math.py 100.3 KB
Newer Older
W
WuHaobo 已提交
1
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
2 3 4 5 6 7 8 9 10 11 12 13
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
14 15 16
"""
math functions
"""
17
from __future__ import print_function
Y
Yang Zhang 已提交
18
import numpy as np
19

20 21 22 23 24 25
from paddle.common_ops_import import VarDesc
from paddle.common_ops_import import dygraph_only
from paddle.common_ops_import import OpProtoHolder
from paddle.common_ops_import import templatedoc
from paddle.common_ops_import import dygraph_utils

26 27
from paddle.tensor import cast
import paddle
28
from ..fluid import layers
29
from ..fluid.framework import core, _varbase_creator, in_dygraph_mode, Variable, convert_np_dtype_to_dtype_
L
Li Fuchen 已提交
30 31
from ..fluid.layer_helper import LayerHelper
from ..fluid.data_feeder import check_variable_and_dtype, check_type, check_dtype, convert_dtype
32
from ..fluid.layers.layer_function_generator import _generate_doc_string_, generate_activation_fn, generate_layer_fn
33
from ..fluid.dygraph.inplace_utils import inplace_apis_in_dygraph_only
34 35 36

# TODO: define math functions
# yapf: disable
37 38 39 40
from ..fluid.layers import abs    # noqa: F401
from ..fluid.layers import acos    # noqa: F401
from ..fluid.layers import asin    # noqa: F401
from ..fluid.layers import ceil    # noqa: F401
41
from ..fluid.layers import ceil_    # noqa: F401
42 43 44 45 46
from ..fluid.layers import cos    # noqa: F401
from ..fluid.layers import tan    # noqa: F401
from ..fluid.layers import sinh    # noqa: F401
from ..fluid.layers import cosh    # noqa: F401
from ..fluid.layers import exp    # noqa: F401
47
from ..fluid.layers import exp_    # noqa: F401
R
ronnywang 已提交
48
from ..fluid.layers import expm1    # noqa: F401
49
from ..fluid.layers import floor    # noqa: F401
50
from ..fluid.layers import floor_    # noqa: F401
51 52
from ..fluid.layers import log    # noqa: F401
from ..fluid.layers import reciprocal    # noqa: F401
53
from ..fluid.layers import reciprocal_    # noqa: F401
54
from ..fluid.layers import round    # noqa: F401
55
from ..fluid.layers import round_    # noqa: F401
56
from ..fluid.layers import rsqrt    # noqa: F401
57
from ..fluid.layers import rsqrt_    # noqa: F401
58 59 60 61 62 63
from ..fluid.layers import scale    # noqa: F401
from ..fluid.layers import square    # noqa: F401
from ..fluid.layers import stanh    # noqa: F401
from ..fluid.layers import atan    # noqa: F401
from ..fluid.layers import erf    # noqa: F401
from ..fluid.layers import sqrt    # noqa: F401
64
from ..fluid.layers import sqrt_    # noqa: F401
65
from ..fluid.layers import sin    # noqa: F401
66
from ..fluid.layers import lgamma    # noqa: F401
67 68

from ..fluid.layers import multiplex    # noqa: F401
G
guofei 已提交
69
from ..fluid import layers
W
wanghuancoder 已提交
70
from paddle import _C_ops
71

72 73
__all__ = []

74 75 76 77 78 79 80 81 82 83 84 85 86
_supported_int_dtype_ = [
    VarDesc.VarType.UINT8,
    VarDesc.VarType.INT8,
    VarDesc.VarType.INT16,
    VarDesc.VarType.INT32,
    VarDesc.VarType.INT64,
]

_supported_float_dtype_ = [
    VarDesc.VarType.FP32,
    VarDesc.VarType.FP64,
]

87 88 89 90 91 92 93 94

@inplace_apis_in_dygraph_only
def scale_(x, scale=1.0, bias=0.0, bias_after_scale=True, act=None, name=None):
    """
    Inplace version of ``scale`` API, the output Tensor will be inplaced with input ``x``.
    Please refer to :ref:`api_tensor_scale`.
    """
    _scale = scale.numpy().item(0) if isinstance(scale, Variable) else scale
W
wanghuancoder 已提交
95
    return _C_ops.scale_(x, 'scale',
96 97 98 99
                            float(_scale), 'bias',
                            float(bias), 'bias_after_scale', bias_after_scale)


100
def pow(x, y, name=None):
101
    """
102
    Compute the power of tensor elements. The equation is:
S
swtkiwi 已提交
103

104 105
    .. math::
        out = x^{y} 
106

107 108
    **Note**:
    ``paddle.pow`` supports broadcasting. If you want know more about broadcasting, please refer to :ref:`user_guide_broadcasting` .
109 110


111 112
    Args:
        x (Tensor): An N-D Tensor, the data type is float32, float64, int32 or int64.
113
        y (float|int|Tensor): If it is an N-D Tensor, its data type should be the same as `x`.
114 115
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
    
116
    Returns:
117
        N-D Tensor. A location into which the result is stored. Its dimension and data type are the same as `x`.
118 119 120

    Examples:

121
        ..  code-block:: python
122 123 124

            import paddle

125 126 127 128 129 130 131 132 133 134 135 136
            x = paddle.to_tensor([1, 2, 3], dtype='float32')

            # example 1: y is a float or int
            res = paddle.pow(x, 2)
            print(res)
            # Tensor(shape=[3], dtype=float32, place=CUDAPlace(0), stop_gradient=True,
            #        [1., 4., 9.])
            res = paddle.pow(x, 2.5)
            print(res)
            # Tensor(shape=[3], dtype=float32, place=CUDAPlace(0), stop_gradient=True,
            #        [1.         , 5.65685415 , 15.58845711])

137
            # example 2: y is a Tensor
138
            y = paddle.to_tensor([2], dtype='float32')
139
            res = paddle.pow(x, y)
140 141 142
            print(res)
            # Tensor(shape=[3], dtype=float32, place=CUDAPlace(0), stop_gradient=True,
            #        [1., 4., 9.])
143 144

    """
145
    # in dynamic graph mode
W
WuHaobo 已提交
146
    if in_dygraph_mode():
147
        if isinstance(y, (int, float)):
W
wanghuancoder 已提交
148
            return _C_ops.pow(x, 'factor', y)
149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166
        elif isinstance(y, (paddle.Tensor, Variable)):
            return _elementwise_op_in_dygraph(
                x, y, axis=-1, act=None, op_name='elementwise_pow')
        else:
            raise TypeError('y must be scalar or tensor type, but received: %s '% (y.dtype))
    # in static graph mode
    else:
        if isinstance(y, (int, float)):
            helper = LayerHelper('pow', **locals())
            inputs = {'X': x}
            attrs = {'factor': y}
            out = helper.create_variable_for_type_inference(dtype=x.dtype)
            helper.append_op(
                type='pow', inputs=inputs, outputs={'Out': out}, attrs=attrs)
            return out
        elif isinstance(y, (paddle.Tensor, Variable)):
            # TODO A potential speed improvement is supporting different types in C++ and removing the cast ops here
            helper = LayerHelper('elementwise_pow', **locals())
J
joejiong 已提交
167
            out = helper.create_variable_for_type_inference(dtype=x.dtype)
168 169 170
            return _elementwise_op(LayerHelper('elementwise_pow', **locals()))
        else:
            raise TypeError('y must be scalar or tensor type, but received: %s '% (type(y)))
171 172 173



174 175 176 177 178 179 180
@dygraph_only
def _elementwise_op_in_dygraph(x,
                               y,
                               axis=-1,
                               act=None,
                               use_mkldnn=False,
                               op_name=None):
W
wanghuancoder 已提交
181
    op = getattr(_C_ops, op_name)
182 183 184 185 186 187 188 189 190 191 192 193
    out = op(x, y, 'axis', axis, 'use_mkldnn', use_mkldnn)

    return dygraph_utils._append_activation_in_dygraph(
        out, act, use_mkldnn=use_mkldnn)


def _elementwise_op(helper):
    op_type = helper.layer_type
    original_op_type = helper.kwargs.get('original_op_type', op_type)
    x = helper.kwargs.get('x', None)
    y = helper.kwargs.get('y', None)

194 195
    out = helper.kwargs.get('out', None)

196 197 198
    assert x is not None, 'x cannot be None in {}'.format(original_op_type)
    assert y is not None, 'y cannot be None in {}'.format(original_op_type)
    check_variable_and_dtype(
W
will-jl944 已提交
199
        x, 'x', ['float16', 'float32', 'float64', 'int32', 'int64', 'bool'],
200 201
        original_op_type)
    check_variable_and_dtype(
W
will-jl944 已提交
202
        y, 'y', ['float16', 'float32', 'float64', 'int32', 'int64', 'bool'],
203 204 205 206 207
        original_op_type)

    axis = helper.kwargs.get('axis', -1)
    use_mkldnn = helper.kwargs.get('use_mkldnn', False)
    name = helper.kwargs.get('name', None)
208 209 210 211 212 213

    if out is None:
        if name is None:
            out = helper.create_variable_for_type_inference(dtype=x.dtype)
        else:
            out = helper.create_variable(name=name, dtype=x.dtype, persistable=False)
214 215 216 217 218 219 220 221 222 223 224

    helper.append_op(
        type=op_type,
        inputs={'X': x,
                'Y': y},
        outputs={'Out': out},
        attrs={'axis': axis,
               'use_mkldnn': use_mkldnn})
    return helper.append_activation(out)


Y
Yang Zhang 已提交
225
def add(x, y, name=None):
226
    """
227
    Examples:
228 229 230 231

    ..  code-block:: python

        import paddle
232 233
        x = paddle.to_tensor([2, 3, 4], 'float64')
        y = paddle.to_tensor([1, 5, 2], 'float64')
W
WuHaobo 已提交
234
        z = paddle.add(x, y)
235
        print(z)  # [3., 8., 6. ]
236 237

    """
238

239
    if in_dygraph_mode():
W
wanghuancoder 已提交
240
        return _C_ops.elementwise_add(x, y)
241

242
    return _elementwise_op(LayerHelper('elementwise_add', **locals()))
243 244


245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262
@inplace_apis_in_dygraph_only
def add_(x, y, name=None):
    """
    Inplace version of ``add`` API, the output Tensor will be inplaced with input ``x``.
    Please refer to :ref:`api_tensor_add`.
    """
    op_type = 'elementwise_add_'
    axis = -1

    out_shape = broadcast_shape(x.shape, y.shape)
    if out_shape != x.shape:
        raise ValueError("The shape of broadcast output {} is different from that of inplace tensor {} in the Inplace operation.".format(out_shape, x.shape))

    out = _elementwise_op_in_dygraph(
        x, y, axis=axis, op_name=op_type)
    return out


263 264
def subtract(x, y, name=None):
    """
W
Wei Shengyu 已提交
265
    Substract two tensors element-wise. The equation is:
266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283

    .. math::
        out = x - y

    **Note**:
    ``paddle.subtract`` supports broadcasting. If you want know more about broadcasting, please refer to :ref:`user_guide_broadcasting` .

    Args:
        x (Tensor): the input tensor, it's data type should be float32, float64, int32, int64.
        y (Tensor): the input tensor, it's data type should be float32, float64, int32, int64.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        N-D Tensor. A location into which the result is stored. If x, y have different shapes and are "broadcastable", the resulting tensor shape is the shape of x and y after broadcasting. If x, y have the same shape,  its shape is the same as x and y.

    Examples:

        .. code-block:: python
W
Wei Shengyu 已提交
284

285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323
            import numpy as np
            import paddle

            x = paddle.to_tensor([[1, 2], [7, 8]])
            y = paddle.to_tensor([[5, 6], [3, 4]])
            res = paddle.subtract(x, y)
            print(res)
            #       [[-4, -4],
            #        [4, 4]]

            x = paddle.to_tensor([[[1, 2, 3], [1, 2, 3]]])
            y = paddle.to_tensor([1, 0, 4])
            res = paddle.subtract(x, y)
            print(res)
            #       [[[ 0,  2, -1],
            #         [ 0,  2, -1]]]

            x = paddle.to_tensor([2, np.nan, 5], dtype='float32')
            y = paddle.to_tensor([1, 4, np.nan], dtype='float32')
            res = paddle.subtract(x, y)
            print(res)
            #       [ 1., nan, nan]

            x = paddle.to_tensor([5, np.inf, -np.inf], dtype='float64')
            y = paddle.to_tensor([1, 4, 5], dtype='float64')
            res = paddle.subtract(x, y)
            print(res)
            #       [   4.,  inf., -inf.]

    """
    op_type = 'elementwise_sub'
    axis = -1
    act = None
    if in_dygraph_mode():
        return _elementwise_op_in_dygraph(
            x, y, axis=axis, act=act, op_name=op_type)
    return _elementwise_op(LayerHelper(op_type, **locals()))


324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341
@inplace_apis_in_dygraph_only
def subtract_(x, y, name=None):
    """
    Inplace version of ``subtract`` API, the output Tensor will be inplaced with input ``x``.
    Please refer to :ref:`api_tensor_subtract`.
    """
    axis = -1
    act = None

    out_shape = broadcast_shape(x.shape, y.shape)
    if out_shape != x.shape:
        raise ValueError("The shape of broadcast output {} is different from that of inplace tensor {} in the Inplace operation.".format(out_shape, x.shape))

    out = _elementwise_op_in_dygraph(
        x, y, axis=axis, act=act, op_name='elementwise_sub_')
    return out


342
def divide(x, y, name=None):
343
    """
344
    Divide two tensors element-wise. The equation is:
345

346 347
    .. math::
        out = x / y
348

349 350
    **Note**:
    ``paddle.divide`` supports broadcasting. If you want know more about broadcasting, please refer to :ref:`user_guide_broadcasting` .
351

352 353 354 355
    Args:
        x (Tensor): the input tensor, it's data type should be float32, float64, int32, int64.
        y (Tensor): the input tensor, it's data type should be float32, float64, int32, int64.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
356

357
    Returns:
358
        N-D Tensor. A location into which the result is stored. If x, y have different shapes and are "broadcastable", the resulting tensor shape is the shape of x and y after broadcasting. If x, y have the same shape,  its shape is the same as x and y.
359

360
    Examples:
361

362
        ..  code-block:: python
363

364
            import paddle
365

366 367
            x = paddle.to_tensor([2, 3, 4], dtype='float64')
            y = paddle.to_tensor([1, 5, 2], dtype='float64')
368
            z = paddle.divide(x, y)
369
            print(z)  # [2., 0.6, 2.]
370

371 372 373 374 375 376 377
    """
    op_type = 'elementwise_div'
    axis = -1
    act = None
    if in_dygraph_mode():
        return _elementwise_op_in_dygraph(
            x, y, axis=axis, act=act, op_name=op_type)
378

379
    return _elementwise_op(LayerHelper(op_type, **locals()))
380 381


382 383 384
def floor_divide(x, y, name=None):
    """
    Floor divide two tensors element-wise. The equation is:
385

386 387
    .. math::
        out = x // y
388

389 390
    **Note**:
    ``paddle.floor_divide`` supports broadcasting. If you want know more about broadcasting, please refer to :ref:`user_guide_broadcasting` .
391

392 393 394 395
    Args:
        x (Tensor): the input tensor, it's data type should be int32, int64.
        y (Tensor): the input tensor, it's data type should be int32, int64.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
396

397 398
    Returns:
        N-D Tensor. A location into which the result is stored. It's dimension equals with $x$.
399

400
    Examples:
401

402
        ..  code-block:: python
403

404
            import paddle
405

406 407
            x = paddle.to_tensor([2, 3, 8, 7])
            y = paddle.to_tensor([1, 5, 3, 3])
408
            z = paddle.floor_divide(x, y)
409
            print(z)  # [2, 0, 2, 2]
410

411 412 413 414 415 416
    """
    op_type = 'elementwise_floordiv'
    axis = -1
    if in_dygraph_mode():
        return _elementwise_op_in_dygraph(
            x, y, axis=axis, op_name=op_type)
417

418
    return _elementwise_op(LayerHelper(op_type, **locals()))
419 420


421
def remainder(x, y, name=None):
422
    r"""
423 424 425
    Mod two tensors element-wise. The equation is:

    .. math::
426

427 428 429
        out = x \% y

    **Note**:
430
    ``paddle.remainder`` supports broadcasting. If you want know more about broadcasting, please refer to :ref:`user_guide_broadcasting` .
431 432

    Args:
W
WangXi 已提交
433 434
        x (Tensor): the input tensor, it's data type should be float32, float64, int32, int64.
        y (Tensor): the input tensor, it's data type should be float32, float64, int32, int64.
435 436 437
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
438
        N-D Tensor. A location into which the result is stored. If x, y have different shapes and are "broadcastable", the resulting tensor shape is the shape of x and y after broadcasting. If x, y have the same shape,  its shape is the same as x and y.
439 440 441 442 443 444 445

    Examples:

        ..  code-block:: python

            import paddle

446 447
            x = paddle.to_tensor([2, 3, 8, 7])
            y = paddle.to_tensor([1, 5, 3, 3])
448
            z = paddle.remainder(x, y)
W
WangXi 已提交
449
            print(z)  # [0, 3, 2, 1]
450 451 452

    """
    op_type = 'elementwise_mod'
453 454 455
    axis = -1
    if in_dygraph_mode():
        return _elementwise_op_in_dygraph(
456
            x, y, axis=axis, op_name=op_type)
457 458 459 460

    return _elementwise_op(LayerHelper(op_type, **locals()))


461 462
mod = remainder  # noqa: F841
floor_mod = remainder  # noqa: F841
463 464


465
def multiply(x, y, name=None):
466
    """
467
    multiply two tensors element-wise. The equation is:
468

469 470
    .. math::
        out = x * y
471

472 473
    **Note**:
    ``paddle.multiply`` supports broadcasting. If you would like to know more about broadcasting, please refer to :ref:`user_guide_broadcasting` .
474

475
    Args:
W
will-jl944 已提交
476 477
        x (Tensor): the input tensor, its data type should be one of float32, float64, int32, int64, bool.
        y (Tensor): the input tensor, its data type should be one of float32, float64, int32, int64, bool.
478
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
479

480
    Returns:
481
        N-D Tensor. A location into which the result is stored. If x, y have different shapes and are "broadcastable", the resulting tensor shape is the shape of x and y after broadcasting. If x, y have the same shape,  its shape is the same as x and y.
482

483 484 485 486 487 488
    Examples:

        ..  code-block:: python

            import paddle

489 490
            x = paddle.to_tensor([[1, 2], [3, 4]])
            y = paddle.to_tensor([[5, 6], [7, 8]])
491
            res = paddle.multiply(x, y)
492
            print(res) # [[5, 12], [21, 32]]
493

494
            x = paddle.to_tensor([[[1, 2, 3], [1, 2, 3]]])
495 496 497
            y = paddle.to_tensor([2])
            res = paddle.multiply(x, y)
            print(res) # [[[2, 4, 6], [2, 4, 6]]]
498 499 500 501

    """
    op_type = 'elementwise_mul'
    act = None
502
    axis = -1
503

504 505 506 507
    if in_dygraph_mode():
        return _elementwise_op_in_dygraph(
            x, y, axis=axis, act=act, op_name=op_type)

508 509 510 511 512
    if x.dtype != y.dtype:
        raise TypeError(
            'Input tensors must be same type, but received type of x: %s, type of y: %s '
            % (x.dtype, y.dtype))

513 514
    return _elementwise_op(LayerHelper(op_type, **locals()))

515
def maximum(x, y, name=None):
516
    """
W
Wei Shengyu 已提交
517
    Compare two tensors and returns a new tensor containing the element-wise maxima. The equation is:
518

519 520
    .. math::
        out = max(x, y)
521

522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564
    **Note**:
    ``paddle.maximum`` supports broadcasting. If you want know more about broadcasting, please refer to :ref:`user_guide_broadcasting` .

    Args:
        x (Tensor): the input tensor, it's data type should be float32, float64, int32, int64.
        y (Tensor): the input tensor, it's data type should be float32, float64, int32, int64.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        N-D Tensor. A location into which the result is stored. If x, y have different shapes and are "broadcastable", the resulting tensor shape is the shape of x and y after broadcasting. If x, y have the same shape,  its shape is the same as x and y.

    Examples:

        .. code-block:: python

            import numpy as np
            import paddle

            x = paddle.to_tensor([[1, 2], [7, 8]])
            y = paddle.to_tensor([[3, 4], [5, 6]])
            res = paddle.maximum(x, y)
            print(res)
            #    [[3, 4],
            #     [7, 8]]

            x = paddle.to_tensor([[1, 2, 3], [1, 2, 3]])
            y = paddle.to_tensor([3, 0, 4])
            res = paddle.maximum(x, y)
            print(res)
            #    [[3, 2, 4],
            #     [3, 2, 4]]

            x = paddle.to_tensor([2, 3, 5], dtype='float32')
            y = paddle.to_tensor([1, np.nan, np.nan], dtype='float32')
            res = paddle.maximum(x, y)
            print(res)
            #    [ 2., nan, nan]

            x = paddle.to_tensor([5, 3, np.inf], dtype='float32')
            y = paddle.to_tensor([1, -np.inf, 5], dtype='float32')
            res = paddle.maximum(x, y)
            print(res)
            #    [  5.,   3., inf.]
565 566
    """
    op_type = 'elementwise_max'
567
    axis = -1
568 569 570 571 572 573
    act = None
    if in_dygraph_mode():
        return _elementwise_op_in_dygraph(
            x, y, axis=axis, act=act, op_name=op_type)
    return _elementwise_op(LayerHelper(op_type, **locals()))

574
def minimum(x, y, name=None):
575
    """
W
Wei Shengyu 已提交
576
    Compare two tensors and returns a new tensor containing the element-wise minima. The equation is:
577

578 579
    .. math::
        out = min(x, y)
580

581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623
    **Note**:
    ``paddle.minimum`` supports broadcasting. If you want know more about broadcasting, please refer to :ref:`user_guide_broadcasting` .

    Args:
        x (Tensor): the input tensor, it's data type should be float32, float64, int32, int64.
        y (Tensor): the input tensor, it's data type should be float32, float64, int32, int64.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        N-D Tensor. A location into which the result is stored. If x, y have different shapes and are "broadcastable", the resulting tensor shape is the shape of x and y after broadcasting. If x, y have the same shape,  its shape is the same as x and y.

    Examples:

        .. code-block:: python

            import numpy as np
            import paddle

            x = paddle.to_tensor([[1, 2], [7, 8]])
            y = paddle.to_tensor([[3, 4], [5, 6]])
            res = paddle.minimum(x, y)
            print(res)
            #       [[1, 2],
            #        [5, 6]]

            x = paddle.to_tensor([[[1, 2, 3], [1, 2, 3]]])
            y = paddle.to_tensor([3, 0, 4])
            res = paddle.minimum(x, y)
            print(res)
            #       [[[1, 0, 3],
            #         [1, 0, 3]]]

            x = paddle.to_tensor([2, 3, 5], dtype='float32')
            y = paddle.to_tensor([1, np.nan, np.nan], dtype='float32')
            res = paddle.minimum(x, y)
            print(res)
            #       [ 1., nan, nan]

            x = paddle.to_tensor([5, 3, np.inf], dtype='float64')
            y = paddle.to_tensor([1, -np.inf, 5], dtype='float64')
            res = paddle.minimum(x, y)
            print(res)
            #       [   1., -inf.,    5.]
624 625
    """
    op_type = 'elementwise_min'
626
    axis = -1
627 628 629 630 631
    act = None
    if in_dygraph_mode():
        return _elementwise_op_in_dygraph(
            x, y, axis=axis, act=act, op_name=op_type)
    return _elementwise_op(LayerHelper(op_type, **locals()))
632

633 634
for func in [
        add,
635
        multiply
636
]:
637
    proto_dict = {'add': 'elementwise_add', 'multiply': 'elementwise_mul'}
638 639
    op_proto = OpProtoHolder.instance().get_op_proto(proto_dict[func.__name__])

Y
Yang Zhang 已提交
640 641 642 643 644 645 646
    additional_args_lines = [
        "name (string, optional): Name of the output. \
        Default is None. It's used to print debug info for developers. Details: \
        :ref:`api_guide_Name` "
    ]

    func.__doc__ = _generate_doc_string_(
647 648
        op_proto,
        additional_args_lines=additional_args_lines,
649
        skip_attrs_set={"x_data_format", "y_data_format", "axis",
650
            "use_quantizer", "mkldnn_data_type", "Scale_x", "Scale_y", "Scale_out"
651
        }) + """\n""" + str(func.__doc__)
652

Y
Yang Zhang 已提交
653

654
def sum(x, axis=None, dtype=None, keepdim=False, name=None):
655 656 657 658
    """
    Computes the sum of tensor elements over the given dimension.

    Args:
659
        x (Tensor): An N-D Tensor, the data type is bool, float16, float32, float64, int32 or int64.
660 661
        axis (int|list|tuple, optional): The dimensions along which the sum is performed. If
            :attr:`None`, sum all elements of :attr:`x` and return a
N
Noel 已提交
662
            Tensor with a single element, otherwise must be in the
663 664 665 666 667 668 669
            range :math:`[-rank(x), rank(x))`. If :math:`axis[i] < 0`,
            the dimension to reduce is :math:`rank + axis[i]`.
        dtype (str, optional): The dtype of output Tensor. The default value is None, the dtype
            of output is the same as input Tensor `x`.
        keepdim (bool, optional): Whether to reserve the reduced dimension in the
            output Tensor. The result Tensor will have one fewer dimension
            than the :attr:`x` unless :attr:`keepdim` is true, default
670
            value is False.
671
        name (str, optional): The default value is None. Normally there is no need for
672 673 674
            user to set this property.  For more information, please refer to :ref:`api_guide_Name`

    Returns:
675
        Tensor: Results of summation operation on the specified axis of input Tensor `x`,
676 677
        if `x.dtype='bool'`, `x.dtype='int32'`, it's data type is `'int64'`, 
        otherwise it's data type is the same as `x`.
678 679

    Raises:
680
        TypeError: The type of :attr:`axis` must be int, list or tuple.
681

682 683 684 685
    Examples:
        .. code-block:: python

            import paddle
686

687
            # x is a Tensor with following elements:
688 689 690
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
            # Each example is followed by the corresponding output tensor.
691 692
            x = paddle.to_tensor([[0.2, 0.3, 0.5, 0.9],
                                  [0.1, 0.2, 0.6, 0.7]])
693
            out1 = paddle.sum(x)  # [3.5]
694 695 696
            out2 = paddle.sum(x, axis=0)  # [0.3, 0.5, 1.1, 1.6]
            out3 = paddle.sum(x, axis=-1)  # [1.9, 1.6]
            out4 = paddle.sum(x, axis=1, keepdim=True)  # [[1.9], [1.6]]
697

698
            # y is a Tensor with shape [2, 2, 2] and elements as below:
699 700 701
            #      [[[1, 2], [3, 4]],
            #      [[5, 6], [7, 8]]]
            # Each example is followed by the corresponding output tensor.
702 703
            y = paddle.to_tensor([[[1, 2], [3, 4]], 
                                  [[5, 6], [7, 8]]])
704 705
            out5 = paddle.sum(y, axis=[1, 2]) # [10, 26]
            out6 = paddle.sum(y, axis=[0, 1]) # [16, 20]
706 707 708 709 710 711 712 713 714 715
            
            # x is a Tensor with following elements:
            #    [[True, True, True, True]
            #     [False, False, False, False]]
            # Each example is followed by the corresponding output tensor.
            x = paddle.to_tensor([[True, True, True, True],
                                  [False, False, False, False]])
            out7 = paddle.sum(x)  # [4]
            out8 = paddle.sum(x, axis=0)  # [1, 1, 1, 1]
            out9 = paddle.sum(x, axis=1)  # [4, 0]
716
    """
717 718 719 720 721 722 723 724 725 726 727
    if axis is not None and not isinstance(axis, (list, tuple)):
        axis = [axis]

    if not axis:
        reduce_all_flag = True
    else:
        if len(axis) == len(x.shape):
            reduce_all_flag = True
        else:
            reduce_all_flag = False

728 729 730 731 732 733 734 735 736
    def get_dtype(x, dtype):
        if dtype is not None:
            return (True, dtype)
        src_type = convert_dtype(x.dtype)
        if src_type in ['bool','int32', 'int64']:
            return (True, 'int64')
        return (False, src_type)

    dtype_flag, dtype = get_dtype(x, dtype)
737
    if in_dygraph_mode():
738
        axis = axis if axis != None and axis != [] else [0]
739
        if dtype_flag:
W
wanghuancoder 已提交
740
            return _C_ops.reduce_sum(x, 'dim', axis, 'keep_dim', keepdim,
741 742
                                       'reduce_all', reduce_all_flag, 'in_dtype',
                                       x.dtype, 'out_dtype',
743 744
                                       convert_np_dtype_to_dtype_(dtype))
        else:
W
wanghuancoder 已提交
745
            return _C_ops.reduce_sum(x, 'dim', axis, 'keep_dim', keepdim,
746
                                       'reduce_all', reduce_all_flag)
W
wanghuancoder 已提交
747 748 749 750 751 752 753

    attrs = {
        'dim': axis if axis != None and axis != [] and axis != () else [0],
        'keep_dim': keepdim,
        'reduce_all': reduce_all_flag
    }

754 755 756 757 758
    if dtype_flag:
        attrs.update({
            'in_dtype': x.dtype,
            'out_dtype': convert_np_dtype_to_dtype_(dtype)
        })
W
wanghuancoder 已提交
759

760
    check_variable_and_dtype(
761 762 763 764
        x, 'x', ['bool', 'float16', 'float32', 'float64',
                'int32', 'int64', 'complex64', 'complex128',
                u'bool', u'float16', u'float32', u'float64',
                u'int32', u'int64', u'complex64', u'complex128'], 'sum')
765

766 767
    check_type(axis, 'axis', (int, list, tuple, type(None)), 'sum')

768 769 770 771 772
    helper = LayerHelper('sum', **locals())
    if dtype_flag:
        out = helper.create_variable_for_type_inference(
            dtype=convert_np_dtype_to_dtype_(dtype))
    else:
773
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
774 775
    helper.append_op(
        type='reduce_sum',
776
        inputs={'X': x},
777 778 779
        outputs={'Out': out},
        attrs=attrs)
    return out
780

781

782
@templatedoc(op_type="sum")
S
Steffy-zxf 已提交
783
def add_n(inputs, name=None):
784
    """
S
Steffy-zxf 已提交
785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819
    This OP is used to sum one or more Tensor of the input.
    
    For example:

    .. code-block:: text
    
        Case 1:

            Input:
                input.shape = [2, 3]
                input = [[1, 2, 3],
                         [4, 5, 6]]

            Output:
                output.shape = [2, 3]
                output = [[1, 2, 3],
                          [4, 5, 6]]

        Case 2:
       
            Input:
                First input:
                    input1.shape = [2, 3]
                    Input1 = [[1, 2, 3],
                              [4, 5, 6]]

                The second input:
                    input2.shape = [2, 3]
                    input2 = [[7, 8, 9],
                              [10, 11, 12]]

                Output:
                    output.shape = [2, 3]
                    output = [[8, 10, 12],
                              [14, 16, 18]]
820 821

    Args:
822
        inputs (Tensor|list[Tensor]|tuple[Tensor]):  A Tensor or a list/tuple of Tensors. The shape and data type of the list/tuple elements should be consistent.
S
Steffy-zxf 已提交
823
            Input can be multi-dimensional Tensor, and data types can be: float32, float64, int32, int64.
824 825 826 827
        name(str, optional): The default value is None. Normally there is no need for
            user to set this property. For more information, please refer to :ref:`api_guide_Name`

    Returns:
S
Steffy-zxf 已提交
828
        Tensor, the sum of input :math:`inputs` , its shape and data types are consistent with :math:`inputs`.
829 830 831 832 833 834

    Examples:
        .. code-block:: python

            import paddle

S
Steffy-zxf 已提交
835 836 837 838 839
            input0 = paddle.to_tensor([[1, 2, 3], [4, 5, 6]], dtype='float32')
            input1 = paddle.to_tensor([[7, 8, 9], [10, 11, 12]], dtype='float32')
            output = paddle.add_n([input0, input1])
            # [[8., 10., 12.], 
            #  [14., 16., 18.]]
840
    """
S
Steffy-zxf 已提交
841 842 843
    if in_dygraph_mode():
        if isinstance(inputs, Variable):
            inputs = [inputs]
W
wanghuancoder 已提交
844
        return _C_ops.sum(inputs, 'use_mkldnn', False)
845

S
Steffy-zxf 已提交
846 847
    helper = LayerHelper('add_n', **locals())
    check_type(inputs, 'inputs', (Variable, tuple, list), 'add_n')
848 849 850 851
    if isinstance(inputs, list) or isinstance(inputs, tuple):
        if len(inputs) > 0:
            for input in inputs:
                check_variable_and_dtype(input, "inputs", \
S
Steffy-zxf 已提交
852
                   ['float32', 'float64', 'int32', 'int64'], 'add_n')
853 854
    else:
        check_variable_and_dtype(inputs, "inputs", \
S
Steffy-zxf 已提交
855
                ['float32', 'float64', 'int32', 'int64'], 'add_n')
856 857


858 859 860 861 862 863 864 865 866 867 868
    out = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype('inputs'))
    helper.append_op(
        type='sum',
        inputs={'X': inputs},
        outputs={'Out': out},
        attrs={'use_mkldnn': False})

    return out


869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897
def trunc(input, name=None):
    '''
    This API is used to returns a new tensor with the truncated integer values of input.
    
    Args:
        input (Tensor): The input tensor, it's data type should be int32, int64, float32, float64.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
    
    Returns:
        Tensor: The output Tensor of trunc.
    
    Examples:
        .. code-block:: python

            import paddle

            input = paddle.rand([2,2],'float32')
            print(input)
            # Tensor(shape=[2, 2], dtype=float32, place=CUDAPlace(0), stop_gradient=True,
            #         [[0.02331470, 0.42374918],
            #         [0.79647720, 0.74970269]])

            output = paddle.trunc(input)
            print(output)
            # Tensor(shape=[2, 2], dtype=float32, place=CUDAPlace(0), stop_gradient=True,
            #         [[0., 0.],
            #         [0., 0.]]))
    '''
    if in_dygraph_mode():
W
wanghuancoder 已提交
898
        return _C_ops.trunc(input)
899 900 901 902 903 904 905 906 907 908 909 910 911 912
    else:
        inputs = {"X": input}
        attrs = {}

        helper = LayerHelper("trunc", **locals())
        check_variable_and_dtype(input, 'X', ['int32', 'int64', 'float32', 'float64'], 'trunc')
        out = helper.create_variable_for_type_inference(dtype=input.dtype)

        helper.append_op(
            type="trunc", inputs=inputs, attrs=attrs, outputs={"Out": out})
        return out



W
WuHaobo 已提交
913
def mm(input, mat2, name=None):
914
    """
S
swtkiwi 已提交
915

916 917 918 919 920 921 922 923 924 925 926
    Applies matrix multiplication to two tensors.

    Currently, the input tensors' rank can be any, but when the rank of any
    inputs is bigger than 3, this two inputs' rank should be equal.


    Also note that if the raw tensor :math:`x` or :math:`mat2` is rank-1 and
    nontransposed, the prepended or appended dimension :math:`1` will be
    removed after matrix multiplication.

    Args:
927
        input (Tensor): The input tensor which is a Tensor.
N
Noel 已提交
928
        mat2 (Tensor): The input tensor which is a Tensor.
929 930 931 932
        name(str, optional): The default value is None. Normally there is no need for
            user to set this property. For more information, please refer to :ref:`api_guide_Name`

    Returns:
N
Noel 已提交
933
        Tensor: The product Tensor.
934 935 936 937 938

    Examples:
        .. code-block:: python

            import paddle
939 940 941 942 943 944 945 946
            input = paddle.arange(1, 7).reshape((3, 2)).astype('float32')
            mat2 = paddle.arange(1, 9).reshape((2, 4)).astype('float32')
            out = paddle.mm(input, mat2)
            print(out)
            #        [[11., 14., 17., 20.],
            #         [23., 30., 37., 44.],
            #         [35., 46., 57., 68.]])

N
Noel 已提交
947

948 949
    """
    if in_dygraph_mode():
950
        return _C_ops.matmul_v2(input, mat2)
951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987

    def __check_input(x, y):
        var_names = {'x': x, 'y': y}
        for name, val in var_names.items():
            check_variable_and_dtype(val, name,
                                     ['float16', 'float32', 'float64'], 'mm')
        x_shape = list(x.shape)
        y_shape = list(y.shape)
        if len(x_shape) == 1:
            x_shape = [1] + x_shape
        if len(y_shape) == 1:
            y_shape = y_shape + [1]

        # check the inner 2 dimensions
        if x_shape[-1] != y_shape[-2]:
            if not ((x_shape[-1] == -1) or (y_shape[-2] == -1)):
                raise ValueError(
                    "After performing an optional transpose, Input X's width should be "
                    "equal to Y's width for multiplication "
                    "prerequisites. But received X's shape: %s, Y's shape: %s\n"
                    % (x_shape, y_shape))

        if len(y_shape) > 2 and len(x_shape) > 2:
            for i, dim_x in enumerate(x_shape[:-2]):
                # don't check neg shape
                if dim_x < 0 or y_shape[i] < 0:
                    continue
                if dim_x != y_shape[i]:
                    raise ValueError(
                        "When the matrix is larger than 2 dimensions, the higher "
                        "dimensional values of the two matrices need to be equal. "
                        "But received x_shape[%d] != y_shape[%d]. X's shape: %s, "
                        "Y's shape: %s.\n" % (i, i, x_shape, y_shape))

    __check_input(input, mat2)

    helper = LayerHelper('mm', **locals())
W
WuHaobo 已提交
988
    out = helper.create_variable_for_type_inference(dtype=input.dtype)
989
    helper.append_op(
990
        type='matmul_v2', inputs={'X': input,
991 992
                               'Y': mat2}, outputs={'Out': out})
    return out
993

994

Y
yaoxuefeng 已提交
995
def addmm(input, x, y, beta=1.0, alpha=1.0, name=None):
996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008
    """
    **addmm**

    This operator is used to perform matrix multiplication for input $x$ and $y$.
    $input$ is added to the final result.
    The equation is:

    ..  math::
        Out = alpha * x * y + beta * input

    $Input$, $x$ and $y$ can carry the LoD (Level of Details) information, or not. But the output only shares the LoD information with input $input$.

    Args:
Y
yaoxuefeng 已提交
1009 1010 1011
        input (Tensor): The input Tensor to be added to the final result.
        x (Tensor): The first input Tensor for matrix multiplication.
        y (Tensor): The second input Tensor for matrix multiplication.
1012
        beta (float): Coefficient of $input$.
Y
yaoxuefeng 已提交
1013
        alpha (float): Coefficient of $x*y$.
1014 1015 1016
        name (str, optional): Name of the output. Normally there is no need for user to set this property. For more information, please refer to :ref:`api_guide_Name`. Default is None.

    Returns:
Y
yaoxuefeng 已提交
1017
        Tensor: The output Tensor of addmm op.
1018 1019 1020

    Examples:
        ..  code-block:: python
Y
yaoxuefeng 已提交
1021
            
1022 1023
            import paddle

Y
yaoxuefeng 已提交
1024 1025 1026
            x = paddle.ones([2,2])
            y = paddle.ones([2,2])
            input = paddle.ones([2,2])
Y
yaoxuefeng 已提交
1027

Y
yaoxuefeng 已提交
1028
            out = paddle.addmm( input=input, x=x, y=y, beta=0.5, alpha=5.0 )
Y
yaoxuefeng 已提交
1029

N
Noel 已提交
1030
            print(out)
1031 1032 1033
            # [[10.5 10.5]
            # [10.5 10.5]]
    """
Y
yaoxuefeng 已提交
1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053
    input_shape = input.shape
    x_shape = x.shape
    y_shape = y.shape
    if not len(input_shape) == len(x_shape) == len(y_shape) == 2:
        raise ValueError("The dimention of input, x, y should be 2 but receive input's shape: {}, x's shape: {}, y's shape: {}".format(input_shape, x_shape, y_shape))
    if input_shape[0] != x_shape[0]:
        if input_shape[0] != 1:
            raise ValueError( "When x's dimension[0] is not equal with input's dimension[0], input's dimension[0] must be 1 but got {}".format(input_shape[0]))
        if input_shape[1] != y_shape[1] and input_shape[1] != 1:
            raise ValueError( "When y's dimension[1] is not equal with input's dimension[1], input's dimension[1] must be 1 but got {}".format(input_shape[1]))
    if input_shape[1] != y_shape[1]:
        if input_shape[1] != 1:
            raise ValueError( "When y's dimension[1] is not equal with input's dimension[1], input's dimension[1] must be 1 but got {}".format(input_shape[1]))
        if input_shape[0] != x_shape[0] and input_shape[0] != 1:
            raise ValueError( "When x's dimension[0] is not equal with input's dimension[0], input's dimension[0] must be 1 but got {}".format(input_shape[0]))
    if x_shape[1] != y_shape[0]:
        raise ValueError("The input Variable x's width must be equal with Variable y' height. But received x's shape = {}, y's shape = {}.".format(x_shape, y_shape))



1054
    if in_dygraph_mode():
W
wanghuancoder 已提交
1055
        out = _C_ops.addmm(input, x, y, "Alpha", alpha, "Beta", beta)
1056 1057
        return out

1058 1059 1060 1061
    inputs = {'Input': input, "X": x, "Y": y}
    attrs = {'Alpha': alpha, 'Beta': beta}

    helper = LayerHelper("addmm", **locals())
Y
yaoxuefeng 已提交
1062
    check_variable_and_dtype(input, 'Input', ['float32', 'float64'], 'addmm')
1063 1064 1065 1066 1067 1068 1069
    check_variable_and_dtype(x, 'X', ['float32', 'float64'], 'addmm')
    check_variable_and_dtype(y, 'Y', ['float32', 'float64'], 'addmm')
    out = helper.create_variable_for_type_inference(dtype=x.dtype)

    helper.append_op(
        type="addmm", inputs=inputs, attrs=attrs, outputs={"Out": out})
    return out
1070 1071


1072
def logsumexp(x, axis=None, keepdim=False, name=None):
1073
    r"""
1074
    This OP calculates the log of the sum of exponentials of ``x`` along ``axis`` .
1075

1076
    .. math::
1077
       logsumexp(x) = \\log\\sum exp(x)
1078

1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096
    Args:
        x (Tensor): The input Tensor with data type float32, float64.
        axis (int|list|tuple, optional): The axis along which to perform
            logsumexp calculations. ``axis`` should be int, list(int) or
            tuple(int). If ``axis`` is a list/tuple of dimension(s), logsumexp
            is calculated along all element(s) of ``axis`` . ``axis`` or
            element(s) of ``axis`` should be in range [-D, D), where D is the
            dimensions of ``x`` . If ``axis`` or element(s) of ``axis`` is
            less than 0, it works the same way as :math:`axis + D` . If
            ``axis`` is None, logsumexp is calculated along all elements of
            ``x``. Default is None.
        keepdim (bool, optional): Whether to reserve the reduced dimension(s)
            in the output Tensor. If ``keep_dim`` is True, the dimensions of
            the output Tensor is the same as ``x`` except in the reduced
            dimensions(it is of size 1 in this case). Otherwise, the shape of
            the output Tensor is squeezed in ``axis`` . Default is False.
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.
1097

1098
    Returns:
1099 1100
        Tensor, results of logsumexp along ``axis`` of ``x``, with the same data
        type as ``x``.
1101

1102
    Examples:
1103

1104
    .. code-block:: python
1105

1106 1107
        import paddle

1108
        x = paddle.to_tensor([[-1.5, 0., 2.], [3., 1.2, -2.4]])
1109 1110
        out1 = paddle.logsumexp(x) # [3.4691226]
        out2 = paddle.logsumexp(x, 1) # [2.15317821, 3.15684602]
1111 1112

    """
1113 1114 1115 1116 1117 1118 1119
    if isinstance(axis, int):
        axis = [axis]
    reduce_all = True if axis is None \
        or len(axis)==0 \
        or len(axis) == len(x.shape) else False
    if axis is None or len(axis) == 0:
        axis = [0]
1120

1121
    if in_dygraph_mode():
W
wanghuancoder 已提交
1122
        return _C_ops.logsumexp(x, 'axis', axis, 'keepdim', keepdim, 'reduce_all', reduce_all)
1123

1124 1125 1126
    check_variable_and_dtype(x, 'x',
                             ['float32', 'float64'],
                             'logsumexp')
1127

1128
    helper = LayerHelper('logsumexp', **locals())
1129
    attrs = {'axis': axis, 'keepdim': keepdim, 'reduce_all':reduce_all}
1130 1131 1132 1133
    out = helper.create_variable_for_type_inference(x.dtype)
    helper.append_op(
        type='logsumexp', inputs={'X': x}, outputs={'Out': out}, attrs=attrs)
    return out
1134

S
swtkiwi 已提交
1135

1136 1137
def inverse(x, name=None):
    """
1138 1139 1140 1141 1142
    Takes the inverse of the square matrix. A square matrix is a matrix with
    the same number of rows and columns. The input can be a square matrix
    (2-D Tensor) or batches of square matrices.

    Args:
1143
        x (Tensor): The input tensor. The last two
1144 1145 1146 1147 1148 1149 1150 1151
            dimensions should be equal. When the number of dimensions is
            greater than 2, it is treated as batches of square matrix. The data
            type can be float32 and float64.
        name (str, optional): The default value is None. Normally there is no need for
            user to set this property. For more information,
            please refer to :ref:`api_guide_Name`

    Returns:
1152
        Tensor: A Tensor holds the inverse of x. The shape and data type
1153
                        is the same as x.
1154 1155 1156 1157 1158

    Examples:
        .. code-block:: python

            import paddle
1159 1160

            mat = paddle.to_tensor([[2, 0], [0, 2]], dtype='float32')
1161 1162
            inv = paddle.inverse(mat)
            print(inv) # [[0.5, 0], [0, 0.5]]
1163 1164 1165

    """
    if in_dygraph_mode():
W
wanghuancoder 已提交
1166
        return _C_ops.inverse(x)
1167

1168 1169
    def _check_input(x):
        check_variable_and_dtype(x, 'x',
1170
                                 ['float32', 'float64'], 'inverse')
1171
        if len(x.shape) < 2:
1172 1173 1174
            raise ValueError(
                "The input of inverse is expected to be a Tensor whose number "
                "of dimensions is no less than 2. But reviced: %d, "
1175 1176
                "x's shape: %s." % (len(x.shape), x.shape))
    _check_input(x)
1177
    helper = LayerHelper('inverse', **locals())
1178
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
1179
    helper.append_op(
1180
        type='inverse', inputs={'Input': [x] }, outputs={'Output': [out]})
1181 1182 1183
    return out


1184
def max(x, axis=None, keepdim=False, name=None):
1185
    """
S
swtkiwi 已提交
1186

1187
    Computes the maximum of tensor elements over the given axis.
1188 1189

    Args:
1190
        x(Tensor): A tensor, the data type is float32,
1191
            float64, int32, int64.
1192
        axis(int|list|tuple, optional): The axis along which the maximum is computed.
1193
            If :attr:`None`, compute the maximum over all elements of
N
Noel 已提交
1194
            `x` and return a Tensor with a single element,
1195 1196 1197
            otherwise must be in the range :math:`[-x.ndim(x), x.ndim(x))`.
            If :math:`axis[i] < 0`, the axis to reduce is :math:`x.ndim + axis[i]`.
        keepdim(bool, optional): Whether to reserve the reduced dimension in the
1198
            output Tensor. The result tensor will have one fewer dimension
1199
            than the `x` unless :attr:`keepdim` is true, default
1200
            value is False.
1201
        name(str, optional): The default value is None.  Normally there is no need for
1202 1203 1204
            user to set this property.  For more information, please refer to :ref:`api_guide_Name`

    Returns:
1205
        Tensor, results of maximum on the specified axis of input tensor,
1206
        it's data type is the same as `x`.
1207 1208 1209

    Examples:
        .. code-block:: python
1210

1211
            import paddle
1212

N
Noel 已提交
1213
            # data_x is a Tensor with shape [2, 4]
1214
            # the axis is a int element
1215 1216 1217

            x = paddle.to_tensor([[0.2, 0.3, 0.5, 0.9],
                                  [0.1, 0.2, 0.6, 0.7]])
1218
            result1 = paddle.max(x)
N
Noel 已提交
1219
            print(result1)
1220 1221
            #[0.9]
            result2 = paddle.max(x, axis=0)
W
Wei Shengyu 已提交
1222
            print(result2)
1223 1224
            #[0.2 0.3 0.6 0.9]
            result3 = paddle.max(x, axis=-1)
N
Noel 已提交
1225
            print(result3)
1226 1227
            #[0.9 0.7]
            result4 = paddle.max(x, axis=1, keepdim=True)
N
Noel 已提交
1228
            print(result4)
1229 1230 1231
            #[[0.9]
            # [0.7]]

N
Noel 已提交
1232
            # data_y is a Tensor with shape [2, 2, 2]
1233
            # the axis is list 
1234 1235 1236

            y = paddle.to_tensor([[[1.0, 2.0], [3.0, 4.0]],
                                  [[5.0, 6.0], [7.0, 8.0]]])
1237
            result5 = paddle.max(y, axis=[1, 2])
N
Noel 已提交
1238
            print(result5)
1239 1240
            #[4. 8.]
            result6 = paddle.max(y, axis=[0, 1])
N
Noel 已提交
1241
            print(result6)
1242
            #[7. 8.]
1243 1244
    """

1245
    if axis is not None and not isinstance(axis, list):
1246 1247 1248 1249 1250 1251 1252 1253
        if isinstance(axis, tuple):
            axis = list(axis)
        elif isinstance(axis, int):
            axis= [axis]
        else:
            raise TypeError(
                "The type of axis must be int, list or tuple, but received {}".format(type(axis)))

1254 1255 1256
    reduce_all = True if axis == None or axis == [] else False
    axis = axis if axis != None and axis != [] else [0]
    if in_dygraph_mode():
W
wanghuancoder 已提交
1257
        return _C_ops.reduce_max(x, 'dim', axis, 'keep_dim', keepdim,
1258
                                   'reduce_all', reduce_all)
1259

1260
    helper = LayerHelper('max', **locals())
1261
    check_variable_and_dtype(
1262
        x, 'x', ['float32', 'float64', 'int32', 'int64'], 'max')
1263

1264
    out = helper.create_variable_for_type_inference(
1265
            dtype=x.dtype)
1266 1267
    helper.append_op(
        type='reduce_max',
1268
        inputs={'X': x},
1269 1270
        outputs={'Out': out},
        attrs={
1271 1272
            'dim': axis,
            'keep_dim': keepdim,
1273 1274 1275 1276
            'reduce_all': reduce_all
        })
    return out

1277
def min(x, axis=None, keepdim=False, name=None):
1278
    """
S
swtkiwi 已提交
1279

1280
    Computes the minimum of tensor elements over the given axis
1281

1282
    Args:
1283
        x(Tensor): A tensor, the data type is float32, float64, int32, int64.
1284
        axis(int|list|tuple, optional): The axis along which the minimum is computed.
1285
            If :attr:`None`, compute the minimum over all elements of
N
Noel 已提交
1286
            `x` and return a Tensor with a single element,
1287 1288 1289
            otherwise must be in the range :math:`[-x.ndim, x.ndim)`.
            If :math:`axis[i] < 0`, the axis to reduce is :math:`x.ndim + axis[i]`.
        keepdim(bool, optional): Whether to reserve the reduced dimension in the
1290
            output Tensor. The result tensor will have one fewer dimension
1291
            than the `x` unless :attr:`keepdim` is true, default
1292
            value is False.
W
WuHaobo 已提交
1293
        name(str, optional): The default value is None.  Normally there is no need for 
1294
            user to set this property.  For more information, please refer to :ref:`api_guide_Name`
1295

1296
    Returns:
1297
        Tensor, results of minimum on the specified axis of input tensor,
1298
        it's data type is the same as input's Tensor.
1299

1300 1301 1302
    Examples:
        .. code-block:: python

1303
            import paddle
1304

1305
            # x is a tensor with shape [2, 4]
1306
            # the axis is a int element
1307 1308
            x = paddle.to_tensor([[0.2, 0.3, 0.5, 0.9],
                                  [0.1, 0.2, 0.6, 0.7]])
1309
            result1 = paddle.min(x)
N
Noel 已提交
1310
            print(result1)
1311 1312
            #[0.1]
            result2 = paddle.min(x, axis=0)
N
Noel 已提交
1313
            print(result2)
1314 1315
            #[0.1 0.2 0.5 0.7]
            result3 = paddle.min(x, axis=-1)
W
Wei Shengyu 已提交
1316
            print(result3)
1317 1318
            #[0.2 0.1]
            result4 = paddle.min(x, axis=1, keepdim=True)
N
Noel 已提交
1319
            print(result4)
1320 1321 1322
            #[[0.2]
            # [0.1]]

N
Noel 已提交
1323
            # y is a Tensor with shape [2, 2, 2]
1324
            # the axis is list 
1325 1326
            y = paddle.to_tensor([[[1.0, 2.0], [3.0, 4.0]],
                                  [[5.0, 6.0], [7.0, 8.0]]])
1327
            result5 = paddle.min(y, axis=[1, 2])
W
Wei Shengyu 已提交
1328
            print(result5)
1329 1330
            #[1. 5.]
            result6 = paddle.min(y, axis=[0, 1])
N
Noel 已提交
1331
            print(result6)
1332 1333
            #[1. 2.]
    """
1334

1335
    if axis is not None and not isinstance(axis, list):
1336 1337 1338 1339 1340 1341 1342
        if isinstance(axis, tuple):
            axis = list(axis)
        elif isinstance(axis, int):
            axis= [axis]
        else:
            raise TypeError(
                "The type of axis must be int, list or tuple, but received {}".format(type(axis)))
1343 1344
    reduce_all = True if axis == None or axis == [] else False
    axis = axis if axis != None and axis != [] else [0]
1345
    if in_dygraph_mode():
W
wanghuancoder 已提交
1346
        return _C_ops.reduce_min(x, 'dim', axis, 'keep_dim', keepdim,
1347
                                   'reduce_all', reduce_all)
1348 1349 1350 1351 1352 1353

    helper = LayerHelper('min', **locals())
    check_variable_and_dtype(
        x, 'x', ['float32', 'float64', 'int32', 'int64'], 'min')

    out = helper.create_variable_for_type_inference(
1354
            dtype=x.dtype)
1355 1356
    helper.append_op(
        type='reduce_min',
1357
        inputs={'X': x},
1358 1359
        outputs={'Out': out},
        attrs={
1360 1361
            'dim': axis,
            'keep_dim': keepdim,
1362 1363 1364 1365 1366
            'reduce_all': reduce_all
        })
    return out


W
WuHaobo 已提交
1367
def log1p(x, name=None):
1368
    r"""
1369
    Calculates the natural log of the given input tensor, element-wise.
N
Noel 已提交
1370

1371 1372
    .. math::
        Out = \\ln(x+1)
S
Steffy-zxf 已提交
1373

1374
    Args:
S
Steffy-zxf 已提交
1375
        x (Tensor): Input Tensor. Must be one of the following types: float32, float64.
1376 1377 1378
        name(str, optional): The default value is None.  Normally there is no need for 
            user to set this property.  For more information, please refer to :ref:`api_guide_Name`
    Returns:
S
Steffy-zxf 已提交
1379
        Tensor, the natural log of the input Tensor computed element-wise.
1380

1381 1382
    Examples:
        .. code-block:: python
S
Steffy-zxf 已提交
1383

1384
            import paddle
S
Steffy-zxf 已提交
1385 1386 1387 1388

            data = paddle.to_tensor([[0], [1]], dtype='float32')
            res = paddle.log1p(data)
            # [[0.], [0.6931472]]
1389 1390 1391
    """

    if in_dygraph_mode():
W
wanghuancoder 已提交
1392
        return _C_ops.log1p(x)
1393 1394 1395 1396 1397

    check_variable_and_dtype(x, 'x', ['float32', 'float64'], "log1p")
    inputs = {'X': [x]}
    helper = LayerHelper('log1p', **locals())
    dtype = helper.input_dtype(input_param_name='x')
W
WuHaobo 已提交
1398
    out = helper.create_variable_for_type_inference(dtype)
1399 1400
    helper.append_op(type="log1p", inputs={"X": x}, outputs={"Out": out})
    return out
B
Bai Yifan 已提交
1401

J
joejiong 已提交
1402
def log2(x, name=None):
1403
    r"""
J
joejiong 已提交
1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440
    Calculates the log to the base 2 of the given input tensor, element-wise.

    .. math::

        Out = \\log_2x

    Args:
        x (Tensor): Input tensor must be one of the following types: float32, float64.
        name (str|None): The default value is None. Normally there is no need for user to set this property. For more information, please refer to :ref:`api_guide_Name`


    Returns:
        Tensor: The log to the base 2 of the input Tensor computed element-wise.

    Examples:

        .. code-block:: python
        
            import paddle

            # example 1: x is a float
            x_i = paddle.to_tensor([[1.0], [2.0]])
            res = paddle.log2(x_i) # [[0.], [1.0]]

            # example 2: x is float32
            x_i = paddle.full(shape=[1], fill_value=2, dtype='float32')
            paddle.to_tensor(x_i)
            res = paddle.log2(x_i)
            print(res) # [1.0]

            # example 3: x is float64
            x_i = paddle.full(shape=[1], fill_value=2, dtype='float64')
            paddle.to_tensor(x_i)
            res = paddle.log2(x_i)
            print(res) # [1.0]
    """
    if in_dygraph_mode():
W
wanghuancoder 已提交
1441
        return _C_ops.log2(x)
J
joejiong 已提交
1442 1443 1444 1445 1446 1447 1448 1449

    check_variable_and_dtype(x, 'x', ['float16', 'float32', 'float64'], "log2")
    inputs = {'X': [x]}
    helper = LayerHelper('log2', **locals())
    dtype = helper.input_dtype(input_param_name='x')
    out = helper.create_variable_for_type_inference(dtype)
    helper.append_op(type="log2", inputs={"X": x}, outputs={"Out": out})
    return out
W
WuHaobo 已提交
1450

J
joejiong 已提交
1451 1452

def log10(x, name=None):
1453
    r"""
J
joejiong 已提交
1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490
    Calculates the log to the base 10 of the given input tensor, element-wise.

    .. math::

        Out = \\log_10_x

    Args:
        x (Tensor): Input tensor must be one of the following types: float32, float64.
        name (str|None): The default value is None. Normally there is no need for user to set this property. For more information, please refer to :ref:`api_guide_Name`


    Returns:
        Tensor: The log to the base 10 of the input Tensor computed element-wise.

    Examples:

        .. code-block:: python
        
            import paddle

            # example 1: x is a float
            x_i = paddle.to_tensor([[1.0], [10.0]])
            res = paddle.log10(x_i) # [[0.], [1.0]]

            # example 2: x is float32
            x_i = paddle.full(shape=[1], fill_value=10, dtype='float32')
            paddle.to_tensor(x_i)
            res = paddle.log10(x_i)
            print(res) # [1.0]

            # example 3: x is float64
            x_i = paddle.full(shape=[1], fill_value=10, dtype='float64')
            paddle.to_tensor(x_i)
            res = paddle.log10(x_i)
            print(res) # [1.0]
    """
    if in_dygraph_mode():
W
wanghuancoder 已提交
1491
        return _C_ops.log10(x)
J
joejiong 已提交
1492 1493 1494 1495 1496 1497 1498 1499 1500 1501

    check_variable_and_dtype(x, 'x', ['float16', 'float32', 'float64'], "log10")
    inputs = {'X': [x]}
    helper = LayerHelper('log10', **locals())
    dtype = helper.input_dtype(input_param_name='x')
    out = helper.create_variable_for_type_inference(dtype)
    helper.append_op(type="log10", inputs={"X": x}, outputs={"Out": out})
    return out


Y
Yang Zhang 已提交
1502
def clip(x, min=None, max=None, name=None):
1503
    """
Y
Yang Zhang 已提交
1504
    This operator clip all elements in input into the range [ min, max ] and return
1505 1506 1507 1508
    a resulting tensor as the following equation:

    .. math::

1509
        Out = MIN(MAX(x, min), max)
1510 1511

    Args:
1512 1513
        x (Tensor): An N-D Tensor with data type float32, float64, int32 or int64.
        min (float|int|Tensor): The lower bound with type ``float`` , ``int`` or a ``Tensor``
1514
            with shape [1] and type ``int32``, ``float32``, ``float64``.
1515
        max (float|int|Tensor): The upper bound with type ``float``, ``int`` or a ``Tensor``
1516 1517 1518 1519 1520 1521
            with shape [1] and type ``int32``, ``float32``, ``float64``.
        name (str, optional): The default value is None. Normally there is no
            need for user to set this property. For more information, please
            refer to :ref:`api_guide_Name`.

    Returns:
Y
Yang Zhang 已提交
1522
        Tensor: A Tensor with the same data type and data shape as input.
1523 1524 1525 1526 1527

    Examples:
        .. code-block:: python

            import paddle
N
Noel 已提交
1528

1529
            x1 = paddle.to_tensor([[1.2, 3.5], [4.5, 6.4]], 'float32')
Y
Yang Zhang 已提交
1530 1531
            out1 = paddle.clip(x1, min=3.5, max=5.0)
            out2 = paddle.clip(x1, min=2.5)
1532
            print(out1)
Y
Yang Zhang 已提交
1533 1534
            # [[3.5, 3.5]
            # [4.5, 5.0]]
1535
            print(out2)
Y
Yang Zhang 已提交
1536 1537
            # [[2.5, 3.5]
            # [[4.5, 6.4]
1538 1539
    """

1540 1541 1542 1543 1544 1545 1546 1547 1548 1549
    x_dtype = str(x.dtype)
    if x_dtype == 'paddle.int32':
        min_ = np.iinfo(np.int32).min
        max_ = np.iinfo(np.int32).max - 2**7
    elif x_dtype == 'paddle.int64':
        min_ = np.iinfo(np.int64).min
        max_ = np.iinfo(np.int64).max - 2**39
    else:
        min_ = float(np.finfo(np.float32).min)
        max_ = float(np.finfo(np.float32).max)
1550

W
WuHaobo 已提交
1551
    if in_dygraph_mode():
1552 1553 1554 1555
        if isinstance(min, Variable):
            min = min.numpy().item(0)
        if isinstance(max, Variable):
            max = max.numpy().item(0)
1556 1557
        min = min_ if min is None else min
        max = max_ if max is None else max
W
wanghuancoder 已提交
1558
        return _C_ops.clip(x, "min", min, "max", max)
W
WuHaobo 已提交
1559

1560
    if min is not None:
Y
Yang Zhang 已提交
1561
        check_type(min, 'min', (float, int, Variable), 'clip')
1562 1563
        if isinstance(min, Variable):
            check_dtype(min.dtype, 'min', ['float32', 'float64', 'int32'],
Y
Yang Zhang 已提交
1564
                        'clip', '(When the type of min in clip is Variable.)')
1565
    if max is not None:
Y
Yang Zhang 已提交
1566
        check_type(max, 'max', (float, int, Variable), 'clip')
1567 1568
        if isinstance(max, Variable):
            check_dtype(max.dtype, 'max', ['float32', 'float64', 'int32'],
Y
Yang Zhang 已提交
1569
                        'clip', '(When the type of max in clip is Variable.)')
1570

1571
    check_variable_and_dtype(x, 'x', ['float32', 'float64', 'int32', 'int64'], 'clip')
Y
Yang Zhang 已提交
1572 1573

    inputs = {'X': x}
1574
    attrs = {'min': min_, 'max': max_}
1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587

    if isinstance(min, Variable):
        min.stop_gradient = True
        inputs['Min'] = min
    elif min is not None:
        attrs['min'] = min

    if isinstance(max, Variable):
        max.stop_gradient = True
        inputs['Max'] = max
    elif max is not None:
        attrs['max'] = max

Y
Yang Zhang 已提交
1588
    helper = LayerHelper('clip', **locals())
W
WuHaobo 已提交
1589
    output = helper.create_variable_for_type_inference(
Y
Yang Zhang 已提交
1590
        dtype=helper.input_dtype('x'))
1591 1592 1593 1594
    helper.append_op(
        type='clip', inputs=inputs, outputs={'Out': [output]}, attrs=attrs)

    return output
F
Feiyu Chan 已提交
1595

W
WuHaobo 已提交
1596

1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610
@inplace_apis_in_dygraph_only
def clip_(x, min=None, max=None, name=None):
    """
    Inplace version of ``clip`` API, the output Tensor will be inplaced with input ``x``.
    Please refer to :ref:`api_tensor_clip`.
    """
    fmin = float(np.finfo(np.float32).min)
    fmax = float(np.finfo(np.float32).max)
    if isinstance(min, Variable):
        min = min.numpy().item(0)
    if isinstance(max, Variable):
        max = max.numpy().item(0)
    min = fmin if min is None else min
    max = fmax if max is None else max
W
wanghuancoder 已提交
1611
    return _C_ops.clip_(x, "min", min, "max", max)
1612 1613 1614



1615
def trace(x, offset=0, axis1=0, axis2=1, name=None):
L
Li Fuchen 已提交
1616
    """
1617
    **trace**
S
swtkiwi 已提交
1618

1619
    This OP computes the sum along diagonals of the input tensor x.
1620 1621

    If ``x`` is 2D, returns the sum of diagonal.
L
Li Fuchen 已提交
1622

1623
    If ``x`` has larger dimensions, then returns an tensor of diagonals sum, diagonals be taken from
1624
    the 2D planes specified by axis1 and axis2. By default, the 2D planes formed by the first and second axes
1625
    of the input tensor x.
L
Li Fuchen 已提交
1626

1627
    The argument ``offset`` determines where diagonals are taken from input tensor x:
L
Li Fuchen 已提交
1628 1629 1630 1631

    - If offset = 0, it is the main diagonal.
    - If offset > 0, it is above the main diagonal.
    - If offset < 0, it is below the main diagonal.
1632
    - Note that if offset is out of input's shape indicated by axis1 and axis2, 0 will be returned.
1633

L
Li Fuchen 已提交
1634
    Args:
1635
        x(Tensor): The input tensor x. Must be at least 2-dimensional. The input data type should be float32, float64, int32, int64.
1636 1637 1638
        offset(int, optional): Which diagonals in input tensor x will be taken. Default: 0 (main diagonals).
        axis1(int, optional): The first axis with respect to take diagonal. Default: 0.
        axis2(int, optional): The second axis with respect to take diagonal. Default: 1.
L
Li Fuchen 已提交
1639 1640 1641
        name (str, optional): Normally there is no need for user to set this property. For more information, please refer to :ref:`api_guide_Name`. Default: None.

    Returns:
1642
        Tensor: the output data type is the same as input data type.
L
Li Fuchen 已提交
1643 1644 1645 1646 1647

    Examples:
        .. code-block:: python

            import paddle
1648

1649 1650 1651
            case1 = paddle.randn([2, 3])
            case2 = paddle.randn([3, 10, 10])
            case3 = paddle.randn([3, 10, 5, 10])
1652 1653 1654
            data1 = paddle.trace(case1) # data1.shape = [1]
            data2 = paddle.trace(case2, offset=1, axis1=1, axis2=2) # data2.shape = [3]
            data3 = paddle.trace(case3, offset=-3, axis1=1, axis2=-1) # data2.shape = [3, 5]
L
Li Fuchen 已提交
1655 1656
    """
    def __check_input(input, offset, dim1, dim2):
1657
        check_dtype(x.dtype, 'Input',
L
Li Fuchen 已提交
1658 1659 1660
                    ['int32', 'int64', 'float16', 'float32', 'float64'],
                    'trace')

1661
        input_shape = list(x.shape)
L
Li Fuchen 已提交
1662
        assert len(input_shape) >= 2,                     \
1663 1664
                "The x must be at least 2-dimensional, "   \
                "But received Input x's dimensional: %s.\n" %  \
L
Li Fuchen 已提交
1665 1666
                len(input_shape)

1667 1668
        axis1_ = axis1 if axis1 >= 0 else len(input_shape) + axis1
        axis2_ = axis2 if axis2 >= 0 else len(input_shape) + axis2
L
Li Fuchen 已提交
1669

X
XiangGao 已提交
1670
        assert ((0 <= axis1_) and (axis1_ < len(input_shape))),     \
1671 1672
            "The argument axis1 is out of range (expected to be in range of [%d, %d], but got %d).\n"  \
            % (-(len(input_shape)), len(input_shape) - 1, axis1)
L
Li Fuchen 已提交
1673

X
XiangGao 已提交
1674
        assert ((0 <= axis2_) and (axis2_ < len(input_shape))),   \
1675 1676
            "The argument axis2 is out of range (expected to be in range of [%d, %d], but got %d).\n"   \
            % (-(len(input_shape)), len(input_shape) - 1, axis2)
L
Li Fuchen 已提交
1677 1678


1679 1680 1681
        assert  axis1_ != axis2_,   \
               "axis1 and axis2 cannot be the same axis." \
                "But received axis1 = %d, axis2 = %d\n"%(axis1, axis2)
L
Li Fuchen 已提交
1682

W
wanghuancoder 已提交
1683
    __check_input(input, offset, axis1, axis2)
X
XiangGao 已提交
1684 1685 1686 1687 1688
    if in_dygraph_mode():
        return _C_ops.trace(x, 'offset', offset, 'axis1', axis1, 'axis2', axis2)

    inputs = {'Input': [x]}
    attrs = {'offset': offset, 'axis1': axis1, 'axis2': axis2}
L
Li Fuchen 已提交
1689 1690
    helper = LayerHelper('trace', **locals())

1691
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
L
Li Fuchen 已提交
1692 1693 1694

    helper.append_op(
        type='trace',
1695
        inputs={'Input': [x]},
L
Li Fuchen 已提交
1696
        attrs={'offset': offset,
1697 1698
               'axis1': axis1,
               'axis2': axis2},
L
Li Fuchen 已提交
1699 1700 1701
        outputs={'Out': [out]})
    return out

1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766
def diagonal(x, offset=0, axis1=0, axis2=1, name=None):
    """
    This OP computes the diagonals of the input tensor x.

    If ``x`` is 2D, returns the diagonal.
    If ``x`` has larger dimensions, diagonals be taken from the 2D planes specified by axis1 and axis2. 
    By default, the 2D planes formed by the first and second axis of the input tensor x.

    The argument ``offset`` determines where diagonals are taken from input tensor x:

    - If offset = 0, it is the main diagonal.
    - If offset > 0, it is above the main diagonal.
    - If offset < 0, it is below the main diagonal.
    
    Args:
        x(Tensor): The input tensor x. Must be at least 2-dimensional. The input data type should be bool, int32, int64, float16, float32, float64.
        offset(int, optional): Which diagonals in input tensor x will be taken. Default: 0 (main diagonals).
        axis1(int, optional): The first axis with respect to take diagonal. Default: 0.
        axis2(int, optional): The second axis with respect to take diagonal. Default: 1.
        name (str, optional): Normally there is no need for user to set this property. For more information, please refer to :ref:`api_guide_Name`. Default: None.

    Returns:
        Tensor: a partial view of input tensor in specify two dimensions, the output data type is the same as input data type.

    Examples:
        .. code-block:: python

            import paddle

            x = paddle.rand([2,2,3],'float32')
            print(x)
            # Tensor(shape=[2, 2, 3], dtype=float32, place=CUDAPlace(0), stop_gradient=True,
            #        [[[0.45661032, 0.03751532, 0.90191704],
            #          [0.43760979, 0.86177313, 0.65221709]],

            #         [[0.17020577, 0.00259554, 0.28954273],
            #          [0.51795638, 0.27325270, 0.18117726]]])

            out1 = paddle.diagonal(x)
            print(out1)
            #Tensor(shape=[3, 2], dtype=float32, place=CUDAPlace(0), stop_gradient=True,
            #       [[0.45661032, 0.51795638],
            #        [0.03751532, 0.27325270],
            #        [0.90191704, 0.18117726]])

            out2 = paddle.diagonal(x, offset=0, axis1=2, axis2=1)
            print(out2)
            #Tensor(shape=[2, 2], dtype=float32, place=CUDAPlace(0), stop_gradient=True,
            #       [[0.45661032, 0.86177313],
            #        [0.17020577, 0.27325270]])

            out3 = paddle.diagonal(x, offset=1, axis1=0, axis2=1)
            print(out3)
            #Tensor(shape=[3, 1], dtype=float32, place=CUDAPlace(0), stop_gradient=True,
            #       [[0.43760979],
            #        [0.86177313],
            #        [0.65221709]])

            out4 = paddle.diagonal(x, offset=0, axis1=1, axis2=2)
            print(out4)
            #Tensor(shape=[2, 2], dtype=float32, place=CUDAPlace(0), stop_gradient=True,
            #       [[0.45661032, 0.86177313],
            #        [0.17020577, 0.27325270]])
            
    """
W
wanghuancoder 已提交
1767
    if in_dygraph_mode():
W
wanghuancoder 已提交
1768
        return _C_ops.diagonal(x, 'offset', offset, 'axis1', axis1, 'axis2', axis2)
W
wanghuancoder 已提交
1769

1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809
    def __check_input(input, offset, dim1, dim2):
        check_dtype(x.dtype, 'Input',
                    ['bool', 'int32', 'int64', 'float16', 'float32', 'float64'],
                    'diagonal')

        input_shape = list(x.shape)
        assert len(input_shape) >= 2,                     \
                "The x must be at least 2-dimensional, "   \
                "But received Input x's dimensional: %s.\n" %  \
                len(input_shape)

        axis1_ = axis1 if axis1 >= 0 else len(input_shape) + axis1
        axis2_ = axis2 if axis2 >= 0 else len(input_shape) + axis2

        assert axis1_ < len(input_shape),     \
            "The argument axis1 is out of range (expected to be in range of [%d, %d], but got %d).\n"  \
            % (-(len(input_shape)), len(input_shape) - 1, axis1)

        assert axis2_ < len(input_shape),   \
            "The argument axis2 is out of range (expected to be in range of [%d, %d], but got %d).\n"   \
            % (-(len(input_shape)), len(input_shape) - 1, axis2)

        assert  axis1_ != axis2_,   \
               "axis1 and axis2 cannot be the same axis." \
                "But received axis1 = %d, axis2 = %d\n"%(axis1, axis2)

    __check_input(input, offset, axis1, axis2)
    helper = LayerHelper('diagonal', **locals())
    out = helper.create_variable_for_type_inference(dtype=x.dtype)

    helper.append_op(
        type='diagonal',
        inputs={'Input': [x]},
        attrs={'offset': offset,
               'axis1': axis1,
               'axis2': axis2},
               outputs={'Out': [out]})
    return out


F
Feiyu Chan 已提交
1810
@templatedoc(op_type="kron")
W
WuHaobo 已提交
1811
def kron(x, y, name=None):
S
swtkiwi 已提交
1812 1813 1814
    """

${comment}
F
Feiyu Chan 已提交
1815 1816

    Args:
N
Noel 已提交
1817
        x (Tensor): the fist operand of kron op, data type: float16, float32,
F
Feiyu Chan 已提交
1818
            float64, int32 or int64.
N
Noel 已提交
1819
        y (Tensor): the second operand of kron op, data type: float16,
1820
            float32, float64, int32 or int64. Its data type should be the same
F
Feiyu Chan 已提交
1821
            with x.
1822 1823
        name(str, optional): The default value is None.  Normally there is no
            need for user to set this property.  For more information, please
F
Feiyu Chan 已提交
1824 1825 1826
            refer to :ref:`api_guide_Name`.

    Returns:
N
Noel 已提交
1827
        Tensor: The output of kron op, data type: float16, float32, float64, int32 or int64. Its data is the same with x.
F
Feiyu Chan 已提交
1828 1829 1830

    Examples:
        .. code-block:: python
1831

1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842
            import paddle
            x = paddle.to_tensor([[1, 2], [3, 4]], dtype='int64')
            y = paddle.to_tensor([[1, 2, 3], [4, 5, 6], [7, 8, 9]], dtype='int64')
            out = paddle.kron(x, y)
            print(out)
            #        [[1, 2, 3, 2, 4, 6],
            #         [ 4,  5,  6,  8, 10, 12],
            #         [ 7,  8,  9, 14, 16, 18],
            #         [ 3,  6,  9,  4,  8, 12],
            #         [12, 15, 18, 16, 20, 24],
            #         [21, 24, 27, 28, 32, 36]])
F
Feiyu Chan 已提交
1843 1844
    """
    if in_dygraph_mode():
W
wanghuancoder 已提交
1845
        return _C_ops.kron(x, y)
F
Feiyu Chan 已提交
1846 1847 1848 1849 1850

    helper = LayerHelper('kron', **locals())
    check_variable_and_dtype(x, 'x', ['float16', 'float32', 'float64', 'int32', 'int64'], 'kron')
    check_variable_and_dtype(y, 'y', ['float16', 'float32', 'float64', 'int32', 'int64'], 'kron')

W
WuHaobo 已提交
1851
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
F
Feiyu Chan 已提交
1852 1853
    helper.append_op(type="kron", inputs={"X": x, "Y": y}, outputs={"Out": out})
    return out
1854 1855 1856 1857


def cumsum(x, axis=None, dtype=None, name=None):
    """
1858 1859 1860 1861
    The cumulative sum of the elements along a given axis. 
    
    **Note**:
    The first element of the result is the same of the first element of the input. 
1862 1863

    Args:
1864
        x (Tensor): The input tensor needed to be cumsumed.
1865 1866 1867 1868 1869
        axis (int, optional): The dimension to accumulate along. -1 means the last dimension. The default (None) is to compute the cumsum over the flattened array.
        dtype (str, optional): The data type of the output tensor, can be float32, float64, int32, int64. If specified, the input tensor is casted to dtype before the operation is performed. This is useful for preventing data type overflows. The default value is None. 
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
1870
        Tensor, the result of cumsum operator. 
1871 1872 1873 1874 1875

    Examples:
        .. code-block:: python
            
            import paddle
1876 1877 1878
            
            data = paddle.arange(12)
            data = paddle.reshape(data, (3, 4))
1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905

            y = paddle.cumsum(data)
            # [ 0  1  3  6 10 15 21 28 36 45 55 66]

            y = paddle.cumsum(data, axis=0)
            # [[ 0  1  2  3]
            #  [ 4  6  8 10]
            #  [12 15 18 21]]
            
            y = paddle.cumsum(data, axis=-1)
            # [[ 0  1  3  6]
            #  [ 4  9 15 22]
            #  [ 8 17 27 38]]

            y = paddle.cumsum(data, dtype='float64')
            print(y.dtype)
            # VarType.FP64
    """
    if axis is None:
        flatten = True
    else:
        flatten = False
    if dtype is not None and x.dtype != convert_np_dtype_to_dtype_(dtype):
        x = layers.cast(x, dtype)

    if in_dygraph_mode():
        if axis is None:
W
wanghuancoder 已提交
1906
            return _C_ops.cumsum(x, 'flatten', flatten)
1907
        else:
W
wanghuancoder 已提交
1908
            return _C_ops.cumsum(x, 'axis', axis, 'flatten', flatten)
1909 1910 1911 1912 1913 1914 1915 1916 1917

    check_type(x, 'x', (Variable), 'cumsum')
    locals_var = locals().copy()
    kwargs = dict()
    for name, val in locals_var.items():
        if val is not None:
            kwargs[name] = val
    _cum_sum_ = generate_layer_fn('cumsum')
    return _cum_sum_(**kwargs)
G
guofei 已提交
1918

H
hlygit66666 已提交
1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929
def cumprod(x, dim=None, dtype=None, name=None):
    """
    Compute the cumulative product of the input tensor x along a given dimension dim.

    **Note**:
    The first element of the result is the same as the first element of the input.

    Args:
        x (Tensor): the input tensor need to be cumproded.
        dim (int): the dimension along which the input tensor will be accumulated. It need to be in the range of [-x.rank, x.rank), where x.rank means the dimensions of the input tensor x and -1 means the last dimension.
        dtype (str, optional): The data type of the output tensor, can be float32, float64, int32, int64, complex64, complex128. If specified, the input tensor is casted to dtype before the operation is performed. This is useful for preventing data type overflows. The default value is None.
H
hlygit66666 已提交
1930
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
H
hlygit66666 已提交
1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979

    Returns:
        Tensor, the result of cumprod operator.

    Examples:
        .. code-block:: python

            import paddle

            data = paddle.arange(12)
            data = paddle.reshape(data, (3, 4))
            # [[ 0  1  2  3 ]
            #  [ 4  5  6  7 ]
            #  [ 8  9  10 11]]

            y = paddle.cumprod(data, dim=0)
            # [[ 0  1   2   3]
            #  [ 0  5  12  21]
            #  [ 0 45 120 231]]

            y = paddle.cumprod(data, dim=-1)
            # [[ 0   0   0    0]
            #  [ 4  20 120  840]
            #  [ 8  72 720 7920]]

            y = paddle.cumprod(data, dim=1, dtype='float64')
            # [[ 0.   0.   0.    0.]
            #  [ 4.  20. 120.  840.]
            #  [ 8.  72. 720. 7920.]]

            print(y.dtype)
            # paddle.float64

    """

    if dtype is not None and x.dtype != convert_np_dtype_to_dtype_(dtype):
        x = layers.cast(x, dtype)

    if in_dygraph_mode():
        return _C_ops.cumprod(x, 'dim', dim)

    check_variable_and_dtype(x, "x", ['complex64', 'complex128', 'float32', 'float64', 'int32', 'int64'], 'cumprod')
    check_type(dim, 'dim', int, 'cumprod')

    helper = LayerHelper('cumprod', **locals())
    out = helper.create_variable_for_type_inference(x.dtype)
    helper.append_op(type='cumprod', inputs={'X': x}, outputs={'Out': out}, attrs={'dim': dim})
    return out

J
Jack Zhou 已提交
1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995
def isfinite(x, name=None):
    """

    Return whether every element of input tensor is finite number or not.

    Args:
        x (Tensor): The input tensor, it's data type should be float16, float32, float64, int32, int64.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        `Tensor`, the bool result which shows every element of `x` whether it is finite number or not.

    Examples:
        .. code-block:: python

            import paddle
N
Noel 已提交
1996

1997
            x = paddle.to_tensor([float('-inf'), -2, 3.6, float('inf'), 0, float('-nan'), float('nan')])
J
Jack Zhou 已提交
1998
            out = paddle.tensor.isfinite(x)
N
Noel 已提交
1999
            print(out)  # [False  True  True False  True False False]
J
Jack Zhou 已提交
2000 2001
    """
    if in_dygraph_mode():
W
wanghuancoder 已提交
2002
        return _C_ops.isfinite_v2(x)
J
Jack Zhou 已提交
2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024
    helper = LayerHelper("isfinite_v2", **locals())
    check_variable_and_dtype(x, 'x', ['float16', 'float32', 'float64', 'int32', 'int64'], 'isfinite')
    out = helper.create_variable_for_type_inference('bool')
    helper.append_op(type="isfinite_v2", inputs={"X": x}, outputs={"Out": out})
    return out

def isinf(x, name=None):
    """

    Return whether every element of input tensor is `+/-INF` or not.

    Args:
        x (Tensor): The input tensor, it's data type should be float16, float32, float64, int32, int64.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        `Tensor`, the bool result which shows every element of `x` whether it is `+/-INF` or not.

    Examples:
        .. code-block:: python

            import paddle
2025
            x = paddle.to_tensor([float('-inf'), -2, 3.6, float('inf'), 0, float('-nan'), float('nan')])
J
Jack Zhou 已提交
2026
            out = paddle.tensor.isinf(x)
N
Noel 已提交
2027
            print(out)  # [ True False False  True False False False]
J
Jack Zhou 已提交
2028 2029
    """
    if in_dygraph_mode():
W
wanghuancoder 已提交
2030
        return _C_ops.isinf_v2(x)
J
Jack Zhou 已提交
2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052
    helper = LayerHelper("isinf_v2", **locals())
    check_variable_and_dtype(x, 'x', ['float16', 'float32', 'float64', 'int32', 'int64'], 'isinf')
    out = helper.create_variable_for_type_inference(dtype='bool')
    helper.append_op(type="isinf_v2", inputs={"X": x}, outputs={"Out": out})
    return out

def isnan(x, name=None):
    """

    Return whether every element of input tensor is `NaN` or not.

    Args:
        x (Tensor): The input tensor, it's data type should be float16, float32, float64, int32, int64.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        `Tensor`, the bool result which shows every element of `x` whether it is `NaN` or not.

    Examples:
        .. code-block:: python

            import paddle
2053
            x = paddle.to_tensor([float('-inf'), -2, 3.6, float('inf'), 0, float('-nan'), float('nan')])
J
Jack Zhou 已提交
2054
            out = paddle.tensor.isnan(x)
N
Noel 已提交
2055
            print(out)  # [False False False False False  True  True]
J
Jack Zhou 已提交
2056 2057
    """
    if in_dygraph_mode():
W
wanghuancoder 已提交
2058
        return _C_ops.isnan_v2(x)
J
Jack Zhou 已提交
2059 2060 2061 2062 2063 2064 2065
    helper = LayerHelper("isnan_v2", **locals())
    check_variable_and_dtype(x, 'x', ['float16', 'float32', 'float64', 'int32', 'int64'], 'isnan')
    out = helper.create_variable_for_type_inference(dtype='bool')
    helper.append_op(type="isnan_v2", inputs={"X": x}, outputs={"Out": out})
    return out


G
guofei 已提交
2066 2067 2068 2069 2070
def prod(x, axis=None, keepdim=False, dtype=None, name=None):
    """
    Compute the product of tensor elements over the given axis.

    Args:
2071
        x(Tensor): The input tensor, its data type should be float32, float64, int32, int64.
G
guofei 已提交
2072 2073 2074 2075 2076 2077 2078 2079 2080
        axis(int|list|tuple, optional): The axis along which the product is computed. If :attr:`None`, 
            multiply all elements of `x` and return a Tensor with a single element, 
            otherwise must be in the range :math:`[-x.ndim, x.ndim)`. If :math:`axis[i]<0`, 
            the axis to reduce is :math:`x.ndim + axis[i]`. Default is None.
        dtype(str|np.dtype, optional): The desired date type of returned tensor, can be float32, float64, 
            int32, int64. If specified, the input tensor is casted to dtype before operator performed. 
            This is very useful for avoiding data type overflows. The default value is None, the dtype 
            of output is the same as input Tensor `x`.
        keepdim(bool, optional): Whether to reserve the reduced dimension in the output Tensor. The result 
2081
            tensor will have one fewer dimension than the input unless `keepdim` is true. Default is False.
G
guofei 已提交
2082 2083 2084 2085 2086 2087 2088 2089 2090
        name(string, optional): The default value is None. Normally there is no need for user to set this property.
            For more information, please refer to :ref:`api_guide_Name` .

    Returns:
        Tensor, result of product on the specified dim of input tensor.

    Raises:
        ValueError: The :attr:`dtype` must be float32, float64, int32 or int64.
        TypeError: The type of :attr:`axis` must be int, list or tuple.
J
Jack Zhou 已提交
2091
    
G
guofei 已提交
2092 2093 2094 2095 2096 2097
    Examples:
        .. code-block:: python

            import paddle

            # the axis is a int element
2098 2099
            x = paddle.to_tensor([[0.2, 0.3, 0.5, 0.9],
                                  [0.1, 0.2, 0.6, 0.7]])
G
guofei 已提交
2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115
            out1 = paddle.prod(x)
            # [0.0002268]

            out2 = paddle.prod(x, -1)
            # [0.027  0.0084]

            out3 = paddle.prod(x, 0)
            # [0.02 0.06 0.3  0.63]

            out4 = paddle.prod(x, 0, keepdim=True)
            # [[0.02 0.06 0.3  0.63]]

            out5 = paddle.prod(x, 0, dtype='int64')
            # [0 0 0 0]

            # the axis is list
2116 2117
            y = paddle.to_tensor([[[1.0, 2.0], [3.0, 4.0]],
                                  [[5.0, 6.0], [7.0, 8.0]]])
G
guofei 已提交
2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130
            out6 = paddle.prod(y, [0, 1])
            # [105. 384.]

            out7 = paddle.prod(y, (1, 2))
            # [  24. 1680.]

    """
    if dtype is not None:
        check_dtype(dtype, 'dtype', ['float32', 'float64', 'int32', 'int64'], 'prod')
        if x.dtype != convert_np_dtype_to_dtype_(dtype):
            x = layers.cast(x, dtype)

    return layers.reduce_prod(input=x, dim=axis, keep_dim=keepdim, name=name)
W
WangXi 已提交
2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149


def sign(x, name=None):
    """
    This OP returns sign of every element in `x`: 1 for positive, -1 for negative and 0 for zero.

    Args:
        x(Tensor): The input tensor. The data type can be float16, float32 or float64.
        name (str, optional): The default value is None. Normally there is no need for user to
            set this property. For more information, please refer to :ref:`api_guide_Name`

    Returns:
        Tensor: The output sign tensor with identical shape and data type to the input :attr:`x`.

    Examples:
        .. code-block:: python

          import paddle

2150
          x = paddle.to_tensor([3.0, 0.0, -2.0, 1.7], dtype='float32')
W
WangXi 已提交
2151 2152 2153 2154
          out = paddle.sign(x=x)
          print(out)  # [1.0, 0.0, -1.0, 1.0]
    """
    if in_dygraph_mode():
W
wanghuancoder 已提交
2155
        return _C_ops.sign(x)
W
WangXi 已提交
2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166

    check_variable_and_dtype(x, 'x', ['float16', 'float32', 'float64'], 'sign')
    helper = LayerHelper("sign", **locals())
    out = helper.create_variable_for_type_inference(dtype=x.dtype)

    helper.append_op(type='sign', inputs={'X': [x]}, outputs={'Out': [out]})

    return out


def tanh(x, name=None):
2167
    r"""
W
WangXi 已提交
2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185
    Tanh Activation Operator.

    .. math::
        out = \\frac{e^{x} - e^{-x}}{e^{x} + e^{-x}}

    Args:
        x (Tensor): Input of Tanh operator, an N-D Tensor, with data type float32, float64 or float16.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        Output of Tanh operator, a Tensor with same data type and shape as input.

    Examples:

        .. code-block:: python

            import paddle

2186
            x = paddle.to_tensor([-0.4, -0.2, 0.1, 0.3])
W
WangXi 已提交
2187
            out = paddle.tanh(x)
N
Noel 已提交
2188
            print(out)
W
WangXi 已提交
2189 2190 2191
            # [-0.37994896 -0.19737532  0.09966799  0.29131261]
    """
    if in_dygraph_mode():
W
wanghuancoder 已提交
2192
        return _C_ops.tanh(x)
W
WangXi 已提交
2193 2194

    check_variable_and_dtype(x, 'x', ['float16', 'float32', 'float64'], 'tanh')
S
ShenLiang 已提交
2195
    check_type(x, 'x', (Variable), 'tanh')
W
WangXi 已提交
2196 2197 2198 2199
    helper = LayerHelper('tanh', **locals())
    out = helper.create_variable_for_type_inference(x.dtype)
    helper.append_op(type='tanh', inputs={'X': x}, outputs={'Out': out})
    return out
S
Steffy-zxf 已提交
2200

2201
@inplace_apis_in_dygraph_only
2202 2203 2204 2205 2206
def tanh_(x, name=None):
    r"""
    Inplace version of ``tanh`` API, the output Tensor will be inplaced with input ``x``.
    Please refer to :ref:`api_tensor_tanh`.
    """
W
wanghuancoder 已提交
2207
    return _C_ops.tanh_(x)
2208 2209


S
Steffy-zxf 已提交
2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233
def increment(x, value=1.0, name=None):
    """
    The OP is usually used for control flow to increment the data of :attr:`x` by an amount :attr:`value`.
    Notice that the number of elements in :attr:`x` must be equal to 1.

    Args:
        x (Tensor): A tensor that must always contain only one element, its data type supports float32, float64, int32 and int64.
        value(float, optional): The amount to increment the data of :attr:`x`. Default: 1.0.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        Tensor, the elementwise-incremented tensor with the same shape and data type as :attr:`x`.

    Examples:
        .. code-block:: python

            import paddle

            data = paddle.zeros(shape=[1], dtype='float32')
            counter = paddle.increment(data)
            # [1.]

    """
    if in_dygraph_mode():
W
wanghuancoder 已提交
2234
        return _C_ops.increment(x, 'step', value)
S
Steffy-zxf 已提交
2235 2236 2237 2238 2239 2240 2241 2242 2243 2244

    check_variable_and_dtype(x, 'x', ['float32', 'float64', 'int32', 'int64'],
                             'increment')
    helper = LayerHelper("increment", **locals())
    helper.append_op(
        type='increment',
        inputs={'X': [x]},
        outputs={'Out': [x]},
        attrs={'step': float(value)})
    return x
2245 2246 2247 2248 2249 2250 2251 2252 2253 2254


def all(x, axis=None, keepdim=False, name=None):
    """
    Computes the the ``logical and`` of tensor elements over the given dimension.

    Args:
        x (Tensor): An N-D Tensor, the input data type should be `bool`.
        axis (int|list|tuple, optional): The dimensions along which the ``logical and`` is compute. If
            :attr:`None`, and all elements of :attr:`x` and return a
N
Noel 已提交
2255
            Tensor with a single element, otherwise must be in the
2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277
            range :math:`[-rank(x), rank(x))`. If :math:`axis[i] < 0`,
            the dimension to reduce is :math:`rank + axis[i]`.
        keepdim (bool, optional): Whether to reserve the reduced dimension in the
            output Tensor. The result Tensor will have one fewer dimension
            than the :attr:`x` unless :attr:`keepdim` is true, default
            value is False.
        name (str, optional): The default value is None. Normally there is no need for
            user to set this property.  For more information, please refer to :ref:`api_guide_Name`

    Returns:
        Tensor: Results the ``logical and`` on the specified axis of input Tensor `x`,  it's data type is bool.

    Raises:
        ValueError: If the data type of `x` is not bool.
        TypeError: The type of :attr:`axis` must be int, list or tuple.

    Examples:
        .. code-block:: python

            import paddle
            import numpy as np
            
N
Noel 已提交
2278
            # x is a bool Tensor with following elements:
2279 2280
            #    [[True, False]
            #     [True, True]]
S
syyxsxx 已提交
2281
            x = paddle.assign(np.array([[1, 0], [1, 1]], dtype='int32'))
2282
            print(x)
S
syyxsxx 已提交
2283
            x = paddle.cast(x, 'bool')
2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297
            
            # out1 should be [False]
            out1 = paddle.all(x)  # [False]
            print(out1)
            
            # out2 should be [True, False]
            out2 = paddle.all(x, axis=0)  # [True, False]
            print(out2)
            
            # keep_dim=False, out3 should be [False, True], out.shape should be (2,)
            out3 = paddle.all(x, axis=-1)  # [False, True]
            print(out3)
            
            # keep_dim=True, out4 should be [[False], [True]], out.shape should be (2,1)
S
syyxsxx 已提交
2298 2299
            out4 = paddle.all(x, axis=1, keepdim=True)
            out4 = paddle.cast(out4, 'int32')  # [[False], [True]]
2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313
            print(out4)
            
    """
    if axis is not None and not isinstance(axis, (list, tuple)):
        axis = [axis]

    if not axis:
        reduce_all_flag = True
    else:
        if len(axis) == len(x.shape):
            reduce_all_flag = True
        else:
            reduce_all_flag = False

W
wanghuancoder 已提交
2314 2315
    if in_dygraph_mode():
        axis = axis if axis != None and axis != [] else [0]
W
wanghuancoder 已提交
2316
        return _C_ops.reduce_all(x, 'dim', axis, 'keep_dim', keepdim,
W
wanghuancoder 已提交
2317 2318
                                       'reduce_all', reduce_all_flag)

2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346
    attrs = {
        'dim': axis if axis != None and axis != [] and axis != () else [0],
        'keep_dim': keepdim,
        'reduce_all': reduce_all_flag
    }
    check_variable_and_dtype(x, 'x', ['bool'], 'all')


    check_type(axis, 'axis', (int, list, tuple, type(None)), 'all')

    helper = LayerHelper('all', **locals())
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
    helper.append_op(
        type='reduce_all',
        inputs={'X': x},
        outputs={'Out': out},
        attrs=attrs)
    return out


def any(x, axis=None, keepdim=False, name=None):
    """
    Computes the the ``logical or`` of tensor elements over the given dimension.

    Args:
        x (Tensor): An N-D Tensor, the input data type should be `bool`.
        axis (int|list|tuple, optional): The dimensions along which the ``logical or`` is compute. If
            :attr:`None`, and all elements of :attr:`x` and return a
N
Noel 已提交
2347
            Tensor with a single element, otherwise must be in the
2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369
            range :math:`[-rank(x), rank(x))`. If :math:`axis[i] < 0`,
            the dimension to reduce is :math:`rank + axis[i]`.
        keepdim (bool, optional): Whether to reserve the reduced dimension in the
            output Tensor. The result Tensor will have one fewer dimension
            than the :attr:`x` unless :attr:`keepdim` is true, default
            value is False.
        name (str, optional): The default value is None. Normally there is no need for
            user to set this property.  For more information, please refer to :ref:`api_guide_Name`

    Returns:
        Tensor: Results the ``logical or`` on the specified axis of input Tensor `x`,  it's data type is bool.

    Raises:
        ValueError: If the data type of `x` is not bool.
        TypeError: The type of :attr:`axis` must be int, list or tuple.

    Examples:
        .. code-block:: python

            import paddle
            import numpy as np
            
N
Noel 已提交
2370
            # x is a bool Tensor with following elements:
2371 2372
            #    [[True, False]
            #     [False, False]]
S
syyxsxx 已提交
2373
            x = paddle.assign(np.array([[1, 0], [1, 1]], dtype='int32'))
2374
            print(x)
S
syyxsxx 已提交
2375
            x = paddle.cast(x, 'bool')
2376 2377 2378 2379 2380
            
            # out1 should be [True]
            out1 = paddle.any(x)  # [True]
            print(out1)
            
2381 2382
            # out2 should be [True, True]
            out2 = paddle.any(x, axis=0)  # [True, True]
2383 2384
            print(out2)
            
2385 2386
            # keep_dim=False, out3 should be [True, True], out.shape should be (2,)
            out3 = paddle.any(x, axis=-1)  # [True, True]
2387 2388
            print(out3)
            
2389
            # keep_dim=True, result should be [[True], [True]], out.shape should be (2,1)
S
syyxsxx 已提交
2390
            out4 = paddle.any(x, axis=1, keepdim=True)
2391
            out4 = paddle.cast(out4, 'int32')  # [[True], [True]]
2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405
            print(out4)
            
    """
    if axis is not None and not isinstance(axis, (list, tuple)):
        axis = [axis]

    if not axis:
        reduce_all_flag = True
    else:
        if len(axis) == len(x.shape):
            reduce_all_flag = True
        else:
            reduce_all_flag = False

W
wanghuancoder 已提交
2406 2407
    if in_dygraph_mode():
        axis = axis if axis != None and axis != [] else [0]
W
wanghuancoder 已提交
2408
        return _C_ops.reduce_any(x, 'dim', axis, 'keep_dim', keepdim,
W
wanghuancoder 已提交
2409 2410
                                       'reduce_all', reduce_all_flag)

2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429
    attrs = {
        'dim': axis if axis != None and axis != [] and axis != () else [0],
        'keep_dim': keepdim,
        'reduce_all': reduce_all_flag
    }

    check_variable_and_dtype(x, 'x', ['bool'], 'any')


    check_type(axis, 'axis', (int, list, tuple, type(None)), 'any')

    helper = LayerHelper('any', **locals())
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
    helper.append_op(
        type='reduce_any',
        inputs={'X': x},
        outputs={'Out': out},
        attrs=attrs)
    return out
L
Leo Chen 已提交
2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456

def broadcast_shape(x_shape, y_shape):
    """
    The function returns the shape of doing operation with broadcasting on tensors of x_shape and y_shape, please refer to :ref:`user_guide_broadcasting` for more details.

    Args:
        x_shape (list[int]|tuple[int]): A shape of tensor.
        y_shape (list[int]|tuple[int]): A shape of tensor.
        

    Returns:
        list[int], the result shape.

    Examples:
        .. code-block:: python

            import paddle

            shape = paddle.broadcast_shape([2, 1, 3], [1, 3, 1])
            # [2, 3, 3]
            
            # shape = paddle.broadcast_shape([2, 1, 3], [3, 3, 1])
            # ValueError (terminated with error message).

    """

    return core.broadcast_shape(x_shape, y_shape)
2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487

def conj(x, name=None):
    r"""
    This function computes the conjugate of the Tensor elementwisely.

    Args:
        x (Tensor): The input tensor which hold the complex numbers. 
            Optional data types are: complex64, complex128, float32, float64, int32 or int64.
        name (str, optional): The default value is None. Normally there is no need for
            user to set this property.  For more information, please refer to :ref:`api_guide_Name`

    Returns:
        out (Tensor): The conjugate of input. The shape and data type is the same with input.
            If the elements of tensor is real type such as float32, float64, int32 or int64, the out is the same with input.

    Examples:
        .. code-block:: python

          import paddle
          data=paddle.to_tensor([[1+1j, 2+2j, 3+3j], [4+4j, 5+5j, 6+6j]])
          #Tensor(shape=[2, 3], dtype=complex64, place=CUDAPlace(0), stop_gradient=True,
          #       [[(1+1j), (2+2j), (3+3j)],
          #        [(4+4j), (5+5j), (6+6j)]])

          conj_data=paddle.conj(data)
          #Tensor(shape=[2, 3], dtype=complex64, place=CUDAPlace(0), stop_gradient=True,
          #       [[(1-1j), (2-2j), (3-3j)],
          #        [(4-4j), (5-5j), (6-6j)]])

    """
    if in_dygraph_mode():
W
wanghuancoder 已提交
2488
        return _C_ops.conj(x)
2489 2490 2491 2492 2493 2494 2495 2496 2497

    check_variable_and_dtype(x, "x", ['complex64', 'complex128', 'float32', 'float64', 'int32', 'int64'], 'conj')

    helper = LayerHelper('conj', **locals())
    out = helper.create_variable_for_type_inference(
            dtype=helper.input_dtype())

    helper.append_op(type='conj', inputs={'X': x}, outputs={'Out': [out]})
    return out
2498

Z
zyfncg 已提交
2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526
def digamma(x, name=None):
    r"""
    Calculates the digamma of the given input tensor, element-wise.

    .. math::
        Out = \Psi(x) = \frac{ \Gamma^{'}(x) }{ \Gamma(x) }

    Args:
        x (Tensor): Input Tensor. Must be one of the following types: float32, float64.
        name(str, optional): The default value is None.  Normally there is no need for 
            user to set this property.  For more information, please refer to :ref:`api_guide_Name`
    Returns:
        Tensor, the digamma of the input Tensor, the shape and data type is the same with input.

    Examples:
        .. code-block:: python

            import paddle

            data = paddle.to_tensor([[1, 1.5], [0, -2.2]], dtype='float32')
            res = paddle.digamma(data)
            print(res)
            # Tensor(shape=[2, 2], dtype=float32, place=CUDAPlace(0), stop_gradient=True,
            #       [[-0.57721591,  0.03648996],
            #        [ nan       ,  5.32286835]])
    """

    if in_dygraph_mode():
W
wanghuancoder 已提交
2527
        return _C_ops.digamma(x)
Z
zyfncg 已提交
2528 2529 2530 2531 2532 2533 2534

    check_variable_and_dtype(x, 'x', ['float32', 'float64'], 'digamma')
    helper = LayerHelper('digamma', **locals())
    out = helper.create_variable_for_type_inference(x.dtype)
    helper.append_op(type='digamma', inputs={'X': x}, outputs={'Out': out})
    return out

2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557
def neg(x, name=None):
    """
    This function computes the negative of the Tensor elementwisely.

    Args:
        x (Tensor): Input of neg operator, an N-D Tensor, with data type float32, float64, int8, int16, int32, or int64.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        out (Tensor): The negative of input Tensor. The shape and data type are the same with input Tensor.

    Examples:
        .. code-block:: python

            import paddle

            x = paddle.to_tensor([-0.4, -0.2, 0.1, 0.3])
            out = paddle.neg(x)
            print(out)
            # [0.4 0.2 -0.1 -0.3]
    """

    return layers.scale(x, scale=-1.0, bias=0.0, bias_after_scale=True, act=None, name=name)
R
ronnywang 已提交
2558

2559
def atan2(x, y, name=None):
R
ronnywang 已提交
2560
    r"""
2561
    Element-wise arctangent of x/y with consideration of the quadrant.
R
ronnywang 已提交
2562 2563 2564 2565

    Equation:
        .. math::

2566 2567 2568 2569 2570 2571 2572 2573
            atan2(x,y)=\left\{\begin{matrix}
            & tan^{-1}(\frac{x}{y}) & y > 0 \\
            & tan^{-1}(\frac{x}{y}) + \pi & x>=0, y < 0 \\
            & tan^{-1}(\frac{x}{y}) - \pi & x<0, y < 0 \\
            & +\frac{\pi}{2} & x>0, y = 0 \\
            & -\frac{\pi}{2} & x<0, y = 0 \\
            &\text{undefined} & x=0, y = 0
            \end{matrix}\right.
R
ronnywang 已提交
2574 2575

    Args:
2576 2577
        x (Tensor): An N-D Tensor, the data type is int32, int64, float16, float32, float64.
        y (Tensor): An N-D Tensor, must have the same type as `x`.
R
ronnywang 已提交
2578 2579 2580 2581 2582 2583 2584 2585
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        out (Tensor): An N-D Tensor, the shape and data type is the same with input (The output data type is float64 when the input data type is int).

    Examples:
        .. code-block:: python

2586
            import paddle
R
ronnywang 已提交
2587

2588 2589 2590
            x = paddle.to_tensor([-1, +1, +1, -1]).astype('float32')
            #Tensor(shape=[4], dtype=float32, place=CUDAPlace(0), stop_gradient=True,
            #       [-1,  1,  1, -1])
R
ronnywang 已提交
2591

2592 2593 2594
            y = paddle.to_tensor([-1, -1, +1, +1]).astype('float32')
            #Tensor(shape=[4], dtype=float32, place=CUDAPlace(0), stop_gradient=True,
            #       [-1,  -1,  1, 1])
R
ronnywang 已提交
2595

2596 2597 2598
            out = paddle.atan2(x, y)
            #Tensor(shape=[4], dtype=float32, place=CUDAPlace(0), stop_gradient=True,
            #       [-2.35619450,  2.35619450,  0.78539819, -0.78539819])
R
ronnywang 已提交
2599 2600 2601 2602

    """

    if in_dygraph_mode():
2603
        return _C_ops.atan2(x, y)
R
ronnywang 已提交
2604 2605
    else:
        check_variable_and_dtype(x, 'x', ['int32', 'int64', 'float16', 'float32', 'float64'], 'atan2')
2606
        check_variable_and_dtype(y, 'y', ['int32', 'int64', 'float16', 'float32', 'float64'], 'atan2')
R
ronnywang 已提交
2607 2608

        helper = LayerHelper('atan2', **locals())
2609
        inputs = {'X1' : x, 'X2' : y}
R
ronnywang 已提交
2610 2611 2612 2613
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
        helper.append_op(
                type='atan2', inputs=inputs, outputs={'Out': out})
        return out
A
andyjpaddle 已提交
2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776


def diff(x, n=1, axis=-1, prepend=None, append=None, name=None):
    r"""
    Computes the n-th forward difference along the given axis.
    The first-order differences is computed by using the following formula: 

    .. math::

        out[i] = x[i+1] - x[i]
    
    Higher-order differences are computed by using paddle.diff() recursively. 
    Only n=1 is currently supported.

    Args:
        x(Tensor): The input tensor to compute the forward difference on
        n(int, optional): The number of times to recursively compute the difference. 
                          Only support n=1. Default:1
        axis(int, optional): The axis to compute the difference along. Default:-1
        prepend(Tensor, optional): The tensor to prepend to input along axis before computing the difference.
                                   It's dimensions must be equivalent to that of x, 
                                   and its shapes must match x's shape except on axis.
        append(Tensor, optional): The tensor to append to input along axis before computing the difference, 
                                   It's dimensions must be equivalent to that of x, 
                                   and its shapes must match x's shape except on axis.
        name(str|None): A name for this layer(optional). If set None, 
                        the layer will be named automatically.
    
    Returns:
        Tensor: The output tensor with same dtype with x.

    Examples:
        .. code-block:: python

            import paddle
            x = paddle.to_tensor([1, 4, 5, 2])
            out = paddle.diff(x)
            print(out)
            # out:
            # [3, 1, -3]

            y = paddle.to_tensor([7, 9])
            out = paddle.diff(x, append=y)
            print(out)
            # out: 
            # [3, 1, -3, 5, 2]

            z = paddle.to_tensor([[1, 2, 3], [4, 5, 6]])
            out = paddle.diff(z, axis=0)
            print(out)
            # out:
            # [[3, 3, 3]]
            out = paddle.diff(z, axis=1)
            print(out)
            # out:
            # [[1, 1], [1, 1]]


    """

    if axis < 0:
        axis = axis + len(x.shape)
    if axis > len(x.shape):
        axis = len(x.shape)
    if axis < 0:
        axis = 0
    dtype = x.dtype
    axes = [axis]
    infer_flags = list(1 for i in range(len(axes)))
    if in_dygraph_mode():
        has_pend = False
        input_list = []
        if prepend is not None and append is not None:
            input_list = [prepend, x, append]
            has_pend = True
        elif prepend is not None:
            input_list = [prepend, x]
            has_pend = True
        elif append is not None:
            input_list = [x, append]
            has_pend = True
        if has_pend:
            new_input = _C_ops.concat(input_list, 'axis', axis)
        else:
            new_input = x

        attrs_1 = ()
        attrs_2 = ()

        dim_len = new_input.shape[axis]

        starts_1 = [0]
        attrs_1 += ('starts', starts_1)
        ends_1 = [dim_len - 1]
        attrs_1 += ('ends', ends_1)
        input_front = _C_ops.slice(new_input, None, None, 'axes', axes, \
            'infer_flags', infer_flags, *attrs_1)
        starts_2 = [1]
        attrs_2 += ('starts', starts_2)
        ends_2 = [dim_len]
        attrs_2 += ('ends', ends_2)
        input_back = _C_ops.slice(new_input, None, None, 'axes', axes, \
            'infer_flags', infer_flags, *attrs_2)

        if x.dtype == paddle.bool:
            op = getattr(_C_ops, "logical_xor")
            out = op(input_back, input_front)
        else:
            out = layers.elementwise_sub(input_back, input_front, axis=axis)
        return out
    else:
        check_variable_and_dtype(x, 'x', ['float32', 'float64', 'bool', 'int32', 'int64'], 'diff')
        check_type(axis, 'axis', (int), 'diff')
        helper = LayerHelper('diff', **locals())
        has_pend = False
        input_list = []
        if prepend is not None and append is not None:
            input_list = [prepend, x, append]
            has_pend = True
        elif prepend is not None:
            input_list = [prepend, x]
            has_pend = True
        elif append is not None:
            input_list = [x, append]
            has_pend = True

        if has_pend:
            new_input = helper.create_variable_for_type_inference(dtype)
            helper.append_op(
                type='concat', inputs={'X': input_list}, outputs={'Out': [new_input]}, attrs={'axis': axis}
            )
        else:
            new_input = x

        dim_len = new_input.shape[axis]
        attrs_1 = {'axes': axes}
        starts_1 = [0]
        ends_1 = [dim_len - 1]
        attrs_1['starts'] = starts_1
        attrs_1['ends'] = ends_1
        input_front = helper.create_variable_for_type_inference(dtype)
        helper.append_op(
            type='slice', inputs={'Input': new_input}, attrs=attrs_1, outputs={'Out': input_front}
        )
        attrs_2 = {'axes': axes}
        starts_2 = [1]
        ends_2 = [dim_len]
        attrs_2['starts'] = starts_2
        attrs_2['ends'] = ends_2
        input_back = helper.create_variable_for_type_inference(dtype)
        helper.append_op(
            type='slice', inputs={'Input': new_input}, attrs=attrs_2, outputs={'Out': input_back}
        )

        if dtype == paddle.bool:
            out = helper.create_variable_for_type_inference(dtype)
            helper.append_op(
                type='logical_xor', inputs={"X": input_back, "Y": input_front}, outputs={"Out": out}
            )
        else:
            out = layers.elementwise_sub(input_back, input_front, axis=axis)

        return out