Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
BaiXuePrincess
Paddle
提交
9c17b3c9
P
Paddle
项目概览
BaiXuePrincess
/
Paddle
与 Fork 源项目一致
Fork自
PaddlePaddle / Paddle
通知
1
Star
1
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
0
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
0
Issue
0
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
9c17b3c9
编写于
8月 12, 2020
作者:
W
wawltor
提交者:
GitHub
8月 12, 2020
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
Add the max, min, maximum, minimum api for the API 2.0
* Add the max, min, maximum, minimum api for the API 2.0, test=develop
上级
13b80d9b
变更
9
隐藏空白更改
内联
并排
Showing
9 changed file
with
533 addition
and
165 deletion
+533
-165
paddle/fluid/operators/elementwise/elementwise_op.h
paddle/fluid/operators/elementwise/elementwise_op.h
+8
-3
python/paddle/__init__.py
python/paddle/__init__.py
+2
-2
python/paddle/fluid/tests/unittests/test_max_op.py
python/paddle/fluid/tests/unittests/test_max_op.py
+69
-0
python/paddle/fluid/tests/unittests/test_maximum_op.py
python/paddle/fluid/tests/unittests/test_maximum_op.py
+80
-0
python/paddle/fluid/tests/unittests/test_min_op.py
python/paddle/fluid/tests/unittests/test_min_op.py
+69
-0
python/paddle/fluid/tests/unittests/test_minimum_op.py
python/paddle/fluid/tests/unittests/test_minimum_op.py
+80
-0
python/paddle/fluid/tests/unittests/test_reduce_op.py
python/paddle/fluid/tests/unittests/test_reduce_op.py
+0
-64
python/paddle/tensor/__init__.py
python/paddle/tensor/__init__.py
+2
-2
python/paddle/tensor/math.py
python/paddle/tensor/math.py
+223
-94
未找到文件。
paddle/fluid/operators/elementwise/elementwise_op.h
浏览文件 @
9c17b3c9
...
...
@@ -82,7 +82,13 @@ class ElementwiseOp : public framework::OperatorWithKernel {
auto
y_dims
=
ctx
->
GetInputDim
(
"Y"
);
int
max_dim
=
std
::
max
(
x_dims
.
size
(),
y_dims
.
size
());
int
axis
=
ctx
->
Attrs
().
Get
<
int
>
(
"axis"
);
axis
=
(
axis
==
-
1
?
std
::
abs
(
x_dims
.
size
()
-
y_dims
.
size
())
:
axis
);
PADDLE_ENFORCE_EQ
((
axis
>=
(
-
1
*
max_dim
))
&&
(
axis
<
max_dim
),
true
,
platform
::
errors
::
InvalidArgument
(
"The axis range must be [%s, %s), but axis is %s. "
"Please set the axis again."
,
-
1
*
max_dim
,
max_dim
,
axis
));
axis
=
(
axis
<
0
?
(
std
::
abs
(
x_dims
.
size
()
-
y_dims
.
size
())
+
axis
+
1
)
:
axis
);
std
::
vector
<
int
>
x_dims_array
(
max_dim
);
std
::
vector
<
int
>
y_dims_array
(
max_dim
);
std
::
vector
<
int
>
out_dims_array
(
max_dim
);
...
...
@@ -132,8 +138,7 @@ class ElementwiseOpMaker : public framework::OpProtoAndCheckerMaker {
"Y.dimension must be a subsequence of x.dimension. And axis "
"is the start dimension index "
"for broadcasting Y onto X. "
)
.
SetDefault
(
-
1
)
.
EqualGreaterThan
(
-
1
);
.
SetDefault
(
-
1
);
AddAttr
<
bool
>
(
"use_mkldnn"
,
"(bool, default false). Used by MKLDNN."
)
.
SetDefault
(
false
);
AddAttr
<
std
::
string
>
(
"x_data_format"
,
"This parameter is no longer used."
)
...
...
python/paddle/__init__.py
浏览文件 @
9c17b3c9
...
...
@@ -134,8 +134,6 @@ from .tensor.math import cumsum #DEFINE_ALIAS
from
.tensor.math
import
elementwise_add
#DEFINE_ALIAS
from
.tensor.math
import
elementwise_div
#DEFINE_ALIAS
from
.tensor.math
import
elementwise_floordiv
#DEFINE_ALIAS
from
.tensor.math
import
elementwise_max
#DEFINE_ALIAS
from
.tensor.math
import
elementwise_min
#DEFINE_ALIAS
from
.tensor.math
import
elementwise_mod
#DEFINE_ALIAS
from
.tensor.math
import
elementwise_pow
#DEFINE_ALIAS
from
.tensor.math
import
elementwise_sub
#DEFINE_ALIAS
...
...
@@ -164,7 +162,9 @@ from .tensor.math import sums #DEFINE_ALIAS
from
.tensor.math
import
tanh
#DEFINE_ALIAS
from
.tensor.math
import
elementwise_sum
#DEFINE_ALIAS
from
.tensor.math
import
max
#DEFINE_ALIAS
from
.tensor.math
import
maximum
#DEFINE_ALIAS
from
.tensor.math
import
min
#DEFINE_ALIAS
from
.tensor.math
import
minimum
#DEFINE_ALIAS
from
.tensor.math
import
mm
#DEFINE_ALIAS
from
.tensor.math
import
div
#DEFINE_ALIAS
from
.tensor.math
import
multiply
#DEFINE_ALIAS
...
...
python/paddle/fluid/tests/unittests/test_max_op.py
0 → 100644
浏览文件 @
9c17b3c9
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from
__future__
import
print_function
import
unittest
import
numpy
as
np
from
op_test
import
OpTest
,
skip_check_grad_ci
import
paddle
import
paddle.fluid.core
as
core
class
ApiMaxTest
(
unittest
.
TestCase
):
def
setUp
(
self
):
if
core
.
is_compiled_with_cuda
():
self
.
place
=
core
.
CUDAPlace
(
0
)
else
:
self
.
place
=
core
.
CPUPlace
()
def
test_api
(
self
):
paddle
.
enable_static
()
with
paddle
.
static
.
program_guard
(
paddle
.
static
.
Program
(),
paddle
.
static
.
Program
()):
data
=
paddle
.
nn
.
data
(
"data"
,
shape
=
[
10
,
10
],
dtype
=
"float32"
)
result_max
=
paddle
.
max
(
x
=
data
,
axis
=
1
)
exe
=
paddle
.
static
.
Executor
(
self
.
place
)
input_data
=
np
.
random
.
rand
(
10
,
10
).
astype
(
np
.
float32
)
res
,
=
exe
.
run
(
feed
=
{
"data"
:
input_data
},
fetch_list
=
[
result_max
])
self
.
assertEqual
((
res
==
np
.
max
(
input_data
,
axis
=
1
)).
all
(),
True
)
with
paddle
.
static
.
program_guard
(
paddle
.
static
.
Program
(),
paddle
.
static
.
Program
()):
data
=
paddle
.
nn
.
data
(
"data"
,
shape
=
[
10
,
10
],
dtype
=
"int64"
)
result_max
=
paddle
.
max
(
x
=
data
,
axis
=
0
)
exe
=
paddle
.
static
.
Executor
(
self
.
place
)
input_data
=
np
.
random
.
randint
(
10
,
size
=
(
10
,
10
)).
astype
(
np
.
int64
)
res
,
=
exe
.
run
(
feed
=
{
"data"
:
input_data
},
fetch_list
=
[
result_max
])
self
.
assertEqual
((
res
==
np
.
max
(
input_data
,
axis
=
0
)).
all
(),
True
)
def
test_errors
(
self
):
paddle
.
enable_static
()
def
test_input_type
():
with
paddle
.
static
.
program_guard
(
paddle
.
static
.
Program
(),
paddle
.
static
.
Program
()):
data
=
np
.
random
.
rand
(
10
,
10
)
result_max
=
paddle
.
max
(
x
=
data
,
axis
=
0
)
self
.
assertRaises
(
TypeError
,
test_input_type
)
def
test_imperative_api
(
self
):
paddle
.
disable_static
()
np_x
=
np
.
array
([
10
,
10
]).
astype
(
'float64'
)
x
=
paddle
.
to_variable
(
np_x
)
z
=
paddle
.
max
(
x
,
axis
=
0
)
np_z
=
z
.
numpy
()
z_expected
=
np
.
array
(
np
.
max
(
np_x
,
axis
=
0
))
self
.
assertEqual
((
np_z
==
z_expected
).
all
(),
True
)
python/paddle/fluid/tests/unittests/test_maximum_op.py
0 → 100644
浏览文件 @
9c17b3c9
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from
__future__
import
print_function
import
unittest
import
numpy
as
np
from
op_test
import
OpTest
,
skip_check_grad_ci
import
paddle
import
paddle.fluid.core
as
core
class
ApiMaximumTest
(
unittest
.
TestCase
):
def
setUp
(
self
):
if
core
.
is_compiled_with_cuda
():
self
.
place
=
core
.
CUDAPlace
(
0
)
else
:
self
.
place
=
core
.
CPUPlace
()
self
.
input_x
=
np
.
random
.
rand
(
10
,
15
).
astype
(
"float32"
)
self
.
input_y
=
np
.
random
.
rand
(
10
,
15
).
astype
(
"float32"
)
self
.
input_z
=
np
.
random
.
rand
(
15
).
astype
(
"float32"
)
def
test_static_api
(
self
):
paddle
.
enable_static
()
with
paddle
.
static
.
program_guard
(
paddle
.
static
.
Program
(),
paddle
.
static
.
Program
()):
data_x
=
paddle
.
nn
.
data
(
"x"
,
shape
=
[
10
,
15
],
dtype
=
"float32"
)
data_y
=
paddle
.
nn
.
data
(
"y"
,
shape
=
[
10
,
15
],
dtype
=
"float32"
)
result_max
=
paddle
.
maximum
(
data_x
,
data_y
)
exe
=
paddle
.
static
.
Executor
(
self
.
place
)
res
,
=
exe
.
run
(
feed
=
{
"x"
:
self
.
input_x
,
"y"
:
self
.
input_y
},
fetch_list
=
[
result_max
])
self
.
assertEqual
((
res
==
np
.
maximum
(
self
.
input_x
,
self
.
input_y
)).
all
(),
True
)
with
paddle
.
static
.
program_guard
(
paddle
.
static
.
Program
(),
paddle
.
static
.
Program
()):
data_x
=
paddle
.
nn
.
data
(
"x"
,
shape
=
[
10
,
15
],
dtype
=
"float32"
)
data_z
=
paddle
.
nn
.
data
(
"z"
,
shape
=
[
15
],
dtype
=
"float32"
)
result_max
=
paddle
.
maximum
(
data_x
,
data_z
,
axis
=
1
)
exe
=
paddle
.
static
.
Executor
(
self
.
place
)
res
,
=
exe
.
run
(
feed
=
{
"x"
:
self
.
input_x
,
"z"
:
self
.
input_z
},
fetch_list
=
[
result_max
])
self
.
assertEqual
((
res
==
np
.
maximum
(
self
.
input_x
,
self
.
input_z
)).
all
(),
True
)
def
test_dynamic_api
(
self
):
paddle
.
disable_static
()
np_x
=
np
.
array
([
10
,
10
]).
astype
(
'float64'
)
x
=
paddle
.
to_variable
(
self
.
input_x
)
y
=
paddle
.
to_variable
(
self
.
input_y
)
z
=
paddle
.
maximum
(
x
,
y
)
np_z
=
z
.
numpy
()
z_expected
=
np
.
array
(
np
.
maximum
(
self
.
input_x
,
self
.
input_y
))
self
.
assertEqual
((
np_z
==
z_expected
).
all
(),
True
)
def
test_broadcast_axis
(
self
):
paddle
.
disable_static
()
np_x
=
np
.
random
.
rand
(
5
,
4
,
3
,
2
).
astype
(
"float64"
)
np_y
=
np
.
random
.
rand
(
4
,
3
).
astype
(
"float64"
)
x
=
paddle
.
to_variable
(
self
.
input_x
)
y
=
paddle
.
to_variable
(
self
.
input_y
)
result_1
=
paddle
.
maximum
(
x
,
y
,
axis
=
1
)
result_2
=
paddle
.
maximum
(
x
,
y
,
axis
=-
2
)
self
.
assertEqual
((
result_1
.
numpy
()
==
result_2
.
numpy
()).
all
(),
True
)
python/paddle/fluid/tests/unittests/test_min_op.py
0 → 100644
浏览文件 @
9c17b3c9
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from
__future__
import
print_function
import
unittest
import
numpy
as
np
from
op_test
import
OpTest
,
skip_check_grad_ci
import
paddle
import
paddle.fluid.core
as
core
class
ApiMinTest
(
unittest
.
TestCase
):
def
setUp
(
self
):
if
core
.
is_compiled_with_cuda
():
self
.
place
=
core
.
CUDAPlace
(
0
)
else
:
self
.
place
=
core
.
CPUPlace
()
def
test_api
(
self
):
paddle
.
enable_static
()
with
paddle
.
static
.
program_guard
(
paddle
.
static
.
Program
(),
paddle
.
static
.
Program
()):
data
=
paddle
.
nn
.
data
(
"data"
,
shape
=
[
10
,
10
],
dtype
=
"float32"
)
result_min
=
paddle
.
min
(
x
=
data
,
axis
=
1
)
exe
=
paddle
.
static
.
Executor
(
self
.
place
)
input_data
=
np
.
random
.
rand
(
10
,
10
).
astype
(
np
.
float32
)
res
,
=
exe
.
run
(
feed
=
{
"data"
:
input_data
},
fetch_list
=
[
result_min
])
self
.
assertEqual
((
res
==
np
.
min
(
input_data
,
axis
=
1
)).
all
(),
True
)
with
paddle
.
static
.
program_guard
(
paddle
.
static
.
Program
(),
paddle
.
static
.
Program
()):
data
=
paddle
.
nn
.
data
(
"data"
,
shape
=
[
10
,
10
],
dtype
=
"int64"
)
result_min
=
paddle
.
min
(
x
=
data
,
axis
=
0
)
exe
=
paddle
.
static
.
Executor
(
self
.
place
)
input_data
=
np
.
random
.
randint
(
10
,
size
=
(
10
,
10
)).
astype
(
np
.
int64
)
res
,
=
exe
.
run
(
feed
=
{
"data"
:
input_data
},
fetch_list
=
[
result_min
])
self
.
assertEqual
((
res
==
np
.
min
(
input_data
,
axis
=
0
)).
all
(),
True
)
def
test_errors
(
self
):
paddle
.
enable_static
()
def
test_input_type
():
with
paddle
.
static
.
program_guard
(
paddle
.
static
.
Program
(),
paddle
.
static
.
Program
()):
data
=
np
.
random
.
rand
(
10
,
10
)
result_min
=
paddle
.
min
(
x
=
data
,
axis
=
0
)
self
.
assertRaises
(
TypeError
,
test_input_type
)
def
test_imperative_api
(
self
):
paddle
.
disable_static
()
np_x
=
np
.
array
([
10
,
10
]).
astype
(
'float64'
)
x
=
paddle
.
to_variable
(
np_x
)
z
=
paddle
.
min
(
x
,
axis
=
0
)
np_z
=
z
.
numpy
()
z_expected
=
np
.
array
(
np
.
min
(
np_x
,
axis
=
0
))
self
.
assertEqual
((
np_z
==
z_expected
).
all
(),
True
)
python/paddle/fluid/tests/unittests/test_minimum_op.py
0 → 100644
浏览文件 @
9c17b3c9
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from
__future__
import
print_function
import
unittest
import
numpy
as
np
from
op_test
import
OpTest
,
skip_check_grad_ci
import
paddle
import
paddle.fluid.core
as
core
class
ApiMinimumTest
(
unittest
.
TestCase
):
def
setUp
(
self
):
if
core
.
is_compiled_with_cuda
():
self
.
place
=
core
.
CUDAPlace
(
0
)
else
:
self
.
place
=
core
.
CPUPlace
()
self
.
input_x
=
np
.
random
.
rand
(
10
,
15
).
astype
(
"float32"
)
self
.
input_y
=
np
.
random
.
rand
(
10
,
15
).
astype
(
"float32"
)
self
.
input_z
=
np
.
random
.
rand
(
15
).
astype
(
"float32"
)
def
test_static_api
(
self
):
paddle
.
enable_static
()
with
paddle
.
static
.
program_guard
(
paddle
.
static
.
Program
(),
paddle
.
static
.
Program
()):
data_x
=
paddle
.
nn
.
data
(
"x"
,
shape
=
[
10
,
15
],
dtype
=
"float32"
)
data_y
=
paddle
.
nn
.
data
(
"y"
,
shape
=
[
10
,
15
],
dtype
=
"float32"
)
result_min
=
paddle
.
minimum
(
data_x
,
data_y
)
exe
=
paddle
.
static
.
Executor
(
self
.
place
)
res
,
=
exe
.
run
(
feed
=
{
"x"
:
self
.
input_x
,
"y"
:
self
.
input_y
},
fetch_list
=
[
result_min
])
self
.
assertEqual
((
res
==
np
.
minimum
(
self
.
input_x
,
self
.
input_y
)).
all
(),
True
)
with
paddle
.
static
.
program_guard
(
paddle
.
static
.
Program
(),
paddle
.
static
.
Program
()):
data_x
=
paddle
.
nn
.
data
(
"x"
,
shape
=
[
10
,
15
],
dtype
=
"float32"
)
data_z
=
paddle
.
nn
.
data
(
"z"
,
shape
=
[
15
],
dtype
=
"float32"
)
result_min
=
paddle
.
minimum
(
data_x
,
data_z
,
axis
=
1
)
exe
=
paddle
.
static
.
Executor
(
self
.
place
)
res
,
=
exe
.
run
(
feed
=
{
"x"
:
self
.
input_x
,
"z"
:
self
.
input_z
},
fetch_list
=
[
result_min
])
self
.
assertEqual
((
res
==
np
.
minimum
(
self
.
input_x
,
self
.
input_z
)).
all
(),
True
)
def
test_dynamic_api
(
self
):
paddle
.
disable_static
()
np_x
=
np
.
array
([
10
,
10
]).
astype
(
'float64'
)
x
=
paddle
.
to_variable
(
self
.
input_x
)
y
=
paddle
.
to_variable
(
self
.
input_y
)
z
=
paddle
.
minimum
(
x
,
y
)
np_z
=
z
.
numpy
()
z_expected
=
np
.
array
(
np
.
minimum
(
self
.
input_x
,
self
.
input_y
))
self
.
assertEqual
((
np_z
==
z_expected
).
all
(),
True
)
def
test_broadcast_axis
(
self
):
paddle
.
disable_static
()
np_x
=
np
.
random
.
rand
(
5
,
4
,
3
,
2
).
astype
(
"float64"
)
np_y
=
np
.
random
.
rand
(
4
,
3
).
astype
(
"float64"
)
x
=
paddle
.
to_variable
(
self
.
input_x
)
y
=
paddle
.
to_variable
(
self
.
input_y
)
result_1
=
paddle
.
minimum
(
x
,
y
,
axis
=
1
)
result_2
=
paddle
.
minimum
(
x
,
y
,
axis
=-
2
)
self
.
assertEqual
((
result_1
.
numpy
()
==
result_2
.
numpy
()).
all
(),
True
)
python/paddle/fluid/tests/unittests/test_reduce_op.py
浏览文件 @
9c17b3c9
...
...
@@ -628,69 +628,5 @@ class API_TestSumOp(unittest.TestCase):
self
.
assertEqual
((
np_z
==
z_expected
).
all
(),
True
)
class
API_TestMaxOp
(
unittest
.
TestCase
):
def
test_1
(
self
):
# type: float
with
fluid
.
program_guard
(
fluid
.
Program
(),
fluid
.
Program
()):
data
=
fluid
.
data
(
"data"
,
shape
=
[
10
,
10
],
dtype
=
"float32"
)
result_max
=
paddle
.
max
(
input
=
data
,
dim
=
1
)
place
=
fluid
.
CPUPlace
()
exe
=
fluid
.
Executor
(
place
)
input_data
=
np
.
random
.
rand
(
10
,
10
).
astype
(
np
.
float32
)
res
,
=
exe
.
run
(
feed
=
{
"data"
:
input_data
},
fetch_list
=
[
result_max
])
self
.
assertEqual
((
res
==
np
.
max
(
input_data
,
axis
=
1
)).
all
(),
True
)
# type: int
with
fluid
.
program_guard
(
fluid
.
Program
(),
fluid
.
Program
()):
data
=
fluid
.
data
(
"data"
,
shape
=
[
10
,
10
],
dtype
=
"int64"
)
result_max
=
paddle
.
max
(
input
=
data
,
dim
=
1
)
place
=
fluid
.
CPUPlace
()
exe
=
fluid
.
Executor
(
place
)
input_data
=
np
.
random
.
randint
(
10
,
size
=
(
10
,
10
)).
astype
(
np
.
int64
)
res
,
=
exe
.
run
(
feed
=
{
"data"
:
input_data
},
fetch_list
=
[
result_max
])
self
.
assertEqual
((
res
==
np
.
max
(
input_data
,
axis
=
1
)).
all
(),
True
)
# dygraph
with
fluid
.
dygraph
.
guard
():
np_x
=
np
.
array
([
10
,
10
]).
astype
(
'float64'
)
x
=
fluid
.
dygraph
.
to_variable
(
np_x
)
z
=
paddle
.
max
(
x
,
dim
=
0
)
np_z
=
z
.
numpy
()
z_expected
=
np
.
array
(
np
.
max
(
np_x
,
axis
=
0
))
self
.
assertEqual
((
np_z
==
z_expected
).
all
(),
True
)
class
API_TestMinOp
(
unittest
.
TestCase
):
def
test_1
(
self
):
# type: float
with
fluid
.
program_guard
(
fluid
.
Program
(),
fluid
.
Program
()):
data
=
fluid
.
data
(
"data"
,
shape
=
[
10
,
10
],
dtype
=
"float32"
)
result_min
=
paddle
.
min
(
input
=
data
,
dim
=
1
)
place
=
fluid
.
CPUPlace
()
exe
=
fluid
.
Executor
(
place
)
input_data
=
np
.
random
.
rand
(
10
,
10
).
astype
(
np
.
float32
)
res
,
=
exe
.
run
(
feed
=
{
"data"
:
input_data
},
fetch_list
=
[
result_min
])
self
.
assertEqual
((
res
==
np
.
min
(
input_data
,
axis
=
1
)).
all
(),
True
)
# type: int
with
fluid
.
program_guard
(
fluid
.
Program
(),
fluid
.
Program
()):
data
=
fluid
.
data
(
"data"
,
shape
=
[
10
,
10
],
dtype
=
"int64"
)
result_min
=
paddle
.
min
(
input
=
data
,
dim
=
1
)
place
=
fluid
.
CPUPlace
()
exe
=
fluid
.
Executor
(
place
)
input_data
=
np
.
random
.
randint
(
10
,
size
=
(
10
,
10
)).
astype
(
np
.
int64
)
res
,
=
exe
.
run
(
feed
=
{
"data"
:
input_data
},
fetch_list
=
[
result_min
])
self
.
assertEqual
((
res
==
np
.
min
(
input_data
,
axis
=
1
)).
all
(),
True
)
# dygraph
with
fluid
.
dygraph
.
guard
():
np_x
=
np
.
array
([
10
,
10
]).
astype
(
'float64'
)
x
=
fluid
.
dygraph
.
to_variable
(
np_x
)
z
=
paddle
.
min
(
x
,
dim
=
0
)
np_z
=
z
.
numpy
()
z_expected
=
np
.
array
(
np
.
min
(
np_x
,
axis
=
0
))
self
.
assertEqual
((
np_z
==
z_expected
).
all
(),
True
)
if
__name__
==
'__main__'
:
unittest
.
main
()
python/paddle/tensor/__init__.py
浏览文件 @
9c17b3c9
...
...
@@ -110,8 +110,6 @@ from .math import cumsum #DEFINE_ALIAS
from
.math
import
elementwise_add
#DEFINE_ALIAS
from
.math
import
elementwise_div
#DEFINE_ALIAS
from
.math
import
elementwise_floordiv
#DEFINE_ALIAS
from
.math
import
elementwise_max
#DEFINE_ALIAS
from
.math
import
elementwise_min
#DEFINE_ALIAS
from
.math
import
elementwise_mod
#DEFINE_ALIAS
from
.math
import
elementwise_pow
#DEFINE_ALIAS
from
.math
import
elementwise_sub
#DEFINE_ALIAS
...
...
@@ -140,7 +138,9 @@ from .math import sums #DEFINE_ALIAS
from
.math
import
tanh
#DEFINE_ALIAS
from
.math
import
elementwise_sum
#DEFINE_ALIAS
from
.math
import
max
#DEFINE_ALIAS
from
.math
import
maximum
#DEFINE_ALIAS
from
.math
import
min
#DEFINE_ALIAS
from
.math
import
minimum
#DEFINE_ALIAS
from
.math
import
mm
#DEFINE_ALIAS
from
.math
import
div
#DEFINE_ALIAS
from
.math
import
multiply
#DEFINE_ALIAS
...
...
python/paddle/tensor/math.py
浏览文件 @
9c17b3c9
...
...
@@ -36,8 +36,6 @@ from ..fluid.layers import cosh #DEFINE_ALIAS
from
..fluid.layers
import
elementwise_add
#DEFINE_ALIAS
from
..fluid.layers
import
elementwise_div
#DEFINE_ALIAS
from
..fluid.layers
import
elementwise_floordiv
#DEFINE_ALIAS
from
..fluid.layers
import
elementwise_max
#DEFINE_ALIAS
from
..fluid.layers
import
elementwise_min
#DEFINE_ALIAS
from
..fluid.layers
import
elementwise_mod
#DEFINE_ALIAS
from
..fluid.layers
import
elementwise_mul
#DEFINE_ALIAS
from
..fluid.layers
import
elementwise_pow
#DEFINE_ALIAS
...
...
@@ -78,8 +76,6 @@ __all__ = [
'elementwise_add'
,
'elementwise_div'
,
'elementwise_floordiv'
,
'elementwise_max'
,
'elementwise_min'
,
'elementwise_mod'
,
'elementwise_pow'
,
'elementwise_sub'
,
...
...
@@ -109,7 +105,9 @@ __all__ = [
'tanh'
,
'elementwise_sum'
,
'max'
,
'maximum'
,
'min'
,
'minimum'
,
'mm'
,
'div'
,
'multiply'
,
...
...
@@ -511,13 +509,117 @@ Examples:
return
_elementwise_op
(
LayerHelper
(
op_type
,
**
locals
()))
def
maximum
(
x
,
y
,
axis
=-
1
,
name
=
None
):
"""
Examples:
.. code-block:: python
import paddle
import numpy as np
paddle.disable_static()
x_data = np.array([[1, 2], [3, 4]], dtype=np.float32)
y_data = np.array([[5, 6], [7, 8]], dtype=np.float32)
x = paddle.to_variable(x_data)
y = paddle.to_variable(y_data)
res = paddle.maximum(x, y)
print(res.numpy())
#[[5. 6.]
# [7. 8.]]
x_data = np.array([[[1, 2, 3], [1, 2, 3]]], dtype=np.float32)
y_data = np.array([1, 2], dtype=np.float32)
x = paddle.to_variable(x_data)
y = paddle.to_variable(y_data)
res = paddle.maximum(x, y, axis=1)
print(res.numpy())
#[[[1. 2. 3.]
# [2. 2. 3.]]]
x_data = np.array([2, 3, 5], dtype=np.float32)
y_data = np.array([1, 4, np.nan], dtype=np.float32)
x = paddle.to_variable(x_data)
y = paddle.to_variable(y_data)
res = paddle.maximum(x, y)
print(res.numpy())
#[ 2. 4. nan]
x_data = np.array([5, 3, np.inf], dtype=np.float32)
y_data = np.array([1, 4, 5], dtype=np.float32)
x = paddle.to_variable(x_data)
y = paddle.to_variable(y_data)
res = paddle.maximum(x, y)
print(res.numpy())
#[ 5. 4. inf]
"""
op_type
=
'elementwise_max'
act
=
None
if
in_dygraph_mode
():
return
_elementwise_op_in_dygraph
(
x
,
y
,
axis
=
axis
,
act
=
act
,
op_name
=
op_type
)
return
_elementwise_op
(
LayerHelper
(
op_type
,
**
locals
()))
def
minimum
(
x
,
y
,
axis
=-
1
,
name
=
None
):
"""
Examples:
.. code-block:: python
import paddle
import numpy as np
paddle.disable_static()
x_data = np.array([[1, 2], [3, 4]], dtype=np.float32)
y_data = np.array([[5, 6], [7, 8]], dtype=np.float32)
x = paddle.to_variable(x_data)
y = paddle.to_variable(y_data)
res = paddle.minimum(x, y)
print(res.numpy())
#[[1. 2.]
# [3. 4.]]
x_data = np.array([[[1, 2, 3], [1, 2, 3]]], dtype=np.float32)
y_data = np.array([1, 2], dtype=np.float32)
x = paddle.to_variable(x_data)
y = paddle.to_variable(y_data)
res = paddle.minimum(x, y, axis=1)
print(res.numpy())
#[[[1. 1. 1.]
# [2. 2. 2.]]]
x_data = np.array([2, 3, 5], dtype=np.float32)
y_data = np.array([1, 4, np.nan], dtype=np.float32)
x = paddle.to_variable(x_data)
y = paddle.to_variable(y_data)
res = paddle.minimum(x, y)
print(res.numpy())
#[ 1. 3. nan]
x_data = np.array([5, 3, np.inf], dtype=np.float32)
y_data = np.array([1, 4, 5], dtype=np.float32)
x = paddle.to_variable(x_data)
y = paddle.to_variable(y_data)
res = paddle.minimum(x, y)
print(res.numpy())
#[1. 3. 5.]
"""
op_type
=
'elementwise_min'
act
=
None
if
in_dygraph_mode
():
return
_elementwise_op_in_dygraph
(
x
,
y
,
axis
=
axis
,
act
=
act
,
op_name
=
op_type
)
return
_elementwise_op
(
LayerHelper
(
op_type
,
**
locals
()))
for
func
in
[
add
,
div
,
multiply
,
maximum
,
minimum
,
multiply
]:
proto_dict
=
{
'add'
:
'elementwise_add'
,
'div'
:
'elementwise_div'
,
'multiply'
:
'elementwise_mul'
}
proto_dict
=
{
'add'
:
'elementwise_add'
,
'div'
:
'elementwise_div'
,
'm
aximum'
:
'elementwise_max'
,
'minimum'
:
'elementwise_min'
,
'm
ultiply'
:
'elementwise_mul'
}
op_proto
=
OpProtoHolder
.
instance
().
get_op_proto
(
proto_dict
[
func
.
__name__
])
if
func
.
__name__
in
[
'add'
]:
alias_main
=
':alias_main: paddle.%(func)s'
%
{
'func'
:
func
.
__name__
}
...
...
@@ -1065,152 +1167,179 @@ def inverse(input, name=None):
return
out
def
max
(
input
,
dim
=
None
,
keep_
dim
=
False
,
name
=
None
):
def
max
(
x
,
axis
=
None
,
keep
dim
=
False
,
name
=
None
):
"""
:alias_main: paddle.max
:alias: paddle.max,paddle.tensor.max,paddle.tensor.math.max
Computes the maximum of tensor elements over the given
dimension
.
Computes the maximum of tensor elements over the given
axis
.
Args:
input (Variable): The input variable which is a T
ensor, the data type is float32,
x(Tensor): A t
ensor, the data type is float32,
float64, int32, int64.
dim (list|int, optional): The dimension
along which the maximum is computed.
axis(list|int, optional): The axis
along which the maximum is computed.
If :attr:`None`, compute the maximum over all elements of
:attr:`input` and return a Tensor variable with a single element,
otherwise must be in the range :math:`[-
rank(input), rank(input
))`.
If :math:`
dim[i] < 0`, the dimension to reduce is :math:`rank + dim
[i]`.
keep
_dim
(bool, optional): Whether to reserve the reduced dimension in the
otherwise must be in the range :math:`[-
x.ndim(x), x.ndim(x
))`.
If :math:`
axis[i] < 0`, the axis to reduce is :math:`x.ndim + axis
[i]`.
keep
dim
(bool, optional): Whether to reserve the reduced dimension in the
output Tensor. The result tensor will have one fewer dimension
than the :attr:`input` unless :attr:`keep
_
dim` is true, default
than the :attr:`input` unless :attr:`keepdim` is true, default
value is False.
name(str, optional): The default value is None. Normally there is no need for
user to set this property. For more information, please refer to :ref:`api_guide_Name`
Returns:
Variable: Tensor, results of maximum on the specified dim
of input tensor,
Tensor, results of maximum on the specified axis
of input tensor,
it's data type is the same as input's Tensor.
Examples:
.. code-block:: python
import numpy as np
import paddle
import paddle.fluid as fluid
# x is a Tensor variable with following elements:
# [[0.2, 0.3, 0.5, 0.9]
# [0.1, 0.2, 0.6, 0.7]]
# Each example is followed by the corresponding output tensor.
x = fluid.data(name='x', shape=[2, 4], dtype='float32')
paddle.max(x) # [0.9]
paddle.max(x, dim=0) # [0.2, 0.3, 0.6, 0.9]
paddle.max(x, dim=-1) # [0.9, 0.7]
paddle.max(x, dim=1, keep_dim=True) # [[0.9], [0.7]]
# y is a Tensor variable with shape [2, 2, 2] and elements as below:
# [[[1.0, 2.0], [3.0, 4.0]],
# [[5.0, 6.0], [7.0, 8.0]]]
# Each example is followed by the corresponding output tensor.
y = fluid.data(name='y', shape=[2, 2, 2], dtype='float32')
paddle.max(y, dim=[1, 2]) # [4.0, 8.0]
paddle.max(y, dim=[0, 1]) # [7.0, 8.0]
paddle.disable_static()
# data_x is a variable with shape [2, 4]
# the axis is a int element
data_x = np.array([[0.2, 0.3, 0.5, 0.9],
[0.1, 0.2, 0.6, 0.7]])
x = paddle.to_variable(data_x)
result1 = paddle.max(x)
print(result1.numpy())
#[0.9]
result2 = paddle.max(x, axis=0)
print(result2.numpy())
#[0.2 0.3 0.6 0.9]
result3 = paddle.max(x, axis=-1)
print(result3.numpy())
#[0.9 0.7]
result4 = paddle.max(x, axis=1, keepdim=True)
print(result4.numpy())
#[[0.9]
# [0.7]]
# data_y is a variable with shape [2, 2, 2]
# the axis is list
data_y = np.array([[[1.0, 2.0], [3.0, 4.0]],
[[5.0, 6.0], [7.0, 8.0]]])
y = paddle.to_variable(data_y)
result5 = paddle.max(y, axis=[1, 2])
print(result5.numpy())
#[4. 8.]
result6 = paddle.max(y, axis=[0, 1])
print(result6.numpy())
#[7. 8.]
"""
helper
=
LayerHelper
(
'max'
,
**
locals
())
out
=
helper
.
create_variable_for_type_inference
(
dtype
=
helper
.
input_dtype
())
if
dim
is
not
None
and
not
isinstance
(
dim
,
list
):
dim
=
[
dim
]
if
axis
is
not
None
and
not
isinstance
(
axis
,
list
):
axis
=
[
axis
]
reduce_all
=
True
if
axis
==
None
or
axis
==
[]
else
False
axis
=
axis
if
axis
!=
None
and
axis
!=
[]
else
[
0
]
if
in_dygraph_mode
():
return
core
.
ops
.
reduce_max
(
x
,
'dim'
,
axis
,
'keep_dim'
,
keepdim
,
'reduce_all'
,
reduce_all
)
helper
=
LayerHelper
(
'max'
,
**
locals
())
check_variable_and_dtype
(
input
,
'input'
,
[
'float32'
,
'float64'
,
'int32'
,
'int64'
],
'max'
)
reduce_all
=
True
if
dim
==
None
or
dim
==
[]
else
False
dim
=
dim
if
dim
!=
None
and
dim
!=
[]
else
[
0
]
x
,
'x'
,
[
'float32'
,
'float64'
,
'int32'
,
'int64'
],
'max'
)
if
in_dygraph_mode
():
return
core
.
ops
.
reduce_max
(
input
,
'dim'
,
dim
,
'keep_dim'
,
keep_dim
,
'reduce_all'
,
reduce_all
)
out
=
helper
.
create_variable_for_type_inference
(
dtype
=
helper
.
input_dtype
())
helper
.
append_op
(
type
=
'reduce_max'
,
inputs
=
{
'X'
:
input
},
inputs
=
{
'X'
:
x
},
outputs
=
{
'Out'
:
out
},
attrs
=
{
'dim'
:
dim
,
'keep_dim'
:
keep
_
dim
,
'dim'
:
axis
,
'keep_dim'
:
keepdim
,
'reduce_all'
:
reduce_all
})
return
out
def
min
(
input
,
dim
=
None
,
keep_dim
=
False
,
name
=
None
):
def
min
(
x
,
axis
=
None
,
keepdim
=
False
,
name
=
None
):
"""
:alias_main: paddle.min
:alias: paddle.min,paddle.tensor.min,paddle.tensor.math.min
Computes the minimum of tensor elements over the given
dimension.
Computes the minimum of tensor elements over the given
axis
Args:
input (Variable): The input variable which is a Tensor, the data type is float32,
float64, int32, int64.
dim (list|int, optional): The dimensions along which the minimum is computed.
x(Tensor): A tensor, the data type is float32, float64, int32, int64.
axis(list|int, optional): The axis along which the minimum is computed.
If :attr:`None`, compute the minimum over all elements of
:attr:`input` and return a Tensor variable with a single element,
otherwise must be in the range :math:`[-
rank(input), rank(input)
)`.
If :math:`
dim[i] < 0`, the dimension to reduce is :math:`rank + dim
[i]`.
keep
_dim
(bool, optional): Whether to reserve the reduced dimension in the
otherwise must be in the range :math:`[-
x.ndim, x.ndim
)`.
If :math:`
axis[i] < 0`, the axis to reduce is :math:`x.ndim + axis
[i]`.
keep
dim
(bool, optional): Whether to reserve the reduced dimension in the
output Tensor. The result tensor will have one fewer dimension
than the :attr:`input` unless :attr:`keep
_
dim` is true, default
than the :attr:`input` unless :attr:`keepdim` is true, default
value is False.
name(str, optional): The default value is None. Normally there is no need for
user to set this property. For more information, please refer to :ref:`api_guide_Name`
Returns:
Variable: Tensor, result of minimum on the specified dim
of input tensor,
Tensor, results of minimum on the specified axis
of input tensor,
it's data type is the same as input's Tensor.
Examples:
.. code-block:: python
import paddle
import paddle.fluid as fluid
# x is a Tensor variable with following elements:
# [[0.2, 0.3, 0.5, 0.9]
# [0.1, 0.2, 0.6, 0.7]]
# Each example is followed by the corresponding output tensor.
x = fluid.data(name='x', shape=[2, 4], dtype='float32')
paddle.min(x) # [0.1]
paddle.min(x, dim=0) # [0.1, 0.2, 0.5, 0.7]
paddle.min(x, dim=-1) # [0.2, 0.1]
paddle.min(x, dim=1, keep_dim=True) # [[0.2], [0.1]]
# y is a Tensor variable with shape [2, 2, 2] and elements as below:
# [[[1.0, 2.0], [3.0, 4.0]],
# [[5.0, 6.0], [7.0, 8.0]]]
# Each example is followed by the corresponding output tensor.
y = fluid.data(name='y', shape=[2, 2, 2], dtype='float32')
paddle.min(y, dim=[1, 2]) # [1.0, 5.0]
paddle.min(y, dim=[0, 1]) # [1.0, 2.0]
"""
helper
=
LayerHelper
(
'min'
,
**
locals
())
out
=
helper
.
create_variable_for_type_inference
(
dtype
=
helper
.
input_dtype
())
if
dim
is
not
None
and
not
isinstance
(
dim
,
list
):
dim
=
[
dim
]
import numpy as np
import paddle
check_variable_and_dtype
(
input
,
'input'
,
[
'float32'
,
'float64'
,
'int32'
,
'int64'
],
'max'
)
paddle.disable_static()
reduce_all
=
True
if
dim
==
None
or
dim
==
[]
else
False
dim
=
dim
if
dim
!=
None
and
dim
!=
[]
else
[
0
]
# data_x is a variable with shape [2, 4]
# the axis is a int element
data_x = np.array([[0.2, 0.3, 0.5, 0.9],
[0.1, 0.2, 0.6, 0.7]])
x = paddle.to_variable(data_x)
result1 = paddle.min(x)
print(result1.numpy())
#[0.1]
result2 = paddle.min(x, axis=0)
print(result2.numpy())
#[0.1 0.2 0.5 0.7]
result3 = paddle.min(x, axis=-1)
print(result3.numpy())
#[0.2 0.1]
result4 = paddle.min(x, axis=1, keepdim=True)
print(result4.numpy())
#[[0.2]
# [0.1]]
# data_y is a variable with shape [2, 2, 2]
# the axis is list
data_y = np.array([[[1.0, 2.0], [3.0, 4.0]],
[[5.0, 6.0], [7.0, 8.0]]])
y = paddle.to_variable(data_y)
result5 = paddle.min(y, axis=[1, 2])
print(result5.numpy())
#[1. 5.]
result6 = paddle.min(y, axis=[0, 1])
print(result6.numpy())
#[1. 2.]
"""
if
axis
is
not
None
and
not
isinstance
(
axis
,
list
):
axis
=
[
axis
]
reduce_all
=
True
if
axis
==
None
or
axis
==
[]
else
False
axis
=
axis
if
axis
!=
None
and
axis
!=
[]
else
[
0
]
if
in_dygraph_mode
():
return
core
.
ops
.
reduce_min
(
input
,
'dim'
,
dim
,
'keep_dim'
,
keep_
dim
,
return
core
.
ops
.
reduce_min
(
x
,
'dim'
,
axis
,
'keep_dim'
,
keep
dim
,
'reduce_all'
,
reduce_all
)
helper
=
LayerHelper
(
'min'
,
**
locals
())
check_variable_and_dtype
(
x
,
'x'
,
[
'float32'
,
'float64'
,
'int32'
,
'int64'
],
'min'
)
out
=
helper
.
create_variable_for_type_inference
(
dtype
=
helper
.
input_dtype
())
helper
.
append_op
(
type
=
'reduce_min'
,
inputs
=
{
'X'
:
input
},
inputs
=
{
'X'
:
x
},
outputs
=
{
'Out'
:
out
},
attrs
=
{
'dim'
:
dim
,
'keep_dim'
:
keep
_
dim
,
'dim'
:
axis
,
'keep_dim'
:
keepdim
,
'reduce_all'
:
reduce_all
})
return
out
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录