math.py 174.8 KB
Newer Older
W
WuHaobo 已提交
1
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
2 3 4 5 6 7 8 9 10 11 12 13
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
14 15 16
"""
math functions
"""
17
from __future__ import print_function
Y
Yang Zhang 已提交
18
import numpy as np
19

20 21 22 23 24 25
from paddle.common_ops_import import VarDesc
from paddle.common_ops_import import dygraph_only
from paddle.common_ops_import import OpProtoHolder
from paddle.common_ops_import import templatedoc
from paddle.common_ops_import import dygraph_utils

26 27 28 29
from .manipulation import cast
from .creation import _complex_to_real_dtype
from .layer_function_generator import _generate_doc_string_, generate_activation_fn, generate_layer_fn

30
import paddle
31
from ..static import Variable
32
from ..framework import core, in_dygraph_mode, _non_static_mode, LayerHelper, _in_legacy_dygraph
33
from ..fluid.framework import _in_legacy_dygraph
Z
zhiboniu 已提交
34
from ..framework import _varbase_creator, convert_np_dtype_to_dtype_
L
Li Fuchen 已提交
35
from ..fluid.data_feeder import check_variable_and_dtype, check_type, check_dtype, convert_dtype
36
from ..fluid.dygraph.inplace_utils import inplace_apis_in_dygraph_only
37 38 39

# TODO: define math functions
# yapf: disable
40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70
from .ops import abs    # noqa: F401
from .ops import acos    # noqa: F401
from .ops import asin    # noqa: F401
from .ops import ceil    # noqa: F401
from .ops import ceil_    # noqa: F401
from .ops import cos    # noqa: F401
from .ops import tan    # noqa: F401
from .ops import sinh    # noqa: F401
from .ops import cosh    # noqa: F401
from .ops import exp    # noqa: F401
from .ops import exp_    # noqa: F401
from .ops import expm1    # noqa: F401
from .ops import floor    # noqa: F401
from .ops import floor_    # noqa: F401
from .ops import reciprocal    # noqa: F401
from .ops import reciprocal_    # noqa: F401
from .ops import round    # noqa: F401
from .ops import round_    # noqa: F401
from .ops import rsqrt    # noqa: F401
from .ops import rsqrt_    # noqa: F401
from .ops import square    # noqa: F401
from .ops import atan    # noqa: F401
from .ops import erf    # noqa: F401
from .ops import sqrt    # noqa: F401
from .ops import sqrt_    # noqa: F401
from .ops import sin    # noqa: F401
from .ops import asinh    # noqa: F401
from .ops import acosh    # noqa: F401
from .ops import atanh    # noqa: F401


Z
zhiboniu 已提交
71
from ..fluid.layers import elementwise_sub
72
from paddle import _C_ops, _legacy_C_ops
73

74 75
__all__ = []

76 77 78 79 80 81 82 83 84 85 86 87 88
_supported_int_dtype_ = [
    VarDesc.VarType.UINT8,
    VarDesc.VarType.INT8,
    VarDesc.VarType.INT16,
    VarDesc.VarType.INT32,
    VarDesc.VarType.INT64,
]

_supported_float_dtype_ = [
    VarDesc.VarType.FP32,
    VarDesc.VarType.FP64,
]

89

90 91
def log(x, name=None):
    r"""
C
Chen Long 已提交
92
    Calculates the natural log of the given input Tensor, element-wise.
93 94 95

    .. math::

96
        Out = \ln(x)
97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118

    Args:
        x (Tensor): Input Tensor. Must be one of the following types: float32, float64.
        name (str|None): The default value is None. Normally there is no need for user to set this property. For more information, please refer to :ref:`api_guide_Name`


    Returns:
        Tensor: The natural log of the input Tensor computed element-wise.

    Examples:

        .. code-block:: python

            import paddle

            x = [[2,3,4], [7,8,9]]
            x = paddle.to_tensor(x, dtype='float32')
            res = paddle.log(x)
            # [[0.693147, 1.09861, 1.38629], [1.94591, 2.07944, 2.19722]]
    """
    if in_dygraph_mode():
        return _C_ops.log(x)
119 120
    if _in_legacy_dygraph():
        return _legacy_C_ops.log(x)
121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147

    check_variable_and_dtype(x, 'x', ['float32', 'float64'], "log")
    inputs = {'X': [x]}
    helper = LayerHelper('log', **locals())
    dtype = helper.input_dtype(input_param_name='x')
    out = helper.create_variable_for_type_inference(dtype)
    helper.append_op(type="log", inputs={"X": x}, outputs={"Out": out})
    return out


def scale(x, scale=1.0, bias=0.0, bias_after_scale=True, act=None, name=None):
    """
    Scale operator.

    Putting scale and bias to the input Tensor as following:

    ``bias_after_scale`` is True:

    .. math::
                            Out=scale*X+bias

    ``bias_after_scale`` is False:

    .. math::
                            Out=scale*(X+bias)

    Args:
148 149 150 151 152 153
        x (Tensor): Input N-D Tensor of scale operator. Data type can be float32, float64, int8, int16, int32, int64, uint8.
        scale (float|Tensor): The scale factor of the input, it should be a float number or a Tensor with shape [1] and data type as float32.
        bias (float): The bias to be put on the input.
        bias_after_scale (bool): Apply bias addition after or before scaling. It is useful for numeric stability in some circumstances.
        act (str, optional): Activation applied to the output such as tanh, softmax, sigmoid, relu.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
154 155

    Returns:
C
Chen Long 已提交
156
        Tensor: Output Tensor of scale operator, with shape and data type same as input.
157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178

    Examples:
        .. code-block:: python
            
            # scale as a float32 number
            import paddle

            data = paddle.randn(shape=[2,3], dtype='float32')
            res = paddle.scale(data, scale=2.0, bias=1.0)

        .. code-block:: python

            # scale with parameter scale as a Tensor
            import paddle

            data = paddle.randn(shape=[2, 3], dtype='float32')
            factor = paddle.to_tensor([2], dtype='float32')
            res = paddle.scale(data, scale=factor, bias=1.0)

    """

    if in_dygraph_mode():
179
        return _C_ops.scale(x, scale, float(bias), bias_after_scale)
180 181
    if _non_static_mode():
        _scale = scale.numpy().item(0) if isinstance(scale, Variable) else scale
182
        out = _legacy_C_ops.scale(x, 'scale',
183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213
                           float(_scale), 'bias',
                           float(bias), 'bias_after_scale', bias_after_scale)
        return dygraph_utils._append_activation_in_dygraph(out)

    check_variable_and_dtype(x, "x", [
        'float16', 'uint16', 'float32', 'float64', 'int8', 'int16', 'int32',
        'int64', 'uint8'
    ], "scale")
    inputs = {'X': [x]}
    attrs = {
        'bias': float(bias),
        'bias_after_scale': bias_after_scale,
    }
    if isinstance(scale, Variable):
        inputs['ScaleTensor'] = [scale]
    else:
        attrs['scale'] = float(scale)
    helper = LayerHelper('scale', **locals())
    out = helper.create_variable_for_type_inference(dtype=x.dtype)

    helper.append_op(
        type='scale', inputs=inputs, outputs={'Out': out}, attrs=attrs)
    return helper.append_activation(out)


def stanh(x, scale_a=0.67, scale_b=1.7159, name=None):
    """
    stanh activation.

    .. math::

214
        out = b * \frac{e^{a * x} - e^{-a * x}}{e^{a * x} + e^{-a * x}}
215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236

    Parameters:
        x (Tensor): The input Tensor with data type float32, float64.
        scale_a (float, optional): The scale factor a of the input. Default is 0.67.
        scale_b (float, optional): The scale factor b of the output. Default is 1.7159.
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        A Tensor with the same data type and shape as ``x`` .

    Examples:
        .. code-block:: python

            import paddle

            x = paddle.to_tensor([1.0, 2.0, 3.0, 4.0])
            out = paddle.stanh(x, scale_a=0.67, scale_b=1.72) # [1.00616539, 1.49927628, 1.65933108, 1.70390463]

    """

    if _non_static_mode():
237
        return _legacy_C_ops.stanh(x, 'scale_a', scale_a, 'scale_b', scale_b)
238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281

    check_variable_and_dtype(x, 'x', ['float16', 'float32', 'float64'], 'stanh')

    helper = LayerHelper('stanh', **locals())
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
    helper.append_op(
        type='stanh',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'scale_a': scale_a,
               'scale_b': scale_b})
    return out

def multiplex(inputs, index, name=None):
    """

    Based on the given index parameter, the OP selects a specific row from each input Tensor to construct the output Tensor.

    If the input of this OP contains :math:`m` Tensors, where :math:`I_{i}` means the i-th input Tensor, :math:`i` between :math:`[0,m)` .

    And :math:`O` means the output, where :math:`O[i]` means the i-th row of the output, then the output satisfies that :math:`O[i] = I_{index[i]}[i]` .

    For Example:

            .. code-block:: text

                Given:

                inputs = [[[0,0,3,4], [0,1,3,4], [0,2,4,4], [0,3,3,4]],
                          [[1,0,3,4], [1,1,7,8], [1,2,4,2], [1,3,3,4]],
                          [[2,0,3,4], [2,1,7,8], [2,2,4,2], [2,3,3,4]],
                          [[3,0,3,4], [3,1,7,8], [3,2,4,2], [3,3,3,4]]]

                index = [[3],[0],[1],[2]]

                out = [[3,0,3,4],    # out[0] = inputs[index[0]][0] = inputs[3][0] = [3,0,3,4]
                       [0,1,3,4],    # out[1] = inputs[index[1]][1] = inputs[0][1] = [0,1,3,4]
                       [1,2,4,2],    # out[2] = inputs[index[2]][2] = inputs[1][2] = [1,2,4,2]
                       [2,3,3,4]]    # out[3] = inputs[index[3]][3] = inputs[2][3] = [2,3,3,4]


    Args:
        inputs (list): The input Tensor list. The list elements are N-D Tensors of data types float32, float64, int32, int64. All input Tensor shapes should be the same and rank must be at least 2.
        index (Tensor): Used to select some rows in the input Tensor to construct an index of the output Tensor. It is a 2-D Tensor with data type int32 or int64 and shape [M, 1], where M is the number of input Tensors.
282
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
283

284 285 286 287 288 289 290 291
    Returns:
        Tensor: Output of multiplex OP, with data type being float32, float64, int32, int64.

    Examples:

        .. code-block:: python

            import paddle
292
            
293 294 295 296
            img1 = paddle.to_tensor([[1, 2], [3, 4]], dtype=paddle.float32)
            img2 = paddle.to_tensor([[5, 6], [7, 8]], dtype=paddle.float32)
            inputs = [img1, img2]
            index = paddle.to_tensor([[1], [0]], dtype=paddle.int32)
297
            res = paddle.multiplex(inputs, index)
298
            print(res) # Tensor([[5., 6.], [3., 4.]], dtype=float32)
299 300 301

    """
    if _non_static_mode():
302
        return _legacy_C_ops.multiplex(index, inputs)
303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322
    helper = LayerHelper('multiplex', **locals())

    check_type(inputs, 'inputs', (list), 'multiplex')
    if len(inputs) < 2:
        raise ValueError(
            "inputs should be a list object with at least 2 elements.")
    for id, x in enumerate(inputs):
        check_variable_and_dtype(x, 'input[' + str(id) + ']',
                                 ['float32', 'float64', 'int32', 'int64'],
                                 'multiplex')
    check_variable_and_dtype(index, "index", ['int32', 'int64'], 'multiplex')

    out = helper.create_variable_for_type_inference(inputs[0].dtype)
    helper.append_op(
        type='multiplex',
        inputs={'X': inputs,
                'Ids': index},
        outputs={'Out': [out]})
    return out

323 324 325 326 327 328
@inplace_apis_in_dygraph_only
def scale_(x, scale=1.0, bias=0.0, bias_after_scale=True, act=None, name=None):
    """
    Inplace version of ``scale`` API, the output Tensor will be inplaced with input ``x``.
    Please refer to :ref:`api_tensor_scale`.
    """
329
    if in_dygraph_mode():
330
        return _C_ops.scale_(x, scale, float(bias), bias_after_scale)
331 332
    if _in_legacy_dygraph():
        _scale = scale.numpy().item(0) if isinstance(scale, Variable) else scale
333
        return _legacy_C_ops.scale_(x, 'scale',
334 335
                                float(_scale), 'bias',
                                float(bias), 'bias_after_scale', bias_after_scale)
336 337


338
def pow(x, y, name=None):
339
    """
C
Chen Long 已提交
340
    Compute the power of Tensor elements. The equation is:
S
swtkiwi 已提交
341

342 343
    .. math::
        out = x^{y} 
344

345 346
    Note:
        ``paddle.pow`` supports broadcasting. If you want know more about broadcasting, please refer to :ref:`user_guide_broadcasting` .
347 348


349 350
    Args:
        x (Tensor): An N-D Tensor, the data type is float32, float64, int32 or int64.
351
        y (float|int|Tensor): If it is an N-D Tensor, its data type should be the same as `x`.
352 353
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
    
354
    Returns:
355
        N-D Tensor. A location into which the result is stored. Its dimension and data type are the same as `x`.
356 357 358

    Examples:

359
        ..  code-block:: python
360 361 362

            import paddle

363 364 365 366 367 368 369 370 371 372 373 374
            x = paddle.to_tensor([1, 2, 3], dtype='float32')

            # example 1: y is a float or int
            res = paddle.pow(x, 2)
            print(res)
            # Tensor(shape=[3], dtype=float32, place=CUDAPlace(0), stop_gradient=True,
            #        [1., 4., 9.])
            res = paddle.pow(x, 2.5)
            print(res)
            # Tensor(shape=[3], dtype=float32, place=CUDAPlace(0), stop_gradient=True,
            #        [1.         , 5.65685415 , 15.58845711])

375
            # example 2: y is a Tensor
376
            y = paddle.to_tensor([2], dtype='float32')
377
            res = paddle.pow(x, y)
378 379 380
            print(res)
            # Tensor(shape=[3], dtype=float32, place=CUDAPlace(0), stop_gradient=True,
            #        [1., 4., 9.])
381 382

    """
383
    # in dynamic graph mode
384
    if in_dygraph_mode():
385
        if isinstance(y, (int, float)):
386
            return _C_ops.pow(x, y)
387
        elif isinstance(y, (paddle.Tensor, Variable)):
388
            return _C_ops.elementwise_pow(x, y)
389 390
        else:
            raise TypeError('y must be scalar or tensor type, but received: %s '% (y.dtype))
391
    if _in_legacy_dygraph():
392
        if isinstance(y, (int, float)):
393
            return _legacy_C_ops.pow(x, 'factor', y)
394
        elif isinstance(y, (paddle.Tensor, Variable)):
395 396
            return _elementwise_op_in_dygraph(
                x, y, axis=-1, act=None, op_name='elementwise_pow')
397
        else:
398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414
            raise TypeError('y must be scalar or tensor type, but received: %s '% (y.dtype))
    # in static graph mode
    if isinstance(y, (int, float)):
        helper = LayerHelper('pow', **locals())
        inputs = {'X': x}
        attrs = {'factor': y}
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
        helper.append_op(
            type='pow', inputs=inputs, outputs={'Out': out}, attrs=attrs)
        return out
    elif isinstance(y, (paddle.Tensor, Variable)):
        # TODO A potential speed improvement is supporting different types in C++ and removing the cast ops here
        helper = LayerHelper('elementwise_pow', **locals())
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
        return _elementwise_op(LayerHelper('elementwise_pow', **locals()))
    else:
        raise TypeError('y must be scalar or tensor type, but received: %s '% (type(y)))
415 416


417
OP_NAMEMAPPING = {
418 419 420 421 422 423 424 425 426 427
    'elementwise_max': 'maximum',
    'elementwise_min': 'minimum',
    'elementwise_pow': 'elementwise_pow',
    'elementwise_floordiv': 'floor_divide',
    'elementwise_mod': 'modulo',
    'elementwise_add': 'add',
    'elementwise_sub': 'subtract',
    'elementwise_mul': 'multiply',
    'elementwise_div': 'divide',
    'elementwise_mod': 'modulo',
428
}
429

430 431 432 433 434 435 436
@dygraph_only
def _elementwise_op_in_dygraph(x,
                               y,
                               axis=-1,
                               act=None,
                               use_mkldnn=False,
                               op_name=None):
437 438 439
    def is_inplace(op_name):
        return  op_name[-1] == "_"

440
    if op_name not in OP_NAMEMAPPING.keys() or axis != -1:
441
        op = getattr(_legacy_C_ops, op_name)
442
        out = op(x, y, 'axis', axis, 'use_mkldnn', use_mkldnn)
W
wanghuancoder 已提交
443 444 445 446 447 448
    else:
        if in_dygraph_mode():
            op = getattr(_C_ops, OP_NAMEMAPPING[op_name] if not is_inplace(op_name) else op_name)
            out = op(x, y)

        if _in_legacy_dygraph():
449
            op = getattr(_legacy_C_ops, op_name)
W
wanghuancoder 已提交
450
            out = op(x, y, 'axis', axis, 'use_mkldnn', use_mkldnn)
451 452 453 454 455 456 457 458 459 460

    return dygraph_utils._append_activation_in_dygraph(
        out, act, use_mkldnn=use_mkldnn)

def _elementwise_op(helper):
    op_type = helper.layer_type
    original_op_type = helper.kwargs.get('original_op_type', op_type)
    x = helper.kwargs.get('x', None)
    y = helper.kwargs.get('y', None)

461 462
    out = helper.kwargs.get('out', None)

463 464 465
    assert x is not None, 'x cannot be None in {}'.format(original_op_type)
    assert y is not None, 'y cannot be None in {}'.format(original_op_type)
    check_variable_and_dtype(
W
will-jl944 已提交
466
        x, 'x', ['float16', 'float32', 'float64', 'int32', 'int64', 'bool'],
467 468
        original_op_type)
    check_variable_and_dtype(
W
will-jl944 已提交
469
        y, 'y', ['float16', 'float32', 'float64', 'int32', 'int64', 'bool'],
470 471 472 473 474
        original_op_type)

    axis = helper.kwargs.get('axis', -1)
    use_mkldnn = helper.kwargs.get('use_mkldnn', False)
    name = helper.kwargs.get('name', None)
475 476 477 478 479 480

    if out is None:
        if name is None:
            out = helper.create_variable_for_type_inference(dtype=x.dtype)
        else:
            out = helper.create_variable(name=name, dtype=x.dtype, persistable=False)
481 482 483 484 485 486 487 488 489 490 491

    helper.append_op(
        type=op_type,
        inputs={'X': x,
                'Y': y},
        outputs={'Out': out},
        attrs={'axis': axis,
               'use_mkldnn': use_mkldnn})
    return helper.append_activation(out)


Y
Yang Zhang 已提交
492
def add(x, y, name=None):
493
    """
494 495 496 497 498 499 500 501
    Elementwise Add Operator.
    Add two tensors element-wise
    The equation is:

    ..  math::

        Out=X+Y

502 503
    $X$ the tensor of any dimension.
    $Y$ the tensor whose dimensions must be less than or equal to the dimensions of $X$.
504 505

    There are two cases for this operator:
506 507 508 509

    1. The shape of $Y$ is the same with $X$.
    2. The shape of $Y$ is a continuous subsequence of $X$.

510
    For case 2:
511 512 513 514

    1. Broadcast $Y$ to match the shape of $X$, where axis is the start dimension index for broadcasting $Y$ onto $X$.
    2. If $axis$ is -1 (default), $axis$=rank($X$)−rank($Y$).
    3. The trailing dimensions of size 1 for $Y$ will be ignored for the consideration of subsequence, such as shape($Y$) = (2, 1) => (2).
515 516 517 518

        For example:

        ..  code-block:: python
519

520 521 522 523 524 525
            shape(X) = (2, 3, 4, 5), shape(Y) = (,)
            shape(X) = (2, 3, 4, 5), shape(Y) = (5,)
            shape(X) = (2, 3, 4, 5), shape(Y) = (4, 5), with axis=-1(default) or axis=2
            shape(X) = (2, 3, 4, 5), shape(Y) = (3, 4), with axis=1
            shape(X) = (2, 3, 4, 5), shape(Y) = (2), with axis=0
            shape(X) = (2, 3, 4, 5), shape(Y) = (2, 1), with axis=0
526

527
    Args:
528 529 530
        x (Tensor): Tensor or LoDTensor of any dimensions. Its dtype should be int32, int64, float32, float64.
        y (Tensor): Tensor or LoDTensor of any dimensions. Its dtype should be int32, int64, float32, float64.
        name (string, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: None.
531 532

    Returns:
533
        N-D Tensor. A location into which the result is stored. It’s dimension equals with x.
534 535 536 537

    Examples:

        ..  code-block:: python
538

539
            import paddle
540

541 542 543 544
            x = paddle.to_tensor([2, 3, 4], 'float64')
            y = paddle.to_tensor([1, 5, 2], 'float64')
            z = paddle.add(x, y)
            print(z)  # [3., 8., 6. ]
545
    """
546

J
Jiabin Yang 已提交
547
    if in_dygraph_mode():
548
        return _C_ops.add( x, y)
J
Jiabin Yang 已提交
549 550
    else:
        if _in_legacy_dygraph():
551
            return _legacy_C_ops.elementwise_add(x, y)
J
Jiabin Yang 已提交
552 553
        else:
            return _elementwise_op(LayerHelper('elementwise_add', **locals()))
554 555


556 557 558 559 560 561 562 563 564 565 566 567 568
@inplace_apis_in_dygraph_only
def add_(x, y, name=None):
    """
    Inplace version of ``add`` API, the output Tensor will be inplaced with input ``x``.
    Please refer to :ref:`api_tensor_add`.
    """
    op_type = 'elementwise_add_'
    axis = -1

    out_shape = broadcast_shape(x.shape, y.shape)
    if out_shape != x.shape:
        raise ValueError("The shape of broadcast output {} is different from that of inplace tensor {} in the Inplace operation.".format(out_shape, x.shape))

569
    if in_dygraph_mode():
570
        return _C_ops.add_(x, y)
571 572 573 574
    else:
        out = _elementwise_op_in_dygraph(
            x, y, axis=axis, op_name=op_type)
        return out
575 576


577 578
def subtract(x, y, name=None):
    """
W
Wei Shengyu 已提交
579
    Substract two tensors element-wise. The equation is:
580 581 582 583

    .. math::
        out = x - y

584 585
    Note:
        ``paddle.subtract`` supports broadcasting. If you want know more about broadcasting, please refer to :ref:`user_guide_broadcasting` .
586 587 588 589 590 591 592 593 594 595 596 597

    Args:
        x (Tensor): the input tensor, it's data type should be float32, float64, int32, int64.
        y (Tensor): the input tensor, it's data type should be float32, float64, int32, int64.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        N-D Tensor. A location into which the result is stored. If x, y have different shapes and are "broadcastable", the resulting tensor shape is the shape of x and y after broadcasting. If x, y have the same shape,  its shape is the same as x and y.

    Examples:

        .. code-block:: python
W
Wei Shengyu 已提交
598

599 600 601 602 603 604
            import paddle

            x = paddle.to_tensor([[1, 2], [7, 8]])
            y = paddle.to_tensor([[5, 6], [3, 4]])
            res = paddle.subtract(x, y)
            print(res)
605 606 607
            # Tensor(shape=[2, 2], dtype=int64, place=Place(cpu), stop_gradient=True,
            #        [[-4, -4],
            #         [ 4,  4]])
608 609 610 611 612

            x = paddle.to_tensor([[[1, 2, 3], [1, 2, 3]]])
            y = paddle.to_tensor([1, 0, 4])
            res = paddle.subtract(x, y)
            print(res)
613 614 615
            # Tensor(shape=[1, 2, 3], dtype=int64, place=Place(cpu), stop_gradient=True,
            #        [[[ 0,  2, -1],
            #          [ 0,  2, -1]]])
616

617 618
            x = paddle.to_tensor([2, float('nan'), 5], dtype='float32')
            y = paddle.to_tensor([1, 4, float('nan')], dtype='float32')
619 620
            res = paddle.subtract(x, y)
            print(res)
621 622
            # Tensor(shape=[3], dtype=float32, place=Place(cpu), stop_gradient=True,
            #        [1. , nan, nan])
623

624
            x = paddle.to_tensor([5, float('inf'), -float('inf')], dtype='float64')
625 626 627
            y = paddle.to_tensor([1, 4, 5], dtype='float64')
            res = paddle.subtract(x, y)
            print(res)
628 629
            # Tensor(shape=[3], dtype=float64, place=Place(cpu), stop_gradient=True,
            #        [ 4.  ,  inf., -inf.])
630 631 632 633
    """
    op_type = 'elementwise_sub'
    axis = -1
    act = None
J
Jiabin Yang 已提交
634
    if in_dygraph_mode():
635
        return _C_ops.subtract(x, y)
J
Jiabin Yang 已提交
636 637 638 639 640 641
    else:
        if _in_legacy_dygraph():
            return _elementwise_op_in_dygraph(
                x, y, axis=axis, act=act, op_name=op_type)
        else:
            return _elementwise_op(LayerHelper(op_type, **locals()))
642 643


644 645 646 647 648 649 650 651 652 653 654 655 656
@inplace_apis_in_dygraph_only
def subtract_(x, y, name=None):
    """
    Inplace version of ``subtract`` API, the output Tensor will be inplaced with input ``x``.
    Please refer to :ref:`api_tensor_subtract`.
    """
    axis = -1
    act = None

    out_shape = broadcast_shape(x.shape, y.shape)
    if out_shape != x.shape:
        raise ValueError("The shape of broadcast output {} is different from that of inplace tensor {} in the Inplace operation.".format(out_shape, x.shape))

657
    if in_dygraph_mode():
658
        return _C_ops.subtract_(x, y)
659 660 661 662
    else:
        out = _elementwise_op_in_dygraph(
            x, y, axis=axis, act=act, op_name='elementwise_sub_')
        return out
663 664


665
def divide(x, y, name=None):
666
    """
667
    Divide two tensors element-wise. The equation is:
668

669 670
    .. math::
        out = x / y
671

672 673
    Note:
        ``paddle.divide`` supports broadcasting. If you want know more about broadcasting, please refer to :ref:`user_guide_broadcasting` .
674

675 676 677 678
    Args:
        x (Tensor): the input tensor, it's data type should be float32, float64, int32, int64.
        y (Tensor): the input tensor, it's data type should be float32, float64, int32, int64.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
679

680
    Returns:
681
        N-D Tensor. A location into which the result is stored. If x, y have different shapes and are "broadcastable", the resulting tensor shape is the shape of x and y after broadcasting. If x, y have the same shape,  its shape is the same as x and y.
682

683
    Examples:
684

685
        ..  code-block:: python
686

687
            import paddle
688

689 690
            x = paddle.to_tensor([2, 3, 4], dtype='float64')
            y = paddle.to_tensor([1, 5, 2], dtype='float64')
691
            z = paddle.divide(x, y)
692
            print(z)  # [2., 0.6, 2.]
693

694 695 696 697
    """
    op_type = 'elementwise_div'
    axis = -1
    act = None
J
Jiabin Yang 已提交
698
    if in_dygraph_mode():
699
        return _C_ops.divide( x, y)
J
Jiabin Yang 已提交
700 701 702 703 704 705
    else:
        if _in_legacy_dygraph():
            return _elementwise_op_in_dygraph(
                x, y, axis=axis, act=act, op_name=op_type)
        else:
            return _elementwise_op(LayerHelper(op_type, **locals()))
706 707


708 709 710
def floor_divide(x, y, name=None):
    """
    Floor divide two tensors element-wise. The equation is:
711

712 713
    .. math::
        out = x // y
714

715 716
    Note:
        ``paddle.floor_divide`` supports broadcasting. If you want know more about broadcasting, please refer to :ref:`user_guide_broadcasting` .
717

718 719 720 721
    Args:
        x (Tensor): the input tensor, it's data type should be int32, int64.
        y (Tensor): the input tensor, it's data type should be int32, int64.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
722

723 724
    Returns:
        N-D Tensor. A location into which the result is stored. It's dimension equals with $x$.
725

726
    Examples:
727

728
        ..  code-block:: python
729

730
            import paddle
731

732 733
            x = paddle.to_tensor([2, 3, 8, 7])
            y = paddle.to_tensor([1, 5, 3, 3])
734
            z = paddle.floor_divide(x, y)
735
            print(z)  # [2, 0, 2, 2]
736

737 738 739
    """
    op_type = 'elementwise_floordiv'
    axis = -1
740
    if paddle.in_dynamic_mode():
741 742
        return _elementwise_op_in_dygraph(
            x, y, axis=axis, op_name=op_type)
743

744
    return _elementwise_op(LayerHelper(op_type, **locals()))
745 746


747
def remainder(x, y, name=None):
748
    r"""
749 750 751
    Mod two tensors element-wise. The equation is:

    .. math::
752

753 754
        out = x \% y

755 756
    Note:
        ``paddle.remainder`` supports broadcasting. If you want know more about broadcasting, please refer to :ref:`user_guide_broadcasting` .
757 758

    Args:
W
WangXi 已提交
759 760
        x (Tensor): the input tensor, it's data type should be float32, float64, int32, int64.
        y (Tensor): the input tensor, it's data type should be float32, float64, int32, int64.
761 762 763
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
764
        N-D Tensor. A location into which the result is stored. If x, y have different shapes and are "broadcastable", the resulting tensor shape is the shape of x and y after broadcasting. If x, y have the same shape,  its shape is the same as x and y.
765 766 767 768 769 770 771

    Examples:

        ..  code-block:: python

            import paddle

772 773
            x = paddle.to_tensor([2, 3, 8, 7])
            y = paddle.to_tensor([1, 5, 3, 3])
774
            z = paddle.remainder(x, y)
W
WangXi 已提交
775
            print(z)  # [0, 3, 2, 1]
776 777 778

    """
    op_type = 'elementwise_mod'
779
    axis = -1
780
    if paddle.in_dynamic_mode():
781
        return _elementwise_op_in_dygraph(
782
            x, y, axis=axis, op_name=op_type)
783 784 785 786

    return _elementwise_op(LayerHelper(op_type, **locals()))


787 788
mod = remainder  # noqa: F841
floor_mod = remainder  # noqa: F841
789 790


791
def multiply(x, y, name=None):
792
    """
793
    multiply two tensors element-wise. The equation is:
794

795 796
    .. math::
        out = x * y
797

798 799
    Note:
        ``paddle.multiply`` supports broadcasting. If you would like to know more about broadcasting, please refer to :ref:`user_guide_broadcasting`.
800

801
    Args:
W
will-jl944 已提交
802 803
        x (Tensor): the input tensor, its data type should be one of float32, float64, int32, int64, bool.
        y (Tensor): the input tensor, its data type should be one of float32, float64, int32, int64, bool.
804
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
805

806
    Returns:
807
        N-D Tensor. A location into which the result is stored. If x, y have different shapes and are "broadcastable", the resulting tensor shape is the shape of x and y after broadcasting. If x, y have the same shape,  its shape is the same as x and y.
808

809 810 811 812 813 814
    Examples:

        ..  code-block:: python

            import paddle

815 816
            x = paddle.to_tensor([[1, 2], [3, 4]])
            y = paddle.to_tensor([[5, 6], [7, 8]])
817
            res = paddle.multiply(x, y)
818
            print(res) # [[5, 12], [21, 32]]
819

820
            x = paddle.to_tensor([[[1, 2, 3], [1, 2, 3]]])
821 822 823
            y = paddle.to_tensor([2])
            res = paddle.multiply(x, y)
            print(res) # [[[2, 4, 6], [2, 4, 6]]]
824 825 826 827

    """
    op_type = 'elementwise_mul'
    act = None
828
    axis = -1
829

J
Jiabin Yang 已提交
830
    if in_dygraph_mode():
831
        return _C_ops.multiply(x, y)
J
Jiabin Yang 已提交
832 833 834 835 836 837 838 839 840
    else:
        if _in_legacy_dygraph():
            return _elementwise_op_in_dygraph(
                x, y, axis=axis, act=act, op_name=op_type)
        else:
            if x.dtype != y.dtype:
                raise TypeError(
                    'Input tensors must be same type, but received type of x: %s, type of y: %s '
                    % (x.dtype, y.dtype))
841

J
Jiabin Yang 已提交
842
            return _elementwise_op(LayerHelper(op_type, **locals()))
843

844
def maximum(x, y, name=None):
845
    """
W
Wei Shengyu 已提交
846
    Compare two tensors and returns a new tensor containing the element-wise maxima. The equation is:
847

848 849
    .. math::
        out = max(x, y)
850

851 852
    Note:
        ``paddle.maximum`` supports broadcasting. If you want know more about broadcasting, please refer to :ref:`user_guide_broadcasting` .
853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893

    Args:
        x (Tensor): the input tensor, it's data type should be float32, float64, int32, int64.
        y (Tensor): the input tensor, it's data type should be float32, float64, int32, int64.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        N-D Tensor. A location into which the result is stored. If x, y have different shapes and are "broadcastable", the resulting tensor shape is the shape of x and y after broadcasting. If x, y have the same shape,  its shape is the same as x and y.

    Examples:

        .. code-block:: python

            import numpy as np
            import paddle

            x = paddle.to_tensor([[1, 2], [7, 8]])
            y = paddle.to_tensor([[3, 4], [5, 6]])
            res = paddle.maximum(x, y)
            print(res)
            #    [[3, 4],
            #     [7, 8]]

            x = paddle.to_tensor([[1, 2, 3], [1, 2, 3]])
            y = paddle.to_tensor([3, 0, 4])
            res = paddle.maximum(x, y)
            print(res)
            #    [[3, 2, 4],
            #     [3, 2, 4]]

            x = paddle.to_tensor([2, 3, 5], dtype='float32')
            y = paddle.to_tensor([1, np.nan, np.nan], dtype='float32')
            res = paddle.maximum(x, y)
            print(res)
            #    [ 2., nan, nan]

            x = paddle.to_tensor([5, 3, np.inf], dtype='float32')
            y = paddle.to_tensor([1, -np.inf, 5], dtype='float32')
            res = paddle.maximum(x, y)
            print(res)
            #    [  5.,   3., inf.]
894 895
    """
    op_type = 'elementwise_max'
896
    axis = -1
897
    act = None
898
    if paddle.in_dynamic_mode():
899 900 901 902
        return _elementwise_op_in_dygraph(
            x, y, axis=axis, act=act, op_name=op_type)
    return _elementwise_op(LayerHelper(op_type, **locals()))

903
def minimum(x, y, name=None):
904
    """
C
Chen Long 已提交
905
    Compare two tensors and return a new tensor containing the element-wise minima. The equation is:
906

907 908
    .. math::
        out = min(x, y)
909

910 911
    Note:
        ``paddle.minimum`` supports broadcasting. If you want know more about broadcasting, please refer to :ref:`user_guide_broadcasting` .
912 913 914 915 916 917 918

    Args:
        x (Tensor): the input tensor, it's data type should be float32, float64, int32, int64.
        y (Tensor): the input tensor, it's data type should be float32, float64, int32, int64.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
C
Chen Long 已提交
919
        Tensor. If x, y have different shapes and are "broadcastable", the resulting tensor shape is the shape of x and y after broadcasting. If x, y have the same shape,  its shape is the same as x and y.
920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952

    Examples:

        .. code-block:: python

            import numpy as np
            import paddle

            x = paddle.to_tensor([[1, 2], [7, 8]])
            y = paddle.to_tensor([[3, 4], [5, 6]])
            res = paddle.minimum(x, y)
            print(res)
            #       [[1, 2],
            #        [5, 6]]

            x = paddle.to_tensor([[[1, 2, 3], [1, 2, 3]]])
            y = paddle.to_tensor([3, 0, 4])
            res = paddle.minimum(x, y)
            print(res)
            #       [[[1, 0, 3],
            #         [1, 0, 3]]]

            x = paddle.to_tensor([2, 3, 5], dtype='float32')
            y = paddle.to_tensor([1, np.nan, np.nan], dtype='float32')
            res = paddle.minimum(x, y)
            print(res)
            #       [ 1., nan, nan]

            x = paddle.to_tensor([5, 3, np.inf], dtype='float64')
            y = paddle.to_tensor([1, -np.inf, 5], dtype='float64')
            res = paddle.minimum(x, y)
            print(res)
            #       [   1., -inf.,    5.]
953 954
    """
    op_type = 'elementwise_min'
955
    axis = -1
956
    act = None
957
    if paddle.in_dynamic_mode():
958 959 960
        return _elementwise_op_in_dygraph(
            x, y, axis=axis, act=act, op_name=op_type)
    return _elementwise_op(LayerHelper(op_type, **locals()))
961

L
LJQ❤️ 已提交
962 963 964 965 966 967 968 969 970
def fmax(x, y, name=None):
    """
    Compares the elements at the corresponding positions of the two tensors and returns a new tensor containing the maximum value of the element.
    If one of them is a nan value, the other value is directly returned, if both are nan values, then the first nan value is returned.
    The equation is:

    .. math::
        out = fmax(x, y)

971 972
    Note:
        ``paddle.fmax`` supports broadcasting. If you want know more about broadcasting, please refer to :ref:`user_guide_broadcasting` .
L
LJQ❤️ 已提交
973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017

    Args:
        x (Tensor): the input tensor, it's data type should be float32, float64, int32, int64.
        y (Tensor): the input tensor, it's data type should be float32, float64, int32, int64.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        N-D Tensor. A location into which the result is stored. If x, y have different shapes and are "broadcastable", the resulting tensor shape is the shape of x and y after broadcasting. If x, y have the same shape,  its shape is the same as x and y.

    Examples:

        .. code-block:: python

            import numpy as np
            import paddle

            x = paddle.to_tensor([[1, 2], [7, 8]])
            y = paddle.to_tensor([[3, 4], [5, 6]])
            res = paddle.fmax(x, y)
            print(res)
            #    [[3, 4],
            #     [7, 8]]

            x = paddle.to_tensor([[1, 2, 3], [1, 2, 3]])
            y = paddle.to_tensor([3, 0, 4])
            res = paddle.fmax(x, y)
            print(res)
            #    [[3, 2, 4],
            #     [3, 2, 4]]

            x = paddle.to_tensor([2, 3, 5], dtype='float32')
            y = paddle.to_tensor([1, np.nan, np.nan], dtype='float32')
            res = paddle.fmax(x, y)
            print(res)
            #    [ 2., 3., 5.]

            x = paddle.to_tensor([5, 3, np.inf], dtype='float32')
            y = paddle.to_tensor([1, -np.inf, 5], dtype='float32')
            res = paddle.fmax(x, y)
            print(res)
            #    [  5.,   3., inf.]
    """
    op_type = 'elementwise_fmax'
    axis = -1
    act = None
1018
    if in_dygraph_mode():
1019
        return _C_ops.fmax(x, y, axis)
1020
    if _in_legacy_dygraph():
L
LJQ❤️ 已提交
1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033
        return _elementwise_op_in_dygraph(
            x, y, axis=axis, act=act, op_name=op_type)
    return _elementwise_op(LayerHelper(op_type, **locals()))

def fmin(x, y, name=None):
    """
    Compares the elements at the corresponding positions of the two tensors and returns a new tensor containing the minimum value of the element.
    If one of them is a nan value, the other value is directly returned, if both are nan values, then the first nan value is returned.
    The equation is:

    .. math::
        out = fmin(x, y)

1034 1035
    Note:
        ``paddle.fmin`` supports broadcasting. If you want know more about broadcasting, please refer to :ref:`user_guide_broadcasting` .
L
LJQ❤️ 已提交
1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080

    Args:
        x (Tensor): the input tensor, it's data type should be float32, float64, int32, int64.
        y (Tensor): the input tensor, it's data type should be float32, float64, int32, int64.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        N-D Tensor. A location into which the result is stored. If x, y have different shapes and are "broadcastable", the resulting tensor shape is the shape of x and y after broadcasting. If x, y have the same shape,  its shape is the same as x and y.

    Examples:

        .. code-block:: python

            import numpy as np
            import paddle

            x = paddle.to_tensor([[1, 2], [7, 8]])
            y = paddle.to_tensor([[3, 4], [5, 6]])
            res = paddle.fmin(x, y)
            print(res)
            #       [[1, 2],
            #        [5, 6]]

            x = paddle.to_tensor([[[1, 2, 3], [1, 2, 3]]])
            y = paddle.to_tensor([3, 0, 4])
            res = paddle.fmin(x, y)
            print(res)
            #       [[[1, 0, 3],
            #         [1, 0, 3]]]

            x = paddle.to_tensor([2, 3, 5], dtype='float32')
            y = paddle.to_tensor([1, np.nan, np.nan], dtype='float32')
            res = paddle.fmin(x, y)
            print(res)
            #       [ 1., 3., 5.]

            x = paddle.to_tensor([5, 3, np.inf], dtype='float64')
            y = paddle.to_tensor([1, -np.inf, 5], dtype='float64')
            res = paddle.fmin(x, y)
            print(res)
            #       [   1., -inf.,    5.]
    """
    op_type = 'elementwise_fmin'
    axis = -1
    act = None
1081
    if in_dygraph_mode():
1082
        return _C_ops.fmin(x, y, axis)
1083
    if _in_legacy_dygraph():
L
LJQ❤️ 已提交
1084 1085 1086 1087
        return _elementwise_op_in_dygraph(
            x, y, axis=axis, act=act, op_name=op_type)
    return _elementwise_op(LayerHelper(op_type, **locals()))

Y
Yang Zhang 已提交
1088

1089
def sum(x, axis=None, dtype=None, keepdim=False, name=None):
1090 1091 1092 1093
    """
    Computes the sum of tensor elements over the given dimension.

    Args:
1094
        x (Tensor): An N-D Tensor, the data type is bool, float16, float32, float64, int32 or int64.
1095 1096
        axis (int|list|tuple, optional): The dimensions along which the sum is performed. If
            :attr:`None`, sum all elements of :attr:`x` and return a
N
Noel 已提交
1097
            Tensor with a single element, otherwise must be in the
1098 1099 1100 1101 1102 1103 1104
            range :math:`[-rank(x), rank(x))`. If :math:`axis[i] < 0`,
            the dimension to reduce is :math:`rank + axis[i]`.
        dtype (str, optional): The dtype of output Tensor. The default value is None, the dtype
            of output is the same as input Tensor `x`.
        keepdim (bool, optional): Whether to reserve the reduced dimension in the
            output Tensor. The result Tensor will have one fewer dimension
            than the :attr:`x` unless :attr:`keepdim` is true, default
1105
            value is False.
1106
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
1107 1108

    Returns:
1109
        Tensor: Results of summation operation on the specified axis of input Tensor `x`,
1110 1111
        if `x.dtype='bool'`, `x.dtype='int32'`, it's data type is `'int64'`, 
        otherwise it's data type is the same as `x`.
1112 1113 1114 1115 1116

    Examples:
        .. code-block:: python

            import paddle
1117

1118
            # x is a Tensor with following elements:
1119 1120 1121
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
            # Each example is followed by the corresponding output tensor.
1122 1123
            x = paddle.to_tensor([[0.2, 0.3, 0.5, 0.9],
                                  [0.1, 0.2, 0.6, 0.7]])
1124
            out1 = paddle.sum(x)  # [3.5]
1125 1126 1127
            out2 = paddle.sum(x, axis=0)  # [0.3, 0.5, 1.1, 1.6]
            out3 = paddle.sum(x, axis=-1)  # [1.9, 1.6]
            out4 = paddle.sum(x, axis=1, keepdim=True)  # [[1.9], [1.6]]
1128

1129
            # y is a Tensor with shape [2, 2, 2] and elements as below:
1130 1131 1132
            #      [[[1, 2], [3, 4]],
            #      [[5, 6], [7, 8]]]
            # Each example is followed by the corresponding output tensor.
1133 1134
            y = paddle.to_tensor([[[1, 2], [3, 4]], 
                                  [[5, 6], [7, 8]]])
1135 1136
            out5 = paddle.sum(y, axis=[1, 2]) # [10, 26]
            out6 = paddle.sum(y, axis=[0, 1]) # [16, 20]
1137 1138 1139 1140 1141 1142 1143 1144 1145 1146
            
            # x is a Tensor with following elements:
            #    [[True, True, True, True]
            #     [False, False, False, False]]
            # Each example is followed by the corresponding output tensor.
            x = paddle.to_tensor([[True, True, True, True],
                                  [False, False, False, False]])
            out7 = paddle.sum(x)  # [4]
            out8 = paddle.sum(x, axis=0)  # [1, 1, 1, 1]
            out9 = paddle.sum(x, axis=1)  # [4, 0]
1147
    """
1148 1149 1150 1151
    if axis is not None and not isinstance(axis, (list, tuple)):
        axis = [axis]

    if not axis:
1152
        axis = []
1153

1154 1155 1156 1157
    dtype_flag = False
    if dtype is not None:
        dtype_flag = True
        dtype = convert_np_dtype_to_dtype_(dtype)
F
From00 已提交
1158 1159

    if in_dygraph_mode():
1160
        return _C_ops.sum(x, axis, dtype, keepdim)
F
From00 已提交
1161

1162 1163 1164 1165 1166 1167 1168 1169
    if len(axis) == 0:
        reduce_all_flag = True
    else:
        if len(axis) == len(x.shape):
            reduce_all_flag = True
        else:
            reduce_all_flag = False

F
From00 已提交
1170
    if _in_legacy_dygraph():
1171
        axis = axis if axis != None and axis != [] else [0]
1172
        if dtype_flag:
1173
            return _legacy_C_ops.reduce_sum(x, 'dim', axis, 'keep_dim', keepdim,
1174
                                       'reduce_all', reduce_all_flag, 'in_dtype',
1175
                                       x.dtype, 'out_dtype', dtype)
1176
        else:
1177
            return _legacy_C_ops.reduce_sum(x, 'dim', axis, 'keep_dim', keepdim,
1178
                                       'reduce_all', reduce_all_flag)
W
wanghuancoder 已提交
1179 1180 1181 1182 1183 1184 1185

    attrs = {
        'dim': axis if axis != None and axis != [] and axis != () else [0],
        'keep_dim': keepdim,
        'reduce_all': reduce_all_flag
    }

1186 1187 1188
    if dtype_flag:
        attrs.update({
            'in_dtype': x.dtype,
1189
            'out_dtype': dtype
1190
        })
W
wanghuancoder 已提交
1191

1192
    check_variable_and_dtype(
1193
        x, 'x', ['bool', 'float16', 'float32', 'float64',
1194
                'int16', 'int32', 'int64', 'complex64', 'complex128',
1195 1196
                u'bool', u'float16', u'float32', u'float64',
                u'int32', u'int64', u'complex64', u'complex128'], 'sum')
1197

1198 1199
    check_type(axis, 'axis', (int, list, tuple, type(None)), 'sum')

1200 1201 1202
    helper = LayerHelper('sum', **locals())
    if dtype_flag:
        out = helper.create_variable_for_type_inference(
1203
            dtype=dtype)
1204
    else:
1205
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
1206 1207
    helper.append_op(
        type='reduce_sum',
1208
        inputs={'X': x},
1209 1210 1211
        outputs={'Out': out},
        attrs=attrs)
    return out
1212

1213

W
wangguanqun 已提交
1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230
def nansum(x, axis=None, dtype=None, keepdim=False, name=None):
    """
    Computes the sum of tensor elements over the given axis, treating Not a Numbers (NaNs) as zero.

    Args:
        x (Tensor): An N-D Tensor, the data type is float32, float64, int32 or int64.
        axis (int|list|tuple, optional): The dimensions along which the nansum is performed. If
            :attr:`None`, nansum all elements of :attr:`x` and return a
            Tensor with a single element, otherwise must be in the
            range :math:`[-rank(x), rank(x))`. If :math:`axis[i] < 0`,
            the dimension to reduce is :math:`rank + axis[i]`.
        dtype (str, optional): The dtype of output Tensor. The default value is None, the dtype
            of output is the same as input Tensor `x`.
        keepdim (bool, optional): Whether to reserve the reduced dimension in the
            output Tensor. The result Tensor will have one fewer dimension
            than the :attr:`x` unless :attr:`keepdim` is true, default
            value is False.
1231
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
W
wangguanqun 已提交
1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272

    Returns:
        Tensor: Results of summation operation on the specified axis of input Tensor `x`,

    Examples:
        .. code-block:: python

            import paddle
            import numpy as np

            # x is a Tensor with following elements:
            #    [[nan, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, -nan, 0.7]]
            # Each example is followed by the corresponding output tensor.
            x = np.array([[float('nan'), 0.3, 0.5, 0.9],
                            [0.1, 0.2, float('-nan'), 0.7]]).astype(np.float32)
            x = paddle.to_tensor(x)
            out1 = paddle.nansum(x)  # [2.7]
            out2 = paddle.nansum(x, axis=0)  # [0.1, 0.5, 0.5, 1.6]
            out3 = paddle.nansum(x, axis=-1)  # [1.7, 1.0]
            out4 = paddle.nansum(x, axis=1, keepdim=True)  # [[1.7], [1.0]]

            # y is a Tensor with shape [2, 2, 2] and elements as below:
            #      [[[1, nan], [3, 4]],
            #      [[5, 6], [-nan, 8]]]
            # Each example is followed by the corresponding output tensor.
            y = np.array([[[1, float('nan')], [3, 4]], 
                            [[5, 6], [float('-nan'), 8]]])
            y = paddle.to_tensor(y)
            out5 = paddle.nansum(y, axis=[1, 2]) # [8, 19]
            out6 = paddle.nansum(y, axis=[0, 1]) # [9, 18]
    """
    check_variable_and_dtype(
        x, 'x', ['float32', 'float64', 'int32', 'int64'], 'nansum')
    check_type(axis, 'axis', (int, list, tuple, type(None)), 'nansum')

    zero_tensor = paddle.zeros_like(x)
    tmp_tensor = paddle.where(isnan(x), zero_tensor, x)
    return sum(tmp_tensor, axis, dtype, keepdim, name)


1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339
def nanmean(x, axis=None, keepdim=False, name=None):
    r"""
    Compute the arithmetic mean along the specified axis, ignoring NaNs.

    Args:
        x (Tensor): The input Tensor with data type uint16, float16, float32, float64.
        axis (int|list|tuple, optional):The axis along which to perform nanmean
            calculations. ``axis`` should be int, list(int) or tuple(int). If
            ``axis`` is a list/tuple of dimension(s), nanmean is calculated along
            all element(s) of ``axis`` . ``axis`` or element(s) of ``axis``
            should be in range [-D, D), where D is the dimensions of ``x`` . If
            ``axis`` or element(s) of ``axis`` is less than 0, it works the
            same way as :math:`axis + D` . If ``axis`` is None, nanmean is
            calculated over all elements of ``x``. Default is None.
        keepdim (bool, optional): Whether to reserve the reduced dimension(s)
            in the output Tensor. If ``keepdim`` is True, the dimensions of
            the output Tensor is the same as ``x`` except in the reduced
            dimensions(it is of size 1 in this case). Otherwise, the shape of
            the output Tensor is squeezed in ``axis`` . Default is False.
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        Tensor, results of arithmetic mean along ``axis`` of ``x``, with the same data
        type as ``x``.

    Examples:

        .. code-block:: python
            :name: code-example1

            import paddle
            # x is a 2-D Tensor:
            x = paddle.to_tensor([[float('nan'), 0.3, 0.5, 0.9],
                                  [0.1, 0.2, float('-nan'), 0.7]])
            out1 = paddle.nanmean(x)
            # [0.44999996]
            out2 = paddle.nanmean(x, axis=0)
            # [0.1, 0.25, 0.5, 0.79999995]
            out3 = paddle.nanmean(x, axis=0, keepdim=True)
            # [[0.1, 0.25, 0.5, 0.79999995]]
            out4 = paddle.nanmean(x, axis=1)
            # [0.56666666 0.33333334]
            out5 = paddle.nanmean(x, axis=1, keepdim=True)
            # [[0.56666666]
            #  [0.33333334]]

            # y is a 3-D Tensor:
            y = paddle.to_tensor([[[1, float('nan')], [3, 4]],
                                   [[5, 6], [float('-nan'), 8]]])
            out6 = paddle.nanmean(y, axis=[1, 2])
            # [2.66666675, 6.33333349]
            out7 = paddle.nanmean(y, axis=[0, 1])
            # [3., 6.]
    """
    if isinstance(axis, int):
        axis = [axis]
    check_variable_and_dtype(x, 'x/input',
                             ['uint16', 'float16', 'float32', 'float64'],
                             'nanmean' )
    if axis is not None:
        check_type(axis, 'axis/dim', (int, list, tuple), 'nanmean')

    cnt = paddle.sum(~paddle.isnan(x), axis = axis,keepdim=keepdim)
    return paddle.divide(paddle.nansum(x, axis=axis, keepdim=keepdim, name=name), cnt.astype(x.dtype))


1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404
def count_nonzero(x, axis=None, keepdim=False, name=None):
    r"""
    Counts the number of non-zero values in the tensor x along the specified axis.

    Args:
        x (Tensor): An N-D Tensor, the data type is bool, float16, float32, float64, int32 or int64.
        axis (int|list|tuple, optional): The dimensions along which the sum is performed. If
            :attr:`None`, sum all elements of :attr:`x` and return a
            Tensor with a single element, otherwise must be in the
            range :math:`[-rank(x), rank(x))`. If :math:`axis[i] < 0`,
            the dimension to reduce is :math:`rank + axis[i]`.
        keepdim (bool, optional): Whether to reserve the reduced dimension in the
            output Tensor. The result Tensor will have one fewer dimension
            than the :attr:`x` unless :attr:`keepdim` is true, default
            value is False.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        Tensor: Results of count operation on the specified axis of input Tensor `x`, it's data type is `'int64'`.

    Examples:

        .. code-block:: python

            import paddle
            # x is a 2-D Tensor:
            x = paddle.to_tensor([[0., 1.1, 1.2], [0., 0., 1.3], [0., 0., 0.]])
            out1 = paddle.count_nonzero(x)
            # [3]
            out2 = paddle.count_nonzero(x, axis=0)
            # [0, 1, 2]
            out3 = paddle.count_nonzero(x, axis=0, keepdim=True)
            # [[0, 1, 2]]
            out4 = paddle.count_nonzero(x, axis=1)
            # [2, 1, 0]
            out5 = paddle.count_nonzero(x, axis=1, keepdim=True)
            #[[2],
            # [1],
            # [0]]

            # y is a 3-D Tensor:
            y = paddle.to_tensor([[[0., 1.1, 1.2], [0., 0., 1.3], [0., 0., 0.]],
                                  [[0., 2.5, 2.6], [0., 0., 2.4], [2.1, 2.2, 2.3]]])
            out6 = paddle.count_nonzero(y, axis=[1, 2])
            # [3, 6]
            out7 = paddle.count_nonzero(y, axis=[0, 1])
            # [1, 3, 5]
    """


    if axis is not None:
        if isinstance(axis, int):
            axis = [axis]
        dims = len(x.shape)
        for i in range(len(axis)):
            if not isinstance(axis[i], int) or not (axis[i] < dims and axis[i] >= -dims):
                raise ValueError(
                    "Axis should be None, int, or a list, element should in range [-rank(x), rank(x))."
                )

    bool_tensor = paddle.cast(x, 'bool')
    int_tensor = paddle.cast(bool_tensor, 'int64')
    return paddle.sum(int_tensor, axis=axis, keepdim=keepdim, name=name)


1405
@templatedoc(op_type="sum")
S
Steffy-zxf 已提交
1406
def add_n(inputs, name=None):
1407
    """
1408
    Sum one or more Tensor of the input.
S
Steffy-zxf 已提交
1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442
    
    For example:

    .. code-block:: text
    
        Case 1:

            Input:
                input.shape = [2, 3]
                input = [[1, 2, 3],
                         [4, 5, 6]]

            Output:
                output.shape = [2, 3]
                output = [[1, 2, 3],
                          [4, 5, 6]]

        Case 2:
       
            Input:
                First input:
                    input1.shape = [2, 3]
                    Input1 = [[1, 2, 3],
                              [4, 5, 6]]

                The second input:
                    input2.shape = [2, 3]
                    input2 = [[7, 8, 9],
                              [10, 11, 12]]

                Output:
                    output.shape = [2, 3]
                    output = [[8, 10, 12],
                              [14, 16, 18]]
1443 1444

    Args:
1445
        inputs (Tensor|list[Tensor]|tuple[Tensor]):  A Tensor or a list/tuple of Tensors. The shape and data type of the list/tuple elements should be consistent.
S
Steffy-zxf 已提交
1446
            Input can be multi-dimensional Tensor, and data types can be: float32, float64, int32, int64.
1447
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
1448 1449

    Returns:
S
Steffy-zxf 已提交
1450
        Tensor, the sum of input :math:`inputs` , its shape and data types are consistent with :math:`inputs`.
1451 1452 1453

    Examples:
        .. code-block:: python
1454

1455 1456
            import paddle

S
Steffy-zxf 已提交
1457 1458 1459 1460 1461
            input0 = paddle.to_tensor([[1, 2, 3], [4, 5, 6]], dtype='float32')
            input1 = paddle.to_tensor([[7, 8, 9], [10, 11, 12]], dtype='float32')
            output = paddle.add_n([input0, input1])
            # [[8., 10., 12.], 
            #  [14., 16., 18.]]
1462
    """
1463 1464 1465
    if in_dygraph_mode():
        if isinstance(inputs, Variable):
            inputs = [inputs]
1466 1467
        for x in inputs:
            if not x.is_dense():
1468 1469
                return _legacy_C_ops.sum(inputs, 'use_mkldnn', False)
        return _C_ops.add_n(inputs)
1470
    if _in_legacy_dygraph():
S
Steffy-zxf 已提交
1471 1472
        if isinstance(inputs, Variable):
            inputs = [inputs]
1473
        return _legacy_C_ops.sum(inputs, 'use_mkldnn', False)
1474

S
Steffy-zxf 已提交
1475 1476
    helper = LayerHelper('add_n', **locals())
    check_type(inputs, 'inputs', (Variable, tuple, list), 'add_n')
1477 1478 1479 1480
    if isinstance(inputs, list) or isinstance(inputs, tuple):
        if len(inputs) > 0:
            for input in inputs:
                check_variable_and_dtype(input, "inputs", \
W
WangXi 已提交
1481
                   ['float16', 'float32', 'float64', 'int32', 'int64'], 'add_n')
1482 1483
    else:
        check_variable_and_dtype(inputs, "inputs", \
W
WangXi 已提交
1484
                ['float16', 'float32', 'float64', 'int32', 'int64'], 'add_n')
1485 1486


1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497
    out = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype('inputs'))
    helper.append_op(
        type='sum',
        inputs={'X': inputs},
        outputs={'Out': out},
        attrs={'use_mkldnn': False})

    return out


1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525
def trunc(input, name=None):
    '''
    This API is used to returns a new tensor with the truncated integer values of input.
    
    Args:
        input (Tensor): The input tensor, it's data type should be int32, int64, float32, float64.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
    
    Returns:
        Tensor: The output Tensor of trunc.
    
    Examples:
        .. code-block:: python

            import paddle

            input = paddle.rand([2,2],'float32')
            print(input)
            # Tensor(shape=[2, 2], dtype=float32, place=CUDAPlace(0), stop_gradient=True,
            #         [[0.02331470, 0.42374918],
            #         [0.79647720, 0.74970269]])

            output = paddle.trunc(input)
            print(output)
            # Tensor(shape=[2, 2], dtype=float32, place=CUDAPlace(0), stop_gradient=True,
            #         [[0., 0.],
            #         [0., 0.]]))
    '''
J
Jiabin Yang 已提交
1526
    if in_dygraph_mode():
1527
        return  _C_ops.trunc(input)
1528
    else:
J
Jiabin Yang 已提交
1529
        if _in_legacy_dygraph():
1530
            return _legacy_C_ops.trunc(input)
J
Jiabin Yang 已提交
1531 1532 1533
        else:
            inputs = {"X": input}
            attrs = {}
1534

J
Jiabin Yang 已提交
1535 1536 1537
            helper = LayerHelper("trunc", **locals())
            check_variable_and_dtype(input, 'X', ['int32', 'int64', 'float32', 'float64'], 'trunc')
            out = helper.create_variable_for_type_inference(dtype=input.dtype)
1538

J
Jiabin Yang 已提交
1539 1540 1541
            helper.append_op(
                type="trunc", inputs=inputs, attrs=attrs, outputs={"Out": out})
            return out
1542 1543 1544



W
WuHaobo 已提交
1545
def mm(input, mat2, name=None):
1546
    """
S
swtkiwi 已提交
1547

1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558
    Applies matrix multiplication to two tensors.

    Currently, the input tensors' rank can be any, but when the rank of any
    inputs is bigger than 3, this two inputs' rank should be equal.


    Also note that if the raw tensor :math:`x` or :math:`mat2` is rank-1 and
    nontransposed, the prepended or appended dimension :math:`1` will be
    removed after matrix multiplication.

    Args:
1559
        input (Tensor): The input tensor which is a Tensor.
N
Noel 已提交
1560
        mat2 (Tensor): The input tensor which is a Tensor.
1561
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
1562 1563

    Returns:
N
Noel 已提交
1564
        Tensor: The product Tensor.
1565

W
wawltor 已提交
1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597
    ::

        * example 1:

        input: [B, ..., M, K], mat2: [B, ..., K, N]
        out: [B, ..., M, N]

        * example 2:

        input: [B, M, K], mat2: [B, K, N]
        out: [B, M, N]

        * example 3:

        input: [B, M, K], mat2: [K, N]
        out: [B, M, N]

        * example 4:

        input: [M, K], mat2: [K, N]
        out: [M, N]

        * example 5:

        input: [B, M, K], mat2: [K]
        out: [B, M]

        * example 6:

        input: [K], mat2: [K]
        out: [1]

1598 1599 1600 1601
    Examples:
        .. code-block:: python

            import paddle
1602 1603 1604 1605 1606 1607 1608 1609
            input = paddle.arange(1, 7).reshape((3, 2)).astype('float32')
            mat2 = paddle.arange(1, 9).reshape((2, 4)).astype('float32')
            out = paddle.mm(input, mat2)
            print(out)
            #        [[11., 14., 17., 20.],
            #         [23., 30., 37., 44.],
            #         [35., 46., 57., 68.]])

N
Noel 已提交
1610

1611
    """
1612
    if in_dygraph_mode():
1613
        return _C_ops.matmul(input, mat2, False, False)
1614
    elif paddle.in_dynamic_mode():
1615
        return _legacy_C_ops.matmul_v2(input, mat2)
1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652

    def __check_input(x, y):
        var_names = {'x': x, 'y': y}
        for name, val in var_names.items():
            check_variable_and_dtype(val, name,
                                     ['float16', 'float32', 'float64'], 'mm')
        x_shape = list(x.shape)
        y_shape = list(y.shape)
        if len(x_shape) == 1:
            x_shape = [1] + x_shape
        if len(y_shape) == 1:
            y_shape = y_shape + [1]

        # check the inner 2 dimensions
        if x_shape[-1] != y_shape[-2]:
            if not ((x_shape[-1] == -1) or (y_shape[-2] == -1)):
                raise ValueError(
                    "After performing an optional transpose, Input X's width should be "
                    "equal to Y's width for multiplication "
                    "prerequisites. But received X's shape: %s, Y's shape: %s\n"
                    % (x_shape, y_shape))

        if len(y_shape) > 2 and len(x_shape) > 2:
            for i, dim_x in enumerate(x_shape[:-2]):
                # don't check neg shape
                if dim_x < 0 or y_shape[i] < 0:
                    continue
                if dim_x != y_shape[i]:
                    raise ValueError(
                        "When the matrix is larger than 2 dimensions, the higher "
                        "dimensional values of the two matrices need to be equal. "
                        "But received x_shape[%d] != y_shape[%d]. X's shape: %s, "
                        "Y's shape: %s.\n" % (i, i, x_shape, y_shape))

    __check_input(input, mat2)

    helper = LayerHelper('mm', **locals())
W
WuHaobo 已提交
1653
    out = helper.create_variable_for_type_inference(dtype=input.dtype)
1654
    helper.append_op(
1655
        type='matmul_v2', inputs={'X': input,
1656 1657
                               'Y': mat2}, outputs={'Out': out})
    return out
1658

1659

Y
yaoxuefeng 已提交
1660
def addmm(input, x, y, beta=1.0, alpha=1.0, name=None):
1661 1662 1663
    """
    **addmm**

1664
    Perform matrix multiplication for input $x$ and $y$.
1665 1666 1667 1668 1669 1670 1671 1672 1673
    $input$ is added to the final result.
    The equation is:

    ..  math::
        Out = alpha * x * y + beta * input

    $Input$, $x$ and $y$ can carry the LoD (Level of Details) information, or not. But the output only shares the LoD information with input $input$.

    Args:
Y
yaoxuefeng 已提交
1674 1675 1676
        input (Tensor): The input Tensor to be added to the final result.
        x (Tensor): The first input Tensor for matrix multiplication.
        y (Tensor): The second input Tensor for matrix multiplication.
1677 1678
        beta (float, optional): Coefficient of $input$, default is 1.
        alpha (float, optional): Coefficient of $x*y$, default is 1.
1679
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
1680 1681

    Returns:
1682
        Tensor: The output Tensor of addmm.
1683 1684 1685

    Examples:
        ..  code-block:: python
Y
yaoxuefeng 已提交
1686
            
1687 1688
            import paddle

Y
yaoxuefeng 已提交
1689 1690 1691
            x = paddle.ones([2,2])
            y = paddle.ones([2,2])
            input = paddle.ones([2,2])
Y
yaoxuefeng 已提交
1692

Y
yaoxuefeng 已提交
1693
            out = paddle.addmm( input=input, x=x, y=y, beta=0.5, alpha=5.0 )
Y
yaoxuefeng 已提交
1694

N
Noel 已提交
1695
            print(out)
1696 1697 1698
            # [[10.5 10.5]
            # [10.5 10.5]]
    """
Y
yaoxuefeng 已提交
1699 1700 1701
    input_shape = input.shape
    x_shape = x.shape
    y_shape = y.shape
1702 1703
    if not len(x_shape) == len(y_shape) == 2:
        raise ValueError("The dimention of x, y should be 2 but receive x's shape: {}, y's shape: {}".format(x_shape, y_shape))
Y
yaoxuefeng 已提交
1704 1705
    if x_shape[1] != y_shape[0]:
        raise ValueError("The input Variable x's width must be equal with Variable y' height. But received x's shape = {}, y's shape = {}.".format(x_shape, y_shape))
1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719
    if len(input_shape) == 2:
        if input_shape[0] != x_shape[0]:
            if input_shape[0] != 1:
                raise ValueError( "When x's dimension[0] is not equal with input's dimension[0], input's dimension[0] must be 1 but got {}".format(input_shape[0]))
            if input_shape[1] != y_shape[1] and input_shape[1] != 1:
                raise ValueError( "When y's dimension[1] is not equal with input's dimension[1], input's dimension[1] must be 1 but got {}".format(input_shape[1]))
        if input_shape[1] != y_shape[1]:
            if input_shape[1] != 1:
                raise ValueError( "When y's dimension[1] is not equal with input's dimension[1], input's dimension[1] must be 1 but got {}".format(input_shape[1]))
    elif len(input_shape) == 1:
        if input_shape[0] not in (y_shape[1], 1):
            raise ValueError("The input's shape: {} is not broadcastable with [x.shape[0], y.shape[1]]: [{},{}]".format(input_shape, x_shape[0], y_shape[1]))
    else:
        raise ValueError("The dimention of input should be 2 or 1 but receive input's shape: {}".format(input_shape))
Y
yaoxuefeng 已提交
1720 1721 1722



J
Jiabin Yang 已提交
1723
    if in_dygraph_mode():
1724
        return _C_ops.addmm( input, x, y, alpha, beta)
J
Jiabin Yang 已提交
1725 1726
    else:
        if _in_legacy_dygraph():
1727
            out = _legacy_C_ops.addmm(input, x, y, "Alpha", alpha, "Beta", beta)
J
Jiabin Yang 已提交
1728 1729 1730 1731
            return out
        else:
            inputs = {'Input': input, "X": x, "Y": y}
            attrs = {'Alpha': alpha, 'Beta': beta}
1732

J
Jiabin Yang 已提交
1733 1734 1735 1736 1737
            helper = LayerHelper("addmm", **locals())
            check_variable_and_dtype(input, 'Input', ['float32', 'float64'], 'addmm')
            check_variable_and_dtype(x, 'X', ['float32', 'float64'], 'addmm')
            check_variable_and_dtype(y, 'Y', ['float32', 'float64'], 'addmm')
            out = helper.create_variable_for_type_inference(dtype=x.dtype)
1738

J
Jiabin Yang 已提交
1739 1740 1741
            helper.append_op(
                type="addmm", inputs=inputs, attrs=attrs, outputs={"Out": out})
            return out
1742

S
seemingwang 已提交
1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784
def renorm(x, p, axis, max_norm):
    """
    **renorm**

    This operator is used to calculate the p-norm along the axis,
    suppose the input-shape on axis dimension has the value of T, then
    the tensor is split into T parts, the p-norm should be calculated for each
    part, if the p-norm for part i is larger than max-norm, then each element 
    in part i should be re-normalized at the same scale so that part-i' p-norm equals
    max-norm exactly, otherwise part-i stays unchanged.

    Args:
        x (Tensor): The input Tensor
        p (float): The power of the norm operation.
        axis (int): the dimension to slice the tensor.
        max-norm (float): the maximal norm limit.

    Returns:
        Tensor: the renorm Tensor.

    Examples:
        ..  code-block:: python
            
            import paddle
            input = [[[2.0,2,-2],[3,0.3,3]],[[2,-8,2],[3.1,3.7,3]]]
            x = paddle.to_tensor(input,dtype='float32')
            y = paddle.renorm(x, 1.0, 2, 2.05)
            print(y)        
    #        [[[ 0.40594056,  0.29285714, -0.41000000],
    #          [ 0.60891086,  0.04392857,  0.61500001]],
    #         [[ 0.40594056, -1.17142856,  0.41000000],
    #          [ 0.62920785,  0.54178572,  0.61500001]]])
    
    """
    input_shape = x.shape
    check_variable_and_dtype(x, 'x', ['float32', 'float64'], 'renorm')
    if not axis < len(input_shape):
        raise ValueError("the axis:{} should be less then the shape's size {}:{}".format(axis,len(input_shape),input_shape))
    if not axis >=0:
        if not axis >= -1 * len(input_shape):
            raise ValueError("the axis:{} should not be less than -1 * length of input_shape:{}".format(axis,-1 * len(input_shape)))
        axis = axis + len(input_shape)
S
seemingwang 已提交
1785
    if in_dygraph_mode():
1786
        out = _C_ops.renorm(x, p, axis, max_norm)
S
seemingwang 已提交
1787 1788
        return out
    elif _in_legacy_dygraph():
1789
        out = _legacy_C_ops.renorm(x, 'p',p, 'axis',axis, 'max_norm', max_norm)
S
seemingwang 已提交
1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801
        return out

    inputs = {'X': x}
    attrs = {'p': p, 'axis': axis, 'max_norm':max_norm}

    helper = LayerHelper("renorm", **locals())
    out = helper.create_variable_for_type_inference(dtype=x.dtype)

    helper.append_op(
        type="renorm", inputs=inputs, attrs=attrs, outputs={"Out": out})
    return out

1802

Z
zhiboniu 已提交
1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813

def inner(x, y, name=None):
    """

    Inner product of two input Tensor.
    
    Ordinary inner product for 1-D Tensors, in higher dimensions a sum product over the last axes.

    Args:
        x (Tensor): An N-D Tensor or a Scalar Tensor. If its not a scalar Tensor, its last dimensions must match y's.
        y (Tensor): An N-D Tensor or a Scalar Tensor. If its not a scalar Tensor, its last dimensions must match x's.
1814
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
Z
zhiboniu 已提交
1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842

    Returns:
        Tensor: The inner-product Tensor, the output shape is x.shape[:-1] + y.shape[:-1].

    Examples:
        .. code-block:: python

            import paddle
            x = paddle.arange(1, 7).reshape((2, 3)).astype('float32')
            y = paddle.arange(1, 10).reshape((3, 3)).astype('float32')
            out = paddle.inner(x, y)
            print(out)
            #        ([[14, 32, 50],
            #         [32, 77, 122]])


    """
    if x.size == 1 or y.size == 1:
        return multiply(x, y)
    else:
        xshape = x.shape
        yshape = y.shape
        dstshape = list(xshape[:-1])+list(yshape[:-1])
        if len(dstshape)==0:
            dstshape = [1]
        nx = x.reshape((-1, xshape[-1]))
        ny = y.reshape((-1, yshape[-1]))

1843
        if in_dygraph_mode():
1844
            return _C_ops.matmul(nx, ny.T, False, False).reshape(dstshape)
1845
        elif paddle.in_dynamic_mode():
1846
            return _legacy_C_ops.matmul_v2(nx, ny.T).reshape(dstshape)
Z
zhiboniu 已提交
1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884

        def __check_input(x, y):
            var_names = {'x': x, 'y': y}
            for name, val in var_names.items():
                check_variable_and_dtype(val, name,
                                        ['float16', 'float32', 'float64'], 'inner')
            x_shape = list(xshape)
            y_shape = list(yshape)

            # check the inner 2 dimensions
            if x_shape[-1] != y_shape[-1]:
                if not ((x_shape[-1] == -1) or (y_shape[-1] == -1)):
                    raise ValueError(
                        "After performing an optional transpose, Input X's last dim should be "
                        "equal to Y's last dim for multiplication "
                        "prerequisites. But received X's shape: %s, Y's shape: %s\n"
                        % (x_shape, y_shape))

        __check_input(nx, ny)

        helper = LayerHelper('inner', **locals())
        out = helper.create_variable_for_type_inference(dtype=nx.dtype)
        helper.append_op(
            type='matmul_v2', inputs={'X': nx,
                                'Y': ny.T}, outputs={'Out': out})
        return out.reshape(dstshape)


def outer(x, y, name=None):
    """

    Outer product of two Tensors.

    Input is flattened if not already 1-dimensional.

    Args:
        x (Tensor): An N-D Tensor or a Scalar Tensor. 
        y (Tensor): An N-D Tensor or a Scalar Tensor. 
1885
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
Z
zhiboniu 已提交
1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906

    Returns:
        Tensor: The outer-product Tensor.

    Examples:
        .. code-block:: python

            import paddle
            x = paddle.arange(1, 4).astype('float32')
            y = paddle.arange(1, 6).astype('float32')
            out = paddle.outer(x, y)
            print(out)
            #        ([[1, 2, 3, 4, 5],
            #         [2, 4, 6, 8, 10],
            #         [3, 6, 9, 12, 15]])


    """
    nx = x.reshape((-1, 1))
    ny = y.reshape((1, -1))

1907
    if in_dygraph_mode():
1908
        return _C_ops.matmul(nx, ny, False, False)
1909
    elif paddle.in_dynamic_mode():
1910
        return _legacy_C_ops.matmul_v2(nx, ny)
Z
zhiboniu 已提交
1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927

    def __check_input(x, y):
        var_names = {'x': x, 'y': y}
        for name, val in var_names.items():
            check_variable_and_dtype(val, name,
                                     ['float16', 'float32', 'float64'], 'inner')

    __check_input(nx, ny)

    helper = LayerHelper('outer', **locals())
    out = helper.create_variable_for_type_inference(dtype=nx.dtype)
    helper.append_op(
        type='matmul_v2', inputs={'X': nx,
                               'Y': ny}, outputs={'Out': out})
    return out


1928
def logsumexp(x, axis=None, keepdim=False, name=None):
1929
    r"""
1930
    Calculates the log of the sum of exponentials of ``x`` along ``axis`` .
1931

1932
    .. math::
1933
       logsumexp(x) = \log\sum exp(x)
1934

1935
    Args:
S
Shang Zhizhou 已提交
1936 1937
        x (Tensor): The input Tensor with data type float32 or float64, which 
            have no more than 4 dimensions.
1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953
        axis (int|list|tuple, optional): The axis along which to perform
            logsumexp calculations. ``axis`` should be int, list(int) or
            tuple(int). If ``axis`` is a list/tuple of dimension(s), logsumexp
            is calculated along all element(s) of ``axis`` . ``axis`` or
            element(s) of ``axis`` should be in range [-D, D), where D is the
            dimensions of ``x`` . If ``axis`` or element(s) of ``axis`` is
            less than 0, it works the same way as :math:`axis + D` . If
            ``axis`` is None, logsumexp is calculated along all elements of
            ``x``. Default is None.
        keepdim (bool, optional): Whether to reserve the reduced dimension(s)
            in the output Tensor. If ``keep_dim`` is True, the dimensions of
            the output Tensor is the same as ``x`` except in the reduced
            dimensions(it is of size 1 in this case). Otherwise, the shape of
            the output Tensor is squeezed in ``axis`` . Default is False.
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.
1954

1955
    Returns:
1956 1957
        Tensor, results of logsumexp along ``axis`` of ``x``, with the same data
        type as ``x``.
1958

1959
    Examples:
1960

1961
    .. code-block:: python
1962

1963 1964
        import paddle

1965
        x = paddle.to_tensor([[-1.5, 0., 2.], [3., 1.2, -2.4]])
1966 1967
        out1 = paddle.logsumexp(x) # [3.4691226]
        out2 = paddle.logsumexp(x, 1) # [2.15317821, 3.15684602]
1968 1969

    """
1970 1971 1972 1973 1974 1975 1976
    if isinstance(axis, int):
        axis = [axis]
    reduce_all = True if axis is None \
        or len(axis)==0 \
        or len(axis) == len(x.shape) else False
    if axis is None or len(axis) == 0:
        axis = [0]
1977

1978 1979 1980
    if in_dygraph_mode():
        if reduce_all:
            axis = range(len(x.shape))
1981
        return _C_ops.logsumexp(x, axis, keepdim, reduce_all)
1982
    if _in_legacy_dygraph():
1983
        return _legacy_C_ops.logsumexp(x, 'axis', axis, 'keepdim', keepdim, 'reduce_all', reduce_all)
1984

1985 1986 1987
    check_variable_and_dtype(x, 'x',
                             ['float32', 'float64'],
                             'logsumexp')
1988

1989
    helper = LayerHelper('logsumexp', **locals())
1990
    attrs = {'axis': axis, 'keepdim': keepdim, 'reduce_all':reduce_all}
1991 1992 1993 1994
    out = helper.create_variable_for_type_inference(x.dtype)
    helper.append_op(
        type='logsumexp', inputs={'X': x}, outputs={'Out': out}, attrs=attrs)
    return out
1995

S
swtkiwi 已提交
1996

1997 1998
def inverse(x, name=None):
    """
1999 2000 2001 2002 2003
    Takes the inverse of the square matrix. A square matrix is a matrix with
    the same number of rows and columns. The input can be a square matrix
    (2-D Tensor) or batches of square matrices.

    Args:
2004
        x (Tensor): The input tensor. The last two
2005 2006 2007
            dimensions should be equal. When the number of dimensions is
            greater than 2, it is treated as batches of square matrix. The data
            type can be float32 and float64.
2008
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
2009 2010

    Returns:
2011
        Tensor: A Tensor holds the inverse of x. The shape and data type
2012
                        is the same as x.
2013 2014 2015 2016 2017

    Examples:
        .. code-block:: python

            import paddle
2018 2019

            mat = paddle.to_tensor([[2, 0], [0, 2]], dtype='float32')
2020 2021
            inv = paddle.inverse(mat)
            print(inv) # [[0.5, 0], [0, 0.5]]
2022 2023

    """
2024
    if in_dygraph_mode():
W
wanghuancoder 已提交
2025
        return _C_ops.inverse(x)
2026 2027
    elif paddle.in_dynamic_mode():
        return _legacy_C_ops.inverse(x)
2028

2029 2030
    def _check_input(x):
        check_variable_and_dtype(x, 'x',
2031
                                 ['float32', 'float64'], 'inverse')
2032
        if len(x.shape) < 2:
2033 2034 2035
            raise ValueError(
                "The input of inverse is expected to be a Tensor whose number "
                "of dimensions is no less than 2. But reviced: %d, "
2036 2037
                "x's shape: %s." % (len(x.shape), x.shape))
    _check_input(x)
2038
    helper = LayerHelper('inverse', **locals())
2039
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
2040
    helper.append_op(
2041
        type='inverse', inputs={'Input': [x] }, outputs={'Output': [out]})
2042 2043
    return out

2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061
def _get_reduce_axis(axis):
    """
    Internal function for max, min, amax and amin. 
    It computes the attribute reduce_all value based on axis.
    """
    if axis is not None and not isinstance(axis, list):
        if isinstance(axis, tuple):
            axis = list(axis)
        elif isinstance(axis, int):
            axis= [axis]
        else:
            raise TypeError(
                "The type of axis must be int, list or tuple, but received {}".format(type(axis)))
    reduce_all = True if axis == None or axis == [] else False
    if axis == None:
        axis = []
    return reduce_all, axis

T
Tao Luo 已提交
2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078
def _get_reduce_all_value(axis):
    """
    Internal function for max, min, amax and amin. 
    It computes the attribute reduce_all value based on axis.
    """
    if axis is not None and not isinstance(axis, list):
        if isinstance(axis, tuple):
            axis = list(axis)
        elif isinstance(axis, int):
            axis= [axis]
        else:
            raise TypeError(
                "The type of axis must be int, list or tuple, but received {}".format(type(axis)))

    reduce_all = True if axis == None or axis == [] else False
    axis = axis if axis != None and axis != [] else [0]
    return reduce_all, axis
2079

2080
def max(x, axis=None, keepdim=False, name=None):
2081
    """
S
swtkiwi 已提交
2082

2083
    Computes the maximum of tensor elements over the given axis.
2084

T
Tao Luo 已提交
2085 2086 2087 2088 2089 2090
    Note:
        The difference between max and amax is: If there are multiple maximum elements,
        amax evenly distributes gradient between these equal values, 
        while max propagates gradient to all of them.


2091
    Args:
2092 2093
        x (Tensor): A tensor, the data type is float32, float64, int32, int64.
        axis (int|list|tuple, optional): The axis along which the maximum is computed.
2094
            If :attr:`None`, compute the maximum over all elements of
N
Noel 已提交
2095
            `x` and return a Tensor with a single element,
2096 2097
            otherwise must be in the range :math:`[-x.ndim(x), x.ndim(x))`.
            If :math:`axis[i] < 0`, the axis to reduce is :math:`x.ndim + axis[i]`.
2098
        keepdim (bool, optional): Whether to reserve the reduced dimension in the
2099
            output Tensor. The result tensor will have one fewer dimension
2100
            than the `x` unless :attr:`keepdim` is true, default
2101
            value is False.
2102
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
2103 2104

    Returns:
2105
        Tensor, results of maximum on the specified axis of input tensor,
2106
        it's data type is the same as `x`.
2107 2108 2109

    Examples:
        .. code-block:: python
2110

2111
            import paddle
2112

N
Noel 已提交
2113
            # data_x is a Tensor with shape [2, 4]
2114
            # the axis is a int element
2115
            x = paddle.to_tensor([[0.2, 0.3, 0.5, 0.9],
2116 2117
                                  [0.1, 0.2, 0.6, 0.7]], 
                                 dtype='float64', stop_gradient=False)
2118
            result1 = paddle.max(x)
2119 2120 2121 2122 2123
            result1.backward()
            print(result1, x.grad) 
            #[0.9], [[0., 0., 0., 1.], [0., 0., 0., 0.]]

            x.clear_grad()
2124
            result2 = paddle.max(x, axis=0)
2125 2126 2127 2128 2129
            result2.backward()
            print(result2, x.grad) 
            #[0.2, 0.3, 0.6, 0.9], [[1., 1., 0., 1.], [0., 0., 1., 0.]]

            x.clear_grad()
2130
            result3 = paddle.max(x, axis=-1)
2131 2132 2133 2134 2135
            result3.backward()
            print(result3, x.grad) 
            #[0.9, 0.7], [[0., 0., 0., 1.], [0., 0., 0., 1.]]

            x.clear_grad()
2136
            result4 = paddle.max(x, axis=1, keepdim=True)
2137 2138 2139
            result4.backward()
            print(result4, x.grad) 
            #[[0.9], [0.7]], [[0., 0., 0., 1.], [0., 0., 0., 1.]]
2140

N
Noel 已提交
2141
            # data_y is a Tensor with shape [2, 2, 2]
2142
            # the axis is list 
2143
            y = paddle.to_tensor([[[1.0, 2.0], [3.0, 4.0]],
2144 2145
                                  [[5.0, 6.0], [7.0, 8.0]]],
                                 dtype='float64', stop_gradient=False)
2146
            result5 = paddle.max(y, axis=[1, 2])
2147 2148 2149 2150 2151
            result5.backward()
            print(result5, y.grad) 
            #[4., 8.], [[[0., 0.], [0., 1.]], [[0., 0.], [0., 1.]]]

            y.clear_grad()
2152
            result6 = paddle.max(y, axis=[0, 1])
2153 2154 2155
            result6.backward()
            print(result6, y.grad) 
            #[7., 8.], [[[0., 0.], [0., 0.]], [[0., 0.], [1., 1.]]]
2156 2157
    """

2158
    reduce_all, axis = _get_reduce_axis(axis)
2159
    if in_dygraph_mode():
2160
        return _C_ops.max(x, axis, keepdim)
2161
    if _in_legacy_dygraph():
2162
        return _legacy_C_ops.reduce_max(x, 'dim', axis, 'keep_dim', keepdim,
2163
                                   'reduce_all', reduce_all)
2164

2165
    helper = LayerHelper('max', **locals())
2166
    check_variable_and_dtype(
2167
        x, 'x', ['float32', 'float64', 'int32', 'int64'], 'max')
2168

2169
    out = helper.create_variable_for_type_inference(
2170
            dtype=x.dtype)
2171 2172
    helper.append_op(
        type='reduce_max',
2173
        inputs={'X': x},
2174 2175
        outputs={'Out': out},
        attrs={
2176 2177
            'dim': axis,
            'keep_dim': keepdim,
2178 2179 2180 2181
            'reduce_all': reduce_all
        })
    return out

2182
def min(x, axis=None, keepdim=False, name=None):
2183
    """
S
swtkiwi 已提交
2184

2185
    Computes the minimum of tensor elements over the given axis
2186

T
Tao Luo 已提交
2187 2188 2189 2190 2191
    Note:
        The difference between min and amin is: If there are multiple minimum elements,
        amin evenly distributes gradient between these equal values, 
        while min propagates gradient to all of them.

2192
    Args:
2193 2194
        x (Tensor): A tensor, the data type is float32, float64, int32, int64.
        axis (int|list|tuple, optional): The axis along which the minimum is computed.
2195
            If :attr:`None`, compute the minimum over all elements of
N
Noel 已提交
2196
            `x` and return a Tensor with a single element,
2197 2198
            otherwise must be in the range :math:`[-x.ndim, x.ndim)`.
            If :math:`axis[i] < 0`, the axis to reduce is :math:`x.ndim + axis[i]`.
2199
        keepdim (bool, optional): Whether to reserve the reduced dimension in the
2200
            output Tensor. The result tensor will have one fewer dimension
2201
            than the `x` unless :attr:`keepdim` is true, default
2202
            value is False.
2203
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
2204

2205
    Returns:
2206
        Tensor, results of minimum on the specified axis of input tensor,
2207
        it's data type is the same as input's Tensor.
2208

2209 2210 2211
    Examples:
        .. code-block:: python

2212
            import paddle
2213

2214
            # data_x is a Tensor with shape [2, 4]
2215
            # the axis is a int element
2216
            x = paddle.to_tensor([[0.2, 0.3, 0.5, 0.9],
2217 2218
                                  [0.1, 0.2, 0.6, 0.7]], 
                                 dtype='float64', stop_gradient=False)
2219
            result1 = paddle.min(x)
2220 2221 2222 2223 2224
            result1.backward()
            print(result1, x.grad) 
            #[0.1], [[0., 0., 0., 0.], [1., 0., 0., 0.]]

            x.clear_grad()
2225
            result2 = paddle.min(x, axis=0)
2226 2227 2228 2229 2230
            result2.backward()
            print(result2, x.grad) 
            #[0.1, 0.2, 0.5, 0.7], [[0., 0., 1., 0.], [1., 1., 0., 1.]]

            x.clear_grad()
2231
            result3 = paddle.min(x, axis=-1)
2232 2233 2234 2235 2236
            result3.backward()
            print(result3, x.grad) 
            #[0.2, 0.1], [[1., 0., 0., 0.], [1., 0., 0., 0.]]

            x.clear_grad()
2237
            result4 = paddle.min(x, axis=1, keepdim=True)
2238 2239 2240
            result4.backward()
            print(result4, x.grad) 
            #[[0.2], [0.1]], [[1., 0., 0., 0.], [1., 0., 0., 0.]]
2241

2242
            # data_y is a Tensor with shape [2, 2, 2]
2243
            # the axis is list 
2244
            y = paddle.to_tensor([[[1.0, 2.0], [3.0, 4.0]],
2245 2246
                                  [[5.0, 6.0], [7.0, 8.0]]],
                                 dtype='float64', stop_gradient=False)
2247
            result5 = paddle.min(y, axis=[1, 2])
2248 2249 2250 2251 2252
            result5.backward()
            print(result5, y.grad) 
            #[1., 5.], [[[1., 0.], [0., 0.]], [[1., 0.], [0., 0.]]]

            y.clear_grad()
2253
            result6 = paddle.min(y, axis=[0, 1])
2254 2255 2256
            result6.backward()
            print(result6, y.grad) 
            #[1., 2.], [[[1., 1.], [0., 0.]], [[0., 0.], [0., 0.]]]
2257
    """
2258

2259
    reduce_all, axis = _get_reduce_axis(axis)
2260
    if in_dygraph_mode():
2261
        return _C_ops.min(x, axis, keepdim)
2262 2263

    if _in_legacy_dygraph():
2264
        return _legacy_C_ops.reduce_min(x, 'dim', axis, 'keep_dim', keepdim,
2265
                                   'reduce_all', reduce_all)
2266 2267 2268 2269 2270 2271

    helper = LayerHelper('min', **locals())
    check_variable_and_dtype(
        x, 'x', ['float32', 'float64', 'int32', 'int64'], 'min')

    out = helper.create_variable_for_type_inference(
2272
            dtype=x.dtype)
2273 2274
    helper.append_op(
        type='reduce_min',
2275
        inputs={'X': x},
2276 2277
        outputs={'Out': out},
        attrs={
2278 2279
            'dim': axis,
            'keep_dim': keepdim,
2280 2281 2282 2283
            'reduce_all': reduce_all
        })
    return out

T
Tao Luo 已提交
2284 2285 2286 2287 2288 2289 2290 2291 2292 2293
def amax(x, axis=None, keepdim=False, name=None):
    """
    Computes the maximum of tensor elements over the given axis.

    Note:
        The difference between max and amax is: If there are multiple maximum elements,
        amax evenly distributes gradient between these equal values, 
        while max propagates gradient to all of them.

    Args:
2294
        x (Tensor): A tensor, the data type is float32, float64, int32, int64,
2295
            the dimension is no more than 4.
2296
        axis (int|list|tuple, optional): The axis along which the maximum is computed.
T
Tao Luo 已提交
2297 2298 2299 2300
            If :attr:`None`, compute the maximum over all elements of
            `x` and return a Tensor with a single element,
            otherwise must be in the range :math:`[-x.ndim(x), x.ndim(x))`.
            If :math:`axis[i] < 0`, the axis to reduce is :math:`x.ndim + axis[i]`.
2301
        keepdim (bool, optional): Whether to reserve the reduced dimension in the
T
Tao Luo 已提交
2302 2303 2304
            output Tensor. The result tensor will have one fewer dimension
            than the `x` unless :attr:`keepdim` is true, default
            value is False.
2305
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
T
Tao Luo 已提交
2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320

    Returns:
        Tensor, results of maximum on the specified axis of input tensor,
        it's data type is the same as `x`.

    Examples:
        .. code-block:: python

            import paddle
            # data_x is a Tensor with shape [2, 4] with multiple maximum elements
            # the axis is a int element

            x = paddle.to_tensor([[0.1, 0.9, 0.9, 0.9],
                                  [0.9, 0.9, 0.6, 0.7]], 
                                 dtype='float64', stop_gradient=False)
T
Tao Luo 已提交
2321 2322 2323 2324 2325
            # There are 5 maximum elements: 
            # 1) amax evenly distributes gradient between these equal values, 
            #    thus the corresponding gradients are 1/5=0.2;
            # 2) while max propagates gradient to all of them, 
            #    thus the corresponding gradient are 1.
T
Tao Luo 已提交
2326 2327 2328 2329 2330
            result1 = paddle.amax(x)
            result1.backward()
            print(result1, x.grad) 
            #[0.9], [[0., 0.2, 0.2, 0.2], [0.2, 0.2, 0., 0.]]

T
Tao Luo 已提交
2331 2332 2333 2334 2335 2336 2337 2338
            x.clear_grad()
            result1_max = paddle.max(x)
            result1_max.backward()
            print(result1_max, x.grad) 
            #[0.9], [[0., 1.0, 1.0, 1.0], [1.0, 1.0, 0., 0.]]

            ###############################

T
Tao Luo 已提交
2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373
            x.clear_grad()
            result2 = paddle.amax(x, axis=0)
            result2.backward()
            print(result2, x.grad) 
            #[0.9, 0.9, 0.9, 0.9], [[0., 0.5, 1., 1.], [1., 0.5, 0., 0.]]

            x.clear_grad()
            result3 = paddle.amax(x, axis=-1)
            result3.backward()
            print(result3, x.grad) 
            #[0.9, 0.9], [[0., 0.3333, 0.3333, 0.3333], [0.5, 0.5, 0., 0.]]

            x.clear_grad()
            result4 = paddle.amax(x, axis=1, keepdim=True)
            result4.backward()
            print(result4, x.grad) 
            #[[0.9], [0.9]], [[0., 0.3333, 0.3333, 0.3333.], [0.5, 0.5, 0., 0.]]

            # data_y is a Tensor with shape [2, 2, 2]
            # the axis is list 
            y = paddle.to_tensor([[[0.1, 0.9], [0.9, 0.9]],
                                  [[0.9, 0.9], [0.6, 0.7]]],
                                 dtype='float64', stop_gradient=False)
            result5 = paddle.amax(y, axis=[1, 2])
            result5.backward()
            print(result5, y.grad) 
            #[0.9., 0.9], [[[0., 0.3333], [0.3333, 0.3333]], [[0.5, 0.5], [0., 1.]]]

            y.clear_grad()
            result6 = paddle.amax(y, axis=[0, 1])
            result6.backward()
            print(result6, y.grad) 
            #[0.9., 0.9], [[[0., 0.3333], [0.5, 0.3333]], [[0.5, 0.3333], [1., 1.]]]
    """

2374
    reduce_all, axis = _get_reduce_axis(axis)
2375
    if in_dygraph_mode():
2376
        return _C_ops.amax(x,  axis,  keepdim)
2377
    if _in_legacy_dygraph():
2378
        return _legacy_C_ops.reduce_amax(x, 'dim', axis, 'keep_dim', keepdim, 'reduce_all', reduce_all)
T
Tao Luo 已提交
2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407

    helper = LayerHelper('amax', **locals())
    check_variable_and_dtype(
        x, 'x', ['float32', 'float64', 'int32', 'int64'], 'amax')

    out = helper.create_variable_for_type_inference(
            dtype=x.dtype)
    helper.append_op(
        type='reduce_amax',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={
            'dim': axis,
            'keep_dim': keepdim,
            'reduce_all': reduce_all
        })
    return out

def amin(x, axis=None, keepdim=False, name=None):
    """

    Computes the minimum of tensor elements over the given axis

    Note:
        The difference between min and amin is: If there are multiple minimum elements,
        amin evenly distributes gradient between these equal values, 
        while min propagates gradient to all of them.

    Args:
2408
        x (Tensor): A tensor, the data type is float32, float64, int32, int64, 
2409
            the dimension is no more than 4.
2410
        axis (int|list|tuple, optional): The axis along which the minimum is computed.
T
Tao Luo 已提交
2411 2412 2413 2414
            If :attr:`None`, compute the minimum over all elements of
            `x` and return a Tensor with a single element,
            otherwise must be in the range :math:`[-x.ndim, x.ndim)`.
            If :math:`axis[i] < 0`, the axis to reduce is :math:`x.ndim + axis[i]`.
2415
        keepdim (bool, optional): Whether to reserve the reduced dimension in the
T
Tao Luo 已提交
2416 2417 2418
            output Tensor. The result tensor will have one fewer dimension
            than the `x` unless :attr:`keepdim` is true, default
            value is False.
2419
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
T
Tao Luo 已提交
2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434

    Returns:
        Tensor, results of minimum on the specified axis of input tensor,
        it's data type is the same as input's Tensor.

    Examples:
        .. code-block:: python

            import paddle
            # data_x is a Tensor with shape [2, 4] with multiple minimum elements
            # the axis is a int element

            x = paddle.to_tensor([[0.2, 0.1, 0.1, 0.1],
                                  [0.1, 0.1, 0.6, 0.7]], 
                                 dtype='float64', stop_gradient=False)
T
Tao Luo 已提交
2435 2436 2437 2438 2439
            # There are 5 minimum elements: 
            # 1) amin evenly distributes gradient between these equal values, 
            #    thus the corresponding gradients are 1/5=0.2;
            # 2) while min propagates gradient to all of them, 
            #    thus the corresponding gradient are 1.
T
Tao Luo 已提交
2440 2441 2442 2443 2444
            result1 = paddle.amin(x)
            result1.backward()
            print(result1, x.grad) 
            #[0.1], [[0., 0.2, 0.2, 0.2], [0.2, 0.2, 0., 0.]]

T
Tao Luo 已提交
2445 2446 2447 2448 2449 2450 2451 2452
            x.clear_grad()
            result1_min = paddle.min(x)
            result1_min.backward()
            print(result1_min, x.grad) 
            #[0.1], [[0., 1.0, 1.0, 1.0], [1.0, 1.0, 0., 0.]]

            ###############################

T
Tao Luo 已提交
2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487
            x.clear_grad()
            result2 = paddle.amin(x, axis=0)
            result2.backward()
            print(result2, x.grad) 
            #[0.1, 0.1, 0.1, 0.1], [[0., 0.5, 1., 1.], [1., 0.5, 0., 0.]]

            x.clear_grad()
            result3 = paddle.amin(x, axis=-1)
            result3.backward()
            print(result3, x.grad) 
            #[0.1, 0.1], [[0., 0.3333, 0.3333, 0.3333], [0.5, 0.5, 0., 0.]]

            x.clear_grad()
            result4 = paddle.amin(x, axis=1, keepdim=True)
            result4.backward()
            print(result4, x.grad) 
            #[[0.1], [0.1]], [[0., 0.3333, 0.3333, 0.3333.], [0.5, 0.5, 0., 0.]]

            # data_y is a Tensor with shape [2, 2, 2]
            # the axis is list 
            y = paddle.to_tensor([[[0.2, 0.1], [0.1, 0.1]],
                                  [[0.1, 0.1], [0.6, 0.7]]],
                                 dtype='float64', stop_gradient=False)
            result5 = paddle.amin(y, axis=[1, 2])
            result5.backward()
            print(result5, y.grad) 
            #[0.1., 0.1], [[[0., 0.3333], [0.3333, 0.3333]], [[0.5, 0.5], [0., 1.]]]

            y.clear_grad()
            result6 = paddle.amin(y, axis=[0, 1])
            result6.backward()
            print(result6, y.grad) 
            #[0.1., 0.1], [[[0., 0.3333], [0.5, 0.3333]], [[0.5, 0.3333], [1., 1.]]]
    """

2488
    reduce_all, axis = _get_reduce_axis( axis )
2489
    if in_dygraph_mode():
2490
        return _C_ops.amin(x, axis, keepdim)
2491
    elif _in_legacy_dygraph():
2492
        return _legacy_C_ops.reduce_amin(x, 'dim', axis, 'keep_dim', keepdim, 'reduce_all', reduce_all)
T
Tao Luo 已提交
2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509
    helper = LayerHelper('amin', **locals())
    check_variable_and_dtype(
        x, 'x', ['float32', 'float64', 'int32', 'int64'], 'amin')

    out = helper.create_variable_for_type_inference(
            dtype=x.dtype)
    helper.append_op(
        type='reduce_amin',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={
            'dim': axis,
            'keep_dim': keepdim,
            'reduce_all': reduce_all
        })
    return out

W
WuHaobo 已提交
2510
def log1p(x, name=None):
2511
    r"""
2512
    Calculates the natural log of the given input tensor, element-wise.
N
Noel 已提交
2513

2514
    .. math::
2515
        Out = \ln(x+1)
S
Steffy-zxf 已提交
2516

2517
    Args:
S
Steffy-zxf 已提交
2518
        x (Tensor): Input Tensor. Must be one of the following types: float32, float64.
2519 2520
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
        
2521
    Returns:
S
Steffy-zxf 已提交
2522
        Tensor, the natural log of the input Tensor computed element-wise.
2523

2524 2525
    Examples:
        .. code-block:: python
S
Steffy-zxf 已提交
2526

2527
            import paddle
S
Steffy-zxf 已提交
2528 2529 2530 2531

            data = paddle.to_tensor([[0], [1]], dtype='float32')
            res = paddle.log1p(data)
            # [[0.], [0.6931472]]
2532 2533
    """

2534
    if in_dygraph_mode():
W
wanghuancoder 已提交
2535
        return _C_ops.log1p(x)
2536 2537
    if _in_legacy_dygraph():
        return _legacy_C_ops.log1p(x)
2538 2539 2540 2541 2542

    check_variable_and_dtype(x, 'x', ['float32', 'float64'], "log1p")
    inputs = {'X': [x]}
    helper = LayerHelper('log1p', **locals())
    dtype = helper.input_dtype(input_param_name='x')
W
WuHaobo 已提交
2543
    out = helper.create_variable_for_type_inference(dtype)
2544 2545
    helper.append_op(type="log1p", inputs={"X": x}, outputs={"Out": out})
    return out
B
Bai Yifan 已提交
2546

J
joejiong 已提交
2547
def log2(x, name=None):
2548
    r"""
J
joejiong 已提交
2549 2550 2551 2552
    Calculates the log to the base 2 of the given input tensor, element-wise.

    .. math::

2553
        Out = \log_2x
J
joejiong 已提交
2554 2555 2556

    Args:
        x (Tensor): Input tensor must be one of the following types: float32, float64.
2557
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
J
joejiong 已提交
2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584


    Returns:
        Tensor: The log to the base 2 of the input Tensor computed element-wise.

    Examples:

        .. code-block:: python
        
            import paddle

            # example 1: x is a float
            x_i = paddle.to_tensor([[1.0], [2.0]])
            res = paddle.log2(x_i) # [[0.], [1.0]]

            # example 2: x is float32
            x_i = paddle.full(shape=[1], fill_value=2, dtype='float32')
            paddle.to_tensor(x_i)
            res = paddle.log2(x_i)
            print(res) # [1.0]

            # example 3: x is float64
            x_i = paddle.full(shape=[1], fill_value=2, dtype='float64')
            paddle.to_tensor(x_i)
            res = paddle.log2(x_i)
            print(res) # [1.0]
    """
2585
    if in_dygraph_mode():
W
wanghuancoder 已提交
2586
        return _C_ops.log2(x)
2587 2588
    if _in_legacy_dygraph():
        return _legacy_C_ops.log2(x)
J
joejiong 已提交
2589 2590 2591 2592 2593 2594 2595 2596

    check_variable_and_dtype(x, 'x', ['float16', 'float32', 'float64'], "log2")
    inputs = {'X': [x]}
    helper = LayerHelper('log2', **locals())
    dtype = helper.input_dtype(input_param_name='x')
    out = helper.create_variable_for_type_inference(dtype)
    helper.append_op(type="log2", inputs={"X": x}, outputs={"Out": out})
    return out
W
WuHaobo 已提交
2597

J
joejiong 已提交
2598 2599

def log10(x, name=None):
2600
    r"""
J
joejiong 已提交
2601 2602 2603 2604
    Calculates the log to the base 10 of the given input tensor, element-wise.

    .. math::

2605
        Out = \log_10_x
J
joejiong 已提交
2606 2607 2608

    Args:
        x (Tensor): Input tensor must be one of the following types: float32, float64.
2609
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
J
joejiong 已提交
2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636


    Returns:
        Tensor: The log to the base 10 of the input Tensor computed element-wise.

    Examples:

        .. code-block:: python
        
            import paddle

            # example 1: x is a float
            x_i = paddle.to_tensor([[1.0], [10.0]])
            res = paddle.log10(x_i) # [[0.], [1.0]]

            # example 2: x is float32
            x_i = paddle.full(shape=[1], fill_value=10, dtype='float32')
            paddle.to_tensor(x_i)
            res = paddle.log10(x_i)
            print(res) # [1.0]

            # example 3: x is float64
            x_i = paddle.full(shape=[1], fill_value=10, dtype='float64')
            paddle.to_tensor(x_i)
            res = paddle.log10(x_i)
            print(res) # [1.0]
    """
2637
    if in_dygraph_mode():
W
wanghuancoder 已提交
2638
        return _C_ops.log10(x)
2639 2640
    if _in_legacy_dygraph():
        return _legacy_C_ops.log10(x)
J
joejiong 已提交
2641 2642 2643 2644 2645 2646 2647 2648 2649 2650

    check_variable_and_dtype(x, 'x', ['float16', 'float32', 'float64'], "log10")
    inputs = {'X': [x]}
    helper = LayerHelper('log10', **locals())
    dtype = helper.input_dtype(input_param_name='x')
    out = helper.create_variable_for_type_inference(dtype)
    helper.append_op(type="log10", inputs={"X": x}, outputs={"Out": out})
    return out


Y
Yang Zhang 已提交
2651
def clip(x, min=None, max=None, name=None):
2652
    """
Y
Yang Zhang 已提交
2653
    This operator clip all elements in input into the range [ min, max ] and return
2654 2655 2656 2657
    a resulting tensor as the following equation:

    .. math::

2658
        Out = MIN(MAX(x, min), max)
2659 2660

    Args:
2661
        x (Tensor): An N-D Tensor with data type float32, float64, int32 or int64.
2662
        min (float|int|Tensor, optional): The lower bound with type ``float`` , ``int`` or a ``Tensor``
2663
            with shape [1] and type ``int32``, ``float32``, ``float64``.
2664
        max (float|int|Tensor, optional): The upper bound with type ``float``, ``int`` or a ``Tensor``
2665
            with shape [1] and type ``int32``, ``float32``, ``float64``.
2666
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
2667 2668

    Returns:
Y
Yang Zhang 已提交
2669
        Tensor: A Tensor with the same data type and data shape as input.
2670 2671 2672 2673 2674

    Examples:
        .. code-block:: python

            import paddle
N
Noel 已提交
2675

2676
            x1 = paddle.to_tensor([[1.2, 3.5], [4.5, 6.4]], 'float32')
Y
Yang Zhang 已提交
2677 2678
            out1 = paddle.clip(x1, min=3.5, max=5.0)
            out2 = paddle.clip(x1, min=2.5)
2679
            print(out1)
Y
Yang Zhang 已提交
2680 2681
            # [[3.5, 3.5]
            # [4.5, 5.0]]
2682
            print(out2)
Y
Yang Zhang 已提交
2683 2684
            # [[2.5, 3.5]
            # [[4.5, 6.4]
2685 2686
    """

2687 2688 2689 2690 2691 2692 2693 2694 2695 2696
    x_dtype = str(x.dtype)
    if x_dtype == 'paddle.int32':
        min_ = np.iinfo(np.int32).min
        max_ = np.iinfo(np.int32).max - 2**7
    elif x_dtype == 'paddle.int64':
        min_ = np.iinfo(np.int64).min
        max_ = np.iinfo(np.int64).max - 2**39
    else:
        min_ = float(np.finfo(np.float32).min)
        max_ = float(np.finfo(np.float32).max)
2697

C
chentianyu03 已提交
2698 2699 2700 2701 2702 2703 2704
    if in_dygraph_mode():
        if isinstance(min, Variable):
            min = min.numpy().item(0)
        if isinstance(max, Variable):
            max = max.numpy().item(0)
        min = min_ if min is None else min
        max = max_ if max is None else max
2705
        return _C_ops.clip(x, min, max)
C
chentianyu03 已提交
2706 2707

    if _in_legacy_dygraph():
2708 2709 2710 2711
        if isinstance(min, Variable):
            min = min.numpy().item(0)
        if isinstance(max, Variable):
            max = max.numpy().item(0)
2712 2713
        min = min_ if min is None else min
        max = max_ if max is None else max
2714
        return _legacy_C_ops.clip(x, "min", min, "max", max)
W
WuHaobo 已提交
2715

2716
    if min is not None:
Y
Yang Zhang 已提交
2717
        check_type(min, 'min', (float, int, Variable), 'clip')
2718 2719
        if isinstance(min, Variable):
            check_dtype(min.dtype, 'min', ['float32', 'float64', 'int32'],
Y
Yang Zhang 已提交
2720
                        'clip', '(When the type of min in clip is Variable.)')
2721
    if max is not None:
Y
Yang Zhang 已提交
2722
        check_type(max, 'max', (float, int, Variable), 'clip')
2723 2724
        if isinstance(max, Variable):
            check_dtype(max.dtype, 'max', ['float32', 'float64', 'int32'],
Y
Yang Zhang 已提交
2725
                        'clip', '(When the type of max in clip is Variable.)')
2726

2727
    check_variable_and_dtype(x, 'x', ['float32', 'float64', 'int32', 'int64'], 'clip')
Y
Yang Zhang 已提交
2728 2729

    inputs = {'X': x}
2730
    attrs = {'min': min_, 'max': max_}
2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743

    if isinstance(min, Variable):
        min.stop_gradient = True
        inputs['Min'] = min
    elif min is not None:
        attrs['min'] = min

    if isinstance(max, Variable):
        max.stop_gradient = True
        inputs['Max'] = max
    elif max is not None:
        attrs['max'] = max

Y
Yang Zhang 已提交
2744
    helper = LayerHelper('clip', **locals())
W
WuHaobo 已提交
2745
    output = helper.create_variable_for_type_inference(
Y
Yang Zhang 已提交
2746
        dtype=helper.input_dtype('x'))
2747 2748 2749 2750
    helper.append_op(
        type='clip', inputs=inputs, outputs={'Out': [output]}, attrs=attrs)

    return output
F
Feiyu Chan 已提交
2751

W
WuHaobo 已提交
2752

2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766
@inplace_apis_in_dygraph_only
def clip_(x, min=None, max=None, name=None):
    """
    Inplace version of ``clip`` API, the output Tensor will be inplaced with input ``x``.
    Please refer to :ref:`api_tensor_clip`.
    """
    fmin = float(np.finfo(np.float32).min)
    fmax = float(np.finfo(np.float32).max)
    if isinstance(min, Variable):
        min = min.numpy().item(0)
    if isinstance(max, Variable):
        max = max.numpy().item(0)
    min = fmin if min is None else min
    max = fmax if max is None else max
C
chentianyu03 已提交
2767 2768

    if in_dygraph_mode():
2769
        return _C_ops.clip_(x, min, max)
C
chentianyu03 已提交
2770 2771

    if _in_legacy_dygraph():
2772
        return _legacy_C_ops.clip_(x, "min", min, "max", max)
2773 2774 2775



2776
def trace(x, offset=0, axis1=0, axis2=1, name=None):
L
Li Fuchen 已提交
2777
    """
S
swtkiwi 已提交
2778

2779
    Computes the sum along diagonals of the input tensor x.
2780 2781

    If ``x`` is 2D, returns the sum of diagonal.
L
Li Fuchen 已提交
2782

2783
    If ``x`` has larger dimensions, then returns an tensor of diagonals sum, diagonals be taken from
2784
    the 2D planes specified by axis1 and axis2. By default, the 2D planes formed by the first and second axes
2785
    of the input tensor x.
L
Li Fuchen 已提交
2786

2787
    The argument ``offset`` determines where diagonals are taken from input tensor x:
L
Li Fuchen 已提交
2788 2789 2790 2791

    - If offset = 0, it is the main diagonal.
    - If offset > 0, it is above the main diagonal.
    - If offset < 0, it is below the main diagonal.
2792
    - Note that if offset is out of input's shape indicated by axis1 and axis2, 0 will be returned.
2793

L
Li Fuchen 已提交
2794
    Args:
2795 2796 2797 2798 2799
        x (Tensor): The input tensor x. Must be at least 2-dimensional. The input data type should be float32, float64, int32, int64.
        offset (int, optional): Which diagonals in input tensor x will be taken. Default: 0 (main diagonals).
        axis1 (int, optional): The first axis with respect to take diagonal. Default: 0.
        axis2 (int, optional): The second axis with respect to take diagonal. Default: 1.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
L
Li Fuchen 已提交
2800 2801

    Returns:
2802
        Tensor: the output data type is the same as input data type.
L
Li Fuchen 已提交
2803 2804 2805 2806 2807

    Examples:
        .. code-block:: python

            import paddle
2808

2809 2810 2811
            case1 = paddle.randn([2, 3])
            case2 = paddle.randn([3, 10, 10])
            case3 = paddle.randn([3, 10, 5, 10])
2812 2813 2814
            data1 = paddle.trace(case1) # data1.shape = [1]
            data2 = paddle.trace(case2, offset=1, axis1=1, axis2=2) # data2.shape = [3]
            data3 = paddle.trace(case3, offset=-3, axis1=1, axis2=-1) # data2.shape = [3, 5]
L
Li Fuchen 已提交
2815
    """
Z
zyfncg 已提交
2816
    def __check_input(x, offset, axis1, axis2):
2817
        check_dtype(x.dtype, 'Input',
L
Li Fuchen 已提交
2818 2819 2820
                    ['int32', 'int64', 'float16', 'float32', 'float64'],
                    'trace')

2821
        input_shape = list(x.shape)
L
Li Fuchen 已提交
2822
        assert len(input_shape) >= 2,                     \
2823 2824
                "The x must be at least 2-dimensional, "   \
                "But received Input x's dimensional: %s.\n" %  \
L
Li Fuchen 已提交
2825 2826
                len(input_shape)

2827 2828
        axis1_ = axis1 if axis1 >= 0 else len(input_shape) + axis1
        axis2_ = axis2 if axis2 >= 0 else len(input_shape) + axis2
L
Li Fuchen 已提交
2829

X
XiangGao 已提交
2830
        assert ((0 <= axis1_) and (axis1_ < len(input_shape))),     \
2831 2832
            "The argument axis1 is out of range (expected to be in range of [%d, %d], but got %d).\n"  \
            % (-(len(input_shape)), len(input_shape) - 1, axis1)
L
Li Fuchen 已提交
2833

X
XiangGao 已提交
2834
        assert ((0 <= axis2_) and (axis2_ < len(input_shape))),   \
2835 2836
            "The argument axis2 is out of range (expected to be in range of [%d, %d], but got %d).\n"   \
            % (-(len(input_shape)), len(input_shape) - 1, axis2)
L
Li Fuchen 已提交
2837 2838


2839 2840 2841
        assert  axis1_ != axis2_,   \
               "axis1 and axis2 cannot be the same axis." \
                "But received axis1 = %d, axis2 = %d\n"%(axis1, axis2)
L
Li Fuchen 已提交
2842

H
hong 已提交
2843
    if in_dygraph_mode():
2844
        return _C_ops.trace( x, offset, axis1, axis2 )
H
hong 已提交
2845 2846

    if _in_legacy_dygraph():
2847
        return _legacy_C_ops.trace(x, 'offset', offset, 'axis1', axis1, 'axis2', axis2)
X
XiangGao 已提交
2848

Z
zyfncg 已提交
2849
    __check_input(x, offset, axis1, axis2)
L
Li Fuchen 已提交
2850

Z
zyfncg 已提交
2851
    helper = LayerHelper('trace', **locals())
2852
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
L
Li Fuchen 已提交
2853 2854 2855

    helper.append_op(
        type='trace',
2856
        inputs={'Input': [x]},
L
Li Fuchen 已提交
2857
        attrs={'offset': offset,
2858 2859
               'axis1': axis1,
               'axis2': axis2},
L
Li Fuchen 已提交
2860 2861 2862
        outputs={'Out': [out]})
    return out

2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877
def diagonal(x, offset=0, axis1=0, axis2=1, name=None):
    """
    This OP computes the diagonals of the input tensor x.

    If ``x`` is 2D, returns the diagonal.
    If ``x`` has larger dimensions, diagonals be taken from the 2D planes specified by axis1 and axis2. 
    By default, the 2D planes formed by the first and second axis of the input tensor x.

    The argument ``offset`` determines where diagonals are taken from input tensor x:

    - If offset = 0, it is the main diagonal.
    - If offset > 0, it is above the main diagonal.
    - If offset < 0, it is below the main diagonal.
    
    Args:
2878 2879 2880 2881 2882
        x (Tensor): The input tensor x. Must be at least 2-dimensional. The input data type should be bool, int32, int64, float16, float32, float64.
        offset (int, optional): Which diagonals in input tensor x will be taken. Default: 0 (main diagonals).
        axis1 (int, optional): The first axis with respect to take diagonal. Default: 0.
        axis2 (int, optional): The second axis with respect to take diagonal. Default: 1.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927

    Returns:
        Tensor: a partial view of input tensor in specify two dimensions, the output data type is the same as input data type.

    Examples:
        .. code-block:: python

            import paddle

            x = paddle.rand([2,2,3],'float32')
            print(x)
            # Tensor(shape=[2, 2, 3], dtype=float32, place=CUDAPlace(0), stop_gradient=True,
            #        [[[0.45661032, 0.03751532, 0.90191704],
            #          [0.43760979, 0.86177313, 0.65221709]],

            #         [[0.17020577, 0.00259554, 0.28954273],
            #          [0.51795638, 0.27325270, 0.18117726]]])

            out1 = paddle.diagonal(x)
            print(out1)
            #Tensor(shape=[3, 2], dtype=float32, place=CUDAPlace(0), stop_gradient=True,
            #       [[0.45661032, 0.51795638],
            #        [0.03751532, 0.27325270],
            #        [0.90191704, 0.18117726]])

            out2 = paddle.diagonal(x, offset=0, axis1=2, axis2=1)
            print(out2)
            #Tensor(shape=[2, 2], dtype=float32, place=CUDAPlace(0), stop_gradient=True,
            #       [[0.45661032, 0.86177313],
            #        [0.17020577, 0.27325270]])

            out3 = paddle.diagonal(x, offset=1, axis1=0, axis2=1)
            print(out3)
            #Tensor(shape=[3, 1], dtype=float32, place=CUDAPlace(0), stop_gradient=True,
            #       [[0.43760979],
            #        [0.86177313],
            #        [0.65221709]])

            out4 = paddle.diagonal(x, offset=0, axis1=1, axis2=2)
            print(out4)
            #Tensor(shape=[2, 2], dtype=float32, place=CUDAPlace(0), stop_gradient=True,
            #       [[0.45661032, 0.86177313],
            #        [0.17020577, 0.27325270]])
            
    """
J
Jiabin Yang 已提交
2928
    if in_dygraph_mode():
2929
        return _C_ops.diagonal(x, offset, axis1, axis2)
J
Jiabin Yang 已提交
2930 2931
    else:
        if _in_legacy_dygraph():
2932
            return _legacy_C_ops.diagonal(x, 'offset', offset, 'axis1', axis1, 'axis2', axis2)
W
wanghuancoder 已提交
2933

Z
zyfncg 已提交
2934
    def __check_input(x, offset, axis1, axis2):
2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959
        check_dtype(x.dtype, 'Input',
                    ['bool', 'int32', 'int64', 'float16', 'float32', 'float64'],
                    'diagonal')

        input_shape = list(x.shape)
        assert len(input_shape) >= 2,                     \
                "The x must be at least 2-dimensional, "   \
                "But received Input x's dimensional: %s.\n" %  \
                len(input_shape)

        axis1_ = axis1 if axis1 >= 0 else len(input_shape) + axis1
        axis2_ = axis2 if axis2 >= 0 else len(input_shape) + axis2

        assert axis1_ < len(input_shape),     \
            "The argument axis1 is out of range (expected to be in range of [%d, %d], but got %d).\n"  \
            % (-(len(input_shape)), len(input_shape) - 1, axis1)

        assert axis2_ < len(input_shape),   \
            "The argument axis2 is out of range (expected to be in range of [%d, %d], but got %d).\n"   \
            % (-(len(input_shape)), len(input_shape) - 1, axis2)

        assert  axis1_ != axis2_,   \
               "axis1 and axis2 cannot be the same axis." \
                "But received axis1 = %d, axis2 = %d\n"%(axis1, axis2)

Z
zyfncg 已提交
2960
    __check_input(x, offset, axis1, axis2)
2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973
    helper = LayerHelper('diagonal', **locals())
    out = helper.create_variable_for_type_inference(dtype=x.dtype)

    helper.append_op(
        type='diagonal',
        inputs={'Input': [x]},
        attrs={'offset': offset,
               'axis1': axis1,
               'axis2': axis2},
               outputs={'Out': [out]})
    return out


F
Feiyu Chan 已提交
2974
@templatedoc(op_type="kron")
W
WuHaobo 已提交
2975
def kron(x, y, name=None):
S
swtkiwi 已提交
2976 2977
    """

2978
    ${comment}
F
Feiyu Chan 已提交
2979 2980

    Args:
2981 2982
        x (Tensor): the fist operand of kron op, data type: float16, float32, float64, int32 or int64.
        y (Tensor): the second operand of kron op, data type: float16, float32, float64, int32 or int64. Its data type should be the same with x.
2983
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
F
Feiyu Chan 已提交
2984 2985

    Returns:
2986
        Tensor: The output of kron, data type: float16, float32, float64, int32 or int64. Its data is the same with x.
F
Feiyu Chan 已提交
2987 2988 2989

    Examples:
        .. code-block:: python
2990

2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001
            import paddle
            x = paddle.to_tensor([[1, 2], [3, 4]], dtype='int64')
            y = paddle.to_tensor([[1, 2, 3], [4, 5, 6], [7, 8, 9]], dtype='int64')
            out = paddle.kron(x, y)
            print(out)
            #        [[1, 2, 3, 2, 4, 6],
            #         [ 4,  5,  6,  8, 10, 12],
            #         [ 7,  8,  9, 14, 16, 18],
            #         [ 3,  6,  9,  4,  8, 12],
            #         [12, 15, 18, 16, 20, 24],
            #         [21, 24, 27, 28, 32, 36]])
F
Feiyu Chan 已提交
3002
    """
3003
    if _in_legacy_dygraph():
3004
        return _legacy_C_ops.kron(x, y)
3005
    if in_dygraph_mode():
3006
        return _C_ops.kron(x, y)
F
Feiyu Chan 已提交
3007 3008 3009 3010
    helper = LayerHelper('kron', **locals())
    check_variable_and_dtype(x, 'x', ['float16', 'float32', 'float64', 'int32', 'int64'], 'kron')
    check_variable_and_dtype(y, 'y', ['float16', 'float32', 'float64', 'int32', 'int64'], 'kron')

W
WuHaobo 已提交
3011
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
F
Feiyu Chan 已提交
3012 3013
    helper.append_op(type="kron", inputs={"X": x, "Y": y}, outputs={"Out": out})
    return out
3014 3015 3016 3017


def cumsum(x, axis=None, dtype=None, name=None):
    """
3018 3019
    The cumulative sum of the elements along a given axis. 
    
3020 3021
    Note:
        The first element of the result is the same as the first element of the input. 
3022 3023

    Args:
3024
        x (Tensor): The input tensor needed to be cumsumed.
3025 3026 3027 3028 3029
        axis (int, optional): The dimension to accumulate along. -1 means the last dimension. The default (None) is to compute the cumsum over the flattened array.
        dtype (str, optional): The data type of the output tensor, can be float32, float64, int32, int64. If specified, the input tensor is casted to dtype before the operation is performed. This is useful for preventing data type overflows. The default value is None. 
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
3030
        Tensor, the result of cumsum operator. 
3031 3032 3033 3034 3035

    Examples:
        .. code-block:: python
            
            import paddle
3036 3037 3038
            
            data = paddle.arange(12)
            data = paddle.reshape(data, (3, 4))
3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054

            y = paddle.cumsum(data)
            # [ 0  1  3  6 10 15 21 28 36 45 55 66]

            y = paddle.cumsum(data, axis=0)
            # [[ 0  1  2  3]
            #  [ 4  6  8 10]
            #  [12 15 18 21]]
            
            y = paddle.cumsum(data, axis=-1)
            # [[ 0  1  3  6]
            #  [ 4  9 15 22]
            #  [ 8 17 27 38]]

            y = paddle.cumsum(data, dtype='float64')
            print(y.dtype)
3055
            # paddle.float64
3056 3057 3058 3059 3060 3061
    """
    if axis is None:
        flatten = True
    else:
        flatten = False
    if dtype is not None and x.dtype != convert_np_dtype_to_dtype_(dtype):
Z
zhiboniu 已提交
3062
        x = cast(x, dtype)
3063

H
hong 已提交
3064
    if in_dygraph_mode():
3065
        if axis is None: axis = -1
3066
        return _C_ops.cumsum(x, axis, flatten, False, False)
H
hong 已提交
3067
    if _in_legacy_dygraph():
3068
        if axis is None:
3069
            return _legacy_C_ops.cumsum(x, 'flatten', flatten)
3070
        else:
3071
            return _legacy_C_ops.cumsum(x, 'axis', axis, 'flatten', flatten)
3072 3073 3074 3075 3076 3077 3078 3079 3080

    check_type(x, 'x', (Variable), 'cumsum')
    locals_var = locals().copy()
    kwargs = dict()
    for name, val in locals_var.items():
        if val is not None:
            kwargs[name] = val
    _cum_sum_ = generate_layer_fn('cumsum')
    return _cum_sum_(**kwargs)
G
guofei 已提交
3081

3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139

def logcumsumexp(x, axis=None, dtype=None, name=None):
    r"""
    The logarithm of the cumulative summation of the exponentiation of the elements along a given axis. 

    For summation index j given by `axis` and other indices i, the result is

    .. math::

        logcumsumexp(x)_{ij} = log \sum_{i=0}^{j}exp(x_{ij})
    
    Note:
        The first element of the result is the same as the first element of the input.

    Args:
        x (Tensor): The input tensor.
        axis (int, optional): The dimension to do the operation along. -1 means the last dimension. The default (None) is to compute the cumsum over the flattened array.
        dtype (str, optional): The data type of the output tensor, can be float32, float64. If specified, the input tensor is casted to dtype before the operation is performed. This is useful for preventing data type overflows. The default value is None. 
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        Tensor, the result of logcumsumexp operator. 

    Examples:
        .. code-block:: python
            
            import paddle
            
            data = paddle.arange(12, dtype='float64')
            data = paddle.reshape(data, (3, 4))

            y = paddle.logcumsumexp(data)
            # [ 0.         1.3132617  2.4076061  3.4401898  4.4519143  5.4561934
            #   6.4577627  7.4583397  8.458551   9.45863   10.458658  11.458669 ]

            y = paddle.logcumsumexp(data, axis=0)
            # [[ 0.        1.        2.        3.      ]
            #  [ 4.01815   5.01815   6.01815   7.01815 ]
            #  [ 8.018479  9.018479 10.018479 11.018479]]
            
            y = paddle.logcumsumexp(data, axis=-1)
            # [[ 0.         1.3132617  2.4076061  3.4401898]
            #  [ 4.         5.3132615  6.407606   7.44019  ]
            #  [ 8.         9.313262  10.407606  11.440189 ]]

            y = paddle.logcumsumexp(data, dtype='float64')
            print(y.dtype)
            # paddle.float64
    """
    if axis is None:
        flatten = True
    else:
        flatten = False
    if dtype is not None and x.dtype != convert_np_dtype_to_dtype_(dtype):
        x = cast(x, dtype)

    if in_dygraph_mode():
        if axis is None: axis = -1
3140
        return _C_ops.logcumsumexp(x, axis, flatten, False, False)
3141 3142
    if _in_legacy_dygraph():
        if axis is None:
3143
            return _legacy_C_ops.logcumsumexp(x, 'flatten', flatten)
3144
        else:
3145
            return _legacy_C_ops.logcumsumexp(x, 'axis', axis, 'flatten', flatten)
3146 3147 3148 3149 3150 3151 3152 3153 3154

    check_variable_and_dtype(x, 'x', ['float32', 'float64'], "logcumsumexp")

    helper = LayerHelper('logcumsumexp', **locals())
    out = helper.create_variable_for_type_inference(x.dtype)
    helper.append_op(type='logcumsumexp', inputs={'X': x}, outputs={'Out': out}, attrs={'axis': axis, 'flatten': flatten})
    return out


H
hlygit66666 已提交
3155 3156 3157 3158
def cumprod(x, dim=None, dtype=None, name=None):
    """
    Compute the cumulative product of the input tensor x along a given dimension dim.

3159 3160
    Note:
        The first element of the result is the same as the first element of the input.
H
hlygit66666 已提交
3161 3162 3163 3164 3165

    Args:
        x (Tensor): the input tensor need to be cumproded.
        dim (int): the dimension along which the input tensor will be accumulated. It need to be in the range of [-x.rank, x.rank), where x.rank means the dimensions of the input tensor x and -1 means the last dimension.
        dtype (str, optional): The data type of the output tensor, can be float32, float64, int32, int64, complex64, complex128. If specified, the input tensor is casted to dtype before the operation is performed. This is useful for preventing data type overflows. The default value is None.
H
hlygit66666 已提交
3166
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
H
hlygit66666 已提交
3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202

    Returns:
        Tensor, the result of cumprod operator.

    Examples:
        .. code-block:: python

            import paddle

            data = paddle.arange(12)
            data = paddle.reshape(data, (3, 4))
            # [[ 0  1  2  3 ]
            #  [ 4  5  6  7 ]
            #  [ 8  9  10 11]]

            y = paddle.cumprod(data, dim=0)
            # [[ 0  1   2   3]
            #  [ 0  5  12  21]
            #  [ 0 45 120 231]]

            y = paddle.cumprod(data, dim=-1)
            # [[ 0   0   0    0]
            #  [ 4  20 120  840]
            #  [ 8  72 720 7920]]

            y = paddle.cumprod(data, dim=1, dtype='float64')
            # [[ 0.   0.   0.    0.]
            #  [ 4.  20. 120.  840.]
            #  [ 8.  72. 720. 7920.]]

            print(y.dtype)
            # paddle.float64

    """

    if dtype is not None and x.dtype != convert_np_dtype_to_dtype_(dtype):
Z
zhiboniu 已提交
3203
        x = cast(x, dtype)
H
hlygit66666 已提交
3204

3205
    if in_dygraph_mode():
3206
        return _C_ops.cumprod(x, dim)
3207
    if _in_legacy_dygraph():
3208
        return _legacy_C_ops.cumprod(x, 'dim', dim)
H
hlygit66666 已提交
3209 3210 3211 3212 3213 3214 3215 3216 3217

    check_variable_and_dtype(x, "x", ['complex64', 'complex128', 'float32', 'float64', 'int32', 'int64'], 'cumprod')
    check_type(dim, 'dim', int, 'cumprod')

    helper = LayerHelper('cumprod', **locals())
    out = helper.create_variable_for_type_inference(x.dtype)
    helper.append_op(type='cumprod', inputs={'X': x}, outputs={'Out': out}, attrs={'dim': dim})
    return out

J
Jack Zhou 已提交
3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233
def isfinite(x, name=None):
    """

    Return whether every element of input tensor is finite number or not.

    Args:
        x (Tensor): The input tensor, it's data type should be float16, float32, float64, int32, int64.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        `Tensor`, the bool result which shows every element of `x` whether it is finite number or not.

    Examples:
        .. code-block:: python

            import paddle
N
Noel 已提交
3234

3235
            x = paddle.to_tensor([float('-inf'), -2, 3.6, float('inf'), 0, float('-nan'), float('nan')])
C
Chen Long 已提交
3236
            out = paddle.isfinite(x)
N
Noel 已提交
3237
            print(out)  # [False  True  True False  True False False]
J
Jack Zhou 已提交
3238
    """
H
hong 已提交
3239
    if in_dygraph_mode():
3240
        return _C_ops.isfinite( x )
H
hong 已提交
3241
    if _in_legacy_dygraph():
3242
        return _legacy_C_ops.isfinite_v2(x)
J
Jack Zhou 已提交
3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264
    helper = LayerHelper("isfinite_v2", **locals())
    check_variable_and_dtype(x, 'x', ['float16', 'float32', 'float64', 'int32', 'int64'], 'isfinite')
    out = helper.create_variable_for_type_inference('bool')
    helper.append_op(type="isfinite_v2", inputs={"X": x}, outputs={"Out": out})
    return out

def isinf(x, name=None):
    """

    Return whether every element of input tensor is `+/-INF` or not.

    Args:
        x (Tensor): The input tensor, it's data type should be float16, float32, float64, int32, int64.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        `Tensor`, the bool result which shows every element of `x` whether it is `+/-INF` or not.

    Examples:
        .. code-block:: python

            import paddle
C
Chen Long 已提交
3265

3266
            x = paddle.to_tensor([float('-inf'), -2, 3.6, float('inf'), 0, float('-nan'), float('nan')])
C
Chen Long 已提交
3267
            out = paddle.isinf(x)
N
Noel 已提交
3268
            print(out)  # [ True False False  True False False False]
J
Jack Zhou 已提交
3269
    """
H
hong 已提交
3270
    if in_dygraph_mode():
3271
        return _C_ops.isinf( x )
H
hong 已提交
3272
    if _in_legacy_dygraph():
3273
        return _legacy_C_ops.isinf_v2(x)
J
Jack Zhou 已提交
3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295
    helper = LayerHelper("isinf_v2", **locals())
    check_variable_and_dtype(x, 'x', ['float16', 'float32', 'float64', 'int32', 'int64'], 'isinf')
    out = helper.create_variable_for_type_inference(dtype='bool')
    helper.append_op(type="isinf_v2", inputs={"X": x}, outputs={"Out": out})
    return out

def isnan(x, name=None):
    """

    Return whether every element of input tensor is `NaN` or not.

    Args:
        x (Tensor): The input tensor, it's data type should be float16, float32, float64, int32, int64.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        `Tensor`, the bool result which shows every element of `x` whether it is `NaN` or not.

    Examples:
        .. code-block:: python

            import paddle
C
Chen Long 已提交
3296
            
3297
            x = paddle.to_tensor([float('-inf'), -2, 3.6, float('inf'), 0, float('-nan'), float('nan')])
C
Chen Long 已提交
3298
            out = paddle.isnan(x)
N
Noel 已提交
3299
            print(out)  # [False False False False False  True  True]
J
Jack Zhou 已提交
3300
    """
H
hong 已提交
3301
    if in_dygraph_mode():
3302
        return _C_ops.isnan( x )
H
hong 已提交
3303 3304

    if _in_legacy_dygraph():
3305
        return _legacy_C_ops.isnan_v2(x)
J
Jack Zhou 已提交
3306 3307 3308 3309 3310 3311 3312
    helper = LayerHelper("isnan_v2", **locals())
    check_variable_and_dtype(x, 'x', ['float16', 'float32', 'float64', 'int32', 'int64'], 'isnan')
    out = helper.create_variable_for_type_inference(dtype='bool')
    helper.append_op(type="isnan_v2", inputs={"X": x}, outputs={"Out": out})
    return out


G
guofei 已提交
3313 3314 3315 3316 3317
def prod(x, axis=None, keepdim=False, dtype=None, name=None):
    """
    Compute the product of tensor elements over the given axis.

    Args:
3318 3319
        x (Tensor): The input tensor, its data type should be float32, float64, int32, int64.
        axis (int|list|tuple, optional): The axis along which the product is computed. If :attr:`None`, 
G
guofei 已提交
3320 3321 3322
            multiply all elements of `x` and return a Tensor with a single element, 
            otherwise must be in the range :math:`[-x.ndim, x.ndim)`. If :math:`axis[i]<0`, 
            the axis to reduce is :math:`x.ndim + axis[i]`. Default is None.
3323 3324
        keepdim (bool, optional): Whether to reserve the reduced dimension in the output Tensor. The result 
            tensor will have one fewer dimension than the input unless `keepdim` is true. Default is False.
3325
        dtype (str|np.dtype, optional): The desired date type of returned tensor, can be float32, float64, 
G
guofei 已提交
3326 3327 3328
            int32, int64. If specified, the input tensor is casted to dtype before operator performed. 
            This is very useful for avoiding data type overflows. The default value is None, the dtype 
            of output is the same as input Tensor `x`.
3329
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
G
guofei 已提交
3330 3331 3332

    Returns:
        Tensor, result of product on the specified dim of input tensor.
J
Jack Zhou 已提交
3333
    
G
guofei 已提交
3334 3335 3336 3337 3338 3339
    Examples:
        .. code-block:: python

            import paddle

            # the axis is a int element
3340 3341
            x = paddle.to_tensor([[0.2, 0.3, 0.5, 0.9],
                                  [0.1, 0.2, 0.6, 0.7]])
G
guofei 已提交
3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357
            out1 = paddle.prod(x)
            # [0.0002268]

            out2 = paddle.prod(x, -1)
            # [0.027  0.0084]

            out3 = paddle.prod(x, 0)
            # [0.02 0.06 0.3  0.63]

            out4 = paddle.prod(x, 0, keepdim=True)
            # [[0.02 0.06 0.3  0.63]]

            out5 = paddle.prod(x, 0, dtype='int64')
            # [0 0 0 0]

            # the axis is list
3358 3359
            y = paddle.to_tensor([[[1.0, 2.0], [3.0, 4.0]],
                                  [[5.0, 6.0], [7.0, 8.0]]])
G
guofei 已提交
3360 3361 3362 3363 3364 3365 3366 3367 3368 3369
            out6 = paddle.prod(y, [0, 1])
            # [105. 384.]

            out7 = paddle.prod(y, (1, 2))
            # [  24. 1680.]

    """
    if dtype is not None:
        check_dtype(dtype, 'dtype', ['float32', 'float64', 'int32', 'int64'], 'prod')
        if x.dtype != convert_np_dtype_to_dtype_(dtype):
Z
zhiboniu 已提交
3370
            x = cast(x, dtype)
G
guofei 已提交
3371

3372 3373 3374 3375 3376 3377 3378 3379 3380 3381
    dim = axis
    if dim is not None and not isinstance(dim, list):
        if isinstance(dim, tuple):
            dim = list(dim)
        elif isinstance(dim, int):
            dim = [dim]
        else:
            raise TypeError(
                "The type of axis must be int, list or tuple, but received {}".
                format(type(dim)))
3382 3383 3384 3385 3386

    reduce_all = True if dim is None or len(dim) == 0 or len(dim) == len(x.shape) else False
    if dim is None or len(dim) == 0:
        dim = [0]

3387
    if in_dygraph_mode():
3388
        return _C_ops.reduce_prod(x, dim, keepdim, reduce_all)
3389
    if _in_legacy_dygraph():
3390
        return _legacy_C_ops.reduce_prod(
3391
            x, 'dim', dim, 'keep_dim', keepdim, 'reduce_all', reduce_all)
3392 3393 3394

    helper = LayerHelper('reduce_prod', **locals())
    check_variable_and_dtype(
3395
        x, 'x/input', ['float32', 'float64', 'int32', 'int64'], 'reduce_prod')
3396 3397 3398
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
    helper.append_op(
        type='reduce_prod',
3399
        inputs={'X': x},
3400 3401
        outputs={'Out': out},
        attrs={
3402 3403 3404
            'dim': dim,
            'keep_dim': keepdim,
            'reduce_all': reduce_all
3405 3406
        })
    return out
W
WangXi 已提交
3407 3408 3409 3410


def sign(x, name=None):
    """
3411
    Returns sign of every element in `x`: 1 for positive, -1 for negative and 0 for zero.
W
WangXi 已提交
3412 3413

    Args:
3414 3415
        x (Tensor): The input tensor. The data type can be float16, float32 or float64.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
W
WangXi 已提交
3416 3417 3418 3419 3420 3421 3422 3423 3424

    Returns:
        Tensor: The output sign tensor with identical shape and data type to the input :attr:`x`.

    Examples:
        .. code-block:: python

          import paddle

3425
          x = paddle.to_tensor([3.0, 0.0, -2.0, 1.7], dtype='float32')
W
WangXi 已提交
3426 3427 3428
          out = paddle.sign(x=x)
          print(out)  # [1.0, 0.0, -1.0, 1.0]
    """
H
hong 已提交
3429
    if in_dygraph_mode():
3430
        return _C_ops.sign(x)
H
hong 已提交
3431 3432

    if _in_legacy_dygraph():
3433
        return _legacy_C_ops.sign(x)
W
WangXi 已提交
3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444

    check_variable_and_dtype(x, 'x', ['float16', 'float32', 'float64'], 'sign')
    helper = LayerHelper("sign", **locals())
    out = helper.create_variable_for_type_inference(dtype=x.dtype)

    helper.append_op(type='sign', inputs={'X': [x]}, outputs={'Out': [out]})

    return out


def tanh(x, name=None):
3445
    r"""
W
WangXi 已提交
3446 3447 3448
    Tanh Activation Operator.

    .. math::
3449
        out = \frac{e^{x} - e^{-x}}{e^{x} + e^{-x}}
W
WangXi 已提交
3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463

    Args:
        x (Tensor): Input of Tanh operator, an N-D Tensor, with data type float32, float64 or float16.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        Output of Tanh operator, a Tensor with same data type and shape as input.

    Examples:

        .. code-block:: python

            import paddle

3464
            x = paddle.to_tensor([-0.4, -0.2, 0.1, 0.3])
W
WangXi 已提交
3465
            out = paddle.tanh(x)
N
Noel 已提交
3466
            print(out)
W
WangXi 已提交
3467 3468
            # [-0.37994896 -0.19737532  0.09966799  0.29131261]
    """
H
hong 已提交
3469
    if in_dygraph_mode():
3470
        return _C_ops.tanh( x )
H
hong 已提交
3471 3472

    if _in_legacy_dygraph():
3473
        return _legacy_C_ops.tanh(x)
W
WangXi 已提交
3474 3475

    check_variable_and_dtype(x, 'x', ['float16', 'float32', 'float64'], 'tanh')
S
ShenLiang 已提交
3476
    check_type(x, 'x', (Variable), 'tanh')
W
WangXi 已提交
3477 3478 3479 3480
    helper = LayerHelper('tanh', **locals())
    out = helper.create_variable_for_type_inference(x.dtype)
    helper.append_op(type='tanh', inputs={'X': x}, outputs={'Out': out})
    return out
S
Steffy-zxf 已提交
3481

3482
@inplace_apis_in_dygraph_only
3483 3484 3485 3486 3487
def tanh_(x, name=None):
    r"""
    Inplace version of ``tanh`` API, the output Tensor will be inplaced with input ``x``.
    Please refer to :ref:`api_tensor_tanh`.
    """
3488
    if in_dygraph_mode():
3489 3490
        return _C_ops.tanh_( x )
    return _legacy_C_ops.tanh_(x)
3491 3492


S
Steffy-zxf 已提交
3493 3494
def increment(x, value=1.0, name=None):
    """
3495
    The API is usually used for control flow to increment the data of :attr:`x` by an amount :attr:`value`.
S
Steffy-zxf 已提交
3496 3497 3498 3499
    Notice that the number of elements in :attr:`x` must be equal to 1.

    Args:
        x (Tensor): A tensor that must always contain only one element, its data type supports float32, float64, int32 and int64.
3500
        value (float, optional): The amount to increment the data of :attr:`x`. Default: 1.0.
S
Steffy-zxf 已提交
3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        Tensor, the elementwise-incremented tensor with the same shape and data type as :attr:`x`.

    Examples:
        .. code-block:: python

            import paddle

            data = paddle.zeros(shape=[1], dtype='float32')
            counter = paddle.increment(data)
            # [1.]

    """
H
hong 已提交
3516
    if in_dygraph_mode():
3517
        return _C_ops.increment_(x, value)
H
hong 已提交
3518 3519

    if _in_legacy_dygraph():
3520
        return _legacy_C_ops.increment(x, 'step', value)
S
Steffy-zxf 已提交
3521 3522 3523 3524 3525 3526 3527 3528 3529 3530

    check_variable_and_dtype(x, 'x', ['float32', 'float64', 'int32', 'int64'],
                             'increment')
    helper = LayerHelper("increment", **locals())
    helper.append_op(
        type='increment',
        inputs={'X': [x]},
        outputs={'Out': [x]},
        attrs={'step': float(value)})
    return x
3531 3532 3533 3534


def all(x, axis=None, keepdim=False, name=None):
    """
3535
    Computes the ``logical and`` of tensor elements over the given dimension.
3536 3537 3538 3539 3540

    Args:
        x (Tensor): An N-D Tensor, the input data type should be `bool`.
        axis (int|list|tuple, optional): The dimensions along which the ``logical and`` is compute. If
            :attr:`None`, and all elements of :attr:`x` and return a
N
Noel 已提交
3541
            Tensor with a single element, otherwise must be in the
3542 3543 3544 3545 3546 3547
            range :math:`[-rank(x), rank(x))`. If :math:`axis[i] < 0`,
            the dimension to reduce is :math:`rank + axis[i]`.
        keepdim (bool, optional): Whether to reserve the reduced dimension in the
            output Tensor. The result Tensor will have one fewer dimension
            than the :attr:`x` unless :attr:`keepdim` is true, default
            value is False.
3548
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
3549 3550 3551 3552 3553 3554 3555 3556

    Returns:
        Tensor: Results the ``logical and`` on the specified axis of input Tensor `x`,  it's data type is bool.

    Examples:
        .. code-block:: python

            import paddle
C
Chen Long 已提交
3557

N
Noel 已提交
3558
            # x is a bool Tensor with following elements:
3559 3560
            #    [[True, False]
            #     [True, True]]
C
Chen Long 已提交
3561
            x = paddle.to_tensor([[1, 0], [1, 1]], dtype='int32')
3562
            print(x)
S
syyxsxx 已提交
3563
            x = paddle.cast(x, 'bool')
C
Chen Long 已提交
3564

3565 3566 3567
            # out1 should be [False]
            out1 = paddle.all(x)  # [False]
            print(out1)
C
Chen Long 已提交
3568

3569 3570 3571
            # out2 should be [True, False]
            out2 = paddle.all(x, axis=0)  # [True, False]
            print(out2)
C
Chen Long 已提交
3572 3573

            # keepdim=False, out3 should be [False, True], out.shape should be (2,)
3574 3575
            out3 = paddle.all(x, axis=-1)  # [False, True]
            print(out3)
C
Chen Long 已提交
3576 3577 3578

            # keepdim=True, out4 should be [[False], [True]], out.shape should be (2,1)
            out4 = paddle.all(x, axis=1, keepdim=True) # [[False], [True]]
3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592
            print(out4)
            
    """
    if axis is not None and not isinstance(axis, (list, tuple)):
        axis = [axis]

    if not axis:
        reduce_all_flag = True
    else:
        if len(axis) == len(x.shape):
            reduce_all_flag = True
        else:
            reduce_all_flag = False

3593 3594 3595
    if in_dygraph_mode():
        if reduce_all_flag:
            axis = range(len(x.shape))
3596
        return _C_ops.all(x, axis, keepdim)
3597 3598

    if _in_legacy_dygraph():
W
wanghuancoder 已提交
3599
        axis = axis if axis != None and axis != [] else [0]
3600
        return _legacy_C_ops.reduce_all(x, 'dim', axis, 'keep_dim', keepdim,
W
wanghuancoder 已提交
3601 3602
                                       'reduce_all', reduce_all_flag)

3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624
    attrs = {
        'dim': axis if axis != None and axis != [] and axis != () else [0],
        'keep_dim': keepdim,
        'reduce_all': reduce_all_flag
    }
    check_variable_and_dtype(x, 'x', ['bool'], 'all')


    check_type(axis, 'axis', (int, list, tuple, type(None)), 'all')

    helper = LayerHelper('all', **locals())
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
    helper.append_op(
        type='reduce_all',
        inputs={'X': x},
        outputs={'Out': out},
        attrs=attrs)
    return out


def any(x, axis=None, keepdim=False, name=None):
    """
C
Chen Long 已提交
3625
    Computes the ``logical or`` of tensor elements over the given dimension, and return the result.
3626 3627 3628 3629 3630

    Args:
        x (Tensor): An N-D Tensor, the input data type should be `bool`.
        axis (int|list|tuple, optional): The dimensions along which the ``logical or`` is compute. If
            :attr:`None`, and all elements of :attr:`x` and return a
N
Noel 已提交
3631
            Tensor with a single element, otherwise must be in the
3632 3633 3634 3635 3636 3637
            range :math:`[-rank(x), rank(x))`. If :math:`axis[i] < 0`,
            the dimension to reduce is :math:`rank + axis[i]`.
        keepdim (bool, optional): Whether to reserve the reduced dimension in the
            output Tensor. The result Tensor will have one fewer dimension
            than the :attr:`x` unless :attr:`keepdim` is true, default
            value is False.
3638
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
3639 3640 3641 3642 3643 3644 3645 3646

    Returns:
        Tensor: Results the ``logical or`` on the specified axis of input Tensor `x`,  it's data type is bool.

    Examples:
        .. code-block:: python

            import paddle
C
Chen Long 已提交
3647 3648 3649

            x = paddle.to_tensor([[1, 0], [1, 1]], dtype='int32')
            x = paddle.assign(x)
3650
            print(x)
S
syyxsxx 已提交
3651
            x = paddle.cast(x, 'bool')
C
Chen Long 已提交
3652 3653 3654 3655
            # x is a bool Tensor with following elements:
            #    [[True, False]
            #     [True, True]]

3656 3657 3658
            # out1 should be [True]
            out1 = paddle.any(x)  # [True]
            print(out1)
C
Chen Long 已提交
3659

3660 3661
            # out2 should be [True, True]
            out2 = paddle.any(x, axis=0)  # [True, True]
3662
            print(out2)
C
Chen Long 已提交
3663 3664

            # keepdim=False, out3 should be [True, True], out.shape should be (2,)
3665
            out3 = paddle.any(x, axis=-1)  # [True, True]
3666
            print(out3)
C
Chen Long 已提交
3667 3668 3669 3670

            # keepdim=True, result should be [[True], [True]], out.shape should be (2,1)
            out4 = paddle.any(x, axis=1, keepdim=True)  # [[True], [True]]
            print(out4) 
3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683
            
    """
    if axis is not None and not isinstance(axis, (list, tuple)):
        axis = [axis]

    if not axis:
        reduce_all_flag = True
    else:
        if len(axis) == len(x.shape):
            reduce_all_flag = True
        else:
            reduce_all_flag = False

3684 3685 3686
    if in_dygraph_mode():
        if reduce_all_flag:
            axis = range(len(x.shape))
3687
        return _C_ops.any(x, axis, keepdim)
3688 3689

    if _in_legacy_dygraph():
W
wanghuancoder 已提交
3690
        axis = axis if axis != None and axis != [] else [0]
3691
        return _legacy_C_ops.reduce_any(x, 'dim', axis, 'keep_dim', keepdim,
W
wanghuancoder 已提交
3692 3693
                                       'reduce_all', reduce_all_flag)

3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712
    attrs = {
        'dim': axis if axis != None and axis != [] and axis != () else [0],
        'keep_dim': keepdim,
        'reduce_all': reduce_all_flag
    }

    check_variable_and_dtype(x, 'x', ['bool'], 'any')


    check_type(axis, 'axis', (int, list, tuple, type(None)), 'any')

    helper = LayerHelper('any', **locals())
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
    helper.append_op(
        type='reduce_any',
        inputs={'X': x},
        outputs={'Out': out},
        attrs=attrs)
    return out
L
Leo Chen 已提交
3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739

def broadcast_shape(x_shape, y_shape):
    """
    The function returns the shape of doing operation with broadcasting on tensors of x_shape and y_shape, please refer to :ref:`user_guide_broadcasting` for more details.

    Args:
        x_shape (list[int]|tuple[int]): A shape of tensor.
        y_shape (list[int]|tuple[int]): A shape of tensor.
        

    Returns:
        list[int], the result shape.

    Examples:
        .. code-block:: python

            import paddle

            shape = paddle.broadcast_shape([2, 1, 3], [1, 3, 1])
            # [2, 3, 3]
            
            # shape = paddle.broadcast_shape([2, 1, 3], [3, 3, 1])
            # ValueError (terminated with error message).

    """

    return core.broadcast_shape(x_shape, y_shape)
3740 3741 3742 3743 3744 3745

def conj(x, name=None):
    r"""
    This function computes the conjugate of the Tensor elementwisely.

    Args:
C
Chen Long 已提交
3746
        x (Tensor): The input Tensor which hold the complex numbers. 
3747
            Optional data types are: complex64, complex128, float32, float64, int32 or int64.
3748
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
3749 3750

    Returns:
C
Chen Long 已提交
3751
        out (Tensor): The conjugate of input. The shape and data type is the same with input. If the elements of tensor is real type such as float32, float64, int32 or int64, the out is the same with input.
3752 3753 3754 3755 3756

    Examples:
        .. code-block:: python

          import paddle
C
Chen Long 已提交
3757
          
3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768
          data=paddle.to_tensor([[1+1j, 2+2j, 3+3j], [4+4j, 5+5j, 6+6j]])
          #Tensor(shape=[2, 3], dtype=complex64, place=CUDAPlace(0), stop_gradient=True,
          #       [[(1+1j), (2+2j), (3+3j)],
          #        [(4+4j), (5+5j), (6+6j)]])

          conj_data=paddle.conj(data)
          #Tensor(shape=[2, 3], dtype=complex64, place=CUDAPlace(0), stop_gradient=True,
          #       [[(1-1j), (2-2j), (3-3j)],
          #        [(4-4j), (5-5j), (6-6j)]])

    """
H
hong 已提交
3769
    if in_dygraph_mode():
3770
        return _C_ops.conj(x)
H
hong 已提交
3771

Z
zhiboniu 已提交
3772
    if paddle.in_dynamic_mode():
3773
        return _legacy_C_ops.conj(x)
3774 3775 3776 3777 3778 3779 3780 3781 3782

    check_variable_and_dtype(x, "x", ['complex64', 'complex128', 'float32', 'float64', 'int32', 'int64'], 'conj')

    helper = LayerHelper('conj', **locals())
    out = helper.create_variable_for_type_inference(
            dtype=helper.input_dtype())

    helper.append_op(type='conj', inputs={'X': x}, outputs={'Out': [out]})
    return out
3783

Z
zyfncg 已提交
3784 3785 3786 3787 3788 3789 3790 3791 3792
def digamma(x, name=None):
    r"""
    Calculates the digamma of the given input tensor, element-wise.

    .. math::
        Out = \Psi(x) = \frac{ \Gamma^{'}(x) }{ \Gamma(x) }

    Args:
        x (Tensor): Input Tensor. Must be one of the following types: float32, float64.
3793
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
Z
zyfncg 已提交
3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809
    Returns:
        Tensor, the digamma of the input Tensor, the shape and data type is the same with input.

    Examples:
        .. code-block:: python

            import paddle

            data = paddle.to_tensor([[1, 1.5], [0, -2.2]], dtype='float32')
            res = paddle.digamma(data)
            print(res)
            # Tensor(shape=[2, 2], dtype=float32, place=CUDAPlace(0), stop_gradient=True,
            #       [[-0.57721591,  0.03648996],
            #        [ nan       ,  5.32286835]])
    """

J
Jiabin Yang 已提交
3810
    if in_dygraph_mode():
3811
        return _C_ops.digamma(x)
J
Jiabin Yang 已提交
3812 3813
    else:
        if _in_legacy_dygraph():
3814
            return _legacy_C_ops.digamma(x)
Z
zyfncg 已提交
3815 3816 3817 3818 3819 3820 3821

    check_variable_and_dtype(x, 'x', ['float32', 'float64'], 'digamma')
    helper = LayerHelper('digamma', **locals())
    out = helper.create_variable_for_type_inference(x.dtype)
    helper.append_op(type='digamma', inputs={'X': x}, outputs={'Out': out})
    return out

3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848
def lgamma(x, name=None):
    r"""
    Calculates the lgamma of the given input tensor, element-wise.

    This operator performs elementwise lgamma for input $X$.
    :math:`out = log\Gamma(x)`


    Args:
        x (Tensor): Input Tensor. Must be one of the following types: float32, float64.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        Tensor, the lgamma of the input Tensor, the shape and data type is the same with input.

    Examples:
        .. code-block:: python

            import paddle

            x = paddle.to_tensor([-0.4, -0.2, 0.1, 0.3])
            out = paddle.lgamma(x)
            print(out)
            # [1.31452441, 1.76149750, 2.25271273, 1.09579802]
    """
    if in_dygraph_mode():
        return _C_ops.lgamma(x)
3849 3850
    elif _in_legacy_dygraph():
        return _legacy_C_ops.lgamma(x)
3851 3852 3853 3854 3855 3856 3857 3858

    check_variable_and_dtype(x, 'x', ['float32', 'float64'], 'lgamma')
    helper = LayerHelper('lgamma', **locals())
    out = helper.create_variable_for_type_inference(x.dtype)
    helper.append_op(type='lgamma', inputs={'X': x}, outputs={'Out': out})
    return out


3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872 3873 3874 3875 3876 3877 3878 3879 3880
def neg(x, name=None):
    """
    This function computes the negative of the Tensor elementwisely.

    Args:
        x (Tensor): Input of neg operator, an N-D Tensor, with data type float32, float64, int8, int16, int32, or int64.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        out (Tensor): The negative of input Tensor. The shape and data type are the same with input Tensor.

    Examples:
        .. code-block:: python

            import paddle

            x = paddle.to_tensor([-0.4, -0.2, 0.1, 0.3])
            out = paddle.neg(x)
            print(out)
            # [0.4 0.2 -0.1 -0.3]
    """

Z
zhiboniu 已提交
3881
    return scale(x, scale=-1.0, bias=0.0, bias_after_scale=True, act=None, name=name)
R
ronnywang 已提交
3882

3883
def atan2(x, y, name=None):
R
ronnywang 已提交
3884
    r"""
3885
    Element-wise arctangent of x/y with consideration of the quadrant.
R
ronnywang 已提交
3886 3887 3888 3889

    Equation:
        .. math::

3890 3891 3892 3893 3894 3895 3896 3897
            atan2(x,y)=\left\{\begin{matrix}
            & tan^{-1}(\frac{x}{y}) & y > 0 \\
            & tan^{-1}(\frac{x}{y}) + \pi & x>=0, y < 0 \\
            & tan^{-1}(\frac{x}{y}) - \pi & x<0, y < 0 \\
            & +\frac{\pi}{2} & x>0, y = 0 \\
            & -\frac{\pi}{2} & x<0, y = 0 \\
            &\text{undefined} & x=0, y = 0
            \end{matrix}\right.
R
ronnywang 已提交
3898 3899

    Args:
3900 3901
        x (Tensor): An N-D Tensor, the data type is int32, int64, float16, float32, float64.
        y (Tensor): An N-D Tensor, must have the same type as `x`.
R
ronnywang 已提交
3902 3903 3904 3905 3906 3907 3908 3909
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        out (Tensor): An N-D Tensor, the shape and data type is the same with input (The output data type is float64 when the input data type is int).

    Examples:
        .. code-block:: python

3910
            import paddle
R
ronnywang 已提交
3911

3912 3913 3914
            x = paddle.to_tensor([-1, +1, +1, -1]).astype('float32')
            #Tensor(shape=[4], dtype=float32, place=CUDAPlace(0), stop_gradient=True,
            #       [-1,  1,  1, -1])
R
ronnywang 已提交
3915

3916 3917 3918
            y = paddle.to_tensor([-1, -1, +1, +1]).astype('float32')
            #Tensor(shape=[4], dtype=float32, place=CUDAPlace(0), stop_gradient=True,
            #       [-1,  -1,  1, 1])
R
ronnywang 已提交
3919

3920 3921 3922
            out = paddle.atan2(x, y)
            #Tensor(shape=[4], dtype=float32, place=CUDAPlace(0), stop_gradient=True,
            #       [-2.35619450,  2.35619450,  0.78539819, -0.78539819])
R
ronnywang 已提交
3923 3924 3925

    """

J
Jiabin Yang 已提交
3926
    if in_dygraph_mode():
3927
        return _C_ops.atan2( x, y)
R
ronnywang 已提交
3928
    else:
J
Jiabin Yang 已提交
3929
        if _in_legacy_dygraph():
3930
            return _legacy_C_ops.atan2(x, y)
J
Jiabin Yang 已提交
3931 3932 3933
        else:
            check_variable_and_dtype(x, 'x', ['int32', 'int64', 'float16', 'float32', 'float64'], 'atan2')
            check_variable_and_dtype(y, 'y', ['int32', 'int64', 'float16', 'float32', 'float64'], 'atan2')
R
ronnywang 已提交
3934

J
Jiabin Yang 已提交
3935 3936 3937 3938 3939 3940
            helper = LayerHelper('atan2', **locals())
            inputs = {'X1' : x, 'X2' : y}
            out = helper.create_variable_for_type_inference(dtype=x.dtype)
            helper.append_op(
                    type='atan2', inputs=inputs, outputs={'Out': out})
            return out
A
andyjpaddle 已提交
3941

W
wangzhen38 已提交
3942 3943 3944 3945 3946 3947 3948 3949 3950 3951 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 3984
def logit(x, eps=None, name=None):
    r"""
    This function generates a new tensor with the logit of the elements of input x. x is clamped to [eps, 1-eps] when eps is not zero. When eps is zero and x < 0 or x > 1, the function will yields NaN.

    .. math::
 
        logit(x) = ln(\frac{x}{1 - x})

    where

    .. math::

        x_i=
            \left\{\begin{array}{rcl}
                x_i & &\text{if } eps == Default \\
                eps & &\text{if } x_i < eps \\
                x_i & &\text{if } eps <= x_i <= 1-eps \\
                1-eps & &\text{if } x_i > 1-eps
            \end{array}\right.

    Args:
        x (Tensor): The input Tensor with data type float32, float64.
        eps (float, optional):  the epsilon for input clamp bound. Default is None.
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        out(Tensor): A Tensor with the same data type and shape as ``x`` .

    Examples:
        .. code-block:: python

            import paddle

            x = paddle.to_tensor([0.2635, 0.0106, 0.2780, 0.2097, 0.8095])
            out1 = paddle.logit(x)
            print(out1)
            # [-1.0277, -4.5365, -0.9544, -1.3269,  1.4468]  

    """

    if eps == None:
        eps = 0.0
3985
    if _in_legacy_dygraph():
3986
        return _legacy_C_ops.logit(x, 'eps', eps)
3987
    if in_dygraph_mode():
3988
        return _C_ops.logit(x, eps)
W
wangzhen38 已提交
3989 3990 3991 3992 3993 3994 3995 3996 3997 3998
    check_variable_and_dtype(x, 'x', ['float16', 'float32', 'float64'], 'logit')
    helper = LayerHelper("logit", **locals())
    out = helper.create_variable_for_type_inference(x.dtype)
    helper.append_op(
        type='logit',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'eps': eps})
    return out

3999 4000 4001 4002 4003 4004 4005 4006 4007 4008
def lerp(x, y, weight, name=None):
    r"""
    Does a linear interpolation between x and y based on weight.

    Equation:
        .. math::

            lerp(x, y, weight) = x + weight * (y - x).

    Args:
4009 4010 4011
        x (Tensor): An N-D Tensor with starting points, the data type is float32, float64.
        y (Tensor): An N-D Tensor with ending points, the data type is float32, float64.
        weight (float|Tensor): The weight for the interpolation formula. When weight is Tensor, the data type is float32, float64.
4012 4013 4014 4015 4016 4017 4018 4019 4020 4021 4022 4023 4024
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        out (Tensor): An N-D Tensor, the shape and data type is the same with input.

    Example:
        .. code-block:: python

            import paddle
            
            x = paddle.arange(1., 5., dtype='float32')
            y = paddle.empty([4], dtype='float32')
            y.fill_(10.)
4025
            out = paddle.lerp(x, y, 0.5)
4026
            # out: [5.5, 6., 6.5, 7.]
4027 4028

    """
H
hong 已提交
4029
    if in_dygraph_mode():
4030
        check_type(weight, 'weight', (float, paddle.Tensor, Variable), 'lerp')
H
hong 已提交
4031 4032 4033
        if isinstance(weight, float):
            weight = paddle.to_tensor(weight, dtype=x.dtype)

4034
        return _C_ops.lerp( x, y, weight)
H
hong 已提交
4035
    if _in_legacy_dygraph():
4036 4037
        if isinstance(weight, float):
            weight = paddle.to_tensor(weight, dtype=x.dtype)
4038
        return _legacy_C_ops.lerp(x, y, weight)
4039

4040 4041 4042
    if isinstance(weight, float):
        weight = paddle.full(shape=[1], fill_value=weight, dtype=x.dtype)

4043 4044 4045 4046 4047 4048 4049 4050 4051 4052 4053 4054 4055 4056 4057 4058 4059 4060 4061 4062 4063 4064 4065 4066
    check_variable_and_dtype(x, 'x', ['float32', 'float64'], 'lerp')
    check_variable_and_dtype(y, 'y', ['float32', 'float64'], 'lerp')
    check_variable_and_dtype(weight, 'weight', ['float32', 'float64'], 'lerp')

    helper = LayerHelper('lerp', **locals())
    inputs = {'X': x, 'Y': y, 'Weight': weight}
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
    helper.append_op(type='lerp', inputs=inputs, outputs={'Out': out})
    return out

@inplace_apis_in_dygraph_only
def lerp_(x, y, weight, name=None):
    r"""
    Inplace version of ``lerp`` API, the output Tensor will be inplaced with input ``x``.
    Please refer to :ref:`api_tensor_lerp`.
    """
    out_shape = broadcast_shape(x.shape, y.shape)
    check_type(weight, 'weight', (float, paddle.Tensor, Variable), 'lerp')
    if isinstance(weight, float):
        weight = paddle.to_tensor([weight], dtype=x.dtype)
    elif isinstance(weight, (paddle.Tensor, Variable)):
        out_shape = broadcast_shape(out_shape, weight.shape)
    if out_shape != x.shape:
        raise ValueError("The shape of broadcast output {} is different from that of inplace tensor {} in the Inplace operation.".format(out_shape, x.shape))
4067
    if in_dygraph_mode():
4068 4069
        return _C_ops.lerp_( x, y, weight)
    return _legacy_C_ops.lerp_(x, y, weight)
4070

W
wuhuanzhou 已提交
4071 4072
def erfinv(x, name=None):
    r"""
4073
    The inverse error function of x.
W
wuhuanzhou 已提交
4074 4075 4076 4077 4078 4079 4080 4081 4082 4083 4084 4085 4086 4087 4088 4089 4090 4091 4092 4093 4094 4095 4096

    Equation:
        .. math::

            erfinv(erf(x)) = x.

    Args:
        x (Tensor): An N-D Tensor, the data type is float32, float64.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        out (Tensor): An N-D Tensor, the shape and data type is the same with input.

    Example:
        .. code-block:: python

            import paddle
            
            x = paddle.to_tensor([0, 0.5, -1.], dtype="float32")
            out = paddle.erfinv(x)
            # out: [0, 0.4769, -inf]

    """
H
hong 已提交
4097
    if in_dygraph_mode():
4098
        return _C_ops.erfinv( x )
H
hong 已提交
4099

W
wuhuanzhou 已提交
4100 4101
    check_variable_and_dtype(x, 'x', ['float32', 'float64'], 'erfinv')

Z
zhiboniu 已提交
4102
    if paddle.in_dynamic_mode():
4103
        return _legacy_C_ops.erfinv(x)
W
wuhuanzhou 已提交
4104 4105 4106 4107 4108 4109 4110 4111 4112 4113 4114 4115 4116

    helper = LayerHelper('erfinv', **locals())
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
    helper.append_op(type='erfinv', inputs={'X': x}, outputs={'Out': out})
    return out

@inplace_apis_in_dygraph_only
def erfinv_(x, name=None):
    r"""
    Inplace version of ``erfinv`` API, the output Tensor will be inplaced with input ``x``.
    Please refer to :ref:`api_tensor_erfinv`.
    """
    check_type(x, 'x', (paddle.Tensor, Variable), 'erfinv')
4117
    if in_dygraph_mode():
4118 4119
        return _C_ops.erfinv_( x )
    return _legacy_C_ops.erfinv_(x)
W
wuhuanzhou 已提交
4120

4121
def rad2deg(x, name=None):
4122
    r"""
4123 4124 4125 4126 4127 4128 4129 4130 4131 4132 4133 4134 4135 4136 4137 4138 4139 4140 4141 4142 4143 4144 4145 4146 4147 4148 4149 4150 4151 4152 4153 4154 4155 4156 4157 4158 4159 4160 4161 4162
    Convert each of the elements of input x from angles in radians to degrees.
    
    Equation:
        .. math::

            rad2deg(x)=180/ \pi * x

    Args:
        x (Tensor): An N-D Tensor, the data type is float32, float64, int32, int64.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        out (Tensor): An N-D Tensor, the shape and data type is the same with input (The output data type is float32 when the input data type is int).

    Examples:
        .. code-block:: python

            import paddle
            import numpy as np
            
            x1 = paddle.to_tensor([3.142, -3.142, 6.283, -6.283, 1.570, -1.570])
            result1 = paddle.rad2deg(x1)
            print(result1)
            # Tensor(shape=[6], dtype=float32, place=CUDAPlace(0), stop_gradient=True,
            #         [180.02334595, -180.02334595,  359.98937988, -359.98937988,
            #           9.95437622 , -89.95437622])

            x2 = paddle.to_tensor(np.pi/2)
            result2 = paddle.rad2deg(x2)
            print(result2)
            # Tensor(shape=[1], dtype=float32, place=CUDAPlace(0), stop_gradient=True,
            #         [90.])
                     
            x3 = paddle.to_tensor(1)
            result3 = paddle.rad2deg(x3)
            print(result3)
            # Tensor(shape=[1], dtype=float32, place=CUDAPlace(0), stop_gradient=True,
            #         [57.29578018])
    """
    rad2deg_scale = 180 / np.pi
4163 4164 4165
    if in_dygraph_mode():
        if convert_dtype(x.dtype) in ['int32', 'int64']:
            x = cast(x, dtype="float32")
4166
        return _C_ops.scale(x, rad2deg_scale, 0.0, True)
4167
    elif paddle.in_dynamic_mode():
4168 4169
        if convert_dtype(x.dtype) in ['int32', 'int64']:
            x = cast(x, dtype="float32")
4170
        return _legacy_C_ops.scale(x, 'scale', rad2deg_scale)
4171 4172 4173 4174 4175 4176 4177 4178 4179 4180 4181 4182 4183 4184
    else:
        check_variable_and_dtype(x, 'x', ['int32', 'int64', 'float32', 'float64'], 'rad2deg')
        helper = LayerHelper('rad2deg', **locals())
        out_cast = x
        if convert_dtype(x.dtype) in ['int32', 'int64']:
            out_cast = helper.create_variable_for_type_inference(dtype=paddle.float32)
            helper.append_op(
                    type='cast', inputs={'X':x}, outputs={'Out': out_cast}, attrs={'in_dtype': x.dtype,'out_dtype': paddle.float32})
        out = helper.create_variable_for_type_inference(dtype=out_cast.dtype)
        helper.append_op(
            type='scale', inputs={'X':out_cast}, outputs={'Out': out}, attrs={'scale': rad2deg_scale})
        return out

def deg2rad(x, name=None):
4185
    r"""
4186 4187 4188 4189 4190 4191 4192 4193 4194 4195 4196 4197 4198 4199 4200 4201 4202 4203 4204 4205 4206 4207 4208 4209 4210 4211 4212 4213 4214 4215 4216 4217 4218 4219
    Convert each of the elements of input x from degrees to angles in radians.
    
    Equation:
        .. math::

            deg2rad(x)=\pi * x / 180

    Args:
        x (Tensor): An N-D Tensor, the data type is float32, float64, int32, int64.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        out (Tensor): An N-D Tensor, the shape and data type is the same with input (The output data type is float32 when the input data type is int).

    Examples:
        .. code-block:: python

            import paddle
            import numpy as np
            
            x1 = paddle.to_tensor([180.0, -180.0, 360.0, -360.0, 90.0, -90.0])
            result1 = paddle.deg2rad(x1)
            print(result1)
            # Tensor(shape=[6], dtype=float32, place=CUDAPlace(0), stop_gradient=True,
            #         [3.14159274, -3.14159274,  6.28318548, -6.28318548,  1.57079637,
            #           -1.57079637])

            x2 = paddle.to_tensor(180)
            result2 = paddle.deg2rad(x2)
            print(result2)
            # Tensor(shape=[1], dtype=float32, place=CUDAPlace(0), stop_gradient=True,
            #         [3.14159274])
    """
    deg2rad_scale = np.pi / 180.0
4220 4221 4222
    if in_dygraph_mode():
        if convert_dtype(x.dtype) in ['int32', 'int64']:
            x = cast(x, dtype="float32")
4223
        return _C_ops.scale(x, deg2rad_scale, 0.0, True)
4224
    elif paddle.in_dynamic_mode():
4225 4226
        if convert_dtype(x.dtype) in ['int32', 'int64']:
            x = cast(x, dtype="float32")
4227
        return _legacy_C_ops.scale(x, 'scale', deg2rad_scale)
4228 4229 4230 4231 4232 4233 4234 4235 4236 4237 4238 4239
    else:
        check_variable_and_dtype(x, 'x', ['int32', 'int64', 'float32', 'float64'], 'deg2rad')
        helper = LayerHelper('deg2rad', **locals())
        out_cast = x
        if convert_dtype(x.dtype) in ['int32', 'int64']:
            out_cast = helper.create_variable_for_type_inference(dtype=paddle.float32)
            helper.append_op(
                    type='cast', inputs={'X':x}, outputs={'Out': out_cast}, attrs={'in_dtype': x.dtype,'out_dtype': paddle.float32})
        out = helper.create_variable_for_type_inference(dtype=out_cast.dtype)
        helper.append_op(
            type='scale', inputs={'X':out_cast}, outputs={'Out': out}, attrs={'scale': deg2rad_scale})
        return out
A
andyjpaddle 已提交
4240

T
Tao Luo 已提交
4241 4242 4243 4244 4245 4246 4247 4248
def gcd(x, y, name=None):
    """
    Computes the element-wise greatest common divisor (GCD) of input |x| and |y|.
    Both x and y must have integer types.
    
    Note:
        gcd(0,0)=0, gcd(0, y)=|y|

T
Tao Luo 已提交
4249 4250
        If x.shape != y.shape, they must be broadcastable to a common shape (which becomes the shape of the output).

T
Tao Luo 已提交
4251
    Args:
T
Tao Luo 已提交
4252 4253
        x (Tensor): An N-D Tensor, the data type is int32,int64. 
        y (Tensor): An N-D Tensor, the data type is int32,int64. 
T
Tao Luo 已提交
4254 4255 4256 4257 4258 4259 4260 4261 4262 4263 4264 4265 4266 4267 4268 4269
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        out (Tensor): An N-D Tensor, the data type is the same with input.

    Examples:
        .. code-block:: python

            import paddle
            
            x1 = paddle.to_tensor(12)
            x2 = paddle.to_tensor(20)
            paddle.gcd(x1, x2)
            # Tensor(shape=[1], dtype=int64, place=CUDAPlace(0), stop_gradient=True,
            #        [4])

T
Tao Luo 已提交
4270
            x3 = paddle.arange(6)
T
Tao Luo 已提交
4271 4272 4273 4274 4275 4276 4277 4278 4279 4280 4281 4282 4283 4284 4285 4286 4287 4288 4289 4290 4291 4292 4293 4294 4295 4296 4297 4298 4299 4300 4301 4302 4303 4304 4305 4306 4307
            paddle.gcd(x3, x2)
            # Tensor(shape=[6], dtype=int64, place=CUDAPlace(0), stop_gradient=True,
            #        [20, 1 , 2 , 1 , 4 , 5])

            x4 = paddle.to_tensor(0)
            paddle.gcd(x4, x2)
            # Tensor(shape=[1], dtype=int64, place=CUDAPlace(0), stop_gradient=True,
            #        [20])

            paddle.gcd(x4, x4)
            # Tensor(shape=[1], dtype=int64, place=CUDAPlace(0), stop_gradient=True,
            #        [0])
            
            x5 = paddle.to_tensor(-20)
            paddle.gcd(x1, x5)
            # Tensor(shape=[1], dtype=int64, place=CUDAPlace(0), stop_gradient=True,
            #        [4])
    """
    shape = paddle.broadcast_shape(x.shape, y.shape)
    x = paddle.broadcast_to(x, shape)
    y = paddle.broadcast_to(y, shape)
    x = paddle.abs(x)
    y = paddle.abs(y)

    def _gcd_cond_fn(x, y):
        return paddle.any(y != 0)

    def _gcd_body_fn(x, y):
        # paddle.mod will raise an error when any element of y is 0. To avoid
        # that, we change those zeros to ones. Their values don't matter because
        # they won't be used.
        y_not_equal_0 = (y != 0)
        y_safe = paddle.where(y_not_equal_0, y, paddle.ones(y.shape, y.dtype))
        x, y = (paddle.where(y_not_equal_0, y, x),
                  paddle.where(y_not_equal_0, paddle.mod(x, y_safe),paddle.zeros(y.shape, y.dtype)))
        return (paddle.where(x < y, y, x), paddle.where(x < y, x, y))

Z
zhiboniu 已提交
4308
    if paddle.in_dynamic_mode():
T
Tao Luo 已提交
4309 4310 4311 4312 4313
        while _gcd_cond_fn(x, y):
            x, y = _gcd_body_fn(x, y)

        return x
    else:
T
Tao Luo 已提交
4314 4315
        check_variable_and_dtype(x, 'x', ['int32', 'int64'], 'gcd')
        check_variable_and_dtype(y, 'y', ['int32', 'int64'], 'gcd')
T
Tao Luo 已提交
4316 4317 4318 4319 4320 4321 4322 4323 4324 4325 4326
        out, _ = paddle.static.nn.while_loop(_gcd_cond_fn, _gcd_body_fn, [x, y])
        return out

def lcm(x, y, name=None):
    """
    Computes the element-wise least common multiple (LCM) of input |x| and |y|.
    Both x and y must have integer types.
    
    Note:
        lcm(0,0)=0, lcm(0, y)=0

T
Tao Luo 已提交
4327 4328
        If x.shape != y.shape, they must be broadcastable to a common shape (which becomes the shape of the output).

T
Tao Luo 已提交
4329
    Args:
T
Tao Luo 已提交
4330 4331
        x (Tensor): An N-D Tensor, the data type is int32,int64. 
        y (Tensor): An N-D Tensor, the data type is int32,int64. 
T
Tao Luo 已提交
4332 4333 4334 4335 4336 4337 4338 4339 4340 4341 4342 4343 4344 4345 4346 4347
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        out (Tensor): An N-D Tensor, the data type is the same with input.

    Examples:
        .. code-block:: python

            import paddle
            
            x1 = paddle.to_tensor(12)
            x2 = paddle.to_tensor(20)
            paddle.lcm(x1, x2)
            # Tensor(shape=[1], dtype=int64, place=CUDAPlace(0), stop_gradient=True,
            #        [60])

T
Tao Luo 已提交
4348
            x3 = paddle.arange(6)
T
Tao Luo 已提交
4349 4350 4351 4352 4353 4354 4355 4356 4357 4358 4359 4360 4361 4362 4363 4364 4365 4366 4367 4368 4369 4370 4371 4372 4373 4374 4375
            paddle.lcm(x3, x2)
            # Tensor(shape=[6], dtype=int64, place=CUDAPlace(0), stop_gradient=True,
            #        [0, 20, 20, 60, 20, 20])

            x4 = paddle.to_tensor(0)
            paddle.lcm(x4, x2)
            # Tensor(shape=[1], dtype=int64, place=CUDAPlace(0), stop_gradient=True,
            #        [0])

            paddle.lcm(x4, x4)
            # Tensor(shape=[1], dtype=int64, place=CUDAPlace(0), stop_gradient=True,
            #        [0])
            
            x5 = paddle.to_tensor(-20)
            paddle.lcm(x1, x5)
            # Tensor(shape=[1], dtype=int64, place=CUDAPlace(0), stop_gradient=True,
            #        [60])
    """
    d = paddle.gcd(x, y)
    # paddle.mod will raise an error when any element of y is 0. To avoid
    # that, we change those zeros to ones. Their values don't matter because
    # they won't be used.
    d_equal_0 = paddle.equal(d, 0)
    d_safe = paddle.where(d_equal_0, paddle.ones(d.shape, d.dtype), d)
    out = paddle.where(d_equal_0, paddle.zeros(d.shape, d.dtype), paddle.abs(x * y) // d_safe)
    return out

A
andyjpaddle 已提交
4376 4377 4378 4379 4380 4381 4382 4383 4384 4385 4386 4387 4388
def diff(x, n=1, axis=-1, prepend=None, append=None, name=None):
    r"""
    Computes the n-th forward difference along the given axis.
    The first-order differences is computed by using the following formula: 

    .. math::

        out[i] = x[i+1] - x[i]
    
    Higher-order differences are computed by using paddle.diff() recursively. 
    Only n=1 is currently supported.

    Args:
4389 4390
        x (Tensor): The input tensor to compute the forward difference on
        n (int, optional): The number of times to recursively compute the difference. 
A
andyjpaddle 已提交
4391
                          Only support n=1. Default:1
4392 4393
        axis (int, optional): The axis to compute the difference along. Default:-1
        prepend (Tensor, optional): The tensor to prepend to input along axis before computing the difference.
A
andyjpaddle 已提交
4394 4395
                                   It's dimensions must be equivalent to that of x, 
                                   and its shapes must match x's shape except on axis.
4396
        append (Tensor, optional): The tensor to append to input along axis before computing the difference, 
A
andyjpaddle 已提交
4397 4398
                                   It's dimensions must be equivalent to that of x, 
                                   and its shapes must match x's shape except on axis.
4399
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
A
andyjpaddle 已提交
4400 4401 4402 4403 4404 4405 4406 4407
    
    Returns:
        Tensor: The output tensor with same dtype with x.

    Examples:
        .. code-block:: python

            import paddle
4408

A
andyjpaddle 已提交
4409 4410 4411 4412 4413 4414 4415 4416 4417 4418 4419 4420 4421 4422 4423 4424 4425 4426 4427 4428 4429 4430 4431 4432 4433 4434 4435 4436 4437 4438 4439 4440
            x = paddle.to_tensor([1, 4, 5, 2])
            out = paddle.diff(x)
            print(out)
            # out:
            # [3, 1, -3]

            y = paddle.to_tensor([7, 9])
            out = paddle.diff(x, append=y)
            print(out)
            # out: 
            # [3, 1, -3, 5, 2]

            z = paddle.to_tensor([[1, 2, 3], [4, 5, 6]])
            out = paddle.diff(z, axis=0)
            print(out)
            # out:
            # [[3, 3, 3]]
            out = paddle.diff(z, axis=1)
            print(out)
            # out:
            # [[1, 1], [1, 1]]
    """

    if axis < 0:
        axis = axis + len(x.shape)
    if axis > len(x.shape):
        axis = len(x.shape)
    if axis < 0:
        axis = 0
    dtype = x.dtype
    axes = [axis]
    infer_flags = list(1 for i in range(len(axes)))
4441
    if in_dygraph_mode():
A
andyjpaddle 已提交
4442 4443 4444 4445 4446 4447 4448 4449 4450 4451 4452 4453
        has_pend = False
        input_list = []
        if prepend is not None and append is not None:
            input_list = [prepend, x, append]
            has_pend = True
        elif prepend is not None:
            input_list = [prepend, x]
            has_pend = True
        elif append is not None:
            input_list = [x, append]
            has_pend = True
        if has_pend:
4454
            new_input = _C_ops.concat(input_list, axis)
A
andyjpaddle 已提交
4455 4456 4457 4458 4459 4460 4461 4462 4463 4464 4465 4466
        else:
            new_input = x

        attrs_1 = ()
        attrs_2 = ()

        dim_len = new_input.shape[axis]

        starts_1 = [0]
        attrs_1 += ('starts', starts_1)
        ends_1 = [dim_len - 1]
        attrs_1 += ('ends', ends_1)
4467
        input_front = _C_ops.slice(new_input, axes, starts_1, ends_1, infer_flags,
4468
                                            [])
A
andyjpaddle 已提交
4469 4470 4471 4472
        starts_2 = [1]
        attrs_2 += ('starts', starts_2)
        ends_2 = [dim_len]
        attrs_2 += ('ends', ends_2)
4473
        input_back = _C_ops.slice(new_input, axes, starts_2, ends_2, infer_flags,
4474
                                            [])
4475 4476

        if x.dtype == paddle.bool:
4477
            return _C_ops.logical_xor(input_back, input_front)
4478
        else:
4479
            return _C_ops.subtract(input_back, input_front)
4480 4481 4482 4483 4484 4485 4486 4487 4488 4489 4490 4491 4492 4493
    elif _in_legacy_dygraph():
        has_pend = False
        input_list = []
        if prepend is not None and append is not None:
            input_list = [prepend, x, append]
            has_pend = True
        elif prepend is not None:
            input_list = [prepend, x]
            has_pend = True
        elif append is not None:
            input_list = [x, append]
            has_pend = True
        if has_pend:
            new_input = _varbase_creator()
4494
            _legacy_C_ops.concat(input_list, new_input, 'axis', axis)
4495 4496 4497 4498 4499 4500 4501 4502 4503 4504 4505 4506
        else:
            new_input = x

        attrs_1 = ()
        attrs_2 = ()

        dim_len = new_input.shape[axis]

        starts_1 = [0]
        attrs_1 += ('starts', starts_1)
        ends_1 = [dim_len - 1]
        attrs_1 += ('ends', ends_1)
4507
        input_front = _legacy_C_ops.slice(new_input, None, None, None, None, 'axes', axes, \
4508 4509 4510 4511 4512
                'infer_flags', infer_flags, *attrs_1)
        starts_2 = [1]
        attrs_2 += ('starts', starts_2)
        ends_2 = [dim_len]
        attrs_2 += ('ends', ends_2)
4513
        input_back = _legacy_C_ops.slice(new_input, None, None, None, None, 'axes', axes, \
4514
                'infer_flags', infer_flags, *attrs_2)
A
andyjpaddle 已提交
4515 4516

        if x.dtype == paddle.bool:
4517
            return _legacy_C_ops.logical_xor(input_back, input_front)
A
andyjpaddle 已提交
4518
        else:
4519
            return elementwise_sub(input_back, input_front, axis=axis)
A
andyjpaddle 已提交
4520 4521 4522 4523 4524 4525 4526 4527 4528 4529 4530 4531 4532 4533 4534 4535 4536 4537 4538 4539 4540 4541 4542 4543 4544 4545 4546 4547 4548 4549 4550 4551 4552 4553 4554 4555 4556 4557 4558 4559 4560 4561 4562 4563 4564 4565 4566 4567 4568 4569
    else:
        check_variable_and_dtype(x, 'x', ['float32', 'float64', 'bool', 'int32', 'int64'], 'diff')
        check_type(axis, 'axis', (int), 'diff')
        helper = LayerHelper('diff', **locals())
        has_pend = False
        input_list = []
        if prepend is not None and append is not None:
            input_list = [prepend, x, append]
            has_pend = True
        elif prepend is not None:
            input_list = [prepend, x]
            has_pend = True
        elif append is not None:
            input_list = [x, append]
            has_pend = True

        if has_pend:
            new_input = helper.create_variable_for_type_inference(dtype)
            helper.append_op(
                type='concat', inputs={'X': input_list}, outputs={'Out': [new_input]}, attrs={'axis': axis}
            )
        else:
            new_input = x

        dim_len = new_input.shape[axis]
        attrs_1 = {'axes': axes}
        starts_1 = [0]
        ends_1 = [dim_len - 1]
        attrs_1['starts'] = starts_1
        attrs_1['ends'] = ends_1
        input_front = helper.create_variable_for_type_inference(dtype)
        helper.append_op(
            type='slice', inputs={'Input': new_input}, attrs=attrs_1, outputs={'Out': input_front}
        )
        attrs_2 = {'axes': axes}
        starts_2 = [1]
        ends_2 = [dim_len]
        attrs_2['starts'] = starts_2
        attrs_2['ends'] = ends_2
        input_back = helper.create_variable_for_type_inference(dtype)
        helper.append_op(
            type='slice', inputs={'Input': new_input}, attrs=attrs_2, outputs={'Out': input_back}
        )

        if dtype == paddle.bool:
            out = helper.create_variable_for_type_inference(dtype)
            helper.append_op(
                type='logical_xor', inputs={"X": input_back, "Y": input_front}, outputs={"Out": out}
            )
        else:
Z
zhiboniu 已提交
4570
            out = elementwise_sub(input_back, input_front, axis=axis)
A
andyjpaddle 已提交
4571 4572

        return out
F
Feiyu Chan 已提交
4573 4574 4575 4576 4577 4578 4579 4580 4581 4582 4583 4584 4585 4586 4587 4588

def angle(x, name=None):
    r"""
    Element-wise angle of complex numbers. For non-negative real numbers, the angle is 0 while 
    for negative real numbers, the angle is :math:`\pi`.

    Equation:
        .. math::

            angle(x)=arctan2(x.imag, x.real)

    Args:
        x (Tensor): An N-D Tensor, the data type is complex64, complex128, or float32, float64 .
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
4589
        Tensor: An N-D Tensor of real data type with the same precision as that of x's data type.
F
Feiyu Chan 已提交
4590 4591 4592 4593 4594 4595 4596 4597 4598 4599 4600 4601 4602 4603 4604 4605 4606 4607 4608 4609 4610 4611 4612

    Examples:
        .. code-block:: python

            import paddle

            x = paddle.to_tensor([-2, -1, 0, 1]).unsqueeze(-1).astype('float32')
            y = paddle.to_tensor([-2, -1, 0, 1]).astype('float32')
            z = x + 1j * y
            print(z.numpy())
            # [[-2.-2.j -2.-1.j -2.+0.j -2.+1.j]
            #  [-1.-2.j -1.-1.j -1.+0.j -1.+1.j]
            #  [ 0.-2.j  0.-1.j  0.+0.j  0.+1.j]
            #  [ 1.-2.j  1.-1.j  1.+0.j  1.+1.j]]

            theta = paddle.angle(z)
            print(theta.numpy())
            # [[-2.3561945 -2.6779451  3.1415927  2.6779451]
            #  [-2.0344439 -2.3561945  3.1415927  2.3561945]
            #  [-1.5707964 -1.5707964  0.         1.5707964]
            #  [-1.1071488 -0.7853982  0.         0.7853982]]
    """

W
WangZhen 已提交
4613
    if in_dygraph_mode():
F
Feiyu Chan 已提交
4614
        return _C_ops.angle(x)
4615 4616
    elif paddle.in_dynamic_mode():
        return _legacy_C_ops.angle(x)
F
Feiyu Chan 已提交
4617 4618 4619 4620 4621 4622 4623 4624 4625 4626 4627

    check_variable_and_dtype(x, 'x',
        ['float32', 'float64', 'complex64', 'complex128'], 'angle')
    op_type = "angle"
    helper = LayerHelper(op_type, **locals())
    inputs = {"X": x}
    out = helper.create_variable_for_type_inference(
        dtype=_complex_to_real_dtype(x.dtype))
    outputs = {"Out": out}
    helper.append_op(type=op_type, inputs=inputs, outputs=outputs)
    return out
4628

4629 4630 4631 4632 4633 4634 4635 4636 4637 4638 4639 4640 4641 4642
def heaviside(x, y, name=None):
    """
    Computes the Heaviside step function determined by corresponding element in y for each element in x. The equation is

    .. math::
        heaviside(x, y)=
            \left\{
                \\begin{array}{lcl}
                0,& &\\text{if} \ x < 0, \\\\
                y,& &\\text{if} \ x = 0, \\\\
                1,& &\\text{if} \ x > 0.
                \end{array}
            \\right.

4643
    Note:
4644 4645 4646 4647 4648 4649 4650 4651 4652 4653 4654 4655 4656 4657 4658 4659 4660 4661 4662 4663 4664 4665 4666 4667 4668 4669 4670 4671 4672 4673 4674 4675
        ``paddle.heaviside`` supports broadcasting. If you want know more about broadcasting, please refer to :ref:`user_guide_broadcasting`.

    Args:
        x (Tensor): The input tensor of Heaviside step function, it's data type should be float32, float64, int32 or int64.
        y (Tensor): The tensor that determines a Heaviside step function, it's data type should be float32, float64, int32 or int64.
        name (str, optional): Name for the operation (optional, default is None). Normally there is no need for user to set this property. For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        N-D Tensor. A location into which the result is stored. If x and y have different shapes and are broadcastable, the resulting tensor shape is the shape of x and y after broadcasting. If x, y have the same shape, its shape is the same as x and y.

    Examples:
        .. code-block:: python

            import paddle
            x = paddle.to_tensor([-0.5, 0, 0.5])
            y = paddle.to_tensor([0.1])
            paddle.heaviside(x, y)
            #    [0.        , 0.10000000, 1.        ]
            x = paddle.to_tensor([[-0.5, 0, 0.5], [-0.5, 0.5, 0]])
            y = paddle.to_tensor([0.1, 0.2, 0.3])
            paddle.heaviside(x, y)
            #    [[0.        , 0.20000000, 1.        ],
            #     [0.        , 1.        , 0.30000001]]
     """
    op_type = 'elementwise_heaviside'
    axis = -1
    act = None
    if _non_static_mode():
        return _elementwise_op_in_dygraph(
            x, y, axis=axis, act=act, op_name=op_type)
    return _elementwise_op(LayerHelper(op_type, **locals()))

4676 4677 4678 4679 4680 4681
def frac(x, name=None):
    """
    This API is used to return the fractional portion of each element in input.

    Args:
        x (Tensor): The input tensor, which data type should be int32, int64, float32, float64.
4682
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
4683 4684 4685 4686 4687

    Returns:
        Tensor: The output Tensor of frac.

    Examples:
4688
        .. code-block:: python
4689 4690 4691 4692 4693 4694 4695 4696 4697 4698 4699 4700 4701 4702 4703 4704 4705 4706 4707 4708 4709 4710 4711

            import paddle
            import numpy as np

            input = paddle.rand([3, 3], 'float32')
            print(input.numpy())
            # [[ 1.2203873  -1.0035421  -0.35193074]
            #  [-0.00928353  0.58917075 -0.8407828 ]
            #  [-1.5131804   0.5850153  -0.17597814]]

            output = paddle.frac(input)
            print(output.numpy())
            # [[ 0.22038734 -0.00354207 -0.35193074]
            #  [-0.00928353  0.58917075 -0.8407828 ]
            #  [-0.5131804   0.5850153  -0.17597814]]
    """
    op_type = 'elementwise_sub'
    axis = -1
    act = None
    if x.dtype not in [paddle.int32, paddle.int64, paddle.float32, paddle.float64]:
        raise TypeError(
            "The data type of input must be one of ['int32', 'int64', 'float32', 'float64'], but got {}".format(x.dtype))
    if in_dygraph_mode():
4712 4713
        y = _C_ops.trunc(x)
        return _C_ops.subtract(x, y)
4714 4715
    else:
        if _in_legacy_dygraph():
4716
            y = _legacy_C_ops.trunc(x)
4717 4718 4719 4720 4721 4722 4723 4724 4725 4726 4727 4728
            return _elementwise_op_in_dygraph(
                x, y, axis=axis, act=act, op_name=op_type)
        else:
            inputs = {"X": x}
            attrs = {}

            helper = LayerHelper("trunc", **locals())
            check_variable_and_dtype(x, "X", ['int32', 'int64', 'float32', 'float64'], 'trunc')
            y = helper.create_variable_for_type_inference(dtype=x.dtype)
            helper.append_op(
                type="trunc", inputs=inputs, attrs=attrs, outputs={"Out": y})
            return _elementwise_op(LayerHelper(op_type, **locals()))
4729 4730 4731 4732 4733 4734 4735 4736 4737 4738 4739 4740 4741 4742 4743 4744 4745 4746 4747 4748 4749 4750 4751 4752 4753 4754 4755 4756 4757 4758 4759 4760 4761 4762 4763 4764 4765 4766 4767 4768 4769 4770


def sgn(x, name=None):
    """
    For complex tensor, this API returns a new tensor whose elements have the same angles as the corresponding
    elements of input and absolute values of one.
    For other float dtype tensor,
    this API returns sign of every element in `x`: 1 for positive, -1 for negative and 0 for zero, same as paddle.sign.

    Args:
        x (Tensor): The input tensor, which data type should be float16, float32, float64, complex64, complex128.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        Tensor: A sign Tensor for real input, or normalized Tensor for complex input, shape and data type are same as input.

    Examples:
        .. code-block:: Python

            import paddle

            x = paddle.to_tensor([[3 + 4j, 7 - 24j, 0, 1 + 2j], [6 + 8j, 3, 0, -2]])
            print(paddle.sgn(x))
            #[[0.6+0.8j       0.28-0.96j      0.+0.j      0.4472136+0.8944272j]
            # [0.6+0.8j       1.+0.j          0.+0.j      -1.+0.j]]

    """
    if x.dtype not in [paddle.float16, paddle.float32, paddle.float64, paddle.complex64, paddle.complex128]:
        raise TypeError(
            "The data type of input must be one of ['float16', 'float32', 'float64', 'complex64', 'complex128'], but got {}"
                .format(x.dtype))
    if paddle.is_complex(x):
        expand_x = paddle.as_real(x)
        x_abs = paddle.abs(x)
        x_abs = paddle.unsqueeze(x_abs, axis=-1)
        output = expand_x / x_abs
        zeros = paddle.zeros_like(output)
        output = paddle.where(paddle.isnan(output), zeros, output)

        return paddle.as_complex(output)
    else:
        return paddle.sign(x)