op_type)
    x = helper.kwargs.get('x', None)
    y = helper.kwargs.get('y', None)

483 484
    out = helper.kwargs.get('out', None)

485 486 487
    assert x is not None, 'x cannot be None in {}'.format(original_op_type)
    assert y is not None, 'y cannot be None in {}'.format(original_op_type)
    check_variable_and_dtype(
W
will-jl944 已提交
488
        x, 'x', ['float16', 'float32', 'float64', 'int32', 'int64', 'bool'],
489 490
        original_op_type)
    check_variable_and_dtype(
W
will-jl944 已提交
491
        y, 'y', ['float16', 'float32', 'float64', 'int32', 'int64', 'bool'],
492 493 494 495 496
        original_op_type)

    axis = helper.kwargs.get('axis', -1)
    use_mkldnn = helper.kwargs.get('use_mkldnn', False)
    name = helper.kwargs.get('name', None)
497 498 499 500 501

    if out is None:
        if name is None:
            out = helper.create_variable_for_type_inference(dtype=x.dtype)
        else:
502 503 504 505 506 507 508 509 510 511 512 513 514 515
            out = helper.create_variable(name=name,
                                         dtype=x.dtype,
                                         persistable=False)

    helper.append_op(type=op_type,
                     inputs={
                         'X': x,
                         'Y': y
                     },
                     outputs={'Out': out},
                     attrs={
                         'axis': axis,
                         'use_mkldnn': use_mkldnn
                     })
516 517 518
    return helper.append_activation(out)


Y
Yang Zhang 已提交
519
def add(x, y, name=None):
520
    """
521 522 523 524 525 526 527 528
    Elementwise Add Operator.
    Add two tensors element-wise
    The equation is:

    ..  math::

        Out=X+Y

529 530
    $X$ the tensor of any dimension.
    $Y$ the tensor whose dimensions must be less than or equal to the dimensions of $X$.
531 532

    There are two cases for this operator:
533 534 535 536

    1. The shape of $Y$ is the same with $X$.
    2. The shape of $Y$ is a continuous subsequence of $X$.

537
    For case 2:
538 539

    1. Broadcast $Y$ to match the shape of $X$, where axis is the start dimension index for broadcasting $Y$ onto $X$.
H
HongyuJia 已提交
540
    2. If $axis$ is -1 (default), $axis$=rank($X$)-rank($Y$).
541
    3. The trailing dimensions of size 1 for $Y$ will be ignored for the consideration of subsequence, such as shape($Y$) = (2, 1) => (2).
542 543 544 545

        For example:

        ..  code-block:: python
546

547 548 549 550 551 552
            shape(X) = (2, 3, 4, 5), shape(Y) = (,)
            shape(X) = (2, 3, 4, 5), shape(Y) = (5,)
            shape(X) = (2, 3, 4, 5), shape(Y) = (4, 5), with axis=-1(default) or axis=2
            shape(X) = (2, 3, 4, 5), shape(Y) = (3, 4), with axis=1
            shape(X) = (2, 3, 4, 5), shape(Y) = (2), with axis=0
            shape(X) = (2, 3, 4, 5), shape(Y) = (2, 1), with axis=0
553

554
    Args:
555 556 557
        x (Tensor): Tensor or LoDTensor of any dimensions. Its dtype should be int32, int64, float32, float64.
        y (Tensor): Tensor or LoDTensor of any dimensions. Its dtype should be int32, int64, float32, float64.
        name (string, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: None.
558 559

    Returns:
H
HongyuJia 已提交
560
        N-D Tensor. A location into which the result is stored. It's dimension equals with x.
561 562 563 564

    Examples:

        ..  code-block:: python
565

566
            import paddle
567

568 569 570 571
            x = paddle.to_tensor([2, 3, 4], 'float64')
            y = paddle.to_tensor([1, 5, 2], 'float64')
            z = paddle.add(x, y)
            print(z)  # [3., 8., 6. ]
572
    """
573

J
Jiabin Yang 已提交
574
    if in_dygraph_mode():
575
        return _C_ops.add(x, y)
J
Jiabin Yang 已提交
576 577
    else:
        if _in_legacy_dygraph():
578
            return _legacy_C_ops.elementwise_add(x, y)
J
Jiabin Yang 已提交
579 580
        else:
            return _elementwise_op(LayerHelper('elementwise_add', **locals()))
581 582


583 584 585 586 587 588 589 590 591 592 593
@inplace_apis_in_dygraph_only
def add_(x, y, name=None):
    """
    Inplace version of ``add`` API, the output Tensor will be inplaced with input ``x``.
    Please refer to :ref:`api_tensor_add`.
    """
    op_type = 'elementwise_add_'
    axis = -1

    out_shape = broadcast_shape(x.shape, y.shape)
    if out_shape != x.shape:
594 595 596
        raise ValueError(
            "The shape of broadcast output {} is different from that of inplace tensor {} in the Inplace operation."
            .format(out_shape, x.shape))
597

598
    if in_dygraph_mode():
599
        return _C_ops.add_(x, y)
600
    else:
601
        out = _elementwise_op_in_dygraph(x, y, axis=axis, op_name=op_type)
602
        return out
603 604


605 606
def subtract(x, y, name=None):
    """
W
Wei Shengyu 已提交
607
    Substract two tensors element-wise. The equation is:
608 609 610 611

    .. math::
        out = x - y

612 613
    Note:
        ``paddle.subtract`` supports broadcasting. If you want know more about broadcasting, please refer to :ref:`user_guide_broadcasting` .
614 615 616 617 618 619 620 621 622 623 624 625

    Args:
        x (Tensor): the input tensor, it's data type should be float32, float64, int32, int64.
        y (Tensor): the input tensor, it's data type should be float32, float64, int32, int64.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        N-D Tensor. A location into which the result is stored. If x, y have different shapes and are "broadcastable", the resulting tensor shape is the shape of x and y after broadcasting. If x, y have the same shape,  its shape is the same as x and y.

    Examples:

        .. code-block:: python
W
Wei Shengyu 已提交
626

627 628 629 630 631 632
            import paddle

            x = paddle.to_tensor([[1, 2], [7, 8]])
            y = paddle.to_tensor([[5, 6], [3, 4]])
            res = paddle.subtract(x, y)
            print(res)
633 634 635
            # Tensor(shape=[2, 2], dtype=int64, place=Place(cpu), stop_gradient=True,
            #        [[-4, -4],
            #         [ 4,  4]])
636 637 638 639 640

            x = paddle.to_tensor([[[1, 2, 3], [1, 2, 3]]])
            y = paddle.to_tensor([1, 0, 4])
            res = paddle.subtract(x, y)
            print(res)
641 642 643
            # Tensor(shape=[1, 2, 3], dtype=int64, place=Place(cpu), stop_gradient=True,
            #        [[[ 0,  2, -1],
            #          [ 0,  2, -1]]])
644

645 646
            x = paddle.to_tensor([2, float('nan'), 5], dtype='float32')
            y = paddle.to_tensor([1, 4, float('nan')], dtype='float32')
647 648
            res = paddle.subtract(x, y)
            print(res)
649 650
            # Tensor(shape=[3], dtype=float32, place=Place(cpu), stop_gradient=True,
            #        [1. , nan, nan])
651

652
            x = paddle.to_tensor([5, float('inf'), -float('inf')], dtype='float64')
653 654 655
            y = paddle.to_tensor([1, 4, 5], dtype='float64')
            res = paddle.subtract(x, y)
            print(res)
656 657
            # Tensor(shape=[3], dtype=float64, place=Place(cpu), stop_gradient=True,
            #        [ 4.  ,  inf., -inf.])
658 659 660 661
    """
    op_type = 'elementwise_sub'
    axis = -1
    act = None
J
Jiabin Yang 已提交
662
    if in_dygraph_mode():
663
        return _C_ops.subtract(x, y)
J
Jiabin Yang 已提交
664 665
    else:
        if _in_legacy_dygraph():
666 667 668 669 670
            return _elementwise_op_in_dygraph(x,
                                              y,
                                              axis=axis,
                                              act=act,
                                              op_name=op_type)
J
Jiabin Yang 已提交
671 672
        else:
            return _elementwise_op(LayerHelper(op_type, **locals()))
673 674


675 676 677 678 679 680 681 682 683 684 685
@inplace_apis_in_dygraph_only
def subtract_(x, y, name=None):
    """
    Inplace version of ``subtract`` API, the output Tensor will be inplaced with input ``x``.
    Please refer to :ref:`api_tensor_subtract`.
    """
    axis = -1
    act = None

    out_shape = broadcast_shape(x.shape, y.shape)
    if out_shape != x.shape:
686 687 688
        raise ValueError(
            "The shape of broadcast output {} is different from that of inplace tensor {} in the Inplace operation."
            .format(out_shape, x.shape))
689

690
    if in_dygraph_mode():
691
        return _C_ops.subtract_(x, y)
692
    else:
693 694 695 696 697
        out = _elementwise_op_in_dygraph(x,
                                         y,
                                         axis=axis,
                                         act=act,
                                         op_name='elementwise_sub_')
698
        return out
699 700


701
def divide(x, y, name=None):
702
    """
703
    Divide two tensors element-wise. The equation is:
704

705 706
    .. math::
        out = x / y
707

708 709
    Note:
        ``paddle.divide`` supports broadcasting. If you want know more about broadcasting, please refer to :ref:`user_guide_broadcasting` .
710

711 712 713 714
    Args:
        x (Tensor): the input tensor, it's data type should be float32, float64, int32, int64.
        y (Tensor): the input tensor, it's data type should be float32, float64, int32, int64.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
715

716
    Returns:
717
        N-D Tensor. A location into which the result is stored. If x, y have different shapes and are "broadcastable", the resulting tensor shape is the shape of x and y after broadcasting. If x, y have the same shape,  its shape is the same as x and y.
718

719
    Examples:
720

721
        ..  code-block:: python
722

723
            import paddle
724

725 726
            x = paddle.to_tensor([2, 3, 4], dtype='float64')
            y = paddle.to_tensor([1, 5, 2], dtype='float64')
727
            z = paddle.divide(x, y)
728
            print(z)  # [2., 0.6, 2.]
729

730 731 732 733
    """
    op_type = 'elementwise_div'
    axis = -1
    act = None
J
Jiabin Yang 已提交
734
    if in_dygraph_mode():
735
        return _C_ops.divide(x, y)
J
Jiabin Yang 已提交
736 737
    else:
        if _in_legacy_dygraph():
738 739 740 741 742
            return _elementwise_op_in_dygraph(x,
                                              y,
                                              axis=axis,
                                              act=act,
                                              op_name=op_type)
J
Jiabin Yang 已提交
743 744
        else:
            return _elementwise_op(LayerHelper(op_type, **locals()))
745 746


747 748
def floor_divide(x, y, name=None):
    """
L
Lin Manhui 已提交
749
    Floor divide two tensors element-wise and rounds the quotinents to the nearest integer toward zero. The equation is:
750

751
    .. math::
L
Lin Manhui 已提交
752
        out = trunc(x / y)
753

754 755
    Note:
        ``paddle.floor_divide`` supports broadcasting. If you want know more about broadcasting, please refer to :ref:`user_guide_broadcasting` .
L
Lin Manhui 已提交
756
        Also note that the name ``floor_divide`` can be misleading, as the quotinents are actually rounded toward zero, not toward negative infinite.
757

758 759 760 761
    Args:
        x (Tensor): the input tensor, it's data type should be int32, int64.
        y (Tensor): the input tensor, it's data type should be int32, int64.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
762

763 764
    Returns:
        N-D Tensor. A location into which the result is stored. It's dimension equals with $x$.
765

766
    Examples:
767

768
        ..  code-block:: python
769

770
            import paddle
771

772 773
            x = paddle.to_tensor([2, 3, 8, 7])
            y = paddle.to_tensor([1, 5, 3, 3])
774
            z = paddle.floor_divide(x, y)
775
            print(z)  # [2, 0, 2, 2]
776

777 778 779
    """
    op_type = 'elementwise_floordiv'
    axis = -1
780 781 782
    if in_dygraph_mode():
        return _C_ops.floor_divide(x, y)
    elif _in_legacy_dygraph():
783
        return _elementwise_op_in_dygraph(x, y, axis=axis, op_name=op_type)
784

785
    return _elementwise_op(LayerHelper(op_type, **locals()))
786 787


788
def remainder(x, y, name=None):
789
    r"""
790 791 792
    Mod two tensors element-wise. The equation is:

    .. math::
793

794 795
        out = x \% y

796 797
    Note:
        ``paddle.remainder`` supports broadcasting. If you want know more about broadcasting, please refer to :ref:`user_guide_broadcasting` .
798 799

    Args:
800 801
        x (Tensor): the input tensor, it's data type should be float16, float32, float64, int32, int64.
        y (Tensor): the input tensor, it's data type should be float16, float32, float64, int32, int64.
802 803 804
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
805
        N-D Tensor. A location into which the result is stored. If x, y have different shapes and are "broadcastable", the resulting tensor shape is the shape of x and y after broadcasting. If x, y have the same shape,  its shape is the same as x and y.
806 807 808 809 810 811 812

    Examples:

        ..  code-block:: python

            import paddle

813 814
            x = paddle.to_tensor([2, 3, 8, 7])
            y = paddle.to_tensor([1, 5, 3, 3])
815
            z = paddle.remainder(x, y)
W
WangXi 已提交
816
            print(z)  # [0, 3, 2, 1]
817 818 819

    """
    op_type = 'elementwise_mod'
820
    axis = -1
821 822 823 824

    if in_dygraph_mode():
        return _C_ops.remainder(x, y)
    elif _in_legacy_dygraph():
825
        return _elementwise_op_in_dygraph(x, y, axis=axis, op_name=op_type)
826 827 828 829

    return _elementwise_op(LayerHelper(op_type, **locals()))


830 831 832 833 834 835 836 837 838 839 840 841
@inplace_apis_in_dygraph_only
def remainder_(x, y, name=None):
    r"""
    Inplace version of ``remainder`` API, the output Tensor will be inplaced with input ``x``.
    Please refer to :ref:`api_tensor_remainder`.
    """
    op_type = 'elementwise_mod_'
    axis = -1

    out_shape = broadcast_shape(x.shape, y.shape)
    if out_shape != x.shape:
        raise ValueError(
842 843
            "The shape of broadcast output {} is different from that of inplace tensor {} in the Inplace operation."
            .format(out_shape, x.shape))
844 845 846 847

    return _elementwise_op_in_dygraph(x, y, axis=axis, op_name=op_type)


848 849
mod = remainder  # noqa: F841
floor_mod = remainder  # noqa: F841
850 851


852
def multiply(x, y, name=None):
853
    """
854
    multiply two tensors element-wise. The equation is:
855

856 857
    .. math::
        out = x * y
858

859 860
    Note:
        ``paddle.multiply`` supports broadcasting. If you would like to know more about broadcasting, please refer to :ref:`user_guide_broadcasting`.
861

862
    Args:
W
will-jl944 已提交
863 864
        x (Tensor): the input tensor, its data type should be one of float32, float64, int32, int64, bool.
        y (Tensor): the input tensor, its data type should be one of float32, float64, int32, int64, bool.
865
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
866

867
    Returns:
868
        N-D Tensor. A location into which the result is stored. If x, y have different shapes and are "broadcastable", the resulting tensor shape is the shape of x and y after broadcasting. If x, y have the same shape,  its shape is the same as x and y.
869

870 871 872 873 874 875
    Examples:

        ..  code-block:: python

            import paddle

876 877
            x = paddle.to_tensor([[1, 2], [3, 4]])
            y = paddle.to_tensor([[5, 6], [7, 8]])
878
            res = paddle.multiply(x, y)
879
            print(res) # [[5, 12], [21, 32]]
880

881
            x = paddle.to_tensor([[[1, 2, 3], [1, 2, 3]]])
882 883 884
            y = paddle.to_tensor([2])
            res = paddle.multiply(x, y)
            print(res) # [[[2, 4, 6], [2, 4, 6]]]
885 886 887 888

    """
    op_type = 'elementwise_mul'
    act = None
889
    axis = -1
890

J
Jiabin Yang 已提交
891
    if in_dygraph_mode():
892
        return _C_ops.multiply(x, y)
J
Jiabin Yang 已提交
893 894
    else:
        if _in_legacy_dygraph():
895 896 897 898 899
            return _elementwise_op_in_dygraph(x,
                                              y,
                                              axis=axis,
                                              act=act,
                                              op_name=op_type)
J
Jiabin Yang 已提交
900 901 902 903 904
        else:
            if x.dtype != y.dtype:
                raise TypeError(
                    'Input tensors must be same type, but received type of x: %s, type of y: %s '
                    % (x.dtype, y.dtype))
905

J
Jiabin Yang 已提交
906
            return _elementwise_op(LayerHelper(op_type, **locals()))
907

908

909
def maximum(x, y, name=None):
910
    """
W
Wei Shengyu 已提交
911
    Compare two tensors and returns a new tensor containing the element-wise maxima. The equation is:
912

913 914
    .. math::
        out = max(x, y)
915

916 917
    Note:
        ``paddle.maximum`` supports broadcasting. If you want know more about broadcasting, please refer to :ref:`user_guide_broadcasting` .
918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936

    Args:
        x (Tensor): the input tensor, it's data type should be float32, float64, int32, int64.
        y (Tensor): the input tensor, it's data type should be float32, float64, int32, int64.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        N-D Tensor. A location into which the result is stored. If x, y have different shapes and are "broadcastable", the resulting tensor shape is the shape of x and y after broadcasting. If x, y have the same shape,  its shape is the same as x and y.

    Examples:

        .. code-block:: python

            import paddle

            x = paddle.to_tensor([[1, 2], [7, 8]])
            y = paddle.to_tensor([[3, 4], [5, 6]])
            res = paddle.maximum(x, y)
            print(res)
937 938 939
            # Tensor(shape=[2, 2], dtype=int64, place=Place(cpu), stop_gradient=True,
            #        [[3, 4],
            #         [7, 8]])
940 941 942 943 944

            x = paddle.to_tensor([[1, 2, 3], [1, 2, 3]])
            y = paddle.to_tensor([3, 0, 4])
            res = paddle.maximum(x, y)
            print(res)
945 946 947
            # Tensor(shape=[2, 3], dtype=int64, place=Place(cpu), stop_gradient=True,
            #        [[3, 2, 4],
            #         [3, 2, 4]])
948 949

            x = paddle.to_tensor([2, 3, 5], dtype='float32')
950
            y = paddle.to_tensor([1, float("nan"), float("nan")], dtype='float32')
951 952
            res = paddle.maximum(x, y)
            print(res)
953 954
            # Tensor(shape=[3], dtype=float32, place=Place(cpu), stop_gradient=True,
            #        [2. , nan, nan])
955

956 957
            x = paddle.to_tensor([5, 3, float("inf")], dtype='float32')
            y = paddle.to_tensor([1, -float("inf"), 5], dtype='float32')
958 959
            res = paddle.maximum(x, y)
            print(res)
960 961
            # Tensor(shape=[3], dtype=float32, place=Place(cpu), stop_gradient=True,
            #        [5.  , 3.  , inf.])
962 963
    """
    op_type = 'elementwise_max'
964
    axis = -1
965
    act = None
966 967 968
    if in_dygraph_mode():
        return _C_ops.maximum(x, y)
    elif _in_legacy_dygraph():
969 970 971 972 973
        return _elementwise_op_in_dygraph(x,
                                          y,
                                          axis=axis,
                                          act=act,
                                          op_name=op_type)
974 975
    return _elementwise_op(LayerHelper(op_type, **locals()))

976

977
def minimum(x, y, name=None):
978
    """
C
Chen Long 已提交
979
    Compare two tensors and return a new tensor containing the element-wise minima. The equation is:
980

981 982
    .. math::
        out = min(x, y)
983

984 985
    Note:
        ``paddle.minimum`` supports broadcasting. If you want know more about broadcasting, please refer to :ref:`user_guide_broadcasting` .
986 987 988 989 990 991 992

    Args:
        x (Tensor): the input tensor, it's data type should be float32, float64, int32, int64.
        y (Tensor): the input tensor, it's data type should be float32, float64, int32, int64.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
C
Chen Long 已提交
993
        Tensor. If x, y have different shapes and are "broadcastable", the resulting tensor shape is the shape of x and y after broadcasting. If x, y have the same shape,  its shape is the same as x and y.
994 995 996 997 998 999 1000 1001 1002 1003 1004

    Examples:

        .. code-block:: python

            import paddle

            x = paddle.to_tensor([[1, 2], [7, 8]])
            y = paddle.to_tensor([[3, 4], [5, 6]])
            res = paddle.minimum(x, y)
            print(res)
1005 1006 1007
            # Tensor(shape=[2, 2], dtype=int64, place=Place(cpu), stop_gradient=True,
            #        [[1, 2],
            #         [5, 6]])
1008 1009 1010 1011 1012

            x = paddle.to_tensor([[[1, 2, 3], [1, 2, 3]]])
            y = paddle.to_tensor([3, 0, 4])
            res = paddle.minimum(x, y)
            print(res)
1013 1014 1015
            # Tensor(shape=[1, 2, 3], dtype=int64, place=Place(cpu), stop_gradient=True,
            #        [[[1, 0, 3],
            #          [1, 0, 3]]])
1016 1017

            x = paddle.to_tensor([2, 3, 5], dtype='float32')
1018
            y = paddle.to_tensor([1, float("nan"), float("nan")], dtype='float32')
1019 1020
            res = paddle.minimum(x, y)
            print(res)
1021 1022
            # Tensor(shape=[3], dtype=float32, place=Place(cpu), stop_gradient=True,
            #        [1. , nan, nan])
1023

1024 1025
            x = paddle.to_tensor([5, 3, float("inf")], dtype='float64')
            y = paddle.to_tensor([1, -float("inf"), 5], dtype='float64')
1026 1027
            res = paddle.minimum(x, y)
            print(res)
1028 1029
            # Tensor(shape=[3], dtype=float64, place=Place(cpu), stop_gradient=True,
            #        [ 1.  , -inf.,  5.  ])
1030 1031
    """
    op_type = 'elementwise_min'
1032
    axis = -1
1033
    act = None
1034 1035 1036
    if in_dygraph_mode():
        return _C_ops.minimum(x, y)
    elif _in_legacy_dygraph():
1037 1038 1039 1040 1041
        return _elementwise_op_in_dygraph(x,
                                          y,
                                          axis=axis,
                                          act=act,
                                          op_name=op_type)
1042
    return _elementwise_op(LayerHelper(op_type, **locals()))
1043

1044

L
LJQ❤️ 已提交
1045 1046 1047 1048 1049 1050 1051 1052 1053
def fmax(x, y, name=None):
    """
    Compares the elements at the corresponding positions of the two tensors and returns a new tensor containing the maximum value of the element.
    If one of them is a nan value, the other value is directly returned, if both are nan values, then the first nan value is returned.
    The equation is:

    .. math::
        out = fmax(x, y)

1054 1055
    Note:
        ``paddle.fmax`` supports broadcasting. If you want know more about broadcasting, please refer to :ref:`user_guide_broadcasting` .
L
LJQ❤️ 已提交
1056 1057

    Args:
1058 1059
        x (Tensor): the input tensor, it's data type should be float16, float32, float64, int32, int64.
        y (Tensor): the input tensor, it's data type should be float16, float32, float64, int32, int64.
L
LJQ❤️ 已提交
1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        N-D Tensor. A location into which the result is stored. If x, y have different shapes and are "broadcastable", the resulting tensor shape is the shape of x and y after broadcasting. If x, y have the same shape,  its shape is the same as x and y.

    Examples:

        .. code-block:: python

            import paddle

            x = paddle.to_tensor([[1, 2], [7, 8]])
            y = paddle.to_tensor([[3, 4], [5, 6]])
            res = paddle.fmax(x, y)
            print(res)
1075 1076 1077
            # Tensor(shape=[2, 2], dtype=int64, place=Place(cpu), stop_gradient=True,
            #        [[3, 4],
            #         [7, 8]])
L
LJQ❤️ 已提交
1078 1079 1080 1081 1082

            x = paddle.to_tensor([[1, 2, 3], [1, 2, 3]])
            y = paddle.to_tensor([3, 0, 4])
            res = paddle.fmax(x, y)
            print(res)
1083 1084 1085
            # Tensor(shape=[2, 3], dtype=int64, place=Place(cpu), stop_gradient=True,
            #        [[3, 2, 4],
            #         [3, 2, 4]])
L
LJQ❤️ 已提交
1086 1087

            x = paddle.to_tensor([2, 3, 5], dtype='float32')
1088
            y = paddle.to_tensor([1, float("nan"), float("nan")], dtype='float32')
L
LJQ❤️ 已提交
1089 1090
            res = paddle.fmax(x, y)
            print(res)
1091 1092
            # Tensor(shape=[3], dtype=float32, place=Place(cpu), stop_gradient=True,
            #        [2., 3., 5.])
L
LJQ❤️ 已提交
1093

1094 1095
            x = paddle.to_tensor([5, 3, float("inf")], dtype='float32')
            y = paddle.to_tensor([1, -float("inf"), 5], dtype='float32')
L
LJQ❤️ 已提交
1096 1097
            res = paddle.fmax(x, y)
            print(res)
1098 1099
            # Tensor(shape=[3], dtype=float32, place=Place(cpu), stop_gradient=True,
            #        [5.  , 3.  , inf.])
L
LJQ❤️ 已提交
1100 1101 1102 1103
    """
    op_type = 'elementwise_fmax'
    axis = -1
    act = None
1104
    if in_dygraph_mode():
1105
        return _C_ops.fmax(x, y, axis)
1106
    if _in_legacy_dygraph():
1107 1108 1109 1110 1111
        return _elementwise_op_in_dygraph(x,
                                          y,
                                          axis=axis,
                                          act=act,
                                          op_name=op_type)
L
LJQ❤️ 已提交
1112 1113
    return _elementwise_op(LayerHelper(op_type, **locals()))

1114

L
LJQ❤️ 已提交
1115 1116 1117 1118 1119 1120 1121 1122 1123
def fmin(x, y, name=None):
    """
    Compares the elements at the corresponding positions of the two tensors and returns a new tensor containing the minimum value of the element.
    If one of them is a nan value, the other value is directly returned, if both are nan values, then the first nan value is returned.
    The equation is:

    .. math::
        out = fmin(x, y)

1124 1125
    Note:
        ``paddle.fmin`` supports broadcasting. If you want know more about broadcasting, please refer to :ref:`user_guide_broadcasting` .
L
LJQ❤️ 已提交
1126 1127

    Args:
1128 1129
        x (Tensor): the input tensor, it's data type should be float16, float32, float64, int32, int64.
        y (Tensor): the input tensor, it's data type should be float16, float32, float64, int32, int64.
L
LJQ❤️ 已提交
1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        N-D Tensor. A location into which the result is stored. If x, y have different shapes and are "broadcastable", the resulting tensor shape is the shape of x and y after broadcasting. If x, y have the same shape,  its shape is the same as x and y.

    Examples:

        .. code-block:: python

            import paddle

            x = paddle.to_tensor([[1, 2], [7, 8]])
            y = paddle.to_tensor([[3, 4], [5, 6]])
            res = paddle.fmin(x, y)
            print(res)
1145 1146 1147
            # Tensor(shape=[2, 2], dtype=int64, place=Place(cpu), stop_gradient=True,
            #        [[1, 2],
            #         [5, 6]])
L
LJQ❤️ 已提交
1148 1149 1150 1151 1152

            x = paddle.to_tensor([[[1, 2, 3], [1, 2, 3]]])
            y = paddle.to_tensor([3, 0, 4])
            res = paddle.fmin(x, y)
            print(res)
1153 1154 1155
            # Tensor(shape=[1, 2, 3], dtype=int64, place=Place(cpu), stop_gradient=True,
            #        [[[1, 0, 3],
            #          [1, 0, 3]]])
L
LJQ❤️ 已提交
1156 1157

            x = paddle.to_tensor([2, 3, 5], dtype='float32')
1158
            y = paddle.to_tensor([1, float("nan"), float("nan")], dtype='float32')
L
LJQ❤️ 已提交
1159 1160
            res = paddle.fmin(x, y)
            print(res)
1161 1162
            # Tensor(shape=[3], dtype=float32, place=Place(cpu), stop_gradient=True,
            #        [1., 3., 5.])
L
LJQ❤️ 已提交
1163

1164 1165
            x = paddle.to_tensor([5, 3, float("inf")], dtype='float64')
            y = paddle.to_tensor([1, -float("inf"), 5], dtype='float64')
L
LJQ❤️ 已提交
1166 1167
            res = paddle.fmin(x, y)
            print(res)
1168 1169
            # Tensor(shape=[3], dtype=float64, place=Place(cpu), stop_gradient=True,
            #        [ 1.  , -inf.,  5.  ])
L
LJQ❤️ 已提交
1170 1171 1172 1173
    """
    op_type = 'elementwise_fmin'
    axis = -1
    act = None
1174
    if in_dygraph_mode():
1175
        return _C_ops.fmin(x, y, axis)
1176
    if _in_legacy_dygraph():
1177 1178 1179 1180 1181
        return _elementwise_op_in_dygraph(x,
                                          y,
                                          axis=axis,
                                          act=act,
                                          op_name=op_type)
L
LJQ❤️ 已提交
1182 1183
    return _elementwise_op(LayerHelper(op_type, **locals()))

Y
Yang Zhang 已提交
1184

1185
def sum(x, axis=None, dtype=None, keepdim=False, name=None):
1186 1187 1188 1189
    """
    Computes the sum of tensor elements over the given dimension.

    Args:
1190
        x (Tensor): An N-D Tensor, the data type is bool, float16, float32, float64, int32 or int64.
1191 1192
        axis (int|list|tuple, optional): The dimensions along which the sum is performed. If
            :attr:`None`, sum all elements of :attr:`x` and return a
N
Noel 已提交
1193
            Tensor with a single element, otherwise must be in the
1194 1195 1196 1197 1198 1199 1200
            range :math:`[-rank(x), rank(x))`. If :math:`axis[i] < 0`,
            the dimension to reduce is :math:`rank + axis[i]`.
        dtype (str, optional): The dtype of output Tensor. The default value is None, the dtype
            of output is the same as input Tensor `x`.
        keepdim (bool, optional): Whether to reserve the reduced dimension in the
            output Tensor. The result Tensor will have one fewer dimension
            than the :attr:`x` unless :attr:`keepdim` is true, default
1201
            value is False.
1202
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
1203 1204

    Returns:
1205
        Tensor: Results of summation operation on the specified axis of input Tensor `x`,
1206
        if `x.dtype='bool'`, `x.dtype='int32'`, it's data type is `'int64'`,
1207
        otherwise it's data type is the same as `x`.
1208 1209 1210 1211 1212

    Examples:
        .. code-block:: python

            import paddle
1213

1214
            # x is a Tensor with following elements:
1215 1216 1217
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
            # Each example is followed by the corresponding output tensor.
1218 1219
            x = paddle.to_tensor([[0.2, 0.3, 0.5, 0.9],
                                  [0.1, 0.2, 0.6, 0.7]])
1220
            out1 = paddle.sum(x)  # [3.5]
1221 1222 1223
            out2 = paddle.sum(x, axis=0)  # [0.3, 0.5, 1.1, 1.6]
            out3 = paddle.sum(x, axis=-1)  # [1.9, 1.6]
            out4 = paddle.sum(x, axis=1, keepdim=True)  # [[1.9], [1.6]]
1224

1225
            # y is a Tensor with shape [2, 2, 2] and elements as below:
1226 1227 1228
            #      [[[1, 2], [3, 4]],
            #      [[5, 6], [7, 8]]]
            # Each example is followed by the corresponding output tensor.
1229
            y = paddle.to_tensor([[[1, 2], [3, 4]],
1230
                                  [[5, 6], [7, 8]]])
1231 1232
            out5 = paddle.sum(y, axis=[1, 2]) # [10, 26]
            out6 = paddle.sum(y, axis=[0, 1]) # [16, 20]
1233

1234 1235 1236 1237 1238 1239 1240 1241 1242
            # x is a Tensor with following elements:
            #    [[True, True, True, True]
            #     [False, False, False, False]]
            # Each example is followed by the corresponding output tensor.
            x = paddle.to_tensor([[True, True, True, True],
                                  [False, False, False, False]])
            out7 = paddle.sum(x)  # [4]
            out8 = paddle.sum(x, axis=0)  # [1, 1, 1, 1]
            out9 = paddle.sum(x, axis=1)  # [4, 0]
1243
    """
1244 1245 1246 1247 1248
    if isinstance(axis, Variable):
        reduce_all_flag = True if axis.shape[0] == len(x.shape) else False
    else:
        if axis is not None and not isinstance(axis, (list, tuple)):
            axis = [axis]
1249

1250 1251 1252 1253 1254 1255 1256 1257 1258 1259
        if not axis:
            axis = []

        if len(axis) == 0:
            reduce_all_flag = True
        else:
            if len(axis) == len(x.shape):
                reduce_all_flag = True
            else:
                reduce_all_flag = False
1260

1261 1262 1263 1264
    dtype_flag = False
    if dtype is not None:
        dtype_flag = True
        dtype = convert_np_dtype_to_dtype_(dtype)
F
From00 已提交
1265 1266

    if in_dygraph_mode():
1267
        return _C_ops.sum(x, axis, dtype, keepdim)
F
From00 已提交
1268

1269 1270 1271 1272
    if not isinstance(axis, Variable):
        axis = axis if axis != None and axis != [] and axis != () else [0]
        if utils._contain_var(axis):
            axis = utils._convert_to_tensor_list(axis)
1273

F
From00 已提交
1274
    if _in_legacy_dygraph():
1275
        if dtype_flag:
1276
            return _legacy_C_ops.reduce_sum(x, 'dim', axis, 'keep_dim', keepdim,
1277 1278 1279
                                            'reduce_all', reduce_all_flag,
                                            'in_dtype', x.dtype, 'out_dtype',
                                            dtype)
1280
        else:
1281
            return _legacy_C_ops.reduce_sum(x, 'dim', axis, 'keep_dim', keepdim,
1282
                                            'reduce_all', reduce_all_flag)
W
wanghuancoder 已提交
1283

1284
    attrs = {'dim': axis, 'keep_dim': keepdim, 'reduce_all': reduce_all_flag}
W
wanghuancoder 已提交
1285

1286
    if dtype_flag:
1287
        attrs.update({'in_dtype': x.dtype, 'out_dtype': dtype})
W
wanghuancoder 已提交
1288

1289 1290 1291 1292 1293
    check_variable_and_dtype(x, 'x', [
        'bool', 'float16', 'float32', 'float64', 'int16', 'int32', 'int64',
        'complex64', 'complex128', u'bool', u'float16', u'float32', u'float64',
        u'int32', u'int64', u'complex64', u'complex128'
    ], 'sum')
1294

1295
    check_type(axis, 'axis', (int, list, tuple, type(None), Variable), 'sum')
1296

1297 1298
    helper = LayerHelper('sum', **locals())
    if dtype_flag:
1299
        out = helper.create_variable_for_type_inference(dtype=dtype)
1300
    else:
1301
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
1302 1303 1304 1305
    helper.append_op(type='reduce_sum',
                     inputs={'X': x},
                     outputs={'Out': out},
                     attrs=attrs)
1306
    return out
1307

1308

W
wangguanqun 已提交
1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325
def nansum(x, axis=None, dtype=None, keepdim=False, name=None):
    """
    Computes the sum of tensor elements over the given axis, treating Not a Numbers (NaNs) as zero.

    Args:
        x (Tensor): An N-D Tensor, the data type is float32, float64, int32 or int64.
        axis (int|list|tuple, optional): The dimensions along which the nansum is performed. If
            :attr:`None`, nansum all elements of :attr:`x` and return a
            Tensor with a single element, otherwise must be in the
            range :math:`[-rank(x), rank(x))`. If :math:`axis[i] < 0`,
            the dimension to reduce is :math:`rank + axis[i]`.
        dtype (str, optional): The dtype of output Tensor. The default value is None, the dtype
            of output is the same as input Tensor `x`.
        keepdim (bool, optional): Whether to reserve the reduced dimension in the
            output Tensor. The result Tensor will have one fewer dimension
            than the :attr:`x` unless :attr:`keepdim` is true, default
            value is False.
1326
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
W
wangguanqun 已提交
1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339

    Returns:
        Tensor: Results of summation operation on the specified axis of input Tensor `x`,

    Examples:
        .. code-block:: python

            import paddle

            # x is a Tensor with following elements:
            #    [[nan, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, -nan, 0.7]]
            # Each example is followed by the corresponding output tensor.
1340 1341
            x = paddle.to_tensor([[float('nan'), 0.3, 0.5, 0.9],
                            [0.1, 0.2, float('-nan'), 0.7]],dtype="float32")
W
wangguanqun 已提交
1342 1343 1344 1345 1346 1347 1348 1349 1350
            out1 = paddle.nansum(x)  # [2.7]
            out2 = paddle.nansum(x, axis=0)  # [0.1, 0.5, 0.5, 1.6]
            out3 = paddle.nansum(x, axis=-1)  # [1.7, 1.0]
            out4 = paddle.nansum(x, axis=1, keepdim=True)  # [[1.7], [1.0]]

            # y is a Tensor with shape [2, 2, 2] and elements as below:
            #      [[[1, nan], [3, 4]],
            #      [[5, 6], [-nan, 8]]]
            # Each example is followed by the corresponding output tensor.
1351
            y = paddle.to_tensor([[[1, float('nan')], [3, 4]],
W
wangguanqun 已提交
1352 1353 1354 1355
                            [[5, 6], [float('-nan'), 8]]])
            out5 = paddle.nansum(y, axis=[1, 2]) # [8, 19]
            out6 = paddle.nansum(y, axis=[0, 1]) # [9, 18]
    """
1356 1357
    check_variable_and_dtype(x, 'x', ['float32', 'float64', 'int32', 'int64'],
                             'nansum')
W
wangguanqun 已提交
1358 1359 1360 1361 1362 1363 1364
    check_type(axis, 'axis', (int, list, tuple, type(None)), 'nansum')

    zero_tensor = paddle.zeros_like(x)
    tmp_tensor = paddle.where(isnan(x), zero_tensor, x)
    return sum(tmp_tensor, axis, dtype, keepdim, name)


1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423
def nanmean(x, axis=None, keepdim=False, name=None):
    r"""
    Compute the arithmetic mean along the specified axis, ignoring NaNs.

    Args:
        x (Tensor): The input Tensor with data type uint16, float16, float32, float64.
        axis (int|list|tuple, optional):The axis along which to perform nanmean
            calculations. ``axis`` should be int, list(int) or tuple(int). If
            ``axis`` is a list/tuple of dimension(s), nanmean is calculated along
            all element(s) of ``axis`` . ``axis`` or element(s) of ``axis``
            should be in range [-D, D), where D is the dimensions of ``x`` . If
            ``axis`` or element(s) of ``axis`` is less than 0, it works the
            same way as :math:`axis + D` . If ``axis`` is None, nanmean is
            calculated over all elements of ``x``. Default is None.
        keepdim (bool, optional): Whether to reserve the reduced dimension(s)
            in the output Tensor. If ``keepdim`` is True, the dimensions of
            the output Tensor is the same as ``x`` except in the reduced
            dimensions(it is of size 1 in this case). Otherwise, the shape of
            the output Tensor is squeezed in ``axis`` . Default is False.
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        Tensor, results of arithmetic mean along ``axis`` of ``x``, with the same data
        type as ``x``.

    Examples:

        .. code-block:: python
            :name: code-example1

            import paddle
            # x is a 2-D Tensor:
            x = paddle.to_tensor([[float('nan'), 0.3, 0.5, 0.9],
                                  [0.1, 0.2, float('-nan'), 0.7]])
            out1 = paddle.nanmean(x)
            # [0.44999996]
            out2 = paddle.nanmean(x, axis=0)
            # [0.1, 0.25, 0.5, 0.79999995]
            out3 = paddle.nanmean(x, axis=0, keepdim=True)
            # [[0.1, 0.25, 0.5, 0.79999995]]
            out4 = paddle.nanmean(x, axis=1)
            # [0.56666666 0.33333334]
            out5 = paddle.nanmean(x, axis=1, keepdim=True)
            # [[0.56666666]
            #  [0.33333334]]

            # y is a 3-D Tensor:
            y = paddle.to_tensor([[[1, float('nan')], [3, 4]],
                                   [[5, 6], [float('-nan'), 8]]])
            out6 = paddle.nanmean(y, axis=[1, 2])
            # [2.66666675, 6.33333349]
            out7 = paddle.nanmean(y, axis=[0, 1])
            # [3., 6.]
    """
    if isinstance(axis, int):
        axis = [axis]
    check_variable_and_dtype(x, 'x/input',
                             ['uint16', 'float16', 'float32', 'float64'],
1424
                             'nanmean')
1425 1426 1427
    if axis is not None:
        check_type(axis, 'axis/dim', (int, list, tuple), 'nanmean')

1428 1429 1430 1431
    cnt = paddle.sum(~paddle.isnan(x), axis=axis, keepdim=keepdim)
    return paddle.divide(
        paddle.nansum(x, axis=axis, keepdim=keepdim, name=name),
        cnt.astype(x.dtype))
1432 1433


1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487
def count_nonzero(x, axis=None, keepdim=False, name=None):
    r"""
    Counts the number of non-zero values in the tensor x along the specified axis.

    Args:
        x (Tensor): An N-D Tensor, the data type is bool, float16, float32, float64, int32 or int64.
        axis (int|list|tuple, optional): The dimensions along which the sum is performed. If
            :attr:`None`, sum all elements of :attr:`x` and return a
            Tensor with a single element, otherwise must be in the
            range :math:`[-rank(x), rank(x))`. If :math:`axis[i] < 0`,
            the dimension to reduce is :math:`rank + axis[i]`.
        keepdim (bool, optional): Whether to reserve the reduced dimension in the
            output Tensor. The result Tensor will have one fewer dimension
            than the :attr:`x` unless :attr:`keepdim` is true, default
            value is False.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        Tensor: Results of count operation on the specified axis of input Tensor `x`, it's data type is `'int64'`.

    Examples:

        .. code-block:: python

            import paddle
            # x is a 2-D Tensor:
            x = paddle.to_tensor([[0., 1.1, 1.2], [0., 0., 1.3], [0., 0., 0.]])
            out1 = paddle.count_nonzero(x)
            # [3]
            out2 = paddle.count_nonzero(x, axis=0)
            # [0, 1, 2]
            out3 = paddle.count_nonzero(x, axis=0, keepdim=True)
            # [[0, 1, 2]]
            out4 = paddle.count_nonzero(x, axis=1)
            # [2, 1, 0]
            out5 = paddle.count_nonzero(x, axis=1, keepdim=True)
            #[[2],
            # [1],
            # [0]]

            # y is a 3-D Tensor:
            y = paddle.to_tensor([[[0., 1.1, 1.2], [0., 0., 1.3], [0., 0., 0.]],
                                  [[0., 2.5, 2.6], [0., 0., 2.4], [2.1, 2.2, 2.3]]])
            out6 = paddle.count_nonzero(y, axis=[1, 2])
            # [3, 6]
            out7 = paddle.count_nonzero(y, axis=[0, 1])
            # [1, 3, 5]
    """

    if axis is not None:
        if isinstance(axis, int):
            axis = [axis]
        dims = len(x.shape)
        for i in range(len(axis)):
1488 1489
            if not isinstance(axis[i], int) or not (axis[i] < dims
                                                    and axis[i] >= -dims):
1490 1491 1492 1493 1494 1495 1496 1497 1498
                raise ValueError(
                    "Axis should be None, int, or a list, element should in range [-rank(x), rank(x))."
                )

    bool_tensor = paddle.cast(x, 'bool')
    int_tensor = paddle.cast(bool_tensor, 'int64')
    return paddle.sum(int_tensor, axis=axis, keepdim=keepdim, name=name)


1499
@templatedoc(op_type="sum")
S
Steffy-zxf 已提交
1500
def add_n(inputs, name=None):
1501
    """
1502
    Sum one or more Tensor of the input.
1503

S
Steffy-zxf 已提交
1504 1505 1506
    For example:

    .. code-block:: text
1507

S
Steffy-zxf 已提交
1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520
        Case 1:

            Input:
                input.shape = [2, 3]
                input = [[1, 2, 3],
                         [4, 5, 6]]

            Output:
                output.shape = [2, 3]
                output = [[1, 2, 3],
                          [4, 5, 6]]

        Case 2:
1521

S
Steffy-zxf 已提交
1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536
            Input:
                First input:
                    input1.shape = [2, 3]
                    Input1 = [[1, 2, 3],
                              [4, 5, 6]]

                The second input:
                    input2.shape = [2, 3]
                    input2 = [[7, 8, 9],
                              [10, 11, 12]]

                Output:
                    output.shape = [2, 3]
                    output = [[8, 10, 12],
                              [14, 16, 18]]
1537 1538

    Args:
1539
        inputs (Tensor|list[Tensor]|tuple[Tensor]):  A Tensor or a list/tuple of Tensors. The shape and data type of the list/tuple elements should be consistent.
S
Steffy-zxf 已提交
1540
            Input can be multi-dimensional Tensor, and data types can be: float32, float64, int32, int64.
1541
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
1542 1543

    Returns:
S
Steffy-zxf 已提交
1544
        Tensor, the sum of input :math:`inputs` , its shape and data types are consistent with :math:`inputs`.
1545 1546 1547

    Examples:
        .. code-block:: python
1548

1549 1550
            import paddle

S
Steffy-zxf 已提交
1551 1552 1553
            input0 = paddle.to_tensor([[1, 2, 3], [4, 5, 6]], dtype='float32')
            input1 = paddle.to_tensor([[7, 8, 9], [10, 11, 12]], dtype='float32')
            output = paddle.add_n([input0, input1])
1554
            # [[8., 10., 12.],
S
Steffy-zxf 已提交
1555
            #  [14., 16., 18.]]
1556
    """
1557 1558 1559
    if in_dygraph_mode():
        if isinstance(inputs, Variable):
            inputs = [inputs]
1560
        return _C_ops.add_n(inputs)
1561
    if _in_legacy_dygraph():
S
Steffy-zxf 已提交
1562 1563
        if isinstance(inputs, Variable):
            inputs = [inputs]
1564
        return _legacy_C_ops.sum(inputs, 'use_mkldnn', False)
1565

S
Steffy-zxf 已提交
1566 1567
    helper = LayerHelper('add_n', **locals())
    check_type(inputs, 'inputs', (Variable, tuple, list), 'add_n')
1568 1569 1570 1571
    if isinstance(inputs, list) or isinstance(inputs, tuple):
        if len(inputs) > 0:
            for input in inputs:
                check_variable_and_dtype(input, "inputs", \
W
WangXi 已提交
1572
                   ['float16', 'float32', 'float64', 'int32', 'int64'], 'add_n')
1573 1574
    else:
        check_variable_and_dtype(inputs, "inputs", \
W
WangXi 已提交
1575
                ['float16', 'float32', 'float64', 'int32', 'int64'], 'add_n')
1576

1577 1578
    out = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype('inputs'))
1579 1580 1581 1582
    helper.append_op(type='sum',
                     inputs={'X': inputs},
                     outputs={'Out': out},
                     attrs={'use_mkldnn': False})
1583 1584 1585 1586

    return out


1587 1588 1589
def trunc(input, name=None):
    '''
    This API is used to returns a new tensor with the truncated integer values of input.
1590

1591 1592 1593
    Args:
        input (Tensor): The input tensor, it's data type should be int32, int64, float32, float64.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
1594

1595 1596
    Returns:
        Tensor: The output Tensor of trunc.
1597

1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614
    Examples:
        .. code-block:: python

            import paddle

            input = paddle.rand([2,2],'float32')
            print(input)
            # Tensor(shape=[2, 2], dtype=float32, place=CUDAPlace(0), stop_gradient=True,
            #         [[0.02331470, 0.42374918],
            #         [0.79647720, 0.74970269]])

            output = paddle.trunc(input)
            print(output)
            # Tensor(shape=[2, 2], dtype=float32, place=CUDAPlace(0), stop_gradient=True,
            #         [[0., 0.],
            #         [0., 0.]]))
    '''
J
Jiabin Yang 已提交
1615
    if in_dygraph_mode():
1616
        return _C_ops.trunc(input)
1617
    else:
J
Jiabin Yang 已提交
1618
        if _in_legacy_dygraph():
1619
            return _legacy_C_ops.trunc(input)
J
Jiabin Yang 已提交
1620 1621 1622
        else:
            inputs = {"X": input}
            attrs = {}
1623

J
Jiabin Yang 已提交
1624
            helper = LayerHelper("trunc", **locals())
1625 1626 1627
            check_variable_and_dtype(input, 'X',
                                     ['int32', 'int64', 'float32', 'float64'],
                                     'trunc')
J
Jiabin Yang 已提交
1628
            out = helper.create_variable_for_type_inference(dtype=input.dtype)
1629

1630 1631 1632 1633
            helper.append_op(type="trunc",
                             inputs=inputs,
                             attrs=attrs,
                             outputs={"Out": out})
J
Jiabin Yang 已提交
1634
            return out
1635 1636


W
WuHaobo 已提交
1637
def mm(input, mat2, name=None):
1638
    """
S
swtkiwi 已提交
1639

1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650
    Applies matrix multiplication to two tensors.

    Currently, the input tensors' rank can be any, but when the rank of any
    inputs is bigger than 3, this two inputs' rank should be equal.


    Also note that if the raw tensor :math:`x` or :math:`mat2` is rank-1 and
    nontransposed, the prepended or appended dimension :math:`1` will be
    removed after matrix multiplication.

    Args:
1651
        input (Tensor): The input tensor which is a Tensor.
N
Noel 已提交
1652
        mat2 (Tensor): The input tensor which is a Tensor.
1653
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
1654 1655

    Returns:
N
Noel 已提交
1656
        Tensor: The product Tensor.
1657

W
wawltor 已提交
1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689
    ::

        * example 1:

        input: [B, ..., M, K], mat2: [B, ..., K, N]
        out: [B, ..., M, N]

        * example 2:

        input: [B, M, K], mat2: [B, K, N]
        out: [B, M, N]

        * example 3:

        input: [B, M, K], mat2: [K, N]
        out: [B, M, N]

        * example 4:

        input: [M, K], mat2: [K, N]
        out: [M, N]

        * example 5:

        input: [B, M, K], mat2: [K]
        out: [B, M]

        * example 6:

        input: [K], mat2: [K]
        out: [1]

1690 1691 1692 1693
    Examples:
        .. code-block:: python

            import paddle
1694 1695 1696 1697 1698 1699 1700 1701
            input = paddle.arange(1, 7).reshape((3, 2)).astype('float32')
            mat2 = paddle.arange(1, 9).reshape((2, 4)).astype('float32')
            out = paddle.mm(input, mat2)
            print(out)
            #        [[11., 14., 17., 20.],
            #         [23., 30., 37., 44.],
            #         [35., 46., 57., 68.]])

N
Noel 已提交
1702

1703
    """
1704
    if in_dygraph_mode():
1705
        return _C_ops.matmul(input, mat2, False, False)
1706
    elif paddle.in_dynamic_mode():
1707
        return _legacy_C_ops.matmul_v2(input, mat2)
1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744

    def __check_input(x, y):
        var_names = {'x': x, 'y': y}
        for name, val in var_names.items():
            check_variable_and_dtype(val, name,
                                     ['float16', 'float32', 'float64'], 'mm')
        x_shape = list(x.shape)
        y_shape = list(y.shape)
        if len(x_shape) == 1:
            x_shape = [1] + x_shape
        if len(y_shape) == 1:
            y_shape = y_shape + [1]

        # check the inner 2 dimensions
        if x_shape[-1] != y_shape[-2]:
            if not ((x_shape[-1] == -1) or (y_shape[-2] == -1)):
                raise ValueError(
                    "After performing an optional transpose, Input X's width should be "
                    "equal to Y's width for multiplication "
                    "prerequisites. But received X's shape: %s, Y's shape: %s\n"
                    % (x_shape, y_shape))

        if len(y_shape) > 2 and len(x_shape) > 2:
            for i, dim_x in enumerate(x_shape[:-2]):
                # don't check neg shape
                if dim_x < 0 or y_shape[i] < 0:
                    continue
                if dim_x != y_shape[i]:
                    raise ValueError(
                        "When the matrix is larger than 2 dimensions, the higher "
                        "dimensional values of the two matrices need to be equal. "
                        "But received x_shape[%d] != y_shape[%d]. X's shape: %s, "
                        "Y's shape: %s.\n" % (i, i, x_shape, y_shape))

    __check_input(input, mat2)

    helper = LayerHelper('mm', **locals())
W
WuHaobo 已提交
1745
    out = helper.create_variable_for_type_inference(dtype=input.dtype)
1746 1747 1748 1749 1750 1751
    helper.append_op(type='matmul_v2',
                     inputs={
                         'X': input,
                         'Y': mat2
                     },
                     outputs={'Out': out})
1752
    return out
1753

1754

Y
yaoxuefeng 已提交
1755
def addmm(input, x, y, beta=1.0, alpha=1.0, name=None):
1756 1757 1758
    """
    **addmm**

1759
    Perform matrix multiplication for input $x$ and $y$.
1760 1761 1762 1763 1764 1765 1766 1767 1768
    $input$ is added to the final result.
    The equation is:

    ..  math::
        Out = alpha * x * y + beta * input

    $Input$, $x$ and $y$ can carry the LoD (Level of Details) information, or not. But the output only shares the LoD information with input $input$.

    Args:
Y
yaoxuefeng 已提交
1769 1770 1771
        input (Tensor): The input Tensor to be added to the final result.
        x (Tensor): The first input Tensor for matrix multiplication.
        y (Tensor): The second input Tensor for matrix multiplication.
1772 1773
        beta (float, optional): Coefficient of $input$, default is 1.
        alpha (float, optional): Coefficient of $x*y$, default is 1.
1774
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
1775 1776

    Returns:
1777
        Tensor: The output Tensor of addmm.
1778 1779 1780

    Examples:
        ..  code-block:: python
1781

1782 1783
            import paddle

Y
yaoxuefeng 已提交
1784 1785 1786
            x = paddle.ones([2,2])
            y = paddle.ones([2,2])
            input = paddle.ones([2,2])
Y
yaoxuefeng 已提交
1787

Y
yaoxuefeng 已提交
1788
            out = paddle.addmm( input=input, x=x, y=y, beta=0.5, alpha=5.0 )
Y
yaoxuefeng 已提交
1789

N
Noel 已提交
1790
            print(out)
1791 1792 1793
            # [[10.5 10.5]
            # [10.5 10.5]]
    """
Y
yaoxuefeng 已提交
1794 1795 1796
    input_shape = input.shape
    x_shape = x.shape
    y_shape = y.shape
1797
    if not len(x_shape) == len(y_shape) == 2:
1798 1799 1800
        raise ValueError(
            "The dimention of x, y should be 2 but receive x's shape: {}, y's shape: {}"
            .format(x_shape, y_shape))
Y
yaoxuefeng 已提交
1801
    if x_shape[1] != y_shape[0]:
1802 1803 1804
        raise ValueError(
            "The input Variable x's width must be equal with Variable y' height. But received x's shape = {}, y's shape = {}."
            .format(x_shape, y_shape))
1805 1806 1807
    if len(input_shape) == 2:
        if input_shape[0] != x_shape[0]:
            if input_shape[0] != 1:
1808 1809 1810
                raise ValueError(
                    "When x's dimension[0] is not equal with input's dimension[0], input's dimension[0] must be 1 but got {}"
                    .format(input_shape[0]))
1811
            if input_shape[1] != y_shape[1] and input_shape[1] != 1:
1812 1813 1814
                raise ValueError(
                    "When y's dimension[1] is not equal with input's dimension[1], input's dimension[1] must be 1 but got {}"
                    .format(input_shape[1]))
1815 1816
        if input_shape[1] != y_shape[1]:
            if input_shape[1] != 1:
1817 1818 1819
                raise ValueError(
                    "When y's dimension[1] is not equal with input's dimension[1], input's dimension[1] must be 1 but got {}"
                    .format(input_shape[1]))
1820 1821
    elif len(input_shape) == 1:
        if input_shape[0] not in (y_shape[1], 1):
1822 1823 1824
            raise ValueError(
                "The input's shape: {} is not broadcastable with [x.shape[0], y.shape[1]]: [{},{}]"
                .format(input_shape, x_shape[0], y_shape[1]))
1825
    else:
1826 1827 1828
        raise ValueError(
            "The dimention of input should be 2 or 1 but receive input's shape: {}"
            .format(input_shape))
Y
yaoxuefeng 已提交
1829

J
Jiabin Yang 已提交
1830
    if in_dygraph_mode():
1831
        return _C_ops.addmm(input, x, y, alpha, beta)
J
Jiabin Yang 已提交
1832 1833
    else:
        if _in_legacy_dygraph():
1834
            out = _legacy_C_ops.addmm(input, x, y, "Alpha", alpha, "Beta", beta)
J
Jiabin Yang 已提交
1835 1836 1837 1838
            return out
        else:
            inputs = {'Input': input, "X": x, "Y": y}
            attrs = {'Alpha': alpha, 'Beta': beta}
1839

J
Jiabin Yang 已提交
1840
            helper = LayerHelper("addmm", **locals())
1841 1842
            check_variable_and_dtype(input, 'Input', ['float32', 'float64'],
                                     'addmm')
J
Jiabin Yang 已提交
1843 1844 1845
            check_variable_and_dtype(x, 'X', ['float32', 'float64'], 'addmm')
            check_variable_and_dtype(y, 'Y', ['float32', 'float64'], 'addmm')
            out = helper.create_variable_for_type_inference(dtype=x.dtype)
1846

1847 1848 1849 1850
            helper.append_op(type="addmm",
                             inputs=inputs,
                             attrs=attrs,
                             outputs={"Out": out})
J
Jiabin Yang 已提交
1851
            return out
1852

1853

S
seemingwang 已提交
1854 1855 1856 1857 1858 1859 1860
def renorm(x, p, axis, max_norm):
    """
    **renorm**

    This operator is used to calculate the p-norm along the axis,
    suppose the input-shape on axis dimension has the value of T, then
    the tensor is split into T parts, the p-norm should be calculated for each
1861
    part, if the p-norm for part i is larger than max-norm, then each element
S
seemingwang 已提交
1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875
    in part i should be re-normalized at the same scale so that part-i' p-norm equals
    max-norm exactly, otherwise part-i stays unchanged.

    Args:
        x (Tensor): The input Tensor
        p (float): The power of the norm operation.
        axis (int): the dimension to slice the tensor.
        max-norm (float): the maximal norm limit.

    Returns:
        Tensor: the renorm Tensor.

    Examples:
        ..  code-block:: python
1876

S
seemingwang 已提交
1877 1878 1879 1880
            import paddle
            input = [[[2.0,2,-2],[3,0.3,3]],[[2,-8,2],[3.1,3.7,3]]]
            x = paddle.to_tensor(input,dtype='float32')
            y = paddle.renorm(x, 1.0, 2, 2.05)
1881
            print(y)
S
seemingwang 已提交
1882 1883 1884 1885
    #        [[[ 0.40594056,  0.29285714, -0.41000000],
    #          [ 0.60891086,  0.04392857,  0.61500001]],
    #         [[ 0.40594056, -1.17142856,  0.41000000],
    #          [ 0.62920785,  0.54178572,  0.61500001]]])
1886

S
seemingwang 已提交
1887 1888 1889 1890
    """
    input_shape = x.shape
    check_variable_and_dtype(x, 'x', ['float32', 'float64'], 'renorm')
    if not axis < len(input_shape):
1891 1892 1893 1894
        raise ValueError(
            "the axis:{} should be less then the shape's size {}:{}".format(
                axis, len(input_shape), input_shape))
    if not axis >= 0:
S
seemingwang 已提交
1895
        if not axis >= -1 * len(input_shape):
1896 1897 1898
            raise ValueError(
                "the axis:{} should not be less than -1 * length of input_shape:{}"
                .format(axis, -1 * len(input_shape)))
S
seemingwang 已提交
1899
        axis = axis + len(input_shape)
S
seemingwang 已提交
1900
    if in_dygraph_mode():
1901
        out = _C_ops.renorm(x, p, axis, max_norm)
S
seemingwang 已提交
1902 1903
        return out
    elif _in_legacy_dygraph():
1904 1905
        out = _legacy_C_ops.renorm(x, 'p', p, 'axis', axis, 'max_norm',
                                   max_norm)
S
seemingwang 已提交
1906 1907 1908
        return out

    inputs = {'X': x}
1909
    attrs = {'p': p, 'axis': axis, 'max_norm': max_norm}
S
seemingwang 已提交
1910 1911 1912 1913

    helper = LayerHelper("renorm", **locals())
    out = helper.create_variable_for_type_inference(dtype=x.dtype)

1914 1915 1916 1917
    helper.append_op(type="renorm",
                     inputs=inputs,
                     attrs=attrs,
                     outputs={"Out": out})
S
seemingwang 已提交
1918 1919
    return out

1920

Z
zhiboniu 已提交
1921 1922 1923 1924
def inner(x, y, name=None):
    """

    Inner product of two input Tensor.
1925

Z
zhiboniu 已提交
1926 1927 1928 1929 1930
    Ordinary inner product for 1-D Tensors, in higher dimensions a sum product over the last axes.

    Args:
        x (Tensor): An N-D Tensor or a Scalar Tensor. If its not a scalar Tensor, its last dimensions must match y's.
        y (Tensor): An N-D Tensor or a Scalar Tensor. If its not a scalar Tensor, its last dimensions must match x's.
1931
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
Z
zhiboniu 已提交
1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953

    Returns:
        Tensor: The inner-product Tensor, the output shape is x.shape[:-1] + y.shape[:-1].

    Examples:
        .. code-block:: python

            import paddle
            x = paddle.arange(1, 7).reshape((2, 3)).astype('float32')
            y = paddle.arange(1, 10).reshape((3, 3)).astype('float32')
            out = paddle.inner(x, y)
            print(out)
            #        ([[14, 32, 50],
            #         [32, 77, 122]])


    """
    if x.size == 1 or y.size == 1:
        return multiply(x, y)
    else:
        xshape = x.shape
        yshape = y.shape
1954 1955
        dstshape = list(xshape[:-1]) + list(yshape[:-1])
        if len(dstshape) == 0:
Z
zhiboniu 已提交
1956 1957 1958 1959
            dstshape = [1]
        nx = x.reshape((-1, xshape[-1]))
        ny = y.reshape((-1, yshape[-1]))

1960
        if in_dygraph_mode():
1961
            return _C_ops.matmul(nx, ny.T, False, False).reshape(dstshape)
1962
        elif paddle.in_dynamic_mode():
1963
            return _legacy_C_ops.matmul_v2(nx, ny.T).reshape(dstshape)
Z
zhiboniu 已提交
1964 1965 1966 1967 1968

        def __check_input(x, y):
            var_names = {'x': x, 'y': y}
            for name, val in var_names.items():
                check_variable_and_dtype(val, name,
1969 1970
                                         ['float16', 'float32', 'float64'],
                                         'inner')
Z
zhiboniu 已提交
1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986
            x_shape = list(xshape)
            y_shape = list(yshape)

            # check the inner 2 dimensions
            if x_shape[-1] != y_shape[-1]:
                if not ((x_shape[-1] == -1) or (y_shape[-1] == -1)):
                    raise ValueError(
                        "After performing an optional transpose, Input X's last dim should be "
                        "equal to Y's last dim for multiplication "
                        "prerequisites. But received X's shape: %s, Y's shape: %s\n"
                        % (x_shape, y_shape))

        __check_input(nx, ny)

        helper = LayerHelper('inner', **locals())
        out = helper.create_variable_for_type_inference(dtype=nx.dtype)
1987 1988 1989 1990 1991 1992
        helper.append_op(type='matmul_v2',
                         inputs={
                             'X': nx,
                             'Y': ny.T
                         },
                         outputs={'Out': out})
Z
zhiboniu 已提交
1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003
        return out.reshape(dstshape)


def outer(x, y, name=None):
    """

    Outer product of two Tensors.

    Input is flattened if not already 1-dimensional.

    Args:
2004 2005
        x (Tensor): An N-D Tensor or a Scalar Tensor.
        y (Tensor): An N-D Tensor or a Scalar Tensor.
2006
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
Z
zhiboniu 已提交
2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027

    Returns:
        Tensor: The outer-product Tensor.

    Examples:
        .. code-block:: python

            import paddle
            x = paddle.arange(1, 4).astype('float32')
            y = paddle.arange(1, 6).astype('float32')
            out = paddle.outer(x, y)
            print(out)
            #        ([[1, 2, 3, 4, 5],
            #         [2, 4, 6, 8, 10],
            #         [3, 6, 9, 12, 15]])


    """
    nx = x.reshape((-1, 1))
    ny = y.reshape((1, -1))

2028
    if in_dygraph_mode():
2029
        return _C_ops.matmul(nx, ny, False, False)
2030
    elif paddle.in_dynamic_mode():
2031
        return _legacy_C_ops.matmul_v2(nx, ny)
Z
zhiboniu 已提交
2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042

    def __check_input(x, y):
        var_names = {'x': x, 'y': y}
        for name, val in var_names.items():
            check_variable_and_dtype(val, name,
                                     ['float16', 'float32', 'float64'], 'inner')

    __check_input(nx, ny)

    helper = LayerHelper('outer', **locals())
    out = helper.create_variable_for_type_inference(dtype=nx.dtype)
2043 2044 2045 2046 2047 2048
    helper.append_op(type='matmul_v2',
                     inputs={
                         'X': nx,
                         'Y': ny
                     },
                     outputs={'Out': out})
Z
zhiboniu 已提交
2049 2050 2051
    return out


2052
def logsumexp(x, axis=None, keepdim=False, name=None):
2053
    r"""
2054
    Calculates the log of the sum of exponentials of ``x`` along ``axis`` .
2055

2056
    .. math::
2057
       logsumexp(x) = \log\sum exp(x)
2058

2059
    Args:
2060
        x (Tensor): The input Tensor with data type float32 or float64, which
S
Shang Zhizhou 已提交
2061
            have no more than 4 dimensions.
2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077
        axis (int|list|tuple, optional): The axis along which to perform
            logsumexp calculations. ``axis`` should be int, list(int) or
            tuple(int). If ``axis`` is a list/tuple of dimension(s), logsumexp
            is calculated along all element(s) of ``axis`` . ``axis`` or
            element(s) of ``axis`` should be in range [-D, D), where D is the
            dimensions of ``x`` . If ``axis`` or element(s) of ``axis`` is
            less than 0, it works the same way as :math:`axis + D` . If
            ``axis`` is None, logsumexp is calculated along all elements of
            ``x``. Default is None.
        keepdim (bool, optional): Whether to reserve the reduced dimension(s)
            in the output Tensor. If ``keep_dim`` is True, the dimensions of
            the output Tensor is the same as ``x`` except in the reduced
            dimensions(it is of size 1 in this case). Otherwise, the shape of
            the output Tensor is squeezed in ``axis`` . Default is False.
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.
2078

2079
    Returns:
2080 2081
        Tensor, results of logsumexp along ``axis`` of ``x``, with the same data
        type as ``x``.
2082

2083
    Examples:
2084

2085
    .. code-block:: python
2086

2087 2088
        import paddle

2089
        x = paddle.to_tensor([[-1.5, 0., 2.], [3., 1.2, -2.4]])
2090 2091
        out1 = paddle.logsumexp(x) # [3.4691226]
        out2 = paddle.logsumexp(x, 1) # [2.15317821, 3.15684602]
2092 2093

    """
2094 2095 2096 2097 2098 2099 2100
    if isinstance(axis, int):
        axis = [axis]
    reduce_all = True if axis is None \
        or len(axis)==0 \
        or len(axis) == len(x.shape) else False
    if axis is None or len(axis) == 0:
        axis = [0]
2101

2102 2103 2104
    if in_dygraph_mode():
        if reduce_all:
            axis = range(len(x.shape))
2105
        return _C_ops.logsumexp(x, axis, keepdim, reduce_all)
2106
    if _in_legacy_dygraph():
2107 2108
        return _legacy_C_ops.logsumexp(x, 'axis', axis, 'keepdim', keepdim,
                                       'reduce_all', reduce_all)
2109

2110
    check_variable_and_dtype(x, 'x', ['float32', 'float64'], 'logsumexp')
2111

2112
    helper = LayerHelper('logsumexp', **locals())
2113
    attrs = {'axis': axis, 'keepdim': keepdim, 'reduce_all': reduce_all}
2114
    out = helper.create_variable_for_type_inference(x.dtype)
2115 2116 2117 2118
    helper.append_op(type='logsumexp',
                     inputs={'X': x},
                     outputs={'Out': out},
                     attrs=attrs)
2119
    return out
2120

S
swtkiwi 已提交
2121

2122 2123
def inverse(x, name=None):
    """
2124 2125 2126 2127 2128
    Takes the inverse of the square matrix. A square matrix is a matrix with
    the same number of rows and columns. The input can be a square matrix
    (2-D Tensor) or batches of square matrices.

    Args:
2129
        x (Tensor): The input tensor. The last two
2130 2131 2132
            dimensions should be equal. When the number of dimensions is
            greater than 2, it is treated as batches of square matrix. The data
            type can be float32 and float64.
2133
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
2134 2135

    Returns:
2136
        Tensor: A Tensor holds the inverse of x. The shape and data type
2137
                        is the same as x.
2138 2139 2140 2141 2142

    Examples:
        .. code-block:: python

            import paddle
2143 2144

            mat = paddle.to_tensor([[2, 0], [0, 2]], dtype='float32')
2145 2146
            inv = paddle.inverse(mat)
            print(inv) # [[0.5, 0], [0, 0.5]]
2147 2148

    """
2149
    if in_dygraph_mode():
W
wanghuancoder 已提交
2150
        return _C_ops.inverse(x)
2151 2152
    elif paddle.in_dynamic_mode():
        return _legacy_C_ops.inverse(x)
2153

2154
    def _check_input(x):
2155
        check_variable_and_dtype(x, 'x', ['float32', 'float64'], 'inverse')
2156
        if len(x.shape) < 2:
2157 2158 2159
            raise ValueError(
                "The input of inverse is expected to be a Tensor whose number "
                "of dimensions is no less than 2. But reviced: %d, "
2160
                "x's shape: %s." % (len(x.shape), x.shape))
2161

2162
    _check_input(x)
2163
    helper = LayerHelper('inverse', **locals())
2164
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
2165 2166 2167
    helper.append_op(type='inverse',
                     inputs={'Input': [x]},
                     outputs={'Output': [out]})
2168 2169
    return out

2170

2171 2172
def _get_reduce_axis(axis):
    """
2173
    Internal function for max, min, amax and amin.
2174 2175 2176 2177 2178 2179
    It computes the attribute reduce_all value based on axis.
    """
    if axis is not None and not isinstance(axis, list):
        if isinstance(axis, tuple):
            axis = list(axis)
        elif isinstance(axis, int):
2180
            axis = [axis]
2181 2182
        else:
            raise TypeError(
2183 2184
                "The type of axis must be int, list or tuple, but received {}".
                format(type(axis)))
2185 2186 2187 2188 2189
    reduce_all = True if axis == None or axis == [] else False
    if axis == None:
        axis = []
    return reduce_all, axis

2190

2191 2192 2193 2194 2195
def _get_reduce_axis_with_tensor(axis):
    if isinstance(axis, Variable):
        return False, axis
    return _get_reduce_axis(axis)

2196

T
Tao Luo 已提交
2197 2198
def _get_reduce_all_value(axis):
    """
2199
    Internal function for max, min, amax and amin.
T
Tao Luo 已提交
2200 2201 2202 2203 2204 2205
    It computes the attribute reduce_all value based on axis.
    """
    if axis is not None and not isinstance(axis, list):
        if isinstance(axis, tuple):
            axis = list(axis)
        elif isinstance(axis, int):
2206
            axis = [axis]
T
Tao Luo 已提交
2207 2208
        else:
            raise TypeError(
2209 2210
                "The type of axis must be int, list or tuple, but received {}".
                format(type(axis)))
T
Tao Luo 已提交
2211 2212 2213 2214

    reduce_all = True if axis == None or axis == [] else False
    axis = axis if axis != None and axis != [] else [0]
    return reduce_all, axis
2215

2216

2217
def max(x, axis=None, keepdim=False, name=None):
2218
    """
S
swtkiwi 已提交
2219

2220
    Computes the maximum of tensor elements over the given axis.
2221

T
Tao Luo 已提交
2222 2223
    Note:
        The difference between max and amax is: If there are multiple maximum elements,
2224
        amax evenly distributes gradient between these equal values,
T
Tao Luo 已提交
2225 2226 2227
        while max propagates gradient to all of them.


2228
    Args:
2229 2230
        x (Tensor): A tensor, the data type is float32, float64, int32, int64.
        axis (int|list|tuple, optional): The axis along which the maximum is computed.
2231
            If :attr:`None`, compute the maximum over all elements of
N
Noel 已提交
2232
            `x` and return a Tensor with a single element,
2233 2234
            otherwise must be in the range :math:`[-x.ndim(x), x.ndim(x))`.
            If :math:`axis[i] < 0`, the axis to reduce is :math:`x.ndim + axis[i]`.
2235
        keepdim (bool, optional): Whether to reserve the reduced dimension in the
2236
            output Tensor. The result tensor will have one fewer dimension
2237
            than the `x` unless :attr:`keepdim` is true, default
2238
            value is False.
2239
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
2240 2241

    Returns:
2242
        Tensor, results of maximum on the specified axis of input tensor,
2243
        it's data type is the same as `x`.
2244 2245 2246

    Examples:
        .. code-block:: python
2247

2248
            import paddle
2249

N
Noel 已提交
2250
            # data_x is a Tensor with shape [2, 4]
2251
            # the axis is a int element
2252
            x = paddle.to_tensor([[0.2, 0.3, 0.5, 0.9],
2253
                                  [0.1, 0.2, 0.6, 0.7]],
2254
                                 dtype='float64', stop_gradient=False)
2255
            result1 = paddle.max(x)
2256
            result1.backward()
2257
            print(result1, x.grad)
2258 2259 2260
            #[0.9], [[0., 0., 0., 1.], [0., 0., 0., 0.]]

            x.clear_grad()
2261
            result2 = paddle.max(x, axis=0)
2262
            result2.backward()
2263
            print(result2, x.grad)
2264 2265 2266
            #[0.2, 0.3, 0.6, 0.9], [[1., 1., 0., 1.], [0., 0., 1., 0.]]

            x.clear_grad()
2267
            result3 = paddle.max(x, axis=-1)
2268
            result3.backward()
2269
            print(result3, x.grad)
2270 2271 2272
            #[0.9, 0.7], [[0., 0., 0., 1.], [0., 0., 0., 1.]]

            x.clear_grad()
2273
            result4 = paddle.max(x, axis=1, keepdim=True)
2274
            result4.backward()
2275
            print(result4, x.grad)
2276
            #[[0.9], [0.7]], [[0., 0., 0., 1.], [0., 0., 0., 1.]]
2277

N
Noel 已提交
2278
            # data_y is a Tensor with shape [2, 2, 2]
2279
            # the axis is list
2280
            y = paddle.to_tensor([[[1.0, 2.0], [3.0, 4.0]],
2281 2282
                                  [[5.0, 6.0], [7.0, 8.0]]],
                                 dtype='float64', stop_gradient=False)
2283
            result5 = paddle.max(y, axis=[1, 2])
2284
            result5.backward()
2285
            print(result5, y.grad)
2286 2287 2288
            #[4., 8.], [[[0., 0.], [0., 1.]], [[0., 0.], [0., 1.]]]

            y.clear_grad()
2289
            result6 = paddle.max(y, axis=[0, 1])
2290
            result6.backward()
2291
            print(result6, y.grad)
2292
            #[7., 8.], [[[0., 0.], [0., 0.]], [[0., 0.], [1., 1.]]]
2293 2294
    """

2295
    reduce_all, axis = _get_reduce_axis_with_tensor(axis)
2296
    if in_dygraph_mode():
2297
        return _C_ops.max(x, axis, keepdim)
2298
    if _in_legacy_dygraph():
2299
        return _legacy_C_ops.reduce_max(x, 'dim', axis, 'keep_dim', keepdim,
2300
                                        'reduce_all', reduce_all)
2301

2302
    helper = LayerHelper('max', **locals())
2303 2304
    check_variable_and_dtype(x, 'x', ['float32', 'float64', 'int32', 'int64'],
                             'max')
2305 2306
    if not isinstance(axis, Variable) and utils._contain_var(axis):
        axis = utils._convert_to_tensor_list(axis)
2307

2308 2309 2310 2311 2312 2313 2314 2315 2316
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
    helper.append_op(type='reduce_max',
                     inputs={'X': x},
                     outputs={'Out': out},
                     attrs={
                         'dim': axis,
                         'keep_dim': keepdim,
                         'reduce_all': reduce_all
                     })
2317 2318
    return out

2319

2320
def min(x, axis=None, keepdim=False, name=None):
2321
    """
S
swtkiwi 已提交
2322

2323
    Computes the minimum of tensor elements over the given axis
2324

T
Tao Luo 已提交
2325 2326
    Note:
        The difference between min and amin is: If there are multiple minimum elements,
2327
        amin evenly distributes gradient between these equal values,
T
Tao Luo 已提交
2328 2329
        while min propagates gradient to all of them.

2330
    Args:
2331 2332
        x (Tensor): A tensor, the data type is float32, float64, int32, int64.
        axis (int|list|tuple, optional): The axis along which the minimum is computed.
2333
            If :attr:`None`, compute the minimum over all elements of
N
Noel 已提交
2334
            `x` and return a Tensor with a single element,
2335 2336
            otherwise must be in the range :math:`[-x.ndim, x.ndim)`.
            If :math:`axis[i] < 0`, the axis to reduce is :math:`x.ndim + axis[i]`.
2337
        keepdim (bool, optional): Whether to reserve the reduced dimension in the
2338
            output Tensor. The result tensor will have one fewer dimension
2339
            than the `x` unless :attr:`keepdim` is true, default
2340
            value is False.
2341
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
2342

2343
    Returns:
2344
        Tensor, results of minimum on the specified axis of input tensor,
2345
        it's data type is the same as input's Tensor.
2346

2347 2348 2349
    Examples:
        .. code-block:: python

2350
            import paddle
2351

2352
            # data_x is a Tensor with shape [2, 4]
2353
            # the axis is a int element
2354
            x = paddle.to_tensor([[0.2, 0.3, 0.5, 0.9],
2355
                                  [0.1, 0.2, 0.6, 0.7]],
2356
                                 dtype='float64', stop_gradient=False)
2357
            result1 = paddle.min(x)
2358
            result1.backward()
2359
            print(result1, x.grad)
2360 2361 2362
            #[0.1], [[0., 0., 0., 0.], [1., 0., 0., 0.]]

            x.clear_grad()
2363
            result2 = paddle.min(x, axis=0)
2364
            result2.backward()
2365
            print(result2, x.grad)
2366 2367 2368
            #[0.1, 0.2, 0.5, 0.7], [[0., 0., 1., 0.], [1., 1., 0., 1.]]

            x.clear_grad()
2369
            result3 = paddle.min(x, axis=-1)
2370
            result3.backward()
2371
            print(result3, x.grad)
2372 2373 2374
            #[0.2, 0.1], [[1., 0., 0., 0.], [1., 0., 0., 0.]]

            x.clear_grad()
2375
            result4 = paddle.min(x, axis=1, keepdim=True)
2376
            result4.backward()
2377
            print(result4, x.grad)
2378
            #[[0.2], [0.1]], [[1., 0., 0., 0.], [1., 0., 0., 0.]]
2379

2380
            # data_y is a Tensor with shape [2, 2, 2]
2381
            # the axis is list
2382
            y = paddle.to_tensor([[[1.0, 2.0], [3.0, 4.0]],
2383 2384
                                  [[5.0, 6.0], [7.0, 8.0]]],
                                 dtype='float64', stop_gradient=False)
2385
            result5 = paddle.min(y, axis=[1, 2])
2386
            result5.backward()
2387
            print(result5, y.grad)
2388 2389 2390
            #[1., 5.], [[[1., 0.], [0., 0.]], [[1., 0.], [0., 0.]]]

            y.clear_grad()
2391
            result6 = paddle.min(y, axis=[0, 1])
2392
            result6.backward()
2393
            print(result6, y.grad)
2394
            #[1., 2.], [[[1., 1.], [0., 0.]], [[0., 0.], [0., 0.]]]
2395
    """
2396

2397
    reduce_all, axis = _get_reduce_axis_with_tensor(axis)
2398
    if in_dygraph_mode():
2399
        return _C_ops.min(x, axis, keepdim)
2400 2401

    if _in_legacy_dygraph():
2402
        return _legacy_C_ops.reduce_min(x, 'dim', axis, 'keep_dim', keepdim,
2403
                                        'reduce_all', reduce_all)
2404 2405

    helper = LayerHelper('min', **locals())
2406 2407
    check_variable_and_dtype(x, 'x', ['float32', 'float64', 'int32', 'int64'],
                             'min')
2408 2409
    if not isinstance(axis, Variable) and utils._contain_var(axis):
        axis = utils._convert_to_tensor_list(axis)
2410

2411 2412 2413 2414 2415 2416 2417 2418 2419
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
    helper.append_op(type='reduce_min',
                     inputs={'X': x},
                     outputs={'Out': out},
                     attrs={
                         'dim': axis,
                         'keep_dim': keepdim,
                         'reduce_all': reduce_all
                     })
2420 2421
    return out

2422

T
Tao Luo 已提交
2423 2424 2425 2426 2427 2428
def amax(x, axis=None, keepdim=False, name=None):
    """
    Computes the maximum of tensor elements over the given axis.

    Note:
        The difference between max and amax is: If there are multiple maximum elements,
2429
        amax evenly distributes gradient between these equal values,
T
Tao Luo 已提交
2430 2431 2432
        while max propagates gradient to all of them.

    Args:
2433
        x (Tensor): A tensor, the data type is float32, float64, int32, int64,
2434
            the dimension is no more than 4.
2435
        axis (int|list|tuple, optional): The axis along which the maximum is computed.
T
Tao Luo 已提交
2436 2437 2438 2439
            If :attr:`None`, compute the maximum over all elements of
            `x` and return a Tensor with a single element,
            otherwise must be in the range :math:`[-x.ndim(x), x.ndim(x))`.
            If :math:`axis[i] < 0`, the axis to reduce is :math:`x.ndim + axis[i]`.
2440
        keepdim (bool, optional): Whether to reserve the reduced dimension in the
T
Tao Luo 已提交
2441 2442 2443
            output Tensor. The result tensor will have one fewer dimension
            than the `x` unless :attr:`keepdim` is true, default
            value is False.
2444
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
T
Tao Luo 已提交
2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457

    Returns:
        Tensor, results of maximum on the specified axis of input tensor,
        it's data type is the same as `x`.

    Examples:
        .. code-block:: python

            import paddle
            # data_x is a Tensor with shape [2, 4] with multiple maximum elements
            # the axis is a int element

            x = paddle.to_tensor([[0.1, 0.9, 0.9, 0.9],
2458
                                  [0.9, 0.9, 0.6, 0.7]],
T
Tao Luo 已提交
2459
                                 dtype='float64', stop_gradient=False)
2460 2461
            # There are 5 maximum elements:
            # 1) amax evenly distributes gradient between these equal values,
T
Tao Luo 已提交
2462
            #    thus the corresponding gradients are 1/5=0.2;
2463
            # 2) while max propagates gradient to all of them,
T
Tao Luo 已提交
2464
            #    thus the corresponding gradient are 1.
T
Tao Luo 已提交
2465 2466
            result1 = paddle.amax(x)
            result1.backward()
2467
            print(result1, x.grad)
T
Tao Luo 已提交
2468 2469
            #[0.9], [[0., 0.2, 0.2, 0.2], [0.2, 0.2, 0., 0.]]

T
Tao Luo 已提交
2470 2471 2472
            x.clear_grad()
            result1_max = paddle.max(x)
            result1_max.backward()
2473
            print(result1_max, x.grad)
T
Tao Luo 已提交
2474 2475 2476 2477
            #[0.9], [[0., 1.0, 1.0, 1.0], [1.0, 1.0, 0., 0.]]

            ###############################

T
Tao Luo 已提交
2478 2479 2480
            x.clear_grad()
            result2 = paddle.amax(x, axis=0)
            result2.backward()
2481
            print(result2, x.grad)
T
Tao Luo 已提交
2482 2483 2484 2485 2486
            #[0.9, 0.9, 0.9, 0.9], [[0., 0.5, 1., 1.], [1., 0.5, 0., 0.]]

            x.clear_grad()
            result3 = paddle.amax(x, axis=-1)
            result3.backward()
2487
            print(result3, x.grad)
T
Tao Luo 已提交
2488 2489 2490 2491 2492
            #[0.9, 0.9], [[0., 0.3333, 0.3333, 0.3333], [0.5, 0.5, 0., 0.]]

            x.clear_grad()
            result4 = paddle.amax(x, axis=1, keepdim=True)
            result4.backward()
2493
            print(result4, x.grad)
T
Tao Luo 已提交
2494 2495 2496
            #[[0.9], [0.9]], [[0., 0.3333, 0.3333, 0.3333.], [0.5, 0.5, 0., 0.]]

            # data_y is a Tensor with shape [2, 2, 2]
2497
            # the axis is list
T
Tao Luo 已提交
2498 2499 2500 2501 2502
            y = paddle.to_tensor([[[0.1, 0.9], [0.9, 0.9]],
                                  [[0.9, 0.9], [0.6, 0.7]]],
                                 dtype='float64', stop_gradient=False)
            result5 = paddle.amax(y, axis=[1, 2])
            result5.backward()
2503
            print(result5, y.grad)
T
Tao Luo 已提交
2504 2505 2506 2507 2508
            #[0.9., 0.9], [[[0., 0.3333], [0.3333, 0.3333]], [[0.5, 0.5], [0., 1.]]]

            y.clear_grad()
            result6 = paddle.amax(y, axis=[0, 1])
            result6.backward()
2509
            print(result6, y.grad)
T
Tao Luo 已提交
2510 2511 2512
            #[0.9., 0.9], [[[0., 0.3333], [0.5, 0.3333]], [[0.5, 0.3333], [1., 1.]]]
    """

2513
    reduce_all, axis = _get_reduce_axis(axis)
2514
    if in_dygraph_mode():
2515
        return _C_ops.amax(x, axis, keepdim)
2516
    if _in_legacy_dygraph():
2517 2518
        return _legacy_C_ops.reduce_amax(x, 'dim', axis, 'keep_dim', keepdim,
                                         'reduce_all', reduce_all)
T
Tao Luo 已提交
2519 2520

    helper = LayerHelper('amax', **locals())
2521 2522
    check_variable_and_dtype(x, 'x', ['float32', 'float64', 'int32', 'int64'],
                             'amax')
T
Tao Luo 已提交
2523

2524 2525 2526 2527 2528 2529 2530 2531 2532
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
    helper.append_op(type='reduce_amax',
                     inputs={'X': x},
                     outputs={'Out': out},
                     attrs={
                         'dim': axis,
                         'keep_dim': keepdim,
                         'reduce_all': reduce_all
                     })
T
Tao Luo 已提交
2533 2534
    return out

2535

T
Tao Luo 已提交
2536 2537 2538 2539 2540 2541 2542
def amin(x, axis=None, keepdim=False, name=None):
    """

    Computes the minimum of tensor elements over the given axis

    Note:
        The difference between min and amin is: If there are multiple minimum elements,
2543
        amin evenly distributes gradient between these equal values,
T
Tao Luo 已提交
2544 2545 2546
        while min propagates gradient to all of them.

    Args:
2547
        x (Tensor): A tensor, the data type is float32, float64, int32, int64,
2548
            the dimension is no more than 4.
2549
        axis (int|list|tuple, optional): The axis along which the minimum is computed.
T
Tao Luo 已提交
2550 2551 2552 2553
            If :attr:`None`, compute the minimum over all elements of
            `x` and return a Tensor with a single element,
            otherwise must be in the range :math:`[-x.ndim, x.ndim)`.
            If :math:`axis[i] < 0`, the axis to reduce is :math:`x.ndim + axis[i]`.
2554
        keepdim (bool, optional): Whether to reserve the reduced dimension in the
T
Tao Luo 已提交
2555 2556 2557
            output Tensor. The result tensor will have one fewer dimension
            than the `x` unless :attr:`keepdim` is true, default
            value is False.
2558
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
T
Tao Luo 已提交
2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571

    Returns:
        Tensor, results of minimum on the specified axis of input tensor,
        it's data type is the same as input's Tensor.

    Examples:
        .. code-block:: python

            import paddle
            # data_x is a Tensor with shape [2, 4] with multiple minimum elements
            # the axis is a int element

            x = paddle.to_tensor([[0.2, 0.1, 0.1, 0.1],
2572
                                  [0.1, 0.1, 0.6, 0.7]],
T
Tao Luo 已提交
2573
                                 dtype='float64', stop_gradient=False)
2574 2575
            # There are 5 minimum elements:
            # 1) amin evenly distributes gradient between these equal values,
T
Tao Luo 已提交
2576
            #    thus the corresponding gradients are 1/5=0.2;
2577
            # 2) while min propagates gradient to all of them,
T
Tao Luo 已提交
2578
            #    thus the corresponding gradient are 1.
T
Tao Luo 已提交
2579 2580
            result1 = paddle.amin(x)
            result1.backward()
2581
            print(result1, x.grad)
T
Tao Luo 已提交
2582 2583
            #[0.1], [[0., 0.2, 0.2, 0.2], [0.2, 0.2, 0., 0.]]

T
Tao Luo 已提交
2584 2585 2586
            x.clear_grad()
            result1_min = paddle.min(x)
            result1_min.backward()
2587
            print(result1_min, x.grad)
T
Tao Luo 已提交
2588 2589 2590 2591
            #[0.1], [[0., 1.0, 1.0, 1.0], [1.0, 1.0, 0., 0.]]

            ###############################

T
Tao Luo 已提交
2592 2593 2594
            x.clear_grad()
            result2 = paddle.amin(x, axis=0)
            result2.backward()
2595
            print(result2, x.grad)
T
Tao Luo 已提交
2596 2597 2598 2599 2600
            #[0.1, 0.1, 0.1, 0.1], [[0., 0.5, 1., 1.], [1., 0.5, 0., 0.]]

            x.clear_grad()
            result3 = paddle.amin(x, axis=-1)
            result3.backward()
2601
            print(result3, x.grad)
T
Tao Luo 已提交
2602 2603 2604 2605 2606
            #[0.1, 0.1], [[0., 0.3333, 0.3333, 0.3333], [0.5, 0.5, 0., 0.]]

            x.clear_grad()
            result4 = paddle.amin(x, axis=1, keepdim=True)
            result4.backward()
2607
            print(result4, x.grad)
T
Tao Luo 已提交
2608 2609 2610
            #[[0.1], [0.1]], [[0., 0.3333, 0.3333, 0.3333.], [0.5, 0.5, 0., 0.]]

            # data_y is a Tensor with shape [2, 2, 2]
2611
            # the axis is list
T
Tao Luo 已提交
2612 2613 2614 2615 2616
            y = paddle.to_tensor([[[0.2, 0.1], [0.1, 0.1]],
                                  [[0.1, 0.1], [0.6, 0.7]]],
                                 dtype='float64', stop_gradient=False)
            result5 = paddle.amin(y, axis=[1, 2])
            result5.backward()
2617
            print(result5, y.grad)
T
Tao Luo 已提交
2618 2619 2620 2621 2622
            #[0.1., 0.1], [[[0., 0.3333], [0.3333, 0.3333]], [[0.5, 0.5], [0., 1.]]]

            y.clear_grad()
            result6 = paddle.amin(y, axis=[0, 1])
            result6.backward()
2623
            print(result6, y.grad)
T
Tao Luo 已提交
2624 2625 2626
            #[0.1., 0.1], [[[0., 0.3333], [0.5, 0.3333]], [[0.5, 0.3333], [1., 1.]]]
    """

2627
    reduce_all, axis = _get_reduce_axis(axis)
2628
    if in_dygraph_mode():
2629
        return _C_ops.amin(x, axis, keepdim)
2630
    elif _in_legacy_dygraph():
2631 2632
        return _legacy_C_ops.reduce_amin(x, 'dim', axis, 'keep_dim', keepdim,
                                         'reduce_all', reduce_all)
T
Tao Luo 已提交
2633
    helper = LayerHelper('amin', **locals())
2634 2635
    check_variable_and_dtype(x, 'x', ['float32', 'float64', 'int32', 'int64'],
                             'amin')
T
Tao Luo 已提交
2636

2637 2638 2639 2640 2641 2642 2643 2644 2645
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
    helper.append_op(type='reduce_amin',
                     inputs={'X': x},
                     outputs={'Out': out},
                     attrs={
                         'dim': axis,
                         'keep_dim': keepdim,
                         'reduce_all': reduce_all
                     })
T
Tao Luo 已提交
2646 2647
    return out

2648

W
WuHaobo 已提交
2649
def log1p(x, name=None):
2650
    r"""
2651
    Calculates the natural log of the given input tensor, element-wise.
N
Noel 已提交
2652

2653
    .. math::
2654
        Out = \ln(x+1)
S
Steffy-zxf 已提交
2655

2656
    Args:
S
Steffy-zxf 已提交
2657
        x (Tensor): Input Tensor. Must be one of the following types: float32, float64.
2658
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
2659

2660
    Returns:
S
Steffy-zxf 已提交
2661
        Tensor, the natural log of the input Tensor computed element-wise.
2662

2663 2664
    Examples:
        .. code-block:: python
S
Steffy-zxf 已提交
2665

2666
            import paddle
S
Steffy-zxf 已提交
2667 2668 2669 2670

            data = paddle.to_tensor([[0], [1]], dtype='float32')
            res = paddle.log1p(data)
            # [[0.], [0.6931472]]
2671 2672
    """

2673
    if in_dygraph_mode():
W
wanghuancoder 已提交
2674
        return _C_ops.log1p(x)
2675 2676
    if _in_legacy_dygraph():
        return _legacy_C_ops.log1p(x)
2677 2678 2679 2680 2681

    check_variable_and_dtype(x, 'x', ['float32', 'float64'], "log1p")
    inputs = {'X': [x]}
    helper = LayerHelper('log1p', **locals())
    dtype = helper.input_dtype(input_param_name='x')
W
WuHaobo 已提交
2682
    out = helper.create_variable_for_type_inference(dtype)
2683 2684
    helper.append_op(type="log1p", inputs={"X": x}, outputs={"Out": out})
    return out
B
Bai Yifan 已提交
2685

2686

J
joejiong 已提交
2687
def log2(x, name=None):
2688
    r"""
J
joejiong 已提交
2689 2690 2691 2692
    Calculates the log to the base 2 of the given input tensor, element-wise.

    .. math::

2693
        Out = \log_2x
J
joejiong 已提交
2694 2695 2696

    Args:
        x (Tensor): Input tensor must be one of the following types: float32, float64.
2697
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
J
joejiong 已提交
2698 2699 2700 2701 2702 2703 2704 2705


    Returns:
        Tensor: The log to the base 2 of the input Tensor computed element-wise.

    Examples:

        .. code-block:: python
2706

J
joejiong 已提交
2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724
            import paddle

            # example 1: x is a float
            x_i = paddle.to_tensor([[1.0], [2.0]])
            res = paddle.log2(x_i) # [[0.], [1.0]]

            # example 2: x is float32
            x_i = paddle.full(shape=[1], fill_value=2, dtype='float32')
            paddle.to_tensor(x_i)
            res = paddle.log2(x_i)
            print(res) # [1.0]

            # example 3: x is float64
            x_i = paddle.full(shape=[1], fill_value=2, dtype='float64')
            paddle.to_tensor(x_i)
            res = paddle.log2(x_i)
            print(res) # [1.0]
    """
2725
    if in_dygraph_mode():
W
wanghuancoder 已提交
2726
        return _C_ops.log2(x)
2727 2728
    if _in_legacy_dygraph():
        return _legacy_C_ops.log2(x)
J
joejiong 已提交
2729 2730 2731 2732 2733 2734 2735 2736

    check_variable_and_dtype(x, 'x', ['float16', 'float32', 'float64'], "log2")
    inputs = {'X': [x]}
    helper = LayerHelper('log2', **locals())
    dtype = helper.input_dtype(input_param_name='x')
    out = helper.create_variable_for_type_inference(dtype)
    helper.append_op(type="log2", inputs={"X": x}, outputs={"Out": out})
    return out
W
WuHaobo 已提交
2737

J
joejiong 已提交
2738 2739

def log10(x, name=None):
2740
    r"""
J
joejiong 已提交
2741 2742 2743 2744
    Calculates the log to the base 10 of the given input tensor, element-wise.

    .. math::

2745
        Out = \log_10_x
J
joejiong 已提交
2746 2747 2748

    Args:
        x (Tensor): Input tensor must be one of the following types: float32, float64.
2749
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
J
joejiong 已提交
2750 2751 2752 2753 2754 2755 2756 2757


    Returns:
        Tensor: The log to the base 10 of the input Tensor computed element-wise.

    Examples:

        .. code-block:: python
2758

J
joejiong 已提交
2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776
            import paddle

            # example 1: x is a float
            x_i = paddle.to_tensor([[1.0], [10.0]])
            res = paddle.log10(x_i) # [[0.], [1.0]]

            # example 2: x is float32
            x_i = paddle.full(shape=[1], fill_value=10, dtype='float32')
            paddle.to_tensor(x_i)
            res = paddle.log10(x_i)
            print(res) # [1.0]

            # example 3: x is float64
            x_i = paddle.full(shape=[1], fill_value=10, dtype='float64')
            paddle.to_tensor(x_i)
            res = paddle.log10(x_i)
            print(res) # [1.0]
    """
2777
    if in_dygraph_mode():
W
wanghuancoder 已提交
2778
        return _C_ops.log10(x)
2779 2780
    if _in_legacy_dygraph():
        return _legacy_C_ops.log10(x)
J
joejiong 已提交
2781 2782 2783 2784 2785 2786 2787 2788 2789 2790

    check_variable_and_dtype(x, 'x', ['float16', 'float32', 'float64'], "log10")
    inputs = {'X': [x]}
    helper = LayerHelper('log10', **locals())
    dtype = helper.input_dtype(input_param_name='x')
    out = helper.create_variable_for_type_inference(dtype)
    helper.append_op(type="log10", inputs={"X": x}, outputs={"Out": out})
    return out


Y
Yang Zhang 已提交
2791
def clip(x, min=None, max=None, name=None):
2792
    """
Y
Yang Zhang 已提交
2793
    This operator clip all elements in input into the range [ min, max ] and return
2794 2795 2796 2797
    a resulting tensor as the following equation:

    .. math::

2798
        Out = MIN(MAX(x, min), max)
2799 2800

    Args:
2801
        x (Tensor): An N-D Tensor with data type float32, float64, int32 or int64.
2802
        min (float|int|Tensor, optional): The lower bound with type ``float`` , ``int`` or a ``Tensor``
2803
            with shape [1] and type ``int32``, ``float32``, ``float64``.
2804
        max (float|int|Tensor, optional): The upper bound with type ``float``, ``int`` or a ``Tensor``
2805
            with shape [1] and type ``int32``, ``float32``, ``float64``.
2806
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
2807 2808

    Returns:
Y
Yang Zhang 已提交
2809
        Tensor: A Tensor with the same data type and data shape as input.
2810 2811 2812 2813 2814

    Examples:
        .. code-block:: python

            import paddle
N
Noel 已提交
2815

2816
            x1 = paddle.to_tensor([[1.2, 3.5], [4.5, 6.4]], 'float32')
Y
Yang Zhang 已提交
2817 2818
            out1 = paddle.clip(x1, min=3.5, max=5.0)
            out2 = paddle.clip(x1, min=2.5)
2819
            print(out1)
Y
Yang Zhang 已提交
2820 2821
            # [[3.5, 3.5]
            # [4.5, 5.0]]
2822
            print(out2)
Y
Yang Zhang 已提交
2823 2824
            # [[2.5, 3.5]
            # [[4.5, 6.4]
2825 2826
    """

2827 2828 2829 2830 2831 2832 2833 2834 2835 2836
    x_dtype = str(x.dtype)
    if x_dtype == 'paddle.int32':
        min_ = np.iinfo(np.int32).min
        max_ = np.iinfo(np.int32).max - 2**7
    elif x_dtype == 'paddle.int64':
        min_ = np.iinfo(np.int64).min
        max_ = np.iinfo(np.int64).max - 2**39
    else:
        min_ = float(np.finfo(np.float32).min)
        max_ = float(np.finfo(np.float32).max)
2837

C
chentianyu03 已提交
2838 2839 2840 2841 2842 2843 2844
    if in_dygraph_mode():
        if isinstance(min, Variable):
            min = min.numpy().item(0)
        if isinstance(max, Variable):
            max = max.numpy().item(0)
        min = min_ if min is None else min
        max = max_ if max is None else max
2845
        return _C_ops.clip(x, min, max)
C
chentianyu03 已提交
2846 2847

    if _in_legacy_dygraph():
2848 2849 2850 2851
        if isinstance(min, Variable):
            min = min.numpy().item(0)
        if isinstance(max, Variable):
            max = max.numpy().item(0)
2852 2853
        min = min_ if min is None else min
        max = max_ if max is None else max
2854
        return _legacy_C_ops.clip(x, "min", min, "max", max)
W
WuHaobo 已提交
2855

2856
    if min is not None:
Y
Yang Zhang 已提交
2857
        check_type(min, 'min', (float, int, Variable), 'clip')
2858 2859
        if isinstance(min, Variable):
            check_dtype(min.dtype, 'min', ['float32', 'float64', 'int32'],
Y
Yang Zhang 已提交
2860
                        'clip', '(When the type of min in clip is Variable.)')
2861
    if max is not None:
Y
Yang Zhang 已提交
2862
        check_type(max, 'max', (float, int, Variable), 'clip')
2863 2864
        if isinstance(max, Variable):
            check_dtype(max.dtype, 'max', ['float32', 'float64', 'int32'],
Y
Yang Zhang 已提交
2865
                        'clip', '(When the type of max in clip is Variable.)')
2866

2867 2868
    check_variable_and_dtype(x, 'x', ['float32', 'float64', 'int32', 'int64'],
                             'clip')
Y
Yang Zhang 已提交
2869 2870

    inputs = {'X': x}
2871
    attrs = {'min': min_, 'max': max_}
2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884

    if isinstance(min, Variable):
        min.stop_gradient = True
        inputs['Min'] = min
    elif min is not None:
        attrs['min'] = min

    if isinstance(max, Variable):
        max.stop_gradient = True
        inputs['Max'] = max
    elif max is not None:
        attrs['max'] = max

Y
Yang Zhang 已提交
2885
    helper = LayerHelper('clip', **locals())
W
WuHaobo 已提交
2886
    output = helper.create_variable_for_type_inference(
Y
Yang Zhang 已提交
2887
        dtype=helper.input_dtype('x'))
2888 2889 2890 2891
    helper.append_op(type='clip',
                     inputs=inputs,
                     outputs={'Out': [output]},
                     attrs=attrs)
2892 2893

    return output
F
Feiyu Chan 已提交
2894

W
WuHaobo 已提交
2895

2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909
@inplace_apis_in_dygraph_only
def clip_(x, min=None, max=None, name=None):
    """
    Inplace version of ``clip`` API, the output Tensor will be inplaced with input ``x``.
    Please refer to :ref:`api_tensor_clip`.
    """
    fmin = float(np.finfo(np.float32).min)
    fmax = float(np.finfo(np.float32).max)
    if isinstance(min, Variable):
        min = min.numpy().item(0)
    if isinstance(max, Variable):
        max = max.numpy().item(0)
    min = fmin if min is None else min
    max = fmax if max is None else max
C
chentianyu03 已提交
2910 2911

    if in_dygraph_mode():
2912
        return _C_ops.clip_(x, min, max)
C
chentianyu03 已提交
2913 2914

    if _in_legacy_dygraph():
2915
        return _legacy_C_ops.clip_(x, "min", min, "max", max)
2916 2917


2918
def trace(x, offset=0, axis1=0, axis2=1, name=None):
L
Li Fuchen 已提交
2919
    """
S
swtkiwi 已提交
2920

2921
    Computes the sum along diagonals of the input tensor x.
2922 2923

    If ``x`` is 2D, returns the sum of diagonal.
L
Li Fuchen 已提交
2924

2925
    If ``x`` has larger dimensions, then returns an tensor of diagonals sum, diagonals be taken from
2926
    the 2D planes specified by axis1 and axis2. By default, the 2D planes formed by the first and second axes
2927
    of the input tensor x.
L
Li Fuchen 已提交
2928

2929
    The argument ``offset`` determines where diagonals are taken from input tensor x:
L
Li Fuchen 已提交
2930 2931 2932 2933

    - If offset = 0, it is the main diagonal.
    - If offset > 0, it is above the main diagonal.
    - If offset < 0, it is below the main diagonal.
2934
    - Note that if offset is out of input's shape indicated by axis1 and axis2, 0 will be returned.
2935

L
Li Fuchen 已提交
2936
    Args:
2937 2938 2939 2940 2941
        x (Tensor): The input tensor x. Must be at least 2-dimensional. The input data type should be float32, float64, int32, int64.
        offset (int, optional): Which diagonals in input tensor x will be taken. Default: 0 (main diagonals).
        axis1 (int, optional): The first axis with respect to take diagonal. Default: 0.
        axis2 (int, optional): The second axis with respect to take diagonal. Default: 1.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
L
Li Fuchen 已提交
2942 2943

    Returns:
2944
        Tensor: the output data type is the same as input data type.
L
Li Fuchen 已提交
2945 2946 2947 2948 2949

    Examples:
        .. code-block:: python

            import paddle
2950

2951 2952 2953
            case1 = paddle.randn([2, 3])
            case2 = paddle.randn([3, 10, 10])
            case3 = paddle.randn([3, 10, 5, 10])
2954 2955 2956
            data1 = paddle.trace(case1) # data1.shape = [1]
            data2 = paddle.trace(case2, offset=1, axis1=1, axis2=2) # data2.shape = [3]
            data3 = paddle.trace(case3, offset=-3, axis1=1, axis2=-1) # data2.shape = [3, 5]
L
Li Fuchen 已提交
2957
    """
2958

Z
zyfncg 已提交
2959
    def __check_input(x, offset, axis1, axis2):
2960
        check_dtype(x.dtype, 'Input',
L
Li Fuchen 已提交
2961 2962 2963
                    ['int32', 'int64', 'float16', 'float32', 'float64'],
                    'trace')

2964
        input_shape = list(x.shape)
L
Li Fuchen 已提交
2965
        assert len(input_shape) >= 2,                     \
2966 2967
                "The x must be at least 2-dimensional, "   \
                "But received Input x's dimensional: %s.\n" %  \
L
Li Fuchen 已提交
2968 2969
                len(input_shape)

2970 2971
        axis1_ = axis1 if axis1 >= 0 else len(input_shape) + axis1
        axis2_ = axis2 if axis2 >= 0 else len(input_shape) + axis2
L
Li Fuchen 已提交
2972

X
XiangGao 已提交
2973
        assert ((0 <= axis1_) and (axis1_ < len(input_shape))),     \
2974 2975
            "The argument axis1 is out of range (expected to be in range of [%d, %d], but got %d).\n"  \
            % (-(len(input_shape)), len(input_shape) - 1, axis1)
L
Li Fuchen 已提交
2976

X
XiangGao 已提交
2977
        assert ((0 <= axis2_) and (axis2_ < len(input_shape))),   \
2978 2979
            "The argument axis2 is out of range (expected to be in range of [%d, %d], but got %d).\n"   \
            % (-(len(input_shape)), len(input_shape) - 1, axis2)
L
Li Fuchen 已提交
2980 2981


2982 2983 2984
        assert  axis1_ != axis2_,   \
               "axis1 and axis2 cannot be the same axis." \
                "But received axis1 = %d, axis2 = %d\n"%(axis1, axis2)
L
Li Fuchen 已提交
2985

H
hong 已提交
2986
    if in_dygraph_mode():
2987
        return _C_ops.trace(x, offset, axis1, axis2)
H
hong 已提交
2988 2989

    if _in_legacy_dygraph():
2990 2991
        return _legacy_C_ops.trace(x, 'offset', offset, 'axis1', axis1, 'axis2',
                                   axis2)
X
XiangGao 已提交
2992

Z
zyfncg 已提交
2993
    __check_input(x, offset, axis1, axis2)
L
Li Fuchen 已提交
2994

Z
zyfncg 已提交
2995
    helper = LayerHelper('trace', **locals())
2996
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
L
Li Fuchen 已提交
2997

2998 2999 3000 3001 3002 3003 3004 3005
    helper.append_op(type='trace',
                     inputs={'Input': [x]},
                     attrs={
                         'offset': offset,
                         'axis1': axis1,
                         'axis2': axis2
                     },
                     outputs={'Out': [out]})
L
Li Fuchen 已提交
3006 3007
    return out

3008

3009 3010 3011 3012 3013
def diagonal(x, offset=0, axis1=0, axis2=1, name=None):
    """
    This OP computes the diagonals of the input tensor x.

    If ``x`` is 2D, returns the diagonal.
3014
    If ``x`` has larger dimensions, diagonals be taken from the 2D planes specified by axis1 and axis2.
3015 3016 3017 3018 3019 3020 3021
    By default, the 2D planes formed by the first and second axis of the input tensor x.

    The argument ``offset`` determines where diagonals are taken from input tensor x:

    - If offset = 0, it is the main diagonal.
    - If offset > 0, it is above the main diagonal.
    - If offset < 0, it is below the main diagonal.
3022

3023
    Args:
3024 3025 3026 3027 3028
        x (Tensor): The input tensor x. Must be at least 2-dimensional. The input data type should be bool, int32, int64, float16, float32, float64.
        offset (int, optional): Which diagonals in input tensor x will be taken. Default: 0 (main diagonals).
        axis1 (int, optional): The first axis with respect to take diagonal. Default: 0.
        axis2 (int, optional): The second axis with respect to take diagonal. Default: 1.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071

    Returns:
        Tensor: a partial view of input tensor in specify two dimensions, the output data type is the same as input data type.

    Examples:
        .. code-block:: python

            import paddle

            x = paddle.rand([2,2,3],'float32')
            print(x)
            # Tensor(shape=[2, 2, 3], dtype=float32, place=CUDAPlace(0), stop_gradient=True,
            #        [[[0.45661032, 0.03751532, 0.90191704],
            #          [0.43760979, 0.86177313, 0.65221709]],

            #         [[0.17020577, 0.00259554, 0.28954273],
            #          [0.51795638, 0.27325270, 0.18117726]]])

            out1 = paddle.diagonal(x)
            print(out1)
            #Tensor(shape=[3, 2], dtype=float32, place=CUDAPlace(0), stop_gradient=True,
            #       [[0.45661032, 0.51795638],
            #        [0.03751532, 0.27325270],
            #        [0.90191704, 0.18117726]])

            out2 = paddle.diagonal(x, offset=0, axis1=2, axis2=1)
            print(out2)
            #Tensor(shape=[2, 2], dtype=float32, place=CUDAPlace(0), stop_gradient=True,
            #       [[0.45661032, 0.86177313],
            #        [0.17020577, 0.27325270]])

            out3 = paddle.diagonal(x, offset=1, axis1=0, axis2=1)
            print(out3)
            #Tensor(shape=[3, 1], dtype=float32, place=CUDAPlace(0), stop_gradient=True,
            #       [[0.43760979],
            #        [0.86177313],
            #        [0.65221709]])

            out4 = paddle.diagonal(x, offset=0, axis1=1, axis2=2)
            print(out4)
            #Tensor(shape=[2, 2], dtype=float32, place=CUDAPlace(0), stop_gradient=True,
            #       [[0.45661032, 0.86177313],
            #        [0.17020577, 0.27325270]])
3072

3073
    """
J
Jiabin Yang 已提交
3074
    if in_dygraph_mode():
3075
        return _C_ops.diagonal(x, offset, axis1, axis2)
J
Jiabin Yang 已提交
3076 3077
    else:
        if _in_legacy_dygraph():
3078 3079
            return _legacy_C_ops.diagonal(x, 'offset', offset, 'axis1', axis1,
                                          'axis2', axis2)
W
wanghuancoder 已提交
3080

Z
zyfncg 已提交
3081
    def __check_input(x, offset, axis1, axis2):
3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106
        check_dtype(x.dtype, 'Input',
                    ['bool', 'int32', 'int64', 'float16', 'float32', 'float64'],
                    'diagonal')

        input_shape = list(x.shape)
        assert len(input_shape) >= 2,                     \
                "The x must be at least 2-dimensional, "   \
                "But received Input x's dimensional: %s.\n" %  \
                len(input_shape)

        axis1_ = axis1 if axis1 >= 0 else len(input_shape) + axis1
        axis2_ = axis2 if axis2 >= 0 else len(input_shape) + axis2

        assert axis1_ < len(input_shape),     \
            "The argument axis1 is out of range (expected to be in range of [%d, %d], but got %d).\n"  \
            % (-(len(input_shape)), len(input_shape) - 1, axis1)

        assert axis2_ < len(input_shape),   \
            "The argument axis2 is out of range (expected to be in range of [%d, %d], but got %d).\n"   \
            % (-(len(input_shape)), len(input_shape) - 1, axis2)

        assert  axis1_ != axis2_,   \
               "axis1 and axis2 cannot be the same axis." \
                "But received axis1 = %d, axis2 = %d\n"%(axis1, axis2)

Z
zyfncg 已提交
3107
    __check_input(x, offset, axis1, axis2)
3108 3109 3110
    helper = LayerHelper('diagonal', **locals())
    out = helper.create_variable_for_type_inference(dtype=x.dtype)

3111 3112 3113 3114 3115 3116 3117 3118
    helper.append_op(type='diagonal',
                     inputs={'Input': [x]},
                     attrs={
                         'offset': offset,
                         'axis1': axis1,
                         'axis2': axis2
                     },
                     outputs={'Out': [out]})
3119 3120 3121
    return out


F
Feiyu Chan 已提交
3122
@templatedoc(op_type="kron")
W
WuHaobo 已提交
3123
def kron(x, y, name=None):
S
swtkiwi 已提交
3124 3125
    """

3126
    ${comment}
F
Feiyu Chan 已提交
3127 3128

    Args:
3129 3130
        x (Tensor): the fist operand of kron op, data type: float16, float32, float64, int32 or int64.
        y (Tensor): the second operand of kron op, data type: float16, float32, float64, int32 or int64. Its data type should be the same with x.
3131
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
F
Feiyu Chan 已提交
3132 3133

    Returns:
3134
        Tensor: The output of kron, data type: float16, float32, float64, int32 or int64. Its data is the same with x.
F
Feiyu Chan 已提交
3135 3136 3137

    Examples:
        .. code-block:: python
3138

3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149
            import paddle
            x = paddle.to_tensor([[1, 2], [3, 4]], dtype='int64')
            y = paddle.to_tensor([[1, 2, 3], [4, 5, 6], [7, 8, 9]], dtype='int64')
            out = paddle.kron(x, y)
            print(out)
            #        [[1, 2, 3, 2, 4, 6],
            #         [ 4,  5,  6,  8, 10, 12],
            #         [ 7,  8,  9, 14, 16, 18],
            #         [ 3,  6,  9,  4,  8, 12],
            #         [12, 15, 18, 16, 20, 24],
            #         [21, 24, 27, 28, 32, 36]])
F
Feiyu Chan 已提交
3150
    """
3151
    if _in_legacy_dygraph():
3152
        return _legacy_C_ops.kron(x, y)
3153
    if in_dygraph_mode():
3154
        return _C_ops.kron(x, y)
F
Feiyu Chan 已提交
3155
    helper = LayerHelper('kron', **locals())
3156 3157 3158 3159
    check_variable_and_dtype(
        x, 'x', ['float16', 'float32', 'float64', 'int32', 'int64'], 'kron')
    check_variable_and_dtype(
        y, 'y', ['float16', 'float32', 'float64', 'int32', 'int64'], 'kron')
F
Feiyu Chan 已提交
3160

W
WuHaobo 已提交
3161
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
F
Feiyu Chan 已提交
3162 3163
    helper.append_op(type="kron", inputs={"X": x, "Y": y}, outputs={"Out": out})
    return out
3164 3165 3166 3167


def cumsum(x, axis=None, dtype=None, name=None):
    """
3168 3169
    The cumulative sum of the elements along a given axis.

3170
    Note:
3171
        The first element of the result is the same as the first element of the input.
3172 3173

    Args:
3174
        x (Tensor): The input tensor needed to be cumsumed.
3175
        axis (int, optional): The dimension to accumulate along. -1 means the last dimension. The default (None) is to compute the cumsum over the flattened array.
3176
        dtype (str, optional): The data type of the output tensor, can be float16, float32, float64, int32, int64. If specified, the input tensor is casted to dtype before the operation is performed. This is useful for preventing data type overflows. The default value is None.
3177 3178 3179
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
3180
        Tensor, the result of cumsum operator.
3181 3182 3183

    Examples:
        .. code-block:: python
3184

3185
            import paddle
3186

3187 3188
            data = paddle.arange(12)
            data = paddle.reshape(data, (3, 4))
3189 3190 3191 3192 3193 3194 3195 3196

            y = paddle.cumsum(data)
            # [ 0  1  3  6 10 15 21 28 36 45 55 66]

            y = paddle.cumsum(data, axis=0)
            # [[ 0  1  2  3]
            #  [ 4  6  8 10]
            #  [12 15 18 21]]
3197

3198 3199 3200 3201 3202 3203 3204
            y = paddle.cumsum(data, axis=-1)
            # [[ 0  1  3  6]
            #  [ 4  9 15 22]
            #  [ 8 17 27 38]]

            y = paddle.cumsum(data, dtype='float64')
            print(y.dtype)
3205
            # paddle.float64
3206 3207 3208 3209 3210 3211
    """
    if axis is None:
        flatten = True
    else:
        flatten = False
    if dtype is not None and x.dtype != convert_np_dtype_to_dtype_(dtype):
Z
zhiboniu 已提交
3212
        x = cast(x, dtype)
3213

H
hong 已提交
3214
    if in_dygraph_mode():
3215
        if axis is None: axis = -1
3216
        return _C_ops.cumsum(x, axis, flatten, False, False)
H
hong 已提交
3217
    if _in_legacy_dygraph():
3218
        if axis is None:
3219
            return _legacy_C_ops.cumsum(x, 'flatten', flatten)
3220
        else:
3221
            return _legacy_C_ops.cumsum(x, 'axis', axis, 'flatten', flatten)
3222 3223 3224 3225 3226 3227 3228 3229 3230

    check_type(x, 'x', (Variable), 'cumsum')
    locals_var = locals().copy()
    kwargs = dict()
    for name, val in locals_var.items():
        if val is not None:
            kwargs[name] = val
    _cum_sum_ = generate_layer_fn('cumsum')
    return _cum_sum_(**kwargs)
G
guofei 已提交
3231

3232 3233 3234

def logcumsumexp(x, axis=None, dtype=None, name=None):
    r"""
3235
    The logarithm of the cumulative summation of the exponentiation of the elements along a given axis.
3236 3237 3238 3239 3240 3241

    For summation index j given by `axis` and other indices i, the result is

    .. math::

        logcumsumexp(x)_{ij} = log \sum_{i=0}^{j}exp(x_{ij})
3242

3243 3244 3245 3246 3247 3248
    Note:
        The first element of the result is the same as the first element of the input.

    Args:
        x (Tensor): The input tensor.
        axis (int, optional): The dimension to do the operation along. -1 means the last dimension. The default (None) is to compute the cumsum over the flattened array.
3249
        dtype (str, optional): The data type of the output tensor, can be float16, float32, float64. If specified, the input tensor is casted to dtype before the operation is performed. This is useful for preventing data type overflows. The default value is None.
3250 3251 3252
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
3253
        Tensor, the result of logcumsumexp operator.
3254 3255 3256

    Examples:
        .. code-block:: python
3257

3258
            import paddle
3259

3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270
            data = paddle.arange(12, dtype='float64')
            data = paddle.reshape(data, (3, 4))

            y = paddle.logcumsumexp(data)
            # [ 0.         1.3132617  2.4076061  3.4401898  4.4519143  5.4561934
            #   6.4577627  7.4583397  8.458551   9.45863   10.458658  11.458669 ]

            y = paddle.logcumsumexp(data, axis=0)
            # [[ 0.        1.        2.        3.      ]
            #  [ 4.01815   5.01815   6.01815   7.01815 ]
            #  [ 8.018479  9.018479 10.018479 11.018479]]
3271

3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289
            y = paddle.logcumsumexp(data, axis=-1)
            # [[ 0.         1.3132617  2.4076061  3.4401898]
            #  [ 4.         5.3132615  6.407606   7.44019  ]
            #  [ 8.         9.313262  10.407606  11.440189 ]]

            y = paddle.logcumsumexp(data, dtype='float64')
            print(y.dtype)
            # paddle.float64
    """
    if axis is None:
        flatten = True
    else:
        flatten = False
    if dtype is not None and x.dtype != convert_np_dtype_to_dtype_(dtype):
        x = cast(x, dtype)

    if in_dygraph_mode():
        if axis is None: axis = -1
3290
        return _C_ops.logcumsumexp(x, axis, flatten, False, False)
3291 3292
    if _in_legacy_dygraph():
        if axis is None:
3293
            return _legacy_C_ops.logcumsumexp(x, 'flatten', flatten)
3294
        else:
3295 3296
            return _legacy_C_ops.logcumsumexp(x, 'axis', axis, 'flatten',
                                              flatten)
3297

3298 3299
    check_variable_and_dtype(x, 'x', ['float16', 'float32', 'float64'],
                             "logcumsumexp")
3300 3301 3302

    helper = LayerHelper('logcumsumexp', **locals())
    out = helper.create_variable_for_type_inference(x.dtype)
3303 3304 3305 3306 3307 3308 3309
    helper.append_op(type='logcumsumexp',
                     inputs={'X': x},
                     outputs={'Out': out},
                     attrs={
                         'axis': axis,
                         'flatten': flatten
                     })
3310 3311 3312
    return out


H
hlygit66666 已提交
3313 3314 3315 3316
def cumprod(x, dim=None, dtype=None, name=None):
    """
    Compute the cumulative product of the input tensor x along a given dimension dim.

3317 3318
    Note:
        The first element of the result is the same as the first element of the input.
H
hlygit66666 已提交
3319 3320 3321 3322 3323

    Args:
        x (Tensor): the input tensor need to be cumproded.
        dim (int): the dimension along which the input tensor will be accumulated. It need to be in the range of [-x.rank, x.rank), where x.rank means the dimensions of the input tensor x and -1 means the last dimension.
        dtype (str, optional): The data type of the output tensor, can be float32, float64, int32, int64, complex64, complex128. If specified, the input tensor is casted to dtype before the operation is performed. This is useful for preventing data type overflows. The default value is None.
H
hlygit66666 已提交
3324
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
H
hlygit66666 已提交
3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360

    Returns:
        Tensor, the result of cumprod operator.

    Examples:
        .. code-block:: python

            import paddle

            data = paddle.arange(12)
            data = paddle.reshape(data, (3, 4))
            # [[ 0  1  2  3 ]
            #  [ 4  5  6  7 ]
            #  [ 8  9  10 11]]

            y = paddle.cumprod(data, dim=0)
            # [[ 0  1   2   3]
            #  [ 0  5  12  21]
            #  [ 0 45 120 231]]

            y = paddle.cumprod(data, dim=-1)
            # [[ 0   0   0    0]
            #  [ 4  20 120  840]
            #  [ 8  72 720 7920]]

            y = paddle.cumprod(data, dim=1, dtype='float64')
            # [[ 0.   0.   0.    0.]
            #  [ 4.  20. 120.  840.]
            #  [ 8.  72. 720. 7920.]]

            print(y.dtype)
            # paddle.float64

    """

    if dtype is not None and x.dtype != convert_np_dtype_to_dtype_(dtype):
Z
zhiboniu 已提交
3361
        x = cast(x, dtype)
H
hlygit66666 已提交
3362

3363
    if in_dygraph_mode():
3364
        return _C_ops.cumprod(x, dim)
3365
    if _in_legacy_dygraph():
3366
        return _legacy_C_ops.cumprod(x, 'dim', dim)
H
hlygit66666 已提交
3367

3368 3369 3370 3371
    check_variable_and_dtype(
        x, "x",
        ['complex64', 'complex128', 'float32', 'float64', 'int32', 'int64'],
        'cumprod')
H
hlygit66666 已提交
3372 3373 3374 3375
    check_type(dim, 'dim', int, 'cumprod')

    helper = LayerHelper('cumprod', **locals())
    out = helper.create_variable_for_type_inference(x.dtype)
3376 3377 3378 3379
    helper.append_op(type='cumprod',
                     inputs={'X': x},
                     outputs={'Out': out},
                     attrs={'dim': dim})
H
hlygit66666 已提交
3380 3381
    return out

3382

J
Jack Zhou 已提交
3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398
def isfinite(x, name=None):
    """

    Return whether every element of input tensor is finite number or not.

    Args:
        x (Tensor): The input tensor, it's data type should be float16, float32, float64, int32, int64.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        `Tensor`, the bool result which shows every element of `x` whether it is finite number or not.

    Examples:
        .. code-block:: python

            import paddle
N
Noel 已提交
3399

3400
            x = paddle.to_tensor([float('-inf'), -2, 3.6, float('inf'), 0, float('-nan'), float('nan')])
C
Chen Long 已提交
3401
            out = paddle.isfinite(x)
N
Noel 已提交
3402
            print(out)  # [False  True  True False  True False False]
J
Jack Zhou 已提交
3403
    """
H
hong 已提交
3404
    if in_dygraph_mode():
3405
        return _C_ops.isfinite(x)
H
hong 已提交
3406
    if _in_legacy_dygraph():
3407
        return _legacy_C_ops.isfinite_v2(x)
J
Jack Zhou 已提交
3408
    helper = LayerHelper("isfinite_v2", **locals())
3409 3410
    check_variable_and_dtype(
        x, 'x', ['float16', 'float32', 'float64', 'int32', 'int64'], 'isfinite')
J
Jack Zhou 已提交
3411 3412 3413 3414
    out = helper.create_variable_for_type_inference('bool')
    helper.append_op(type="isfinite_v2", inputs={"X": x}, outputs={"Out": out})
    return out

3415

J
Jack Zhou 已提交
3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431
def isinf(x, name=None):
    """

    Return whether every element of input tensor is `+/-INF` or not.

    Args:
        x (Tensor): The input tensor, it's data type should be float16, float32, float64, int32, int64.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        `Tensor`, the bool result which shows every element of `x` whether it is `+/-INF` or not.

    Examples:
        .. code-block:: python

            import paddle
C
Chen Long 已提交
3432

3433
            x = paddle.to_tensor([float('-inf'), -2, 3.6, float('inf'), 0, float('-nan'), float('nan')])
C
Chen Long 已提交
3434
            out = paddle.isinf(x)
N
Noel 已提交
3435
            print(out)  # [ True False False  True False False False]
J
Jack Zhou 已提交
3436
    """
H
hong 已提交
3437
    if in_dygraph_mode():
3438
        return _C_ops.isinf(x)
H
hong 已提交
3439
    if _in_legacy_dygraph():
3440
        return _legacy_C_ops.isinf_v2(x)
J
Jack Zhou 已提交
3441
    helper = LayerHelper("isinf_v2", **locals())
3442 3443
    check_variable_and_dtype(
        x, 'x', ['float16', 'float32', 'float64', 'int32', 'int64'], 'isinf')
J
Jack Zhou 已提交
3444 3445 3446 3447
    out = helper.create_variable_for_type_inference(dtype='bool')
    helper.append_op(type="isinf_v2", inputs={"X": x}, outputs={"Out": out})
    return out

3448

J
Jack Zhou 已提交
3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464
def isnan(x, name=None):
    """

    Return whether every element of input tensor is `NaN` or not.

    Args:
        x (Tensor): The input tensor, it's data type should be float16, float32, float64, int32, int64.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        `Tensor`, the bool result which shows every element of `x` whether it is `NaN` or not.

    Examples:
        .. code-block:: python

            import paddle
3465

3466
            x = paddle.to_tensor([float('-inf'), -2, 3.6, float('inf'), 0, float('-nan'), float('nan')])
C
Chen Long 已提交
3467
            out = paddle.isnan(x)
N
Noel 已提交
3468
            print(out)  # [False False False False False  True  True]
J
Jack Zhou 已提交
3469
    """
H
hong 已提交
3470
    if in_dygraph_mode():
3471
        return _C_ops.isnan(x)
H
hong 已提交
3472 3473

    if _in_legacy_dygraph():
3474
        return _legacy_C_ops.isnan_v2(x)
J
Jack Zhou 已提交
3475
    helper = LayerHelper("isnan_v2", **locals())
3476 3477
    check_variable_and_dtype(
        x, 'x', ['float16', 'float32', 'float64', 'int32', 'int64'], 'isnan')
J
Jack Zhou 已提交
3478 3479 3480 3481 3482
    out = helper.create_variable_for_type_inference(dtype='bool')
    helper.append_op(type="isnan_v2", inputs={"X": x}, outputs={"Out": out})
    return out


G
guofei 已提交
3483 3484 3485 3486 3487
def prod(x, axis=None, keepdim=False, dtype=None, name=None):
    """
    Compute the product of tensor elements over the given axis.

    Args:
3488
        x (Tensor): The input tensor, its data type should be float32, float64, int32, int64.
3489 3490 3491
        axis (int|list|tuple, optional): The axis along which the product is computed. If :attr:`None`,
            multiply all elements of `x` and return a Tensor with a single element,
            otherwise must be in the range :math:`[-x.ndim, x.ndim)`. If :math:`axis[i]<0`,
G
guofei 已提交
3492
            the axis to reduce is :math:`x.ndim + axis[i]`. Default is None.
3493
        keepdim (bool, optional): Whether to reserve the reduced dimension in the output Tensor. The result
3494
            tensor will have one fewer dimension than the input unless `keepdim` is true. Default is False.
3495 3496 3497
        dtype (str|np.dtype, optional): The desired date type of returned tensor, can be float32, float64,
            int32, int64. If specified, the input tensor is casted to dtype before operator performed.
            This is very useful for avoiding data type overflows. The default value is None, the dtype
G
guofei 已提交
3498
            of output is the same as input Tensor `x`.
3499
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
G
guofei 已提交
3500 3501 3502

    Returns:
        Tensor, result of product on the specified dim of input tensor.
3503

G
guofei 已提交
3504 3505 3506 3507 3508 3509
    Examples:
        .. code-block:: python

            import paddle

            # the axis is a int element
3510 3511
            x = paddle.to_tensor([[0.2, 0.3, 0.5, 0.9],
                                  [0.1, 0.2, 0.6, 0.7]])
G
guofei 已提交
3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527
            out1 = paddle.prod(x)
            # [0.0002268]

            out2 = paddle.prod(x, -1)
            # [0.027  0.0084]

            out3 = paddle.prod(x, 0)
            # [0.02 0.06 0.3  0.63]

            out4 = paddle.prod(x, 0, keepdim=True)
            # [[0.02 0.06 0.3  0.63]]

            out5 = paddle.prod(x, 0, dtype='int64')
            # [0 0 0 0]

            # the axis is list
3528 3529
            y = paddle.to_tensor([[[1.0, 2.0], [3.0, 4.0]],
                                  [[5.0, 6.0], [7.0, 8.0]]])
G
guofei 已提交
3530 3531 3532 3533 3534 3535 3536 3537
            out6 = paddle.prod(y, [0, 1])
            # [105. 384.]

            out7 = paddle.prod(y, (1, 2))
            # [  24. 1680.]

    """
    if dtype is not None:
3538 3539
        check_dtype(dtype, 'dtype', ['float32', 'float64', 'int32', 'int64'],
                    'prod')
G
guofei 已提交
3540
        if x.dtype != convert_np_dtype_to_dtype_(dtype):
Z
zhiboniu 已提交
3541
            x = cast(x, dtype)
G
guofei 已提交
3542

3543
    dim = axis
3544 3545 3546 3547 3548 3549 3550 3551 3552 3553
    if isinstance(dim, Variable):
        reduce_all = True if axis.shape[0] == len(x.shape) else False
    else:
        if dim is not None and not isinstance(dim, list):
            if isinstance(dim, tuple):
                dim = list(dim)
            elif isinstance(dim, int):
                dim = [dim]
            else:
                raise TypeError(
3554 3555
                    "The type of axis must be int, list or tuple, but received {}"
                    .format(type(dim)))
3556

3557 3558
        reduce_all = True if dim is None or len(dim) == 0 or len(dim) == len(
            x.shape) else False
3559 3560
        if dim is None or len(dim) == 0:
            dim = [0]
3561

3562
    if in_dygraph_mode():
3563
        return _C_ops.reduce_prod(x, dim, keepdim, reduce_all)
3564
    if _in_legacy_dygraph():
3565 3566
        return _legacy_C_ops.reduce_prod(x, 'dim', dim, 'keep_dim', keepdim,
                                         'reduce_all', reduce_all)
3567 3568

    helper = LayerHelper('reduce_prod', **locals())
3569 3570 3571
    check_variable_and_dtype(x, 'x/input',
                             ['float32', 'float64', 'int32', 'int64'],
                             'reduce_prod')
3572
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
3573 3574
    if not isinstance(dim, Variable) and utils._contain_var(dim):
        dim = utils._convert_to_tensor_list(dim)
3575 3576 3577 3578 3579 3580 3581 3582
    helper.append_op(type='reduce_prod',
                     inputs={'X': x},
                     outputs={'Out': out},
                     attrs={
                         'dim': dim,
                         'keep_dim': keepdim,
                         'reduce_all': reduce_all
                     })
3583
    return out
W
WangXi 已提交
3584 3585 3586 3587


def sign(x, name=None):
    """
3588
    Returns sign of every element in `x`: 1 for positive, -1 for negative and 0 for zero.
W
WangXi 已提交
3589 3590

    Args:
3591 3592
        x (Tensor): The input tensor. The data type can be float16, float32 or float64.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
W
WangXi 已提交
3593 3594 3595 3596 3597 3598 3599 3600 3601

    Returns:
        Tensor: The output sign tensor with identical shape and data type to the input :attr:`x`.

    Examples:
        .. code-block:: python

          import paddle

3602
          x = paddle.to_tensor([3.0, 0.0, -2.0, 1.7], dtype='float32')
W
WangXi 已提交
3603 3604 3605
          out = paddle.sign(x=x)
          print(out)  # [1.0, 0.0, -1.0, 1.0]
    """
H
hong 已提交
3606
    if in_dygraph_mode():
3607
        return _C_ops.sign(x)
H
hong 已提交
3608 3609

    if _in_legacy_dygraph():
3610
        return _legacy_C_ops.sign(x)
W
WangXi 已提交
3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621

    check_variable_and_dtype(x, 'x', ['float16', 'float32', 'float64'], 'sign')
    helper = LayerHelper("sign", **locals())
    out = helper.create_variable_for_type_inference(dtype=x.dtype)

    helper.append_op(type='sign', inputs={'X': [x]}, outputs={'Out': [out]})

    return out


def tanh(x, name=None):
3622
    r"""
W
WangXi 已提交
3623 3624 3625
    Tanh Activation Operator.

    .. math::
3626
        out = \frac{e^{x} - e^{-x}}{e^{x} + e^{-x}}
W
WangXi 已提交
3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640

    Args:
        x (Tensor): Input of Tanh operator, an N-D Tensor, with data type float32, float64 or float16.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        Output of Tanh operator, a Tensor with same data type and shape as input.

    Examples:

        .. code-block:: python

            import paddle

3641
            x = paddle.to_tensor([-0.4, -0.2, 0.1, 0.3])
W
WangXi 已提交
3642
            out = paddle.tanh(x)
N
Noel 已提交
3643
            print(out)
W
WangXi 已提交
3644 3645
            # [-0.37994896 -0.19737532  0.09966799  0.29131261]
    """
H
hong 已提交
3646
    if in_dygraph_mode():
3647
        return _C_ops.tanh(x)
H
hong 已提交
3648 3649

    if _in_legacy_dygraph():
3650
        return _legacy_C_ops.tanh(x)
W
WangXi 已提交
3651 3652

    check_variable_and_dtype(x, 'x', ['float16', 'float32', 'float64'], 'tanh')
S
ShenLiang 已提交
3653
    check_type(x, 'x', (Variable), 'tanh')
W
WangXi 已提交
3654 3655 3656 3657
    helper = LayerHelper('tanh', **locals())
    out = helper.create_variable_for_type_inference(x.dtype)
    helper.append_op(type='tanh', inputs={'X': x}, outputs={'Out': out})
    return out
S
Steffy-zxf 已提交
3658

3659

3660
@inplace_apis_in_dygraph_only
3661 3662 3663 3664 3665
def tanh_(x, name=None):
    r"""
    Inplace version of ``tanh`` API, the output Tensor will be inplaced with input ``x``.
    Please refer to :ref:`api_tensor_tanh`.
    """
3666
    if in_dygraph_mode():
3667
        return _C_ops.tanh_(x)
3668
    return _legacy_C_ops.tanh_(x)
3669 3670


S
Steffy-zxf 已提交
3671 3672
def increment(x, value=1.0, name=None):
    """
3673
    The API is usually used for control flow to increment the data of :attr:`x` by an amount :attr:`value`.
S
Steffy-zxf 已提交
3674 3675 3676 3677
    Notice that the number of elements in :attr:`x` must be equal to 1.

    Args:
        x (Tensor): A tensor that must always contain only one element, its data type supports float32, float64, int32 and int64.
3678
        value (float, optional): The amount to increment the data of :attr:`x`. Default: 1.0.
S
Steffy-zxf 已提交
3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        Tensor, the elementwise-incremented tensor with the same shape and data type as :attr:`x`.

    Examples:
        .. code-block:: python

            import paddle

            data = paddle.zeros(shape=[1], dtype='float32')
            counter = paddle.increment(data)
            # [1.]

    """
H
hong 已提交
3694
    if in_dygraph_mode():
3695
        return _C_ops.increment_(x, value)
H
hong 已提交
3696 3697

    if _in_legacy_dygraph():
3698
        return _legacy_C_ops.increment(x, 'step', value)
S
Steffy-zxf 已提交
3699 3700 3701 3702

    check_variable_and_dtype(x, 'x', ['float32', 'float64', 'int32', 'int64'],
                             'increment')
    helper = LayerHelper("increment", **locals())
3703 3704 3705 3706
    helper.append_op(type='increment',
                     inputs={'X': [x]},
                     outputs={'Out': [x]},
                     attrs={'step': float(value)})
S
Steffy-zxf 已提交
3707
    return x
3708 3709 3710 3711


def all(x, axis=None, keepdim=False, name=None):
    """
3712
    Computes the ``logical and`` of tensor elements over the given dimension.
3713 3714 3715 3716 3717

    Args:
        x (Tensor): An N-D Tensor, the input data type should be `bool`.
        axis (int|list|tuple, optional): The dimensions along which the ``logical and`` is compute. If
            :attr:`None`, and all elements of :attr:`x` and return a
N
Noel 已提交
3718
            Tensor with a single element, otherwise must be in the
3719 3720 3721 3722 3723 3724
            range :math:`[-rank(x), rank(x))`. If :math:`axis[i] < 0`,
            the dimension to reduce is :math:`rank + axis[i]`.
        keepdim (bool, optional): Whether to reserve the reduced dimension in the
            output Tensor. The result Tensor will have one fewer dimension
            than the :attr:`x` unless :attr:`keepdim` is true, default
            value is False.
3725
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
3726 3727 3728 3729 3730 3731 3732 3733

    Returns:
        Tensor: Results the ``logical and`` on the specified axis of input Tensor `x`,  it's data type is bool.

    Examples:
        .. code-block:: python

            import paddle
C
Chen Long 已提交
3734

N
Noel 已提交
3735
            # x is a bool Tensor with following elements:
3736 3737
            #    [[True, False]
            #     [True, True]]
C
Chen Long 已提交
3738
            x = paddle.to_tensor([[1, 0], [1, 1]], dtype='int32')
3739
            print(x)
S
syyxsxx 已提交
3740
            x = paddle.cast(x, 'bool')
C
Chen Long 已提交
3741

3742 3743 3744
            # out1 should be [False]
            out1 = paddle.all(x)  # [False]
            print(out1)
C
Chen Long 已提交
3745

3746 3747 3748
            # out2 should be [True, False]
            out2 = paddle.all(x, axis=0)  # [True, False]
            print(out2)
C
Chen Long 已提交
3749 3750

            # keepdim=False, out3 should be [False, True], out.shape should be (2,)
3751 3752
            out3 = paddle.all(x, axis=-1)  # [False, True]
            print(out3)
C
Chen Long 已提交
3753 3754 3755

            # keepdim=True, out4 should be [[False], [True]], out.shape should be (2,1)
            out4 = paddle.all(x, axis=1, keepdim=True) # [[False], [True]]
3756
            print(out4)
3757

3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769
    """
    if axis is not None and not isinstance(axis, (list, tuple)):
        axis = [axis]

    if not axis:
        reduce_all_flag = True
    else:
        if len(axis) == len(x.shape):
            reduce_all_flag = True
        else:
            reduce_all_flag = False

3770 3771 3772
    if in_dygraph_mode():
        if reduce_all_flag:
            axis = range(len(x.shape))
3773
        return _C_ops.all(x, axis, keepdim)
3774 3775

    if _in_legacy_dygraph():
W
wanghuancoder 已提交
3776
        axis = axis if axis != None and axis != [] else [0]
3777
        return _legacy_C_ops.reduce_all(x, 'dim', axis, 'keep_dim', keepdim,
3778
                                        'reduce_all', reduce_all_flag)
W
wanghuancoder 已提交
3779

3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790
    attrs = {
        'dim': axis if axis != None and axis != [] and axis != () else [0],
        'keep_dim': keepdim,
        'reduce_all': reduce_all_flag
    }
    check_variable_and_dtype(x, 'x', ['bool'], 'all')

    check_type(axis, 'axis', (int, list, tuple, type(None)), 'all')

    helper = LayerHelper('all', **locals())
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
3791 3792 3793 3794
    helper.append_op(type='reduce_all',
                     inputs={'X': x},
                     outputs={'Out': out},
                     attrs=attrs)
3795 3796 3797 3798 3799
    return out


def any(x, axis=None, keepdim=False, name=None):
    """
C
Chen Long 已提交
3800
    Computes the ``logical or`` of tensor elements over the given dimension, and return the result.
3801 3802 3803 3804 3805

    Args:
        x (Tensor): An N-D Tensor, the input data type should be `bool`.
        axis (int|list|tuple, optional): The dimensions along which the ``logical or`` is compute. If
            :attr:`None`, and all elements of :attr:`x` and return a
N
Noel 已提交
3806
            Tensor with a single element, otherwise must be in the
3807 3808 3809 3810 3811 3812
            range :math:`[-rank(x), rank(x))`. If :math:`axis[i] < 0`,
            the dimension to reduce is :math:`rank + axis[i]`.
        keepdim (bool, optional): Whether to reserve the reduced dimension in the
            output Tensor. The result Tensor will have one fewer dimension
            than the :attr:`x` unless :attr:`keepdim` is true, default
            value is False.
3813
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
3814 3815 3816 3817 3818 3819 3820 3821

    Returns:
        Tensor: Results the ``logical or`` on the specified axis of input Tensor `x`,  it's data type is bool.

    Examples:
        .. code-block:: python

            import paddle
C
Chen Long 已提交
3822 3823 3824

            x = paddle.to_tensor([[1, 0], [1, 1]], dtype='int32')
            x = paddle.assign(x)
3825
            print(x)
S
syyxsxx 已提交
3826
            x = paddle.cast(x, 'bool')
C
Chen Long 已提交
3827 3828 3829 3830
            # x is a bool Tensor with following elements:
            #    [[True, False]
            #     [True, True]]

3831 3832 3833
            # out1 should be [True]
            out1 = paddle.any(x)  # [True]
            print(out1)
C
Chen Long 已提交
3834

3835 3836
            # out2 should be [True, True]
            out2 = paddle.any(x, axis=0)  # [True, True]
3837
            print(out2)
C
Chen Long 已提交
3838 3839

            # keepdim=False, out3 should be [True, True], out.shape should be (2,)
3840
            out3 = paddle.any(x, axis=-1)  # [True, True]
3841
            print(out3)
C
Chen Long 已提交
3842 3843 3844

            # keepdim=True, result should be [[True], [True]], out.shape should be (2,1)
            out4 = paddle.any(x, axis=1, keepdim=True)  # [[True], [True]]
3845 3846
            print(out4)

3847 3848 3849 3850 3851 3852 3853 3854 3855 3856 3857 3858
    """
    if axis is not None and not isinstance(axis, (list, tuple)):
        axis = [axis]

    if not axis:
        reduce_all_flag = True
    else:
        if len(axis) == len(x.shape):
            reduce_all_flag = True
        else:
            reduce_all_flag = False

3859 3860 3861
    if in_dygraph_mode():
        if reduce_all_flag:
            axis = range(len(x.shape))
3862
        return _C_ops.any(x, axis, keepdim)
3863 3864

    if _in_legacy_dygraph():
W
wanghuancoder 已提交
3865
        axis = axis if axis != None and axis != [] else [0]
3866
        return _legacy_C_ops.reduce_any(x, 'dim', axis, 'keep_dim', keepdim,
3867
                                        'reduce_all', reduce_all_flag)
W
wanghuancoder 已提交
3868

3869 3870 3871 3872 3873 3874 3875 3876 3877 3878 3879 3880
    attrs = {
        'dim': axis if axis != None and axis != [] and axis != () else [0],
        'keep_dim': keepdim,
        'reduce_all': reduce_all_flag
    }

    check_variable_and_dtype(x, 'x', ['bool'], 'any')

    check_type(axis, 'axis', (int, list, tuple, type(None)), 'any')

    helper = LayerHelper('any', **locals())
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
3881 3882 3883 3884
    helper.append_op(type='reduce_any',
                     inputs={'X': x},
                     outputs={'Out': out},
                     attrs=attrs)
3885
    return out
L
Leo Chen 已提交
3886

3887

L
Leo Chen 已提交
3888 3889 3890 3891 3892 3893 3894
def broadcast_shape(x_shape, y_shape):
    """
    The function returns the shape of doing operation with broadcasting on tensors of x_shape and y_shape, please refer to :ref:`user_guide_broadcasting` for more details.

    Args:
        x_shape (list[int]|tuple[int]): A shape of tensor.
        y_shape (list[int]|tuple[int]): A shape of tensor.
3895

L
Leo Chen 已提交
3896 3897 3898 3899 3900 3901 3902 3903 3904 3905 3906

    Returns:
        list[int], the result shape.

    Examples:
        .. code-block:: python

            import paddle

            shape = paddle.broadcast_shape([2, 1, 3], [1, 3, 1])
            # [2, 3, 3]
3907

L
Leo Chen 已提交
3908 3909 3910 3911 3912 3913
            # shape = paddle.broadcast_shape([2, 1, 3], [3, 3, 1])
            # ValueError (terminated with error message).

    """

    return core.broadcast_shape(x_shape, y_shape)
3914

3915

3916 3917 3918 3919 3920
def conj(x, name=None):
    r"""
    This function computes the conjugate of the Tensor elementwisely.

    Args:
3921
        x (Tensor): The input Tensor which hold the complex numbers.
3922
            Optional data types are: complex64, complex128, float32, float64, int32 or int64.
3923
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
3924 3925

    Returns:
C
Chen Long 已提交
3926
        out (Tensor): The conjugate of input. The shape and data type is the same with input. If the elements of tensor is real type such as float32, float64, int32 or int64, the out is the same with input.
3927 3928 3929 3930 3931

    Examples:
        .. code-block:: python

          import paddle
3932

3933 3934 3935 3936 3937 3938 3939 3940 3941 3942 3943
          data=paddle.to_tensor([[1+1j, 2+2j, 3+3j], [4+4j, 5+5j, 6+6j]])
          #Tensor(shape=[2, 3], dtype=complex64, place=CUDAPlace(0), stop_gradient=True,
          #       [[(1+1j), (2+2j), (3+3j)],
          #        [(4+4j), (5+5j), (6+6j)]])

          conj_data=paddle.conj(data)
          #Tensor(shape=[2, 3], dtype=complex64, place=CUDAPlace(0), stop_gradient=True,
          #       [[(1-1j), (2-2j), (3-3j)],
          #        [(4-4j), (5-5j), (6-6j)]])

    """
H
hong 已提交
3944
    if in_dygraph_mode():
3945
        return _C_ops.conj(x)
H
hong 已提交
3946

Z
zhiboniu 已提交
3947
    if paddle.in_dynamic_mode():
3948
        return _legacy_C_ops.conj(x)
3949

3950 3951 3952 3953
    check_variable_and_dtype(
        x, "x",
        ['complex64', 'complex128', 'float32', 'float64', 'int32', 'int64'],
        'conj')
3954 3955

    helper = LayerHelper('conj', **locals())
3956
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
3957 3958 3959

    helper.append_op(type='conj', inputs={'X': x}, outputs={'Out': [out]})
    return out
3960

3961

Z
zyfncg 已提交
3962 3963 3964 3965 3966 3967 3968 3969 3970
def digamma(x, name=None):
    r"""
    Calculates the digamma of the given input tensor, element-wise.

    .. math::
        Out = \Psi(x) = \frac{ \Gamma^{'}(x) }{ \Gamma(x) }

    Args:
        x (Tensor): Input Tensor. Must be one of the following types: float32, float64.
3971
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
Z
zyfncg 已提交
3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 3984 3985 3986 3987
    Returns:
        Tensor, the digamma of the input Tensor, the shape and data type is the same with input.

    Examples:
        .. code-block:: python

            import paddle

            data = paddle.to_tensor([[1, 1.5], [0, -2.2]], dtype='float32')
            res = paddle.digamma(data)
            print(res)
            # Tensor(shape=[2, 2], dtype=float32, place=CUDAPlace(0), stop_gradient=True,
            #       [[-0.57721591,  0.03648996],
            #        [ nan       ,  5.32286835]])
    """

J
Jiabin Yang 已提交
3988
    if in_dygraph_mode():
3989
        return _C_ops.digamma(x)
J
Jiabin Yang 已提交
3990 3991
    else:
        if _in_legacy_dygraph():
3992
            return _legacy_C_ops.digamma(x)
Z
zyfncg 已提交
3993 3994 3995 3996 3997 3998 3999

    check_variable_and_dtype(x, 'x', ['float32', 'float64'], 'digamma')
    helper = LayerHelper('digamma', **locals())
    out = helper.create_variable_for_type_inference(x.dtype)
    helper.append_op(type='digamma', inputs={'X': x}, outputs={'Out': out})
    return out

4000

4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027
def lgamma(x, name=None):
    r"""
    Calculates the lgamma of the given input tensor, element-wise.

    This operator performs elementwise lgamma for input $X$.
    :math:`out = log\Gamma(x)`


    Args:
        x (Tensor): Input Tensor. Must be one of the following types: float32, float64.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        Tensor, the lgamma of the input Tensor, the shape and data type is the same with input.

    Examples:
        .. code-block:: python

            import paddle

            x = paddle.to_tensor([-0.4, -0.2, 0.1, 0.3])
            out = paddle.lgamma(x)
            print(out)
            # [1.31452441, 1.76149750, 2.25271273, 1.09579802]
    """
    if in_dygraph_mode():
        return _C_ops.lgamma(x)
4028 4029
    elif _in_legacy_dygraph():
        return _legacy_C_ops.lgamma(x)
4030 4031 4032 4033 4034 4035 4036 4037

    check_variable_and_dtype(x, 'x', ['float32', 'float64'], 'lgamma')
    helper = LayerHelper('lgamma', **locals())
    out = helper.create_variable_for_type_inference(x.dtype)
    helper.append_op(type='lgamma', inputs={'X': x}, outputs={'Out': out})
    return out


4038 4039 4040 4041 4042 4043 4044 4045 4046 4047 4048 4049 4050 4051 4052 4053 4054 4055 4056 4057 4058 4059
def neg(x, name=None):
    """
    This function computes the negative of the Tensor elementwisely.

    Args:
        x (Tensor): Input of neg operator, an N-D Tensor, with data type float32, float64, int8, int16, int32, or int64.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        out (Tensor): The negative of input Tensor. The shape and data type are the same with input Tensor.

    Examples:
        .. code-block:: python

            import paddle

            x = paddle.to_tensor([-0.4, -0.2, 0.1, 0.3])
            out = paddle.neg(x)
            print(out)
            # [0.4 0.2 -0.1 -0.3]
    """

4060 4061 4062 4063 4064 4065 4066
    return scale(x,
                 scale=-1.0,
                 bias=0.0,
                 bias_after_scale=True,
                 act=None,
                 name=name)

R
ronnywang 已提交
4067

4068
def atan2(x, y, name=None):
R
ronnywang 已提交
4069
    r"""
4070
    Element-wise arctangent of x/y with consideration of the quadrant.
R
ronnywang 已提交
4071 4072 4073 4074

    Equation:
        .. math::

4075 4076 4077 4078 4079 4080 4081 4082
            atan2(x,y)=\left\{\begin{matrix}
            & tan^{-1}(\frac{x}{y}) & y > 0 \\
            & tan^{-1}(\frac{x}{y}) + \pi & x>=0, y < 0 \\
            & tan^{-1}(\frac{x}{y}) - \pi & x<0, y < 0 \\
            & +\frac{\pi}{2} & x>0, y = 0 \\
            & -\frac{\pi}{2} & x<0, y = 0 \\
            &\text{undefined} & x=0, y = 0
            \end{matrix}\right.
R
ronnywang 已提交
4083 4084

    Args:
4085 4086
        x (Tensor): An N-D Tensor, the data type is int32, int64, float16, float32, float64.
        y (Tensor): An N-D Tensor, must have the same type as `x`.
R
ronnywang 已提交
4087 4088 4089 4090 4091 4092 4093 4094
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        out (Tensor): An N-D Tensor, the shape and data type is the same with input (The output data type is float64 when the input data type is int).

    Examples:
        .. code-block:: python

4095
            import paddle
R
ronnywang 已提交
4096

4097 4098 4099
            x = paddle.to_tensor([-1, +1, +1, -1]).astype('float32')
            #Tensor(shape=[4], dtype=float32, place=CUDAPlace(0), stop_gradient=True,
            #       [-1,  1,  1, -1])
R
ronnywang 已提交
4100

4101 4102 4103
            y = paddle.to_tensor([-1, -1, +1, +1]).astype('float32')
            #Tensor(shape=[4], dtype=float32, place=CUDAPlace(0), stop_gradient=True,
            #       [-1,  -1,  1, 1])
R
ronnywang 已提交
4104

4105 4106 4107
            out = paddle.atan2(x, y)
            #Tensor(shape=[4], dtype=float32, place=CUDAPlace(0), stop_gradient=True,
            #       [-2.35619450,  2.35619450,  0.78539819, -0.78539819])
R
ronnywang 已提交
4108 4109 4110

    """

J
Jiabin Yang 已提交
4111
    if in_dygraph_mode():
4112
        return _C_ops.atan2(x, y)
R
ronnywang 已提交
4113
    else:
J
Jiabin Yang 已提交
4114
        if _in_legacy_dygraph():
4115
            return _legacy_C_ops.atan2(x, y)
J
Jiabin Yang 已提交
4116
        else:
4117 4118 4119 4120 4121 4122
            check_variable_and_dtype(
                x, 'x', ['int32', 'int64', 'float16', 'float32', 'float64'],
                'atan2')
            check_variable_and_dtype(
                y, 'y', ['int32', 'int64', 'float16', 'float32', 'float64'],
                'atan2')
R
ronnywang 已提交
4123

J
Jiabin Yang 已提交
4124
            helper = LayerHelper('atan2', **locals())
4125
            inputs = {'X1': x, 'X2': y}
J
Jiabin Yang 已提交
4126
            out = helper.create_variable_for_type_inference(dtype=x.dtype)
4127
            helper.append_op(type='atan2', inputs=inputs, outputs={'Out': out})
J
Jiabin Yang 已提交
4128
            return out
A
andyjpaddle 已提交
4129

4130

W
wangzhen38 已提交
4131 4132 4133 4134 4135
def logit(x, eps=None, name=None):
    r"""
    This function generates a new tensor with the logit of the elements of input x. x is clamped to [eps, 1-eps] when eps is not zero. When eps is zero and x < 0 or x > 1, the function will yields NaN.

    .. math::
4136

W
wangzhen38 已提交
4137 4138 4139 4140 4141 4142 4143 4144 4145 4146 4147 4148 4149 4150 4151 4152 4153 4154 4155 4156 4157 4158 4159 4160 4161 4162 4163 4164 4165 4166 4167
        logit(x) = ln(\frac{x}{1 - x})

    where

    .. math::

        x_i=
            \left\{\begin{array}{rcl}
                x_i & &\text{if } eps == Default \\
                eps & &\text{if } x_i < eps \\
                x_i & &\text{if } eps <= x_i <= 1-eps \\
                1-eps & &\text{if } x_i > 1-eps
            \end{array}\right.

    Args:
        x (Tensor): The input Tensor with data type float32, float64.
        eps (float, optional):  the epsilon for input clamp bound. Default is None.
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        out(Tensor): A Tensor with the same data type and shape as ``x`` .

    Examples:
        .. code-block:: python

            import paddle

            x = paddle.to_tensor([0.2635, 0.0106, 0.2780, 0.2097, 0.8095])
            out1 = paddle.logit(x)
            print(out1)
4168
            # [-1.0277, -4.5365, -0.9544, -1.3269,  1.4468]
W
wangzhen38 已提交
4169 4170 4171 4172 4173

    """

    if eps == None:
        eps = 0.0
4174
    if _in_legacy_dygraph():
4175
        return _legacy_C_ops.logit(x, 'eps', eps)
4176
    if in_dygraph_mode():
4177
        return _C_ops.logit(x, eps)
W
wangzhen38 已提交
4178 4179 4180
    check_variable_and_dtype(x, 'x', ['float16', 'float32', 'float64'], 'logit')
    helper = LayerHelper("logit", **locals())
    out = helper.create_variable_for_type_inference(x.dtype)
4181 4182 4183 4184
    helper.append_op(type='logit',
                     inputs={'X': x},
                     outputs={'Out': out},
                     attrs={'eps': eps})
W
wangzhen38 已提交
4185 4186
    return out

4187

4188 4189 4190 4191 4192 4193 4194 4195 4196 4197
def lerp(x, y, weight, name=None):
    r"""
    Does a linear interpolation between x and y based on weight.

    Equation:
        .. math::

            lerp(x, y, weight) = x + weight * (y - x).

    Args:
4198 4199 4200
        x (Tensor): An N-D Tensor with starting points, the data type is float32, float64.
        y (Tensor): An N-D Tensor with ending points, the data type is float32, float64.
        weight (float|Tensor): The weight for the interpolation formula. When weight is Tensor, the data type is float32, float64.
4201 4202 4203 4204 4205 4206 4207 4208 4209
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        out (Tensor): An N-D Tensor, the shape and data type is the same with input.

    Example:
        .. code-block:: python

            import paddle
4210

4211 4212 4213
            x = paddle.arange(1., 5., dtype='float32')
            y = paddle.empty([4], dtype='float32')
            y.fill_(10.)
4214
            out = paddle.lerp(x, y, 0.5)
4215
            # out: [5.5, 6., 6.5, 7.]
4216 4217

    """
H
hong 已提交
4218
    if in_dygraph_mode():
4219
        check_type(weight, 'weight', (float, paddle.Tensor, Variable), 'lerp')
H
hong 已提交
4220 4221 4222
        if isinstance(weight, float):
            weight = paddle.to_tensor(weight, dtype=x.dtype)

4223
        return _C_ops.lerp(x, y, weight)
H
hong 已提交
4224
    if _in_legacy_dygraph():
4225 4226
        if isinstance(weight, float):
            weight = paddle.to_tensor(weight, dtype=x.dtype)
4227
        return _legacy_C_ops.lerp(x, y, weight)
4228

4229 4230 4231
    if isinstance(weight, float):
        weight = paddle.full(shape=[1], fill_value=weight, dtype=x.dtype)

4232 4233 4234 4235 4236 4237 4238 4239 4240 4241
    check_variable_and_dtype(x, 'x', ['float32', 'float64'], 'lerp')
    check_variable_and_dtype(y, 'y', ['float32', 'float64'], 'lerp')
    check_variable_and_dtype(weight, 'weight', ['float32', 'float64'], 'lerp')

    helper = LayerHelper('lerp', **locals())
    inputs = {'X': x, 'Y': y, 'Weight': weight}
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
    helper.append_op(type='lerp', inputs=inputs, outputs={'Out': out})
    return out

4242

4243 4244 4245 4246 4247 4248 4249 4250 4251 4252 4253 4254 4255
@inplace_apis_in_dygraph_only
def lerp_(x, y, weight, name=None):
    r"""
    Inplace version of ``lerp`` API, the output Tensor will be inplaced with input ``x``.
    Please refer to :ref:`api_tensor_lerp`.
    """
    out_shape = broadcast_shape(x.shape, y.shape)
    check_type(weight, 'weight', (float, paddle.Tensor, Variable), 'lerp')
    if isinstance(weight, float):
        weight = paddle.to_tensor([weight], dtype=x.dtype)
    elif isinstance(weight, (paddle.Tensor, Variable)):
        out_shape = broadcast_shape(out_shape, weight.shape)
    if out_shape != x.shape:
4256 4257 4258
        raise ValueError(
            "The shape of broadcast output {} is different from that of inplace tensor {} in the Inplace operation."
            .format(out_shape, x.shape))
4259
    if in_dygraph_mode():
4260
        return _C_ops.lerp_(x, y, weight)
4261
    return _legacy_C_ops.lerp_(x, y, weight)
4262

4263

W
wuhuanzhou 已提交
4264 4265
def erfinv(x, name=None):
    r"""
4266
    The inverse error function of x. Please refer to :ref:`api_paddle_erf`
W
wuhuanzhou 已提交
4267 4268 4269 4270 4271 4272 4273 4274 4275 4276

        .. math::

            erfinv(erf(x)) = x.

    Args:
        x (Tensor): An N-D Tensor, the data type is float32, float64.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
4277
        out (Tensor), an N-D Tensor, the shape and data type is the same with input.
W
wuhuanzhou 已提交
4278 4279 4280 4281 4282

    Example:
        .. code-block:: python

            import paddle
4283

W
wuhuanzhou 已提交
4284 4285 4286 4287 4288
            x = paddle.to_tensor([0, 0.5, -1.], dtype="float32")
            out = paddle.erfinv(x)
            # out: [0, 0.4769, -inf]

    """
H
hong 已提交
4289
    if in_dygraph_mode():
4290
        return _C_ops.erfinv(x)
H
hong 已提交
4291

W
wuhuanzhou 已提交
4292 4293
    check_variable_and_dtype(x, 'x', ['float32', 'float64'], 'erfinv')

Z
zhiboniu 已提交
4294
    if paddle.in_dynamic_mode():
4295
        return _legacy_C_ops.erfinv(x)
W
wuhuanzhou 已提交
4296 4297 4298 4299 4300 4301

    helper = LayerHelper('erfinv', **locals())
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
    helper.append_op(type='erfinv', inputs={'X': x}, outputs={'Out': out})
    return out

4302

W
wuhuanzhou 已提交
4303 4304 4305 4306 4307 4308 4309
@inplace_apis_in_dygraph_only
def erfinv_(x, name=None):
    r"""
    Inplace version of ``erfinv`` API, the output Tensor will be inplaced with input ``x``.
    Please refer to :ref:`api_tensor_erfinv`.
    """
    check_type(x, 'x', (paddle.Tensor, Variable), 'erfinv')
4310
    if in_dygraph_mode():
4311
        return _C_ops.erfinv_(x)
4312
    return _legacy_C_ops.erfinv_(x)
W
wuhuanzhou 已提交
4313

4314

4315
def rad2deg(x, name=None):
4316
    r"""
4317
    Convert each of the elements of input x from angles in radians to degrees.
4318

4319 4320 4321 4322 4323 4324 4325 4326 4327 4328 4329 4330 4331 4332 4333 4334
    Equation:
        .. math::

            rad2deg(x)=180/ \pi * x

    Args:
        x (Tensor): An N-D Tensor, the data type is float32, float64, int32, int64.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        out (Tensor): An N-D Tensor, the shape and data type is the same with input (The output data type is float32 when the input data type is int).

    Examples:
        .. code-block:: python

            import paddle
4335
            import math
4336

4337 4338 4339 4340 4341 4342 4343
            x1 = paddle.to_tensor([3.142, -3.142, 6.283, -6.283, 1.570, -1.570])
            result1 = paddle.rad2deg(x1)
            print(result1)
            # Tensor(shape=[6], dtype=float32, place=CUDAPlace(0), stop_gradient=True,
            #         [180.02334595, -180.02334595,  359.98937988, -359.98937988,
            #           9.95437622 , -89.95437622])

4344
            x2 = paddle.to_tensor(math.pi/2)
4345 4346 4347 4348
            result2 = paddle.rad2deg(x2)
            print(result2)
            # Tensor(shape=[1], dtype=float32, place=CUDAPlace(0), stop_gradient=True,
            #         [90.])
4349

4350 4351 4352 4353 4354 4355 4356
            x3 = paddle.to_tensor(1)
            result3 = paddle.rad2deg(x3)
            print(result3)
            # Tensor(shape=[1], dtype=float32, place=CUDAPlace(0), stop_gradient=True,
            #         [57.29578018])
    """
    rad2deg_scale = 180 / np.pi
4357 4358 4359
    if in_dygraph_mode():
        if convert_dtype(x.dtype) in ['int32', 'int64']:
            x = cast(x, dtype="float32")
4360
        return _C_ops.scale(x, rad2deg_scale, 0.0, True)
4361
    elif paddle.in_dynamic_mode():
4362 4363
        if convert_dtype(x.dtype) in ['int32', 'int64']:
            x = cast(x, dtype="float32")
4364
        return _legacy_C_ops.scale(x, 'scale', rad2deg_scale)
4365
    else:
4366 4367 4368
        check_variable_and_dtype(x, 'x',
                                 ['int32', 'int64', 'float32', 'float64'],
                                 'rad2deg')
4369 4370 4371
        helper = LayerHelper('rad2deg', **locals())
        out_cast = x
        if convert_dtype(x.dtype) in ['int32', 'int64']:
4372 4373 4374 4375 4376 4377 4378 4379 4380
            out_cast = helper.create_variable_for_type_inference(
                dtype=paddle.float32)
            helper.append_op(type='cast',
                             inputs={'X': x},
                             outputs={'Out': out_cast},
                             attrs={
                                 'in_dtype': x.dtype,
                                 'out_dtype': paddle.float32
                             })
4381
        out = helper.create_variable_for_type_inference(dtype=out_cast.dtype)
4382 4383 4384 4385
        helper.append_op(type='scale',
                         inputs={'X': out_cast},
                         outputs={'Out': out},
                         attrs={'scale': rad2deg_scale})
4386 4387
        return out

4388

4389
def deg2rad(x, name=None):
4390
    r"""
4391
    Convert each of the elements of input x from degrees to angles in radians.
4392

4393 4394 4395 4396 4397 4398 4399 4400 4401 4402 4403 4404 4405 4406 4407
        .. math::

            deg2rad(x)=\pi * x / 180

    Args:
        x (Tensor): An N-D Tensor, the data type is float32, float64, int32, int64.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        out (Tensor): An N-D Tensor, the shape and data type is the same with input (The output data type is float32 when the input data type is int).

    Examples:
        .. code-block:: python

            import paddle
4408

4409 4410 4411 4412 4413 4414 4415 4416 4417 4418 4419 4420 4421 4422
            x1 = paddle.to_tensor([180.0, -180.0, 360.0, -360.0, 90.0, -90.0])
            result1 = paddle.deg2rad(x1)
            print(result1)
            # Tensor(shape=[6], dtype=float32, place=CUDAPlace(0), stop_gradient=True,
            #         [3.14159274, -3.14159274,  6.28318548, -6.28318548,  1.57079637,
            #           -1.57079637])

            x2 = paddle.to_tensor(180)
            result2 = paddle.deg2rad(x2)
            print(result2)
            # Tensor(shape=[1], dtype=float32, place=CUDAPlace(0), stop_gradient=True,
            #         [3.14159274])
    """
    deg2rad_scale = np.pi / 180.0
4423 4424 4425
    if in_dygraph_mode():
        if convert_dtype(x.dtype) in ['int32', 'int64']:
            x = cast(x, dtype="float32")
4426
        return _C_ops.scale(x, deg2rad_scale, 0.0, True)
4427
    elif paddle.in_dynamic_mode():
4428 4429
        if convert_dtype(x.dtype) in ['int32', 'int64']:
            x = cast(x, dtype="float32")
4430
        return _legacy_C_ops.scale(x, 'scale', deg2rad_scale)
4431
    else:
4432 4433 4434
        check_variable_and_dtype(x, 'x',
                                 ['int32', 'int64', 'float32', 'float64'],
                                 'deg2rad')
4435 4436 4437
        helper = LayerHelper('deg2rad', **locals())
        out_cast = x
        if convert_dtype(x.dtype) in ['int32', 'int64']:
4438 4439 4440 4441 4442 4443 4444 4445 4446
            out_cast = helper.create_variable_for_type_inference(
                dtype=paddle.float32)
            helper.append_op(type='cast',
                             inputs={'X': x},
                             outputs={'Out': out_cast},
                             attrs={
                                 'in_dtype': x.dtype,
                                 'out_dtype': paddle.float32
                             })
4447
        out = helper.create_variable_for_type_inference(dtype=out_cast.dtype)
4448 4449 4450 4451
        helper.append_op(type='scale',
                         inputs={'X': out_cast},
                         outputs={'Out': out},
                         attrs={'scale': deg2rad_scale})
4452
        return out
A
andyjpaddle 已提交
4453

4454

T
Tao Luo 已提交
4455 4456 4457 4458
def gcd(x, y, name=None):
    """
    Computes the element-wise greatest common divisor (GCD) of input |x| and |y|.
    Both x and y must have integer types.
4459

T
Tao Luo 已提交
4460 4461 4462
    Note:
        gcd(0,0)=0, gcd(0, y)=|y|

T
Tao Luo 已提交
4463 4464
        If x.shape != y.shape, they must be broadcastable to a common shape (which becomes the shape of the output).

T
Tao Luo 已提交
4465
    Args:
4466 4467
        x (Tensor): An N-D Tensor, the data type is int32,int64.
        y (Tensor): An N-D Tensor, the data type is int32,int64.
T
Tao Luo 已提交
4468 4469 4470 4471 4472 4473 4474 4475 4476
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        out (Tensor): An N-D Tensor, the data type is the same with input.

    Examples:
        .. code-block:: python

            import paddle
4477

T
Tao Luo 已提交
4478 4479 4480 4481 4482 4483
            x1 = paddle.to_tensor(12)
            x2 = paddle.to_tensor(20)
            paddle.gcd(x1, x2)
            # Tensor(shape=[1], dtype=int64, place=CUDAPlace(0), stop_gradient=True,
            #        [4])

T
Tao Luo 已提交
4484
            x3 = paddle.arange(6)
T
Tao Luo 已提交
4485 4486 4487 4488 4489 4490 4491 4492 4493 4494 4495 4496
            paddle.gcd(x3, x2)
            # Tensor(shape=[6], dtype=int64, place=CUDAPlace(0), stop_gradient=True,
            #        [20, 1 , 2 , 1 , 4 , 5])

            x4 = paddle.to_tensor(0)
            paddle.gcd(x4, x2)
            # Tensor(shape=[1], dtype=int64, place=CUDAPlace(0), stop_gradient=True,
            #        [20])

            paddle.gcd(x4, x4)
            # Tensor(shape=[1], dtype=int64, place=CUDAPlace(0), stop_gradient=True,
            #        [0])
4497

T
Tao Luo 已提交
4498 4499 4500 4501 4502 4503 4504 4505 4506 4507 4508 4509 4510 4511 4512 4513 4514 4515 4516 4517 4518
            x5 = paddle.to_tensor(-20)
            paddle.gcd(x1, x5)
            # Tensor(shape=[1], dtype=int64, place=CUDAPlace(0), stop_gradient=True,
            #        [4])
    """
    shape = paddle.broadcast_shape(x.shape, y.shape)
    x = paddle.broadcast_to(x, shape)
    y = paddle.broadcast_to(y, shape)
    x = paddle.abs(x)
    y = paddle.abs(y)

    def _gcd_cond_fn(x, y):
        return paddle.any(y != 0)

    def _gcd_body_fn(x, y):
        # paddle.mod will raise an error when any element of y is 0. To avoid
        # that, we change those zeros to ones. Their values don't matter because
        # they won't be used.
        y_not_equal_0 = (y != 0)
        y_safe = paddle.where(y_not_equal_0, y, paddle.ones(y.shape, y.dtype))
        x, y = (paddle.where(y_not_equal_0, y, x),
4519 4520
                paddle.where(y_not_equal_0, paddle.mod(x, y_safe),
                             paddle.zeros(y.shape, y.dtype)))
T
Tao Luo 已提交
4521 4522
        return (paddle.where(x < y, y, x), paddle.where(x < y, x, y))

Z
zhiboniu 已提交
4523
    if paddle.in_dynamic_mode():
T
Tao Luo 已提交
4524 4525 4526 4527 4528
        while _gcd_cond_fn(x, y):
            x, y = _gcd_body_fn(x, y)

        return x
    else:
T
Tao Luo 已提交
4529 4530
        check_variable_and_dtype(x, 'x', ['int32', 'int64'], 'gcd')
        check_variable_and_dtype(y, 'y', ['int32', 'int64'], 'gcd')
T
Tao Luo 已提交
4531 4532 4533
        out, _ = paddle.static.nn.while_loop(_gcd_cond_fn, _gcd_body_fn, [x, y])
        return out

4534

T
Tao Luo 已提交
4535 4536 4537 4538
def lcm(x, y, name=None):
    """
    Computes the element-wise least common multiple (LCM) of input |x| and |y|.
    Both x and y must have integer types.
4539

T
Tao Luo 已提交
4540 4541 4542
    Note:
        lcm(0,0)=0, lcm(0, y)=0

T
Tao Luo 已提交
4543 4544
        If x.shape != y.shape, they must be broadcastable to a common shape (which becomes the shape of the output).

T
Tao Luo 已提交
4545
    Args:
4546 4547
        x (Tensor): An N-D Tensor, the data type is int32,int64.
        y (Tensor): An N-D Tensor, the data type is int32,int64.
T
Tao Luo 已提交
4548 4549 4550 4551 4552 4553 4554 4555 4556
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        out (Tensor): An N-D Tensor, the data type is the same with input.

    Examples:
        .. code-block:: python

            import paddle
4557

T
Tao Luo 已提交
4558 4559 4560 4561 4562 4563
            x1 = paddle.to_tensor(12)
            x2 = paddle.to_tensor(20)
            paddle.lcm(x1, x2)
            # Tensor(shape=[1], dtype=int64, place=CUDAPlace(0), stop_gradient=True,
            #        [60])

T
Tao Luo 已提交
4564
            x3 = paddle.arange(6)
T
Tao Luo 已提交
4565 4566 4567 4568 4569 4570 4571 4572 4573 4574 4575 4576
            paddle.lcm(x3, x2)
            # Tensor(shape=[6], dtype=int64, place=CUDAPlace(0), stop_gradient=True,
            #        [0, 20, 20, 60, 20, 20])

            x4 = paddle.to_tensor(0)
            paddle.lcm(x4, x2)
            # Tensor(shape=[1], dtype=int64, place=CUDAPlace(0), stop_gradient=True,
            #        [0])

            paddle.lcm(x4, x4)
            # Tensor(shape=[1], dtype=int64, place=CUDAPlace(0), stop_gradient=True,
            #        [0])
4577

T
Tao Luo 已提交
4578 4579 4580 4581 4582 4583 4584 4585 4586 4587 4588
            x5 = paddle.to_tensor(-20)
            paddle.lcm(x1, x5)
            # Tensor(shape=[1], dtype=int64, place=CUDAPlace(0), stop_gradient=True,
            #        [60])
    """
    d = paddle.gcd(x, y)
    # paddle.mod will raise an error when any element of y is 0. To avoid
    # that, we change those zeros to ones. Their values don't matter because
    # they won't be used.
    d_equal_0 = paddle.equal(d, 0)
    d_safe = paddle.where(d_equal_0, paddle.ones(d.shape, d.dtype), d)
4589 4590
    out = paddle.where(d_equal_0, paddle.zeros(d.shape, d.dtype),
                       paddle.abs(x * y) // d_safe)
T
Tao Luo 已提交
4591 4592
    return out

4593

A
andyjpaddle 已提交
4594 4595 4596
def diff(x, n=1, axis=-1, prepend=None, append=None, name=None):
    r"""
    Computes the n-th forward difference along the given axis.
4597
    The first-order differences is computed by using the following formula:
A
andyjpaddle 已提交
4598 4599 4600 4601

    .. math::

        out[i] = x[i+1] - x[i]
4602 4603

    Higher-order differences are computed by using paddle.diff() recursively.
A
andyjpaddle 已提交
4604 4605 4606
    Only n=1 is currently supported.

    Args:
4607
        x (Tensor): The input tensor to compute the forward difference on
4608
        n (int, optional): The number of times to recursively compute the difference.
A
andyjpaddle 已提交
4609
                          Only support n=1. Default:1
4610 4611
        axis (int, optional): The axis to compute the difference along. Default:-1
        prepend (Tensor, optional): The tensor to prepend to input along axis before computing the difference.
4612
                                   It's dimensions must be equivalent to that of x,
A
andyjpaddle 已提交
4613
                                   and its shapes must match x's shape except on axis.
4614 4615
        append (Tensor, optional): The tensor to append to input along axis before computing the difference,
                                   It's dimensions must be equivalent to that of x,
A
andyjpaddle 已提交
4616
                                   and its shapes must match x's shape except on axis.
4617
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
4618

A
andyjpaddle 已提交
4619 4620 4621 4622 4623 4624 4625
    Returns:
        Tensor: The output tensor with same dtype with x.

    Examples:
        .. code-block:: python

            import paddle
4626

A
andyjpaddle 已提交
4627 4628 4629 4630 4631 4632 4633 4634 4635
            x = paddle.to_tensor([1, 4, 5, 2])
            out = paddle.diff(x)
            print(out)
            # out:
            # [3, 1, -3]

            y = paddle.to_tensor([7, 9])
            out = paddle.diff(x, append=y)
            print(out)
4636
            # out:
A
andyjpaddle 已提交
4637 4638 4639 4640 4641 4642 4643 4644 4645 4646 4647 4648 4649 4650 4651 4652 4653 4654 4655 4656 4657 4658
            # [3, 1, -3, 5, 2]

            z = paddle.to_tensor([[1, 2, 3], [4, 5, 6]])
            out = paddle.diff(z, axis=0)
            print(out)
            # out:
            # [[3, 3, 3]]
            out = paddle.diff(z, axis=1)
            print(out)
            # out:
            # [[1, 1], [1, 1]]
    """

    if axis < 0:
        axis = axis + len(x.shape)
    if axis > len(x.shape):
        axis = len(x.shape)
    if axis < 0:
        axis = 0
    dtype = x.dtype
    axes = [axis]
    infer_flags = list(1 for i in range(len(axes)))
4659
    if in_dygraph_mode():
A
andyjpaddle 已提交
4660 4661 4662 4663 4664 4665 4666 4667 4668 4669 4670 4671
        has_pend = False
        input_list = []
        if prepend is not None and append is not None:
            input_list = [prepend, x, append]
            has_pend = True
        elif prepend is not None:
            input_list = [prepend, x]
            has_pend = True
        elif append is not None:
            input_list = [x, append]
            has_pend = True
        if has_pend:
4672
            new_input = _C_ops.concat(input_list, axis)
A
andyjpaddle 已提交
4673 4674 4675 4676 4677 4678 4679 4680 4681 4682 4683 4684
        else:
            new_input = x

        attrs_1 = ()
        attrs_2 = ()

        dim_len = new_input.shape[axis]

        starts_1 = [0]
        attrs_1 += ('starts', starts_1)
        ends_1 = [dim_len - 1]
        attrs_1 += ('ends', ends_1)
4685 4686
        input_front = _C_ops.slice(new_input, axes, starts_1, ends_1,
                                   infer_flags, [])
A
andyjpaddle 已提交
4687 4688 4689 4690
        starts_2 = [1]
        attrs_2 += ('starts', starts_2)
        ends_2 = [dim_len]
        attrs_2 += ('ends', ends_2)
4691 4692
        input_back = _C_ops.slice(new_input, axes, starts_2, ends_2,
                                  infer_flags, [])
4693 4694

        if x.dtype == paddle.bool:
4695
            return _C_ops.logical_xor(input_back, input_front)
4696
        else:
4697
            return _C_ops.subtract(input_back, input_front)
4698 4699 4700 4701 4702 4703 4704 4705 4706 4707 4708 4709 4710 4711
    elif _in_legacy_dygraph():
        has_pend = False
        input_list = []
        if prepend is not None and append is not None:
            input_list = [prepend, x, append]
            has_pend = True
        elif prepend is not None:
            input_list = [prepend, x]
            has_pend = True
        elif append is not None:
            input_list = [x, append]
            has_pend = True
        if has_pend:
            new_input = _varbase_creator()
4712
            _legacy_C_ops.concat(input_list, new_input, 'axis', axis)
4713 4714 4715 4716 4717 4718 4719 4720 4721 4722 4723 4724
        else:
            new_input = x

        attrs_1 = ()
        attrs_2 = ()

        dim_len = new_input.shape[axis]

        starts_1 = [0]
        attrs_1 += ('starts', starts_1)
        ends_1 = [dim_len - 1]
        attrs_1 += ('ends', ends_1)
4725
        input_front = _legacy_C_ops.slice(new_input, None, None, None, None, 'axes', axes, \
4726 4727 4728 4729 4730
                'infer_flags', infer_flags, *attrs_1)
        starts_2 = [1]
        attrs_2 += ('starts', starts_2)
        ends_2 = [dim_len]
        attrs_2 += ('ends', ends_2)
4731
        input_back = _legacy_C_ops.slice(new_input, None, None, None, None, 'axes', axes, \
4732
                'infer_flags', infer_flags, *attrs_2)
A
andyjpaddle 已提交
4733 4734

        if x.dtype == paddle.bool:
4735
            return _legacy_C_ops.logical_xor(input_back, input_front)
A
andyjpaddle 已提交
4736
        else:
4737
            return elementwise_sub(input_back, input_front, axis=axis)
A
andyjpaddle 已提交
4738
    else:
4739 4740
        check_variable_and_dtype(
            x, 'x', ['float32', 'float64', 'bool', 'int32', 'int64'], 'diff')
A
andyjpaddle 已提交
4741 4742 4743 4744 4745 4746 4747 4748 4749 4750 4751 4752 4753 4754 4755 4756
        check_type(axis, 'axis', (int), 'diff')
        helper = LayerHelper('diff', **locals())
        has_pend = False
        input_list = []
        if prepend is not None and append is not None:
            input_list = [prepend, x, append]
            has_pend = True
        elif prepend is not None:
            input_list = [prepend, x]
            has_pend = True
        elif append is not None:
            input_list = [x, append]
            has_pend = True

        if has_pend:
            new_input = helper.create_variable_for_type_inference(dtype)
4757 4758 4759 4760
            helper.append_op(type='concat',
                             inputs={'X': input_list},
                             outputs={'Out': [new_input]},
                             attrs={'axis': axis})
A
andyjpaddle 已提交
4761 4762 4763 4764 4765 4766 4767 4768 4769 4770
        else:
            new_input = x

        dim_len = new_input.shape[axis]
        attrs_1 = {'axes': axes}
        starts_1 = [0]
        ends_1 = [dim_len - 1]
        attrs_1['starts'] = starts_1
        attrs_1['ends'] = ends_1
        input_front = helper.create_variable_for_type_inference(dtype)
4771 4772 4773 4774
        helper.append_op(type='slice',
                         inputs={'Input': new_input},
                         attrs=attrs_1,
                         outputs={'Out': input_front})
A
andyjpaddle 已提交
4775 4776 4777 4778 4779 4780
        attrs_2 = {'axes': axes}
        starts_2 = [1]
        ends_2 = [dim_len]
        attrs_2['starts'] = starts_2
        attrs_2['ends'] = ends_2
        input_back = helper.create_variable_for_type_inference(dtype)
4781 4782 4783 4784
        helper.append_op(type='slice',
                         inputs={'Input': new_input},
                         attrs=attrs_2,
                         outputs={'Out': input_back})
A
andyjpaddle 已提交
4785 4786 4787

        if dtype == paddle.bool:
            out = helper.create_variable_for_type_inference(dtype)
4788 4789 4790 4791 4792 4793
            helper.append_op(type='logical_xor',
                             inputs={
                                 "X": input_back,
                                 "Y": input_front
                             },
                             outputs={"Out": out})
A
andyjpaddle 已提交
4794
        else:
Z
zhiboniu 已提交
4795
            out = elementwise_sub(input_back, input_front, axis=axis)
A
andyjpaddle 已提交
4796 4797

        return out
F
Feiyu Chan 已提交
4798

4799

F
Feiyu Chan 已提交
4800 4801
def angle(x, name=None):
    r"""
4802
    Element-wise angle of complex numbers. For non-negative real numbers, the angle is 0 while
F
Feiyu Chan 已提交
4803 4804 4805 4806 4807 4808 4809 4810 4811 4812 4813 4814
    for negative real numbers, the angle is :math:`\pi`.

    Equation:
        .. math::

            angle(x)=arctan2(x.imag, x.real)

    Args:
        x (Tensor): An N-D Tensor, the data type is complex64, complex128, or float32, float64 .
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
4815
        Tensor: An N-D Tensor of real data type with the same precision as that of x's data type.
F
Feiyu Chan 已提交
4816 4817 4818 4819 4820 4821 4822 4823 4824

    Examples:
        .. code-block:: python

            import paddle

            x = paddle.to_tensor([-2, -1, 0, 1]).unsqueeze(-1).astype('float32')
            y = paddle.to_tensor([-2, -1, 0, 1]).astype('float32')
            z = x + 1j * y
4825 4826 4827 4828 4829 4830
            print(z)
            # Tensor(shape=[4, 4], dtype=complex64, place=Place(cpu), stop_gradient=True,
            #        [[(-2-2j), (-2-1j), (-2+0j), (-2+1j)],
            #         [(-1-2j), (-1-1j), (-1+0j), (-1+1j)],
            #         [-2j    , -1j    ,  0j    ,  1j    ],
            #         [ (1-2j),  (1-1j),  (1+0j),  (1+1j)]])
F
Feiyu Chan 已提交
4831 4832

            theta = paddle.angle(z)
4833 4834 4835 4836 4837 4838
            print(theta)
            # Tensor(shape=[4, 4], dtype=float32, place=Place(cpu), stop_gradient=True,
            #        [[-2.35619450, -2.67794514,  3.14159274,  2.67794514],
            #         [-2.03444386, -2.35619450,  3.14159274,  2.35619450],
            #         [-1.57079637, -1.57079637,  0.        ,  1.57079637],
            #         [-1.10714877, -0.78539819,  0.        ,  0.78539819]])
F
Feiyu Chan 已提交
4839 4840
    """

W
WangZhen 已提交
4841
    if in_dygraph_mode():
F
Feiyu Chan 已提交
4842
        return _C_ops.angle(x)
4843 4844
    elif paddle.in_dynamic_mode():
        return _legacy_C_ops.angle(x)
F
Feiyu Chan 已提交
4845 4846

    check_variable_and_dtype(x, 'x',
4847 4848
                             ['float32', 'float64', 'complex64', 'complex128'],
                             'angle')
F
Feiyu Chan 已提交
4849 4850 4851 4852 4853 4854 4855 4856
    op_type = "angle"
    helper = LayerHelper(op_type, **locals())
    inputs = {"X": x}
    out = helper.create_variable_for_type_inference(
        dtype=_complex_to_real_dtype(x.dtype))
    outputs = {"Out": out}
    helper.append_op(type=op_type, inputs=inputs, outputs=outputs)
    return out
4857

4858

4859
def heaviside(x, y, name=None):
4860
    r"""
4861 4862 4863 4864 4865
    Computes the Heaviside step function determined by corresponding element in y for each element in x. The equation is

    .. math::
        heaviside(x, y)=
            \left\{
4866 4867 4868 4869
                \begin{array}{lcl}
                0,& &\text{if} \ x < 0, \\
                y,& &\text{if} \ x = 0, \\
                1,& &\text{if} \ x > 0.
4870
                \end{array}
4871
            \right.
4872

4873
    Note:
4874 4875 4876
        ``paddle.heaviside`` supports broadcasting. If you want know more about broadcasting, please refer to :ref:`user_guide_broadcasting`.

    Args:
4877 4878
        x (Tensor): The input tensor of Heaviside step function, it's data type should be float16, float32, float64, int32 or int64.
        y (Tensor): The tensor that determines a Heaviside step function, it's data type should be float16, float32, float64, int32 or int64.
4879 4880 4881 4882 4883 4884 4885 4886 4887 4888 4889 4890 4891 4892 4893 4894 4895 4896
        name (str, optional): Name for the operation (optional, default is None). Normally there is no need for user to set this property. For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        N-D Tensor. A location into which the result is stored. If x and y have different shapes and are broadcastable, the resulting tensor shape is the shape of x and y after broadcasting. If x, y have the same shape, its shape is the same as x and y.

    Examples:
        .. code-block:: python

            import paddle
            x = paddle.to_tensor([-0.5, 0, 0.5])
            y = paddle.to_tensor([0.1])
            paddle.heaviside(x, y)
            #    [0.        , 0.10000000, 1.        ]
            x = paddle.to_tensor([[-0.5, 0, 0.5], [-0.5, 0.5, 0]])
            y = paddle.to_tensor([0.1, 0.2, 0.3])
            paddle.heaviside(x, y)
            #    [[0.        , 0.20000000, 1.        ],
            #     [0.        , 1.        , 0.30000001]]
4897
    """
4898 4899 4900 4901
    op_type = 'elementwise_heaviside'
    axis = -1
    act = None
    if _non_static_mode():
4902 4903 4904 4905 4906
        return _elementwise_op_in_dygraph(x,
                                          y,
                                          axis=axis,
                                          act=act,
                                          op_name=op_type)
4907 4908
    return _elementwise_op(LayerHelper(op_type, **locals()))

4909

4910 4911 4912 4913 4914 4915
def frac(x, name=None):
    """
    This API is used to return the fractional portion of each element in input.

    Args:
        x (Tensor): The input tensor, which data type should be int32, int64, float32, float64.
4916
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
4917 4918 4919 4920 4921

    Returns:
        Tensor: The output Tensor of frac.

    Examples:
4922
        .. code-block:: python
4923 4924 4925

            import paddle

4926 4927
            input = paddle.to_tensor([[12.22000003, -1.02999997],
                                    [-0.54999995, 0.66000003]])
4928
            output = paddle.frac(input)
4929 4930 4931 4932
            print(output)
            # Tensor(shape=[2, 2], dtype=float32, place=Place(cpu), stop_gradient=True,
            #        [[ 0.22000003, -0.02999997],
            #         [-0.54999995,  0.66000003]])
4933 4934 4935 4936
    """
    op_type = 'elementwise_sub'
    axis = -1
    act = None
4937 4938 4939
    if x.dtype not in [
            paddle.int32, paddle.int64, paddle.float32, paddle.float64
    ]:
4940
        raise TypeError(
4941 4942
            "The data type of input must be one of ['int32', 'int64', 'float32', 'float64'], but got {}"
            .format(x.dtype))
4943
    if in_dygraph_mode():
4944 4945
        y = _C_ops.trunc(x)
        return _C_ops.subtract(x, y)
4946 4947
    else:
        if _in_legacy_dygraph():
4948
            y = _legacy_C_ops.trunc(x)
4949 4950 4951 4952 4953
            return _elementwise_op_in_dygraph(x,
                                              y,
                                              axis=axis,
                                              act=act,
                                              op_name=op_type)
4954 4955 4956 4957 4958
        else:
            inputs = {"X": x}
            attrs = {}

            helper = LayerHelper("trunc", **locals())
4959 4960 4961
            check_variable_and_dtype(x, "X",
                                     ['int32', 'int64', 'float32', 'float64'],
                                     'trunc')
4962
            y = helper.create_variable_for_type_inference(dtype=x.dtype)
4963 4964 4965 4966
            helper.append_op(type="trunc",
                             inputs=inputs,
                             attrs=attrs,
                             outputs={"Out": y})
4967
            return _elementwise_op(LayerHelper(op_type, **locals()))
4968

4969

4970 4971 4972 4973 4974 4975 4976 4977 4978 4979 4980 4981 4982 4983 4984 4985 4986 4987 4988 4989 4990 4991 4992 4993 4994
def sgn(x, name=None):
    """
    For complex tensor, this API returns a new tensor whose elements have the same angles as the corresponding
    elements of input and absolute values of one.
    For other float dtype tensor,
    this API returns sign of every element in `x`: 1 for positive, -1 for negative and 0 for zero, same as paddle.sign.

    Args:
        x (Tensor): The input tensor, which data type should be float16, float32, float64, complex64, complex128.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        Tensor: A sign Tensor for real input, or normalized Tensor for complex input, shape and data type are same as input.

    Examples:
        .. code-block:: Python

            import paddle

            x = paddle.to_tensor([[3 + 4j, 7 - 24j, 0, 1 + 2j], [6 + 8j, 3, 0, -2]])
            print(paddle.sgn(x))
            #[[0.6+0.8j       0.28-0.96j      0.+0.j      0.4472136+0.8944272j]
            # [0.6+0.8j       1.+0.j          0.+0.j      -1.+0.j]]

    """
4995 4996 4997 4998
    if x.dtype not in [
            paddle.float16, paddle.float32, paddle.float64, paddle.complex64,
            paddle.complex128
    ]:
4999 5000
        raise TypeError(
            "The data type of input must be one of ['float16', 'float32', 'float64', 'complex64', 'complex128'], but got {}"
5001
            .format(x.dtype))
5002 5003 5004 5005 5006 5007 5008 5009 5010 5011 5012
    if paddle.is_complex(x):
        expand_x = paddle.as_real(x)
        x_abs = paddle.abs(x)
        x_abs = paddle.unsqueeze(x_abs, axis=-1)
        output = expand_x / x_abs
        zeros = paddle.zeros_like(output)
        output = paddle.where(paddle.isnan(output), zeros, output)

        return paddle.as_complex(output)
    else:
        return paddle.sign(x)
5013

5014

5015 5016 5017 5018 5019 5020 5021 5022 5023 5024 5025 5026 5027 5028 5029 5030 5031 5032 5033 5034 5035 5036 5037 5038 5039 5040 5041 5042 5043 5044 5045 5046 5047 5048 5049 5050 5051 5052 5053 5054 5055 5056 5057 5058 5059 5060 5061 5062 5063 5064 5065 5066 5067 5068 5069 5070 5071 5072 5073 5074 5075 5076 5077 5078 5079 5080 5081
def take(x, index, mode='raise', name=None):
    """
    Returns a new tensor with the elements of input tensor x at the given index.
    The input tensor is treated as if it were viewed as a 1-D tensor.
    The result takes the same shape as the index.

    Args:
        x (Tensor): An N-D Tensor, its data type should be int32, int64, float32, float64.
        index (Tensor): An N-D Tensor, its data type should be int32, int64.
        mode (str, optional): Specifies how out-of-bounds index will behave. the candicates are ``'raise'``, ``'wrap'`` and ``'clip'``.

            - ``'raise'``: raise an error (default);
            - ``'wrap'``: wrap around;
            - ``'clip'``: clip to the range. ``'clip'`` mode means that all indices that are too large are replaced by the index that addresses the last element. Note that this disables indexing with negative numbers.

        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        Tensor, Tensor with the same shape as index, the data type is the same with input.

    Examples:
        .. code-block:: python

            import paddle

            x_int = paddle.arange(0, 12).reshape([3, 4])
            x_float = x_int.astype(paddle.float64)

            idx_pos = paddle.arange(4, 10).reshape([2, 3])  # positive index
            idx_neg = paddle.arange(-2, 4).reshape([2, 3])  # negative index
            idx_err = paddle.arange(-2, 13).reshape([3, 5])  # index out of range

            paddle.take(x_int, idx_pos)
            # Tensor(shape=[2, 3], dtype=int64, place=Place(cpu), stop_gradient=True,
            #        [[4, 5, 6],
            #         [7, 8, 9]])

            paddle.take(x_int, idx_neg)
            # Tensor(shape=[2, 3], dtype=int64, place=Place(cpu), stop_gradient=True,
            #        [[10, 11, 0 ],
            #         [1 , 2 , 3 ]])

            paddle.take(x_float, idx_pos)
            # Tensor(shape=[2, 3], dtype=float64, place=Place(cpu), stop_gradient=True,
            #        [[4., 5., 6.],
            #         [7., 8., 9.]])

            x_int.take(idx_pos)
            # Tensor(shape=[2, 3], dtype=int64, place=Place(cpu), stop_gradient=True,
            #        [[4, 5, 6],
            #         [7, 8, 9]])

            paddle.take(x_int, idx_err, mode='wrap')
            # Tensor(shape=[3, 5], dtype=int32, place=Place(cpu), stop_gradient=True,
            #        [[10, 11, 0 , 1 , 2 ],
            #         [3 , 4 , 5 , 6 , 7 ],
            #         [8 , 9 , 10, 11, 0 ]])

            paddle.take(x_int, idx_err, mode='clip')
            # Tensor(shape=[3, 5], dtype=int32, place=Place(cpu), stop_gradient=True,
            #        [[0 , 0 , 0 , 1 , 2 ],
            #         [3 , 4 , 5 , 6 , 7 ],
            #         [8 , 9 , 10, 11, 11]])

    """
    if mode not in ['raise', 'wrap', 'clip']:
        raise ValueError(
5082 5083
            "'mode' in 'take' should be 'raise', 'wrap', 'clip', but received {}."
            .format(mode))
5084 5085 5086 5087

    if paddle.in_dynamic_mode():
        if not isinstance(index, (paddle.Tensor, Variable)):
            raise TypeError(
5088 5089
                "The type of 'index' must be Tensor, but got {}".format(
                    type(index)))
5090 5091
        if index.dtype not in [paddle.int32, paddle.int64]:
            raise TypeError(
5092 5093
                "The data type of 'index' must be one of ['int32', 'int64'], but got {}"
                .format(index.dtype))
5094 5095 5096 5097 5098 5099 5100 5101 5102 5103 5104 5105 5106

    else:
        check_variable_and_dtype(index, 'index', ['int32', 'int64'], 'take')

    input_1d = x.flatten()
    index_1d = index.flatten()
    max_index = input_1d.shape[-1]

    if mode == 'raise':
        # This processing enables 'take' to handle negative indexes within the correct range.
        index_1d = paddle.where(index_1d < 0, index_1d + max_index, index_1d)
    elif mode == 'wrap':
        # The out of range indices are constrained by taking the remainder.
5107 5108 5109
        index_1d = paddle.where(index_1d < 0, index_1d % max_index, index_1d)
        index_1d = paddle.where(index_1d >= max_index, index_1d % max_index,
                                index_1d)
5110 5111 5112 5113 5114 5115 5116
    elif mode == 'clip':
        # 'clip' mode disables indexing with negative numbers.
        index_1d = clip(index_1d, 0, max_index - 1)

    out = input_1d.index_select(index_1d).reshape(index.shape)

    return out
5117 5118 5119 5120 5121 5122 5123 5124 5125 5126 5127 5128 5129 5130 5131 5132 5133 5134 5135 5136 5137 5138 5139 5140 5141 5142 5143 5144 5145 5146 5147 5148 5149 5150 5151 5152 5153 5154 5155 5156 5157 5158 5159 5160 5161 5162 5163 5164 5165


def frexp(x, name=None):
    """
    The function used to decompose a floating point number into mantissa and exponent.

    Args:
        x (Tensor): The input tensor, it's data type should be float32, float64.
        name (str, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: None.
    Returns:

        - mantissa (Tensor), A mantissa Tensor. The shape and data type of mantissa tensor and exponential tensor are
            the same as those of input.

        - exponent (Tensor), A exponent Tensor. The shape and data type of mantissa tensor and exponential tensor are
            the same as those of input.

    Examples:
        .. code-block:: python

            import paddle

            x = paddle.to_tensor([[1, 2, 3, 4]], dtype="float32")
            print(paddle.tensor.math.frexp(x))
            # (Tensor(shape=[1, 4], dtype=float32, place=Place(cpu), stop_gradient=True,[[0.50000000, 0.50000000, 0.75000000, 0.50000000]]),
            #  Tensor(shape=[1, 4], dtype=float32, place=Place(cpu), stop_gradient=True,[[1., 2., 2., 3.]]))
        """
    if x.dtype not in [paddle.float32, paddle.float64]:
        raise TypeError(
            "The data type of input must be one of ['float32', 'float64'], but got {}"
            .format(x.dtype))
    input_x = paddle.abs(x)
    exponent = paddle.floor(paddle.log2(input_x))
    exponent = paddle.where(paddle.isinf(exponent),
                            paddle.full_like(exponent, 0), exponent)

    # 0填充
    mantissa = paddle.divide(input_x, 2**exponent)
    # 计算exponent
    exponent = paddle.where((mantissa >= 1),
                            paddle.add(exponent, paddle.ones_like(exponent)),
                            exponent)
    mantissa = paddle.where((mantissa >= 1),
                            paddle.divide(mantissa,
                                          2**paddle.ones_like(exponent)),
                            mantissa)

    mantissa = paddle.where((x < 0), mantissa * -1, mantissa)
    return mantissa, exponent